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ABSTRACT 

DRIVER INJURY SEVERITY AT U.S. HIGHWAY-RAIL CROSSINGS  

 

by 

Wei Hao 

There are approximately 240,000 highway-rail grade crossings in the United States and 

highway-rail grade crossing areas have been considered in this study as these are 

locations where crashes frequently occur. Existing studies on crash models at highway-

rail grade crossings can be classified into two categories: accident frequency prediction 

models and driver injury severity models. Accident frequency prediction at highway-rail 

grade crossings have been investigated by previous studies using varied statistical 

models.  Few studies, however, have focused on driver injury severity studies.  Three 

drawbacks will be addressed in this research including limitations in traditional highway-

rail grade crossings studies, limited models to study driver injury severity, and the 

relatively small databases. Three driver injury severity models are developed including 

overall model, driver injury severity model with respect to control devices, and driver 

injury severity model with respect to age and gender. Based on the model study, it is 

found that older drivers are more susceptible than younger drivers to cause an increase in 

severity, an increase in severity under bad weather condition, and improving highway 

pavement will significantly reduce driver injury severity at passive control highway-rail 

grade crossings, etc.  



DRIVER INJURY SEVERITY AT U.S. HIGHWAY-RAIL CROSSINGS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

Wei Hao 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Dissertation  

Submitted to the Faculty of 

New Jersey Institute of Technology 

in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Civil Engineering 

 

Department of Civil and Environmental Engineering 

 

 

January 2013 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2013 by Wei Hao 

 

ALL RIGHTS RESERVED 

.



APPROVAL PAGE 

 

DRIVER INJURY SEVERITY AT U.S. HIGHWAY-RAIL CROSSINGS  

 

Wei Hao 

 

 

 

 

 

Dr. Janice Daniel, Dissertation Advisor                Date 

Associate Professor of Civil and Environmental Engineering, NJIT 

 

 

 

 

Dr. Taha Marhaba, Committee Member      Date 

Professor of Civil and Environmental Engineering, NJIT 

 

 

 

 

Dr. Jian Yang, Committee Member                   Date 

Associate Professor of Business School, Rutgers University 

 

 

 

 

Dr. Athanassios Bladikas, Committee Member       Date 

Associate Professor of Mechanical and Industrial Engineering, NJIT 

 

 

 

 

Dr. Wenge Guo, Committee Member                     Date 

Assistant Professor of Mathematical Sciences, NJIT 

 

 

 

 

 



BIOGRAPHICAL SKETCH

Author:	 Wei Hao

Degree:	 Doctor of Philosophy

Date: 	January 2013

Undergraduate and Graduate Education:

• Doctor of Philosophy in Civil and Environmental Engineering,
New Jersey Institute of Technology, Newark, NJ, 2013

• Bachelor of Science in Civil Engineering,
China University of Mining and Technology, Xuzhou, Jiangsu, P. R. China, 2002

Major: 	Transportation Engineering

Presentations and Publications:

Hao,W. and Janice D. (2012). “Driver Injury Severity Study at Highway-rail Grade
Crossings in the United.” Accepted by Transportation Research Board Annual
Meeting in The Year 2013 . Washington D.C.

Liu, R. and Wei H. (2012). “Bring Economic Benefit to Disadvantaged Populations.”
Presented on Transportation Research Board Annual Meeting in The Year 2012 .
Washington D.C.

Liu,R. and Wei H. (2011). “Potential Issues and Challenges in Implementing the Railroad
Safety Improvement Act of 2008 Based on a National Survey.” Journal of
Transportation Safety & Security , Vol. 3, No. 4, pp. 252-271.

Hao,W. and Mingming C. (2005). “Analysis on Shrinkage Split of Concrete.” Shan Xi
Architecture of Journal . Vol. 31, No. 13, pp. 102-103.

Cao,M. and Wei H. (2005). “Experimental Research on Deformation Law of Soil under
Blast-enlargement Loads.” Shan Xi Architecture Journal, Vol. 31, No. 13, pp. 50-
51.

iv



 

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved God, for his every second with me and for giving me wisdom  

and guidance throughout my life.  

 



 

vi

 

ACKNOWLEDGMENT 

 

I would like to express my deep and sincere gratitude to Dr. Janice Daniel, who not only 

served as my dissertation advisor, but also provided valuable and countless resources, 

guidance and encouragement. I am so fortunate to have this kind and knowledgeable 

advisor who helped me overcome many obstacles and guided me to a new area of interest.  

 Special thanks are given to Dr. Taha Marhaba, Dr. Jian Yang, Dr. Athanassios 

Bladikas, and Dr. Wenge Guo for actively participating in my committee and for giving 

many helpful comments.  

 Last, but not least, I would like to thank my family. I especially thank my mother, 

Zhuanling Wang and my father, Budeng Hao, for their encouragement and support in my 

life.  

 

 



 

vii

 

TABLE OF CONTENTS 

 

Chapter Page 

1    INTRODUCTION……............................………………..…………………………. 1 

 1.1  Problem Statement .....................………………..……………………………... 1 

 1.2  Research Objective …….…………….…………………………………….…... 3 

 1.2  Dissertation Organization ...………….…………………………………….…... 3 

2 LITERATURE REVIEW ………………………….………………………………. 5 

 2.1  Importance of Highway-Rail Grade Crossing Study ………………………….. 5 

 2.2  Factors Influencing Rail-Highway Grade Crossing Safety ……………………. 7 

  2.2.1  Control Devices ……………………………………………………….... 8 

  2.2.2  Human Factors ……..………………………………………………….... 9 

  2.2.3  Area Type ………….………………………………………………….... 12 

  2.2.4  Education and Law Enforcement  …………………………………….... 12 

 2.3  Current Highway-Rail Crossing Studies ………………………………………. 14 

  2.3.1  Previous Highway-Rail Crossing Collision Frequency Study ……..….... 15 

  2.3.2  Injury Severity Study in Highway-Rail Crossing Study …...………….... 23 

 2.4  Model Building on Injury Severity Level Study ...….…………………………. 26 

  2.4.1  Binary Model ………………………………………………..……..….... 26 

  2.4.2  Multinomial Logit Model …………………………………...……..….... 27 

  2.4.3  Nested Logit Model ..………………………………………..……..….... 28 

  2.4.4  Mixed Logit Model ...………………………………………..……..….... 29 

  2.4.5  Ordered Probit Model ...……………………………………..……..….... 30 



 

viii

TABLE OF CONTENTS 

(Continued) 

 

Chapter Page 

 2.5  Driver Injury Severity Studies  by Control Devices ..…………………………. 32 

 2.6  Driver Injury Severity Studies  by Age and Gender. .…………………………. 35 

3 METHODOLOGY ………………………………………………………………… 39 

 3.1  Model Selection ….………………………..………………………………...… 39 

 3.2  Ordered Probit Model.……………………..………………………………...… 40 

  3.2.1  Ordered Probit Model Formula .……………………………………….... 40 

  3.2.2  Ordered Probit Model Estimation .…………………………………….... 42 

  3.2.3  Ordered Probit Model Marginal Effects ...…………………………….... 42 

 3.3  Modeling Procedure …………………...…..………………………………...… 43 

4 DATA PROCESSING ……………………………………………... ……………... 44 

 4.1  FRA Data Source ….………………………………………………………...… 44 

 4.2  Data Formulation ………………….……………………………………….….. 46 

  4.2.1  Overall Model Data Formulation …………………………………..…… 46 

  4.2.2  Control Device Model Data Formulation ,,,,………………………..…... 47 

  4.2.3  Age and Gender Data Formulation …………………………..…............. 49 

 4.3  Correlation Matrix Studies ..……….……………………………………….….. 51 

  4.3.1  Overall Model Correlation Matrix ..………………………………..…… 52 

  4.3.2  Control Device Model Correlation Matrix ,,………………………..…... 53 

  4.3.3  Age and Gender Data Formulation …………………………..…............. 54 

    



 

ix

TABLE OF CONTENTS 

(Continued) 

 

Chapter Page 

5 MODEL RESULTS AND ANALYSIS …..………………………... ……………... 57 

 5.1  Overall Model Results ….………….……………………………………….….. 57 

  5.1.1  Model Fit and Estimation Information ………………..…....................... 58 

  5.1.2  Overall Model Marginal Effects Analysis ..……………………..…........ 62 

 5.2  Control Device Model Results …….……………………………………….….. 65 

  5.2.1  Model Fit and Estimation Information ………………..…....................... 67 

  5.2.2  Control Device Model Marginal Effects Analysis .……………..…........ 69 

 5.3  Age and Gender Model Results …..……………………………………….….. 71 

  5.3.1  Model Fit and Estimation Information ………………..…....................... 74 

  5.3.2  Age and Gender Model Marginal Effects Analysis ……………..…........ 78 

6 CONCLUSIONS AND FUTURE WORK ….……………………………………... 81 

 6.1  Overall Model Conclusions ……….……………………………………….….. 81 

 6.2  Control Device Model Conclusions .……………………………………….….. 82 

 6.3  Age and Gender Conclusions ………...…………………………………….….. 84 

 6.4  Summary and Future Studies ..…….……………………………………….….. 86 

REFERENCES ………………………………………………………………………... 89 

 

 



 

x

 

LIST OF TABLES 

 

Table Page 

2.1  Previous Study of Highway-Rail Crossing Studies …..…………………………. 15 

2.2  Typical Absolute Model ……….…....………………..…………………………. 16 

2.3  Hazard Index Formula.………...…....………………..…………………………. 18 

4.1  Description of Highway-rail Incidents Characteristics for Analysis.……………. 47 

4.2  Description of Control Device Model ……………………………..……………. 48 

4.3  Description of Age and Gender Model for Male …………………..……………. 50 

4.4  Description of Age and Gender Model for Female ………………..……………. 51 

4.5  Correlation Matrix for Overall Model ……………………………..……………. 52 

4.6  Correlation Matrix for Active Control Device Model ……………..……………. 53 

4.7  Correlation Matrix for Passive Control Device Model……………..……………. 53 

4.8  Correlation Matrix for Young Male Driver’s Model...……………..……………. 54 

4.9  Correlation Matrix for Young Female Driver’s Model...…………..……………. 54 

4.10  Correlation Matrix for Middle Male Driver’s Model .....…………..……………. 55 

4.11  Correlation Matrix for Middle Female Driver’s Model ..…………..……………. 55 

4.12  Correlation Matrix for Old Male Driver’s Model ……...…………..……………. 55 

4.13  Correlation Matrix for Old Female Driver’s Model …...…………..……………. 56 

5.1 Ordered Probit Model Estimation Results ..……………………………………... 57 

5.2 Marginal Effects of Ordered Probit Model …………………..……...…………... 62 

5.3 Control Device Model Estimation Results .……………………………………... 66 

5.4 Marginal Effects for Control Device Model ..………………..……...…………... 70 



 

xi

LIST OF TABLES 

(Continued) 

 

Table Page 

5.5 Male Model Estimation Results .…………………………………….................... 73 

5.6 Female Model Estimation Results .………………………………….................... 73 

5.7 Marginal Effects for Age and Gender Model ………………..……...…………... 79 

   

   



 

xii

 

LIST OF FIGURES 

 

Figure Page 

2.1  Accident, injuries, and fatalities information …………..………………………. 

 

6 

2.2  Highway-rail grade crossings information ……………..………………………. 

 

7 

2.3  Numbers of incidents by warning device ……………..………………………… 

 

9 

2.4  Nested logit structure of crash injury severity model …..………………………. 

 

29 

3.1  Model selection procedure ..…………….. ……………..………………………. 

 

43 

   

   

 

 



 

 

1 

 

CHAPTER 1 

INTRODUCTION 

 

From 1980 to 2010, the number of grade crossing collisions between trains and highway-

users fell by 81 percent; corresponding injuries fell by 79 percent; and associated 

fatalities fell by 69 percent. The varied efforts to improve safety yielded positive results. 

Although there has been a reduction in the number of collisions, this number is still high 

and needs to be further reduced (AAR, 2011).  

There are more than 250,000 highway-railway grade crossings in the U.S 

covering a wide range of physical characteristics, control devices and usage. On average, 

a pedestrian or a vehicle is hit by a train every two hours in the United States. Among all 

rail-related fatalities, 90% are connected with grade crossing and trespassing incidents 

(FRA, 2011). 

 

1.1 Problem Statement  

Although many studies have been performed to reducing railway highway grade crossing 

accidents, there are still critical drawbacks in the existing research. Three drawbacks will 

be addressed in this research including limitations in the modeling approach used in 

traditional highway-rail grade crossings studies, in the ability of models to predict crashes 

by control type, and the use of relatively small databases in the model development.  

The critical drawback is the limitation in the types of research on traditional 

highway-rail grade crossings studies. Conventional highway-rail grade crossings studies 

consider accident prediction models to estimate the frequency of accidents occurring at 
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highway-railway crossings. However, few research studies identify the factors of crashes 

associated with driver injury severity.  

The second limitation is the limited models used to study driver injury severity at 

highway-rail grade crossings. In previous studies, McCollister (2007) and Hu (2009) both 

used logit model to investigate key factors for accident severity at railroad grade 

crossings. However, the inherent ordered relationship of the accident, injury, and fatality 

was not included. The ideal model should consider the accident, injury and fatality data 

together using an ordered model.  This research will use the following definitions: 

“Property Damage Only” represents only collisions between vehicle and train; “Injury” is 

a body wound or shock produced by an accident; “fatality” means death caused by an 

accident. 

The third limitation in highway-rail safety modeling is the limit data sources used 

by previous studies.  Many of the models developed for driver injury severity at highway-

rail grade crossings have been developed using datasets for partial area data. For example, 

Austin (2002) provided an alternative accident prediction model for rail-highway 

crossings comprising a six-state sample for a 2-year time period. The selected states 

included California, Montana, Texas, Illinois, Georgia and New York with a sample of 

80,962 highway-rail crossings. Researchers considered a total of 1538 highway-rail 

crossing accidents occurring from January 1997 to December 1998.  

In this research, the measure taken to address these limitations includes the use of 

data from the FRA (Federal Railroad Administration).  This data has several advantages 

including that: 1. It includes all United States’ highway-rail crossings; 2. A 

comprehensive list of variables is provided including transit-control devices, highway 
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and vehicle characteristics, railway and train characteristics, human factors and 

environmental factors; 3. Driver’s injury severity is treated from ordered aspect, meaning 

the injury levels are ordered from no-injury to the highest injury level, 0 (Property 

Damage Only), 1 (injured), and 2 (Fatality).   

 

1.2 Research Objective 

This study aims to develop driver injury severity models for highway rail-grade crossings 

using FRA data. Significant factors that have the greatest impact of highway-rail crossing 

will be identified.  The specific objectives are to:   

1. To develop a highway railroad grade crossing injury model for all drivers, an 

overall model, using an ordered probit model and to identify the factors that would 

influence the injury severity. The factors will be developed by identifying the relationship 

between the injury severity and a set of independent variables.  

2. To develop a driver injury severity model with respect to varied type of control 

devices (passive control and active control) in order to understand the characteristic of 

driver injury severity under different control devices.   

3. To develop a driver injury severity model with respect to driver’s age and 

gender in order to understand the characteristic of driver injury severity for different 

driver’s group.     

 

1.3 Dissertation Organization 

In our study, this dissertation will be organized into six chapters.  

Chapter 1 presents the research problem statement and objectives.  
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Chapter 2 gives the overall literature review of current studies related to railroad 

highway grade crossing safety.  

Chapter 3 describes the research methodologies.  

Chapter 4 gives the data processing section.  

Chapter 5 provides the research model results and analysis.  

Chapter 6 summarizes the conclusions and future works.  
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CHAPTER 2 

LITERATURE REVIEW 

 

The intent of the literature review is to identify previous research on highway-rail grade 

crossing studies and past studies dealing with driver injury severity. The literature review 

is divided into five sections. The intent of Section 2.1 is to investigate the importance of 

highway-rail grade crossing safety studies. The Section 2.2 aims to find the factors 

influencing highway-rail grade crossing safety. Section 2.3 deals with current studies of 

highway-rail grade crossing. Previous highway-rail grade-crossing studies have been 

conducted to analyze the collision frequency. However, few studies have been conducted 

on driver injury severity compared to collision frequency studies. The fourth Section 2.4 

discusses model building on driver injury severity. Section 2.5 develops specifications of 

driver injury severity studies from two aspects. The first specification is from the control 

device aspect and the second is looking at driver’s age and gender.   

