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ABSTRACT 

BATCH FOAMING OF HOT MELT EXTRUDED EXCIPIENT/ DISINTEGRANT/ 

API PHARMACEUTICAL FORMULATIONS AND THE STUDY OF THE 

EFFECTS OF THE RESULTING CELLULAR STRUCTURES ON API 

DISSOLUTION 

 

by 

Na Yao 

This thesis focuses on the impact of a disintegrant included in a foamed immediate release 

system composed of a polymer excipient and an Active Pharmaceutical Ingredient (API). 

Indomethacin (INM) is used as model API; Eudragit® EPO (EPO) is used as polymer 

excipient; AcDiSol and Crospovidone (Cros) are used as two kinds of disintegrant. The 

main objectives are to gain an understanding of the resulting morphologies, as well as the 

impact of disintegrants on drug release from foamed polymeric matrices.  

In the first part of this research, the Hot Melt Extrusion (HME) process is used to 

compound the following pharmaceutical formulations: EPO/AcDiSol/INM and 

EPO/Cros/INM containing different percentages of disintegrant. Comprehensive 

characterization of this system carried out by Hot-stage Polarized Optical Microscopy 

(HPOM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) shows 

that in all HME-prepared samples the API is in amorphous form in the polymer excipients, 

strongly suggesting that the extrudates are solid solutions of INM in EPO. In addition, the 

DSC results show that the disintegrant is stable in the set temperature range except for the 

moisture loss. Significantly, the disintegrants, as found from HPOM images, are intact 

after both HME and batch foaming processing.  

In the second part of this research, a batch foaming process is carried out on the 

milled hot melt extrudated formulations. Scanning Electron Microscopy (SEM) is used to 



characterize the resulting cellular structure. The SEM images show that the disintegrants 

are encaged or embedded in the polymer matrix, which indicates that the polymer and 

disintegrant are compatible to each other. 

In the third part of this research, release profiles of INM are obtained using the 

dissolution test with the United States Pharmacopeia (USP) Apparatus II (paddle). The 

concentration of API is determined through an UV absorbance calibration curve. The result 

strongly indicates that both disintegrants do accelerate the disintegration. In conclusion, 

the addition of disintegrant in the HME process formulation, which embeds it in the 

polymer matrix, is a valid method to increase the release rate of the resulting oral dosage 

extrudate.   
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CHAPTER 1  

 INTRODUCTION 

 

The Hot Melt Extrusion (HME) process is currently applied in the pharmaceutical field for 

the manufacture of a variety of dosage forms and formulations such as granules, pellets, 

tablets, suppositories, implants, stents, transdermal systems and ophthalmic inserts 

(Breitenbach, 2002). A large number of new drugs are poorly water-soluble and their 

bioavailability can be improved by mixing them with and dissolving them in water-soluble 

polymers. One way of achieving this is through the use of HME. Meanwhile HME, which 

is a continuous process, ensures very good manufacturing control and reproducibility. The 

limited number of processing steps, the absence of use of solvents, and short HME 

processing residence times, the reduction in labor force lead to a higher economic 

efficiency (Almeida et al., 2012). The extrudate is air-cooled and ground into fine 

particulates, which is used most often for pharmaceutical oral dosage form products. 

A disintegrant is a substance, or a mixture of substances, added to an oral dosage 

form to facilitate its break-up or disintegration after oral administration. Chaudhary et al. 

have studied the phenomena involved using potato starch (disintegrant) and 

microcrystalline cellulose (excipient) formulations. Higher dissolution rates were observed 

in tablets with the disintegrant, as compared to the dissolution rate of conventional tablets 

(Chaudhary et al., 1992).  

It has to be mentioned that one of the disadvantages of HME extrudates is that they 

are less porous extrudate, which may hinder the body fluid, penetrating into the pills or 

tablets. Hence, some strategies are needed to create pathways inside pills or tablets. Foam 
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is a material that possesses a closed-cell porous structure with a gas phase dispersed inside. 

Polymer foams can be found everywhere in modern life and are widely used such as 

disposable packaging of fast food, insulation material and the cushioning of furniture. 

Polymeric foams are technologically attractive as well, because they have low cost per 

volume when compared to un-foamed materials, but also because they have good thermal 

and acoustic insulation properties and cushioning ability (Sauceau et al., 2011). The first 

polymer foams made can be dated back in 1931. 

In pharmaceutical oral dosages in vitro and in vivo drug release studies showed 

that, when biodegradable porous starch (disintegrant) foam was used as a carrier, it allowed 

immediate release of lovastatin (API) and accelerated the dissolution rate in comparison 

with crystalline lovastatin and commercial capsules (Wu et al., 2010).  

As stated above, disintegrant addition and foaming can be separately used to 

accelerate the drug release rate. Nevertheless, the combination of the two in a 

pharmaceutical formulation has not been studied to date. 

In this thesis, the main objective is to study the possible enhancement of drug 

release rate after foaming the HME-prepared API/polymer/disintegrant formulation. HME 

is a solvent- free continuous process and it may lead to fewer processing steps compared 

with the traditional drug production process (Liu, 2010).   
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CHAPTER 2  

BACKGROUND 

 

2.1 Oral Dosage Formulation 

There are several methods of pharmaceutical product administration, such as oral, 

sublingual, rectal, intramuscular and intravenous. Among all these, oral administration is 

the most widely used way. It is generally the least risky and has the fewest negative effects. 

Tablets and pills are most popular among all dosage forms existing today because of their 

convenience of self-administration, compactness and easy manufacturing.  

 

2.2 Disintegrants 

A disintegrant is a substance or a mixture of substances added to a drug formulation to 

facilitate its break-up or disintegration into smaller particles after administration, thereby 

increasing the available surface area and promoting a more rapid release of API. A 

pharmaceutical tablet dissolves more rapidly than in the absence of disintegrants (Wade, et 

al., 1994; Alesandro, et al., 2001). 

 Chitosan has been employed as an excipient in the pharmaceutical industry as a 

tablet disintegrant. Hou et al. found that granules, formed from chitosan and indomethacin, 

release the drug faster at pH 7.5 after exposure to acid stomach pH, than if the granules had 

not been exposed to the low pH. It was thought the reason was the chitosan swelling and 

gel formation at this low pH (Hou et al. 1985; Illum, 1998). 

