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ABSTRACT 

FABRICATION AND EVALUATION OF A COLLAGEN-BASED FIBER-GEL 
THREE-DIMENSIONAL CONSTRUCT FOR PERIPHERAL NERVE REPAIR 

 
by 

Mevan Lakmal Siriwardane 

Nerve regeneration following a peripheral nerve injury often relies on growth cone-

mediated guidance and the presence of Schwann cells to support the regenerating axons 

and remyelinate portions of denervated nerve pathways.  The emphasis of this work is to 

develop a synthetic nervous tissue construct that contains similar basal lamina or 

extracellular matrix to peripheral nerve in order to achieve a level of effectiveness in 

nerve repair and future peripheral nerve regeneration applications.  To this end, three-

dimensional nervous tissue constructs consisting of type I collagen are fabricated into a 

composite biomaterial scaffold to promote contact-guided growth of neuronal and glial 

cultures in vitro.  The growth of adult tissue on these collagen-based materials is further 

evaluated. These constructs are assembled by wet spinning synthetic collagen fibers and 

loading them onto a soft collagen gel matrix composed of type I collagen.   

Wet-spun collagen fibers serve as a rigid substrate to reinforce the gel while 

facilitating axon growth cone advancement along a polarized direction.  In this study, the 

emphasis is to characterize the mechanical stability, thermal properties, and swelling 

response of the collagen fiber component of the construct.  To improve these properties 

in the fiber component, chemical cross-linking with genipin and glutaraldehyde are 

evaluated.  The result is a construct exhibiting mechanical integrity for facilitating adult 

Schwann cell orientation and the guidance and survival of adult dorsal root ganglion 

neurons in a co-culture 3-D system. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

In recent years, there has been tremendous progress in understanding the interactions 

between biological tissue and materials. The advancements in the emerging field of tissue 

engineering have offered many therapeutic treatments and new methods in regenerative 

medicine.  However, the progress of tissue engineering approaches in nerve regeneration 

has been slow and there is more to be learned about the mechanisms in which various 

natural and synthetic biomaterials interact with regenerating neural tissue.  Despite the 

capacity of peripheral nerves to repair, functional outcomes after severe nerve trauma in 

humans are limited and often unsatisfactory [1, 2].  Outcomes vary widely depending on 

the extent/severity of the injuries and the distance and time required for axons to 

regenerate [2, 3].  Peripheral nerve injury (PNI) remains to be a serious health problem 

for society today.  It affects nearly 2.8% of trauma patients, whom acquire life-long 

disability [4, 5].  Consequently, these injuries to both young and old generations of the 

population impose an enormous healthcare and economic burden on the society.    

Approximately 360,000 people in the United States suffer from upper extremity 

paralytic syndromes yearly, which leads to extensive periods of restricted activity and 

bedridden disabilities [5].  In order to establish clinically effective strategies for nerve 

repair, axon guidance treatments for nerve tissue regeneration are in demand.  Nerve 

conduits may provide a suitable alternative to overcome the limitations of nerve 

autologous grafts because its properties can be tailor-made with the use of biomaterial-
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based approaches.  It is desirable to create a nerve conduit for animal studies that 

naturally mimic the morphology and function of natural axon fascicles. Although 

collagen I (or collagen I) is a natural component present in most biological tissues, it does 

not play a significant role in peripheral nerve tissue.  However, collagen I does have a 

role in early neuronal development as it is a favorable substrate for growth and guidance 

of developing axons in search of their targets.  Therefore, collagen I was selected as the 

central component of the nerve conduit constituting the hydrogel and wet-spun fibers in 

this study. As a readily abundant material, collagen I was extracted from rat tail tendon 

was wet-spun into fibers to serve as an extra-cellular matrix (ECM) component of a 

guided nerve conduit for regenerating adult dorsal root ganglia axons.    

 

1.2 Objectives 

The primary emphasis of this study was to develop a collagen-based fiber-gel construct 

for supporting axon regeneration and Schwann cell guidance.  The specific aims of the 

dissertation are defined as the following: 

1) Fabrication and characterization of collagen I fibers 

a. Optimize parameters of current wet spinning apparatus for high yield 
production of controlled, uniform collagen fibers (<50 microns in 
diameter). 
 

b. Characterize diameter, uniformity, and mechanical properties. 

c. Establish cross-linking post-treatment methods to improve mechanical and 
swelling response of fibers. 
 

2) Evaluation of Schwann cell guidance and migration on collagen I fibers 

a. Optimize methods for immobilizing extra-cellular matrix proteins onto 

fibers. 
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b. Develop multi-filament or bundle of collagen fibers for Schwann cell 

guidance and DRG axon growth. 

3) Co-culture primary adult rat dorsal root ganglion neurons and Schwann cells on 3-

dimensional nerve tissue constructs 

a. Characterize axon outgrowth of primary adult DRGs cultured on 3-D 

fiber-gel constructs in vitro. 

b. Evaluate adult axon outgrowth response and growth morphology with 

Schwann cells in constructs. 

c. Develop 3-D nerve tissue constructs into a ready-made nerve conduit for 

future applications. 

 

Overall, collagen-derived materials in a nerve conduit would offer the following 

benefits: revascularization, biodegradation, immuno-reactivity and guidance 

matrix for viable Schwann cells [6].  

 

1.3 Background  

Damage to the peripheral nervous system is shockingly more common and is primarily 

caused from trauma or complication of surgery.  Nerve repair and regeneration presents 

unique clinical challenges, but significant contributions can be made through the proper 

application of biomaterial and/or biomedical engineering strategies. Traumatic injuries 

can occur due to stretch, crush, laceration (sharps or bone fragments) and blast exposure 

such as during wartime [2].  Nerve injuries occur 81% of the time in the upper 

extremities and 11% in the lower extremities, with a balance of occurrences in other 
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locations [7].  Injury to the peripheral nervous system (PNS) can range from severe to 

mild cases.  The severe cases are characterized by major loss of function or intractable 

neuropathic pain.  Mild cases result in minimal sensory and/or motor deficits affecting 

quality of life [2].   

A thorough understanding of the physiology of the nervous system is crucial in 

addressing the challenges of bioengineering research in treating nerve tissue injuries.  

The application of biomaterials and engineering methodologies in nerve tissue repair 

requires a broad knowledge of the general organization and the cellular components of 

the nervous system, especially the anatomy of the peripheral nerves.  

 

1.4 Organization of the Nervous System 

The nervous system is classified into the central nervous system (CNS) and the peripheral 

nervous system (PNS).  The CNS consists of the brain, spinal cord, optic, and olfactory 

and auditory systems.  Many of the functions of the CNS include conducting and 

interpreting signals in addition to interfacing with the PNS via excitatory stimuli.  The 

PNS consists of cranial nerves from the brain, the spinal nerves from the spinal cord, and 

the sensory nerve cell bodies (dorsal root ganglia) and their processes.  Peripheral nerves 

innervate muscle tissue, transmitting both sensory and excitatory input to and from the 

spinal column. In this research, fetal and adult dorsal root ganglia from rat were chosen to 

investigate two- and three-dimensional axonal outgrowth using nerve conduit 

components made from collagen I-derived biomaterials. 

In the nervous system there are two primary cell types: neurons and neuroglia.  

Neurons are the basic structural and functional elements of the nervous system and 
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consist of a cell body (soma) and its extensions (axons and dendrites).  In this study, the 

axons and their outgrowth/regeneration behavior is the primary focus. Clusters of sensory 

nerve soma, known as ganglia, are located just outside the spinal column. As a sensory 

neuron, the dorsal root ganglia (DRG) is the primary cell model used in this research.  

While dendrites transmit electrical signals to the neuron cell body, the axon conducts 

impulses away and to other neighboring neurons with dendrite receptors.  Glial cells, or 

neuroglia, are supporting cells that aid the function of neurons and are present in both 

PNS and CNS.  Neuroglia includes Schwann cells in the PNS and astrocytes and 

oligodendrocytes in the CNS.  The formation of glial scar tissue by the accumulation of 

astrocytes during SCI or other CNS injuries provides a hostile environment for the 

regenerating axons.  Glial cells, unlike neurons, are more abundant and exhibit some 

capacity for cell division. Although neurons cannot divide by mitosis, they can regenerate 

a severed portion or sprout new neural branches under certain limited conditions.  Unlike 

the CNS, neurons of the PNS have the capacity to regenerate their axons after injury and 

the Schwann cells within the denervated nerve pathways support the regenerating axons 

and support the remyelination of the larger nerves. 

In the PNS, sheaths of living Schwann cells surround all axons. On the outer 

surface of this inner Schwann cell layer is the neurilemma, which is a basement 

membrane similar to that found in epithelial layers.  Myelin serves to increase the 

propagation velocity of the nerve impulse, which becomes especially important for axons 

with extensive lengths (up to 1 m). 
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1.5 Anatomy of the Peripheral Nerve 

In the context of designing nerve conduits for facilitating guided nerve regeneration, a 

firm understanding of peripheral nerve anatomy is essential.  A peripheral nerve consists 

of motor and sensory axons bundled together by support tissue into an anatomically 

defined nerve trunk exhibiting a hierarchical level of structural organization shown in 

Figure 1.1.  The perineurium, which is formed from many layers of flattened cells and 

collagen, surrounds groups of axons to form bundle-like fascicles.  The epineurium is the 

outermost sheath of loose fibrocollagenous tissue, and it binds individual nerve fascicles 

into a nerve trunk.  Peripheral nerves are well vascularized by capillaries within the 

support tissue of the nerve trunk or by vessels that penetrate the nerve from surrounding 

arteries and veins.  A thin encapsulating layer called an endoneurium surrounds 

individual axons and their Schwann cell sheaths and is mainly composed of oriented 

collagen IV fibers.  Within these endoneurial sheaths, the collagen fibers are present at 

varying degrees to form a wavy pattern in the epineurium, which protects the nerve from 

external stress [8, 9]. Collagen IV would be an ideal substrate for engineering fibrous 

scaffolds closely mimicking the micro-environment of peripheral nerve. However, 

collagen IV, unlike collagen I, is not relatively easy to purify and form into scaffolds. 

Collagen I as mentioned earlier is involved in early neuronal development serving as a 

favorable substrate for growth and guidance of developing axons.  Since collagen I is 

readily abundant, easy to purify in the lab, and demonstrates favorable in vivo results 

comparable to nerve grafts [10-12], it was selected to fabricate nerve conduit materials 

consisting of collagen gels and wet-spun collagen fibers as the main structural 

component.  The goal of this research is to engineer oriented collagen I fiber scaffolds, 
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which can serve as the extra-cellular matrix (ECM) architecture within peripheral nerve 

and maintain structural integrity under physiological conditions for a duration necessary 

for regenerating nerves after injury.   

 

Figure 1.1 Anatomical structure of peripheral nerve. [13] 

 

Another point of emphasis in this study is the fabrication of collagen-based 

scaffolds and the enhancement of their physiochemical properties to promote adult 

neuronal growth and Schwann cell response.  Assessment of the physiochemical and 

mechanical properties of the collagen I fiber scaffolds is a key component in this 

research. 
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1.5.1 Role of Schwann Cells 

As mentioned, Schwann cells are the glia of the PNS that help maintain the efficient 

functioning of the nerve fibers (myelinated and non-myelinated).  In the PNS, peripheral 

axons are ensheathed by myelin, which helps to insulate the axon and also increase 

efficiency of signal transduction.  Myelin significantly speeds up action potential 

conduction with an axon.  For example, the conduction velocities of unmyelinated axons 

are limited to a range of 0.5 to 10 m/s [14].  In contrast, myelinated axons can conduct at 

velocities of up to 150 m/s [14].  The underlying reason for this marked increase in speed 

is due to the process of action potential generation, which occurs only at specific points 

along the axon, called nodes of Ranvier, where there is a gap in the myelin wrapping.  

The PNS also consists of non-myelinating Schwann cells which play a role in the 

maintenance of axons and nerve survival.     

 When there is induced trauma to a peripheral nerve, there is a host of cellular and 

molecular events occurring within the distal stump.  Wallerian degeneration occurs in 

which all axons distal to the injury site degenerate.  Axonal degeneration is evident by the 

disintegration of axoplasmic microtubules and neurofilaments due to a calcium-

dependent proteolytic process.  The series of events that occur during Wallerian 

degeneration are due to separation of the axon from its nourishment center, which is the 

nerve cell body as found within the spinal cord, dorsal root ganglia or autonomic ganglia 

[5, 15].  Within 24 hours, most of the axons along the distal stumps of severed nerves are 

disintegrated into granular and amorphous debris.  After 48 hours, macrophages of the 

immune system immediately migrate to the sites of degenerating nerves to clean up the 

debris. Undifferentiated Schwann cells start proliferating within their basal lamina in 
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response to myelin debris and macrophage-secreted cytokines.   

Following lesion-induced Wallerian degeneration, undifferentiated Schwann cells 

start to proliferate by mitosis, forming longitudinal strands of cells termed bands of 

Büngner.  These proliferating cells also help degrade myelin within the injury site.  These 

bands of Büngner remain within the basal lamina lined endoneurial tubes [5, 16].  Thus, 

the nerve lumen is naturally reengineered with hundreds of microchannels along the 

major axis of the nerve by the aligned orientation of Schwann cells.  Furthermore, 

undifferentiated Schwann cells secrete a plethora of neurotropic and neurotrophic 

molecules, which provide indispensable pathways for physiochemically guided axonal 

regrowth [17-22].  Nerve growth factor (NGF), brain derived neurotrophic factor 

(BDNF), ciliary neurotrophic factor (CNTF) and neurotrophin 4/5 (NT-4/5) are produced 

by the Schwann cells during Wallerian degeneration and are thought to promote survival 

of regenerating neurons.  

 Previous studies provide extensive evidence that cellular and molecular changes 

in the distal nerve stump of damaged peripheral nerves are an important prerequisite for 

successful axon regrowth [23].  Although the mechanism involved in the formation of 

bands of Büngner remains poorly understood, bioengineered guidance conduits, which 

facilitate the formation of bands of Büngner by Schwann cells would have a long-term 

beneficial impact by accelerating and guiding axonal regeneration.      
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1.5.2 Extra-cellular Matrix of Peripheral Nerve 

Since the early 20th century, the significance of the extra-cellular matrix (ECM) for nerve 

regeneration was well documented [24].  The ECM of natural regenerating peripheral 

nerves consists of a complex mixture of proteins and polysaccharides with the 

endoneurium playing a major role in regeneration.  The major components of the 

endoneurium are laminin, collagen IV and fibronectin [25, 26].  The variety of ECM 

constituents within nerve suggests that the interaction between multiple ECM 

components is critical for healthy tissue.  

As Schwann cells form bands of Büngner, they produce laminin, fibronectin, 

collagen (IV and VI) and proteoglycans, which together are major constituents of the 

endoneurial basal laminae or basement membrane [27-29].  The basement membrane 

provides a good substrate for the growth cone of regenerating axons.  Furthermore, the 

bands of Büngner are essential to nerve regeneration because they are structures, which 

guide the regenerating axons to the periphery.  In previous studies, neurite outgrowth has 

been guided in vitro by pathways of substrate-adsorbed laminin [30]. Schwann cells also 

produce cell adhesion molecules (CAM) such as integrins, NCAM, L1, TAG-1 and N-

cadherins, which are used by regenerating axons as substrates for growth. Interestingly, 

many of these adhesion proteins were once actively expressed during neuro-

embryogenesis.  In previous studies, neurite outgrowth has been guided in vitro by 

pathways of substrate-adsorbed laminin [30].  Integrins present within the growth cone of 

regenerating nerves specifically bind to laminin and fibronectin via amino acid sequences 

arginine-glycine-aspartic acid (RGD), which is crucial for binding.  In addition to the 

RGD peptide sequence, tyrosine-isoleucine-glycine-serine-arginine (YIGSR) and 
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isoleucine-lysine-valine-alanine-valine (IKVAV) are two other notable sequences present 

in laminin, which have been shown to be active in epithelial and neuron cell attachment 

[31] and in promoting neurite outgrowth [32], respectively.  Collectively, regenerating 

axons interact with adhesion molecules and ECM proteins, which are critical for long-

term growth.  

Despite a better understanding of ECM constituents in the peripheral nerve, very 

little is known of the growth components and requirements for regenerating axons in 

adults.  For various in vitro models of peripheral nervous systems, neurons from 

embryonic and neonatal mammals and birds have been extensively used in neurite 

outgrowth studies [12, 33-35].  Adult neurons have often been overlooked due to their 

limited growth potential.  The use of adult DRG neurons provides a more realistic model 

for understanding underlying mechanisms associated with injury and repair since 

regeneration following peripheral nerve injury involves adult neurons, which exhibit slow 

and minimal growth compared to neurons from early developmental stages.   

Previous studies suggest that neurons from adult animals may behave differently 

to certain stimulatory cues compared to immature neurons [36].  For example, adult 

sensory axons fail to grow on frozen sections of normal mature nerves likely due to 

inhibition by myelin-associated glycoprotein (MAG) [23, 37].  Adult DRG neurite 

extension is only optimal on sections of degenerating nerves.  In contrast, neonatal DRG 

neurons are able to extend neurites on frozen sections of both normal and degenerating 

nerves with MAG being a stimulatory cue.  An in vitro model consisting of tissue-

engineered constructs to elucidate some of these growth mechanisms between immature 

and adult stage sensory neurons would be desirable.  Hence, one of the goals of this study 
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is to investigate the growth response of adult DRG neurons and Schwann cell migration 

cultured on fiber-hydrogel constructs modified with various ECM proteins such as 

laminin, matrigel, poly-L-lysine and fibronectin.  

 

1.5.3 Collagens in Regenerating Peripheral Nerves 

The architectural and functional roles of collagens in connective tissues have been 

extensively studied and previously reported [8].  Despite being a vital component of 

extracellular matrices, the family of collagen proteins is rarely present within mature 

peripheral nerves.  Within the mature nervous system, collagens are expressed in the 

layers of connective tissue that surround the CNS and PNS within the meninges, 

basement membranes and sensory end organs.  Furthermore, collagens are a rarity in the 

vicinity of the neuronal soma.  Collagens are present at varying levels within the 

perineurium, epineurium and endoneurium of the peripheral nerve.  Importantly, 

collagens help maintain the mechanical integrity of the axon fascicle bundles present 

within nerve trunks. Collagens have been previously reported to play a determinant role 

in neural development by aiding in axonal guidance, synaptogenesis and Schwann cell 

differentiation [8, 38, 39].  For several decades, the function and importance of collagens 

have been largely overlooked until recently emerging studies have now convinced many 

to re-evaluate collagens as fundamental elements in the developing and diseased nervous 

system.    

    Collagen remains the most abundant protein in the human body with twenty-

nine collagens numbered I to XXIX as reported in the literature [8].  Collagen I being the 

most common is the major fibrillar collagen that accounts for 25% of dry protein found in 



13 

 

mammals.  This fibrous protein is an essential part of skin, bones, tendon, cartilage, 

ligaments and blood vessels.  As an integral component of all connective tissues, collagen 

I is dispersed in the ECM in large quantities [40].  The different types of collagen can be 

categorized based on their function.   

The first functional category within the collagen family is the fibrillar collagen, 

which consists of types I, II, III, V and XI.  The signature feature common to these 

fibrillar collagen proteins is an uninterrupted triple helical region of about 1,000 amino 

acids in length [41].  Interestingly, collagen I is an adhesive substrate for many types of 

neurons.  During growth and path-finding in the developing nervous system, collagen I is 

considered a favorable substrate for supporting the directed growth of axons during 

development since collagen contains RGD-sequences that can interact specifically with 

integrins of extending neurites [8, 42, 43].  Furthermore, collagen I serves as a protective 

role for neural tissue of the CNS by its presence in the meninges, which comprise the 

dura mater and the leptomeninges (arachnoid and pia mater) [44].  Beyond its 

involvement in development, the role of collagen I in the nervous system remains 

relatively unclear.  Collagen II is expressed by immature Schwann cells in addition to 

both unmyelinated and myelinated mature Schwann cells [45].  In nerve injury, collagen 

III along with collagen I and V may potentially bind to inhibitory molecules such as 

chondroitin sulphate proteoglycan (CSPG) which are present in scar tissue formation 

[43].  Collagen V upon binding to glypican could potentially be involved in the terminal 

differentiation of Schwann cells, which determines if immature Schwann cells become 

unmyelinated or myelinated Schwann cells.  In other words, collagen V is associated with 
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myelination [8].  Collagen XI is part of the cartilage matrix but also expressed in the 

frontal and occipital lobes of the brain during human development [46].     

The second functional category of collagen proteins includes the non-fibrillar 

collagen IV, which is characterized by anti-parallel sheet-like structures that are the 

principal components of the basement membrane in the skin.  In the nervous system, 

collagen IV is also the major component of the endoneurium or basement membrane of 

peripheral nerve and can be produced by Schwann cells as previously mentioned.  The 

third functional category consists of collagens IX, XII, XIV and XVI, which are fibril-

associated collagens in which the triple helical structures are interrupted and present in 

various lengths [47].   

During Wallerian degeneration, the basement membrane starts to remodel and 

collagen fibrils deposit surrounding the proliferating Schwann cells.  In fact, extensive 

remodeling of the endoneurial ECM and basal lamina tubes during Wallerian 

degeneration has been accepted as the driving mechanism providing the framework for 

re-growing axons [23, 48, 49].  Furthermore, previous studies have demonstrated that 

Schwann cells become surrounded by basement membrane and collagen fibrils following 

degeneration after a localized crush injury to rat dorsal roots [50].  The combination of 

Schwann cells, basement membrane and collagen fibrils results in the formation of 

Schwann tubes, which constitute the bands of Büngner as mentioned previously.  