 

2.1 Importance of Highway-Rail Grade Crossing Study 

Rail transit is considered one of the safest modes of transportation. Every weekday there 

are more than 7 million people who board rail transit vehicles in the United States 

(Peterman, 2009). Over the past several decades, great strides have been made in 

reducing the number of highway railroad grade crossing collisions due to the efforts of 

federal, state and local governments; railroads; and through organizations such as 

Operation lifesaver Inc, a nationwide, non-profit public information program to reduce 

collisions, injuries and fatalities at highway-rail crossings. With nearly a quarter of a 
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million railroad and highway crossings in the U.S., improving grade crossing safety is an 

enormous challenge that takes the combined efforts of railroads, public safety officials, 

and the general public (Ries, 2007). An examination of the Figure 2.1 shows that railroad 

accidents have decreased by 40% from 6470 in 2004 to 3818 in 2009.   

 

Figure 2.1  Railroad accidents, injuries, and fatalities from 2004 to 2009.  
 

(Source: Bureau of Transportation Statistics, 2011) 

 

There are approximately 240,000 highway-rail grade crossings in the United 

States. Among these crossings, around 39 percent are private highway-rail grade 

crossings and the remainder, or 61 percent, are public highway-rail grade crossings (FRA, 

2010).  Between 2000 and 2010, there has been a reduction in the number of incidents at 

highway-rail grade crossings from 3502 (2000) to 2017 (2010). At the same time, the 

number of fatalities at highway-rail grade crossings also reduced from 425 (2000) to 256 

(2010) (See Figure 2.2).  

Over the past several decades, great strides have been made in reducing the 

numbers of railroad highway grade crossing collisions due to the efforts of federal, state 

and local governments; railroads; and through organizations such as Operation lifesaver 
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Inc, a nationwide, non-profit public information program to reduce collisions, injuries 

and fatalities at highway-rail crossings. With nearly a quarter of a million railroad and 

highway crossings in the U.S., improving grade crossing safety is an enormous challenge 

that takes the combined efforts of railroads, public safety officials, and the general public 

(Ries, 2007). 

 

 

Figure 2.2  Highway-rail grade crossings information. 
 

(Source: Federal Railroad Administration Office of Safety Analysis, 2012) 
 

2.2 Factors Influencing Rail-Highway Grade Crossing Safety  

Several factors affect the safety of highway-rail grade crossings. Control devices, human 
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0

500

1000

1500

2000

2500

3000

3500

4000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

0

50

100

150

200

250

300

350

400

450

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010



8 

 

 

a discussion of control devices, such as signs, pavement markings, flashing lights, and 

automatic gates. In addition, highway factors and railway factors will be discussed in 

detail in Subsection 2.3.1.3 “Previous Practices of Highway-Rail Crossing Crash 

Models”.     

 

2.2.1 Control Devices 

The type of warning device used at a highway rail-grade crossing has a significant effect 

on the risk at grade crossings (Farr, 1987). There are two types of warning devices: 

passive and active. Passive traffic control devices give static information of warning, 

guidance, and mandatory action for the driver. Passive traffic control systems consist of 

signs, pavement markings, and grade crossing illumination.  Passive crossings lack train-

activated warning devices and display signs and pavement markings to identify the 

location of the crossing and to direct the attention of the motorist, bicyclist, or pedestrian. 

Active traffic control systems include flashing signals, bells and automatic gates. Active 

traffic control devices are those that give warning to the approach or presence of a train. 

Active control devices are supplemented with the same signs and pavement markings 

used for passive control. In sum, active crossings contain devices that warn drivers of the 

approach or presence of a train. Noyce (1998) studied enhancements to traffic control 

devices at passive highway-railroad grade crossings. The objective of the research was to 

test and evaluate an improved method for communicating with drivers at passive 

highway-rail grade crossings. The enhanced sign system involved a full-sized strobe light, 

a shield, and a loop detector. Power for the loop detector and strobe light was provided by 

a solar charged 12-volt battery. An effective method to determine if the system improved 
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safety at passive crossings was to evaluate the crash rates at the crossing before and after 

installation.  This research found that the enhanced sign system was effective in reducing 

speeds and attracting drivers’ attention to highway-railroad grade crossings.  

Peck (2010) studied the differences in the United States at public and private 

highway-rail crossings.  Figure 2.3 shows the number of incidents by warning decides at 

private and public crossings. The highest number of incidents at private crossings occurs 

at locations with passive control that are equipped with cross bucks or stop signs. The 

highest number of incidents at public crossings occurs at crossings equipped with cross 

bucks, but a high percentage has flashing lights or flashing lights and gates.   

 

Figure 2.3  Numbers of incidents by warning device. 
 

(Source: Peck et al., 2011) 

 

2.2.2 Human Factors 

Rahimi (2001) conducted research to explore the hypothesis that driver decision-making 

styles influence high-way-rail crossing accidents. From his study, one-third of rail 

accidents and over 80 percent of train collisions are caused by human error. In this 

research, a “descriptive-differential” approach was used to match the driver’s decision 
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style, driving task demands, and then determine the fit to the environmental factors of 

highway-rail crossing. An analysis of variance experiment was designed with three 

independent variables including “driver decision style”, “driver time pressure” and 

“intersection complexity”. The decision style modes included in this research were: 1) the 

manner in which the driver reacts to a given crossing situation; and 2) the manner of 

interaction with other environment factors including time pressures and mental load. The 

research concludes that decision styles are important factors to understanding HRC 

driving activities. This research could provide insights into experimental design approach 

and help us understand human factor as a significant factor to influence highway-rail 

crossing safety. However, this research is lacking a real data source to validate their 

conclusions and we will use FRA data to prove human factor as a key factor in our 

research.  

A study plan by Anandarao and Martland (1998) provides the application of 

probabilistic risk assessment techniques to determine the efficacy of the various level 

crossing safety devices in Japan. An exploratory analysis method to determine the factors 

affecting the risk of a level crossing accident is provided.  The methodology uses two 

questions to determine the safety of a transportation system: 1) what will happen? And 2) 

what will be acceptable? The first question investigates risk analysis using techniques 

from engineering and probability theory. The second question involves value judgments 

on the part of risk assessment study. The study states that the most important level 

crossing attributes affecting highway-rail crossing accidents could be summarized as: rail 

traffic volume, road traffic volume, location of the crossing, visibility of the crossing, 

road gradient, distance to the nearest road intersection, number of tracks, and the type of 
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safety devices. The following gives the detailed factors affecting the risk of a level 

crossing accident: (1) Crossings with visibility less than 20 m cause a 50% higher 

accident rate than crossings with visibility greater than 20m; (2) the accident rate 

proportionately increase as the number of tracks increases; (3) Crossings with low rail 

and road traffic volume are riskier per train than crossings with high rail and road traffic 

volumes. At low rail and road traffic volume crossings, the possibility a vehicle will go 

through the crossing with the warning bell is ringing is high since there is no vehicle in 

front of it and the risk increases if the rail traffic is low since the vehicle might not be 

aware of the approach of a train. The results of this crossing safety study showed that the 

leading cause of the crossing accidents was the driver’s non-compliance of traffic control 

devices or to simply ignore all warnings.  

Jonsen (2007) presented studies relevant to human factors and effects of safety 

measures on passive railroad-highway grade crossings. The purpose of that study was to 

describe users’ judgment of speed and distance related to trains at passive railroad-

highway grade crossings. The contribution of this paper was a complete literature review 

of studies on human factors including judgment of speed and distance, base critical lag 

and clearance time for the road traffic, and sight distances at highway-rail grade crossings. 

The limitation is that the paper lacks the use of a full dataset to prove their ideas. Road 

users’ perceptual underestimation of trains’ time-to-arrival at grade crossings become 

larger with the closer trains at crossings due to systematic illusions within the human 

vision. In addition, creating a perpendicular crossing, reducing gradients, and increasing 

sight distance could make railroad grade crossings safer. Furthermore, an educational 

campaign could also improve safety at grade crossings. 
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2.2.3 Area Type 

McCollister (2007)’s probability model, which will be discussed later in Section 2.3.3, 

also considers the area type as variables in a model to predict the probability of accidents, 

injuries and fatalities at highway-railway crossings.  From the result, the presence of 

commercial areas is associated with higher accidents. The commercial area is correlated 

with relatively more complicated traffic activities and drivers may be unfamiliar with the 

crossing.  The contribution of this paper is that area type should be included as a variable 

in the logit model.  However, the paper lacks an explanation of residential and industrial 

areas. In the proposed dissertation, all three area types will be considered into our model 

analysis.  

 

2.2.4 Education and Law Enforcement 

Sposato (2006) provided studies on the impact of public education and enforcement on 

driver and pedestrian behavior at highway-rail grade crossings. The purpose of the study 

was to determine whether community education and/or enforcement activities were 

successful in significantly reducing the violation rate at highway-rail grade crossings. To 

evaluate the effectiveness of education programs, researchers measured the number of the 

motor vehicle and pedestrian violations occurring before, during, and after the Public 

Education and Enforcement Research Study (PEERS) program.  The evaluation team 

used video cameras to observe the frequency with which motorists and pedestrians 

violated the traffic control devices.   The PEERS program observes driver and pedestrian 

behavior at highway-rail grade crossings before and after the program was implemented. 

The program was considered successful if the violation rate was reduced by 50 percent 
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after the program was implemented. This research provides significant and meaningful 

results about the effectiveness of education and enforcement activities. Two conclusions 

were made in this research: (1) crossing demographics and characteristics were 

determined to play an important role in the study; and (2) Community education and/or 

enforcement activities were successful in significantly reducing the violation rate at 

highway-rail grade crossings. The enhanced education and enforcement activities could 

be evaluated by using a cost benefit study. The cost benefit ratio is estimated as the cost 

of law enforcement versus the potential lives saved  

Savage (2005) conducted public education to improve rail-highway crossing 

safety. The public education program talked in this paper is called operation lifesaver 

(OL). Operation lifesaver programs were established in each state to promote education 

and awareness of railroad related hazards, especially the need to appreciate the risks 

when traversing grade crossings. This paper uses a negative binomial regression to 

estimate the impact of Operation Lifesaver activity across states and from year-to-year in 

individual states will be related to the number of collisions and fatalities at highway-rail 

crossings. The data set consists of a collection of 46 states for the years from 1996 to 

2002. Dependent variable is number of incidents in a state in a given year at public 

crossings and explanatory variables include the levels of rail and highway traffic (AADT, 

trains per day, etc.), the warning devices factors, and highway safety performance 

variable. The analysis finds that increasing the amount of educational activity will reduce 

the number of collisions; however the effect on the number of deaths could not be 

concluded with statistical certainty.  
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2.3 Current Highway-Rail Crossing Studies 

Highway-rail crossing accident injury and fatality rates are much higher than other types 

of traffic collision due to the significant mass difference between traffic and train. As a 

result, compared to highway intersections, highway-rail grade crossings should be paid 

more attention for collision modeling and prediction analysis. However, there are few 

studies conducted on highway-rail crossing studies compared with highway intersection 

studies. Table 2.1 lists thirteen studies of highway-rail crash conducted in a time  ranging 

from the late 90s to 2011. These studies can be classified as two types: collision 

frequency study and collision injury study.  

A number of previous highway-rail grade-crossing studies have been conducted to 

analyze the collision frequency.  These studies will be discussed in Section 2.3.1. 

However, few studies have been developed to analyze the vehicle driver’s injury in their 

highway-rail grade crossing studies which will be discussed in Section 2.3.2.   

2.3.1 Previous Highway-Rail Crossing Collision Frequency Study 

Over the last few years, a large number of collision frequency models have been 

developed. Traditional accident prediction models could be classified as two types: 

absolute and relative risk models. Absolute models estimate the “expected number of 

collisions” at a given crossing for a given period. Relative risk models estimate a “hazard 

index” representing the relative risk of one crossing compared to another. In addition, 

statistical models including the Poisson, Negative Binomial and discrete choice models 

are also developed recently to analyze factors influencing collision frequency.  

suited for real-data applications.  In recent years new adaptive algorithms have been 

suggested for subspace tracking (Patel, 1998), (Valdez, 1999).   
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Table 2.1  Previous Study of Highway-Rail Crossing Studies 

Author Yea

r 

Paper Title 

Gitelamn et al. 1997 
The evaluation of road-rail crossing safety with limited 

accident statistics 

Austin et al. 2002 
An alternative accident prediction model for highway-

rail interfaces 

Saccomanno et al. 2004 
Risk-based model for identifying highway-rail grade 

crossing blackspots 

Miranda-moreno et al. 2005 
Alternative risk models for ranking locations for safety 

improvement 

Oh et al. 2006 
Accident prediction model for railway-highway 

interfaces 

McCollister et al. 2007 
A model to predict the probability of highway rail 

crossing accidents 

Saccomanno et al. 2007 
Estimating countermeasure effects for reducing 

collisions at highway-railway grade crossings 

Park et al. 2007 
Reducing treatment selection bias for estimating 

treatment effects using propensity score method 

Miranda et al. 2009 
How to incorporate accident severity and vehicle 

occupancy into the hotspot identification process? 

Raub et al. 2009 
Examination of Highway-Rail Grade Crossing 

Collisions Nationally from 1998 to 2007 

Hu et al. 2010 
Investigation of key factors for accident severity at 

railroad grade crossings 

Yan et al. 2011 

Using hierarchical tree-based regression model to 

predict train-vehicle crashes at passive highway-rail 

grade crossings 

Eluru et al. 2012 
A latent class modeling approach for identifying 

vehicle driver injury severity factors at highway-

railway crossings  

The Peabody Dimmick Formula was developed in 1941 using accident data from 

rural railway-highway crossings in 29 states in US.  The model estimates the expected 

number of accidents in the highway-rail grade crossing in 5 years using four parameters 

including average annual daily traffic (AADT), the average daily train traffic (T), 

protection coefficient indicative of warning devices (P) and additional parameter (K).  
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Table 2.2  Typical Absolute Model Studies 

Peabody Dimmick Formula USDOT Accident Prediction Model 

 0.17 0.151

5 0.0171

1.28 *V T
A

P K



 * * * * * *a K EI DT MS HP HL HT  

5A = the expected number of accidents 

in 5 years 

V = average annual daily traffic 

(AADT) 

T = average daily train traffic 

P = protection coefficient indicative of 

warning device presents 

K = the additional parameters 

 

a = un-normalized initial crash prediction, 

in crashes per year at the crossing 

K = formula constant 

EI = factor for exposure index based on 

product of highway and train traffic 

DT = factor for number of through trains 

per day during daylight 

MS = factor for maximum timetable speed 

MT = factor for number of main tracks 

HP = factor for highway paved (yes or no) 

HL = factor for number of highway lanes 

 

The expected number of accidents in 5 

years 

 

A formula containing geometric and traffic 

factors from the inventory file 

A formula involving crash history 

A formula incorporating the effect of the 

existing warning devices 

 

The US-DOT model which was developed in the 1980s is the typical absolute 
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model and recognized as the industry standard for collision risk prediction at highway-

railway grade crossings. Compared to the Peabody Dimmick Formula, US-DOT Formula 

has additional factors including the exposure index which is based on the product of 

highway and train traffic, number of through trains per day during daylight, a factor for 

maximum timetable speed, a factor for number of main tracks, a factor for whether the 

highway is paved (yes or no) and a factor for number of highway lanes. 

The next step in highway-rail crossing accident prediction method was the New 

Hampshire Index, California’s Hazard Rating Formula and Connecticut’s Hazard Rating 

Formula.  These methods differ by states and the formulae are provided in Table 2.3. The 

New Hampshire index uses three factors: number of vehicles per day, number of trains 

per day and a protection factor based on the type of crossing. California’s Hazard Rating 

Formula uses four variables: number of vehicles, number of trains, crossing protection 

type and the crash history.  Connecticut’s Hazard Rating Formula is similar to California 

Rating Formula except it uses a ten-year crash history while California uses a five-year 

history. Several studies were conducted over the last few decades using different types of 

road collision models. The Poisson regression is usually a good modeling start due to 

crash data with approximately Poisson distribution. When data are observed with over 

dispersion, some modifications to the standard Poisson regression are available. The most 

common variations include the negative binomial model and zero-inflated negative 

binomial models. In addition, the less common model is the gamma probability count 

model. 
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Table 2.3  Hazard Index Formula Studies 

New Hampshire Index: 

California’s Hazard 

Rating Formula 

Connecticut’s Hazard Rating 

Formula 

* *HI V T PF  
* *

1000

V T PF
HI H   

  1 1 * *

100

T A AADT PF
HI

 
  

V =the average annual 

daily traffic (AADT) 

T  = average daily train 

traffic 

PF = the protection 

factor indicative of 

warning device present 

V = number of vehicles 

T = number of trains 

PF = protection factor 

form 

H = crash history= total 

number of crashes within 

the last ten years *3 

T = trains movements per day 

A = number of vehicle/ train 

crashes in last 5 years 

AADT = Annual Average Daily 

Traffic 

PF= Protection Factor  

The protection factor 

varies from state to state 

and accurately 

predicting railway-

highway crossing 

accidents 

Does not compute the 

number of crashes but 

rather produces a hazard 

index as an alternative for 

the number of crashes 

The crossing with the 

highest calculated index 

Only difference is the crash 

history period with a ten-year 

crash history in Connecticut 

compared with five-year history 

in California.  

