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ABSTRACT 

DESIGN AND IMPLEMENTATION OF A CYBERINFRASTRUCTURE FOR 
RNA MOTIF SEARCH, PREDICTION AND ANALYSIS 

 
by 

Dongrong Wen 

RNA secondary and tertiary structure motifs play important roles in cells.  However, very 

few web servers are available for RNA motif search and prediction.  In this dissertation, a 

cyberinfrastructure, named RNAcyber, capable of performing RNA motif search and 

prediction, is proposed, designed and implemented. 

The first component of RNAcyber is a web-based search engine, named 

RmotifDB.  This web-based tool integrates an RNA secondary structure comparison 

algorithm with the secondary structure motifs stored in the Rfam database.  With a user-

friendly interface, RmotifDB provides the ability to search for ncRNA structure motifs in 

both structural and sequential ways.  The second component of RNAcyber is an enhanced 

version of RmotifDB.  This enhanced version combines data from multiple sources, 

incorporates a variety of well-established structure-based search methods, and is 

integrated with the Gene Ontology.  To display RmotifDB’s search results, a software 

tool, called RSview, is developed.  RSview is able to display the search results in a 

graphical manner. 

Finally, RNAcyber contains a web-based tool called Junction-Explorer, which 

employs a data mining method for predicting tertiary motifs in RNA junctions.  

Specifically, the tool is trained on solved RNA tertiary structures obtained from the 

Protein Data Bank, and is able to predict the configuration of coaxial helical stacks and 

families (topologies) in RNA junctions at the secondary structure level.  Junction-



Explorer employs several algorithms for motif prediction, including a random forest 

classification algorithm, a pseudoknot removal algorithm, and a feature ranking algorithm 

based on the gini impurity measure.  A series of experiments including 10-fold cross-

validation has been conducted to evaluate the performance of the Junction-Explorer tool.  

Experimental results demonstrate the effectiveness of the proposed algorithms and the 

superiority of the tool over existing methods.  The RNAcyber infrastructure is fully 

operational, with all of its components accessible on the Internet. 
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1 

CHAPTER 1  

INTRODUCTION 

1.1 Background 

According to the well-known central dogma of molecular biology, RNA (Ribonucleic 

acid) is transcribed from DNA (Deoxyribonucleic acid) and plays a key role in the 

synthesis of proteins.  Since the central dogma was first articulated in 1970, tRNA (transfer 

RNA) and mRNA (messenger RNA) have been extensively studied by molecular 

biologists.  More recently, attention has been paid to non-coding RNAs (ncRNA).  Many 

ncRNA genes have been discovered during the past decade. 

There has been a great deal of effort in bioinformatics research on the development 

of sequence-based algorithms for RNA processing.  However there has been relatively less 

work done in the area of RNA structure processing.  Figure 1.1 depicts an example of an 

RNA secondary structure portrayed using the RNAplot of the Vienna RNA package [1].  In 

general, an RNA secondary structure includes stem-loops (hairpins), bulges, internal loops, 

multi-branch loops and pseudoknots.  An RNA secondary structure is closely related to the 

function of its RNA molecule. 

A sequence motif is a small segment of an RNA sequence that has a particular 

biological function.  An RNA structural motif is a substructure of an RNA structure that 

has a particular biological function.  Well-known RNA structural motifs include IRE (Iron 

Response Element) and HSL3 (Histone 3’ UTR stem-loop) [2,3].  As more and more RNA 

structural motifs were discovered, it became crucial to have a database holding these 

motifs for use in research. For example, Rfam [4] and RNA STRAND [5] are two 

databases of RNA structural motifs. 
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Figure 1.1  An example of an RNA secondary structure. This is QUAD RNA (Accession 
RF00113) of Rfam 9.0 [4]. 

 
As RNA structural motifs are archived, methods for matching, comparing and 

aligning a pair of RNA structural motifs become essential.  With reference to RNA 

sequences, many tools have been designed for sequence matching and alignment.  For 

instance, FASTA (FAST-All) [6] and BLAST (Basic Local Alignment Search Tool) [7] 

are examples of two outstanding software tools for sequence alignment.  However, 

sequence level tools are not capable of matching, comparing and aligning RNA structures.  

