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ABSTRACT 

POLYASEEKER: A COMPUTATIONAL FRAMEWORK FOR IDENTIFYING 

POLYADENYLATION CLEAVAGE SITE FROM RNA-SEQ 

by 

Xiao Ling 

Alternative polyadenylation (APA) of mRNA plays a crucial role for post-transcriptional 

gene regulation. Recently, advances in next generation sequencing technology have made 

it possible to efficiently characterize the transcriptome and identify the 3’end of 

polyadenylated RNAs. However, no comprehensive bioinformatic pipelines have fulfilled 

this goal. The PolyASeeker, a computational framework for identifying polyadenylation 

cleavage sites from RNA-Seq data is proposed in this thesis. By using the simulated 

RNA-seq dataset, a novel method is developed to evaluate the performance of the 

proposed framework versus the traditional A-stretch approach, and compute accurate 

Precisions and Recalls that previous estimation could not get. It is found that the 

proposed method is able to achieve significantly higher sensitivity in various scenarios 

than the A-stretch approach. In further studies, PolyASeeker is applied to human tissue-

specific RNA-sequencing data, and through all the polyA sites identified by PolyASeeker 

and annotated by PolyA DB, special isoform expression patterns among tissues are 

found. Genes that have a specific 3’UTR expression have also been recognized in the 

brain. PolyASeeker is also run on an mRNA 3’ UTR sequencing dataset and it is found 

that the software could be quite adapted to the data. Significant isoform shorting events 

with expression evidences and experimental supports have been found. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

The objective of this thesis is to develop a computational framework for identifying 

polyadenylation cleavage sites from RNA-Seq data. The name of this framework is 

PolyASeeker; it could be downloaded at http://polyaseeker.sourceforge.net/. In order to 

evaluate the performance of this software, PolyASeeker are tested in simulation and real-

data studies.  

For the simulation test, a simulation tool, FluxSimulator was used to simulate 

RNA-seq data; it simulated the testing data under varied sequencing scenarios. And a set 

of Precision and Recall values are calculated based on the performance of PolyASeeker 

and a traditional 8-A method, the results show that PolyASeeker is superior to the 

traditional method in Recall values.  

For the real data test, two published data RNA-seq datasets are used to evaluate 

performance. One dataset consist of human tissue-specific RNA-seq data, and the other 

one include RNA-seq data from two human breast cancer cell samples and one mammary 

epithelial cell sample. The goal here is to study whether the identified polyA sites  could 

be used to found alternative polyadenylation event, and furthermore whether it could lead 

to novel biological recoveries.  

 

 

 

http://polyaseeker.sourceforge.net/
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1.1 Background Information 

Alternative polyadenylation (APA) of messenger RNA plays a key role during post-

transcription and is a widespread mechanism in higher eukaryotes. The usage of 

alternative PolyA sites could lead to encode multiple mRNA transcripts for a single gene.  

In recent years, it has become increasingly evident that the length changes of 3’UTR are 

versatile in various physiological states and cell types, such as tumor cells, activated T 

lymphocytes and embryonic cells. Despite of progresses, these studies merely utilized 

known annotations, for example, PolyA_DB, which is based on series of available 

database of cDNA/EST, but it reveals incompleteness due to the limitation of sequencing 

technology.  

Recently, the advances of next generation sequencing technology have merged as 

a powerful tool to interrogate of the transcriptome and provide an opportunity to 

investigate polyadenylation cleavage sites on an unprecedented scale. A tradition method 

of identifying potential novel polyadenylation sites by searching and remapping at least 

four As or Ts among those unmapped RNA-seq reads is commonly used since EST data. 

However, these simple A-stretch approaches fail to take consideration for sequencing 

error, which sometimes could lead to false positives for predictions. 
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CHAPTER 2 

POLYADENYLATION SITES IDENTIFCATION 

 

2.1 Problem Statement  

In order to correctly identify polyadenylation sites from RNA-seq data, the software is 

aimed to deal with oligo(dT)/modified oligo(dT)-primed mRNA sequencing data, and it 

also suppose the input data to have reads that origin from the boundary of 3’UTR and 

polyA tails. Once the basic requirement is satisfied, the problem have becomes that how 

to identify those true polyA reads, and how to filter out the false positives from the result. 