 

 

The main purpose of previous research using Poisson and Negative Binomial 

models was to establish statistical relationships between collisions and various road 

geometry and traffic attributes.   The following describes various types of highway-rail 
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crossing safety models.   

In the Poisson regression model (Oh, 2006), the expected number of crashes 

follows a Poisson distribution, the expected crash count for the ith crossing is given as
^

iy , 

i=1,…,N, is a function of covariates 
ijX , i=1,…,N, j= 1,…,M,  

   
^

0 0 1 1

1

~ exp ... exp
M

i i i i i M iM j ij

j

y Poi X X X X     


 
      

 
；   (2.1) 

Where the 'j s are the estimated regression coefficients across covariates j= 

1,…,M (for the slope intercept model the first covariate is a vector of 1’s) averaged 

across crossings i=1,…,N. Because the Poisson regression model is heteroscedastic, the 

model coefficients are estimated by maximum likelihood methods. The likelihood 

function is given as: 

 
   exp exp exp

!

iy

i i

i
i

X X
L

y

 


          

(2.2) 

The maximum possible value of the likelihood set occurs if the model fits the data 

exactly, resulting in a value of 0 for the likelihood function. In addition, if the mean of 

the crash counts is not equal to the variance, the data is said to be over dispersed.  

The negative binomial model (Oh, 2006) takes the relationship between the 

expected number of accidents and the M parameters, 
1, 2,...,i i imX X X

 

   
^

0 0 1 1

1

~ exp ... exp
M

i i i i i M iM i j ij i

j

y Poi X X X X       


 
       

 
；   

(2.3) 
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Where  exp i is distributed as gamma with mean 1and variance 2 . 

The characteristics of the negative binomial model is listed as  

1) The effect of the error term in the negative binomial regression model allows 

for over dispersion of the variance.  

     
2

i i iVar y E y E y    (2.4) 

Where  is the over dispersion parameter.  

2) If the over dispersion parameter,  , equals 0, the negative binomial reduces to 

the Poisson model. The larger the value of  , the more variability there is associated 

with the mean 
^

i . The coefficients 
j are estimated by maximizing the log likelihood

 loge L  . 

The gamma model was proposed and discussed by Oh (2006) .The gamma 

probability model is given as: 

     Pr , ,i i iy j Gam j Gam j          (2.5) 

Where:  

 'expi iX    (2.6) 

 , 1iGam j    if j=0, or 
 

1

0

1 i

j e d
j



  


 

   
(2.7) 

If 0, 0,1,...j j   

The gamma model is used when the crash mean is greater than the crash variance. 
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The dispersion parameter is again  in three scenarios: 1. under dispersion if  >1 ;2. 

Over dispersion if  <1; 3.Equidispersion if 1  , which reduces the gamma probability 

model to the Poisson model.  

Articles by Oh (2006) and Austin (2002) are referenced because they 

systematically discussed traditional accident prediction models including Poisson and 

Negative Binomial regression models. In addition, research performed by Saccomanno 

(2004) is provided due to the detailed discussion of “highway, railway, and vehicle” 

factors to influence highway-rail crossing accident.  

Oh (2006) developed an accident prediction to examine factors connected with 

railroad crossing crashes. In this paper, the author conducted the literature review on 

traditional highway-rail crossing collision frequency mode including Peabody Dimmick 

Formula, US DOT formula, and New Hampshire Index. After that, the gamma 

probability model statistical model was given to examine the relationships between 

crossing accidents and features of crossings.  The gamma probability model is a flexible 

model and is relatively new in transportation safety research.  This paper uses highway-

rail grade crossing data from Korea where there were 402 accidents between 1998 and 

2002. This paper not only gives insights from a model aspect but provides interesting 

research variables including daily traffic volume, daily train volumes, proximity of 

commercial area, distance of train detector from crossing, time duration between the 

activation of warning signals and the activation of gates, and the presence of speed hump.  

In addition, number of tracks and average daily railway traffic (trains per day) is listed as 

railway characteristics to analyze the train influencing factors.  This research suggests 

that more studies should include examination of driver warning devices, such as devices 
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which detect and warn approaching vehicles, trains, or both.  

Saccomanno (2004) presented a risk-based model to identify highway-rail grade 

crossing blackspots using Canada grade crossing data over the last 20 years. The 

following section listed key variables used in the Poisson regression models: track angle, 

number of tracks, train speed, road speed, surface width, road class, highway paved, 

warning type, AADT, number of trains daily, and number of collisions. According to 

Saccomanno’s research, traffic exposure (log of cross product of AADT and the number 

of daily trains) were found to be the most important factor for expected frequency of 

collisions at highway-rail grade crossings. The findings of this research are that crash 

frequency is dependent on types of warning device. For passive crossings (signs only), 

train speed was found to be the highest explanation for the expected frequency of 

collisions per year. For active crossings with flashing lights, the significant factors were 

train speed and road surface. For crossings with gates, road speed and number of tracks 

were found to be highest prediction factors. As a result, the risk models developed in this 

research explain that fewer collisions occur at crossings equipped with flashing lights and 

gates than at crossings with signs.  

The research objective by Austin (2002) was to identify an alternative accident 

prediction model for Rail-highway crossings using negative binomial regression. The 

data sample for this investigation included a wide geographical coverage of a six-state 

sample for a 2-year time period. The selected states included California, Montana, Texas, 

Illinois, Georgia and New York with a sample of 80,962 highway-rail crossings. 

Researchers considered a total of 1538 highway-rail crossing accidents occurring from 

January 1997 to December 1998. Traffic characteristics, roadway characteristics, and 
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crossing characteristics were considered in this research. For the roadway characteristics, 

four elements of the highway were included: roadway type, surface width, traffic volume 

and control devices. If a highway is paved, there is a higher likelihood of an accident than 

if it is gravel. Second, surface width, which is the measured distance of the highway at 

the crossing approach.  The surface width could be taken as the number of lanes. The 

greater the number of traffic lanes, the higher the highway-rail crossing collision 

frequency. Third, the higher the traffic volume on the highway, the larger number of 

vehicles that are exposed to conflicts with train movements and the greater the 

probability of collision. In addition, the presence of gates and highway traffic signals 

were found to significantly reduce crossing accident frequency. On the contrary, the 

presence of stop signs, flashing lights, and bells were found to increase predicted 

collision. In sum, the author has considered traffic, roadway and crossing characteristics 

to develop an alternative highway-rail crossing accident prediction model.   

 

2.3.2 Injury Severity Study in Highway-Rail Crossing Study 

Eluru (2012) developed a latent class model to identify vehicle driver injury severity 

factors at highway-railway crossings.  The traditional ordered response model assumed 

that the effect of various factors on injury severity to be constant across all accidents. The 

latent model applied an innovative latent segmentation model addressing the issues to 

evaluate the effects of various factors on injury severity at highway-railway grade 

crossings. The dataset is from U.S. Federal Railroad Administration database highway-

rail grade crossing inventory and collision data including 14532 crossings from 1997 to 

2006. The factors which found to be significant influencing injury severity included 
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driver age, time of accident, presence of snow/ or rain, vehicle role in the crash and 

motorist action. However, the author just included the public grade crossings on the main 

railway line and collision involving passenger vehicles. In reality, accident happening in 

private crossings and commercial vehicles should be considered in the further studies.  

Miranda-Moreno (2009) modeled and estimated the severity levels of each 

individual involved in an accident using a multinomial model. A sample of highway-

railway intersections in Canada comprising 1773 crossings is considered in the research 

case. The collision database for the period from 1997 to2004 with 941 highway-railway 

grade crossing collisions was included. Specially, the author considered the total risk as 

the product of accident frequency and expected consequence. However, this research 

limited to provide only trains speed and posted speed limit variables in their analysis and 

neglected to provide many other potential exogenous variables.  

Hu (2009) conducted a logit model to investigate key factors for accident severity 

at railroad grade crossings. The dataset is from the railway police and the Taiwan Rail 

Administration (TRA) at railroad grade crossings in Taiwan which collected from 1995 

to 1997. The original dataset included railway features, highway features, crossing 

features, traffic control, others. It was found that variables such as the number of daily 

trains, number of daily trucks, obstacle detection devices had positive increase in severity 

accidents. However, traffic control devices and management tools are surprised to find 

not significant to cause an increase in severity.  The limitation of this research located in 

the few talking about the driver demographics studies.  

McCollister (2007) developed an injury severity model to predict the probability 

of accidents, injuries and fatalities at highway-railway crossings.   A logistic regression 
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method was adopted as the methodology for estimating the probability of fatality for 

vehicular occupants and two databases from Federal Railroad Administration (FRA) were 

used in estimating the injury severity model. Train speed, number of trains, percent of 

truck, traffic/lanes, angle, traffic control devices, area type, and accident history are used 

as the research variables in estimating crash injury. After model testing, train speed, 

number of trains, percent of trucks, traffic control devices and accident history were 

found to be significant variables. For the traffic control devices, the coefficients for cross 

bucks and stop signs are nearly equal. The most significant variables were accident 

history and traffic congestion. The number of night through trains was very significant, 

but the number of day through trains was less important. The square root of the maximum 

speed on a section of track is also highly significant. An interesting result shows that 

trucks are 60 percent less likely to be involved in a rail-highway crossing crash than a 

passenger automobile. In addition, more variables should be included, such as driver’s 

information (age and gender), and weather conditions (visibility and clarity). The 

contribution of study is the author separately used logit models to consider the accident, 

injury, and fatality data. However, the inherent ordered relationship of the accident, 

injury, and fatality was not included. The ideal model should consider the accident, injury 

and fatality data together using an ordered model (Accident: collisions between vehicle 

and train; Injury: a body wound or shock produced by accident; fatality: death caused by 

accident). 

 

 

 



26 

 

 

2.4 Model Building on Injury Severity Level Study 

Based on the previously discussed review, although several studies have been conducted 

to investigate highway-rail grade crossings, there is little research on modeling injury 

severity studies at highway-rail grade crossings. For this reason, the highway injury 

severity literature would be the best source to guide the development of highway-rail 

grade crossing injury severity modeling. Lots of methodological methods have been 

conducted to analyze highway crash severity. The dependent variable is the key factor to 

determine the frame of the methodology. The dependent variable of current existing crash 

severity models could be either a binary response (e.g. injury or nonjury) or a multiple 

response (.e.g. fatality, injury, or noninjury).  The multiple responses of the dependent 

variables could be classified as ordered or unordered. Five types of models including 

Binary model, multinomial logit, nested logit model, ordered probit model, and mixed 

model are presented here to make up the literature section.  

 

2.4.1 Binary Model 

Huang (2008) conducted Bayesian hierarchical logit model to identify the significant 

factors influencing the severity of driver injury and vehicle damage in traffic crashes. In 

this study, crash data is collected from Singapore from 2003 to 2005. There are total 

19832 reported crashes in this period and 4095 occurred at signalized intersection were 

used in the model. This study provided a way to analyze the potential within-crash 

correlation study using the hierarchical modeling technique. In detail, the article found 

that speeding and alcohol use resulted in higher crash severity. The effects of street 

lighting at night come into play an important role in this study.  
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Lee (2008) examined the impact of passengers on the driver’s crash potential on 

freeways. A bivariate probit model was developed using the crash record in Orlando, 

Florida from 1999 to 2003. Based on the bivariate probit model analysis, there are strong 

correlations between passengers and crash characteristics. Driver’s behavior is safer 

when they are accompanied by passengers and more passengers reduce driver’s crash 

potential. According to this research, younger drivers are strongly recommended to be 

accompanied by one or more older passengers. In addition, the younger drivers are also 

recommended to drive slower when they drive with only younger passengers in high 

speed or low-volume traffic road.  

 

2.4.2 Multinomial Logit Model  

Tay (2011) successfully conducted a multinomial logit model to analyze the pedestrian-

vehicle crash severity. The purpose of this study was to determine the factors which 

contribute to the severity of pedestrian-vehicle crashes in South Korea.  A number of 

factors are calibrated to relate crash severity including roadway environment, traffic 

control devices, weather conditions, pedestrian location, pedestrian and driver’s 

characteristics, pedestrian and vehicle characteristics. The factors identified as increasing 

the probability of fatal injury included: drivers’ sex, age and alcohol intoxication; 

pedestrians’ age and sex; pedestrians’ location on crosswalk, intersections, shoulder, 

freeways; wider roads especially wider than 9 m; vehicle type and size; inclement 

weather like cloud, fog, snow and rain; time of day such as night time and peak hours; 

and relatively less urbanized regions. As a result, the fatal and serious crashes were 

associated with collisions with heavy vehicles; drunk drivers; pedestrians with age over 
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65 or female, on high speed roads, in bad weather condition, at night. In sum, the findings 

of this paper could be referenced in our study such as the classification of potential useful 

variables.  

Malyshkina (2009) conducted an application of multinomial logit model to 

accident-injury severities to capture unobserved heterogeneity in accident data which 

could relate to detailed weather conditions. The model successfully accounts for the 

potential of unobserved heterogeneity between two unobserved roadway safeties. The 

conclusion found was that more roadway safety is correlated with better weather 

conditions and on the contrary the less frequency is strongly related to adverse weather 

conditions. 

Shankar (1996) explored the use of the multinomial logit model for evaluating 

injury severities for single-vehicle motorcycle accidents. The research uses 5 years of 

data from the state of Washington to estimate a multivariate model on motorcycle 

severity. The influencing factors include environmental factors, roadway conditions, 

vehicle characteristics, and rider attributes. A number of variables found to influence 

accident severity suggest a number of important directions for future studies. First, 

multivehicle accidents should be considered in the further study instead of single-vehicle 

crash. Second, the dataset here is limited to Washington and more affluent databases are 

needed for future work.  

 

2.4.3 Nested Logit Model 

Savolainen and Mannering (2007) studied motorcyclists’ injury severities in single and 

multi-vehicle crashes using nested logit model. The database used in this paper is from 
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the state of Indiana between January 1, 2003 and October 15, 2005. The important 

findings present that increasing motorcyclist age is associated with more injuries. In 

addition, the collision type, roadway characteristics, alcohol consumption, helmet use, 

unsafe speed play significant roles in crash-injury outcomes.  

 

Figure 2.4  Nested logit structure of crash injury severity model. 
 

(Source: Savolainen, P. and F. Mannering, 2007) 

 

2.4.4 Mixed Logit Model 

Milton (2008) studied highway accident severities using the mixed logit model. The 

characteristic of this approach shows that estimated model parameters could vary 

randomly across roadway segments relating to roadway characteristics, environmental 

factors, and driver behavior. The findings indicate that volume-related variables such as 

average daily traffic per lane, average daily truck traffic, truck percentage, and weather 

conditions are best modeled as the random parameters, while roadway characteristics 

such as the number of horizontal curves, number of grade breaks per mile and pavement 
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friction are best to be modeled as fixed parameters.  

 

2.4.5 Ordered Probit Model 

The following section will provide representative papers using ordered probit models in 

highway injury studies.  These studies could help to understand the type of variables that 

might be considered in an injury severity model and show how to build the relationship 

between injury severity and these related variables.  

The primary objective of Zhang’s (2011) study was to explore the contributing 

factors influencing the crash injury severity at diverge areas and quantitatively evaluate 

their impacts. The study uses crash data at selected freeway exit segments in Florida. It is 

strongly related to our highway-rail grade crossing injury severity studies because it 

demonstrates the use of the ordered probit model and can also indicate the significant 

variables which may influence highway-rail crossing safety. It was found that the factors 

significantly impacting injury severity include number of lanes, speed limits, light 

condition, weather condition, surrounding land type, alcohol/drug involvement, road 

surface condition, and shoulder width. The specific finding could be summarized as: 1. 