Gul and Zhu studied the potential of Carbopol® 974P-NF as matrix material in 

hydrophilic matrix tablets containing a slightly water-soluble drug, ibuprofen (IBF). 
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The IBF-Carbopol® 974P tablets containing microcrystalline cellulose, as co-excipient, 

exhibited faster release rates at extended dissolution time periods, as compared to the same 

type of formulations with respective drug-to-polymer ratios but without microcrystalline 

cellulose, as well as those containing lactose. The faster release rates and shorter 

dissolution time observed with microcrystalline cellulose is due to its inherent disintegrant 

properties, immediate disintegration of the tablets in the dissolution medium, and quick 

release of the drug from the matrix tablets (Gul and Zhu, 1998). 

2.2.1 The Mechanisms of Action of Disintegrants 

There are five major mechanisms of the action of disintegrants. They are: (a) swelling, (b) 

porosity and capillary action (wicking), (c) deformation, (d) repulsion and (e) a 

combination of any of the above. 

  Swelling is perhaps the most widely accepted general mechanism of disintegration. 

By contacting water, the adhesive forces between the other ingredients in a tablet is 

overcome, causing the tablet to fall apart (disintegrate), as is shown in Figure 2.1. 

 

 

Figure 2.1  The mechanism of swelling causing disintegration. 

Source: Kaur, et al., 2011. 
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Swelling is schematically depicted in Figure 2.1. Particles swell and break up the 

matrix from within, because of the localized stresses, which spread throughout the whole 

matrix. 

Wicking is another major mechanism of the disintegrant action. When tablets are 

placed into a suitable aqueous medium, the medium penetrates into the tablet through the 

pathways provided by the porosity, and replaces the air adsorbed on the particles. As a 

result, the intermolecular bonds are weakened causing disintegration of the tablet into fine 

particles. This process is shown schematically in Figure 2.2.   

 

 

Figure 2.2  The wicking mechanism of disintegration of compressed particulate tablets. 

Source: Kaur, et al., 2011. 

 

 During tablet manufacture, disintegrated particles are deformed and these 

deformed particles recover to their normal structure when they are exposed to aqueous 

media or water. Particles swell to pre-compression size and break up the matrix, which is 

shown schematically in Figure 2.3.   
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Figure 2.3  The deformation mechanism of tablet disintegration. 

Source: Kaur, et al., 2011. 

 

Another mechanism for disintegration has been proposed by Guyot-Hermann. It is 

based on a particle repulsion theory from experimental observations that non-swelling 

particles also cause disintegration of tablets. The electric repulsive forces between particles 

provide the mechanism of disintegration and water is required for it. Figure 2.4 describes, 

again schematically, this kind of mechanism. 

 

Figure 2.4  The disintegration mechanism of repulsion. 

Source: Kaur, et al., 2011. 

 

Besides these four major mechanisms, phenomena such as enzymatic reaction, 

release of gases, and air expansion facilitate the disintegration.  
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2.3 Hot Melt Extrusion (HME) 

HME is a solvent-free continuous process and it may bring about fewer processing steps 

(blending, melting, extrusion and shaping in a single-step process) compared with the 

traditional drug production process (Liu, 2010).  Meanwhile, the shorter residence time 

(maximum of no more than 3-4 minutes) and the reduction in labor force (a higher 

automation during the process) lead to a promising development in pharmaceutical 

industrial area (Almeida et al., 2012). 

One main potential danger of HME is thermal degradation of the API during its 

exposure to the elevated processing temperatures during HME processing. Ways of 

avoiding or eliminating the thermal degradation of the API include changes in the 

configuration of the equipment (screw configuration, twin-screw extruder) or the addition 

of plasticizer, both of which can reduce the needed processing temperature.  A plasticizer is 

a polymer additive that serves to increase the polymer’s flexibility, elongation or ease of 

processing. In general, the addition of plasticizer can take the space among the polymer 

chain, preventing the interactions among chains. The inter-molecular forces between 

chains are reduced and hence the mobility of polymer chain can be increased, resulting in 

reduced melt viscosities. Namely, they lower the glass transition temperature during the 

polymer, which reduces the processing temperature of HME (Almeida et al., 2012). 

One of the challenges of the HME process is that the extrudates have no porosity. 

This may hinder the penetration of gastrointestinal fluids into the tablets or pills (Andrews, 

Abu-Diak et al. 2010). Therefore, some practical and functional means are needed to 

increase the porosity of the extrudates, such as foaming, in order to increase the penetration 

of gastrointestinal fluids. 
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2.3.1 Active Pharmaceutical Ingredients (APIs) 

A very important purpose of drug manufacture is to maximize the therapeutic effect of the 

Active Pharmaceutical Ingredients (APIs), by making them bio-available, while making 

their administration convenient to patients. Most of drugs are in crystalline powders, 

resulting in physical and chemical stability, as compared with the amorphous form. 

Clearly, for patients, the desirable state is amorphous, which is can be dissolved more 

readily. 

In most cases, formulating crystalline drugs via HME changes their API’s 

morphology from crystalline state to amorphous state, thus increasing solubility in GI 

fluids (Liu, 2010; Terife et al., 2012; Quinten, 2010). 

2.3.2 Bioavailability Improvement 

According to the Biopharmaceutics Classification System (BCS) made by U.S. Food and 

Drug Administration (FDA), drug substances are classified as follows: 

 

 

Figure 2.5  The four classes of API compounds according to BCS. 

 

 Products in Class I are with ideal properties for oral administration, possessing both 

high solubility in water and permeability through the enteric tissue into the blood stream. 
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However, for the drugs in Class II, couples of technologies (including HME) have been 

proposed and are being developed to improve their low solubility, thus making them 

bioavailable APIs. For instance, the dissolution rate can be increased by increasing the 

surface area, which can be achieved through decreasing the particle sizes down to the 

Nano-scale. Pro-drug strategies are typically used for drug in Class III. The development of 

Class IV oral dosages is difficult if not impossible (Almeida et al., 2012). 

 For low solubility and high permeability (Class II) drug, such as indomethacin, the 

rate of oral absorption is usually controlled by the dissolution rate in the gastrointestinal 

tract (Nokhodchi, 2005). Therefore, the permeability, the solubility and the dissolution 

behavior of a drug are key determinants of its oral bioavailability. 