It is also necessary to show the possible applications of polyA sites identified by 

PolyASeeker.  

 

2.2 Approach 

Based on the problems mentioned above, PolyASeeker, a computational framework is 

designed to align the sequences back to the genome and detect the polyA reads. It used a 

scoring method to identify the polyA regions. In order to study the performance of this 

proposed method, a simulated RNA-seq dataset is generated and used to test 

PolyASeeker. As the true polyA sites are known in simulated dataset, the precision and 

recall value are measurable in this study. By measuring these values, the best filtering 

parameter settings are decided. The PolyASeeker is also proved to perform better than a 

traditional method. Furthermore, two real data applications have been conducted. The 

goals here is to reveal that the proposed framework could be feasible to analyze most of 

RNA-seq data; also to prove that PolyASeeker is able to identify significant different
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isoform expressions from tissue-specific RNA-seq data, and could find significant 3’UTR 

shorting event from the cancer cell samples.  
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CHAPTER 3 

IMPLEMENTATION 

 

As is mentioned in Chapter 2, the PolyASeeker is designed for achieving higher accuracy 

and sensitivity. Also, If the RNA-seq reads is pair-end, then the proposed method should 

be able to take the fully use of pair information. Therefore the pipeline in PolyASeeker 

was created to fulfill these demands and become powerful and suitable in analyzing 

general RNA-seq data.  

3.1 Framework of PloyASeeker 

Traditionally, PolyA candidate reads in the data set are detected base on their number of 

As or Ts. Normally, once a read has 8 or more of that, then it is considered contain a 

polyA tail, However, this method ignores the sequencing quality of each position, which 

did not take the possibility that the Adenine comes from sequencing error into 

consideration. Thus, a new evaluation method is developed in PolyASeeker. 

   

3.1.1 Algorithm for identifying PolyA sites 

First, in order to detect A-rich regions, different weights are given to discriminate 

between A and C, G, T in the following manner: 
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 Then, the expectation for each base can be computed by taking account for the 

sequencing error : 

 

 

Where  can be obtained from Phred-scaled base quality score in FASTQ format, 

 

Let L be the length of unmapped region, for each aligned reads, the unmapped 

region can be scored by the summation of expectation for every base in L:  

 

 Where  is an indicator if base is A or not, 

 

 

3.1.2 Pipeline 

The PolyASeeker Pipeline mainly contains three steps: reads alignment, poly-A 

candidate sites identifying and sites filtering, this pipeline is designed under the 

consideration of computing efficiency, simplicity and the Recall and Precision values. 

 

 

Figure 3.1  PolyASeeker pipeline  
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Figure 3.1 shows the procedures of how PolyASeeker identify polyA reads. First, 

the short reads in fastq format can be directly mapped by Bowtie2 local model, which is 

an ultrafast and memory-efficent tool for alignment and supports local alignment that 

does not require reads to align end-to-end. 

Next, for each alignment, the unmapped region can be score by equation (3) and 

parse the candidate reads above a certain cutoff. By default, PolyASeeker set cutoff=7.8 

as default which is approximately equivalent to 8A-strech method. 

Finally, PolyASeeker filters false positives and reorganized the result. It contains 

an internal priming filter and sites clustering function, together with the optional filters 

including expression filter and supportive reads filter. 

3.2 RNA-seq Dataset Simulation 

The PolyASeeker was tested on both simulated RNA-seq data and real RNA-seq data. 