Collagen fibrils observed following neurotrauma are created by the aggregation of 

monomeric collagen (tropocollagen) produced by fibroblasts into the extracellular space.     

 

 



15 

 

1.6 Collagen As a Biomaterial 

Collagens have previously been used as biomaterials for guiding nerves in the 

regeneration processes following trauma in the PNS [51]. In this research, the focus is 

only on collagen I, which is used in both the fiber and matrix components of the nervous 

tissue construct.  The ease of extractions and purification of collagen I makes it a readily 

used biomaterial.  Also, collagen I is readily abundant and relatively easy to form into 

scaffold structures for a variety of tissue engineering applications.  Hence, collagen I in 

the form of oriented fibrous scaffolds was an appropriate choice in the development of 

collagen-based nerve guidance constructs in this study. 

 

1.6.1 Collagen Structure 

Before using collagen I to engineer biomaterials into nerve guidance conduits, it is 

important to first understand its molecular structure, which directly influences its 

mechanical properties.  As mentioned earlier, collagen I consists of triple helical 

molecules that are 1,000 amino acids in length and organized into a quarter-staggered 

configuration forming fibrils, which continue to self-assemble into longer and thicker 

fiber bundles with distinctive light and dark banding regions that is 67 nm in length. 

A defining feature of collagen is its ability to self-assemble into fibers that play a 

significant role in maintaining the structure and mechanical integrity of any given tissue.   

Collagen is known to self-assemble through an enzymatic formation of intermolecular 

cross-links, which lead to a head to tail network within the fiber.   The self-assembly 

mechanism is regulated in vivo by enzymes and chemical interactions between 

propeptides on protein molecules [52].  At a physiological pH of 7.4, collagen self-



16 

 

assembly is initiated in which the assembled collagen fibers all possess identifiable 

quarter-staggered configuration with alternating light and dark bands when observed 

under high magnification.  The regions where the collagen molecules fully overlap are 

discernable by dark banding regions.  In contrast, the staggered ends of collagen 

molecules are defined by light banding regions.  Within overlapping regions, collagen 

molecules are bound together by native cross-links that are formed as part of fiber 

formation and overall molecular stabilization.  The bonds formed between these quarter-

staggered molecules are covalent aldol cross-links formed between two lysine or 

hydroxylysine residues at the C-terminus of one collagen molecule with two similar 

residues at the N-terminus of an adjacent molecule [53].  These cross-links help stabilize 

the side-by-side packing of collagen molecules, which results in a strong fibril.   

In addition to these native cross-links, there are also other chemical interactions 

that maintain the stability of collagen molecules.  Hydrogen bonding between collagen 

molecules is facilitated by water that is also an essential component in the collagen self-

assembly mechanism [54-56].  It is important to understand the importance and 

significance that water plays in influencing collagen stability and mechanics after self-

assembly on both the micro- and macro-molecular level.  The surface chemistry between 

water molecules and side chain groups of collagen help maintain the molecular 

conformation and mechanical properties seen in collagen [56].  Overall, various cross-

links exist within the native collagen structure providing the mechanical strength, 

elasticity and wear resistance.  Native cross-links within collagen include the following: 

intra-helical bonds (~1.5nm), inter-helical bonds (~4nm) and inter-microfibrillar bonds 

(~1.3-1.7nm).  Intra-helical bonds are seen within the helical chain.  Inter-helical bonds 



17 

 

link two or more helical chains together.  In contrast, inter-microfibrillar bonds are 

present over a larger range and links neighboring side chains.  In fixed biological tissues, 

the numbers of intra-helical and inter-helical bonds influences collagen’s stability 

(denaturation temperature and resistance against enzymatic degradation).  Inter-

microfibrillar bonds, on the other hand, significantly affect the mechanical properties 

(tensile strength and strain at break) of collagen [57].   

 

1.6.2 Collagen Self-assembly in vitro 

Prior to fabricating synthetic collagen scaffolds for tissue engineering applications, an 

understanding of collagen self-assembly in vitro is very important.  The in vivo collagen 

self-assembly mechanism can be partially manipulated under in vitro conditions.  At 

lower pH levels, collagen starts to disassemble into smaller fibril subunits.  In acid 

solutions, this physical transformation is termed “swelling”.  At a pH<4, positive charges 

develop on the collagen protein due to its complexing with surrounding acidic protons.  

As a result, collagen fibers repel each other and disaggregate into subunits.  The attractive 

forces typically present between triple helices are eliminated, which yields a dispersion of 

insoluble collagen that is uniform, opalescent and optically isotropic [54, 58].  Collagen 

dispersions typically consist of long fibers with diameters in the range of 0.05-2.5 µm and 

length of 5-100 µm [59].  Interestingly, the process of disaggregation is reversible when 

the collagen dispersion is brought back to physiological pH with evident collagen fiber 

assembly when the acidity of the dispersion remains above pH 3 [60].  The pH dependent 

properties are interesting to note since the fiber and matrix components of the nerve 

tissue constructs in this study were derived from collagen dispersions.   
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1.6.3 Collagen Scaffold Fabrication 

As synthetic polymers became available for medical purposes within recent decades, 

collagen remains one of the most widely used biomaterials.  Collagen as a scaffold 

material is most desirable in tissue engineering since it is biocompatible, biodegradable 

and hemostyptic [61].  It is important to note that cross-linking can control the 

biodegradability of collagen for a variety of applications.  Importantly, the surface of 

collagen is also known to promote ideal cell attachment, proliferation and differentiation 

of various cell types [62, 63].  Hence, collagen is often used to manufacture medical 

devices in the form of membranes, sponges, coating layers for implants and matrix 

material for a wide range of cell culture applications [63-65].   

 Scaffolds fabricated from biologically-derived materials exhibit improved clinical 

functionality assuming that the characteristic native features are preserved. Collagen is 

used extensively for tissue engineering applications because its signature biological and 

physiochemical properties are retained in in vitro preparations [66].  Most tissues rich in 

fibrous collagen such as skin and tendon are typically used to extract collagen.  Some 

common animal sources for collagen extraction include bovine, porcine or avian.  

Interestingly, collagen extracted from rat tail tendons has been documented to take longer 

time to prepare with limited yield compared to the other animal sources just mentioned.  

However, the ease of the extraction and purification from rat tail tendon yields an 

improved batch-to-batch reproducibility in collagen concentration [67].  In this study, 

collagen I was extracted and purified from rat tail tendon by modifying existing protocols 

in the laboratory.  In most extraction protocols, dilute acidic solvents are used to break 
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intermolecular cross-links of aldimine type.  Here, dilute amounts of 0.1% acetic acid 

were used during the extraction of collagen I from rat tail tendon.  

 Among scaffold fabrication methods, electro-spinning has been extensively used 

in recent years to manufacture in vitro fibrous scaffolds for tissue engineering.  In 

electro-spinning, fiber diameters typically range from a few microns to less than 100 nm.  

Electro-spun fibers ranging from nanometer to sub-micrometer scale aim to closely 

mimic the architecture of extra-cellular matrix components within native tissue.  For 

example, electro-spun fibers are in the same scale as endogenous collagen fibrils, which 

have diameters ranging from 20 nm to 40 µm [52, 68, 69].     

 To date, pure collagen or collagen-synthetic polymer blends containing highly 

volatile fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) or 2,2,2-

trifluoroethanol (TFE) are commonly used for electro-spinning collagen scaffolds [66].  

The high voltage required for polymer molecules to over come surface tension during 

electro-spinning may disrupt the native molecular cross-links present within naturally-

derived proteins such as collagen.  Also, electro-spinning collagen in fluoroalcohol 

solvents has been reported consistently to yield collagen nano-fibers, which do not swell 

in aqueous media but are readily soluble in water, tissue fluids or blood [70-72].  Electro-

spun collagen fibers are most likely fragile and water soluble due to lack of native cross-

links.  Interestingly, gelatin is also water-soluble and is known to be a degradation 

product of water-insoluble collagen fibrils.  The water solubility of electro-spun collagen 

scaffolds may suggest that there is extensive conformational change and denaturation of 

collagen into gelatin during the electro-spinning process [66].     
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 Since electro-spinning of collagen yielded scaffolds lacking the native structure of 

collagen I, the technique was not considered suitable for this study.  Alternative 

fabrication methods, which can manipulate collagen into oriented scaffolds with retained 

native biological and physiochemical properties is strongly desired.  Currently, 

techniques for in vitro preparations of collagen scaffolds are relatively limited.  Freeze 

drying or lyophilization is a dehydration process in which frozen water in a material 

sublimates directly from the solid phase to gas phase resulting in a dry porous material.  

Collagen sponges with varying degrees of porosity can be obtained from freeze drying 

and is favorable as scaffold materials for a variety of applications.  Additionally, freeze-

dried collagen retains its signature triple-helical and fibrillar structure.  Although freeze 

drying is a promising approach for generating porous collagen scaffolds, orientation and 

fibrillar alignment are difficult to control.   

 In this study, wet spinning is introduced as a suitable fiber spinning technique for 

manufacturing oriented collagen monofilaments containing water-insoluble collagen 

fibrils.  Unlike electro-spun collagen fibrous scaffolds, wet-spun collagen fibers are 

relatively stable scaffold materials, which do not dissolve instantaneously in water.  

Furthermore, the degree of swelling (water uptake) and degradation rate can be controlled 

by physical or chemical modification to increase collagen stability.   

 

1.6.4 Physical Modification of Collagen Scaffolds 

Dehydroxy-thermal (DHT) treatment and ultra-violet (UV) exposure are the most 

commonly used physical methods to cross-link collagen fibrous scaffolds.  DHT cross-

linking method is a well established technique in stabilizing collagenous tissues.  
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However, DHT is typically the less preferred cross-linking method due to lower cross-

linking densities and the use of high temperatures to form cross-links.  In DHT cross-

linking, collagen fibers are typically heated under atmospheric pressure to a temperature 

above 105oC, which leads to dehydration of collagen structure.  The mechanism of DHT 

cross-linking involves a condensation reaction either by an ester or amide linkage with 

hydroxyl groups on the hydroxyproline residues found on the collagen triple-helix.  The 

removal of water molecules results in the formation of amide bonds, which bring α-

chains more closely towards each other thereby increasing the cross-links within the 

structure.  As water molecules are removed, there is a visible change in the physical 

organization of collagen.  In particular, the quarter-staggered organization of collagen 

molecules undergoes densification especially in the light banding region.  Densification 

within the light banding region is due to the collapse of molecules during cross-linking 

because the water is being removed [73].  As the water molecules vacate regions, more 

sites are available for cross-link formation.  Collectively, the degree of cross-linking is 

dependent on the duration of exposure and heat supplied during DHT treatment.     

In terms of radiation treatment, UV exposure (254nm) offers another approach to 

physically cross-linking collagen fibrous scaffolds.  In the UV method, the degree of 

cross-linking depends on the depth of penetration with exposure.  The primary advantage 

of physical cross-linking is that the use of chemicals or reagents is not needed, which 

means minimal risk of toxicity.  In general, physical cross-linking methods increase the 

mechanical strength of collagen fibers compared to chemical methods.  However, 

physical modifications can induce denaturation of a portion of the collagen molecule, 

which may affect cell attachment, proliferation and differentiation [40, 74].   
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1.6.5 Chemical Modification of Collagen Scaffolds 

The most commonly used cross-linking reagents for biological tissues are glutaraldehyde, 

formaldehyde, diisocynates and epoxy compounds [75, 76].  Glutaraldehyde (GA), an 

oily-colorless liquid at room temperature, is miscible in water.  Furthermore, it is widely 

used in manufacturing industries for sterilizing medical/dental equipment in addition to 

water treatment and as chemical preservatives.  GA is highly corrosive and vaporizes 

rapidly in the atmosphere.  A glutaraldehyde molecule consists of two aldehyde groups as 

seen in Figure 1.2.   

 

 

                                             

Figure 1.2 Glutaraldehyde molecule.         

 

 Glutaraldehyde (GA) is one of the most common chemical cross-linking reagents 

for collagen [77-81].  It is an effective cross-linker as it reacts very rapidly in retaining 

many of the viscoelastic properties of the collagen fibrillar network.  The mechanism of 

GA reaction with collagen involves the formation of covalent bonds between collagen 

fibrils resulting from aldehyde-amino and aldol condensation reactions [81].  The result is 

a more tightly cross-linked network.  In addition to intermolecular cross-links, GA can 

also lead to intramolecular cross-links formed between two α-chains by aldol 

condensation.  Although GA remains widely used as a cross-linking reagent for collagen-
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based biomaterials, the associated cytotoxicity concerns prevent its application for in vivo 

studies.   

              In recent years, genipin (Gp), a natural extract from the fruit of Gardenia 

Jasminoides, has been shown to be an effective cross-linker for cellular and acellular 

biological tissues.  Furthermore, genipin has been used to cross-link various biomaterials 

including hydrogels and hydrogel composites [82].  Although Genipin has been 

previously used at concentrations of 0.625 to 1% to cross-link collagen gels, it has not 

been applied until recently for cross-linking collagen fiber scaffolds or electro-spun 

collagen mats [82-84].  Genipin presents many desirable properties as an alternative 

cross-linker because it is natural in origin and has no cytotoxic effect on biological tissues 

[83].  Its use as a cross-linking agent results in biomaterials with improved mechanical 

properties.  Genipin is colorless in nature but forms a blue color stain when it reacts with 

amino acids [85].  The molecular structure of genipin is shown in Figure 1.3. 

 

                                                

Figure 1.3 Structure of Genipin molecule extracted from Gardenia Jasminoides.         

Specifically, the blue color pigment is a result of the end-product from the 

reaction of genipin with methylamine [85].  Genipin cross-linking is comparatively 

slower than glutaraldehyde.  The cross-linking mechanism for genipin involves a 
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nucleophilic reaction from free amino groups of lysine or hydroxyline residues on 

collagen as seen in Figure 1.4.  Tissue fixation with genipin may produce distinct cross-

linking structures.  Genipin is known to bridge peptide chains 1.6-2.5 nm apart, which 

can form inter-, intra-helical and inter-microfibrillar cross-links by polymerization [83]. 

 

 
Figure 1.4 Cross-linking mechanism of genipin.  Modified from [86].       
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1.7 Current Strategies and Concepts in Surgical Nerve Repair 

The initial attempts at repairing nerve injuries were reported as early as the 17th century 

[87].  The development of various surgical options and their outcomes for the 

management of peripheral nerve injury gaps were later documented by the 19th century 

[88].  Some of the earlier surgical procedures included stretching or transposing the 

nerve, bone shortening, use of nerve grafts, or bridging of nerve ends via organic or 

synthetic materials serving as nerve conduits [88].  The management of larger peripheral 

nerve gaps was eventually classified into two general categories:  (1) bridge operations 

(which included grafting, transposition and tubulization); and (2) manipulation of nerve 

(which is characterized by end-to-end apposition of the nerve stumps) [89].  Within the 

bridge operations category, there are three surgical reconstruction strategies: (1) direct 

repair, where the proximal and distal nerve ends are sutured back together, (2) nerve 

grafting, required to bridge a gap between nerve ends, and (3) nerve transfer, when the 

distal or proximal nerve segment is unusable or missing.  When predicting the outcome 

of peripheral nerve repair, the factors that must be taken into consideration are the 

following: type, location, and extent of nerve injury; timing of surgery; type of repair 

technique; proper alignment of fascicles; surgical technique; and patient comorbidities 

[90].    

 
1.7.1 Direct Repair 

Direct repair is performed to suture proximal and distal nerve stumps back together.  This 

technique is suitable when the two ends can be approximated with minimal tension [91].  

A direct repair is preferred for reconnection of injured nerve ends where no gaps exist 

between the ends.  The stumps are sutured together in what is called an end-to-end 
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neurorrhaphy, commonly known as end-to-end nerve repair [2].  When an end-to-end 

nerve repair is performed, an important microsurgical technique is to identify, isolate, and 

individually rejoin each perineurial-defined fascicle as seen in Figure 1.5.  

 

 

Figure 1.5 Direct repair by end-to-end neurorrhaphy. [13] 
 
 

 

Direct repairs are most successful when the nerves are purely motor or purely 

sensory with minimal intraneural connective tissue [92, 93]. End-to-end nerve repair 

techniques include epineural repair, group-fascicular repair, and fascicular repair.  

Epineural repair is a commonly used technique that is ideal for treating sharp nerve 

injuries of proximal portion of nerves without nerve tissue loss and for partial injuries 

with good fascicle alignment [90].  As depicted in Figure 1.5, corresponding groups of 

fascicles are approximated with 2-3 sutures passing through the interfascicular 

epineurium.  In order to ensure optimal nerve regeneration after direct repair, nerve 
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stumps or groups of fascicles must be precisely aligned without tension, and repaired 

with minimal tissue damage and minimal number of sutures [94-101].  The fewest 

number of sutures is ideal to minimize the severity of scar tissue.  If there is no scar tissue 

at the suture line, proximal axons are more likely to extend unimpeded into a network of 

proliferating Schwann cells within the distal (degenerating) nerve stump, which promotes 

and directs regeneration [2].  Ultimately, the main goals of end-to-end epineural repair 

are to restore continuity of the nerve stumps without tension while obtaining proper 

fascicular alignment.      

Although end-to-end neurorrhaphy can be successful, the challenges with this 

strategy include reproducing the original alignment of nerve fascicles without inducing 

tension.  Furthermore, a direct repair is limited to outside the zone of injury, which means 

that the entire damaged nerve segment must be removed to prevent scar tissue formation.  

Unfortunately, surgical procedures to excise tissue can often leave a gap between nerve 

endings, which could induce longitudinal tension.  The build-up of residual tension has 

been shown to attenuate or stop epineurial blood flow resulting in tissue necrosis and 

very poor outcomes.     

Another approach for direct nerve repair is epineural sleeve neurorrhaphy, which 

utilizes an epineural cuff.  In this technique, epineurium covering the distal stump is 

rolled back and a 2 mm nerve segment is resected.  Then, the created epineural sleeve is 

pulled over the proximal nerve end and is sutured to the epineurium 2 mm proximal to 

the coaptation site with two sutures [90].  Since compression and tension is transferred 

from the repair site to the proximally located epineurium, epineural sleeve neurorrhapy 

improves the rate of functional recovery compared to end-to-end repair.  In addition, the 
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epineural sleeve provides a biological chamber for the axoplasmic fluid leakage from 

transected nerve ends, which contributes to a neuropermissive environment for growing 

axons [90].  The epineural sleeve also provides guidance for regenerating nerve fibers, 

enables higher number of axons to reach target axons, and prevents a neuroma, which is 

deep neuropathic pain associated with loss of potential nerve function caused by the 

inability of regenerating nerves to reach the endoneurial environment of the distal stump 

due to hindrance from scar tissue [102].  However, the functional results of this technique 

must be further confirmed in clinical practice.   

 End-to-side repair is another technique of direct repair that is especially promising 

for repair of peripheral nerve injuries, where the proximal nerve stump is unavailable or a 

significant nerve gap exists.  This approach is also known as nerve transfer and offers a 

major advantage since the injured nerve can recover function without compromising the 

function of the donor nerve.  End-to-side repair involves the coaptation of the distal 

stump to the side of an injured donor nerve.  In some cases, the donor nerve may be 

purposely neurectomized (surgical removal of nerve sections) allowing motor neurons to 

sprout more effectively.  Although good sensory and motor recovery was reported is 

some cases, there are limited control groups and statistical analysis to confirm 

experimental validity [90].  Outcomes are still unpredictable and highly depend on the 

surgical technique itself.    

 
1.7.2 Nerve Grafting 

In the case of nerve gaps, in which nerve segments cannot be approximated and re-joined 

back together without tension, the current gold standard of repair is autologous nerve 

grafting shown in Figure 1.6.  In this technique, graft segments are coaptated to the 
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corresponding groups of fascicles of proximal and distal nerve stumps.  In comparison to 

direct repairs, nerve grafts revealed superior results [90, 103-105].  Furthermore, direct 

repairs induced nerve tension resulting in nerve ischemia.  Nevertheless, the direct repair 

technique is still preferred if the nerve stumps can be coaptated under mild tension.  

Nerve grafting or tubulization techniques become particularly useful for large nerve gaps, 

which would require relatively large tension in order to perform direct coaptation.  

However, tubulization techniques are feasible only in short nerve gaps.  For all other 

large nerve lesions exceeding 3 cm, nerve grafting is required [90].       

 

 

Figure 1.6 Nerve grafting using autologous nerve grafts or cable graft repair. [106] 

  

Nerve autologous or autografts (nerve segments of autogeneic or self origin) were 

vastly studied during initial nerve grafting experiments dating back to 1870 [107]. 

Philipeaux and Vulpian first demonstrated proof-of-concept of nerve grafting by 



30 

 

transplanting 2 cm segments of lingual nerves into hypoglossal deficits in dogs.  Better 

functional recovery outcomes along with experimental validity of the benefits of nerve 

grafting were later established in dogs, rabbits, and guinea pigs [88, 108].  Positive 

outcomes with nerve autografting were more consistently observed when Seddon 

repaired large peripheral nerve deficits in the extremities by using small diameter 

cutaneous nerve grafts in a “cable “ fashion instead of using larger caliber grafts [5, 109].  

With the advent of operating microscopes and improvements in microsurgical 

instrumentation and supplies, Millesi and his colleagues eventually improved upon 

clinical results and further popularized nerve autografting [110].   

 For repair of gaps longer than 5 mm, the gold standard for bridging the proximal 

and distal stumps is still the nerve autograft.  To date, no tubular or other type of conduit 

has proved superior to the autologous nerve graft [5].  In the reconstruction of human 

median or ulnar nerve trunks, only the nerve autograft provides positive outcomes.  