 

2.4 Foaming 

There are two major foaming methodologies in the polymeric foam industry: soluble 

foaming (physical foaming) and chemical (reactive foaming) foaming. The former is 

related to physical variation in polymer matrix while the latter is caused by chemical 

reaction. In another words, physical foaming happens when dissolved gas under high 

pressure forms nucleating cells upon depressurization into the polymer matrix followed by 

cell growth; chemical blowing agents disintegrate because of chemical instability at 

processing temperatures causing cell nucleation and growth in the polymer matrix (Lee et 

al., 2004).   

Hile et al. studies on a method for the production of micro-porous poly (D, 

L-lactide-co-glycolide) foams containing encapsulated proteins using supercritical carbon 

dioxide. The release and activity of basic fibroblast growth factor from these foams was 
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determined in vitro and compared with similar porous scaffolds prepared by traditional 

solvent casting–salt leaching techniques. Total protein release rate was greater from 

structures made in CO2 than those made by the salt leaching technique (Hile et al., 2000). 

2.4.1 Polymer Foaming 

Foam cellular structures result in a substance where air or gas cells are trapped in very 

small and dispersed phase inside a solid. Polymers, especially thermoplastic polymers 

possess the material uniqueness of being foamable, by virtue of their rheological properties 

in the molten state. When foamed, the polymer matrix is transformed from a single phase 

of dissolved gas in the melt to a two-phase polymer matrix with dispersed gas, because of 

lowering of the pressure. When cooled this cellular structure becomes stable.  The gaseous 

regions distributed in the polymeric matrix markedly change the structure, morphology, 

and properties of polymer (Lee et al., 2004). Highly porous foam structures result in low 

density, favorable to in vivo floating behavior of oral dosage forms (Streubel et al., 2002). 

2.4.2 Foaming Caused by Dissolved Gas  

Soluble foaming (physical foaming) employs a blowing agent, dissolved into the polymer 

matrix. A sudden pressure reduction, leads to gas phase nucleation and cell growth, by 

forcing the gas out of solution (Lee et al., 2004; Lee et al., 2007). 

The limit of solubility is the controlling parameter during the process, which is 

strongly dependent on the processing pressure, temperature and interaction of the gas with 

the polymer. The Flory-Huggins (F-H) equation is a good guideline to calculate how much 

gas can be dissolved in the polymer (Lee et al., 2004), which is expressed as:  
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( ln ln )m g g p p g pF kT n n n       (2.1) 

 

 

Where- 

 is the free energy of mixing, 

 is the Boltzmann constant, which is a physical constant relating energy at the 

individual particle level with temperature, 

 is the absolute temperature, 

 is the molar fraction, 

 is the volume fraction, 

 is short for polymer, 

 is short for gas, 

 is the interaction parameter, which can be calculated by the formula shown 

below: 

 

 
20.3 / RT( )g p gV      (2.2) 

 

 

 

Where- 

 is the molar volume of gas, 

 is the ideal gas constant, 

 is the solubility parameter. 

 

 



12 

 

 

 

2.4.3 Solubility of CO2 in Polymer 

Two major factors can influence the solubility and diffusivity of CO2 in polymers. One is 

the polymer morphology (crystalline or amorphous, related with free volume), and the 

other is molecular structure (the interaction between CO2 and molecular chains) (Davies, 

2007). Moreover, the former plays a more vital role in CO2 solubility (Shah et al., 1993). 

2.4.4 The Foaming Mechanism 

The foaming mechanism involves two steps, which are illustrated in Figure 2.6. They are: 

the gas diffusion (step I), governed by gas solubility, the cell nucleation (step II), which can 

be homogeneous or heterogeneous, and the cell growth and stabilization (step III). 

 

Figure 2.6  Schematic pressure and temperature changes during the foaming process and 

their effect on the foaming mechanisms. 

Source: SustainComp, 2011. 
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 During step I and II in Figure 2.6, the gas is dissolved in the matrix, while both 

pressure and temperature are increased to reach the desired gas solubility saturation 

conditions, Tsat and Psat. The diffusivity and solubility of the gas, temperature and pressure 

are the main parameters that control the gas dissolution in the molten polymer. The 

diffusion time depends not only on the processing temperature and pressure, but on the 

sample diffusion length (usually the half thickness), as well as the polymer viscosity (Park 

et al., 1996). 

In the saturation state, the whole system is metastable. Every temperature or 

pressure change will cause another equilibrium state and may possibly lead to a two-phase 

system. Meanwhile, upon de-pressurization the pressure difference between the interior of 

a gas-nucleated site and exterior of the pore leads the cell growth. A sudden pressure 

release or temperature decrease is enough to induce the cell nucleation, which is shown in 

the step III in Figure 2.6 (SustainComp, 2008). 

2.4.5 Nucleation Theory 

In nucleation process, a gas cell must overcome the free energy barrier. By increasing the 

supersaturation of the solution, the activation barrier is lowered, causing a higher rate of 

nucleation (Tomasko et al., 2009). 

Nucleation has generally described by the classical nucleation theory (Laaksonen et 

al., 1995) which can be applied in polymer foaming. The nucleation rate, J is given by 

 

 (2.3) 

 

 

Where- 
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 is the Boltzmann factor, 

 is the absolute temperature, 

 is a kinetically determined constant, 

 is the work required to form a critical nucleus, which can be derives from the 

formally rigorous equation given by Gibbs: 

 

 
(2.4) 

 

Where- 

 is the surface tension between the metastable polymer mixture and the 

nucleating phase, 

 is the difference between two pressures: one is the nucleation phase if it were 

in the bulk at the same temperature and chemical potential of the metastable phase; 

the other is the metastable phase itself. 

2.4.6 Cell Growth Processes          

The growing cells cause a concentration gradient in the system leading to the gas diffusion 

out of the polymer solution, which in turn boosts the cell growth (Lee, et al., 2004; Lee et 

al., 2007). 

 2.4.7 Foaming Stability               

Several conditions are needed to produce foam: there must be mechanical work, 

surface-active components (surfactants) that reduce the surface tension, and the formation 
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of foam faster than its breakdown. To create foam, work (W) is needed to create and 

increase the surface area (ΔA): 

The formula 

 (2.5) 

 

Where- 

W is the mechanical work, and ΔA is the surface area. 