In Figure 1.2, which shows a sequence logo diagram from the Weblogo tool [8], the two 

RNA sequences are identical on 12 out of 30 nucleotides, corresponding to a 40% 

similarity in the sequences.  However, in terms of a comparison of their structures, they 

have a 100% similarity in structure.  Several software tools have been developed for RNA 

structure alignment, such as RSmatch [9], Rsearch [10] and RNAforester [11].  In addition 
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to sequence/structure matching and aligning, some software tools provide database 

searching as well, such as BLAST and RSmatch.  They are able to accept a query motif 

from a user, based upon which they perform a motif search in a sequence/structure 

database. 

 

 

 

 

Figure 1.2  The comparison between sequence similarity and structure similarity in RNA 
molecules. 

>NM_000032
UUCGUUCGUCCUCAGUGCAGGGCAACAGGA 
((((((.(((((......)))))))).))) 
>NM_014585 
CAACUUCAGCUACAGUGUUAGCUAAGUUUG 
((((((.(((((......)))))))).))) 



4 

 

1.2 Motivation 

Since the explosive expansion of the Internet and the World Wide Web in the late 1990’s, 

web search engines for searching the Internet have become vital to both daily life and 

research.  Speed and accuracy (in the sense of sensitivity and specificity) define the success 

of a web search engine.  Without powerful, popular web search engines like Google, 

Yahoo! and Bing, the speed with which information could be acquired over the Internet 

would be slower by orders of magnitude. 

Most RNA structure motif databases on the Internet only provide either 

keyword-based or sequence-based search methods, but lack structure-based search 

methods.  A few software tools and RNA structure motif databases can perform off-line 

searches by allowing users to download to their local machines, an approach which is 

inconvenient for most users.  In addition, none of the RNA structure motif databases on the 

Internet offer fast and accurate structure-based searches. 

Furthermore, none of the online web servers is able to search and predict RNA 

tertiary motifs.  Since the advanced improvement of the crystallography on the RNA 

molecules in recent years, the study, analysis and prediction on the RNA tertiary structures 

has become extensive; this had not been possible for the past decades. 

Therefore, in this dissertation, a cyberinfrastructure, named RNAcyber, capable of 

performing RNA motif search and prediction, is proposed, designed and implemented.  As 

part of RNAcyber, a comprehensive study of how to build a fast, high-recall and 

high-precision structure-based search engine for RNA motif databases was carried out.  As 

another part of RNAcyber, web servers, which are capable of detecting RNA secondary 
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structure motifs and predicting RNA tertiary motifs from the RNA secondary structure 

level, has been developed. 

1.3 Organization of the Dissertation 

In Chapter 2, the first component of RNAcyber is introduced.  It is a web-based search 

engine named RmotifDB.  This web-based tool integrates an RNA secondary structure 

comparison algorithm with the secondary structure motifs stored in the Rfam database.  

With a user-friendly interface, RmotifDB provides the ability to search for ncRNA 

structure motifs by both structural and sequential methods.  The second component of 

RNAcyber is an enhanced version of RmotifDB, which is introduced in Chapter 3.  This 

enhanced version combines data from multiple sources, incorporates a variety of 

well-established structure-based search methods, and is integrated with the Gene 

Ontology.  To display RmotifDB’s search results, a software tool, called RSview, is 

developed.  RSview is able to display the search results in a graphical manner, which is 

described in Chapter 4. 

In Chapters 5 and 6, RNAcyber contains a web-based tool called 

Junction-Explorer, which employs a data mining method for predicting tertiary motifs in 

RNA junctions.  The classifier of Junction-Explorer is trained on solved RNA tertiary 

structures obtained from the Protein Data Bank [12], and is able to predict the 

configuration of coaxial helical stacks and families (topologies) in RNA junctions. 

Finally, the contributions and conclusions of this dissertation, as well as future 

work, are presented in Chapter 7. 
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CHAPTER 2  

A SIMPLE RNA STRUCTURE SEARCH ENGINE AND DATABASE 

2.1 Preface 

In this chapter, a simple RNA structure search engine with its own database named 

RmotifDB 1.0 is presented.  RSmatch [9] is used as the core of the search engine in 

RmotifDB 1.0.  The RNA structure motifs deposited in the database of RmotifDB 1.0 are 

extracted from Rfam [4].  In the following section, RSmatch, Rfam and the detailed design 

of RmotifDB 1.0 are presented. 

2.2 RSmatch 

RSmatch is a software tool for comparing two RNA structures and for RNA motif 

detection.  It is intended to offer a light-weight approach to the comparison of RNA 

structures.  RSmatch is used as the core of the RmotifDB 1.0 search engine.  RSmatch is 

fast, taking quadratic time as determined by the size of the two given RNA structures.  