One additional lane on mainline will decrease the proportion of no injury crash by 2.1%; 

2. Good light and weather condition will increase the probability of no injury by 3.4% 

and 3.3%, respectively. The alcohol involvement will increase the probability of injured 

crash by 14.8%. Abdel-Aty (2003) used the ordered probit model to analyze the driver 

injury severity at multiple locations including roadway sections, signalized intersections, 

and toll plazas in Central Florida. Factors found to significantly impact the three injury 

severity models include driver’s age, gender, seat belt use, vehicle type, point of impact, 
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and speed ratio. Other factors were specific to the location of the crash. For example, 

roadway curves and dark lighting conditions contribute to higher probability of injuries 

on roadway sections. Second, rural areas were found to have a high probability of injuries 

due to higher speed. Third, driver’s errors are found to be a significant variable in the 

signalized intersections’ model. Fourth, if the vehicle is equipped with an electronic toll 

collection device, there is higher probability that the driver will have an injury related to 

higher speed in toll plazas. The contribution of this study is to introduce the land use 

aspect to the driver injury study. It can be used in this dissertation to  classify injuries 

based on different locations and then did model injury severity as a dependent variable 

from land use aspect correlated with other variables including driver’s information, traffic 

control type, traffic volume and so on.  

Kockelman (2001) modeled the driver injury severity to assess risk factors and 

design issues in roadway travel. The objective of this paper is to examine the risk of 

different levels sustained under all crash types, two-vehicle crashes, and single-vehicle 

crashes. The probability of injury severity level is examined by applying an ordered 

probit regression model recognizing the ordinality of injury level. A variety of factors 

could come into play when vehicles crash on the road. The study data was derived from 

the 1998 National Automotive Sampling System General Estimates System (GES) of all 

police-reported crashes in the U.S. This research concludes that the manner of collision, 

number of involved vehicles, driver gender, vehicle type, and driver alcohol use would 

play major roles. The contribution of this study is the separation of different type of 

vehicle crashes. Based on the findings of this study, pickups and sport utility vehicles are 

less safe than passenger cars under single-vehicle crash condition. However, these 
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vehicles are safe for the drivers compared with occupants under two-vehicle crashes.  

 

2.5 Driver Injury Severity by Control Device 

There are existing literatures on examining the effects various traffic control measures on 

the accident frequencies. Raub (2006) examined highway-rail grade crossing collisions 

over 10 years in seven Midwestern states to compare four major classes of warning 

devices for highway-rail grade crossings. The data covers a 10-year period from 1994 to 

2003 for collisions including injuries and fatalities. Several conclusions can be made: 1) 

gates usually have the lowest collision rates; and 2) collisions at highway-rail crossings 

with STOP signs are more likely to occur than with other types of warning system. For 

STOP sign, drivers misjudge the speed of the approaching train and therefore believe 

they have sufficient time to cross the intersection before the train arrives. Zwahlen and 

Schnell (2000) compared driver behavior at the standard crossbuck with two 

experimental reflectorized crossbuck systems in a before-and-after study. The study 

found that reflectorization increased the time between a noncompliant vehicle crossing 

the track and the on-coming train. Meeker et al. (1997) provided a comparison of driver 

behavior at railroad grade crossings with two different protection systems. The 

effectiveness of a flasher-only protection system was compared with one incorporating 

flashers and barrier gates for a particular crossing. The addition of the gates significantly 

reduced the percentage of drivers crossing in front trains from 67% to 38%. Abraham et 

al. (1998) examined driver behavior at highway-rail grade crossings to determine the 

difference between gate control and flashers. Drivers tend to commit more violations at 

the gated highway-rail grade crossings with more traffic control devices compared to 
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crossings with only flashers. The limitation of gated control could be that drivers have 

better chances of clearing the intersections before the train’s arrival in the no-gated 

control.  

There is clear evidence based on the above mentioned studies documenting the 

decreased risk of train-vehicle collision occurrence as a result of presence of junction 

control measures. Although exist several studies have already examined the effects of  

control measures on the highway-rail grade crossing accident frequencies, however no 

current study was found studying driver injury severity under various control devices at 

highway-rail grade crossings. As a result, reference studies have been conducted to 

investiage the injury severity of drivers under various traffic control measures at non-

highway rail crossing.  Four of these types of studies were selected for review including 

Haleem (2010), Pai et al (2007), and Zhang et al. (2000). These studies were reviewed 

because they show information on driver’s injury severity varied by different control 

devices. The recent study performed by Haleem (2010) examined traffic crash injury 

severity at unsignalized intersections including 2,043 unsignalized intersections in 

Florida from 2003 to 2006. Based on this study, it was found that higher severity 

probability is always associated with a reduction of AADT, and an increase of speed limit. 

In addition, heavily-populated and high-urbanized areas were found to have lower injury 

severities.  

The most related study looking at the relationship between traffic control and 

injury severity was a study performed by Pai et. al. (2007) that explored the impact of 

motorcyclist injury severity under various traffic control measures.  That study was 

performed using data from the UK and looked at injury as a function of demographic, 
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vehicle and environmental factors.  Although this study did not evaluate highway drivers 

at highway-rail grade crossings, the results from this research are useful in understanding 

the impact of traffic control on driver injury at highway-rail grade crossing. The database 

extracted accident injury from 1999 to 2004 in the UK. Control measures are divided into 

three categories: 1. Stop, give-way signs or marking; 2. Uncontrolled; 3. Signal measures. 

The model result suggests that the combined effect of riding in darkness and uncontrolled 

junction was dangerous to motorcyclists. A reduction of speed limit at unsignalised 

crossings would be effective to decrease injury severity to allow more reaction time for 

last-minute braking the moment before impact.  Another study by Zhang (2000) 

investigated factors affecting the severity of motor vehicle traffic crashes involving 

elderly drivers aged 65 and over between 1988 and 1993 on Ontario public roads.  This 

study indicated that elderly drivers involved in crashes at non-controlled intersections had 

an increased risk of fatal outcome compared with those involved at controlled 

intersections. 

To sum up, the existing studies have provided valuable insights into the 

relationship between various factors and driver injury severity. Nevertheless most of 

these studies focused on collisions happened along roadway segments rather than a 

specific type of crossings. Without a proper understanding of multiple factors influencing 

injury levels, the countermeasures based on previous studies could be ineffective. This 

study attempts to apply appropriate statistical modeling approach to analyze highway-rail 

crossing data from 2002-2011 in the U.S., exploring the determinants of driver injury 

severity under various control measures.  

 



35 

 

 

2.6 Driver Injury Severity by Age and Gender 

There have been a considerable number of studies on the development of highway-rail 

grade crossings’ safety studies. However, a study which specifically explores highway 

vehicle driver injury severity conditioned by age and gender influence, given that a 

highway-rail grade crossing accident has occurred, has received little attention in 

previous studies. As a result, studies conducted to study driver’s injury severity classified 

by age and gender for highway accidents are reviewed in this portion of the literature 

review. 

There exist several studies examining significant differences in accident injury 

severities between different age groups. Abdel-aty (1998) analyzed the effect of driver 

age on traffic accident on roadway intersections using log-linear models. This model was 

developed to help understand the relationship between driver age and several important 

factors including injury severity, average annual daily traffic, roadway character, speed 

ratio, alcohol involvement, and accident location using an accident database with 

accidents between 1994 and 1995 in Florida. Findings show that older and very old 

drivers are more likely to be fatality in traffic accidents due to the decline in their 

physical condition. Furthermore, very old drivers have a tendency of being involved in 

angle and turning accidents due to their slower perception and reaction times, and 

declined ability to judge the speed of oncoming vehicles.  

Dissanayake (2002) analyzed factors influential affecting the injury severity of 

older drivers in passenger car crashes using binary logistic regression models. The 

sources of data were police crash reports from the state of Florida. Travel speed, use of 

alcohol and drugs, personal condition, gender, urban/rural nature and grade/ curve 
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existence of the crash location were found to be the important factors impacting the 

injury severity of older drivers involved car crashes. Higher speeds increase the 

possibility of an increase in severity for older drivers. If they are not in good physical 

condition, there is a high likelihood of having an increase in severity for older drivers. 

Older male drivers when involved in crashes have a higher probability of a lower severity 

compared to female drivers. Rural locations with curves or grades have a higher 

probability of generating an increase in severity.  

Islam (2006) studied the differences in injury severity between male and female 

drivers across the different age groups in single-vehicle accidents.  The age of the vehicle 

was also included as a study variable. Separate male and female multinomial logit models 

describing injury severity were estimated for the young (16 to 24 years), middle-aged (25 

to 64 years) and older age vehicle drivers (ages older 65). Findings show statistically 

significant differences between male and female injury severities among different driver 

ages and age of vehicle. The finding includes the increased likelihood of fatality for 

young and older male drivers when driving vehicles less than 5 years ; the increased 

likelihood of injury for middle-aged female drivers while driving vehicles older than 6 

years; and the increase in fatality for older males’ beyond 65 years. For behavioral 

differences, young males have higher fatality probabilities when driving with passengers. 

For middle-aged females, they have higher injury probabilities when they drive vehicles 

6 years old and older. 

Boufous (2008) analyzed the injury severity for older drivers as a function of 

environmental, vehicle and driver characteristics.  The study used crash data from New 

South Wales and Australia. A multiple linear regression analysis showed that road type, 
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the presence of complex intersections, road speed limit, driver’s error and use of seat belt 

were significant predictors of injury severity in older people as a result of a traffic crash. 

Environmental modifications might contribute to a decrease in the severity of injury as a 

result of road crashes. For instance, the installation of traffic control devices would 

decrease the severity of injury. In addition, other improvements would improve the safety 

of older drivers including increased sign luminance, increased reflectivity of road 

markings, larger sign symbols and better positioning of traffic signs.  

Several studies have found significant differences in highway driver’s injury 

severity between males and females. Ulfarsson (2003) studied male and female injury 

severities in sport-utility vehicle, minivan, pickup and passenger car accidents at highway 

locations. Separate multinomial logit models of injury severity are estimated for male and 

female drivers. Injury severity is classified into no injury, possible injury, evident injury, 

and fatal injury. The estimation results show that there are significant differences 

between males and females with regard to factors affecting injury severity. Differences in 

the driver-injury severity magnitude of effects between the male and female drivers were 

found. An obvious example is that male drivers striking a barrier or guardrail experienced 

an increase in the probability of no injury severity while female drivers experienced an 

increase of fatality. The observed male/female differences suggest a combination of 

behavioral and physiological factors significantly influence driver’s injury severity.  

Obeng (2011) studied gender differences in injury severity risks at signalized 

intersections. The study estimates gender models for injury severity risks and finds that 

driver condition, type of crash, type of vehicle, and vehicle safety features have different 

effects on females’ and males’ injury severity. Monthly crash data at signalized 
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intersections in Greensboro, North Carolina from 1999 to 2002 were used in the model.    

The data file included 7581 crash records at 301 signalized intersections with 17,116 

individual drivers or passengers involved. The evidence shows major gender differences 

with driver condition, seatbelt use and airbag deployment impacting injury severity risks.  
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CHAPTER 3 

METHODOLOGY  

 

Conventional highway-rail grade crossings studies consider accident prediction models to 

estimate the number of accidents occurring at crossings. However, few research studies 

estimate the number of crashes by injury severity. Due to the fact that severity level at a 

highway-rail grade crossing is naturally ordered, an ordered probit model would be 

suggested in this study.  The objective of this chapter of this dissertation proposal is to 

state the methodology that will be used in achieving the objectives of this dissertation. A 

model selection study is given in Section 3.1. A brief introduction of potential crash-

injury severity models will be presented in Section 3.2. Section 3.3 introduces the ordered 

probit model to explore the factors which influence driver’s injury severity. Section 3.4 

provides a procedure to build-up the final model flow chart.   

 

3.1 Model Selection 

A driver injury severity prediction model at highway-rail grade crossings was developed 

to establish the relationship between the injury severity and contributing factors. Since 

the dependent variable of the model, driver injury severity, is discrete, discrete choice 

models are chosen as the suitable approach. Three candidate discrete choice models were 

selected including: a MNL (Multinomial logit) model, a NL (Nested logit) model, and an 

OP (Ordered Probit) model. The MNL model is selected because it is by far the most 

widely used discrete choice model. A distinct limitation is a property known as the 

“Independence of Irrelevant Alternatives (IIA)”. The MNL model does not consider the 
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ordinal property of the ordering characteristic for driver injury severity. Jones et al. (2007) 

discussed two severe problems of MNL models including the IIA property and the 

independent and identically distribution (IID) assumption. The IIA property neglects 

heterogeneity which leads to an inferior model specification and a spurious interpretation 

of the model. The IID is highly restrictive of parameter estimates causing more variable 

probability estimates to be independent of another variable’s involvement.  

Moore (2009) stated that the Nested Logit (NL) model could not prevent the 

possible correlation within “nested” data sets and the involvement of researcher judgment 

in the nested structure. The IID problem still exists and the NL model does not recognize 

the influence from different data sets’ heterogeneity affecting the parameter estimation.  

Zhang (2010) studied the advantage of using ordered probit model. The ordered probit 

model solves the problem of IIA and ordered discrete data property. As a result, the 

ordered probit model is selected in this study.     

 

3.2 Ordered Probit Model 

3.2.1 Ordered Probit Model Formula  

The ordered probit model, which models relationships among ranked outcomes, was used 

to estimate the injury severity in this research. The multinomial logit model was not 

selected as this model ignores the ordering of the dependent variable. In this study, driver 

injury severity is the ordered response.  

The general specification of the ordered probit model in this study is given by 

Equation (3.1) (Zhang, 2011):  

* T

i i iy X   
                                                                                                      (3.1) 
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Where, Xi is a (K*1) vector of observed non-random explanatory variables 

measuring the attributes of accident victim i, β is a (K*1) vector of unknown parameters 

and εi is a random error term with zero mean and unit variance for the ordered probit 

model. In addition, the error terms for different outcomes are assumed to be uncorrelated.  

The dependent variable in this study,Y  is coded as 1, 2,…, J, defined in equation 

(3.2): 

                1 if 
*

1iy   
 

Y   =   j  if 
*

1j i jy   
                                                                                             (3.2) 

              J  If 
*

1J iy   
  

 Where J is the number of driver injury levels, and ιj is the threshold value to be 

estimated for each level. The ordered probit model in equation (3) provides the thresholds 

which would indicate the levels of inclination causing driver injury severity. In addition, 

the probabilities of Y  taking on each of values j=1,…J are equal to: 

   11 T

iP Y X     

     1

T T

j i j iP Y j X X                                                                            (3.3) 

   1

T

J iP Y J X     

Where it is the cumulative probability function of a normal distribution. In our 

case, Y is chosen as the injury severity, which is grouped into three categories including 

property-damaged only, injury, and fatality.  
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3.2.2 Ordered Probit Model Estimation 

The parameters of the ordered probit models are estimated using a maximum likelihood 

estimation method which involves the systematic evaluation of the function at different 

points to find the point at which the function could be maximized. The log likelihood 

function in equation (4) is the sum of the individual log probabilities 

   
3

1

1 1

log( )
n

T T

j i j i

i j

L X X   

 

    
                                                               (3.4) 

3.2.3 Ordered Probit Model Marginal Effects  

Marginal effects are estimated in ordered probit models to get the impacts of variables on 

probability of each injury severity level (Zhang, 2011).  For continuous variables, the 

marginal effect of a variable for injury severity i could be determined by equation (3.5): 

     1/ i iP Y i X X X                                                                          (3.5) 

Where it is the standard normal density 

For binary variables, the marginal effect of a variable for injury severity i  could be 

determined by comparing the outcome when the variable takes one value with that when 

the variable takes zero value, while all other variables remain constant.

     / Pr / 1 Pr / 0n n nY i x Y i x Y i x       
                                                       (3.6)  
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3.3 Modeling Procedure 

This section provides a general procedural approach to estimate and analyze the ordered 

probit model. An initial model with all the explanatory variables was calibrated. 

Independent variables with (P-value >0.05) will be removed in order to get the final 

model. The final model will be developed with model estimation and marginal analysis in 

Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Model selection procedure. 
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CHAPTER 4 

DATA PROCESSING 

 

This chapter focuses on the process used for selecting data from available FRA highway-

rail grade crossing sources database and the data manipulation procedure to form the 

sample database. Section 4.1 introduces FRA highway-rail grade crossing database. It 

will introduce the history of FRA highway-rail grade crossing database and who is 

responsible for the database. The properties of FRA data will be provided and the 

classification of FRA database will be given. Section 4.2 details the procedure to how to 

clean up the data from the FRA database to build our own database. It will detail what 

types of crashes included in this study and where the data comes from. In addition, it will 

also provide the detailed data descriptions. Section 4.3 will give the detailed variables 

correlation matric in order to avoid multicollinearity in our regression study.  