ɣ is the surface tension of liquids that gives their surfaces a slightly elastic quality 

and enables them to form into separate drops. It is caused by the interaction of 

molecules at or near the surface that tend to cohere and contract the surface into the 

smallest possible area. 
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CHAPTER 3    

EXPERIMENTS  

 

3.1 Materials   

The model API for this study is Indomethacin (INM), whose chemical structure is shown in 

Figure 3.1.  INM is a non-steroidal anti-inflammatory drug. Its melting temperature is 

161±0.3°C; its glass transition temperature is 46.3±0.1 °C. The ionizable character of the 

carboxylic group leads to the solubility of INM in an aqueous solution is pH dependent 

(Terife et al., 2011).  

 

Figure 3.1  Chemical structure of Indomethacin. 

 

Eudragit® EPO (EPO) was chosen as excipient polymer. The chemical structure of 

the excipient is shown in Figure 3.2. Amorphous EPO is a cationic terpolymer based on 

dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate. It is 

soluble up to pH=5 and above this pH value, it is only swellable. It is widely employed in 

the pharmaceutical industry.  
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Figure 3.2  Chemical structure of EPO. 

 

Two disintegrants used here were (Ac-Di-Sol) AcDiSol and Crospovidone (Cros). 

The chemical structures of the two disintegrants are shown in Figures 3.3 (a) (b), 

respectively. AcDiSol is cross-linked sodium carboxymethylcellullose (CMC). It is a 

cellulose derivative and it is generally used as a disintegrant. Cros is a cross-linked 

polyvinylpyrrolidone (PVP), white or yellowish white, and a free-flowing powder 

practically without odor. Because it is cross-linked, it is insoluble in water, alkali, acid and 

common solvents. It has good swelling characteristics in water without forming a gel.      

        

 
(a) 
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(b) 

Figure 3.3  Chemical structures of (a) AcDiSol and (b) Cros. 

 

3.2 Hot Melt Processing  

3.2.1 Particulate Premixing 

A physical mixture of the INM, EPO and disintegrant was prepared by random distributive 

mixing at room temperature for 1 hour at 200 rpm at a rolling jar mill (JRM 2”x 24”, Paul 

O. Abbe Inc.). In each formulation of this study, the concentration of INM is 30%. After 

processing, it is totally dissolved into molten EPO (Liu et al., 2011). Seven formulations 

(Excipient/Disintegrant/API) were made using this method. They are shown in Table 3.1. 

 

Table 3.1  Composition of the Seven Formulations Extruded 

Formulation (#) Excipient/Disintegrant/API Composition 

(%(w/w)) 

1         EPO/AcDiSol/INM              68/2/30 

2 

3 

4 

5 

6 

7 

EPO/AcDiSol/INM 

EPO/AcDiSol/INM 

EPO/ Cros / INM 

EPO/ Cros / INM 

EPO/ Cros / INM 

EPO/INM 

64/6/30 

62/8/30 

68/2/30 

64/6/30 

62/8/30 

68.3/31.7 
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The control formulation (#7) is EPO/INM with the ratio is 68.3/31.7, which is the 

average ratio EPO/INM in each formulation #1-3 (or #4-6). 

3.2.2 Hot Melt Extrusion (HME) 

In this study, a co-rotating twin-screw extruder, Leistriz’s Nano 16, was used to extrude the 

seven formulations. The two screws are equipped with 30° forward kneading blocks.  The 

diameter of the screws is 16mm. The barrel consists of four heating zones (three zones and 

a die) while the temperature in the feeding zone can be controlled externally via a 

circulation chiller, which is shown in Figure 3.4. Meanwhile the temperature of each zone 

can be set separately.  

 

 

Figure 3.4  The Leistriz’s Nano 16 Twin-Screw Extruder (the numbers shown in the 

picture denote the four heated barrel zones). 
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 Each formulation was fed into the extruder using a volumetric feeder (SCHENCK 

AccuRATE® 102M). Because of flowability and bulk density differences, feeder setting 

needed for each formulation should be determined separately. The processing conditions 

for this study are listed in Table 3.2. 



 

 

 

Table 3.2  Extrusion Conditions for EPO Solid Solutions  

Formulation Screw 

Speed 

Melting 

Point 

Zone 

4 

(Die) 

Zone 

3 

Zone 

2 

Zone 

 1 

Feeding 

Zone 

Residence 

Time 

Die  

Diameter 

 (rpm) (°C) (°C) (°C) (°C) (°C) (°C) (min) (mm) 

EPO solid solutions 300 ~138 130 130 130 85 10 <1 3 

2
1
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3.3 Foaming 

3.3.1 Sample Preparation 

Around 20 g of each extrudate was milled for 2 minutes using a coffee grinder to produce 

fine powders, which were used for characterization of the extrudates as well as batch 

foaming process.  

3.3.2 Batch Foaming  

CO2 was used as the Physical Blowing Agent (PBA) for this batch foaming process. The 

temperature and the pressure were 85°C and 2.759 MPa (400 psi), respectively. The dwell 

time was set for one hour. The experimental setup used is shown schematically in Figure 

3.5 (Terife et al., 2012). The mold and the size of pill are shown in Figure 3.6 schematically 

as well. As it is shown in the Figure 3.6, four pills can be made at the same time. The 

density of pills is 0.2 g/cm
3
, and the volume of each pill is 0.68 cm

3
, therefore around 0.136 

g powder were placed inside each cavity of mold, which was preheated to 85°C. Air in the 

cavity was removed using vacuum pump for around 5 minutes. The CO2 was injected into 

the air-evacuated cavity and the system was pressurized for one hour, allowing the CO2 to 

dissolve into the polymer matrix. A sudden decompression of the cavity was then created 

by opening the release valve to the atmosphere, causing a thermodynamic instability. After 

that, the mold and the sample were cooled down to 0°C using ice bath and allowed several 

minutes for the cell structure to be fully stabilized.  
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Figure 3.5  Schematic representation of the batch foaming device. 
 

Source: Terife et al., 2012 

 

 

Figure 3.6  Schematic representation of the mold and size of pill. 
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 The study of the cell morphology was carried out using a Leo 1530 Field Emission 

Scanning Electron Microscope (Carl Zeiss SMT Inc., Peabody, MA). The cross-section of 

the foamed pills was coated with a thin layer of carbon to enhance its electrical 

conductivity. 

 

3.4 Characterization 

3.4.1 Hot-stage Polarized Optical Microscopy (HPOM) 

Optical microscope (Carl Zeiss Universal Research Microscope) was used to evaluate the 

state of the drug and disintegrant in the polymeric matrix after compounding. The 

crystalline drug is bright whilst any amorphous material is dark. The Zeiss AxioCam 

Digital camera has 5MB-pixel resolution. Samples are the powders that were from 

grinding the extrudates. A temperature ramp was used from 40 °C to 180 °C at 20 °C min
-1

. 