For the simulated data, a recently published RNA-Seq simulation tool, FluxSimulator 

was used to study the performance of the proposed method. Refseq hg19 gene annotation 

was used in this simulation. And four scenarios were studied: 100bp paired-end, 75bp 

paired-end, 100bp single-end, 75bp single-end. For 75bp paired-end and single-end data, 

FluxSimulator build-in error model is used, while for 100 bp paired-end and single-end 

data, a custom error model is created. The model of polyadenylation process in 

FluxSimulator was generated by a Weibull-appoximation of the normal distribution with 

shape=2 and scale=300 to sample random lengths of PolyA tails. Poly-dT priming RNA-

seq procedure was performed and different reads depth was also sequenced, including 

1M 10M, 25M, 50M, 75M, 100M, 125M, 150M, 175M and 200M for all the four 

scenarios.
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CHAPTER 4 

RESULT 

 

4.1 Results of simulation study 

In the simulation study, the testing data are all generated by FluxSimulator. The model of 

polyadenylation process in FluxSimulator was generated by a Weibull-appoximation of 

the normal distribution with shape=2 and scale=300 to sample random lengths of PolyA 

tails during transcription. Poly-dT priming RNA-seq procedure was performed under four 

scenarios: 100bp paired-end, 75bp paired-end, 100bp single-end, 75bp single-end. 

Different sequenced reads depths are also simulated under these four types, ranges from 

from 1M to 200M. The performance was measured using the following equations:   

 

 

 

 

Figure 4.1 shows that PloyASeeker achieved a much higher Precision in all 

scenarios than traditional A-stretch approach. 
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Figure 4.1  Performance comparison of PolyASeeker vs. A-stretch method in simulation 

study. Two statistics values are shown on each y-axis. Precision denotes the rate of True 

positive in prediction group. Recall denotes the rate of successful identified polyA sites 

from the ture polyA sites.  Compared to the A-stretch method, the PolyASeeker have 

identified the equivalent amount of PolyA sites with a more accurate performance.  

 

As to the Recalls, it is observed that these values has a fundamental correlation 

with the sequencing depth, as was shown in Figure 1, these values would reached 

climaxes at the Seq-depth ranging from 175 million to 200 million. In order to study the 

minimum transcription level for a gene to have its polyA sites identified, each simulated 

transcriptome is split by the genes expressed molecules number. It is found that for the 

200 million dataset, above 90% of the genes would have their polyA sites identified if 

those genes have more than 40 transcript mRNA molecules, as shown in Figure 4.2. 
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Figure 4.2  Sensitivity accumulation under sequencing depth and expressing level. The 

growth of sensitivity is shown in four scenarios as the sequencing depth accumulating 

from 1M(million), 10M, 25M, 50M, 75M, 100M, 125M, 150M, 175M (grey lines) to 200 

million (black line). The X-axis denotes what cutoff is used to define the true polyA sites: 

only those isoforms with a higher transcription numbers than the cutoff will be expected 

to have a true polyA site at the end. 

 

 

 

4.2 Results of Real-data Study 

The performance of PolyASeeker is assessed using two real NGS RNA-Seq datasets. The 

first one is the Illumina bodyMap2 RNA sequencing data, the transcription profiling of 

individual and mixture of 16 human tissues RNA. The 16 human tissue types includes 

adrenal, adipose, brain, breast, colon, heart, kidney, liver, lung, lymph, ovary, prostate, 

skeletal muscle, testes, thyroid, and white blood cells. In the analysis PolyASeeker is
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applied to the 50 bps paired end data, which with one lane of HiSeq 2000 data per tissue. 

The second dataset is from a published data set (9) for studying tandem 3’UTR switching 

in human breast cancer cells. A novel strategy of sequencing APA sites, called SAPAS, 

was introduced with modified oligo(dT) tags. PolyA reads were reversely sequenced and 

begin with the linker 5’-TTTTCTTTTTTCTTTTTT-3’. PolyASeeker was applied to two 

breast cancer cell lines (MCF7 and MB231) in addition to a human normal mammary 

epithelial cell line (MCF10A) from Illumina GA IIx sequencing platform.  