Donor nerves typically used for autografts are small diameter (2-3 mm) cutaneous nerves 

harvested from either the arm or leg (ex. sural nerve) for repairing large gaps [5, 111].  

Nerve grafts can be very effective because they contain Schwann cells and basal lamina 

endoneurial tubes that provide neurotrophic factors, including cell and endoneurial tube 

surface adhesion molecules [112].   

 Unfortunately, there are several disadvantages with nerve autografting.  The use 

of autologous nerve grafts is limited since the donor nerve has to be excised from another 

part of the body.  This requires multiple surgeries and may lead to loss of function at the 

donor site and/or donor site morbidity.  The signs of morbidity at the donor site typically 

arise in the form of scar and neuroma pain [113].  Furthermore, limited availability of 
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donor tissue presents another obstacle if the autograft material is of insufficient length 

and diameter to optimize the repair.  Results obtained using nerve autografts remain 

variable, ranging from extremely poor to very good.  Also, graft phenotype (sensory 

versus motor) is critical because most motor axons regenerate only within motor nerve 

grafts, not sensory nerve grafts.  Motor neurons have been previously reported to 

regenerate preferentially down motor nerves when given a choice between motor and 

sensory nerve pathways [114-117].  Additionally, experimental studies in rodents have 

suggested that motor nerve grafts support improved nerve regeneration compared to 

sensory nerve grafts.  The potential factors that may influence the success of motor nerve 

grafts over sensory nerve grafts may rely on differences in the nerve architecture, 

neurotrophic support, or biochemical markers [114-116, 118-122].  Therefore, specificity 

of the nerve graft is another factor that should be considered.    Motor nerve grafts may 

also be preferred over sensory due to their larger endoneurial tube diameter, resulting in 

greater axon numbers [2].  Conversely, sensory nerves are the preferred source for 

autografts since the primary complication is only localized numbness compared to motor 

deficits seen with motor nerve grafts.   

 Although nerve autografts have remained the gold standard for peripheral nerve 

gap repair for over 50 years, donor site morbidity and limited amount of available donor 

grafts remain to be major concerns with this technique.  In cases where the reconstruction 

of gaps require lengths of donor graft exceeding available nerve autografts, the only 

clinical option is the application of allograft material from cadaver donors [90].  Unlike 

autografts, allografts are obtained from cadaveric donors within the same species.  Nerve 

allografts provide guidance and viable donor Schwann cells, which support and enable 
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growing host axons to pass from the proximal to distal stump in order to reinnervate 

target organs.  The main advantage of nerve allografts is the lack of donor site morbidity 

and the unlimited length of nerve tissue available for transplantation.  Furthermore, the 

injured nerve in recipient can be replaced with the same nerve type from the donor. 

Despite the low immunogenic potential of nerve allografts compared to skin, 

muscle, or bone, immunosuppressive treatment is still required to prevent rejection of the 

graft.  Interestingly, the immunogenicity of nerve allografts tends to decrease over time 

as the process of exchanging Schwann cells from donor origin to host cells proceeds [90, 

123, 124].  Without immunosuppression following transplantation, the blood-nerve 

barrier of donor nerves is broken down and the graft is revascularized leading to 

infiltration of immune cells.  Then, macrophages begin to actively phagocytose both the 

intact and damaged myelin.  CD4 and CD8 T-cells are activated in the periphery and 

infiltrate the graft and target the donor origin Schwann cells.  The donor Schwann cells 

within the graft increase their major histocompatibility (MHC) class II alloantigens, 

which serve as antigen presenting cells (APCs).  Activated T-helper cells and APCs 

release cytokines including tumor necrosis factor-α (TNF-α), interleukin-1 and -2 (IL-1, -

2), and interferon-γ (IFN-γ), which initiate the cascade of different mechanisms leading 

to allograft rejection [90].  The final outcome is that the graft is rejected, becoming 

fibrotic and nonfunctional [90, 125-127].  Therefore, strategies to prevent allograft 

rejection include the following: MHC matching, allograft pretreatment, and host 

immunosuppression.  Among the current immunosuppression treatments in nerve 

allografting procedures, the use of cyclosporine A (CsA) only recently became the 

hallmark of immunosuppressive protocols.  Interestingly, some experimental studies 
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report that outcomes following nerve allografting in CsA-immunosuppressed recipients 

are comparable with autograft repair [128, 129].  Furthermore, successful nerve 

allotransplantation including clinical outcomes and details on immunosuppressive 

therapy has been promising.  Although significant sensory recovery including light touch, 

temperature, and pain sensation were observed in patients with allografts, recovery of 

motor function remained scant with recovery only limited to patients with upper 

extremity nerve lesions [130].       

 Non-nerve tissues have also been explored as alternatives to suture repair of nerve 

for bridging very short nerve gaps.  Conduits from many different biological tissues have 

been used with varying success.  For example, arteries, veins, muscle and other materials 

have been extensively tested [131-134].  Unfortunately, there are numerous 

disadvantages with the use of blood vessel, muscle, and other biological tissues for 

bridging nerve defects.  Severe tissue reaction, early fibrosis, scar infiltration, and lack of 

control over the conduit’s mechanical properties are significant problems [135].  As a 

result, these limitations have led to the consideration of bioengineered conduits made 

from novel synthetic materials.     

 

1.7.3 Conduit Repair 

Although autografts remain to be the clinically accepted approach to treating nerve gap 

repair, donor site morbidity, secondary surgery, and prolonged surgery durations are still 

significant concerns.  These many disadvantages spawn the development of 

bioengineered conduit/nerve guides.  A conduit as an entubulation model provides an 

environment conducive for outgrowing axons, growth of Schwann cells, and neurotrophic 



34 

 

stimulation by the distal stump, which are critical factors for optimal return of nerve 

function [136].  In recent years, various natural and synthetic materials have been tested 

in experimental and clinical conditions.   

 Synthetic guidance conduits exhibit numerous opportunities for repair of 

peripheral nerve defects because their physical and chemical properties (i.e., strength, 

diameter, porosity, degradation rate) can be precisely manipulated to optimize 

performance for in vivo studies.  Interestingly, earlier attempts at regeneration through 10 

mm long chambers had comparable results to nerve autografts in rats [137].  

Furthermore, promising results were also seen with using plasticized polyester tubes to 

successfully reconstitute the nerve trunk of a rat sciatic nerve [138].  The polyester 

family, which includes polylactic acid, polyglycolic acid and poly(lactic-co-glycolic) acid 

has been an early set of materials for testing due to their availability, ease of processing, 

and FDA approval [139].  One of the first degradable synthetic polymers evaluated as a 

conduit material was polyglactin (Vicryl mesh), which demonstrated no significant 

irritation or toxicity to regenerating nerves despite unusual nerve morphology compared 

to normal nerve [140].  Overall, the use of synthetic biodegradable conduits has shown 

promising results in nerve regeneration applications.  Some of these promising 

biomaterials include poly(phosphoester), poly(lactic-co-glycolic) acid, 

poly(organophosphazene), poly(L-lactide-co-µ-caprolactone), poly(DL-lactide-co-

glycolide) and poly(3-hydroxybutarate) [141-145].         

 Despite promising findings with these synthetic polymers, they are not able to 

facilitate long-term growth over long gaps due to collapse, scar infiltration, and early 

resorption [135].  Furthermore, biodegradable synthetic materials have shown some 
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release of cytotoxic degradation products, which may introduce additional problems 

associated with resorption such as macrophage invasion, fibrosis, and disorganized 

axonal growth [94, 135].  In order to design a successful bioengineered conduit, several 

key properties that should be considered are the following: easily fabricated with desired 

diameter, implanted with relative ease, and easy sterilization.  Additionally, an ideal 

conduit must be flexible but still able to maintain structural and mechanical integrity in 

vivo.  Some other parameters in the design that should also be considered are tube 

dimensions, permeability, luminal surface topography, and inherent electrical charge 

within conduit [5, 139].  Ultimately, the goal of an ideal bioengineering conduit is to 

consistently perform better than an autograft.  

 In recent years, the design of nerve guidance conduits has focused more on 

improving the single lumen of the conduit to bridge larger nerve gaps.  Numerous 

combinatorial approaches have been incorporated into the design such as collagen and 

laminin-containing gels, Schwann cells, and growth factors [146].  Although the addition 

of hydrogels into the lumen of conduits is a major improvement for nerve regeneration, 

there still needs to be an oriented micro-architecture in place for supporting long-term 

guidance of regenerating axons through long nerve gaps.  The incorporation of filaments 

or oriented scaffolds into the lumen of the conduit may potentially provide important 

physical cues to appropriately steer axons towards the distal nerve stump for 

reconstitution of nerve processes.  Hence, the primary challenge is selecting appropriate 

biomaterials, which support contact guidance of regenerating axons, do not exhibit 

cytotoxicity effects, and can be naturally remodeled after regenerative processes have 

been completed.  The main emphasis of this dissertation is towards developing collagen 
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I-derived fiber and hydrogel constructs to evaluate contact-guided axon growth of 

embryonic and adult sensory neurons, and Schwann cell migration and orientation to 

optimize a proof-of-concept model for a novel bioengineered nerve conduit. 
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CHAPTER 2 

DEVELOPMENT AND CHARACTERIZATION OF AUTOMATED WET 

SPINNING DEVICE FOR COLLAGEN FIBER FABRICATION 

 

In this study, the emphasis is on the evaluation of synthetic collagen fibrous scaffolds 

manufactured from a wet spinning technique.  These collagen scaffolds are firm collagen 

monofilaments synthesized by a custom-built, miniaturized wet spinning device. 

Concentrations of collagen dispersions for wet spinning were tested and optimized based 

on fiber uniformity, tensile strength, thermal stability, and ease of fabrication.  The 

physiochemical properties of collagen fibers were tested by analyzing swelling response, 

denaturation and glass transition temperature of non-crosslinked and crosslinked samples.  

The mechanical strength of the fibers was analyzed using instron. 

 

2.1 Introduction 

Engineering methods to construct biological tissue substitutes are important for finding 

new approaches to repair diseased or damaged tissues [147-152].  A commonality in 

repair strategies is an engineered biomaterial scaffold that provides a physical and 

biochemical template for tissue regeneration.  While cell growth can be greatly affected 

by physical properties such as porosity, surface roughness and elasticity [150, 153-155], 

directed tissue formation is equally important to the development of tissue architecture. 

Innovative methods for guided tissue growth must also include a well-defined 

architecture in which the native cells will respond favorably. 
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Scaffolds exhibiting fibrous structures are of unique interest for many tissue 

engineering strategies that require unidirectional alignment of growing cells [156].  

Current techniques for fabricating micro to nano-fiber scaffolds are salt or particulate 

leaching [157-160], rapid prototyping [161, 162], self-assembled hydrogels [163-169], 

electro-spinning [66, 170-173] and phase separation [174].  In addition, several 

conventional fiber spinning techniques in the textile industry such as dry spinning, melt 

spinning, and wet spinning have also been utilized for orienting polymeric materials into 

fibrous scaffolds for biomedical applications [175-181].  Synthetic polymers are readily 

used for fiber spinning and scaffold fabrication due to the ease of manipulation and 

reproducibility under various processing conditions.  Conversely, natural polymers are 

often preferred since they more closely mimic the physiochemical properties of the extra-

cellular matrix (ECM) and avoid complications such as inflammation or material toxicity 

[182].  Conventional fiber spinning techniques, however, are typically not suitable for 

processing biological polymers into fibers; e.g. the high temperatures of melt spinning or 

the use of harsh solvents.  Among the scaffold fabrication techniques, biopolymers 

processed under wet spinning conditions are less prone to denaturation and loss of native 

molecular orientation.   

Wet spinning is often used to create single fibers from biological polymers such 

as chitosan, hyaluronic acid, silk, alginate and collagen [178, 183-186].  It is generally a 

manual process of injecting a polymer solution through a needle (spinneret) into a 

coagulant bath for pH-dependent precipitation [176-178, 180, 187-189].  As the 

precipitate is extruded into the coagulation bath, shear forces can orient the chain 
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molecules into a thin filament [189].  The fiber is then collected from the coagulation 

bath and dried. 

 

2.2 Materials and Methods 

Here, an automated wet spinning device was custom built to improve reproducibility of 

fiber fabrication and yield of continuous collagen fibers up to half a meter in length.  The 

design enables user-defined adjustment of the important processing parameters in wet 

spinning: needle gauge size of the spinneret, extrusion rate of the collagen dispersion, pH 

of the coagulation bath, speed of the fiber collection, and the drying time.  In this study, 

the effects of collagen dispersion concentration on fiber size, uniformity, mechanical 

strength and swelling response were investigated.  In addition, crosslinking reagents were 

evaluated as a post-processing step to increase the mechanical stability and control the 

swelling response of collagen fibers. 

 

2.2.1 Preparation of Collagen Dispersions 

Collagen I was extracted and purified from tendons dissected from Sprague-Dawley rat 

tails (8-9 weeks old) following a previously established protocol [190].  The extracted 

tendons were digested in sterile 0.7% acetic acid (1g / 150ml) for 5-7 days at 4oC with 

mechanical agitation (stir bar).  The tendon solution was transferred to 50 ml centrifuge 

tubes and spun at 3500rpm for 30 min.  The collagen supernatant was retained while 

discarding the pellet of tendon debris.  Collagen supernatant was spun again at 2500rpm 

for 10-15 min to further separate remaining tendon debris.  The supernatant was dialyzed 

in a cellulose membrane tube (MWCO: 12,000-14,000) overnight at 4oC in dialysis 
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buffer (0.5M Na2HPO4, 0.5M NaH2PO4, pH 7.4).  After dialysis, the semi-solid gel of 

collagen was transferred to 50 mL centrifuge tubes and spun at 3500 RPM for 30 min to 

further concentrate the collagen. The collagen pellet was spread onto dishes and 

lyophilized at -80oC to 20oC for 48 hours to gradually remove water content resulting in a 

dry porous sponge as seen in Figure 2.1. 

                               

Figure 2.1 Lyophilized collagen sponge. 

 

Freeze-dried collagen was weighed and used to prepare 0.75, 1.0, 2.0 and 3.4  

percent weight (% wt) collagen dispersions in 0.2% glacial acetic acid.  Collagen within 

the dispersion is not completely soluble.  A collagen dispersion contains small fiber 

portions of insoluble collagen, some of which disassemble into smaller fibril subunits in 

the presence of acidic solutions below pH 3.  This physical transformation of disassembly 

is regarded as swelling, which results in dispersions appearing uniform and opalescent as 

shown in Figure 2.2. 
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Figure 2.2 Collagen dispersion at approximately 2.5 mg/ml. 

 

The concentration (in mg/ml) of the collagen within the dispersions was 

determined by modifying the bicinchoninic acid (BCA) Protein Assay (Pierce, Thermo 

Scientific).  Since collagen in a dispersion is not completely solubilized, the BCA 

reactivity is inhibited, underestimates the actual concentration of collagen, and cannot be 

compared to the supplied albumin protein standards [191].  To create useful standards, rat 

tail collagen with known concentration was purchased from BD Biosciences and diluted 

in 0.02M acetic acid to 2.0 mg/ml, 1.0mg/ml and 0.75mg/ml.  The samples of collagen 

dispersions were diluted ten-fold to within the 0.75 – 2.0 mg/ml concentration range of 

the protein standards.  25 µL of standards and samples were loaded into the wells of a 96-

well plate.   

To assist in solubilizing and unfolding of collagen, 0.2% w/v sodium dodecyl 

sulfate (SDS) was added to the BCA reagent.  This amount of SDS induced a negligible 
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non-specific reactivity of the BCA.  200 µL of the BCA reagent/SDS solution was added 

to each well and the plate was placed on an orbital shaker for up to 270 min at 25oC to 

facilitate BCA reactivity.  An Emax precision microplate reader spectrophotometer 

(Molecular Devices, Sunnyvale, CA) was used to measure absorbance of the protein 

standards and the unknowns.  A standard curve of the absorbance vs. concentration of the 

protein standards was used to extrapolate and confirm the concentrations of the 

dispersions for wet spinning. 

 

2.2.2 Wet Spinning 

Collagen dispersions were extruded into a room temperature coagulation bath of 

ammonium hydroxide (Acros Organics, Fair Lawn, NJ) and acetone (HPLC grade, Fisher 

Scientific) at a 1:50 volume ratio.  The pH and bath level were periodically monitored 

within the chamber using pH litmus paper and adjusted with ammonium hydroxide if pH 

fell below 9.  The coagulation bath works by dehydration; forcing water from the 

dispersion and precipitating collagen into solid monofilament strands.  Fibers were then 

manually transferred to a drying rack in which they were air-dried under the tension of 

their own weight at room temperature for a minimum of 48 h. 

 

2.2.3 Automated Collagen Wet Spinning Device 

The wet spinning device consisted of a syringe pump, a custom made coagulation bath 

chamber, fiber collection belt and a geared variable speed DC motor for controlling the 

rate of fiber collection as shown in Figure 2.3.  A 10-ml syringe (BD Biosciences) 

containing the collagen dispersions of 0.75, 1, 2 or 3.4 wt% was loaded into a syringe 
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pump system (Fisher Scientific Model No. 78-01001) (Dupont, Wilmington, DE) 

operated at a rate of 12.4 ml/hr.  The syringe pump was connected via 0.38 mm (inner 

diameter) Viton® tubing to the spinneret - a blunt end, type 304 stainless steel 22-gauge 

needle (inner diameter = 406 µm, McMaster-Carr, Elmhurst, IL).  A clamp was built to 

hold the spinneret submerged about 2 inches into the coagulation bath with slight contact 

on the surface of the collection belt.   

 

          

Figure 2.3 Schematic of the wet spinning system. (A) Syringe pump controls the 
extrusion rate of collagen dispersion into the device.  (B) Wet spinning device with inside 
view depicting the flow and deposition of collagen; (1) spinneret clamp, (2) spinneret tip, 
(3) middle connector, (4) rod connected to gears/motor, (5) collection belt and (6) tension 
adjustment for belt. (C) Pro/E top view of device showing the location of the motor.  The 
motion of the belt is driven by the gear-motor system.  D) Actual side view of device. 
 

The coagulation chamber was formed from three parts of ½ inch thick 

polypropylene: 2 rectangular sides of the chamber and a middle section.  A set of 18 
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stainless steel machine screws and washers (McMaster-Carr, Elmhurst, IL) were used to 

fasten the three-part chamber and provide a leak-proof tight seal to contain the 

coagulation bath.  The middle section (or connector) had an incline ramp of 20o designed 

to limit the amount of coagulation bath to no more than 150 mL per wet spinning session.   

A polytetrafluoroethylene (PTFE) mesh was used as the fiber collection belt 

(0.018-inch (457 µm) mesh size, McMaster-Carr, Elmhurst, IL).  The PTFE mesh was 

cut to a length of 11 inches and width of 0.9375 inches and sewn together using 

polypropylene sutures (Ethicon, Somerville, NJ).   Three rotating delrin rods supported 

the collection belt within the inner chamber; one rod was directly connected to a gear 

located on the shaft of the motor to drive the belt and a second rod was used to adjust the 

tension of the belt, Figure 2.3B.  The third rod was used to guide the movement of the 

belt.     

The collection belt was driven by a 12V DC 60 RPM, 3200 g-cm torque motor 

(Jameco Electronics, Belmont, CA).  Collection of collagen filaments was optimized at a 

belt speed of 6 RPM.  To gear down the motor speed, two gears with 5 inch and 0.5 inch 

diameters (gear ratio of 10:1) were designed using Pro Engineer Wildfire 4 (PTC, 

Needham, MA) software and printed on a rapid prototype, 3-Dimensional printer (SST 

1200es, Dimension, Inc., Eden Prairie), Figure 2.3 C&D.   

 

2.2.4 Fiber Uniformity Analysis 

To determine fiber diameter and uniformity, dried fibers were cut into 1cm lengths.  A 

low magnification 4x objective on a Nikon Eclipse TE2000-S inverted microscope was 

used to take images of the fiber, which were merged together to create a photo montage 
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of the entire 1 cm fiber using Adobe Photoshop.  Fiber diameter was measured randomly 

at 10 points along the fiber using Image J software (NIH).  Diameter measurements for 

each fiber group (0.75, 1, 2, 3.4 % wt and crosslink-treated fiber groups) were used to 

calculate the mean fiber diameter and standard deviation to analyze fiber uniformity. 

 

2.2.5 Cross-linking 

In a post-processing step, 0.75% wt collagen fibers were cut into 3 cm segments and 

cross-linked with genipin or glutaraldehyde to increase mechanical strength and reduce 

the swelling response.  Fibers were immersed in solutions 1.0% genipin (Wako Pure 

Chemical Industries, Ltd., Japan) in 40% (v/v) ethanol or 1.0% (v/v) of glutaraldehyde in 

water at 25oC for 24h.  The cross-linking reagents were aspirated from the dishes and 

then rinsed for 10 min in ddH2O, 2 min in PBS and 2 min in 70% ethanol.  This rinsing 

procedure with ddH2O and PBS was repeated three times to ensure that residual cross-

linking reagents are thoroughly removed.   Fibers were then air dried inside a sterile 

tissue culture hood for 24 h. 

 

2.2.6 Mechanical Testing 

An Instron 3342 Universal testing machine (Instron, UK) was used to generate uniaxial 

force-extension curves for 0.75, 1.0, 2.0 and 3.4 wt% collagen fibers and for cross-linked 

fiber groups.  Air-dried fibers (n=10) from each of the fiber groups (0.75% wt, 1.0%wt, 

2.0% wt, 0.75% wt genipin crosslinked and 0.75% wt gluteraldehyde crosslinked) were 

cut into 3 cm segments and mounted with tape to grip the ends of the fibers to prevent 

slippage while ensuring that the fibers were not damaged at the contact points of the 
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clamp.  The fibers had an average diameter range of 46-193 µm depending on the 

dispersion concentration.  ASTM standard D3822-01 was followed in this study since it 

involved tensile property measurements of natural and synthetic single textile fibers. 