 

4.1 FRA Data Source 

The Federal Railroad Administration (FRA) started an original national highway-rail 

crossing inventory database was on January 1, 1975.  The database includes both current 

and historical records with 80k to 100k crossings updated per year (Woll, 2007). Three 

sub databases including highway-rail grade crossing inventory, highway-rail crossing 

history file and highway-rail crossing accident data are classified in the FRA database. 

The three databases, which are described below, are linked to each other by a common 

crossing ID number.  

Highway-rail grade crossing inventory collects current crossing inventory which 
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reflects the current state of each crossing with reference attributes. It was used to identify 

independent factors which reflect crossing-related attributes and train/vehicle traffic 

patterns. In our database, four types of information are obtained:  warning device type, 

area type, AADT, and percentage of trucks.  This data are sourced from highway-rail 

crossing inventory.   

The Highway-rail crossing history file reflects the change of the crossings 

including a reason to update and an effective date of the update. In our study, the 

highway-rail crossing history file was not utilized.  

Highway-rail crossing accident history data provides a history file of accidents 

which have happened at the crossings and the correlated surrounding conditions at that 

time. Six types of factors in our final sample database are sourced from highway-rail 

crossing accident data file including time factors (month, hour, and AM&PM), vehicle 

information (vehicle speed and vehicle type), train information (train speed), weather 

information (visibility and weather condition), and driver’s information (age, gender, and 

driver’s injury levels).  

The data was substantially cleaned and checked for consistency. (i.e. some 

crossing IDs are missing in the highway-rail crossing inventory but could be found in 

highway-rail crossing accident data. In this situation, the crossing would not be chosen to 

be included in the research sample. The overall process of creating the sample database to 

be used for model estimations comprises the following two steps: (1) highway-rail grade 

crossing data is extracted from FRA database and (2) Key variable is reclassified in this 

research.  In the first step, the two databases are linked together through the common ID 

number.  The following provides an example of the second step for the variable warning 
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device class at highway-rail grade crossing.  This variable contains 9 types of control 

including no signs or signals, other signs or signals, cross bucks, stop signs, special active 

warning device, highway traffic signals, flashing lights, all other gates, and four quad 

gates. The variable is reclassified into three levels: passive control crossings; active 

control crossings; and no signal control crossings. This classification differs from the 

highway crossing category because control devices are often implemented together at 

highway-rail grade crossings (i.e. gates and flashing lights are implemented together as 

the active control devices).   

 

4.2 Data Formulation  

A careful and detailed data collection is essential to obtain reliable conclusions. The 

original dataset includes 25,945 highway-rail grade crossing accidents from 2002-2011. 

Finally, 15,881 highway-rail grade crossing accidents were selected as our final research 

sample after the dataset was cleaned and checked for consistency.  

 

4.2.1 Overall Model Data Formulation  

Injury severity is the dependent variable which is ranked as 0-property damaged only, 1-

injury, and 2-fatal. The overall model contains 11 variables as shown in Table 4.1. The 

definition of the variables is also recoded in Table 4.1. The explanatory variables are 

classified into five groups including “Time factor”, “Weather condition”, “Vehicle and 

Train Information”, “Environment ”, and “Driver’s Information” in Table 4.1.  
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Table 4.1  Description of Highway-rail Incidents Characteristics for Analysis 

  Variables Description Frequency Percent 

Dependent 

Variable 

Injury 
0 (Property 

Damaged only)  
10392 65% 

  1 (injured) 4037 25% 

  2 (fatality) 1419 9% 

Time Factor 
Peak hour 0 (non-peak) 11127 70% 

  1 (peak) 4721 30% 

Weather 

Condition 

Unclear weather 0 (clear) 10914 69% 

  1 (unclear) 4934 31% 

Dark 0 (other ) 11285 71% 

  1 (dark) 4563 29% 

Vehicle & Train 

Information 

Vehicle speed 0 (Less than 50mph) 15579 98% 

  
1 (more than 

50mph) 
269 2% 

AADT 0 (Less 10,000) 13775 87% 

  
1 (more than 

10,000) 
2073 13% 

Train speed 0 (less than 50mph) 14270 90% 

  
1 (more than 50 

mph) 
1578 10% 

Environmental 

Factors 

open space 0 (other areas) 11002 69% 

  1 (open space) 4846 31% 

Roadway 

Pavement 
0 (no-paved) 2286 14% 

  1 (paved) 13562 85% 

Driver's 

Information 

Age 0 (young drivers) 11494 72% 

  
1 (older than 50 

years) 
4354 27% 

Gender 1 (Male) 11735 74% 

  2 (Female) 4113 26% 

 

4.2.2 Control Device Model Data Formulation  

Injury severity is the dependent variable which is ranked as 0-property damaged only, 1-

injury, and 2-fatal. For the passive control dataset, the percentage of crashes by the three 
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injury levels is as follows: 63.2% property damaged only, 28.5% injured, and 8.3% 

fatality. For active control, the percentage of crashes by the three injury levels is as 

follows: 66.6% property damaged only, 24.1% injured, and 9.3% fatality.  

 

Table 4.2  Description of Control Device Model 

 
Description Active Control Passive Control 

  
Number % Number % 

Dependent Variable 

Driver 
0= property damaged 

only 
6738 66.20% 2674 62.40% 

 
1= injured 2480 24.40% 1249 29.10% 

 
2= fatality 961 9.40% 364 8.50% 

Independent Variable 

Peak Hour 0 (non-peak) 7338 68.90% 2976 69.40% 

 
1 (peak) 3316 31.10% 1311 30.60% 

Vehicle 

Speed 
0 (more than 50mph) 300 2.90% 118 2.80% 

 
1 (Less than 50mph) 9879 97.10% 4169 97.20% 

Vehicle Type 0 (Other) 8067 79.30% 3142 73.30% 

 
1 (Truck Related ) 2112 20.70% 1145 26.70% 

Visibility 0 (dark) 3373 33.10% 858 20.00% 

 
1 (other ) 6806 66.90% 3429 80.00% 

Weather 0 (unclear) 3161 31.10% 1573 31.00% 

 
1 (clear) 7018 68.90% 3506 69.00% 

Train Speed 0 (more than 50mph) 1469 14.40% 538 12.50% 

 
1 (Less than 50mph) 8710 85.60% 3749 87.50% 

Driver's Age 0(older than 50 years) 2973 29.20% 1325 30.90% 

 
1 (young drivers) 7206 70.80% 2962 69.10% 

Gender 0 (Male) 7406 72.80% 3317 77.40% 

 
1 (Female) 2773 27.20% 970 22.60% 

Area Type 0 (open space) 2470 24.30% 1998 46.60% 

 
1 (other areas) 7709 75.70% 2289 53.40% 

Roadway 

Pavement 
0 (no-paved) 549 5.40% 1464 34.10% 

 
1 (paved) 9630 94.60% 2823 65.90% 
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4.2.3 Age and Gender Data Formulation  

Injury severity is the dependent variable which is ranked as 0-property damaged only, 1-

injury, and 2-fatal. For the young male dataset, the percentage of crashes by the three 

injury levels is as follows: 67.2% property damaged only, 25.3% injured, and 7.6% 

fatality. For middle age male drivers, the percentage of crashes by the three injury levels 

is as follows: 69.9% property damaged only, 23% injured, and 7.1% fatality.  

For old age male drivers, the percentage of crashes by the three injury levels is as 

follows: 59.3% property damaged only, 24.5% injured, and 16.2% fatality. For the young 

female dataset, the percentage of crashes by the three injury levels is as follows: 62.6% 

property damaged only, 30.9% injured, and 6.5% fatality. Estimation of these six 

unrestricted models is preferable to conducting one restricted model since such individual 

model allows us to individually investigate the effects of the explanatory variables on 

injury severity levels by varied age and gender groups. Theoretically the impacts of 

environmental factors, weather condition, and vehicle and train information on motor 

vehicle drivers’ injury severity are expected to vary across the age and gender groups.  

Table 4.3 and Table 4.4 show the frequency and percentage distribution of these 

variables. For middle age female drivers, the percentage of crashes by the three injury 

levels is as follows: 62% property damaged only, 30.1% injured, and 7.8% fatality. For 

old age female drivers, the percentage of crashes by the three injury levels is as follows: 

57.2% property damaged only, 29.2% injured, and 13.6% fatality. In addition, the 

independent variables in this study are made up of continuous variables and categorical 

variables. Four variables including vehicle speed, train speed, number of lanes, and 

percent of truck are treated as continuous variables. The remaining five variables include 
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weather, visibility; area type, pavement, and light condition are considered as categorical 

variables.  

 

Table 4.3  Description of Age and Gender Model for Male 

    Young Male Middle Male Old Male 

Dependent Variable 

Injury Severity 
0 (Property 

damaged only) 
1800 67.20% 4689 69.90% 1378 59.30% 

  1 (Fatality) 203 7.60% 473 7.10% 377 16.20% 

  2 (Injured) 677 25.30% 1544 23.00% 569 24.50% 

Categorical Variables 

Visibility 0 (Dark) 1173 43.80% 2297 34.30% 530 22.80% 

  1 (No-dark) 1507 56.20% 4409 65.70% 1794 77.20% 

Weather 
0 (No clear 

weather) 
886 33.10% 2095 31.20% 668 28.70% 

  1 (Clear weather) 1794 66.90% 4611 68.80% 1656 71.30% 

Lights 0 (No) 1562 58.30% 3900 58.20% 1407 60.50% 

  1 (Yes) 687 25.60% 1728 25.80% 559 24.10% 

Land Use 0 (Open space) 856 31.90% 2173 32.40% 729 31.40% 

 
1 (None-open) 1823 68.00% 4533 67.60% 1595 68.60% 

Pavement 0 (No) 411 15.30% 1051 15.70% 386 16.60% 

  1 (Yes) 2269 84.70% 5655 84.30% 1938 83.40% 

Continuous 

Variables 
Vehicle Speed 13 10 9 

  Train Speed 30 29 30 

  Traffic lanes 2 2.3 2.3 

  Percent of truck 8 9 9 

 

There is also description of age and gender for female shown in Table 4.4. The 

percentage of crashes by the three injury levels is as follows: 62.6% property damaged 

only, 30.9% injured, and 6.5% fatality. The remaining variables include weather, 

visibility; area type, pavement, and light condition are considered as categorical variables.  
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Table 4.4  Description of Age and Gender for Female 

    
Young 

Female 

Middle 

Female 
Old Female 

Dependent Variable 

Injury Severity 
0 (Property 

damaged only) 
708 62.60% 1305 62.00% 500 57.20% 

  1 (Fatality) 74 6.50% 165 7.80% 119 13.60% 

  2 (Injured) 349 30.90% 634 30.10% 255 29.20% 

Categorical Variables 

Visibility 0 (Dark) 664 58.70% 1316 62.50% 667 76.30% 

  1 (No-dark) 467 41.30% 788 37.50% 207 23.70% 

Weather 
0 (No clear 

weather) 
781 69.10% 1405 66.80% 645 73.80% 

  1 (Clear weather) 350 30.90% 699 33.20% 229 26.20% 

Lights 0 (No) 644 56.90% 1218 57.90% 456 52.20% 

  1 (Yes) 300 26.50% 530 25.20% 253 28.90% 

Land Use 0 (Open space) 323 28.60% 549 26.10% 207 23.70% 

 
1 (None-open) 808 71.50% 1555 73.90% 667 76.40% 

Pavement 0 (No) 131 11.60% 216 10.30% 82 9.40% 

  1 (Yes) 1000 88.40% 1888 89.70% 792 90.60% 

Continuous 

Variables 
Vehicle Speed 11 9 8 

  Train Speed 28 28 28 

  Traffic lanes 2.3 2.3 2.3 

  Percent of truck 8 8 8 

 

4.3 Correlation Matrix Studies 

In this exercise, correlation matrices are developed using SPSS 16.0 software. In order to 

avoid multicollinearity in the regression study, the correlation among all independent 

variables is investigated. Pearson correlation coefficients were estimated to measure the 

strength of correlation.  The Pearson correlation coefficient is usually denoted as r and is 

a value between +1 and -1.  The lowest value that r can be is 0, this would show zero 

correlation or no relationship between the two given variables.  The highest value that r 
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can have is 1.00, this would show a perfect correlation or strong relationship between the 

two given variables.  The values can either be positive or negative.  A positive value 

indicates that an increase in one variable corresponds to an increase in the other variable.  

A negative value indicates that an increase in one variable corresponds to a decrease in 

the other variable.  

 

4.3.1  Overall Model Data Correlation Matrix  

Injury severity is the dependent variable which is ranked as 0-property damaged only, 1-

injury, and 2-fatal. Table 4.5 shows the following sets of predictor variables are not 

correlated for overall model estimation: schedule factor, vehicle speed (Vsd) , visibility 

(Vis) , weather condition (Wea), train speed (Tsd), age, gender (Gen), area type, and 

roadway pavement (Pave).  

 

Table 4.5  Correlation Matrix for Overall Model 

 
Hour Vsd Vis Wea Tsd  Age Gen Area Pave 

Hour 1 -0.016 -0.185 -0.01 0.029 0.029 0.031 0.018 -0.021 

Vehicle 

speed 
  1 0.02 0 -0.015 -0.028 -0.019 0.113 0.014 

Visibility     1 0.094 -0.026 -0.126 0.013 -0.084 0.113 

Weather       1 -0.019 -0.038 0 0.02 0.015 

Train 

speed 
        1 0.008 -0.027 0.136 -0.128 

Age           1 0.001 -0.009 -0.012 

Gender             1 -0.055 0.066 

Area                1 -0.366 

Pave                 1 
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4.3.2 Control Device Model Data Correlation Matrix  

Tables (4.5) and (4.6) show the following sets of predictor variables are also not 

correlated for control device model estimation. 

 

Table 4.6  Correlation Matrix for Active Control Device Model 

   Hour Vsd Vis Wea 
Train 

Speed 
Age Gen 

Area 

Type 
Pave 

Peak 

Hour 
1 0.003 0.215 -0.008 -0.045 -0.04 0.049 -0.01 0.022 

Vehicle 

Speed 
  1 -0.007 0.017 -0.115 -0.088 0.045 -0.005 0.034 

Visibility     1 -0.102 -0.069 -0.18 0.003 0.021 0.055 

Weather       1 0.024 0.051 -0.003 0.006 -0.016 

Train 

Speed 
        1 0.006 0.015 -0.041 -0.136 

 Age           1 -0.012 0.015 0.008 

Gender             1 0.003 -0.034 

Area                1 0.077 

Pave                 1 

 

Table 4.7  Correlation Matrix for Passive Control Device Model 

  
Peak 

Hour 
Vsd Vis Wea 

Train 

Speed 
Age Gen 

Area 

Type 
Pave 

Peak 

Hour 
1 -0.019 0.115 -0.008 -0.057 -0.011 -0.005 0.005 0.016 

Vehicle 

Speed 
  1 0.059 -0.029 -0.141 -0.089 -0.008 -0.009 0.089 

Visibility     1 -0.08 -0.215 -0.093 -0.034 0.017 0.099 

Weather       1 0.041 0.025 0.005 -0.011 -0.018 

Train 

Speed 
        1 0.006 0.07 -0.129 -0.393 

Driver's 

Age 
          1 0.041 0.008 -0.002 

 Gender             1 -0.016 -0.085 

Area 

Type 
              1 0.158 

Pave                 1 
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4.3.3 Age and Gender Model Data Correlation Matrix 

From Table 4.8 to Table 4.13, the correlation values show the following sets of predictor 

variables are also not correlated for driver injury severity model estimation classified by 

driver’s age and gender: vehicle speed, visibility, weather condition, train speed, age, 

area type, and roadway pavement. 