Specifically, its time complexity is O(mn) where m is the length of the query RNA 

structure and n is the length of the subject RNA structure. 

Functional RNA motifs can be usefully studied by aligning RNA secondary 

structures.  Recently, many software tools have been developed to find RNA motifs by 

aligning RNA structures.  However, existing software tools have two major drawbacks.  

First, they require a large number of pre-aligned structures.  Secondly, they have high time 

complexities.  Therefore, these tools have difficulty in processing RNAs without 

pre-aligned structures and in handling large RNA structure databases. 
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Figure 2.1  The execution of RSmatch under the Unix command line environment. 

 
RSmatch is an efficient tool for RNA motif detection and the alignment of RNA 

secondary structures.  Its algorithm decomposes an RNA secondary structure into a 

collection of non-decomposable structure components.  In order to capture the structural 

particularities, RSmatch uses a tree model to organize these structure components. 

RSmatch aligns a pair of RNA secondary structures using two separate scoring 

matrices that operate in both a local and global manner.  One scoring matrix is used for 

single-stranded regions and the other is used for double-stranded regions.  Furthermore, 

when searching an RNA structure database, RSmatch can detect similar RNA 

substructures and perform iterative database searches and multiple structure alignments.  

This establishes that RSmatch is able to identify functional RNA structural motifs. 



8 

 

By conducting experiments with instances of known RNA structure motifs, 

including simple stem-loops and complex structures with junctions, it has been 

demonstrated that the accuracy of RSmatch is outstanding when compared to other 

software tools [9].  It is currently the leader among software tools for structural alignment 

in terms of computing efficiency and accuracy.  RSmatch is especially useful to scientists 

and researchers interested in aligning RNA structural motifs from RNA folding programs 

or wet lab experiments where the size of the RNA structure dataset is very large.  The 

software is available for download from http://datalab.njit.edu/biodata/rna/RSmatch/ 

software.htm.  Figure 2.1 presents a screenshot of the execution of RSmatch’s structural 

database search under the Unix command line environment. 

 
Figure 2.2  The entry page of one ncRNA family (5S ribosomal RNA) in the Rfam 9.0 
database [4]. 
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2.3 Rfam Database 

Rfam is a well-annotated, open access database which is a depository for information on 

non-coding RNA (ncRNA) families and other RNA structural motifs.  Rfam collects 

covariance models and multiple sequence alignments which are used to represent 

non-coding RNA families.  The latest version of Rfam 9.0, containing a total of 603 

families, is available at http://rfam.sanger.ac.uk/.  Figure 2.2 shows the entry page for one 

ncRNA family (5S ribosomal RNA). 

By giving a query sequence, the user can search the entire 603 sets of the 

covariance models representing the non-coding RNA families.  Since the cost of 

computation using a covariance model is very expensive, an initial BLAST search is 

performed to decrease the size of the search space.  When a search is completed, the search 

results are displayed in the browser and list the RNA families which have a distinct 

similarity to the input query sequence.  The user can view the multiple sequence 

alignments and the annotation of RNA families listed on the search result.  The interface 

for sequence search in the Rfam database is shown in Figure 2.3.  In addition to a search 

based on query sequence, the Rfam website allows the user to search ncRNA families 

based on keyword and taxonomy characteristics.  The Rfam database can be downloaded 

in plain text format from the Rfam website and searched offline using the Infernal package 

[13] on user’s local machine. 

The secondary structures of ncRNAs may be similar without similarity in their 

underlying sequential.  Therefore, multiple sequence alignments with additional secondary 

structure information for these ncRNA families may provide a useful way to allow users to 

study ncRNA function and structure. 
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Figure 2.3  The interface for Rfam’s sequence search method [4]. 

 
In the Rfam database, the multiple sequence alignments represent information on 

the secondary structure and sequences of ncRNA families.  Moreover, the multiple 

sequence alignments can be transferred to a statistical model using so-called profile 

stochastic context-free grammars (SCFGs).  This is also known as the covariance model 

and is very similar to the hidden Markov models used in the Pfam database for the protein 

family annotation. 

In Rfam, one SCFG and two multiple sequence alignments are used to represent 

each ncRNA family.  The first multiple sequence alignment is called the seed alignment.  