According to this method, the minimum gauge length for effective testing of specimens is 

10 mm.  Here, the gauge length for each sample was set to 2 cm.  Results obtained from 

fibers that broke at contact points or from fibers that slipped from the clamps were 

rejected. The extension was applied at 5mm/min.  The strain was determined by the 

increase in fiber length divided by the original length. 

Fibers were tested under an extension rate of 5 mm/min and a gauge length of 2 

cm for each sample.  Force – extension curves were used to directly determine the spring 

constant k using the equation: 

𝐹 = 𝑘𝑥, 

where F is the force applied to the fiber, x is the amount of fiber extension under the 

applied force, and k is the spring constant.  The stiffness of the fibers can be quantified by 

observing changes in the slope of the curve k.  The fiber stiffness in terms of the tensile 

or Young’s modulus was also calculated using the equation 

σ = Εε 

The stress σ was calculated by dividing the applied force by the averaged fiber diameter 

measurements.  The strain ε was calculated by dividing extension by the fiber gauge 

length.  The tensile modulus E was calculated from the slope of the stress-strain curve 

within initial 5% strain. 
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2.2.7 Fiber Swelling Response 

The extent of water absorption was evaluated between non-crosslinked and crosslinked 

0.75% fibers with 1.0% genipin and 1.0% glutaraldehyde.  Fibers (n=10) were incubated 

in PBS (pH 7.4) at 37oC and fiber diameters were measured at 30 min, 60 min, 24 h and 6 

weeks using ImageJ software.  Average fiber diameters were determined from 

measurements at 10 locations along the fiber.  To minimize variation in measurements at 

each time point, diameters were measured at the same location along the fiber. 

 

2.2.8 Differential Scanning Calorimetry (DSC) 

The thermal properties of wet-spun collagen fibers were quantified using thermo-

analytical methods.  Differential scanning calorimetry (DSC) provides information on 

structural changes in collagen fibers when subjected to a heat-cool-heat cycle.  

Specifically, DSC was used to determine thermal stability of collagen fibers. Thermal 

analysis including the denaturation and glass transition temperature of the collagen fibers 

was determined using the Q100 differential scanning calorimetry (TA Instruments New 

Castle, DE).  The non-crosslinked fibers were used as the control for the study.  Fibers 

were cut into small pieces and weighed.  Approximately, 5mg of sample was 

hermetically sealed in aluminum DSC pans.  The reference holder consisted of an empty 

DSC pan, which was sealed and crimped.  Heating was applied by heat-cool-heat with a 

heating rate of 10 oC/min over a range of 10-250 oC.  A cooling rate of 10 oC/min for the 

cooling cycle was applied until the sample is cooled to 10 oC and the heat operation mode 

is restarted.  The heat-cool-heat method was used to determine, thermal denaturation 
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temperature, endothermic transition, and glass transition.  The results were used to 

validate glutaraldehyde and genipin crosslinking. 

 

2.2.9 Cell Culture and Immunocytochemistry 

Dried collagen fibers were cut into 1 cm segments, rinsed for 10 min in ddH2O, 2 min in 

70% ethanol and air dried inside a sterile tissue culture hood.  The ends of fibers were 

glued down with 2 mg/ml collagen to the wells of a 6-well polystyrene tissue culture 

treated plate and allowed to air dry overnight prior to cell plating.   Dorsal root ganglia 

(DRG) were isolated from embryonic day sixteen (E-16) fetuses from timed-pregnant 

Sprague-Dawley rats (Charles River, Wilmington, MA).  DRG explants were isolated in 

L-15 medium and dissociated using trypsin (0.25%) for 1 hour at 37°C. Neurobasal 

medium + 5% FBS was then added, and the tissue was triturated followed by 

centrifugation at 1000 rpm for 5 minutes.  The supernatant was aspirated and the cells 

were re-suspended at 5x106 cells/mL in Neurobasal medium supplemented with 2% B-

27, 500 µM L-glutamine, 1% Penicillin/Streptomycin, 1% FBS, 2 mg/mL glucose 

(Sigma, St. Louis, MO), 10 ng/mL 2.5S nerve growth factor (BD), 10 mM 5-Fluoro-2’-

deoxyuridine (FdU) (Sigma), and 10 mM uridine (Sigma).  A 5 µL of the DRG cell 

suspension was plated at the ends of the fibers (non-crosslinked 0.75% wt, 1.0% genipin, 

and 1.0% glutaraldehyde fiber groups). Cells were constrained to the end of the fiber by 

the placement of the cell suspension as a bubble size droplet. The cultures were incubated 

(37°C and 5% CO2) for 2 hours to allow neurons to attach before 2 mL of media was 

added.  The culture media was changed every 2-3 days in vitro (DIV) by replacement 

with fresh media pre-warmed to 37°C. 
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The neuronal adhesion and neurite outgrowth response were assessed via 

immunohistochemistry for neurofilaments within axons.  The cultures were fixed in 4.0% 

paraformaldehyde (Fisher, Fairlawn, NJ) for 1 h, rinsed in PBS and permeabilized using 

0.1% Triton X-100 (Kodak, Rochester, NY) + 4% goat serum (Invitrogen) for 1 h.  

Neurofilament antibody (NF-200, Sigma-Aldrich, St. Louis, MO) was added (in 0.1% 

Triton X-100, 4% goat serum in PBS) for 18-24oC for 1 h at 1:400.  Secondary 

fluorophore-conjugated antibody (Alexa 488-conjugated IgG, Molecular Probes) was 

added in PBS at 18-24oC for 2 h.      

 

2.3 Results 

The characterization of the wet spinning device, evaluation of physiochemical and 

mechanical properties of the collagen fiber end-product, and the neuronal cell response to 

cross-linking treatments are detailed here.  The following sections present comprehensive 

characterization results and provide established protocols for the fabrication of the 

collagen fibers using the device.    

  

2.3.1 Characterization of Wet Spinning Device 

After the design of the automated wet spinning device, a series of mechanical and 

physiochemical characterization methods were used to evaluate the end-product collagen 

fibers.  The characterization of fibers helped identify the necessary parameters that 

needed to be optimized to manufacture reproducible, uniform collagen fiber scaffolds for 

neural tissue engineering applications.   
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2.3.2 Collagen Dispersions and Quantification of Collagen Extracts   

Collagen dispersions induced minimal colorimetric change within initial 30 minutes 

following the BCA protein assay.  This is likely due to dispersions consisting primarily of 

insoluble components of collagen that hinder the colorimetric reaction.  Hence, any assay 

results from the standard protocol could not be compared to the BSA protein standards 

for quantification.  Here, the BCA protein assay was modified to help solubilize collagen 

to improve the colorimetric reaction by adding 0.2% w/v SDS to the BCA reagent. 

Additionally, physical agitation of the 96-well plate with an orbital shaker was observed 

to expedite the reaction.   

 To test this protocol, colorimetric absorbance measurements were compared 

between the BSA kit standards and standards made from a commercially available 

collagen at a known concentration.  Hence, collagen I derived from rat tail tendon 

purchased from Becton Dickinson (BD) Biosciences was utilized as standards.  

Regression analysis was used to compare the absorbance versus concentration curves for 

the BSA standards and collagen standards as shown in Figure 2.4 A.   

 

 

Figure 2.4 Quantification of collagen by modifying BCA protein assay. (A) Comparison 
of standard curves from bovine serum albumin (BSA), Becton Dickinson (BD) rat tail 
collagen I standards and BD standards following 270 min of shaking.  (B) The effects of 

y = 0.8799x + 0.2961 
R² = 0.99806 

y = 0.1591x + 0.1155 
R² = 0.95241 

y = 0.3913x + 0.3093 
R² = 0.99919 

0 

0.5 

1 

1.5 

2 

2.5 

0 1 2 3 4 A
bs

or
ba

nc
e 

@
 5

70
nm

 (O
.D

.) 

Concentration (mg/mL) 

Standard Curves 

BSA 

BD Collagen 

BD Collagen 270 
min Shake 

R² = 0.99822 

R² = 0.99739 

R² = 0.97462 

0 

0.5 

1 

1.5 

2 

0 1 2 3 A
bs

or
ba

nc
e 

@
 5

70
 n

m
 (O

.D
.) 

Concentration (mg/mL) 

BD Collagen Standard Curves 

270min 
Shake 
90min 
Shake 
30min 
Shake 

A B 



51 

 

0.2% w/v SDS and shaking intervals of 30, 90 and 270 min on absorbance values of BD 
collagen. 
 

The results also show that using 0.2% w/v SDS and shaking the samples up to 270 

minutes enhanced the colorimetric reaction, Figure 2.4 B.  No significant changes in 

absorbance values were detected beyond 270 minutes.  Since the collagen standards 

closely matched the BSA standards, they were more suitable for interpolating the 

concentration of the unknown collagen dispersion samples. 

 

2.3.3 Automated Wet Spinning Device   

Fibers from 0.75% wt collagen dispersions were wet-spun either manually or 

automatically using our device to generate samples.  Fibers were dried for 24 h and cut 

into 1 cm segments.   Each 1 cm segment of fiber was equally divided into 1 mm 

intervals using a grid layout on NIH ImageJ software.   A measurement was taken at 

random within each of these intervals for a total of 10 measurements per fiber.  The mean 

fiber diameters of wet spun collagen fibers produced from the automated wet spinning 

device were 46.5 ± 10.9 µm and fibers produced manually were 57 ± 31.1 µm, 

respectively.  Importantly, wet spun fibers produced from the automated device were 

more uniform than manually produced fibers as indicated by the reduced standard 

deviations.  Fibers generated from the device were also longer and continuous providing 

higher yields for each wet spinning process.   

 The ability of this device to extrude dispersions through the syringe pump system 

and form fibers was compared for 0.5, 0.75, 1.0, 2.0 and 3.4% wt dispersions.  

Dispersions of 0.5% wt produced brittle two-dimensional films while 0.75% wt 
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dispersions generated consist strands, which had a well defined fiber morphology.  Fibers 

from 0.75 and 1.0 % wt dispersions were readily extruded into the coagulation bath, 

whereas the viscosity of 2.0 and 3.4% wt dispersions made it difficult to load into the 

syringe, flow through the Viton® tubing and extrude out of the spinneret. Therefore 2.0 

and 3.4% wt dispersions were gently heated to 40oC to reduce viscosity, which facilitated 

loading and spinning. The diameters and uniformity of fibers produced from 0.75 and 

1.0% wt were 46.5 ± 10.9 µm and 55.9 ± 14.9 µm, respectively.  The fibers from 0.75% 

wt were smaller than fibers produced from 1.0% wt but were not significantly different, 

p>0.05 as shown in Figure 2.5.  Further increases in collagen dispersion concentration led 

to increased fiber diameters and larger variability.  2.0 and 3.4% wt collagen dispersions 

produced fibers with mean diameters of 105.02 ± 24 µm and 193.4 ± 38.9 µm, 

respectively. 

 

 

Figure 2.5 Fiber diameter and uniformity in relation to collagen dispersion concentration.   
(* denotes p>0.05 or statistically insignificant, ** denotes p<0.05 or statistically 
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significant difference)   
 
 
2.3.4 Mechanical Analysis 

The effects of collagen dispersion concentration and crosslinking treatment on fiber 

strength were analyzed.  Instron tensile test data in the form of force-extension curves 

were used to determine the degree of stiffness k based on the slope of the curve.  Force-

extension curves independent of mean cross-sectional areas were evaluated for all the 

dispersions to determine fiber stiffness.    Additionally, the mean cross-sectional area of 

the fibers was used to obtain approximate stress-strain curves.   

 For non-crosslinked fiber samples, the force-extension curves revealed that the 

fiber stiffness decreased as the concentration of dispersion increased as seen in Figure 2.6 

A.  

 

 

Figure 2.6 (A) Force-extension curves and (B) stress-strain curves for different wet-spun 
fibers. 
 

The 0.75% wt and 1.0% wt dispersions measured within the initial 5% strain had 

tensile moduli of 1265 ± 171 MPa and 800 ± 143 MPa, respectively, Table 2.1.  The 

2.0% and 3.4% wt dispersions had much lower moduli of 286 ± 58 MPa and 236 ± 98 
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MPa, respectively.  Using mean diameter measurements for determining stress could 

result in inaccurate stress values as the measured moduli would occur in areas of high 

stress. This finding correlated with the relationship between elastic modulus and 

increasing collagen concentration.  Higher elastic moduli were seen in fibers produced 

from lower concentrations since the fiber diameters were smaller as shown in Figure 2.6 

B.  The results suggest that as the concentration of dispersion increases from 2.0 and 

3.4% wt, the fibers become less stiff with smaller deformation.  The weak mechanical 

properties of fibers from 3.4% wt dispersion as observed in the stress-strain curve are 

characterized by the limited deformation and low ultimate tensile strength upon failure as 

seen in Figure 2.6 B.   

 The improvement of cross-linking fibers on mechanical properties was 

investigated. Fibers wet-spun from 0.75% wt dispersions were cross-linked in a 

treatment of 1.0% glutaraldehyde (GA) and 1.0% genipin (Gp) and tested under tensile 

analysis. Cross-linking was a post treatment where dried fibers were rehydrated with a 

cross-linking solution and then dried for a minimum of 24 hours prior to mechanical 

testing.  Since the procedure could affect fiber mechanical properties, a sham group was 

prepared by soaking 0.75% wt wet-spun fibers in dH2O only and dried in parallel with 

fiber cross-linking treatments.   
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Table 2.1 Effects of Concentration and Crosslinking on the Tensile Properties of Wet-
spun Collagen Fibers. 
 
 

 

 

 For cross-linked fiber samples, the stress-strain curves revealed that the tensile 

modulus increased following 1.0% GA and 1.0% Gp treatments compared to the sham 

and dry fiber groups shown in Figure 2.7.  Collagen fibers treated with 1.0% GA and 

1.0% Gp had greatly increased tensile moduli of 2821 ± 168 MPa and 2394 ± 148 MPa, 

respectively, Table 2.1.  Interestingly, the procedure of rehydrating and drying collagen 

fibers lowered tensile strength from a mean tensile modulus of 1265 ± 171 MPa to 707 ± 

68 MPa.  

  

%wt Collagen Dispersion Tensile Modulus UTS % Elongation 

Dry 0.75 1265 ± 171 MPa 262 ± 62 MPa 18.4 ± 4.9 

Dry 1.0 800 ± 143 MPa 240 ± 25 MPa 36.7 ± 8.0  

Dry 2.0 286 ± 58 MPa 57 ± 15 MPa 43.6 ± 9.1  

Dry 3.4 236 ± 98 MPa 25 ± 2 MPa 11.2 ± 2.0 

0.75 Non-crosslinked in Water 707 ± 68 MPa 59  ± 18 MPa 10.9 ± 1.6 

0.75 Crosslinked 1.0% Genipin 2394 ± 148 MPa 222 ± 74 MPa 16.4 ± 1.3 

0.75% Crosslinked 1.0% Glutaraldehyde 2821  ± 168 MPa 136  ± 2.6 MPa 10.8  ± 1.9 



56 

 

   

 

Figure 2.7 (A) Force-extension curves and (B) stress-strain curves for different cross-
linking treatments of 0.75% wt wet-spun collagen fibers. * denotes control group or sham 
group in water to compare with cross-linking treatments in water. 
 
 

2.3.5 Swelling Response 

Collagen fibers like other natural polymers are known to undergo water absorption under 

physiological conditions.  The degree of swelling was quantified based on fiber diameter 

before (dry) and after incubation in PBS for 30 min, 60 min, 24 h and 6 weeks at 37oC.  

Non-crosslinked 0.75% wt fibers swelled to slightly more than twice its diameter within 

30 min of incubation as observed in Figure 2.8.  With the presence of crosslinkers 1.0% 

glutaraldehyde and 1.0% genipin, the degree of swelling in terms of diameter was 

reduced from 2X the diameter to 1.5X and 1.3X the diameter, respectively.   

 

*"

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0 1 2 3 

Fo
rc

e 
(N

) 

Extension (mm) 

1.0% GA 

1.0% Gp 

Control (in Water) 

Dry 
0 

50 

100 

150 

200 

250 

300 

0 0.05 0.1 0.15 0.2 

St
re

ss
 (M

Pa
) 

Strain 

1.0% GA 

1.0% Gp 

Control (in 
Water) 

Dry 

*"

A B 



57 

 

 

Figure 2.8 Swelling behavior for non-crosslinked and cross-linked 0.75% wt collagen 
fibers in PBS. (*denotes p>0.05 or statistically insignificant, ** denotes p<0.05 or 
statistically significant difference) 
 

The swelling response trend in the fibers with and without cross-linkers suggest 

that cross-linking may limit water adsorption in collagen fibers.  Furthermore, the use of 

1.0% genipin was equally effective as 1.0% glutaraldehyde in lowering the swelling 

response of the collagen fibers.  

 

2.3.6 Differential Scanning Calorimetry 

Thermal analysis using differential scanning calorimetry (DSC) was used to characterize 

the thermal transitions of collagen in fibers spun from each dispersion including both 
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test, a broad endotherm in the graph is due to water being driven off from the collagen 

fibers as seen in a thermogram of non-crosslinked 0.75% wt collagen fibers, Figure 2.9.   

 

 

Figure 2.9 Typical thermogram for 0.75% wt non-crosslinked collagen fibers.  (1) Glass 
transition temperature, (2) Denaturation temperature, (3) Broad peak representing water 
loss from sample. 
 

By increasing the temperature, the denaturation temperature is reached when all 

the native hydrogen bonds that link the α chains of the collagen triple helix together are 

finally broken.  A steady increase in temperature results in the irreversible uncoiling of 

the collagen triple helix and denaturation into gelatin.  A small endothermic peak marks 

denaturation at 180-230º C. The collagen fibers were then cooled back down to 10º C 

during which the glass transition temperature is observed at 185-210º C.  The glass 

transition temperature occurs when the mobility of particles increases within the structure 
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resulting in the material changing from solid rigid phase to a plastic, rubbery phase.  As 

the concentration of the collagen dispersions increased, both Td and Tg decreased as seen 

in Table 2.2.  0.75% and 1.0% wt dispersions had denaturation temperatures of 223.02 ± 

1.5 oC and 213.41 ± 2.0 oC, respectively.  The glass transition temperatures of 0.75% and 

1.0% wt were 208.87 ± 1.5 oC and 201.93 ± 0.5 oC, respectively, which were closely 

similar.  There was a significant reduction in denaturation temperatures for 2.0% and 

3.4% wt with values of 187.24 ± 0.5 oC and 186.35 ± 0.5 oC, respectively.  Likewise, the 

glass transition temperatures for 2.0% and 3.4% wt dispersions were also lower with 

values of 185.11 ± 0.1 oC and 182.96 ± 0.5 oC, respectively. 

 

Table 2.2 Comparison of Thermal Properties for Wet-spun Collagen Fibers 

 

  

Furthermore, the denaturation temperatures for 0.75% and 2.0% wt dispersions 

increased to 232.93 ± 0.5 C and 231.83 ± 2.0 C, respectively, when cross-linked with 

0.1% glutaraldehyde.  For 1.0% glutaraldehyde cross-linker, the denaturation and glass 

transition temperatures of 0.75% wt collagen increased to 238.53 ± 2.0 C and 213.58 ± 

1.5 C, respectively.  Also, fibers cross-linked with 1.0% genipin demonstrated an 

increase in denaturation and glass transition temperatures of non-crosslinked fibers with 

Weight % Denaturation Temperature (Td) Glass Transition Temperature (Tg)
0.75 223.02 ± 1.5 C 208.87 ± 1.5 C

1 213.41 ± 2.0 C 201.93 ± 0.5 C
2 187.24  ± 0.5 C 185.11  ± 0.1 C

3.4 186.35 ± 0.5 C 182.96 ± 0.5 C
0.75, Cross-linked 0.1% GA 232.93  ± 0.5 C 206.63 ± 2.0 C
2.0, Cross-linked 0.1% GA 231.83 ± 2.0 C 203.26 ± 0.5 C

0.75, Cross-linked 1.0% GA 238.53 ± 2.0 C 213.58 ± 1.5 C
0.75, Cross-linked 1.0% Gp 218.75 ± 1.5 C 211.65 ± 2.0 C
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values of 218.75 ± 0.5 C and 211.65 ± 2.0 C, respectively.  The increase in denaturation 

temperature validates the effectiveness of cross-linking in this study.      

 

2.3.7 Cell Response on Wet-spun Collagen Fibers 

The cytotoxicity of the crosslinked wet-spun collagen fibers produced from 0.75% wt 

dispersions were evaluated.   Dissociated dorsal root ganglia neurons were plated on the 

ends of cross-linked fibers treated with 1.0% genipin and 1.0% glutaraldehyde. At 10 

days in vitro (DIV), the cultures were assessed for neuronal adhesion to the fibers by 

staining with neurofilament to investigate the morphology of neurite outgrowth on the 

fibers.  Also, Calcein AM (green) and propidium iodide (red) were used as LIVE/DEAD 

staining reagents to assess cell viability.  Glutaraldehyde cross-linked fibers resulted in 

widespread cell death compared to robust neuronal viability on the genipin cross-linked 

fibers as seen in Figure 2.10 C and D, respectively.  These results support genipin as a 

viable alternative neuro-compatible cross-linker in future neural tissue engineering 

applications. 