 

Table 4.8  Correlation Matrix for Young Male Driver’s Model 

  
Vehicle 

Speed 
Visibility Weather 

Train 

Speed 

Area 

Type 

Roadway 

Pavement 

Vehicle 

Speed 
1 -0.035 -0.018 -0.141 -0.01 0.05 

Visibility   1 0.016 -0.101 0.039 0.141 

Weather     1 0.027 -0.014 0.002 

Train 

Speed 
      1 -0.036 -0.206 

Area Type         1 0.137 

Roadway 

Pavement 
          1 

 

Table 4.9  Correlation Matrix for Young Female Driver’s Model 

  
Vehicle 

Speed 
Visibility Weather 

Train 

Speed 

Area 

Type 

Roadway 

Pavement 

Vehicle 

Speed 
1 -0.101 0.005 -0.116 0.039 -0.019 

Visibility   1 -0.025 -0.064 0.011 0.037 

Weather     1 0.022 0.05 -0.009 

Train 

Speed 
      1 -0.097 -0.126 

Area Type         1 0.128 

Roadway 

Pavement 
          1 
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Table 4.10  Correlation Matrix for Middle Male Driver’s Model 

  
Vehicle 

Speed 
Visibility Weather 

Train 

Speed 

Area 

Type 

Roadway 

Pavement 

Vehicle 

Speed 
1 0.039 -0.005 -0.142 -0.02 0.044 

Visibility   1 0.014 -0.127 0.05 0.122 

Weather     1 0.009 -0.014 -0.019 

Train 

Speed 
      1 -0.076 -0.228 

Area Type         1 0.164 

Roadway 

Pavement 
          1 

 

Table 4.11  Correlation Matrix for Middle Female Driver’s Model 

  
Vehicle 

Speed 
Visibility Weather 

Train 

Speed 

Area 

Type 

Roadway 

Pavement 

Vehicle 

Speed 
1 -0.094 -0.015 -0.102 -0.022 0.019 

Visibility   1 0.003 -0.036 0.041 0.109 

Weather     1 -0.049 -0.021 -0.034 

Train 

Speed 
      1 -0.073 -0.187 

Area Type         1 0.149 

Roadway 

Pavement 
          1 

 

Table 4.12  Correlation Matrix for Old Male Driver’s Model 

  
Vehicle 

Speed 
Visibility Weather 

Train 

Speed 

Area 

Type 

Roadway 

Pavement 

Vehicle 

Speed 
1 0.031 -0.004 -0.095 -0.028 0.051 

Visibility   1 0.002 -0.139 -0.007 0.104 

Weather     1 0.006 0.013 -0.032 

Train 

Speed 
      1 -0.087 -0.269 

Area Type         1 0.176 

Roadway 

Pavement 
          1 
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Table 4.13  Correlation Matrix for Old Female Driver’s Model 

  
Vehicle 

Speed 
Visibility Weather 

Train 

Speed 

Area 

Type 

Roadway 

Pavement 

Vehicle 

Speed 
1 -0.053 0.012 -0.113 -0.004 -0.053 

Visibility   1 0.043 -0.056 0.043 0.051 

Weather     1 -0.018 0.034 0.001 

Train 

Speed 
      1 -0.017 -0.129 

Area Type         1 0.163 

Roadway 

Pavement 
          1 

 

The intention of this exercise is to determine which variables are not correlated 

and then use them to develop driver injury severity models. The selection of the models is 

based on the criteria that variables in the model are not correlated. From the correlation 

matrices tables from Table 4.5 to Table 4.13, the models satisfy the criterions are: 

1. Overall Model: schedule factor, vehicle speed, visibility, weather condition, 

train speed, age, gender, area type, roadway pavement, and vehicle type.   

2. Control Device Model: schedule factor, vehicle speed, visibility, weather 

condition, train speed, age, gender, area type, and roadway pavement. 

3. Age and Gender Model: vehicle speed, visibility, weather condition, train speed, 

age, area type, and roadway pavement. 
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CHAPTER 5 

MODEL RESULTS AND ANALYSIS 

 

In this section, model results and analysis will be given: overall model results, control 

device model results, and age and gender model results.  

 

5.1 Overall Model Results  

The model was fit using Limdep 9.0 economic software package. The results and model 

fit information are shown in Table 5.1. The log likelihood value at convergence of the 

final model is (-1616) and it is significant with a P- value of 0.000.  

   

Table 5.1  Ordered Probit Model Estimation Results 

 
Estimated Coefficients Sig. 

Schedule Factor -0.111 0.003 

Visibility 0.308 0 

Weather 0.132 0 

Vehicle Type 0.575 0 

Vehicle Speed 1.154 0 

Train Speed 1.001 0 

Area Type -0.278 0 

Pavement 0.314 0 

Driver's Age 0.316 0 

Gender -0.18 0 

Number of Observations=15,880 

Log likelihood =-1616 

Pseudo R-Square=0.044 

Sig.=0.000 
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5.1.1 Model Fit and Estimation Information 

A 95 percent confidence interval is used in this study to identify significant variables 

impacting driver’s injury severity at highway-rail grade crossings. The coefficients for 

the final models are presented in Table 5.1. Coefficients for several sets of explanatory 

variables in the model are estimated, including “Time factor”, “Weather condition”, 

“Vehicle and Train Information”, “Environment ”, and “Driver’s Information”  

In this research, schedule factor, or the time the crash occurred, is categorized into 

two levels: Peak hour and Off-Peak, with peak hour as the reference category. The 

schedule factor influence is considered given a crash accident has already occurred. From 

the model results, the coefficient for off-peak is a negative coefficient at -0.111.  The 

negative coefficient indicates that there is a decreased likelihood of higher severities at 

highway-rail crossings during an off-peak time when compared to accidents happening 

during the peak hour. 

Weather condition is referred to from two aspects: weather and visibility. In this 

study, the weather factor is classified into two groups: bad weather (such as cloudy, rain, 

fog, sleet and snow), and clear weather which is selected as the base category. Bad 

weather has a positive coefficient value of 0.132 which indicates an increased likelihood 

of severe accidents during bad weather condition at highway rail-grade crossings 

compared to clear weather condition. Abdel-Aty et al. (2003) found that bad weather 

conditions make it difficult for drivers to stop or slow down to make a stop.  Second, 

visibility is classified into “other condition” (such as dawn, day, and dusk) and “dark” 

which is the base category. The positive coefficient value of 0.308 for other or non-dark 

conditions means an increased likelihood of higher severities for accidents during the 
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other condition. Zhang et.al (2011) found that good light conditions and good weather 

condition will decrease the probability of severe injuries. The results of this paper show 

slight differences to what was found by Zhang.  The results show that higher severity 

injuries occurred at highway-rail grade crossings during bad weather and with better 

visibility.  

Highway users’ speed describes the driver’s estimated speed when the accident 

occurred. In this research this speed variable is classified into two levels: highway 

driver’s speed more than 50 mph and speed less than 50 mph which is the reference 

category. The research found speed more than 50 mph was significant with a positive 

coefficient of 1.154.  The positive coefficient indicates an increased likelihood of higher 

severities at highway-rail crossing injuries for accidents involving vehicular speeds of 

more than 50 mph when compared to crossing vehicles with speeds less than 50 mph. 

Zhang et al. (2011) found that the increase of speed limit on freeway will increase the 

injury severity of the crash. 

Railway information here is represented by train speed which describes the 

estimated train speed when the highway-rail crossing accident occurred. In this research 

this speed variable is classified into two levels: train speed more than 50 mph and speed 

less than 50 mph which is the reference category. The research found that speed “less 

than 50 mph” was significant with a positive coefficient of 1.001. The positive coefficient 

indicates an increased likelihood of higher severities of highway-rail crossing injuries if 

the train speed is “more than 50 mph” when compared to train speed “less than 50 mph”. 

A higher train speed means less reaction time for motor vehicle drivers given a highway-

rail accident happened and thus increases the probability of higher injury severities at 
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highway-rail crossings. In addition, McCollister et al. (2007) found that increasing train 

speed will increase injury level which is intuitive.   

Vehicle type is classified into two groups: “Truck and Truck-Trailer”, and “Auto 

and other” (other including van, bus, school bus, motorcycle, pedestrian.). “Truck & 

truck-tra” is chosen as the base category. This research found “auto& other” is significant 

with a positive coefficient of 0.575. The positive coefficient value implies an increased 

likelihood of driver injury severity at highway-rail crossing for “auto &other” vehicle 

drivers when compared to truck drivers. McCollister et al. (2007)’s study found that 

trucks are mandatory to stop at a highway-rail grade crossing intersections and truck 

drivers are used to be trained, professional and experienced drivers.  

“Area” in this study includes two types: “open space” and “other areas” where 

“other areas” refer to industrial, commercial, residential and institutional areas.  “Open 

space” is chosen as the reference category. The research found “other area” to be 

significant with a negative coefficient of -0.278. The negative coefficient indicates a 

decreased likelihood of higher severities of highway-rail crossing injuries if an accident 

happens in an area other than open space when compared to open area. This result may 

be due to driver’s lack of alertness and attention while driving in “open space” which 

may have low traffic volumes. Shankar et al. (1996) in his study on single-vehicle 

motorcycle accident found that riders’ inattention will increase the likelihood of disabling 

injury in open space area. Zhang et al. (2011) found that accidents located in residential 

zones will decrease the probability of severe injuries. 

Roadways can be paved with timber, asphalt, concrete, rubber, or metal. The 

roadway pavement in this study is classified as “unpaved” and “paved” which is the 
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reference category. The research found that “unpaved” is significant with a positive 

coefficient value of 0.314. The positive coefficient value indicates an increased 

likelihood of higher severities for highway-rail grade crossing accidents if the roadway 

surface is not paved when compared to a roadway with a paved surface. This could be 

attributable to the friction level of the roadway. An unpaved road has a lower friction 

force and therefore needs much more time to stop. As a result, an unpaved roadway will 

increase the probability of higher severities at highway-rail crossings.  

Among the driver’s information, age has a significant effect on injury severities. 

However, the relationship between driver’s age and injury severity differs by age group. 

Age in this study is classified into two categories: “less than 50” and “over 50”.  This 

category is based on Abdel-Aty et al. (2003) and Zhang et al. (2011) who looked at injury 

severity for highway vehicle accidents. “Age less than 50” is defined as the reference 

category. The research found “over 50” to be significant with positive coefficient 0.316. 

The positive coefficient value implies an increased likelihood of higher severities for 

highway-rail crossing injuries for accidents involving older drivers. Furthermore, 

although older drivers may tend to drive at lower speeds and less likely to be in an 

accident, once in an accident they tend to have severe injuries by Shankar et al. (1996) 

and Pai et al. (2007).  

Gender is an important factor influencing driver’s injury severity. Female is 

defined as the reference category. The study found that the variable “male” is significant 

with a negative coefficient -0.18. The negative coefficient value implies a decreased 

likelihood of higher severities for highway-rail crossing injuries for accidents involving 

male drivers when compared to female drivers. Due to physiological differences, women 
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are expected to sustain more severe injuries than men by Yan et al. (2011) and 

Kockelman et al. (2001).  

5.1.2 Overall Model Marginal Effects Analysis 

The coefficients estimation in the previous section do not directly reflect the impact of 

contributing factors on each of the three types of injury levels: property damage only 

(PDO), injured, and killed. As a result, a marginal effects analysis of factors was 

conducted.  The results in Table 5.2 illustrate the impact of contributing factors on each 

injury severity level. The coefficient values are classified as positive and negative. A 

positive marginal coefficient of a variable for a particular injury severity level means that 

the probability of the severity level will increase as the input variable increases by one 

unit. The marginal effects of ordered probit model in our study are determined using 

Limdep 9.0.  

 

Table 5.2  Ordered Probit Model Marginal Effects Analysis Results 

 

Property Damage 

Only 
Injured Killed 

Schedule Factor -0.0088 0.0053 0.0035 

Visibility 0.0793 -0.0489 -0.0304 

Weather 0.0383 -0.0232 -0.015 

Driver's Age -0.0579 0.0339 0.024 

Gender -0.0002 0.0001 0.0001 

Area Type -0.0003 0.0001 0.0002 

Pavement 0.1594 -0.0843 -0.075 

Vehicle Type 0.138 -0.0877 -0.0503 

Vehicle Speed -0.273 0.1163 0.1566 

Train Speed -0.2266 0.1114 0.1152 

 

From Table 5.2, the accident occurred during the “Peak hour” will increase the 
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probability of a driver being fatality by 0. 35% and a driver injury by 0.53% compared 

with “no-peak”.  Pai et al. (2007) found that the risk of a severe injury and fatality is 

higher during the peak period compared with off peak period for motor vehicle drivers in 

highway collisions.  

The variable “bad weather” condition includes cloudy, rain, fog, sleet, and snow.  

The bad weather condition will increase the probability of “property damage only 

accidents” by 3.83% compared with clear day condition; on the contrary, it will decrease 

the probability of injured level accidents by 2.32% and fatality level accidents by 1.5%. 

This could be explained by the fact that highway vehicle drivers may travel at lower 

speeds under bad weather condition. This is consistent with the results stated by Duncan 

et al. (1998) who stated that injury severity was significantly lower on icy or snowy road 

condition due to slower speeds, maintaining longer headways, and using more caution. 

The visibility level “dark” was found to  decrease the probability of a driver being fatality 

by 3.04% and decrease the probability of the driver being injured by 4.89% compared 

with clear condition, whereas it will increase “property damage only level” accidents by 

7.93%.  

Drivers older than 50 years are more likely to be “injured” or “fatality” in a 

highway-rail grade crossing accident when compared to drivers that are younger than 50 

years. From Table 5.2, drivers older than 50 years will increase the probability of being 

injured by 3.39 percent and fatality by 2.4 percent compared with drivers younger than 50 

years. The increase of the probability of being injured and fatality can be explained by 

studies which have shown that crash severity increases with age.  Abdel-Aty et al. (2003) 

found that older drivers have a higher probability of more severe injuries especially for 
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drivers above 80 years old. In addition, male drivers will decrease the probability of 

being fatality and injured. Abdel-Aty et al. (2003) also indicated that female drivers have 

a higher probability of higher severities.  

 An accident occurring in an “Open space” area will increase the probability of 

the driver being fatality by 0.02% and the driver being injured by 0.01% compared with 

an accident occurring in residential, commercial, and industrial areas. Similarly, Abdel-

Aty et al. (2003) found that rural area had a positive influence to increase the probability 

of driver injury severities. In addition, an accident occurring on at a crossing with “Paved 

road” will decrease the probability of the driver being fatality by 7.5% and the driver 

being injured by 8.43% compared with “unpaved” road.  

Highway vehicle drivers’ with a crossing speed of  more than 50 mph is found to 

increase the probability of a driver being fatality  by 15.66% and the driver being injured  

by 11.63% compared with vehicle drivers with speeds less than 50 mph. ”. Abdel-Aty et 

al. (2003) found that speed increased the probability of severe injuries. For vehicle 

information,” Auto and other” will increase the probability of driver fatality level 

accidents by 5.03% and driver injured level accidents by 8.77% compared with truck 

related drivers.  This can be explained by the fact that truck drivers are professional and 

experienced drivers by McCollister et al. (2007).  In addition, truck drivers are required 

to stop at a highway-rail grade crossing regardless of the state of the crossing device.   

Train speeds greater than 50 mph was found to increase the probability of a driver 

being fatality at highway-rail grade crossing accidents by 11.52% and injured by 11.14% 

compared with a lower train speed. Drivers need to have minimal reaction time to stop 

once an oncoming train is detected. If the train is coming too fast to cross the highway-



65 

 

 

rail crossing, highway vehicle drivers will not have enough time to stop and it will 

significantly increase the likelihood of “fatality level” accidents and “injured level” 

accidents. McCollister et al. (2007) found that increasing train speed had more effect on 

injuries and even greater effect on fatalities given that a highway-rail grade crossing 

accident occurred.   

 

5.2 Control Device Model Results 

Ordered Probit models are proposed to be used to analyze the driver injury severities 

under various control devices for accidents at highway-rail grade crossings. Two Ordered 

Probit Models are estimated in this study to estimate driver injury severity under active 

traffic control and passive traffic control. The model examines the effects of explanatory 

variables on the dependent variable. The estimation model was fit using Limdep 9.0 

economic software package. A positive sign of the estimated parameters implies 

increased injury severities by highway vehicle drivers with increase in the value of the 

explanatory variables. The P-value for each variable is also listed next to the independent 

variables. Significant variables are identified as having a p-value of less than 0.05. 

The first model shown in Table 5.3 examines the factors affecting injury 

severities resulting from a highway-rail grade crossing incident controlled by active 

control devices such as flashing lights and gates. The log likelihood value for the model 

is (-855) and the P-Value is 0.0 which indicates a good-fit of the model. Factors found to 

be most significantly associated with the increased injury levels include: weather 

condition, visibility, vehicle speed, train speed, vehicle type, driver’s age and gender, 

pavement, and area type.   
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The second model explores the determinants of driver injury severity resulting 

from a highway-rail crossing incident controlled by passive control devices such as 

crossbucks and stop signs. The log likelihood value for the model is (-751) and the P-

value is 0.0 which indicates a good-fit of the model. Model estimation results indicate 

that schedule factor, visibility, vehicle speed, vehicle type, train speed, driver’s age and 

gender, area type, and pavement are significant variables associated with driver injury 

severity as shown in Table 5.3. The following section provides a more detailed discussion 

of these findings.  