Images of the extrudates were captured every 10°C or 30 seconds. 

3.4.2 Differential Scanning Calorimetry (DSC) 

The thermal transitions during heating of the extrudates were recorded using the DSC Q 

100. Samples of raw material, physical mixture and grinded extrudates were accurately 

weighed and placed in closed aluminum pans. For the extrudates, a temperature ramp from 

-20°C to 180°C was applied at 20°C min
-1

 heating rate. For the raw materials, a 

heat-cool-heat cycle from -20°C to 180°C was applied at 20°C min
-1

 heating / 10°C min
-1

 

cooling to remove their thermal history. Runs were occasionally performed in duplicate 

with very good reproducibility. Throughout the study, the chamber of equipment was 

blanketed with nitrogen at a flow rate of 40 mL/min.  
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3.4.3 X-Ray Diffraction (XRD) 

XRD analysis was carried out in a Philips PW3040 X-Ray diffractometer (Cu Kα radiation, 

0.154nm), operated with a power level of 45 KV and 40 mA. It was used to detect the 

amorphous and crystalline phases of the raw materials and extrudates. Samples were 

scanned over the 2θ range 5°-30° at step size of 0.02°/step and scan rate of 1 sec/step.  

3.4.4 Scanning Electron Microscopy (SEM) 

The morphology of sample was determined by LEO 1530 Field Emission SEM (Carl Zeiss 

SMT Inc., Peabody, MA). Foamed samples were coated with a thin layer of carbon by 

sputtering to improve the conductivity using a Bal-Tee Med 020 Sputter Coater. 

3.4.5 Dissolution Test 

Dissolution test is used by the pharmaceutical industry to characterize the dissolution and 

release properties of APIs, from a dosage formulation. The release profiles of INM were 

obtained using a Distek 2100A USP Apparatus II (paddle) (North Brunswick, NJ) in 

triplicate. The analyses were conducted at 37℃ in 900 mL of pH 1.2 hydrochloric acid 

buffer solutions. The rotation speed of paddle is 50 rpm. At pre-established time intervals 5 

mL samples were withdrawn by syringe from the dissolution medium, filtered through 

polyvinylidene fluoride (PVDF) filters with pores size of 0.45 μm and then analyzed at 318 

nm by a Cole Parmer UV spectroscopy (Cole Parmer Instruments Company, East Hills, 

IL ). The PVDF filters were used here is to confirm the sample, which would be taken the 

UV test was truly dissolved API, not micellar INM as it was probably blocked during 

filtration. The concentration of API in the solution was determined through a UV 

absorbance calibration curve. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

4.1 Solubility of INM in EPO 

One of the objectives of this study is to gain an understanding of the effects of the batch 

foaming process and cellular structure on the performance of solid solution made from 

HME. Therefore, it is important to have an understanding of the solubility of INM (API) in 

the polymer matrix. 

The solubility parameters (δ) of EPO and INM are 18.53 MPa
1/2 

and 22.1MPa
1/2

, 

respectively. The difference in solubility parameters (Δδ) between EPO and INM is 3.57 

MPa
1/2

. Greenhalgh et al. (Greenhalgh et al. 1999) proposed that miscible systems have a 

Δδ between 1.6 and 7.5 MPa
1/2

, which suggests that the system of EPO and INM is a 

miscible one. Many researchers have proved this conclusion (Greenhalgh et al. 1999; 

Chokshi et al., 2005; Liu, 2010). 

The solubility of INM in EPO was evaluated through Hot-stage Polarized Optical 

Microscopy (HPOM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction 

(XRD). 

4.1.1 Hot-stage Polarized Optical Microscopy (HPOM) Result 

HPOM was used to directly evaluate the presence of morphology of the milled extrudates 

following HME with comparison to the formulation of physical mixture. Under the 

cross-polarizer, amorphous materials appear dark, while crystalline materials appear 

bright. Of the raw materials used here, EPO and Cros are amorphous whereas INM and 

AcDiSol are crystalline.  
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Figure 4.1 and Figures 4.1 (a), (b), (c) showed the morphology evaluation of 

extrudated and physical mixture EPO/INM/AcDiSol formulations at different hot stage 

temperature. A temperature ramp was used from 40 °C to 180 °C at 20 °C min
-1

. Images of 

the extrudates were captured every 10°C or 30 seconds. Figure 4.1 showed the morphology 

evolution of physical mixture formulation. In the images, the dissolution of INM in the 

polymer matrix takes place between 120° C and 150°C. The onset of disappearance of 

INM at 120°C suggests that the crystal lattice of INM is disintegrated far below its melting 

point (162°C) (from DSC result), indicating its increased diffusivity in the polymer matrix, 

due to the decreased viscosity of  the polymer, and the formation of strong polymer-drug 

molecular interactions. After 160°C, only intact crystalline AcDiSol can be seen (Figure 

4.1) whereas intact Cros is also present but somewhat difficult to detect under the 

cross-polarizer, as it is amorphous. The morphology evaluation of extrudated and physical 

mixture EPO/INM/Cros formulations during ramp heating were showed in Appendix A.  
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Figure 4.1  Physical mixture: EPO-INM-AcDiSol 66-30-4 @ 20 °C min
-1
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Contrary to the physical mixture images (Figure 4.1 and Figure A.1), the extrudates 

(Figures 4.1 (a), (b), (c) and Figures A.1 (a), (b), (c)), showed no evidence of crystalline 

INM to be present. The only crystalline substance present is AcDiSol (Figures 4.1 (a), (b), 

(c)) and it remains unchanged during heating of the sample, as it is stable in the range of 

conditions used here. The above strongly suggest that the extrudates are solid solutions of 

INM. 
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Figure 4.1 (a)  Extrudate #1: EPO-INM-AcDiSol 68-30-2@ 20 °C min
-1
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Figure 4.1 (b)  Extrudate #2: EPO-INM-AcDiSol 66-30-4@ 20 °C min
-1
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Figure 4.1 (c)  Extrudate #3: EPO-INM-AcDiSol 62-30-8@ 20 °C min
-1
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Figure 4.2 depicted HPOM results of powder from milled foamed EPO/INM/8% 

disintegrant. The only crystalline substance present in Figure 4.2 (a) were AcDiSol, which 

were in the same amount compared with Figure 4.1 (c)  Extrudate #3, EPO-INM-AcDiSol 

62-30-8. The amount of Cros in the Extrudate (Figure A.1 (c)) and Foamed sample (Figure 

4.2 (b)) was the same as well but somewhat it was difficult to detect under the 

cross-polarizer, as it was amorphous. 