 

Figure 2.10 Growth response of dissociated embryonic DRGs at day 10 on 0.75% wt 
wet-spun collagen fibers treated with cross-linking reagents.  A) Cell death and cellular 
debris on 1.0% glutaraldehyde-treated fibers.  B) Axon growth seen on 1.0% genipin-
treated fibers. Fluorescent staining with Neurofilament-200, Sigma.  C) Nuclei of dead 
cells (red) on 1.0% glutaraldehyde-treated fibers.  D) Minimal cell death on 1.0% 
genipin-treated fibers.  Scale bar = 100 µm. 
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2.4 Discussion 

 

2.4.1 Wet Spinning Device and Technique Development 

A wet spinning device was engineered for the controlled fabrication of synthetic collagen 

fibers.   The motivation for creating this device was the ability to produce uniform 

collagen fibers with consistent diameters and mechanical properties from batch to batch.  

To determine optimal wet spinning parameters, collagen fibers were characterized by 

tensile behavior, size, diameter uniformity, and thermal phase transitions.  Fibers 

developed from the device had greatly improved diameter uniformity, consistent elastic 

moduli and thermal response compared to the commonly used manual extrusion 

technique.   

Wet spun fibers are controlled through the adjustment of four parameters: 

collagen dispersion concentration, dispersion extrusion rate, spinneret size, and speed of 

the collection belt.  Small spinneret gauge sizes were required to produce small diameter 

fibers.  Spinnerets with gauges above 22 were too narrow and dispersions above 2.0% wt 

resulted in obstruction due to its high viscosity and insoluble collagen particulates.  A 

needle gauge of 22 was the ideal spinneret size for the fibers produced and tested in this 

study.   It is important to note that higher yields or longer lengths of fibers were obtained 

when the amount of air bubbles in the dispersions were minimized.  The presence of 

bubbles during extrusion typically obstructs the continuous flow of dispersions into the 

bath.   
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It was discovered that uniform fibers were produced when the speed of the 

collection belt matched the extrusion rate. The speed of the motor (60 RPM) was too fast 

to collect fibers.  Therefore, a 10:1 gear ratio was used to slow down the speed to 6 RPM 

where 0.75-3.4% wt dispersions consistently formed fibers on the collection belt at an 

extrusion rate of 12.4 ml/hr.  It is also important to note that the spinneret must be in 

slight contact with the surface of the moving collection belt to reproduce continuous and 

uniform collagen fibers.   

An important advantage of the design is that the device minimizes the quantity of 

chemical reagents required for each production cycle and its small size enables portability 

and transport into sterile working environments (i.e. tissue culture hoods).  Importantly, 

the self-contained chamber supports various coagulation baths and can even be used to 

house cross-linking reagents for future cross-linking treatments.  These features make the 

device ideal for any bench top research setting.  

 

2.4.2 Properties of Wet-spun Collagen Fibers 

Uniform fiber properties were mostly affected by the use of a syringe pump for 

controlling flow rate and a collection belt. Using a collagen dispersion concentration of 

0.75% wt flow rates above 12.4 ml/hr resulted in precipitated collagen with irregular, 

poorly defined fiber morphology.  Flow rates below 2.0 ml/hr resulted in thin, flat 2-D 

films of precipitated collagen.  As flow rates were steadily decreased from 12.4 ml/hr to 

2.0 ml/hr, fibers were produced with decreasingly smaller diameters ranging from 46.5 ± 

10.9 µm to 23.2 ± 10.9 µm, respectively.  Accordingly, for applications requiring smaller 

diameter fibers, the flow rate can be reduced.   
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 In this study the emphasis was on evaluating the effects of collagen concentration 

on mechanical and physiochemical properties of the fibers, keeping the remaining device 

parameters constant.  At high concentrations (3.5% - 5% wt), collagen dispersions 

contained large insoluble collagen particulates.  These particulates would clog and disrupt 

the extrusion.   3.4% wt was the maximum concentration that resulted in a dispersion 

visually clear of particles and would not clog the spinnerets tested.  For concentrations 

above 2% wt, the high viscosity of the dispersions made it difficult to extrude through the 

syringe, tubing and spinneret.  Here, a method of heating was utilized to reduce the 

viscosity of the dispersions by placing them into a 40oC water bath for 10 min prior to 

wet spinning.  Heating allowed the 2 and 3.4% wt dispersions to be extruded through the 

tubing and into the coagulation bath. It was observed that the 0.75% wt dispersions 

consistently formed the most well defined fibers.   

DSC was used to assess the thermal stability of non-crosslinked and cross-linked 

collagen fibers. There was a particular concern with the fibers made from the heated 

dispersions.  The DSC thermographs of the collagen fibers made from 2.0 and 3.4% wt 

dispersions revealed a reduction in Tg.  This suggests that the collagen may have become 

denatured during the heating process. 

With heat, the water content within collagen fibers is heated, the triple helix melts 

and progressively dissociates into three randomly coiled peptide α-chains characteristic 

of gelatin.  In agreement with other thermal analysis studies in the literature, it was 

observed that thermal denaturation of collagen depends on water content and the degree 

of cross-linking [192-195]. Thermal data revealed that interstitial water content should be 

taken into account at higher concentrated collagen dispersions.  Specifically, the presence 
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of interstitial water increases between fibrils packed within the thick fibers as collagen 

concentrations are increased.  Water can obviously have a negative correlation on the dry 

mechanics of the fibers at higher collagen concentrations.  According to the 

thermochemical properties among the dispersions, the 0.75% wt fibers exhibited the most 

thermal stability as evident by the higher helix-coil transition temperature.   

The hypothesis was that increasing collagen dispersion concentration would 

create fibers of larger sizes and higher strengths.  Indeed, higher dispersion 

concentrations resulted in larger diameter fibers, but with less control of diameter 

uniformity.  Similarly, other studies have shown that fiber diameter depends on the 

collagen concentration [196, 197].  At higher concentrations, viscosity and turbulent flow 

during extrusion is believed to lead to the formation of large and irregular diameters, refs. 

 The concentration of the dispersions also influenced the mechanical properties of 

the fibers.  It was observed that the tensile modulus and UTS of the fibers decreased as 

the collagen concentration in the dispersions increased.  For higher collagen 

concentrations, it is possible that the viscosity of the dispersion inhibits the movement of 

collagen fibrils to orient against the shear forces exerted during extrusion [198].  

  If there is a lack of fibril orientation, tensile stress would be unevenly distributed 

with regions of weak points where failure may occur.  In thicker fibers, fibrillar packing 

is low because there is less orientation of fibrils.    Therefore, increasing collagen 

concentrations and/or collagen fiber diameters exhibit lower tensile modulus due to 

potential inter-fibrillar slippage.  In contrast, low concentration dispersions (0.75-1.0% 

wt) produced thin, small diameter fibers, which resulted in tighter fibrillar packing and 

orientation.  The tensile strength increases as the cross-sectional area decreases due to 
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less possibility of defects within thinner segments of fibers [198, 199].  Fibers with 

higher fibril alignment have small diameter, which results in lower force at break and 

higher tensile strength as previously reported.  As fiber diameter decreases, there is an 

increase in longitudinal alignment and fibrillar packing density, which leads to stronger 

interactions within or between individual collagen fibrils [198, 200-203].  Consequently, 

0.75% wt dispersions yielded fibers with higher modulus and tensile properties.  Since 

there is minimal inter-fibrillar slippage in smaller diameter fibers, the tensile strength of 

low concentrated dispersions (i.e., 0.75% wt) is significantly higher. 

 

2.4.3 Fiber Cross-linking 

Cross-linking the collagen fibrils within the fibers should increase the tensile properties 

and limit the swelling or water uptake into the fibers.  These properties may be important 

to long-term performance in tissue engineering applications.  In this study, genipin was 

evaluated as an alternative biocompatible cross-linker using glutaraldehyde as a positive 

control.  Collagen fibers cross-linked with genipin exhibited nearly two-fold increase in 

tensile modulus compared to dry non-cross-linked fibers.  Both cross-linkers were 

effective in enhancing the tensile properties of the fibers.   Since the genipin-treated 

fibers displayed comparable tensile properties to glutaraldehyde-treated fibers, there is 

future potential for the use of genipin-treated collagen scaffolds in nerve guidance 

conduit materials. 

The effects of crosslinking were also considered on fiber swelling or water uptake 

response of collagen fibers.  With cross-linkers, water absorption was significantly 

reduced since there are limited spaces for water to enter due to the degree of cross-links 
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present within collagen.  Within 30 minutes, the effects of the cross-linkers were already 

noticed due to a reduction in swelling compared to non-crosslinked fibers.  By six weeks, 

the non-crosslinked fibers exhibited diameters that were nearly 3 times the original, dry 

size.  In contrast, glutaraldehyde and genipin reduced swelling to 1.4 and 1.2 times the 

original diameter, respectively.   

 During the preparation of crosslinked fibers, it was discovered that the soaking 

process of cross-linking could itself change the properties of the fiber.  As a sham 

control, non-crosslinked fibers were immersed in water for 24 hours and compared to the 

cross-linked fiber groups.  Interestingly, the sham control of swelling and re-drying the 

fibers resulted in a reduction in their mechanical properties.  These results suggest that 

cross-linking significantly enhances the physiochemical and mechanical properties of the 

collagen fibers.  Importantly, the efficacy of cross-linking with genipin was validated to 

be comparable to glutaraldehyde.   

 

2.4.4 Neuronal Biocompatibility of Fibers 

Although glutaraldehyde cross-linking greatly improved the mechanical strength of the 

collagen fibers, the potential toxic effect has been a vital drawback for this commonly 

used chemical reagent for biological tissues.  A few studies have previously demonstrated 

that genipin has the potential to be used as a substitute cross-linking agent [57, 84-86, 

204], however, its cyto-compatibility with neuronal tissue was uncertain.  Here, it was 

observed that DRG neurons on genipin-treated fibers had a viability of > 95% at 10 days 

in vitro.  In contrast, the glutaraldehyde-treated fibers displayed < 5% viability during the 

same time point in culture.  These cytotoxicity findings seem to correlate with previously 
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reported studies in the literature [204-206].  Thus, the enhancements in mechanical 

stability and controlled rate of swelling in addition to favorable viability of neuronal 

cultures validates the future use of genipin for neural tissue engineering applications.    

In terms of future studies, the focus is now on experimenting with more cross-

linking and surface modification methods to immobilize extra-cellular matrix proteins on 

the surface for enhanced long-term axon outgrowth and Schwann cell migration response 

to the wet-spun collagen fibers.  While these new additions to the study will improve the 

application of wet-spun collagen fibers in tissue engineering, this miniaturized wet 

spinning device has expanded upon currently used wet spinning apparatuses in industry 

by providing compactness, cost-effectiveness in use of reagents and portability into 

sterile working environments. 
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CHAPTER 3 

ENGINEERING IN VITRO COLLAGEN-BASED NERVE TISSUE 

CONSTRUCTS  

 

Previous published reports indicate that biomaterial-based grafts in the form of synthetic 

tubes, channels, three-dimensional (3D) gels, scaffolds, or substrates have shown 

considerable promise in directing regenerating axons in vitro and in vivo.  However, 

many of these biomaterial strategies continue to fall short of the autologous nerve grafts, 

which remain to be the current gold standard in repairing severe nerve lesions (<20mm).  

In general, neurite extension on 2D surfaces remains to be far better compared to 

neuronal cultures embedded in 3D substrates.  Therefore, producing aligned fiber 

scaffolds distributed within a 3D space is essential for recreating an ideal regenerating 

environment for growing axons.  In this study, 3D nerve tissue constructs were 

engineered consisting of a compliant collagen gel matrix and a fiber component for 

promoting “contact-guided” axon growth. Preferential axon outgrowth was investigated 

on synthetic and natural polymer fibers by utilizing small diameter (<100 µm) fibers of 

poly-L-lactic acid (PLLA) and collagen I, respectively.  Collagen I extracted from rat tail 

tendon was processed into fiber strands using the controlled wet spinning device. Gel 

constructs containing fibers induced greater axon outgrowth distances with significantly 

more directionality along the aligned fibers.  Interestingly, wet-spun collagen I from rat 

tail tendon displayed a highly aligned outgrowth pattern from embryonic and adult DRG 

axons suggesting potential use for peripheral nerve repair.    
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3.1 Introduction 

In recent years, tissue engineering has played a key role in redefining strategies in the 

field of nerve repair.  In both in vitro and in vivo studies of axonal regeneration, gels, 

sponges, and tubes are types of scaffolds vigorously evaluated in nerve tissue guidance 

conduits.  Gels and sponges are advantageous in reconstruction of both peripheral and 

spinal cord injuries because they can be used for filling posttraumatic cavities and serving 

as carriers for cells and therapeutic agents [207-211]. Soft gels have become a promising 

approach in providing a more realistic 3D environment conducive to axon regeneration 

for in vitro and in vivo studies [212-214].  Furthermore, numerous studies have also 

focused on facilitating neurite outgrowth using hydrogel scaffolds modified using 

covalent-linked ECM-derived proteins and RGD-peptide sequences [215].  Gels alone, 

however, do not adequately provide a clear direct path for oriented guidance of 

regenerating axons through a lesion. To date, no standard material or fabrication 

technique has been widely established as the optimum for promoting directional 

outgrowth.  Thus, an alternative scaffold design strategy is necessary for facilitating 

directed axon guidance and growth in 3D.      

Mechanical cues presented by 2D rigid substrates induce far greater neurite 

extension than cells in 3D cultures [216]. Axon growth preference for rigid substrates 

may have been explained many years ago by Lamoureux, Heidemann, and several others 

who discovered that growth rates of neurites were strongly correlated to applied tension, 

in which a pulling phenomenon was observed during elongation of growth cone [217, 

218]. Although growing axons favor the 2D substrates, high demand for developing 3D 

substrates/gels/scaffolds to provide a more ““biomimetic”” environment still remains. 
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Earlier work conducted by Gomez and Letourneau demonstrated that when presented a 

choice, growth cones follow the preferred of 2 substrates, exhibiting a contact guidance 

response [219]. Previous work in the area of developing 3D constructs has led to a strong 

belief that ideal constructs may involve incorporating “2D-like” substrates/surfaces in 3D 

space.   

Here, methodology was established to promote survival, adhesion, and 

preferential neurite outgrowth of primary dorsal root ganglion (DRG) neurons on 3D 

fiber-gel constructs. Unlike some other strategies where axons are constrained to grow 

within tubes or channels, growth cones were given a choice to extend within soft, 

confluent collagen gels or to grow along a single fiber presented in close proximity to the 

axons in 3D space.   In this study, the fiber components evaluated were biodegradable 

synthetic poly-L-lactic acid (PLLA) and natural collagen fibers with micron-size 

diameters (<100µm).  Collagen fibers from collagen I of rat tail tendon were fabricated 

using a wet spinning technique as previously described. Rat tail tendon was the preferred 

source of collagen I based on previous studies in the lab, which suggested that neurite 

outgrowth is less restricted on two-dimensional substrates coated with rat tail collagen 

compared to collagen I from bovine tendon.  Mean outgrowth of axons on rat tail 

collagen was significantly different from extensions on bovine tendon collagen molecular 

layers on 2-D petri dishes. Furthermore, collagen I from rat tail tendon was isolated with 

more ease and reconstituted more homogenously compared to bovine tendon.  Hence, 

collagen fibers were synthesized from rat tail tendon isolates for all subsequent 

experiments. The role of surface modified extra-cellular matrix proteins on PLLA and 
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collagen fibers were evaluated for their effects on neurite outgrowth response in 

embryonic and adult DRG neurons. 

 

3.2 Materials and Methods 

In this particular study, the focus was on developing collagen-based fiber-gel constructs 

for mediating axon growth by contact guidance.  Here, the growing axons were presented 

a choice between two components of this construct: (1) fiber component in the form of 

PLLA or wet-spun collagen fiber and (2) gel component consisting of collagen gel matrix 

or hydrogel.  The hypothesis is that axons will elicit preferential contact guidance 

towards the fiber instead of the gel due to stiffer mechanical properties for extension and 

elongation of growth cones.  The efficacy of these material components will ultimately 

determine if they are suitable for engineering nerve guidance conduits.  

  

3.2.1 Preparation of Fiber Components for Fiber-Gel Constructs 

PLLA fibers (80 µm in diameter) used in this study were obtained from Dr. Zohar Ophir, 

Medical Device Concept Laboratory, New Jersey Institute of Technology. The surface of 

the PLLA fibers was also modified by physical adsorption of collagen I at 2.0mg/ml as a 

comparison with wet-spun collagen fibers. Collagen I used for gel matrices and for wet 

spinning fibers was obtained via extraction [220] from rat tail tendons obtained from 

euthanized Sprague-Dawley rats (200-250g). 
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3.2.2 Wet Spinning 

Collagen I in lyophilized form following extraction was reconstituted in glacial acetic 

acid to obtain a 0.75 wt % collagen dispersion at pH 4, which was loaded into a 10 cc 

plastic syringe. The syringe was mounted onto a syringe pump (Harvard Apparatus) with 

Viton tubing connecting the syringe to a blunt-tipped, 22-gauge needle with an inner 

diameter of 0.4 mm (McMaster-Carr). The tip of the spinneret was immersed into a 

coagulation bath containing HPLC-grade acetone and ammonium hydroxide at pH 9. The 

syringe was adjusted to a constant flow rate of 0.21 mL/min. Fibers were deposited on a 

teflon mesh conveyor belt connected to the shaft of a DC motor operating at a rotational 

speed of 6 rpm.  Once firm, the collagen fiber strands were collected manually and cut 

into 1 cm long segments for assembly of the fiber-gel constructs. 

 

3.2.3 Hydrogel Preparation 

Collagen I gels from rat tail tendon were prepared at approximately 0.8mg/mL 

concentration using the following mixture: 10 µL of 1N NaOH, 180 µL of tissue culture 

grade H2O, 800 µL of collagen I (~4.0 mg/mL) derived from rat tail tendon, and 100 µL 

of 10X MEM (Sigma), 59.58 g/L HEPES (Sigma), and 22.0 g/L NaHCO3 (Sigma). 

Approximately, 400 µL of 0.8mg/mL collagen gel was filled into 24-well tissue culture 

plate and left to incubate up to 1 hr. Single PLLA and collagen filaments were then 

loaded onto the surface of gel layer prior to cell plating.  DRG explants were plated on 

the end of the fiber and given up to 3 hrs to adhere prior to adding 100 µL of additional 

collagen gel to complete the assembly of fiber-gel neural constructs as shown in Figure 
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3.1.  After the top layer of collagen gel was incubated up to 1 hr, 500 µL of media was 

gently added to the top of each fiber-gel construct.    

 

 

Figure 3.1 Schematic illustration of the assembly of fiber-gel neural constructs. 

 

3.2.4 Surface Modification of Fibers 

In this study, the influence of ECM-derived proteins on the surface of fibers was 

evaluated.  The surfaces of PLLA and collagen fibers were modified by laminin (LN), 

poly-L-lysine (PLL), and matrigel (MG) each at 50µg/mL for 1 hour and rinsed three 

times with PBS for 5 minutes each.  The surface modification was performed by physical 

adsorption only.  Surface-treated fibers were incubated for 2 hours in a 37oC incubator 
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with 5% CO2 prior to cell plating.  These fiber-treated groups were evaluated with adult 

DRG neuronal cultures after 10 days in culture.       

   

3.2.5 Cell Culture 

E16 rat DRG explants were isolated from fetuses of Sprague Dawley rat strain in 

accordance with procedures approved by the Institutional Animal Care and Use 

Committee (IACUC) at Rutgers State University-Newark and New Jersey Institute of 

Technology. DRG explants harvested from 4 to 5 pups were isolated in L-15 medium 

(See Appendix A).  An average of 20-25 DRG explants are obtained from the spine of 

one pup as seen in Figure 3.2.   

 

 

Figure 3.2 Embryonic Dorsal Root Ganglia (DRG) Dissection.  (A) E16 rat fetus, (B) 
View of dissected fetus showing vertebrae, (C) Dissected fetal spinal cords with DRGs, 
and (D) Closer view of isolated DRG explants prior to plating.  
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A single explant was immediately plated onto the end of a single fiber supported 

in 400µL of collagen gel.  DRG cultures were maintained in complete growth medium 

consisting of Neuralbasal medium (Invitrogen, Carlsbad, CA) supplemented with B-27 

(Invitrogen), 1% FBS (Hyclone, Logan, UT), 1 mM L-Glutamine (Invitrogen), 2.5 g/L 

glucose, and 10 ng/mL 2.5S nerve growth factor (Becton Dickinson, Bedford, MA). All 

were treated with mitotic inhibitors (20µM 5-Fluoro-2-deoxyuridine [Sigma], and 20µM 

uridine [Sigma]). After 2 days, the medium was exchanged with complete medium plus 

mitotic inhibitors (20 µM 5-fluoro-2-deoxyuridine [Sigma], and 20µM uridine [Sigma]) 

for up to 14 days. 

Similarly, neuronal cultures were also prepared from dissociated adult DRG 

explants from previously euthanized female rats.  The dissection of adult DRGs is seen in 

Figure 3.3.   

 

Figure 3.3 Adult Dorsal Root Ganglia (DRG) Dissection.  (A) Vertebral Column of 
Adult Rat, (B) View of symmetrically cut vertebral column, (C) Spinal cord pulled away 
to expose DRGs.  
 