 

4.2.1 Human Body Map 2.0 RNA-seq data 

The Human Body Map 2.0 Project by Illumina generated RNA-seq data for 16 different 

human tissues (adipose, adrenal, brain, breast, colon, heart, kidney, liver, lung, lymph 

node, ovary, prostate, skeletal muscle, testes, thyroid, and white blood cells). The 50 bps 

paired end read data is used for analyzing. For each lane of HiSeq 2000 data per tissue, a 

certain amount of PolyA sites is identified (Table 4.1). And altogether an amount of 

12,431 polyA sites is got, for this combined sites, 60% of them are outside from the 

polyA_DB (Tian. et.al
 [18]

.).  

 

Table 4.1  Genomic locations of polyA sites from Human Body Map 2.0 RNA-seq data 

Genome Regions Number of sites Distribution percentage 

3'UTR 12,703 56% 

5'UTR 631 3% 

CDS 613 3% 

Intron 3,482 15% 

Intergenic 6,090 27% 

PolyA_DB 9,729 43% 
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To further explore the application of PolyASeeker in this dataset, a tissue-specific 

alternative polyadenylation study is conduct. First a 3’ UTR annotation is prepared from 

RefSeq Genes, which contains a combined 3’ UTR region from every isoforms for each 

gene. Based on this annotation, the distal and the proximal polyA sites are retrieved from 

the combined pool of polyASeeker result and polyA DB. By counting an expression ratio 

of the coverage number at the 200bp window in distal polyA site to the coverage number 

at 200bp window in proximal polyA site, ratio variance are calculated for all tissue’s 

expression ratio at each 3’ UTR region. For those 3’UTRs that contain one more isoforms, 

their ratio variance are ranked as the value marks the isoform usage variance among 

different tissues. From the rankling list, several genes are recognized to have different 

isoform expressions in 3’ UTR region among tissues.  

TPM1, TPM2 and TPM3, which have been found to have different 

polyadenylation patterns between the tissues of heart, breast, thyroid, skeletal muscle and 

the tissues of prostate, ovary, testes, colon, adrenal, adipose, lung, kidney and lymph 

node, and have low expression in the brain and white blood cells. And the first group 

trend to express a shorter isoform, where the second group trend to express the longer 

isoform. Since these genes encode the tropomyosin family of actin-binding proteins 

which involved in the contractile system of striated and smooth muscles and the 

cytoskeleton of non-muscle cells, a shorting pattern in skeleton muscles and heart may be 

reasonable to these tissues, as these two is enriched with striated and smooth muscles, 

however the similarity shortened pattern in breast, thyroid remains unknown (Figure 4.3). 

CDC42 and MAP4, which are ranked in the top 10 list of isoform usage variance 

between tissues, are found to be both brain-specific genes (Figure 4.4). CDC42, which
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have three transcript variants, expresses the short transcript variant 2 in and only in the 

brain tissue. The case is also the same in gene MAP4, as this gene also has three 

transcript variant, and the shorter transcript variant 3 is only expressed in the brain tissue 

have. CDC42 encodes is a small GTPase of the Rho-subfamily, which regulates signaling 

pathways that control diverse cellular functions including cell morphology, migration, 

endocytosis and cell cycle progression. MAP4 encoded a major non-neuronal 

microtubule-associated protein, and the phosphorylation of this protein affects 

microtubule properties and cell cycle progression. Since the brain tissue composed 

primarily of neurons and glial cells, which have specific cell structure and long life spin, 

it is not surprising that it has special expression patterns contains in cell cycle related 

genes. However, how those short transcript variant regulates the morphology and cycle 

progression in neurons and glial cells remains unclear. 
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Figure 4.3  Expression characteristics of TPM1, TPM2 and TPM3 difference between 

tissues.  

Source: http://genome.ucsc.edu/, accessed March 28, 2013. 

http://genome.ucsc.edu/
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Figure 4.4  Expression characteristics of CDC42 and MAP4 difference in brain. 