The second alignment is called the full alignment.  The seed alignment, which is generated 

manually by biological experiment, includes representative members of the ncRNA family 

and is annotated with secondary structural information.  The seed alignment is also used to 
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generate the SCFG or covariance model (CM) by utilizing the Infernal package which is 

used to detect new family members and add them to the alignment of the family.  The 

expanded alignment generated by computation (as opposed to manually) including the 

newly added family members found by the Infernal package is called the full alignment.  

The newly detected family members are added to both the alignment and the covariance 

model.  The full alignment is thus the result of a search that uses SCFG against the 

sequence database via the Infernal package.  The initial seed alignment is also retained 

because of its special biological status or pedigree. 

2.4 The RmotifDB 1.0 System 

RSmatch offers an efficient algorithm for aligning two RNA structures, along with a basic 

RNA database search capability. However it must be run offline on a user's local machine, 

which is a major drawback.  Even RADAR (http://datalab.njit.edu/biodata/rna/RSmatch/ 

server.htm) [14], a descendant of RSmatch with an excellent web interface for aligning two 

RNA structures, does not contain a search engine function for a large database.  In the 

previous section, it has been observed that there are provisions for sequence, keyword and 

taxonomy searching in Rfam database, but not for structure searching.  This underscores 

the fact that to intensively study RNA structural functions or motifs, a structure-based 

search engine for RNA motif databases is needed.  With this motivation, RmotifDB 1.0 

was built, the first prototype of this study, available at http://datalab.njit.edu/bioinfo/ 

singleseq_index.html. 

RmotifDB 1.0 supports searching for the “nearest neighbors” of RNA structural 

motifs from its database.  The nearest neighbors of an RNA structural motif are other 

motifs with a high degree of similarity to the given motif.  There are currently 18,233 RNA 
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structures from the combined 603 Rfam family (version 9.0) seed alignments deposited in 

RmotifDB 1.0 database.  RSmatch version 2.0 is used as the core of the search engine for 

RmotifDB 1.0.  The two major search modes are provided as search-by-sequence and 

search-by-structure.  On completion of a search, an email notification is sent to the user.  

Since the search engine accesses the whole Rfam (version 9.0) with its 18,000 plus RNA 

structures, it may take minutes or even hours to complete the search when the server is 

busy. 

 
Figure 2.4  Screenshot of RmotifDB 1.0 with search by structure function. 

 
In order to build the database for RmotifDB 1.0, the plain text seed alignment file 

with 603 ncRNA families is downloaded from the Rfam 9.0 website.  A total of 18,233 

ncRNA sequences are extracted from this seed alignment file.  Each of these sequences is 
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then folded, using the Vienna RNA package’s RNAfold [1] to obtain their structures.  

Finally, the entire group of 18,233 ncRNA sequences along with their structure 

information is stored in a single plain text file which constitutes the major database file for 

RmotifDB 1.0. 

RSmatch 2.0 is used as the search engine for RmotifDB 1.0.  The RSmatch 2.0 

software is downloaded from the RADAR website.  The user’s query RNA structure and 

the major database file of RmotifDB 1.0 are the two input files for RSmatch.  RSmatch 

generates a search report with a ranked list for the user query RNA structure against the 

RmotifDB 1.0 database file.  The implementation uses a perl-cgi approach to integrate the 

web interface with RSmatch.  This allows use of the search engine over the web via a 

browser.  Figure 2.4 illustrates the web interface for search-by-structure for RmotifDB 1.0. 

With an improved web interface, the user can submit the query input which is given 

as either an RNA sequence or an RNA structure.  If the RNA sequence is given, it must be 

in FASTA format [6].  If the RNA structure is given, it must be in Vienna dot-bracket 

format [1].  The user can either paste the input query into a text box or upload the query 

input from a plain text file.  Additional options include variations on the alignment type, 

the score matrix, and the gap penalty.  Local or global alignment can be selected as the 

alignment type.  Currently, the only score matrix used is RSmatch's default matrix, but 

additional options for score matrices can be accommodated.  The default gap penalty is -2, 

which can be changed, based on the user's preference.  The user's e-mail address is required 

and used for notification once the search results are available. 
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Figure 2.5  Screenshot of a search report generated by RmotifDB 1.0. 

 
Upon completion of the search (which, as previously observed, may take minutes 

or hours), an email notification is sent with a link to the results.  Figure 2.5 illustrates a 

search result for RmotifDB 1.0. 