 

Table 5.3  Control Device Model Estimation Results 

Variables 

Active Control Passive Control 

Parameter 

Estimate 

P-

Value 

Parameter 

Estimate 

P-

Value 

Peak hour / / -0.169 0.014 

Weather 0.123 0.008 / / 

Visibility 0.366 0 0.177 0.039 

Vehicle speed 1.215 0 0.966 0 

Train speed 1.021 0 0.885 0 

Age 0.345 0 0.284 0 

Area Type / / 0.29 0 

Pavement 0.353 0 0.266 0 

Number of 

Observation 
10194 5079 

Log likelihood -855 -751 

Pseudo R-Squared 0.047 0.045 

Significance (P-

value) 
0 0 
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5.2.1 Control Device Model Estimation Results 

A 95 percent confidence interval is used in this study to identify significant variables 

impacting driver’s injury severity at highway-rail grade crossings. The coefficients for 

the final models are presented in Table 5.3.  

In this study, schedule factor is categorized into two levels: peak hour and off-

peak, with off-peak as the reference category variable. The schedule factor is significant 

only for passive control highway-rail crossings.  There is an increased likelihood of 

higher severities at highway-rail crossing injuries for accidents happening during the 

peak hour under passive control when compared to accidents happening during the peak 

hour under active control.  

Weather factor is classified into two groups: bad weather (such as cloudy, rain, 

fog, sleet and snow) and good weather which is selected as the reference category. 

Weather is found to be a significant variable influencing highway driver’s injury severity 

only under active control highway-rail grade crossing intersections. The positive 

coefficient value (0.123) implies that drivers under active control are more likely to have 

a severe injury in bad weather condition. Visibility is classified into “dark” and “other 

condition” (such as dawn, day, and dusk) which is the reference category. Drivers are 

found to have severe injuries under “dark” condition at active control highway-rail grade 

crossings.  

Highway users’ speed describes the driver’s estimated speed when the accident 

occurred. In this research this speed variable is classified into two levels: highway 

driver’s speed “more than 50 mph” and speed “less than 50 mph” which is the reference 

category. The coefficient estimates for the highway driver’s speed among the two models 
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indicate a difference by type of control.  Both the passive and actively controlled 

crossings have a positive coefficient for the highway driver’s speed which means an 

increased likelihood of more severe highway-rail crossing injuries with increasing speed. 

There is an increased likelihood of higher severities at highway-rail crossings with high 

speed under active control with a coefficient estimate of (1.215) when compared to 

accidents happening with high speed under passive control with a coefficient estimate of 

(0.966).  

Railway information here is represented by train speed which describes the 

estimated train speed when the highway-rail crossing accident occurred. In this research 

this speed variable is classified into two levels: train speed “more than 50 mph” and 

speed “ less than 50 mph” which is the reference category. There is an increased 

likelihood of higher severities at highway-rail crossings for accidents happening under 

high train speed and active control with a coefficient estimate of (1.021) when compared 

to accidents happening under high train speed and passive control with a coefficient 

estimate of (0.885).  

Among the driver’s information, age has a significant effect on injury severities. 

However, the relationship between driver’s age and injury severity differs by age group. 

Age in this study is classified into two categories: “less than 50” and “over 50”.  This 

category is based on Abdel-Aty et al. (2003) and Zhang et al. (2011) who looked at injury 

severity for highway vehicle accidents. “Age less than 50” is defined as the reference 

category. The coefficient estimate for active control (0.345) is larger than the coefficient 

value (0.284) under passive control which implies that older drivers are more likely to 

have severe injury accidents under active control compared to older drivers under passive 
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control given a highway-rail accident has occurred. This could be explained by the fact 

that older drivers have slower reactions compared to younger drivers. This findings could 

be supported by Pai (2007)’s study. In his study, Pai found that drivers over 60 years are 

less likely to have severe driver injuries at stop, give-way signs or markings controlled 

junctions.  

“Area” in this study includes two types: “open space” and “other areas” where 

“other areas” refer to industrial, commercial, residential and institutional areas.  “Open 

space” is chosen as the reference category. “Area type” is found to be a significant 

variable to influence highway driver’s injury severity only under passive control at 

highway-rail grade crossing intersections. The coefficient estimate for passive control 

(0.29) implies that drivers in open space area are more likely to have severe injury 

accidents given a highway-rail accident has happened than compared to other areas.  

Pavement here is classified as “highway unpaved” and “highway paved” with 

“highway paved” being the reference category. The coefficient estimate under active 

control of (0.353) is larger than the estimate under passive control with a coefficient of 

(0.266). This implies that highway drivers on “unpaved” highways under active control 

devices are more likely to have severe injuries compared with passive control highway-

rail crossings given an accident already happened.     

   

5.2.2 Control Device Model Marginal Effects Analysis 

Table 5.4 indicates the marginal effects of significant independent variables on the 

probabilities of each injury severity level (Y=0 uninjured; Y=1 injured; Y=2 killed). In 

addition, the marginal effects analysis is considered under both active control and passive 
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control. The definition of marginal effects could be described as the increased or 

decreased probabilities in each injury severity level associated with the change of 

significant independent variables. For categorical variables, the marginal coefficients 

reflect the change of probability of injury severity compared to the reference categorical 

variable when all other independent variables remain the same.  

 

Table 5.4  Control Device Model Marginal Effects Analysis Results 

  Injury 

Level 

Active 

Control 

Passive 

Control 

Time Factor Peak hour Y=0 / 0.0083 

 Y=1 / -0.005 

 Y=2 / -0.0032 

Weather Weather Y=0 -0.043 / 

 Y=1 0.0253 / 

 Y=2 0.0177 / 

Visibility Y=0 -0.0608 -0.0942 

 Y=1 0.0359 0.06 

 Y=2 0.0249 0.0342 

Train and Vehicle 

Information 

Vehicle speed Y=0 -0.111 -0.2389 

 Y=1 0.0577 0.1059 

 Y=2 0.0533 0.133 

Train speed Y=0 -0.2051 -0.1787 

 Y=1 0.1004 0.0923 

 Y=2 0.1047 0.0864 

Driver’s 

Information 

Age Y=0 -0.0845 -0.0258 

 Y=1 0.0473 0.0155 

 Y=2 0.0372 0.0103 

Area Type Area Type Y=0 / -0.0159 

 Y=1 / 0.0096 

 Y=2 / 0.0062 

Pavement Y=0 -0.0169 -0.1814 

 Y=1 0.0099 0.1026 

 Y=2 0.0069 0.0788 
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For example, for the categorical variable pavement, compared to a highway-rail 

grade crossing accident on a paved highway, a highway-rail grade crossing accident on 

an unpaved highway will increase the probability of injury accidents by 0.99%, and 

fatality level accidents by 0.69%, while decreasing the probability of property damaged 

only level accidents by 1.69% at active control highway-rail grade crossings. At 

highway-rail grade crossings with passive control, however, a highway-rail grade 

crossing accident on unpaved highway will increase the probability of the probability of 

injured level accidents by 10.26%, and fatality level accidents by 7.88% while decreasing 

the probability of property damaged only level accidents by 18.14% at passive control 

highway-rail grade crossings. A conclusion could be made that unpaved roads result in 

greater severities for drivers at passive control than active control, when all other 

independent variables remain the same.   

 

5.3 Age and Gender Model Results 

Ordered Probit models are used to analyze driver injury severities under various drivers’ 

age and gender groups for the highway-rail grade crossing collisions. Age classification 

is based on Islam’s study in the year 2006 and a total of six models are estimated: young 

male drivers (ages 15 to 24) as model 1, young female drivers (ages 15 to 24) as model 2, 

middle- aged male drivers (ages 25 to 55) as model 3, middle-aged female drivers (ages 

25 to 55) as model 4, older male drivers (ages 56 and older) as model 5, and older female 

drivers (ages 56 and older) as model 6. Tables (5.5) and (5.6) show the coefficient 

estimation for the six models.  Table 5.5 show model results for male drivers and Table 

5.6 show model results for female driver. Table 5.7 shows the marginal effects analysis 
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for the age and gender models. The model estimation results for all models are reported 

in this section first, followed by individual model discussions. A positive sign of the 

estimated parameters implies increased injury severities by highway vehicle drivers with 

increase in the value of the explanatory variables. The P-value for each variable is also 

listed next to the independent variables in Tables 5.5 and 5.6. Significant variables are 

identified as having a p-value of less than 0.05. 

The young male model (Model 1) examines the factors which impact injury 

severities for young male drivers (ages 15 to 24). Factors found to significantly impact 

driver injury include: vehicle speed, train speed, visibility, weather condition, and 

roadway pavement.  

The middle group male model (Model 2) examines the factors which impact 

injury severities for middle age male drivers (ages 25 to 55). In this model, the factors 

which are shown to significantly influence driver injury severity include vehicle speed, 

train speed, visibility, weather condition, and roadway pavement.  

The Older male model (Model 3) examines the factors which impact injury 

severities for older male drivers (age 56 and over 56 years old). A variety of the 

explanatory variables are found to be statistically significant for older male drivers’ 

injury severity: vehicle speed, weather condition, train speed, area type and roadway 

pavement.  

Young female model (Model 4) explores the factors influencing young female 

drivers’ injury severity (age 15 to 24 years old). The factors found to significantly 

influence female drivers’ injury severity include: vehicle speed, visibility, and train speed.  

The middle group female model (Model 5) examines the factors which impact 
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injury severities for middle age female drivers (age 25 to 54 years old).  

Table 5.5  Male Model Estimation Results 

 Young 

Aged 

Male 

P-

Value 

Middle 

Aged 

Male 

P-

Value 

Old 

Aged 

Male 

P-

Value 

Vehicle speed 0.016 0 0.017 0 0.016 0 

Dark Condition 0.233 0 0.095 0.006 / / 

Bad Weather 0.178 0.001 0.14 0 0.126 0.026 

train Speed 0.014 0 0.015 0 0.024 0 

Open Area / / / / -0.513 0 

Unpaved Road 0.437 0 0.393 0 0.259 0 

Number of 

Observation 

2680 6706 2324 

Log likelihood -2051 -5199 -2000 

Pseudo R-

Squared 

0.055 0.06 0.093 

Significance 

(P-value) 

0 0 0 

 

Table 5.6  Female Model Estimation Results 

 Young 

Aged 

Female 

P-

Value 

Middle 

Aged 

Female 

P-

Value 

Old 

Aged 

Female 

P-

Value 

Vehicle speed 0.024 0 0.022 0 0.02 0 

Dark Condition 0.316 0 0.151 0.008 / / 

Bad Weather / / 0.143 0.015 / / 

train Speed 0.026 0 0.021 0 0.032 0 

Open Area / / / / -0.42 0 

Unpaved Road / / 0.231 0.006 / / 

Number of 

Observation 

1131 2104 874 

Log likelihood -828 -1634 -719 

Pseudo R-

Squared 

0.123 0.094 0.133 

Significance 

(P-value) 

0 0 0 
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Older female model (Model 6) examines the factors which impact injury 

severities for older female drivers (age 56 and over 56 years old). In this model variables 

found to significantly impact driver injury severity include: vehicle speed, train speed, 

and area type. The following section provides a more detailed discussion of these 

findings.  

 

5.3.1 Age and Gender Model Estimation Analysis 

A 95 percent confidence interval is used in this study to identify significant variables 

impacting driver’s injury severity at highway-rail grade crossings. The coefficient 

estimations for the final models are presented in Table 5.5 and 5.6.  

Visibility is categorized into “dark” condition and “non-dark” condition which is 

the reference category. “Dark” visibility condition has a positive coefficient value for all 

age groups which means an increased likelihood of severe incidents during “dark” 

conditions at highway rail-grade crossings compared to “non-dark” condition. As shown 

in Table 5.5 for male drivers, the research found “dark” condition was significant with 

positive coefficients for young male drivers (0.233) and middle age male drivers (0.095) 

but is not significant for older male drivers. These differing coefficient values indicate 

that young male drivers are more likely to be influenced by “dark” condition compared 

with middle age male and older male drivers.  

Second, for female drivers as shown in Table 5.6, the study found that “dark” 

condition was significant with positive coefficients for young female drivers (0.316) and 

middle age female drivers (0.151) but was not found to be significant for older female 

drivers.  

Third, for young drivers across two gender groups (Model 1&4), the study found 
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“dark” condition was significant with positive coefficients for young female drivers with 

a coefficient of (0.316) which is greater than the coefficient value of (0.178) for young 

male drivers. This implies that “dark” condition influences the injury severity of young 

female drivers than young male drivers.  

Fourth, for middle age drivers across two gender groups, the study found “dark” 

condition was significant with positive coefficients for middle age female drivers with a 

coefficient of (0.151) which is greater than the coefficient value for middle age male 

drivers of (0.095). This implies that “dark” condition influences the injury severity of 

middle age female drivers more than middle age male drivers. As a conclusion, the injury 

severity of young drivers is more likely to be influenced by visibility compared to middle 

age and older drivers. In addition, the injury severity of female drivers is found to be 

more influenced by visibility compared with male drivers based on previous discussion.  

The weather condition is grouped two categories: bad weather (such as cloudy, 

rain, fog, sleet and snow), and clear weather which is selected as the reference category. 

Bad weather has a positive coefficient value for all age groups which means an increased 

likelihood of severe accidents during bad weather condition at highway rail-grade 

crossings compared to clear weather condition. As shown in Models 1, 2 and 3 of Table 

5.5, for male drivers  , the coefficient value for bad weather for young male drivers is 

positive (0.178) and is greater than the coefficient for middle age drivers (0.14) and older 

male drivers (0.126). This indicates that injury severities for young male drivers are more 

likely to be influenced by bad weather condition (such as cloudy, rain, fog, sleet and 

snow) compared with middle age male drivers and older drivers. Second, Models 4, 5 and 

6 in Table 5.6 for female drivers, shows that the variable bad weather is significant only 
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for middle age female drivers. As a result, accidents at highway rail-grade crossings 

under bad weather condition are more likely to result in more severe driver injuries for 

male drivers compared to female drivers.  

Vehicle speed is the continuous variable describing speed of vehicle in miles per 

hour. As shown in Tables (5.5) and (5.6), the coefficient estimation of vehicle speed for 

young female drivers is positive (0.024) which is greater than the coefficient for young 

male drivers (0.016). Second, the coefficient estimate for middle age female drivers is 

positive (0.022) which is greater than the coefficient estimate for middle age male drivers 

(0.017), as shown in models 2 and 5. Third, based on model comparisons between models 

3 and 6, the coefficient estimate for older female drivers is positive (0.02) which is 

greater than the coefficient estimate for older male drivers (0.016). Moreover, the 

coefficient values for vehicle speed among male drivers by different age groups are 

almost the same.  This is also true for female drivers by different age groups.  

Train speed is the continuous variable describing speed of train in miles per hour. 

For all age groups, drivers are found to have more severe injuries with increasing train 

speeds. The coefficient estimate for train speed for older male drivers is positive (0.024) 

and is greater than the coefficient for young male drivers (0.014) and middle age drivers 

(0.015). This implies that an increase of train speed, given an accident has occurred, will 

more likely cause a severe injury for older male drivers compared with young male 

drivers and middle age male drivers.  For female drivers, Models 4, 5 and 6, the 

coefficient estimate for vehicle speed for middle age female drivers is positive (0.021) 

which is lower than the coefficient for young female drivers (0.026) and older female 

drivers (0.032). This implies that an increase of train speed, given an accident has 
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occurred, will less likely cause a severe injury for middle age female drivers compared 

with young female drivers and older  female drivers. In addition, the coefficient estimate 

for young female drivers is positive (0.026) which is greater than the coefficient estimate 

for young male drivers (0.014). The coefficient estimate for middle age female drivers is 

positive (0.021) which is greater than the coefficient estimate for middle age male drivers 

(0.015). The coefficient estimate for older female drivers is positive (0.032) which is 

greater than the coefficient estimate for older male drivers (0.024). This implies that an 

increase of train speed, given an accident has occurred, will more likely cause a more 

severe injury for female drivers compared to male drivers.    