Source: http://genome.ucsc.edu/, accessed April 2, 2013.
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4.2.2 Fu 2011 RNA- seq data 

To further explore the availability and usage of PolyASeeker, the software is applied to 

another RNA-seq dataset. This dataset is generated by a 3’ ends mRNA sequencing 

method called SAPAS 
[9]

. This method is aimed to complete genome-wide profiling of 

APA sites and to identify new polyA sites, and its reads covers from an upstream 200-

300 bp length window to the 3’ end of mRNA, where end with the polyA tail. The 

simples here include two human breast cancer lines (MCF7 and MB231) and one 

cultured human mammary epithelial normal cell line (MCF10A). As they use a tradition 

method to identify polyA sites, the PolyAseeker is employed in this job. The result shows 

that an equivalent and in some samples slightly more amount of polyA sites have been 

identified (Table 4.2).  The four numbers of supportive reads at the proximal and distal 

polyA sites are gathered among cancer sample and control sample, and a fisher test is run 

on these four numbers. For the gene that has significant p-values, it is believed to have a 

3’UTR switching event between the corresponding samples. From the result, several 

experimental verified APA events that have been reported by previous studies have been 

found (seven of eight genes). 

 

Table 4.2  Characteristics of polyA sites from Fu 2011 RNA-seq data 

  

Raw reads 
Mapped 

reads 

Uniquely 

mapped to 
genome 

(SAPAS) 

Best mapped reads 
with a polyA tail 

(PolyASeeker) 

Combined 31,026,769  -  13,573,367 16,139,436 

MCF10A (mammary epithelial cell) 8,319,588 98.57% 4,254,699 5,097,807 

MCF7 (breast cancer) 6,755,371 96.66% 3,449,838 4,101,303 

MDA231 (breast cancer) 15,951,810 90.44% 5,868,830 6,940,326 
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PolyA sites 
(SAPAS) 

PolyA sites 
(PolyASeeker) 

Running time 
(min) 

Known polyA 

sites: 

Combined 89,211 89,475 245 19,683 

MCF10A (mammary epithelial cell) 39,246 39,391 69 Novel polyA 

sites: MCF7 (breast cancer) 41,184 39,408 50 

MDA231 (breast cancer) 61,812 62,515 126 69,792 

 

DDX5, HSBP1, FAM134A and SEC61A1, which had been identified to have 

significant 3’UTR switching events in MCF7, all are validated by RT-PCR in previous 

studies (Fu 2011). For gene, RAB10, ANP32A, DDX5 and RRBP1, which have been 

found to have significant 3’UTR switching events in MB231, are also validated by qRT-

PCR in previous studies (Fu 2011) (Figure 4.5). For the other predicted 3’UTR switching 

events, some of the result are novel from Fu’s study. Since the expression evidences for 

those sites have been found (Figure 4.6), the results are highly convincing. And their lost 

may due to the different choice in sequence aligner (Bowtie in Fu, Bowtie2 in 

PolyASeeker). 

 

 



18 

 

 

 

Figure 4.5  Gene expression evidences for 3’UTR switching events identified in Fu’s cancer 

dataset. 

Source: http://genome.ucsc.edu/, accessed April 29, 2013. 
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CHAPTER 5 

CONCLUSIONS 

In this study, the PolyAseeker, a computational framework for identifying 

polyadenylation cleavage sites in RNA-seq data is proposed. In the PolyAseeker 

pipelines, an adenine scoring method is applied in polyA reads identification. And several 

processing, filtering methods have been modified to achieve a higher performance. The 

Precision and Recall of all the results from simulated dataset is extensively evaluated, 

PolyASeeker method has consistently reached 0.2 percent or higher in Precision than the 

8A-stretch method. 

On two real datasets, it has been demonstrated that the method works efficiently 

and precisely in analysis of RNA-Seq data. And in tissue-specific dataset, genes with 

different polyadenylation patterns have been identified between tissues. Those genes 

have created novel topics in studying gene functions and cellular differentiation. In Fu’s 

cancer dataset, genes with significant 3’UTR shortening events have been identified in 

cancers, leading to a novel potential class of biomarkers and candidates to explain the 

cancer etiology. Since the applications of PolyASeeker to specific samples have been 

proved to reveal novel aberrant PolyA sites usage, it is expected that the knowledge to 

alternative polyadenylation and gene regulation mechanisms will be greatly facilitated as 

more and more RNA-Seq data become available. 
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