   

(a)                                                              (b) 

Figure 4.2  HPOM results of foamed powder of (a) # 3 EPO/INM/AcDiSol 62/30/8; (b) # 6 

EPO/INM/Cros 62/30/8 at 170 °C. 

 

4.1.2 Thermal Properties 

Figures 4.3-4.5 show the thermographs of the raw materials, Physical Mixtures (PM) and 

Extrudates (EX).  For the raw materials, a cyclic scan (heat-cool-heat) was performed 

whereas for the physical mixtures and extrudates only the first heating is shown. 

Amorphous EPO shows upon second heating a Tg at around 46.51°C and crystalline INM a 

shows a Tm at around 162°C and upon second heating a Tg at around 48.61°C. These values 

correlate well with values mentioned in previous research (Chokshi et al., 2005). AcDiSol 

and Cros upon first heating show a broad endotherm possibly associated with water loss 
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(Kibbe et al., 2000). However, upon second heating they do not show any characteristic 

transition, suggesting that, besides moisture loss, they are stable in the temperature range 

used.  

Figure 4.4 shows the heating ramp of EPO/INM/AcDiSol-containing physical 

mixture and extrudates at 20 °C min
-1

. In the physical mixture thermograph (black trace), 

there are three endotherms of interest. The first is at around 50 °C, corresponding to EPO’s 

enthalpic relaxation. The second is a broad endotherm ranging from 60 to 110 °C 

corresponding to moisture loss of AcDiSol. The third, the broad endothermic peak ranging 

from 120 to 165 °C, is the dissolution/melting of INM in the polymer matrix. The 

temperature range of this peak is consistent with the dissolution/melting as seen in the 

HPOM images (Figure 4.1). The thermographs for the three extrudates in Figure 4.4 show 

the enthalpic relaxation at around 50 °C, water loss from AcDiSol between 75-125 °C, 

however they lack the INM dissolution/melting endotherm between 120 to 165 °C. This 

also corresponds with the absence of any INM crystals during the ramp heating of the 

extrudates using HPOM (Figures 4.1 (a), (b), (c) and Figures A.1 (a), (b), (c)). The same 

trends were observed for the EPO/Cros-containing formulations (Figures 4.5). The above 

strongly suggest that all extrudates are solid solutions of INM. Figure 4.5 shows the 

heating ramp of EPO/INM/Cros-containing physical mixture and extrudates at 20 °C 

min
-1

, which is similar to Figure 4.5. The PM ramp has one more edotherm of interest 

compared to the extrudate ramp. That one is the dissolution/ melting of INM in the polymer 

matrix.
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Figure 4.4  DSC temperature ramp of EPO/AcDiSol-containing PM and extrudates at 20°C min
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4.1.3 XRD Analysis 

Figures 4.6-4.7 show the XRD patterns of the raw materials, physical mixtures and 

extrudates. Fig. 4.12 shows the XRD patterns of raw materials and the 

EPO/AcDiSol-containing formulations. It can be seen that, the XRD pattern of INM is 

weaker in intensity in the physical mixture (red tracer) by virtue of dilution of INM by the 

other two components in the physical mixture. However, in the extrudates, the 

characteristic peaks of INM are not present, indicating the formation of a solid solution of 

INM during extrusion. The same trends were observed for the EPO/Cros-containing 

formulations (Figure 4.7).  

Regarding the disintegrants, the amount (2%, 4% and 8% (w/w)) is too low to have 

a distinct contribution to the XRD patterns of the physical mixture and extrudates.      
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4.1.4 Summary 

With the analyses described above, seven formulations have been produced for evaluation 

of the intragranular addition of disintegrants during HME. From the hot-melt extrusion 

point of view, the components that dictate the processing conditions are the amount of 

polymeric excipient and API, and type of disintegrant in the formulation.  

From HPOM images, we were able to follow the dissolution of the drug in the 

physical mixtures, confirm the absence of any detectable crystals in the solid solution 

formulations and confirm the stability of the disintegrants in the range 30-180°C.  After the 

foaming process, the disintegrant was still intact and INM was still in its amorphous state. 

In other words, the state of solid solution did not change throughout the foaming process. 

For the solid solution extrudates, DSC showed no dissolution endotherm for INM 

confirming that the extrudates are solid solutions of INM. DSC on these formulations was 

also able to detect the remaining moisture of the dissintegrants that was not removed 

during extrusion.  

XRD was able to confirm both the absence and the presence of crystalline drug in 

the solid solution.         

In short, after HME process, the INM was in its amorphous state. Compared with 

its crystalline state, the dissolution rate is facilitated, as lacking the lattice structure. In 

other words, for amorphous INM dissolved, there is no need to overcome the lattice 

energy. Consequently, during the HME process, the morphology of INM changed from 

crystalline to amorphous state, which is desirable. It has to be mention that the state of solid 

solution did not change throughout foaming process. 
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4.2 Cellular Structure Study 

As stated before, the batch foaming process was used to improve the porosity of hot melt 

extrudates, enhancing the permeability of gastric fluids into tablets or pills. Foaming was 

performed at 85°C, which is well above the Tg of polymer. At this foaming temperature, 

the excipient is in a rubbery state, which is more elastic than viscous and thus not capable 

of purely viscous flow. Through batch foaming process, using CO2 as the PBA, cellular 

structures were produced (Figures 4.8-4.9). The high degree of foaming expansion was 

induced by the dissolved CO2 coming out of solution with the sudden decompression. All 

batch foaming processes were carried out under the same conditions; accordingly, there 

was not a big difference of the cellular structures (cell size distribution; wall thickness) 

among all (AcDiSol-containing and Cros-containing) formulations. The cell size range is 

83-417 µm and the thickness range is 8-30 µm. All foamed samples have a closed-cell 

morphology, as it can be seen in all SEM images of the cross-sectional surface of foamed 

pills. In other words, the cells are not interconnected; with this morphology, the 

cross-sectional images of the foamed samples have honeycomb-like appearance.   