RmotifDB 1.0 capitalized on RSmatch and the Rfam database to build a basic 

search engine and database.  By presenting a convenient browser style interface, 

RmotifDB 1.0 provides the ability to search for ncRNA structural motifs in both structural 

and sequential ways, benefiting those researchers interested in ncRNA’s structural 

functions and structural motifs.  In the next chapter, RmotifDB 2.0, an enhanced version of 

RmotifDB 1.0, is presented, which is further enhanced with an improved search engine 

function and internal database. 
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CHAPTER 3  

AN INTEGRATED RNA STRUCTURE SEARCH ENGINE AND DATABASE 

3.1 Preface 

In this chapter, the design and implementation of an advanced RNA structural motif 

database RmotifDB 2.0 is presented.  The RNA structural motifs stored in RmotifDB 2.0 

derive from those 

• Collected manually from the biomedical literature, 

• Submitted by scientists from around the world, or 

• Discovered using a variety of motif mining methods. 

A motif mining method is described in detail.  The interface and search 

mechanisms provided by RmotifDB 2.0 is also presented as well as techniques used to 

integrate RmotifDB 2.0 with Gene Ontology.  The RmotifDB 2.0 system is fully 

operational and available at http://datalab.njit.edu/bioinfo/UTRdb/. 

3.2 RNA Structural Motifs 

Post-transcriptional control is one of the mechanisms that regulate gene expression in 

eukaryotic cells.  RNA elements residing in the UnTranslated Regions (UTRs) of mRNAs 

have been shown to play a variety of roles in post-transcriptional control, including mRNA 

localization, translation, and stability [3,15].  The RNA elements in UTRs can be roughly 

divided into three categories: elements whose functions are primarily attributable to their 

sequences, elements whose functions are attributable to their secondary or tertiary 

structures, and elements whose functions are attributable to both their sequences and 
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structures.  For simplicity, the first category is called sequence elements, and the second 

and third are called structure elements (or structural motifs), respectively. 

Well-known sequence elements include AU-rich elements (AREs), which contain 

one or several tandem AUUUA sequences and are involved in regulating mRNA stability 

[16], and miRNA target sequences, which are partially complementary to cognate miRNA 

sequences and are involved in regulating translation or mRNA stability [17]. 

 

Figure 3.1  (a) An example of the HSL3 motif. (b) An example of the IRE motif. 
 

Well-known structure elements (or structural motifs) include the histone 3’-UTR 

stem-loop structure (HSL3) and the iron response element (IRE) [2,3].  Both sequence and 

structure are important to the functions of the structural motifs.  HSL3 is a stem-loop 

structure of about 25 nucleotides that exists in the 3’-UTRs of most histone genes.  Figure 

3.1a portrays an HSL3 motif using the XRNA tool (http://rna.ucsc.edu/rnacenter/ 



17 

 

xrna/xrna.html).  The HSL3 structure is critical for both termination of the transcription of 

mRNAs and the stability of mRNAs.  These functions are exerted by the stem-loop binding 

protein (SLBP) that interacts with HSL3.  IRE is a stem-loop structure of about 30 

nucleotides with a bulge or a small internal loop in the stem (Figure 3.1b).  IREs have been 

found in both 5’-UTRs and 3’-UTRs of mRNAs whose products are involved in iron 

homeostasis in higher eukaryotic species.  IREs bind to the iron regulatory proteins (IRPs) 

of those species which control the translation and stability of IRE-containing mRNAs. 

HSL3 and IRE have several similarities: both are small simple RNA structures with 

less than 40 nucleotides; both exist in the UTRs of several genes with related functions; 

and both bind to cellular proteins and are involved in post-transcriptional gene regulation.  

These regulations via HSL3 and IRE constitute a distinct mode of gene regulation whereby 

the expression of several genes can be modulated via a common RNA structure in UTRs.  

Functional sequence motifs in genomes have been extensively studied in recent years, 

particularly for the promoter region and sequences involved in splicing [18-20].  By 

contrast, RNA structure elements have been investigated to a much lesser extent, largely 

due to the difficulties involved in predicting correct RNA structures and in conducting 

RNA structure alignments which have entailed huge computing costs. 

Some success has been achieved in making accurate RNA structure prediction 

using phylogenetic approaches [21] and sequence alignments [22,23].  However, 

large-scale mining for conserved structures in eukaryotic UTRs has been studied to a lesser 

extent.  Furthermore, current methods for finding common stem-loop structures rely solely 

on the detection of structural similarities [24].  Gene Ontology information has not been 
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used in the study of RNA structure, although integrating ontologies with other biological 

data has been studied extensively [25-29]. 