Adult DRGs were dissociated using 0.25% collagenase (Worthington) for 1 hour 

followed by 0.25% trypsin for an additional 1 hour at 37°C.  Neurobasal medium + 5% 
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FBS was then added to inactivate the trypsin, and the tissue was triturated followed by 

centrifugation at 1000 rpm for 5 minutes.    Cells were then re-suspended in 1 mL of 

fresh media and passed through a 2-layer bovine serum albumin (BSA) density gradient 

(5% and 10%) to separate DRG neurons from Schwann cells and myelin.  The gradient 

was then centrifuged at 1000 rpm for 5 minutes and the resulting pellet was re-suspended 

in 200 µL fresh media.   The cell suspension was then plated at 2.5 x 103 cells 

immediately adjacent to the ends or directly above the fiber groups (PLLA, collagen-

PLLA, collagen fibers) by using 5 µL size droplets.  The cultures were placed in a 

humidified tissue culture incubator (37°C and 5% CO2) for 3 hours at which point 500 µL 

of additional media was added to each culture.  The culture media was changed every 2-3 

days in vitro (DIV) by replacement with fresh media pre-warmed to 37°C.  For specifics 

on the tissue harvest, please refer to Appendix B. 

 

3.2.6 Quantification of Neurite Outgrowth 

Embryonic DRG explants were grown for up to 14 days on the following experimental 

groups: PLLA fiber/collagen gel, collagen-coated PLLA fiber/collagen gel, and collagen 

fiber/collagen gel.  Neurite lengths were determined using merged images of DRG 

explants stained with Calcein AM.  Photos were merged using Photoshop (Adobe).  On 1, 

8, 10, and 14 days, neurite lengths from embryonic DRG explants were measured from 

the outer perimeter edge of the ganglia to the furthest tip using Image J software (NIH).  

The number of explants measured was 5 for each fiber-gel group at each time point.  

Furthermore, the length was measured parallel to the fiber axis.  In this study, 2-D control 

groups of DRG explants grown on tissue culture-treated polystyrene coated with 2.0 
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mg/ml collagen were used for comparison with 3-D cultures.  A 3-D control consisting of 

gel without fiber was also compared to all experimental groups containing fibers. 

Adult DRG explants were grown for up to 10 days on the following experimental 

groups: PLLA fiber/collagen gel, collagen-coated PLLA fiber/collagen gel, and collagen 

fiber/collagen gel.  Similarly, neurite lengths were measured using merged images of 

dissociated adult DRG neurons using Image J software at 2, 5, and 10 days in vitro. 

Neurite lengths of adult DRGs grown on LN, PLL and MG-treated fibers were 

measured at 10 days in vitro.  Control groups of unmodified PLLA and collagen fibers 

were also evaluated. 

 

3.2.7 Mechanical Testing of Fiber Components 
 
Stress-strain curves for PLLA and collagen fibers (0.75% wt collagen dispersion) were 

generated under uniaxial tension using an Instron 3342 Universal testing machine 

(Instron, UK).  Fibers were cut into 3 cm segments using a fine razor blade and stored at 

room temperature until needed for tensile analysis.  Each fiber sample was placed 

between the clamps of the instrument in order to mount.  The Instron operated at an 

extension rate of 5 mm/min and a gauge length fixed at 2 cm for each sample.  The secant 

modulus was defined by dividing the average stress by the average strain in the linear 

region within 5% strain of the stress/strain curve for each fiber.   

All tensile studies were performed at room temperature using dry fiber samples.  

Air-dried fibers (n=10) from each of the fiber groups were mounted with tape to grip the 

ends of the fibers to prevent slippage while ensuring that the fibers were not damaged at 

the contact points of the clamp.  Results obtained from fibers that broke at contact points 
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or from fibers that slipped from the clamps were rejected. The strain was determined by 

the change in fiber length divided by the original length. 

 

3.3 Results 

 

3.3.1 Development of Collagen-Based Fiber-Gel Nerve Tissue Constructs 

The ability to fabricate continuous synthetic collagen fibers with a miniaturized wet 

spinning device presented various opportunities in the development of collagen fibrous 

scaffolds for nerve guidance constructs.  Here, the hypothesis was that fibers or 

monofilaments loaded within a 3-D hydrogel would provide facilitated axon outgrowth of 

embryonic and adult sensory neurons in vitro.  Following the assembly of fiber-hydrogel 

constructs, the growth response of DRG axons was evaluated by immunocytochemistry 

and other staining methods to determine if contact guidance influences directed growth.  

In other words, the goal was to evaluate if regenerating axons show preferential growth 

when presented two substrates: (1) soft hydrogel matrix and (2) stiff fiber component. 

Furthermore, this study addressed whether mechanical or biochemical cues 

presented on the fibers preferentially influence neurite outgrowth.  The findings helped 

identify factors that could be optimized in collagen fiber scaffolds to make them more 

suitable for neural tissue engineering applications.  Thus, the following sections present 

overall results on the growth response of neuronal cultures on the fiber-hydrogel 

composite materials while providing an early assessment for use in future designs of 

nerve guidance conduits. 
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3.3.2 Growth Response of Embryonic DRGs on Fiber-Gel Constructs 

Neurite measurements were performed on composite images of DRG explants stained 

with Calcein AM (Invitrogen) at 1, 8, 10, and 14 days in vitro (DIV). Neurite lengths 

were measured from the surface of the DRG explant to their farthest tips using the tracer 

tool in Image J (NIH).  The neuronal cultures were allowed to grow up to 14 DIV to 

assess long-term viability in the fiber/gel constructs.  Importantly, a 2-D control group 

was used for comparison with 3-D growth and consisted of DRG explants grown on 

tissue culture treated polystyrene dishes containing a 2.0 mg/ml molecular layer of 

collagen on the surface.  

By 14 DIV, the neurite outgrowth distance for 2-D control, 3-D control (gel only), 

PLLA fiber/collagen gel, col-PLLA fiber/collagen gel and collagen fiber/collagen gel 

were the following: 3.9 ± 0.7 mm, 2.8 ± 0.4 mm, 4.6 ± 0.3 mm, 6.8 ± 0.9 mm, and 6.4 ± 

0.7 mm, respectively.  In addition, the growth rates for 2-D control, 3-D control (gel 

only), PLLA fiber/collagen gel, col-PLLA fiber/collagen gel and collagen fiber/collagen 

gel were calculated by the slope of neurite outgrowth distance over days to be the 

following: 273 µm/day, 202 µm/day, 338 µm/day, 486 µm/day and 449 µm/day, 

respectively.  Growth rates and mean outgrowth distances of DRGs growing on PLLA 

fibers suggest that the presence of fibers in a collagen gel significantly improves neurite 

growth response in a 3-D gel matrix compared to the control group.   

Furthermore, the presence of collagen-coated PLLA and collagen fibers in a gel 

significantly improved axon growth distance compared to constructs with gel only, 

Figure 3.4.  A statistical comparison at day 14 revealed that there was no significant 

difference in the mean growth distances between collagen-PLLA and collagen fibers, p > 
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0.05.  In contrast, neurite lengths on collagen-PLLA and collagen fibers were 

significantly different in comparison to the rest of the experimental groups.   

 

 

Figure 3.4 Embryonic E-16 DRG Neurite Extension on Fiber-Gel Constructs.  ** 
denotes p>0.05 or statistically insignificant, * denotes p<0.05 or statistically significant 
difference. 

 

It is important to note that neurite growth distances on collagen-PLLA and 

collagen fibers were substantially larger than growth distances seen on 2-D collagen 

substrates.  These findings suggest that the growth rate limitations of axons within 3-D 

gel systems can be overcome by the use of fiber substrates to facilitate contact guidance 

for neurite extension within soft hydrogels. 
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3.3.3 Neurite Outgrowth Morphology on Fiber-Gel Constructs 

Images were acquired at 4X magnification and merged to create montages of axon 

growth using Photoshop (Adobe).  In fiber-gel constructs containing unmodified PLLA 

fibers, neurites displayed contact guidance along the length of the fiber, however, wide 

branching and random oriented growth within the gel were still observed.  Collagen-

PLLA fibers, which were PLLA fibers modified with a thin molecular layer of collagen, 

revealed significant alignment of neurites along the fiber and minimal branching as 

observed in Figure 3.5.  Collagen fibers wet-spun from collagen I (rat tail tendon) 

exhibited a similar outgrowth pattern of neurites as seen with the collagen-PLLA 

fiber/gel constructs.  A control group consisting of collagen gel without any fiber 

substrate validated that contact-guided growth was induced by the presence of a fiber in 

the gel regardless of the fiber type.  As expected, the neurite morphology of the control 

group was a uniform radial outgrowth pattern. 
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Figure 3.5 Embryonic E-16 DRG neurite outgrowth morphology on fiber-gel constructs 
at 10 DIV.  Control group is construct without fiber component.  Neurons stained with 
Calcein AM.  Scale bar = 500 µm. 
 

3.3.4 Growth Response of Adult DRGs on Fiber-Gel Constructs 

A neurite outgrowth study was also performed for dissociated adult sensory neurons 

harvest from DRGs on the fiber-gel constructs as previously described.  The same fiber-

gel constructs as mentioned in the embryonic growth study were similarly evaluated with 

the adult DRG neurons.  By 10 DIV, the neurite outgrowth distance for 3-D control (gel 

only), PLLA fiber/collagen gel, col-PLLA fiber/collagen gel and collagen fiber/collagen 

gel were the following: 0.62 ± 0.1 mm, 1.1 ± 0.1 mm, 1.6 ± 0.2 mm, and 1.5 ± 0.1 mm, 

respectively.  In addition, the adult growth rates for 3-D control (gel only), PLLA 

fiber/collagen gel, col-PLLA fiber/collagen gel and collagen fiber/collagen gel were the 

following: 59 µm/day, 111 µm/day, 142 µm/day and 139 µm/day, respectively.  As 
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compared to embryonic growth studies, the presence of collagen-coated PLLA and 

collagen fibers in a gel also significantly improved adult neurite outgrowth distance 

compared to constructs with gel only, Figure 3.6 A.   

 

 

Figure 3.6 Neurite lengths of adult DRGs grown on fiber-gel constructs, where control is 
a 3D gel without fiber (A).  Effect of ECM-modified PLLA and collagen fibers on the 
neurite outgrowth of adult DRGs, LN=laminin, PLL=poly-L-lysine, MG=matrigel, where 
control is unmodified fibers (B). * denotes p>0.05 or statistically insignificant, ** 
denotes p<0.05 or statistically significant difference. 
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As expected, the values for neurite lengths and growth rates were much smaller in 

the adult DRGs due to limited growth potential as seen by all experimental groups.  

When PLLA and collagen fibers were surface modified via adsorption of ECM proteins, 

matrigel (MG) significantly improved adult neurite outgrowth distance on both PLLA 

and collagen fiber-gel constructs at 10 DIV compared to untreated, laminin (LN) and 

poly-L-lysine (PLL) groups, Figure 3.6 B.  In PLLA fiber-gel groups, laminin and poly-

L-lysine treatments yield neurite growth distances that were larger from the untreated 

control group.  However, the growth distances between laminin and poly-L-lysine 

treatments were statistically insignificant, p>0.05.  In collagen fiber-gel groups, only 

matrigel treatment exhibited a statistical significant difference and improvement in 

growth distance compared to untreated, laminin and poly-L-lysine groups.  Similarly, the 

growth distances between laminin and poly-L-lysine treated collagen fiber-gel constructs 

were statistically insignificant. 

The outgrowth morphology of the adult sensory neurons was also assessed for 

PLLA, col-PLLA, and collagen fiber-gel constructs.  In PLLA fiber-gel constructs, 

neurites grew at random with wide branching and limited axons growing preferentially 

along the fibers, Figure 3.7 A.  However, collagen-PLLA fiber-gel constructs displayed 

alignment of neurites along the fiber and minimal branching as observed in Figure 3.7 B.  

Wet-spun collagen fibers showed a similar outgrowth pattern of neurites as seen with the 

collagen-PLLA fiber/gel constructs, Figure 3.7 C-D.  Overall, the adult neuronal 

outgrowth response was similar to the embryonic DRG neurite interaction on the same 

experimental groups.   
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Figure 3.7 Axon outgrowth morphology of adult DRG neurons on PLLA fibers (A), 
Collagen-PLLA fibers (B), Wet-spun Collagen fibers (C), 10 DIV, 100 µm scale bar.  NF 
200 (green) and DAPI nuclear stain (blue) of adult DRG axonal processes elongating and 
orienting along single collagen fiber at 10 DIV (D). 
 

3.3.5 Growth Response of Adult Schwann Cells on Fiber-Gel Constructs 

The growth response and behavior of adult Schwann cells towards the fiber-gel 

constructs were investigated in vitro.  Adult Schwann cells were cultured on collagen 

fiber bundles either non-treated or treated with 1.0% genipin cross-linker.  Here, the 

adhesion and viability of the Schwann cells on the fibers were assessed.  The treatment of 

collagen fibers with ECM protein constituents was also evaluated based on Schwann cell 

migration.  A comparison of adult Schwann cell migration on PLLA and wet-spun 

collagen fibers was assessed using fiber-gel constructs.  Both fiber groups were treated 

with laminin (LN), poly-L-lysine (PLL), and matrigel (MG) at 50 µg/ml concentration.  

PLLA and collagen fiber-gel constructs demonstrated significant improvement in 
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Schwann cell migration distance when treated with ECM constituents compared to 

control groups after 7 days in vitro (DIV), Figure 3.8.  Interestingly, PLLA fibers with 

the ECM treatments exhibited a more profound enhancement of migration distance 

compared to collagen fibers with the same treatment.              

 

Figure 3.8 Migration distances of adult Schwann cells grown on surface-modified PLLA 
fiber-hydrogel constructs. (A).  Migration distances of adult Schwann cells grown on 
surface-modified collagen fiber-hydrogel constructs (B).  Control group is a gel without 
fiber.  * denotes p>0.05 or statistically insignificant, ** denotes p<0.05 or statistically 
significant difference. 
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Furthermore, the effect of matrigel was more notable on collagen than PLLA 

fibers.  In PLLA fiber-gel constructs, there was no statistical difference among laminin, 

poly-L-lysine, and matrigel treatments. Overall, the presence of a fiber enhanced 

migration compared to the control group, which was gel without fiber.  On the surface-

modified collagen fibers, adult Schwann cells displayed a polarized growth morphology 

in vitro when plated on the fiber-gel constructs as seen in Figure 3.9.  In the laminin-

treated group, Schwann cells appeared densely packed and organized on the surface of 

the fiber.  Schwann cells on fibronectin and matrigel-treated fibers exhibited long 

processes compared to other treated groups. 

 

 

Figure 3.9 Surface morphology of adult Schwann cells grown on surface-modified 
collagen fiber-hydrogel constructs. (A) LN: Laminin-treated collagen fibers, (B) FN: 
Fibronectin-treat collagen fibers, (C) PLL: Poly-L-Lysine-treated collagen fibers, and (D) 
MG: Matrigel-treated collagen fibers.  Scale bar = 50 µm. 
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3.3.6 Tensile Analysis of Fiber Components 

The tensile strength and percentage extension of PLLA and collagen fibers were 

determined from Instron.  The tensile modulus and ultimate tensile stress (UTS) at failure 

were much higher for PLLA fibers compared to the 0.75% wt wet-spun collagen fibers, 

Table 3.1.  PLLA fibers (Elastic modulus =12.4 ± 0.83 GPa, UTS=2.2 ± 0.11 GPa) were 

mechanically stiffer to non-crosslinked collagen fibers (Elastic modulus =1.95 ± 0.59 

GPa, UTS=0.24 ± 0.09 GPa).  The rationale for comparing the tensile properties between 

PLLA and collagen fibers was to evaluate the growth response of embryonic and adult 

DRG axons in relation to substrate stiffness as a model for contact-guided axon growth.   

 

Table 3.1 Tensile Properties of PLLA and Wet-spun Collagen Fibers 

 

 

The higher stiffness in PLLA fibers did not have a significant effect on the 

outgrowth response since the neurite lengths were shorter compared to growth on col-

PLLA fiber/collagen gel and collagen fiber/collagen gel constructs.  Hence, the molecular 

layer of collagen on the PLLA fibers had a more profound effect on growth response than 

the mechanical cues of unmodified PLLA fibers. 

 

 

Fiber Group Tensile Modulus UTS % Elongation 

PLLA 12.4 ± 0.83 GPa 2.2 ± 0.11 GPa 36.2 ± 4.5 

Collagen  1.95 ± 0.59 GPa 0.24 ± 0.09 GPa 15.5 ± 2.9 

    !! !!
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3.4 Discussion 

 

3.4.1 Nerve Tissue Fiber-Gel Constructs 

The focus of this study involves a neural tissue engineering application with the long-

term objective to develop a nerve guidance conduit for peripheral nerve regeneration.  

The first step was to engineer a substrate consisting of biodegradable collagen and 

growth-promoting small diameter fibers in an oriented manner to guide axonal 

regeneration.  The substrate was engineered in the form of a fiber-gel construct, which is 

a composite of single fibers embedded within a soft hydrogel matrix.  The manufacturing 

of the constructs was accomplished by using wet spinning to produce the collagen fiber 

components.  Furthermore, collagen hydrogel self-assembly played a vital role in making 

the gel matrix component for both PLLA and collagen fiber-gel constructs.  The 

biological effects of the fiber-gel constructs were studied using primary cultures of 

embryonic DRG explants and dissociated adult DRG neurons.  The data showed that 

single fibers from both PLLA and collagen could serve as suitable substrates for adhesion 

and contact guided axonal outgrowth.  While both fiber types had a positive influence on 

neurite outgrowth, these effects were significantly stronger for the wet-spun collagen 

fibers. 

 

3.4.2 Neurite Extension on Fiber-Gel Constructs 
 
Growth rates and mean outgrowth distances of DRGs growing on PLLA fibers suggest 

that the presence of fibers in a collagen gel significantly improves neurite growth 

response in a 3-D gel matrix compared to the control group.  Furthermore, the presence 
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of collagen-coated PLLA and collagen fibers in a gel significantly improved axon growth 

distance compared to constructs with gel only.  A statistical comparison at day 14 

revealed that there was no significant difference in the mean growth distances between 

collagen-PLLA and collagen fibers, p > 0.05.  In contrast, neurite lengths on collagen-

PLLA and collagen fibers were significantly different in comparison to the rest of the 

experimental groups.  It is important to note that neurite growth distances on collagen-

PLLA and collagen fibers were substantially larger than growth distances seen on 2-D 

collagen substrates.  These findings suggest that the growth rate limitations of axons 

within 3-D gel systems can be overcome by the use of fiber substrates to facilitate contact 

guidance for neurite extension within soft hydrogels. 

As expected, the values for neurite lengths and growth rates were much smaller in 

the adult DRGs due to limited growth potential as seen by all experimental groups. This 

finding correlates well with other previously reported studies, which suggest that adult 

DRG neurons are less sensitive to substrate curvature of fiber scaffolds compared to 

postnatal and embryonic stage DRG neurons [221].  Therefore, the lack of sensitivity of 

adult DRG neurons to fiber curvature may result in smaller neurite outgrowth distances 

as seen in this study.   Additionally, adult neurons of the CNS have been reported to have 

differing cAMP levels as compared to earlier stage neuronal cultures in vitro and in vivo 

[222].  Hence, the limited growth potential of adult DRG neurons may be attributed to 

low concentrations of cAMP compared to embryonic DRGs.  Despite the slow outgrowth 

rates from the adult DRGs, the trend in growth response on the constructs for adult DRG 

neurites was similar to what was observed with embryonic DRG explants.  In both 

embryonic and adult DRG outgrowth studies, neurite lengths on collagen-PLLA fiber-gel 
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constructs and collagen fiber-gel constructs surpassed the outgrowth distances seen on 

unmodified PLLA fiber-gel constructs and the control group.  This finding suggests that 

embryonic and adult DRG neurons responded similarly to the presence of collagen on the 

surface of the fiber-gel constructs.  In contrast, unmodified PLLA fibers lacked any ECM 

constituents and therefore, did not exhibit preferential growth along the fiber in the 

constructs. 

 

3.4.3 Effects of ECM Constituents on Neurite Outgrowth 
 
An extensive review of the literature suggests the importance of physical and chemical 

cues for eliciting and guiding axonal outgrowth.  In regenerating nerve tracts, physical 

cues are often presented in the longitudinal arrays of axon fascicles.  Meanwhile, 

chemical cues are presented by adhesive matrix proteins associated with Schwann cells 

and the basal lamina [35, 223, 224].  In this study, physical cues are present in the fiber 

component of the constructs.  To determine the effects of adhesive ECM constituents as 

chemical cues, neurite outgrowth on laminin, poly-L-lysine, and matrigel were evaluated 

using adult sensory neurons.  These ECM proteins when combined with a fiber substrate 

may closely resemble filamentous substrates present during CNS and PNS development 

in addition to being present in damaged nerve tracts.   

Interestingly, matrigel significantly improved adult neurite outgrowth distance on 

both PLLA and collagen fiber-gel constructs at 10 DIV compared to untreated, laminin 

(LN) and poly-L-lysine (PLL) groups.  This finding implies that adult DRG neurites 

display a growth preference towards the cocktail of proteoglycans, collagen IV and 

laminin present in matrigel.    In PLLA fiber-gel groups, laminin and poly-L-lysine 
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significantly improved neurite growth distances that compared to the untreated control 

group.  Laminin is known to promote neurite outgrowth and plays a role in repair of both 

the CNS and PNS [225-228].  Thus, it is no surprise that coating the PLLA fibers with 

laminin significantly enhanced neurite outgrowth in adult sensory neurons.  However, the 

growth distances between laminin and poly-L-lysine treatments were statistically 

insignificant.  This observation implies that both laminin and poly-L-lysine enhances 

neurite outgrowth in relation to unmodified PLLA fibers.  In collagen fiber-gel groups, 

only matrigel treatment displayed a significant improvement in growth distance 

compared to untreated, laminin and poly-L-lysine groups.  Similarly, the growth 

distances between laminin and poly-L-lysine treated collagen fiber-gel constructs were 

not significantly different. 
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CHAPTER 4 

DESIGN OF NERVE GUIDANCE CONDUIT: A PROOF-OF-CONCEPT STUDY 

 

Despite the capacity for peripheral nerve repair, functional outcomes after nerve injuries 

are often unsatisfactory and insufficient in bridging extensive nerve lesions greater than 2 

cm [2].  Hence, a nerve guidance conduit that promotes sustained axonal growth of adult 

dorsal root ganglion (DRG) neurons while facilitating Schwann cell migration would be 

clinically desirable.  Adult DRG neurons were chosen to provide a clinically relevant 

approach to evaluating the efficacy of engineered collagen-based fiber-hydrogel conduits 

in vitro.  