Roadway pavement is categorized into two levels: unpaved and paved, with paved 

as the reference category variable. The coefficient estimates indicate more severe injuries 

if the accident occurred on a roadway that is unpaved.  For male drivers (Model 1, 2 and 

3), the coefficient estimate for roadway pavement for older male drivers is positive 

(0.024) which is greater than the coefficient estimate for young male drivers (0.014) and 

middle age drivers (0.015). This implies that unpaved roadway, given an accident has 

occurred, will more likely cause a severe injury for older male drivers compared with 

young male drivers and middle age male drivers. However, the coefficient values for 

female drivers are not clear. As a result, an unpaved roadway is more likely to result in 

higher injury severities for male drivers compared with female drivers.     

“Area” here includes two types: “open space” and “other areas” where “other 

areas” refer to industrial, commercial, residential and institutional areas.  “Open space” is 

chosen as the reference category. The research found “other area” to be significant with 

negative coefficients for older male drivers (-0.513) and older female drivers (-0.42). The 
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negative coefficient indicates a decreased likelihood of severe highway-rail crossing 

injuries if an incident happens in an area other than open space when compared to open 

area. In addition, older drivers are less likely to have higher injury severities compared 

with young and middle age drivers in open areas.     

 

5.3.2 Age and Gender Model Marginal Effects Estimation Analysis 

Table 5.7 indicates the marginal effects of significant independent variables on the 

probabilities of each injury severity level (Y=0 property damaged only; Y=1 injured; 

Y=2 fatal). In addition, the marginal effects analysis is considered under both active 

control and passive control. The definition of marginal effects could be described as the 

increased or decreased probabilities in each injury severity level associated with the 

change of significant independent variables. For continuous variables, the marginal 

coefficients reflect the change of probability of injury severity by one unit increase of the 

independent variable, keeping other factors at the same value. For categorical variables, 

the marginal coefficients reflect the change of probability of injury severity compared to 

the reference categorical variable when all other independent variables remain the same.  

A highway-rail grade crossing accident at dark visibility condition will increase 

the probability of injured level accidents by 5.62%, and fatality level accidents by 2.2% 

while decreasing the probability of property damaged only level accidents by 7.82% for 

young male drivers (Model 1). For young female drivers (Model 4), however, a highway-

rail grade crossing accident at “dark” visibility condition will increase the probability of 

injured level accidents by 9.12%, and fatality level accidents by 2.5%, while decreasing 

the probability of property damaged only level accidents by 11.61%. Third, for middle 

age male drivers (Model 2), a highway-rail grade crossing accident at “dark” visibility 
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condition will increase the probability of injured level accidents by 2.23%, and fatality 

level accidents by 1.02%, while decreasing the probability of property damaged only 

level accidents by 3.25%. 

 

Table 5.7  Model Marginal for Age and Gender Model 

 Injury 

Level 

Young 

Aged 

Male 

Middle 

Aged 

Male 

Old 

Aged 

Male 

Young 

Aged 

Female 

Middle 

Aged 

Female 

Old 

Aged 

Female 

Weather Y=0 -0.0643 -0.0475 -0.0481 / -0.0529 / 

 Y=1 0.0432 0.0328 0.0224 / 0.0385 / 

 Y=2 0.021 0.0147 0.0258 / 0.0144 / 

Visibility Y=0 -0.0782 -0.0325 / -0.1161 -0.056 / 

 Y=1 0.0562 0.0223 / 0.0912 0.0407 / 

 Y=2 0.022 0.0102 / 0.025 0.0154 / 

Vehicle speed Y=0 -0.0057 -0.0059 -0.0061 -0.0089 -0.0084 -0.0079 

 Y=1 0.0038 0.004 0.0028 0.0069 0.0061 0.0046 

 Y=2 0.0019 0.0019 0.0033 0.002 0.0024 0.0034 

Train speed Y=0 -0.005 -0.0053 -0.0093 -0.0097 -0.0077 -0.0127 

 Y=1 0.0033 0.0036 0.0042 0.0075 0.0055 0.0073 

 Y=2 0.0017 0.0017 0.0051 0.0021 0.0022 0.0054 

Pavement Y=0 -0.1671 -0.1441 -0.1016 / -0.0884 / 

 Y=1 0.0991 0.0902 0.0411 / 0.0604 / 

 Y=2 0.068 0.0539 0.0605 / 0.028 / 

Open Area Y=0 / / 0.1982 / / 0.2556 

 Y=1 / / -0.0897 / / -0.1476 

 Y=2 / / -0.1085 / / -0.108 

 

In addition, for middle age female drivers (Model 5), a highway-rail grade 

crossing accident at “dark” visibility condition will increase the probability of injured 

level accidents by 4.07%, and fatality level accidents by 1.54%, while decreasing the 

probability of property damaged only level accidents by 5.6%.  In conclusion, a result 

could be made that young drivers are more likely to be influenced by visibility compared 
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with middle age and older drivers and female drivers are found to be influenced by 

visibility compared with male drivers.   

Highway driver’s speed is a continuous variable. For young male drivers (Model 

1), a 10 mph increase in highway driver’s speed will increase the probability of injured 

level accident by 0.38%, and fatality level accident by 0.19%, while it will decrease the 

property damaged only level accident by 0.57%. For young female drivers (Model 4), 

however, a 10 mph increase in highway driver’s speed will increase the probability of 

injured level accident by 0.69%, and fatality level accident by 0.2%, while it will 

decrease the property damaged only level accident by 0.89%. For middle age male 

drivers (Model 2), a 10 mph increase in highway driver’s speed will increase the 

probability of injured level accident by 0.4%, and fatality level accident by 0.19%, while 

it will decrease the property damaged only level accident by 0.59%. For middle age 

female drivers (Model 5), however, a 10 mph increase in highway driver’s speed will 

increase the probability of injured level accident by 0.61%, and fatality level accident by 

0.24%, while it will decrease the property damaged only level accident by 0.85%. For 

older male drivers (Model 3), a 10 mph increase in highway driver’s speed will increase 

the probability of injured level accident by 0.28%, and fatality level accident by 0.33%, 

while it will decrease the property damaged only level accident by 0.61%. For older 

female drivers (Model 6), however, a 10 mph increase in highway driver’s speed will 

increase the probability of injured level accident by 0.46%, and fatality level accident by 

0.34%, while it will decrease the property damaged only level accident by 0.79%. As a 

conclusion, it could be said that an increase of vehicle speed, given an accident has 

occurred, will more likely cause for female drivers compared with male drivers. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

 

An ordered probit model is introduced in this study to analyze the factors influencing 

driver’s injury severity at highway-rail crossings. Three model conclusions are 

summarized and followed by future work studies.  

 

6.1 Overall Model Conclusion 

An ordered probit model was developed in this study to analyze the factors influencing 

driver’s injury severity at highway-rail crossings.  The model was developed using 

accidents from 2002-2011 locations all over the United States.  As a result, the research 

uses a dataset which is the latest and comprehensive data file. Analysis of the ordered 

probit model in our study reveals crucial factors influencing highway driver’s injury 

severity, and it will also provide potential strategies to reduce driver injury severity at 

highway-rail grade crossings. Based on the model estimation and marginal analysis 

results, it was found that the factors significantly impacting driver injury severity include 

peak hour, weather, visibility, vehicle type, vehicle speed, train speed, driver’s age, 

gender, area type and highway pavement. Marginal analysis was provided to 

quantitatively explain the marginal effects of each independent variable on each injury 

level.  

The study found that female drivers are more likely to have an increase in severity 

at highway-rail crossings compared to male drivers. Older drivers are more susceptible 

than younger drivers to cause an increase in severity at highway-rail crossings. An 
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increase in severity is more likely under bad weather road condition, such as wet, icy or 

snowy road surface, and by visibility, such as dark conditions. In addition, a reduced 

speed limit for train and vehicles will significantly reduce driver injury severity.  

Although previous researchers have focused on analyzing the frequency of 

crashes at highway-rail grade-crossings, few studies have been conducted on driver’s 

injury severity level. In addition, previous driver injury level studies at highway-rail 

grade crossing did not account for the ordered nature of injury levels (Miranda-Moreno, 

2009; Hu, 2009; McCollister, 2007). This research attempted to identify contributing 

factors which influenced the incident driver’s injury severity at highway-rail grade 

crossings. This study provides differences in methodology and dataset resulting in a 

contribution to this field of safety of highway-rail crossings. The findings are beneficial 

to transportation engineers to improve safety performance at highway-rail grade crossings.  

Further studies should be performed to address the limitations of this study. The 

assumption of this study suggests that the input variables are independent among each 

other. Highway driver’s information is found to be significant variable to influence driver 

injury severity at highway-rail grade crossings. As a result, more driver information, such 

as use of alcohol and educational status, should also be collected to provide more drivers’ 

information.     

 

6.2 Control Device Model Conclusion 

Utilizing the most recent ten years (2002-2011) of highway-rail grade crossing accidents, 

results of two ordered probit models in this study uncovered crucial determinants of 

highway driver injury severity at highway-rail grade crossings under different control 
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measures.  The findings offer insights into potential prevention strategies which could be 

undertaken to reduce driver injury severities.  

Based on the model estimation and marginal analysis results, it was found that the 

factors significantly impacting driver injury severity at highway-rail grade crossings 

include peak hour, visibility, vehicle speed, train speed, percent of truck, driver’s age, 

and highway pavement for both active and passively controlled highway-rail grade 

crossings. A marginal analysis was provided to quantitatively explain the marginal effects 

of each independent variable on each injury level.  

The analysis of driver injury severity under various control devices could help 

reduce the severity of accidents at highway-rail grade crossings and increase driver’s 

safety. The detailed findings are now listed by active or passive control. For active 

control highway-rail grade crossings where there are high volumes of trains and vehicles, 

speed reduction for both trains and vehicles will significantly reduce driver injury 

severity. In addition, paving highways at highway-rail grade crossings will also help to 

reduce driver injury severity at highway-rail crossing accidents. Highway driver’s age, 

weather condition and visibility also work as important factors influencing driver injury 

severity at highway-rail crossings. 

For passive control highway-rail grade crossings, vehicle speed and train speed 

are also found to be crucial to influence highway driver’s injury severity. However, the 

level of influence by vehicle speed and train speed at passive control is lower compared 

with active control. Pavement, weather condition, and visibility are found to play a much 

more important role compared to active control. As a recommendation, improving 

highway pavement will significantly reduce driver injury severity at passive control 
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highway-rail grade crossings. In addition, drivers should pay more attention while 

crossing passive control highway-rail grade crossings under bad weather conditions.  

In summary, this study explored the contributing factors to driver injury severity 

at both passive control crossings and active control crossings.  The findings are beneficial 

to transportation engineer to address highway-rail grade crossing safety problem at 

various control devices. However, this study does suffer from several limitations. Further 

study is needed to investigate combination of factors, such as whether driver’s age and 

gender work together to influence driver’s injury severity. In addition, more driver 

information, such as alcohol use and educational status, should also be collected to 

provide more drivers’ information.       

 

6.3 Age and Gender Conclusion 

The purpose of this study is to explore the differences in driver-injury severity between 

male and female drivers and across three age groups for highway-rail grade crossing 

accidents involving vehicle drivers. Studying highway-rail grade crossing accidents from 

2002-2011, six separate ordered probit models are estimated. Model estimation is 

conducted to evaluate the differences between different age and gender groups and finally 

a marginal analysis was performed and the results compared between models.  

For male drivers, Vehicle speed, train speed, weather condition, and roadway 

pavement are four common variables across all the three age groups. However, there are 

differences existing among the three age groups. First, young male drivers are more 

likely to be influenced by “dark” condition compared with middle age male drivers and 

older male drivers. Second, young male drivers are more likely to be influenced by bad 
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weather condition (such as cloudy, rain, fog, sleet and snow) compared with middle age 

male and older male drivers. Third, an increase of train speed, given an accident has 

occurred, will more likely cause a more severe injury for older male drivers compared 

with young male drivers and middle age male drivers.  For female drivers, Vehicle speed 

and train speed are two common variables across all the three age groups. Initially, the 

visibility coefficient for young female drivers is greater than the coefficient estimate for 

middle age female drivers which may indicate that drivers are driving more carefully as 

their age increases under “dark” condition. In addition, an increase of train speed, given 

an accident has occurred, will less likely cause a severe injury for middle age female 

drivers compared with young female drivers and older female drivers. 

For young age drivers, vehicle speed, visibility, and train speed are three common 

variables across the two gender groups. However, there are differences existing among 

the young age gender groups. First, visibility “dark” condition influences young female 

drivers than young male drivers. Second, an increase of train speed, given an accident has 

occurred, will more likely cause a severe injury for young female drivers compared with 

young male drivers. Third, an increase of vehicle speed, given an accident has occurred, 

will more likely cause a more severe injury for young female drivers compared with 

young male drivers.    

For middle age drivers, vehicle speed, visibility, weather condition, train speed, 

and roadway pavement are five common variables across the two gender groups. 

However, there are differences existing among middle age gender groups. First, visibility 

“dark” condition influences middle age female drivers more than middle age male drivers. 

Second, an increase of train speed, given an accident has occurred, will more likely cause 
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a severe injury for middle age female drivers compared with middle age male drivers. 

Third, an increase of vehicle speed, given an accident has occurred, will more likely 

cause a severe injury for middle age female drivers compared with middle age male 

drivers.    

For older drivers, vehicle speed, train speed and area type are the three common 

variables across the older gender groups. An increase of vehicle speed, given an accident 

has occurred, will more likely cause a severe injury for older female drivers compared 

with older male drivers.  In addition, an increase of train speed, given an accident has 

occurred, will more likely cause a severe injury for older female drivers compared with 

older male drivers.    

In summary, this study explored the contributing factors to driver injury severity 

between male and female drivers and across three age groups.  The findings are 

beneficial to transportation engineer to address highway-rail grade crossing safety 

problem for varied type of vehicle drivers. However, this study does suffer from several 

limitations. Estimation of injury severity models separately analyzes explanatory 

variables on injury severity by genders across different age groups. Further study is need 

to investigate comprehensive driver’s information, such as driver’s age and gender 

related biomechanics and behavioral attributes including driver’s height and weight. In 

addition, more environmental factors, such as vegetation clearance at the highway-rail 

grade crossing, should also be collected to provide more drivers’ information.       
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6.4 Summary and Future Studies 

The research shows there are differences in the factors which influence motor vehicle 

driver’s injury severity given a highway-rail grade crossing accident happened. These 

differences should be considered in the development of transportation government policy 

or operational changes aimed at reducing driver injury severity. The implication of the 

results obtained in this research is that older drivers are more susceptible than younger 

drivers to cause an increase in severity at highway-rail crossings. An increase in severity 

is more likely under bad weather road condition, such as wet, icy or snowy road surface, 

and by visibility, such as dark conditions. In addition, improving highway pavement will 

significantly reduce driver injury severity at passive control highway-rail grade crossings. 

Furthermore, young male drivers are more likely to be influenced by bad weather 

condition (such as cloudy, rain, fog, sleet and snow) compared with middle age male and 

older male drivers. 

In this section, future studies will be discussed based on the limitation of the study 

from three aspects: data source limitation, model assumption, and model itself. First, the 

primary data source used in this study is the FRA database data file which covered three 

sub databases including highway-rail grade crossing inventory, highway-rail crossing 

history file and highway-rail crossing accident data. It included five datasets “Schedule 

factor”, “Weather condition”, “Vehicle and Train Information”, “Environment ”, and 

“Driver’s Information”. There is no secondary data source available for this study. 

Therefore, only driver’s age and gender are included. Future studies could look into more 

drivers’ factors such as alcohol use and educational status. The impacts of these factors 

on highway accidents are discussed in some of the literature, but how they impact driver 
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injury severity for highway-rail grade crossing collisions have not yet been studied.  

The assumption of this study suggests that the input variables are independent 

among each other. The potential correlations between each variable are not considered. 

Further study is needed to investigate factors interactions, such as driver’s age and gender 

work together to influence driver’s injury severity. In addition, more driver information, 

such as alcohol use and educational status, should also be collected to provide more 

drivers’ information. 

For the model choice, the ordered probit model addresses the problem of IIA and 

ordered discrete data and as a result includes in this study. However, the ordered probit 

model also suffers from the assumption of a normal distribution for all unobserved 

components of utility. Therefore, a more flexible model, such as an ordered mixed model, 

is suggested in the future study. The ordered mixed logit model is a highly flexible model 

which could approximate any random utility model without assumption that the error 

terms following a normal distribution.     
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