   

                                    (a)                                                              (b) 

Figure 4.8  SEM images of cross-sectional surfaces of the EPO/INM/AcDiSol 62/30/8 

with a magnification of (a) 300 X and (b) 150X. 
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                                  (a)                                                              (b) 

Figure 4.9  SEM images of cross-sectional surfaces of the EPO/INM/Cros 62/30/8 with a 

magnification of (a) 300 X and (b) 150X. 

 

In Figures 4.8-4.9 and Figures 4.10 (b) (c) (d), some particles (or parts of them) can 

be seen embedded inside the cell walls of foam. However, no particles can be seen in 

Figure 4.10 (a) as this is the control sample with no disintegrant particulates. As expected, 

the number of the particles in the cell walls increases with the concentration of disintegrant 

(Figure 4.10 and Figure B.1). As seen in the HPOM images (Figure 4.2), the disintegrants 

are intact after the HME and foaming processing steps.  Furthermore, it is evident that the 

surfaces of the cells of the non-disintegrant containing formulation (Figure 4.10 (a)) are 

smooth. On the contrary, the cell surfaces of disintegrant-containing formulations have 

regularly rough patterns, as seen in Figures 4.10 (b) (c) (d). As stated above, at the foaming 

temperature, the excipient is in a rubbery state, which is quite elastic and supports the 

stable growth of the cells, without breaking of the cell walls. During cell growth process, 

the material was subjected to biaxial tension and deformation. The reason of different 

surface patterns is most probably the intact disintegrants interfere with this biaxial 

extension and deformation during foaming process. Figure 4.11 describes schematically 

the cross-section surface of a cell resulting from foaming and how the disintegrants are 
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embedded or encaged in the polymer matrix. Obviously, the rod-like dissitegrant aligns 

along the cell wall “membrane” during cell growth. 

   
                                  (a)                                                              (b) 

 

   
                                 (c)                                                               (d) 

 

Figure 4.10  SEM images of cross-sectional surfaces of (a) EPO/INM 68.3/31.7, (b) 

EPO/INM /Cros 68/30/2, (c) EPO/INM /Cros 66/30/4 and (d) EPO/INM /Cros 62/30/8 

with a magnification of 300 X. 

 

 
Figure 4.11  Cross-sectional surface of a cell resulting from foaming (the red dots 

represent disintegrants). 



45 

 

 

 

From the perspective of surface tension, the addition of disintegrant can lead to 

stress concentration forces on the cells, especially in the contact surface, with the cell 

resulting from foaming possibly breaking due to this unbalance. However, the cell did not 

break, which indicates that the polymer and disintegrant are compatible avoiding stress 

concentrations. It will be worth finding a disintegrant incompatible with the excipient to 

investigate the extent of cell wall ruptures, leading to near-open cell structures. 

Finally, the density before and after foaming process changed a lot, which can be 

seen from Figure 4.12. On the left of this figure was the foamed pill and on the right was 

the powder used in the batch foaming process. They were of the same weight. 

 

Figure 4.12  Volume difference between the foamed pill and the amount of powder used 

before batch foaming process.  

 

4.3 In vitro Dissolution Test 

4.3.1 Release Rate of INM from Foamed Solid Solution 

The release profiles of INM from foamed hot melt extruded EPO-containing formulations 

without disintegrant (AcDiSol; Cros), with 2% (w/w), 4% (w/w), and 8% (w/w) 

disintegrant were presented in Figures 4.14-4.17. Since the pill was around 0.136g as 

described in Chapter 3 for the disintegrant-containing pill, the amount of INM is 40.8 mg; 
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the control sample (without disintegrant) was with an average of around 42.97 mg. Figure 

4.15 and Figure 4.17 presented the first 5 minutes of the INM release rate, which clearly 

described the release rate of INM. The in vitro dissolution tests were conducted in a 

hydrochloric acid buffer solution with pH 1.2 at 37°C. 

The release profiles in Figure 4.14 and Figure 4.16 clearly indicate that INM was 

released faster from the foamed pills with disintegrant than those without disintegrant (it is 

shown as control in the release profile). 

In the AcDiSol-containing release profiles (Figures 4.14-4.15), during the first 5 

minutes the foamed pills with 2% AcDiSol show the fastest release, 8% 

AcDiSol-containing foamed pills followed and then the 4% AcDiSol. After 30 minutes, the 

foamed pills with 8% AcDiSol showed the greatest release among all samples. 

In the Cros-containing release profiles (Figures 4.16- 4.17), the foamed pills with 

4% Cros-containing resulted in the lowest release rate compared with the other two foamed 

pills with 2% and 8% Cros-containing.  At the first 5 minutes, foamed pill with 8% Cros 

was the fastest, followed by 2% and finally 4% Cros-containing foamed pills. 

Nevertheless, after 20 minutes, 2% Cros-containing foamed pills presented the fastest 

release while the one containing 4% Cros having still the lowest one.  It has to be 

mentioned that at the first 5 minutes among all formulation dissolutions, the rate was not as 

fast as expected. This is because the polymer excipient has to dissolve first, letting the 

encaged disintegrant be exposed to buffer solution for disintegration. As it was immersed 

in buffer solution, the cellular structure seemed to erode and break down, which further 

contributed to the acceleration of the release rate of the API. Figure 4.13 presents 

schematically the collapse of the overall cellular structure as polymer dissolved. 
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Figure 4.13  The breakdown of the cellular structure as polymer dissolves. 

 

 

Figure 4.14  Release profiles of INM from foamed hot melt extrudated EPO containing 

formulations without AcDiSol, with 2% (w/w) AcDiSol, with 4% (w/w) AcDiSol, and 

with 8% (w/w) AcDiSol. 
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Figure 4.15 The first 5 minutes of the release profiles of INM from foamed hot melt 

extrudated EPO containing formulations without AcDiSol, with 2% (w/w) AcDiSol, with 

4% (w/w) AcDiSol, and with 8% (w/w) AcDiSol. 

 

 

 
Figure 4.16  Release profiles of INM from foamed hot melt extrudated EPO containing 

formulations without Cros, with 2% (w/w) Cros, with 4% (w/w) Cros, and with 8% (w/w) 

Cros. 
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Figure 4.17  The first 5 minutes of the release profiles of INM from foamed hot melt 

extrudated EPO containing formulations without Cros, with 2% (w/w) Cros, with 4% 

(w/w) Cros, and with 8% (w/w) Cros. 

 

It has to be mentioned that among all release profiles, the highest amount of INM 

released occurred in the 8%-Cros containing formulation at the 10
th

 minute (Figure 4.16). 