The collagen fibers were fabricated using an automated wet spinning device 

followed by chemically cross-linking with genipin to form a dense bundle of fibers.  

Fiber bundle was then manually loaded into a hollow conduit formed by electro-spun 

polycaprolactone (PCL) mats.  Collagen hydrogel was loaded into the lumen of the 

conduit to fill the empty volume surrounding the fiber bundle while securing the fibers in 

place and ensuring that the construct remains intact.  Surface modification of collagen 

fibers with extra-cellular (ECM) constituents was also evaluated to enhance Schwann cell 

migration.  Adult rat DRG neurons survived at least 28 days in culture and grew 

preferentially along the longitudinal axis of collagen fibers.  Schwann cell migration and 

orientation along the collagen fiber bundles were observed growing in tandem with 

axonal processes from DRGs.  The findings in this study signify an early step towards the 
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development of semisynthetic, tailor-made collagen-based scaffolds for the treatment of 

neuronal injury. 

 

4.1 Introduction 

In spite of considerable regeneration potential of the adult peripheral nervous system 

(PNS), axon regeneration is limited to growth rates of 1 and 3 mm/day in humans and 

animals, respectively [229-232].  These growths rates become a major limitation and 

challenge for regenerating nerves following a traumatic injury where lesions are longer 

than 1-3 mm.  To date, numerous therapeutic strategies for functional restoration of 

damaged nerves are widely studied.  Autologous transplantations remain to be the most 

common, clinically established treatment for repair of lesions up to 7 cm.  For lesions 

greater than 2 cm, however, autograft material may be of insufficient length to 

consummate the repair [5, 233].  The severe disadvantages with nerve autografting 

include morbidity and painful neuromas in the donor site in addition to potential 

infections [5, 17, 234, 235].  A secondary injury is necessary to repair the primary one, 

which may create further complications.   

Bioengineered synthetic nerve guides were introduced as a promising alternative 

to overcome the limitations of autologous transplants.  An immediate benefit of artificial 

conduits is the elimination of a secondary injury.  Furthermore, bioengineered synthetic 

conduits have the ability to support neurotropic and neurotrophic communication 

between proximal and distal ends of the nerve, block inhibitory factors, and provide 

physical guidance for axonal regrowth [236].  Unlike autografts, bioengineered nerve 

guides do not induce donor site morbidity and loss of sensation at donor site.   Guidance 
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conduits can be engineered to assist in directing axons from the proximal to the distal 

stump without any interference of meandering due to imperfectly aligned degenerating 

fascicles of the closely apposed distal stump [237].  Thus, the goals of this present study 

were to engineer collagen-based materials into a conduit, assess the collagen-based 

material components’ effect on neurite outgrowth enhancement and Schwann cell 

migration in vitro, and demonstrate the feasibility of surgical manipulation. 

To date, relatively few studies have been done to evaluate the growth response of 

adult neurons on biomaterials in vitro [238-240].  Due to slow and limited growth 

potential of adult neurons, numerous in vitro models of the peripheral nervous system 

have extensively used immature neurons from embryonic and neonatal mammals and 

birds.  As a result, the growth mechanisms of adult sensory and motor neurons have been 

overlooked.  In this study, sensory neurons from adult rat dorsal root ganglia (DRG) were 

cultured on collagen-based components of a nerve guidance conduit to provide a more 

realistic model for understanding underlying growth mechanisms of adult neural tissue.  

   

4.2 Materials and Methods 

Here, the experimental methods include the following: systematic development of the 

conduit, adult DRG and Schwann cell growth response on internal conduit components, 

and surgical manipulation of conduit.  In particular, the assessment of long-term growth 

response and viability of adult DRGs and Schwann cells on the fiber-hydrogel 

components were important.  The validation of structural integrity of the conduit for 

handling and surgical implantation was another critical aspect of this study. 
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4.2.1 Materials and Equipment 

Purified suspensions of adult rat sensory neurons were isolated from 2 to 3 month old 

Sprague Dawley rat dorsal root ganglia as described in Appendix B.   Collagen I was 

extracted and purified from rat tail tendons as detailed in Appendix C.  Collagen fibers 

and hydrogel components of the inner conduit were both manufactured from collagen I.  

Fetal bovine serum (FBS), 7S nerve growth factor (NGF), penicillin-streptomycin, and L-

glutamine were purchased from Invitrogen Corporation (Carlsbad, CA) for neuronal 

growth media.  

 Collagen fibers, which served as the fiber component of the conduit interior, were 

fabricated as continuous monofilaments using a custom-built wet spinning device.  The 

device and wet spinning process were previously introduced in Chapter 2.   

 

4.2.2 Fabrication of Nerve Guidance Conduits 

Nerve conduits were fabricated by electro-spinning 15% wt polycaprolactone (PCL) in 

methylene chloride (MeCl2) at a flow rate of 2 ml/hr and voltage of 12.5 kV.  Fabrication 

process is shown in Figure 4.1.  For this study, electro-spun PCL mats were obtained 

from Dr. George Collins.  PCL was previously reported to be used in the fabrication of 

multi-channel nerve guidance conduits and has shown favorable compatibility with 

neural tissue [241, 242].  It is important to note that electro-spinning can also be used to 

fabricate outer sheaths from other FDA approved materials such as poly-L-lactic acid 

(PLLA), polyglycolic acid (PGA) and poly(lactic-co-glycolic) acid (PLGA) [5].  In this 

study, electro-spun PCL mats were selected simply because they were already available 

and served as a proof-of-concept.     
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Figure 4.1 Electro-spinning of outer sheath and conduit assembly 

 

The electro-spun PCL random-oriented mats were collected and cut into 1.5 cm x 

1.0 cm sheets to form the conduits.  The PCL sheets were wrapped around a 12 mm 

segment of Tygon tubing (1.15 mm outer diameter) to form a hollow tube for the design 

of the conduit as shown in Figure 4.2.  The resulting final dimensions of the NCs were 

1.5 cm in length, 1.75 mm inner diameter (lumen) and 2.25 mm outer diameter. 

 

 

Type I Collagen Matrix (Hydrogel) 

Collagen Fibers, Wet-spun, Genipin  

PLLA, Outer Hollow Conduit Sheath, Electro-spun mat 
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Figure 4.2 Manufacturing of outer sheath for conduit.  (A) Electro-spun PCL mat.  (B) 
1.5 cm x 1 cm section of mat and 1.2 cm length of Tygon tubing.  (C) Electro-spun mat 
wrapped around tubing.  (D) Hollow outer sheath created by slipping off mat from tube 
with fine forceps.   
 

 

The inside lumen of the NCs was filled with collagen-based hydrogel and a 

collagen multi-filament bundle.  Hydrogels from collagen I (rat tail tendon) at a 0.8 

mg/ml final concentration were fabricated by mixing the following constituents on ice: 

57% dH2O, 32% of (2.5 mg/ml collagen stock), 10% 10X Minimum Essential Medium 

(10X MEM, Lonza, Walkersville, MD) and 0.8% 1.0M NaCl.  Collagen fibers of 40-50 

micron diameter were fabricated by wet spinning and their ends were taped side by side 

to manually align multiple fibers in a dish.  Multi-filaments were then cross-linked by 

1.0% genipin for 24 hr to create a bundle of fibers as shown in Figure 4.3.  Each bundle 

of fibers was then cut to 1cm length segments.   

A 

B 

C 

D 
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Figure 4.3 (A) Post-treatment genipin crosslinking of wet-spun collagen fibers and the 
stabilization into a multi-filament bundle for the fiber component of the nerve conduit 
and (B) Image depicting dark blue pigment coloration of fibers after genipin cross-
linking.  Scale bar=100µm.  
 
  

 

4.3 Results 

 

4.3.1 Fabrication of Collagen-Based Nerve Guidance Conduits: Proof-of-Concept 

The success in demonstrating contact-guided axon outgrowth on fiber-gel constructs 

established the groundwork for developing a practical conduit design.  In this study, 

protocols and methods were developed to generate fiber bundles containing multiple 

collagen filaments.   The hypothesis was that collagen fiber bundles loaded within a 3-D 

hydrogel would support axon outgrowth of adult sensory neurons and sustain the viability 

and migration of Schwann cells in vitro.  Here, the feasibility of assembling collagen-

based fiber-hydrogel conduits was validated and the ease of surgical manipulation of 

assembled conduits were assessed.  The goal in this study was to ensure that the novel 

collagen fiber-hydrogel conduits were mechanically stable for transplantation in a rat 

sciatic nerve injury model.  

Wet-spun Collagen fibers 1.0% wt Genipin Cross-linking Multi-filament Bundle of Collagen Fibers 

A B 

Wet-spun  
Collagen Fibers 

1.0% wt Genipin  
Cross-linking 
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Collagen Fibers 
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4.3.2 Fabrication of Outer Conduit Sheath 

Nerve guidance conduits were fabricated by the assembly of multiple components: (1) a 

dense outer sheath, (2) collagen hydrogel matrix filler, and (3) a bundle of collagen multi-

filaments.  The outer sheath of the conduits was successfully electro-spun using 15% wt 

polycaprolactone (PCL) in methylene chloride (MeCl2).  The fiber density of the electro-

spun mat was controlled by the duration of electro-spinning.  The electro-spun mats were 

easy to manipulate with a pair of fine forceps and appeared to have an electrostatic 

attraction to itself.  Mats were cut into small cross-sections, wrapped around the Tygon 

tubing, and slipped off to obtain a hollow sheath.  In terms of structural integrity, the 

electro-spun PCL mats were sufficient in strength to support 9-0 nylon sutures.  It is 

important to note that the hollow outer conduit sheath is prone to collapse without the 

presence of a filler material within the lumen.  Hence, a collagen hydrogel was 

incorporated as a filler matrix to provide a 3-D space for growing axons and to make the 

conduit more stable.  

 

4.3.3 Loading of Multi-filament Collagen Fiber Bundle 

Collagen fiber bundles were constructed by 1.0% genipin cross-linking for 24 hr as seen 

in Figure 4.4.  The duration of cross-linking was determined based on the enhanced 

mechanical results for collagen fibers undergoing genipin cross-linking as previously 

mentioned.  The fiber bundle was then manipulated with a pair of fine forceps and 

carefully inserted into the lumen of the conduits.           
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Figure 4.4 Assembly of multi-filament collagen fiber bundles via genipin cross-linking. 
10-20 collagen filaments are laid down parallel in a bundle and held in place by two 
bands of scotch tape.  Multi-filament bundles are immersed in 1.0% genipin for 24 hr. 
 

4.3.4 Assessment of Collagen Hydrogel Matrix 

As mentioned earlier, a collagen hydrogel component was used as the filler for the 

assembly of the nerve guidance conduit.  In previous studies, we evaluated various 

collagen hydrogel concentrations in relation to stiffness.  Previous data in the lab has 

revealed that low concentrations of collagen gel are ideal for neurite outgrowth since the 

inter-fiber spaces are larger for axons to burrow and navigate through during growth cone 

extension compared to higher concentrated gels.  Data collected from previous master’s 

thesis research in the lab indicate that neurite outgrowth of embryonic DRGs was optimal 

in collagen gels with 0.8 mg/ml concentration.  These findings agree with other 

previously reported studies [12]. Hence, 0.8 mg/ml collagen gels were allowed to self-

assemble within the lumen of the conduit outer sheath by incubation at 37oC as seen in 

Figure 4.5.  The collagen mixture was given at least 30 minutes to self-assembly into 

semi-solid hydrogels with a pink appearance.  The constituency of the hydrogels was 

sufficiently stable within the conduit to manipulate without collapsing.   
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 Collagen hydrogels were successfully loaded into the lumen of conduits 

containing collagen fiber bundles.  The collagen mixture filled the empty voids of the 

volume surrounding the fiber bundle. A volume of 40 µL was determined to be sufficient 

for filling the lumen of conduits measuring 1.5 cm in length, 1.75 mm inner diameter and 

2.25 mm outer diameter.         

 

 

Figure 4.5 Assembly of nerve conduits. 96-well plate used as an assembly platform (A).  
Loading of collagen hydrogel in pink using a 20-gauge syringe needle (B). 
 

4.3.5 Assessment of Conduit Fabrication 

The fabrication of the conduits was evaluated based on the loading of the fiber bundle 

and the collagen hydrogel into the lumen of the conduit.  An important parameter to 

assess during assembly was to ensure that the fiber bundle spanned the entire length of 

the conduit.  Furthermore, the firmness of the fibers upon contact with the hydrogel was 

also critical to evaluate.  The firmness is related to the degree of swelling or water 

resorption which can be minimized by cross-linking as described previously.  In order to 

demonstrate that the fiber bundle traversed the entire conduit after fabrication, the outer 

sheath of the conduit was cut and unraveled to expose the hydrogel and fiber bundle in 

the interior of the conduit as seen in Figure 4.6.      

A B 
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Figure 4.6 An assembled conduit is cut and unraveled to evaluate interior. The collagen 
fiber bundle traversed the entire length of the conduit as seen in the unraveled, exposed 
conduit. 
 
 

4.3.6 Surgical Manipulation of Conduit 

In order to assess the ease of surgical manipulation with the conduit, an adult rat cadaver 

was used to determine the structural integrity of the conduit during implantation into a 1 

cm transected rat sciatic nerve.  In order to isolate the sciatic nerve, a skin incision 

originating from the knee was made to the hip for exposure of underlying muscles.  The 

muscles were retracted to reveal the sciatic nerve.  The ends of the conduit were secured 

with 9-0 nylon sutures (ETHILON™).  The conduit remained stable during implantation 

as seen in Figure 4.7.  The proximal and distal end segments of the transected sciatic 

nerve were sutured into the ends of the conduit.  
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Figure 4.7 Transplanted conduit within a 1 cm transected rat sciatic nerve.  The conduit 
remained structurally stable during surgical manipulation.  
 

4.3.7 Adult DRG Growth Morphology on Conduit Components 

The growth response and morphology of adult sensory neurons in the presence of internal 

conduit collagen-based components were investigated in vitro.  Adult DRG explants were 

dissociated into single neurons and cultured on collagen fiber bundles treated with the 

following ECM constituents: laminin, fibronectin, poly-L-lysine and matrigel.  Here, the 

growth morphology of the adult DRGs on the fibers were assessed in relation to the type 

of ECM constituent on the surface of the fiber.  DRG axons were immuno-labeled with 

NF-200 in green and the cell body nuclei were stained with DAPI in blue as seen in 

Figure 4.8.  After 14 days in vitro, axons grew preferentially along the fibers in all 

surface-treated groups.   

Conduit 

Sciatic Nerve 
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Figure 4.8 Adult DRG axonal outgrowth on collagen fiber-gel constructs treated with 
ECM constituents.  A) LN: Laminin, B) FN: Fibronectin, C) PLL: Poly-L-lysine and D) 
MG: Matrigel.  NF-200 Neuro-filament (Green) and Nuclear DAPI stain (Blue).  Day 14 
in vitro.  Scale bar = 100 µm. 
 
 

4.3.8 Cyto-compatibility on Genipin Cross-linked Collagen Fibers 

The neurocompatibility of genipin crosslinked wet-spun collagen fibers produced from 

0.75% wt dispersions was evaluated using glia cultures.   Adult Schwann cells were 

plated on the ends of cross-linked fibers treated with 1.0% genipin.  At 21 days in vitro 

(DIV), the cultures were assessed for neuronal adhesion to the fibers and stained for 

nuclear DAPI stain to investigate adhesion on the fibers as shown in Figure 4.9.  Genipin 

cross-linked fibers were treated with laminin, fibronectin and matrigel prior to seeding of 

adult Schwann cells.  The presence of stained nuclei along the fiber length in all 

treatments suggests that genipin cross-linking is favorable to Schwann cell growth. 
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Figure 4.9 Adult Schwann cell adhesion and compatibility on Genipin cross-linked 
collagen fiber-gel constructs.  A) LN: Laminin,  B) FN: Fibronectin, C) MG: Matrigel.  
Nuclear DAPI stain.  Day 21 in vitro.  Scale bar = 50 µm. 
 

 

4.4 Discussion 

 

4.4.1 Fabrication of Collagen-Based Nerve Guidance Conduits: Proof-of-Concept 

The proof-of-concept studies mentioned previously represent the initial evaluation of 

nerve guidance conduits engineered from collagen-based fiber-hydrogels.  The series of 

aforementioned studies validate the conduit’s ability to induce and support neurite 

outgrowth of adult DRG cultures.  Furthermore, this assessment provides meaningful 

insight on design areas that need to be optimized for successful outcomes following 

transplantation of conduit into sciatic nerve injured rat models.  
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4.4.2 Assembly of Collagen-Based Nerve Guidance Conduits  

To determine the feasibility of fabricating the collagen-based conduits, the respective 

individual components needed to be assessed.  The components used for assembly of 

conduits consisted of the following materials: (1) a dense outer sheath made of 15% wt 

PCL, (2) collagen hydrogel matrix filler, and (3) a bundle of collagen multi-filaments 

cross-linked with 1.0% genipin.  The outer sheath of the conduits was successfully 

fabricated by electro-spinning.  After evaluating various electro-spinning parameters, it 

was determined that the degree of fiber density of electro-spun mats can be controlled by 

the duration of electro-spinning.  Furthermore, the fibers composing the mats can be 

tailored-made to have a variety of sub-micron diameter ranges based on the applied 

voltage, size of the spinneret, and distance between spinneret and collector.   

Mats were cut into small cross-sections with ease and were manipulated with a 

pair of fine forceps.  The final formation of the hollow conduit sheath required wrapping 

the cut sections of mat around Tygon tubing.  The electrostatic nature of the PCL mats 

kept the wrapped mats secured around the segment of Tygon tubing.  Once slipped off 

from the Tygon tubing, the mats retained their shape to yield a stable hollow sheath.  

Since the sides of the hollow sheath were susceptible to unraveling, the ends of the sheath 

were secured with sutures.  In terms of mechanical stability, the electro-spun PCL mats 

were sufficient in strength to support 9-0 nylon sutures.     

Despite the stability of the hollow conduit, it was prone to collapse without the 

presence of a filler material within the lumen.  Hence, a collagen hydrogel was 

incorporated as a filler matrix to provide a 3-D space for growing axons and to make the 

conduit more stable.   Previous data collected in the lab indicate that neurite outgrowth of 



108 

 

embryonic DRGs was optimal in collagen gels with 0.8 mg/ml concentration.  Similar 

conclusions were also drawn from studies using collagen and laminin-filled tubes 

compared to control tubes [12, 226, 243, 244]. For example, one previous study reported 

that dilute collagen at 1.28 mg/ml and laminin at 4 mg/ml both enhanced nerve 

regeneration significantly better than their more concentration counterparts [5, 226, 244]. 

Hence, 0.8 mg/ml collagen gels were allowed to self-assemble within the lumen of the 

conduit outer sheath by incubation at 37oC.  The collagen mixture was given at least 30 

minutes to self-assembly into semi-solid hydrogels.  The constituency of the hydrogels 

was sufficiently stable within the conduit to manipulate without collapsing.  Collagen 

hydrogels were successfully loaded into the lumen of conduits containing collagen fiber 

bundles.  The collagen mixture adequately filled the empty voids of the volume 

surrounding the fiber bundle. A volume of 40 µL was determined to be sufficient for 

filling the lumen of conduits measuring 1.5 cm in length, 1.75 mm inner diameter and 

2.25 mm outer diameter.   

The multi-filament structures for the conduit consisted of collagen fiber bundles, 

which were constructed by 1.0% genipin cross-linking for 24 hr.  The duration of cross-

linking was determined based on the enhanced mechanical results for collagen fibers 

undergoing genipin cross-linking as previously mentioned in earlier chapters. 
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CHAPTER 5 

CONCLUSION 

 

Engineering and characterizing a miniaturized wet spinning device has helped us gain a 

better understanding of the key parameters and/or limitations that must be taken into 

account to improve the fiber manufacturing process of continuous collagen fibers in vitro.  

In the process, an optimal weight percentage for the collage dispersion was determined to 

be suitable for future neuronal cell studies on these wet-spun collagen scaffolds.  

Collagen dispersions of smaller weight percentages between 0.75 and 1.0% wt have 

proven to show improved fiber uniformity, mechanical stability and thermal behavior.  

We are currently experimenting with more cross-linking and surface modification 

methods to immobilize extra-cellular matrix proteins on the surface for enhanced axon 

outgrowth and Schwann cell migration response to the wet-spun collagen fibers.  While 

these new additions to the study will improve the application of wet-spun collagen fibers 

in tissue engineering, this miniaturized wet spinning device has expanded upon currently 

used wet spinning apparatuses in industry by providing compactness, cost-effectiveness 

in use of reagents and portability into sterile working environments.     

 The wet spinning technique and device in this study can be used for other tissue 

engineering applications such as cartilage and bone repair.  Furthermore, wet spinning 

has been previously used to fabricate chitosan and silk fiber scaffolds [178, 245, 246].  