This percentage is around 56.5%. Since the amount of INM in the pill is 40.8 mg, the 

amount of released INM is around 23.05 mg. Liu reported the similar released amount, 

around 24.08 mg (Liu, 2010). The Figure 4.18 shows the release profile of 8%-Cros 

containing formulation normalized by the maximum amount of INM appearing to be 

dissolved in 900 mL of dissolution medium.   
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Figure 4.18  The release profile of normalized 8%-Cros containing formulation.  

 

4.3.2 Quantitative Comparison of the Release Profiles from the Pills with and without 

Disintegrant 

In order to establish a quantitative comparison between two release profiles, the USA Food 

and Drug Administration (FDA) in its Guidance for Industry (FDA, 1997) provide a simple 

model independent approach uses a difference factor (f1) and a similarity factor (f2) to 

compare dissolution profiles (Moore, 1996). The difference factor (f1) calculates the 

percentage difference between the two curves at each time point and is a measurement of 

the relative error between the two curves. The similarity factor (f2) is a logarithmic 

reciprocal square root transformation of the sum of squared error and is a measure of the 

similarity in the percent dissolution between the two curves.  

 

 
(4.1) 
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(4.2) 

 

where n is the number of time points, Rt is the dissolution value of the reference 

(prechange) batch at time t, and Tt is the dissolution value of the test (postchange) batch at 

time t. Generally, the closer f1 ’s value is to zero, the more alike the two release profiles are. 

Conversely, a higher value of f2 indicates that the two curves are more similar to each 

other. According to FDA’s guidance, to consider two API release profiles to be similar f1 

should be less than 15 and f2 should be greater than 50 (FDA, 1997). 

The difference and similarity factors were calculated for each 

disintegrant-containing and non-disintegrant-containing pairs. The time range for the 

calculation was chosen from 1-30 minutes. The results are summarized in Table 4.1. 

 

Table 4.1  Calculated Difference Factor (f1) and Similarity Factor (f2) for Formulations 

with and without Release Profile (the number of formulation here is same as in Table 3.1). 

 

Formulations #1 #2 #3 #4 #5 #6 

f1 36.03 34.87 47.79 45.47 30.56 54.01 

f2 28.34 29.05 22.21 23.29 31.91 19.56 

 

 In the results obtained here all the values of f1  are greater than 15 and  all the values 

of f2  are less than 50, which means all the formulations with disintegrant are statistically 

different from the formulations without disintegrant. Among all samples, 8% 

disintegrant-containing formulation expresses the great difference. 

4.3.3 Summary 

From the release profile of INM from AcDiSol-containing and Cros-containing foamed 

pills, it is evident that the two kinds of disintegrants clearly accelerated the disintegration 
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process. Researchers have conducted studies on the release performance among foamed 

and un-foamed disks (Terife et al., 2012). It turns out that foamed disks showed a much 

faster release rate than the un-foamed ones. Souto et al. studies the utility of including 

superdisintegrants in microcrystalline cellulose extrusion-spheronization pellets. Neither 

disintegrant caused disintegration of the pellet in drug dissolution medium, however, the 

disintegrans afforded a modest increase in drug dissolution rate, mainly attributable to their 

effect on the pellet’s pore structure (Souto et al., 2005). Lundqvist et al. reported that the 

disintegrant pellets clearly did break the tablet; the higher the proportion of disintegrant, 

the shorter the disintegration time (Lundqvist et al., 1997). Accordingly, it is reasonable 

that disintegrants added to a foamed pharmaceutical formulation will enhance the release 

rate of API. 
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CHAPTER 5  

SUMMARY 

 

The Hot Melt Extrusion (HME) process was used to produce seven amorphous 

Polymer/API/ (Disintegrant) formulations systems. Foamed samples were produced by 

batch foaming using CO2 as the PBA. Comprehensive characterization was carried out 

combining HPOM, DSC, XRD, SEM and in vitro dissolution test. These analyses of 

HPOM, DSC and XRD results show that the extrudates produced by HME are amorphous 

solid solutions of INM in EPO. In addition, the disintegrants, as found from HPOM 

images, are intact both after HME and batch foaming processing. The DSC results also 

show that the disintegrants are stable in the set temperature range except for the moisture 

loss. From the SEM analysis, the disintegrants are encaged/embedded in the polymer 

matrix, which indicates that polymer and disintegrant are compatible with each other. 

Meanwhile, the cellular structure caused by foaming processing provides many pathways 

for gastric fluids to penetrate to into pills or tablets. From the release profiles of INM from 

AcDiSol-containing and Cros-containing foamed pills, it is clear that the two kinds of 

disintegrants did accelerate the disintegration. From the statistical analysis, the 8% 

disintegrant-containing systems showed the greatest difference compared with the system, 

which contains no disintegrant. In conclusion, the addition of disintegrant in the 

HME-produced solid solutions is a good method to increase the release rate.   

Based on previous studies in our group, the foamed disks showed a greater release 

rate than their un-foamed counterparts. This is because the cellular structure provides many 

pathways for the gastrointestinal fluids to penetrate into the pills or tablets.  In this thesis, 
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the main contribution is the finding that the addition of disintegrants in the HME feed of 

API and excipient and their incorporation in the API/Excipient solid solution matrix 

enhances the API release rate. 



 

 

 

APPENDIX A 

HOPM RESULT OF POWDERED EXTRUDATED CROS-CONTAINING FORMULATION 
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Figure A.1  Physical mixture: EPO-INM-Cros 66-30-4 @ 20 °C min
-1
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Figure A.1 (a)  Extrudate #4: EPO-INM-Cros 68-30-2@ 20 °C min
-1
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Figure A.1 (b)  Extrudate #5: EPO-INM-Cros 66-30-4@ 20 °C min
-1
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Figure A.1 (c)  Extrudate #6: EPO-INM-Cros 62-30-8@ 20 °C min
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APPENDIX B 

 

SEM RESULT OF ACDISOL-CONTAINING GROUP 

 

  

(a)                                                              (b) 

  

(c)                                                              (d) 

Figure B.1  SEM images of cross-sectional surfaces of (a) EPO/INM 68.3/31.7, (b) 

EPO/INM /AcDiSol 68/30/2, (c) EPO/INM / AcDiSol 66/30/4 and (d) EPO/INM / 

AcDiSol 62/30/8 with a magnification of 300 X. 
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