Interestingly, wet-spun chitosan and silk may have potential use as suturing materials for 

wound healing.      
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This study successfully validates the concept of a fiber-hydrogel nerve tissue 

construct consisting of either PLLA or wet-spun collagen fibers within a collagen 

hydrogel.  Importantly, the addition of bulk fibers (<100 µm in diameter) within a 3-D 

hydrogel has shown a significant improvement of axon outgrowth in 3-D space.  While 

PLLA also was shown to be a favorable substrate for growth in 3-D gel matrices, the 

presence of collagen significantly enhances the neurite outgrowth response as seen in 

both embryonic and adult DRGs.  Furthermore, embryonic and adult DRGs responded 

favorably to wet-spun collagen fibers.  The surface modification of PLLA and collagen 

fibers with ECM proteins successfully demonstrated the feasibility of using ECM 

constituents to enhance the axon growth response on scaffold materials.  Among the 

ECM proteins evaluated, only matrigel exhibited a notable improvement in the outgrowth 

response of adult DRG axons.  The ability of wet-spun collagen fibers to support oriented 

growth and elongation by neurons warrants further investigation into the possibility of 

using such structures for the basis of three-dimensional guidance scaffolds intended to 

enhance nerve regeneration and repair.   

In developing a proof-of-concept collagen-based fiber-gel guidance conduit, it 

was observed that adult rat DRG neurons survived at least 21 days in culture and grew 

preferentially along the longitudinal axis of collagen fibers.  Schwann cell migration and 

orientation along the collagen fiber bundles were observed growing in tandem with 

axonal processes from DRGs.  The findings in this study signify an early step towards the 

development of semisynthetic, tailor-made collagen-based scaffolds for the treatment of 

neuronal injury. 
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CHAPTER 6 
 

FUTURE WORK 
 

 
The results from adult sensory neuronal and Schwann cell growth in vitro have given a 

solid indication that the collagen fiber-gel constructs in the form of a conduit will provide 

guidance cues for cell orientation and migration in vivo.  Mechanical stability assessed 

from conduit assembly, handling and surgical manipulation in animal cadavers suggest 

that the proof-of-concept conduit will be a viable material under in vivo conditions.  

Additionally, the control of swelling response of the collagen fiber component revealed 

that cross-linking agents such as genipin can be further used to fabricate guidance 

substrates with tailor-made properties for in vivo applications.    

The primary contributing factor to a successful outcome in vivo will be the long-

term structural integrity and chronic lifetime of the fiber and gel components involved in 

the fabrication of the conduit.  The advantage of collagen-based biomaterials in nerve 

conduits is its biodegradability.  The remodeling of collagen within the conduit lumen 

will depend on rate of resorption and degradation in vivo.  The degradation rate of 

collagen is influenced by host enzymatic cleavage and the presence of fibroblasts and glia 

in the surrounding microenvironment of the conduit within the injury site.  Since the 

collagen fiber component of the conduit plays a key role in contact-guided growth and 

orientation of neurons and Schwann cells, its residence time in vivo will need to be 

assessed.  Degradation studies of mass loss from the fiber component at 2, 6, 8, and 12 

weeks of implantation will provide valuable information on the lifetime of these guidance 

substrates within the conduit.     
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Specifically, this collagen-based fiber-gel conduit will offer a lasting impact in the 

area of bioengineered conduits if it is able to promote axon outgrowth within lesions 

surpassing 2 cm.  To date, bioengineered nerve conduits consisting of silicone or porous 

natural/synthetic polymers are able to bridge injured nerve stumps with lesions limited to 

less than 10-12 mm in rats [247].  Previous studies have demonstrated that silicone tubes 

filled with laminin, fibronectin, and collagen have improved regeneration over a 10 mm 

rat sciatic nerve gap compared to empty silicone controls [248].  Oriented mats or 

filaments with fibronectin have also been used to bridge 10 mm nerve defects in rats with 

comparable results to the nerve autograft [249]. 

In order to evaluate regeneration in an animal model, specimens for histological 

studies would need to be taken from the nerve proximal and distal to the conduit and 

from the center of the conduit.  Specimens of 10 micron thin sections would be collected 

to evaluate total number of axon fibers and axon density (fibers/mm2).  If the collagen-

based fiber-gel conduit is transplanted into an animal model, the hypothesis is that there 

will be more axon fibers traversing the conduit compared to control groups consisting of 

conduit filled with collagen hydrogel alone or conduit filled with DMEM medium or 

saline.  The presence of the collagen fiber bundle within the gel matrix will provide 

physical cues to mediate axon growth cone extension via contact-guided growth as seen 

with neurite extension on the fiber-gel constructs in vitro.  

A final conduit would be designed for transplantation into a 2 cm rat sciatic nerve 

lesion to demonstrate efficacy.  The hypothesis is that conduits containing genipin-treated 

collagen fibers in a gel will facilitate improved axon growth and axon density across the 

2 cm nerve gap compared to un-treated collagen fibers in a gel.  Based on the increased 
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stiffness of genipin-treated collagen fibers, axon fibers will likely extend further on the 

fibers cross-linked with genipin in relation to un-treated fibers and the control group 

consisting of conduit with gel only.  A nerve autograft from the animal will also be 

evaluated as a positive control group in the study.  

Although the collagen fiber-gel conduit is hypothesized to improve nerve 

regeneration within a 2 cm nerve gap in a rat sciatic nerve model, a combinatorial 

approach is needed in order to achieve sustained axonal regeneration for nerve lesions 

longer than 2 cm.  Previous studies have reported that the incorporation of nerve 

segments or minced sensory and motor nerves into a conduit has a beneficial effect on 

regenerating axons and the length of regeneration [117, 250].  Hence, the collagen fiber-

gel conduit with the addition minced motor and sensory nerves onto the collagen fibers 

would further improve guided growth and long distance regeneration.  If the minced 

nerve segments were applied topically over the collagen fibers, the hypothesis is that they 

will expedite nerve regeneration by providing a source of trophic factors and nerve 

architecture.  Another approach to consider is incorporating drug delivery within the 

conduit to release cAMP, which is an intrinsic factor previously known to facilitate 

axonal regrowth and functional recovery after injury [251, 252].     

Overall, this collagen-based nerve guidance conduit has demonstrated initial 

promising results in promoting viability and directed growth of adult sensory neurons and 

Schwann cells.  With the addition of further in vivo studies to test the efficacy of the 

conduit in a rat model, this conduit may have potential clinical implications in treating 

peripheral nerve trauma in humans.  Specifically, nerve injuries to small diameter sural 
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nerves in the feet or median nerves from the hand would be a suitable first translational 

model, in which this conduit may have an immediate impact on functional recovery.           
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APPENDIX A 

EMBRYONIC DORSAL ROOT GANGLIA ISOLATION 

 
 
The following protocol, adapted from Dr. Bryan Pfister, outlines the procedure for 

isolation of embryonic DRGs from pregnant rats.   

 
 
Surgical Tools: 
 

1. Micro-knife 
2. Dumont #4 forceps 
3. Dumont #5 forceps 
4. Dumont #5/45 forceps 
5. Dumont #5 Curved forceps 

 
 
Tissue Isolation: 
 
• Under dissection hood, remove E15-E17 embryos from the uterus and place in 

Lebovitz L-15 or other non-CO2 sensitive balanced medium. 
 

• Cut the head off the embryo between the skull and the first vertebra.  Using a micro 
knife, cut on the caudal side of the pronounced bump on the back of the head 
(between the two pronounced bumps) and under the snout.  Leaving some brain stem 
to handle and pull out the cord. 

 
• With the embryo on its side, remove the anterior portion of the abdomen and limbs 

with a micro-knife.  Place embryo on its back and remove remaining viscera with fine 
forceps (Dumont #4) until you have a clear view of the vertebral column. 

 
• Beginning at the rostal end, pinch through the vertebral column with fine forceps 

(Dumont #4).   
 
• Using the #5/45 forceps, grasp the brainstem/ménages and pull straight up and place 

in dish with balanced medium. 
 
• With a fresh pair of #5 Dumont forceps, pluck off the DRGs from the isolated spinal 

cords and place in a 1.5mL microcentrifuge tube containing L-15 medium and keep 
on ice or at 4oC up to an hour prior to plating. 
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Growth Medium Preparation (For 50mL aliquots) 
B-27 1 mL 
L-glutamine 100µL 
20% glucose  500µL 
1% fetal bovine serum (FBS) 500µL 
Penicillin/Streptomycin (P/S) 500µL 
Mitotic Inhibitors (20µM FdU, 20µM Uridine) 100µL  
10 ng/mL NGF 100µL  
Neuralbasal medium 47.2mL  
Total 50mL  
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APPENDIX B 

ADULT DORSAL ROOT GANGLIA ISOLATION 

 
The following protocol, adapted and modified from Dr. Bryan Pfister, outlines the 

procedure for isolation and dissociation of adult sensory neurons from DRGs. 

 

DRG Dissection: 
1. Euthanize rat by exposing to CO2 for 5 minutes.  
2. Place the rat on its abdomen and douse the dorsal surface with 70% alcohol. 
3. Using a No. 15 or 10 Blade, make a single dorsal-midline incision along the 

length of the body. 
4. Expose vertebral column by pulling the skin aside. 
5. Remove vertebral column by: 

a. Cutting the column at the tail. 
b. Carefully cutting through the tissue and rib bones along each side of the 

column. 
c. Cut as close to the brainstem as possible to capture the large cervical 

ganglia.   
6. Once removed place in a sterile dish. 
7. Using scissors, clean all viscera away from the column so that the centerline can 

be followed. 
8. Starting at thoracic region, cut vertebral column in half, making sure to stay 

centered. 
9. Gently pull spinal cord away from vertebral column to expose the DRGs. 
10. Using forceps, peel away the membrane along the inner spinal column.   
11. Grab the DRG gently and pull out of the hole. 
12. Using small spring scissors, cut the nerves on both sides of the DRG. 
13. Place ganglia into eppendorf tube containing L-15 medium. 

 
Cell Dissociation: 

1. Treat ganglia with 4mL 0.25% collagenase for 1 hour at 370C in a small dish. 
Gently swirl dish every 15 minutes. 

2. Centrifuge cells at 100g (setting 3) for 5 minutes. Remove supernatant. 
3. Treat ganglia with 5mL 0.25% trypsin for 1 hour. 
4. Pipette up and down about 25 times to break up the DRGs. 
5. Inactivate trypsin with 5mL complete media and centrifuge for 5 minutes at 100g  

(setting 3). 
6. Remove supernatant and resuspend with 1 mL media. 
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Neuron Enrichment: 
1. Prepare 2 two-layer BSA gradients (5% and 10%) by adding about 3 mL of a 5% 

BSA solution in a 15mL centrifuge tube. 
2. Using a autoclaved glass pipette, add the second layer underneath the 5% BSA by 

slowly pipetting a 10% BSA solution with the glass pipette tip at the bottom of 
the tube.  The 5% BSA will float atop the 10% BSA. 

3. Carefully place the DRG suspension on top of the BSA gradient by slowly adding 
it along the side of the tube. 

4. Centrifuge the cells at 100g (setting 3) for 4 minutes. Remove all except the 
pellet. Resuspend with 1 mL media.  

5. Pass the cell suspension through the second gradient. 
6. Resuspend the pellet in complete media and perform cell count. 
7. Plate cells in high density to ensure viability. 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Modified protocol courtesy of Ling Lin) 
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APPENDIX C 

COLLAGEN I EXTRACTION AND PURIFICATION 

The following protocol, adapted from previous studies cited earlier, outlines the 

procedure for isolation and purification of collagen I from rat tail tendons.   

1. Obtain rat tails from 3-month to 1 year old male (or female). 
2. Remove rat tails and store on ice. 
3. Sterilize by rinsing in antiseptic soap/water solution and 80% alcohol 
4. Rinse in sterile distilled water (RO water) 
5. Freeze for 24h on filter paper in Petri dish 
6. Sterilize in 80% alcohol immersion for 15 min and dry 
7. Pick up 1-1.5 cm of tail from small end with a hemostat 
8. Scrap away outer skin and hair dander using a scalpel 1-2 mm distal to point 

where hemostat is applied 
9. Use bone-cutting forceps to fracture the vertebrate from the tip by rocking back 

and forth against the hemostat on the proximal end of the tail  
10. Slowly pull away the cracked vertebrate fragments to separate from rest of tail. 
11. Pull out attached tendons along with the detached vertebrate fragment, hanging 

free 
12. Cut the free hanging tendons with scissors 
13. Place tendons in pre-weighed dish of 50 mL sterile distilled water 
14. Move 1.5 cm toward larger end of tail and repeat procedure from step 8 until last 

of tail is used 
15. Extract tendons by immersing into 0.1% acetic acid sterile aqueous solution @ 

(150ml/1g tendon) for 5-8 days at 4oC with daily agitation (stir bar) for proper 
mixing 

16. Transfer mixture to sterile 50 mL polycarbonate centrifuge tubes and centrifuge at 
3500 RPM for 30 min, keeping the supernatant (collagen), discarding the rest. 

17. Re-centrifuge the supernatant collagen solution at 2500 RPM for 10-15 min, then 
collect the supernatant while discarding the rest 

18. Transfer the extracted collagen solution to dialysis tubing bags (MWCO 12,000-
14,000) with lengths of 8-9 inches 

19. Dialyze the collagen extract overnight at 4 oC in pre-made dialysis buffer 
(Na2HPO4, NaH2PO4, pH 7.4) 

20. Transfer the semi-solid gel collagen extract from the dialysis tubing into 50 mL 
centrifuge tubes and spin at 3500 RPM for 30 min 

21. Discard the supernatant while saving the collagen pellet 
22. Store collagen up to 3 months at 4oC or indefinitely be freezing at -70oC 
 
23. Spread out semi-solid gel collagen pellets flat onto pans and lyophilize by steadily 

increasing temperature range: -20oC to 15 oC to obtain dry collagen sponge after 
48 hours.
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APPENDIX D 

COLLAGEN I QUANTIFICATION 

 

The following protocol details the assays and methods for quantifying the concentration 

of collagen extracts and determining the purity of the final lots of collagen product.   

 

BCA Protein Assay 
 

*Note: Protocol is modified from the Pierce BCA Protein Assay 
 
BD© (Becton Dickinson) Rat Tail Collagen Protein Standards: 
 
• Prepare protein standards from BD rat tail collagen (or any other commercial 

collagen of known concentration) by diluting BD collagen stock (3.41 mg/ml) 
into following concentrations: 2.0 mg/ml, 1.0 mg/ml and 0.75 mg/ml in 0.02 M 
acetic acid, 100 µl each.  

• BD rat tail collagen standards can be made into aliquots and stored at -20oC for 
future studies 

 
Rat Tail Collagen Extract Unknowns: 
 
• Prepare a 4.0 mg/ml of rat tail collagen by dissolving dry weight lyophilized rat 

tail collagen extract into desired volume of 0.02 M acetic acid.  
• Dilute the 4.0 mg/ml stock into 2.0 mg/ml and 1.0 mg/ml of collagen samples in 

0.02 M acetic acid, 150 µl each. 
 

Sample Loading: 
 
 

• Load 25 µl of each sample into the wells of a 96-well assay plate (Table 1). 
• Cover the assay plate with lid to prevent evaporation  
• Prepare BCA reagent by mixing 10 mL of reagent A to 200 µL of reagent B (50 

parts reagent A:1 part reagent B) 
• Add 200 µL of SDS to the BCA reagent and gently vortex 
• Load 200 µL of prepared BCA reagent/SDS solution into each well containing 

samples (standards and unknowns) 
• Cover the assay plate again with lid to prevent evaporation 
• Place the assay plate onto an orbital shaker set to the lowest setting for 270 min 
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• Load the assay plate into the plate reader 
• Open the software program on the desktop computer and label the layout of wells 
• Click on “Read” to collect absorption values at a wavelength of 570 nm. 
• Export collected data as text files to be pasted later into Excel 
• Use Excel to make a scatter plot for values of know concentration on the x-axis 

and corresponding calculated average absorption values on the y-axis for BD 
collagen standards, D.1. 

• Perform a linear regression of the data points on the graph to obtain equation (y= 
ax + b) of the best-fit line 

• Use the equation to calculate experimental values of concentration for BD 
collagen standards and concentrations for your unknown rat tail collagen samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D.1 Example of a typical standard curve of BD collagen standards  
 
 
 
Previous experiments conducted in the lab have shown that heating/shaking (orbital 
shaker) your 96-well plate for discrete time points (30, 60, or 90 min) may improve the 
unfolding of protein and provide more efficient BCA binding, which could result in more 
accurate absorbance values.  However, this step is optional. 
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Purity Analysis of Collagen: SDS PAGE 
 

 
Purpose: 
 

SDS PAGE was run as an attempt to quantify rat tail collagen samples with 
respect to BD collagen and a known protein standard. 
 
Principle: 
 
 SDS PAGE stands for sodium dodecyl sulfate polyacrylamide gel electrophoresis. 
This technique separates proteins based on their size. The first step in the separation 
process is the denaturing of proteins so that all the proteins only retain their primary 
amino acid structures. This is accomplished by SDS in this process. Since SDS is a 
detergent with the presence of a negative charge due to sulphate, proteins are soluablized 
by it along with an addition of negative charges. This aids in the movement of these 
protein primary structures towards the positive pole when placed in an electric field. In 
order to achieve an environment where different sized proteins move at a different rate in 
an electric field, polyacrylamide gel is employed which allows the proteins to move 
through tunnel like structures in a mesh of fibers. 
 

 
Materials and Methods: 
 
 To run SDS PAGE, two types of gels need to be prepared- Resolving gel to be 
placed on the bottom covering most of the volume of the electrophoresis cassette and 
stacking gel to be fill the top part of the cassette. However, before preparing the gels, all 
the samples were prepared. The protein standard used in the process was Novex Sharp 
Standard and collagen samples were prepared as 2.5 ug and 5ug each of BD collagen 
(3.41 mg/ml) and rat tail collagen (2mg/ml and 4 mg/ml).  
 
 To prepare 10 ml of 7% acrylamide resolving gel, a solution was prepared by 
mixing 5.1 ml deionized water, 2.3 ml of 30% Acrylamide/Bis, 2.5 ml gel buffer (1.5 M 
tris HCl with pH 8.8) and 0.1 ml 10% SDS. Polymerizing agent added to this solution 
was prepared by adding 5ul TEMED to 50 ul 10% APS solution. This gel solution was 
carefully added to the bottom of the cassette filling most of its volume leaving only about 
one fifth of the top to be filled by the stacking gel. 
 

For this experiment, 5 ml of 7% acrylamide stacking gel was prepared by mixing 
2.55 ml deionized water, 1.15 ml of 30% Acrylamide/Bis, 1.25 ml gel buffer (0.5 M tris 
HCl with pH 6.8) and 0.05 ml of 10% SDS.  In this case, polymerizing agent was 
prepared by adding 5 ul of TEMED to 25 ul of 10% APS solution. After loading the 
stacking gel solution on the top of resolving gel, it was allowed to gel and then wells 
were created to add sampled using a comb. The samples were added based on the 
predetermined sequence shown below: 
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Table D.1 Sequence of the samples in PAGE 
 
Standard 

10 ul 
2.5 ug 

BD 3.41 
mg/ml 
25 ul 

5 ug 
BD 

3.41mg/ml 
25 ul 

2.5 ug 
RT 

2 mg/ml 
25 ul 

5 ug 
RT 

2 mg/ml 
25 ul 

2.5 ug 
RT 

4 mg/ml 
25 ul 

5 ug 
RT 

4 mg/ml 
25 ul 

 
  
Electrophoresis was run at 120 volts for 90 minutes until the last band of the standard 
protein ladder (3.5 KDa) was visible at the bottom end of the gel. 
 
Table D.2 Order of protein bands for the standard protein ladder 
 
 

260 KDa 
160 KDa 
110 KDa 
80 KDa 
60 KDa 
50 KDa 
40 KDa 
30 KDa 
20 KDa 
15 KDa 
10 KDa 
3.5 KDa 

 
 The gel was then stained with Coomassie blue to obtain a better vision of the protein 
bands and was then destained after an hour to make all the bands visible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following figure shows the protein bands obtained after the completion of 
electrophoresis and staining process. 
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Standard 

10 ul 
2.5 ug 

BD 
3.41 

mg/ml 
25 ul 

5 ug 
BD 

3.41mg/ml 
25 ul 

2.5 ug 
RT 
2 

mg/ml 
25 ul 

5 ug 
RT 
2 

mg/ml 
25 ul 

2.5 ug 
RT 
4 

mg/ml 
25 ul 

5 ug 
RT 
4 

mg/ml 
25 ul 

 

 
D.2 Protein Bands obtained after running SDS PAGE, (BD: Commercial Collagen, RT: 
extracted collagen in lab. 

 
 The protein ladder can be seen in the bottom with the other samples above it. 
While the bands of BD collagen are not very clear, matching of particular bands of the 
samples of rat tail collagen of different concentrations can be seen. The corresponding 
bonds of BD collagen are also present but are very light in color and thinner, which 
correlates the presence of the same protein in different concentration in these samples. 
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SDS PAGE was successfully run to obtain protein bands based on the size of protein 
molecules. They were matched to correlate the presence of the same protein, which was 
collagen I in this case, in BD collagen and the extracted rat tail collagen at different 
concentrations.  Bands observed around 220 kDa, confirm the presence of collagen I in 
the in-house extracted lot.  Furthermore, the banding patterns from the commercial BD 
collagen matched closely with the bands seen from our extracted collagen lots (D.2). 
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