 
Figure 3.2  Alignment of two RNA secondary structures where the local matches found by 
RSmatch are highlighted with the color green. 

 
Here is presenting an improved version of the search engine and database from 

Chapter 2, RmotifDB 2.0, that contains structural motifs found in 5’ and 3’ UTRs of 

eukaryotic mRNAs.  The RNA structural motifs are linked with Gene Ontology and 

PubMed entries relevant to the motifs.  A wide variety of motif mining methods are 

developed.  In particular, in Section 3.3, a histogram-based method for discovering motifs 

in eukaryotic UTRs is presented and the detail of the histogram-based method is described.  

In Section 3.4, RmotifDB 2.0 is presented, as well as its interface and search mechanisms.  

In Section 3.5, techniques used to integrate RmotifDB 2.0 with Gene Ontology is 

described.  Section 3.6 summarizes the conclusions and indicates some possibilities for 

future research. 



19 

 

3.3 A Motif Mining Method 

Several structural motif mining methods based on different RNA representation models 

have been developed.  For example, the work [30-32] represented an RNA secondary 

structure using an ordered labeled tree, and designed a tree matching algorithm to find 

motifs in multiple RNA secondary structures.  As described in Chapter 2, RSmatch uses a 

loop model for representing RNA secondary structures.  In RSmatch, a dynamic 

programming algorithm for aligning a pair of RNA secondary structures based on this loop 

model was utilized.  The time complexity of RSmatch is O(mn), where m and n are the 

sizes (number of nucleotides) of the two compared secondary structures.  RSmatch is 

available at the RADAR server (acronym for RNA Data Analysis and Research) [14] 

accessible at http://datalab.njit.edu/biodata/rna/RSmatch/server.htm.  Figure 3.2 shows the 

common region of two RNA secondary structures for homo sapiens sequences portrayed 

using XRNA.  The local matches found by RSmatch are highlighted in green. 

A histogram-based scoring method is described below, that is for discovering novel 

conserved RNA stem-loops in eukaryotic UTRs using RSmatch.  This method is an 

extension of a previously developed histogram-based algorithm for DNA sequence 

classification [33].  Given a set of RNA secondary structures, the method uses RSmatch to 

perform pairwise alignments by comparing two RNA structures from the set at a time.  

Given an optimal local alignment between two structures A and B found by RSmatch, the 

set of bases in the aligned region of A is denoted by QA = {Ai, Ai+1, ..., Aj} where Ai (Aj) is 

the 5’-most (3’-most,) nucleotide not aligned to a gap.  The set of bases in the aligned 

region of B is denoted by QB = {Bm, Bm+1, ..., Bn} where Bm (Bn) corresponds to the 5’-most 

(3’-most) nucleotide not aligned to a gap.  Each nucleotide Ak ∈  QA that is not aligned to a 
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gap scores | j-i+1 | points.  All other bases in the structure A receive zero points.  Thus, the 

larger the aligned region between A and B, the higher the score each base in the region 

receives.  When aligning the structure A with another structure C, some bases in QA may 

receive non-zero points, hence the scores of those bases are accumulated.  Therefore, the 

bases in a conserved RNA motif will have high scores. 

To validate this approach, experiments is conducted to evaluate the effectiveness of 

this scoring method.  The conserved stem-loops considered were IRE motifs containing 

about 30 nucleotides, located in the 5’-UTRs or 3’-UTRs of mRNAs coding for proteins 

involved in cellular iron metabolism.  The test dataset was prepared as follows.  By 

searching human RefSeq mRNA sequences from NCBI (the National Center for 

Biotechnology Information at http://www.ncbi.nlm.nih.gov/RefSeq/), several mRNA 

sequences were obtained within each of which at least one IRE motif was known to exist.  

Then the sequences’ UTR regions were extracted as indicated by RefSeq's GenBank 

annotation and used PatSearch [34] to locate the IRE sequences.  Each IRE sequence was 

then extended from both ends to obtain 100 nucleotide sequences.  These sequences were 

mixed with several “noisy” sequences of the same length.  The resulting sequences were 

then folded using the Vienna RNA package [1], with the package’s RNAsubopt function 

assigned a setting of “-e 0”.  It is noted that this setting may yield multiple RNA structures 

with the same free energy for any given RNA sequence. 

Figure 3.3 shows the score histograms for three tested RNA structures.  Clusters of 

bases with high scores correspond to the IRE motifs in the RNA structures.  Similar 

clusters of bases with high scores corresponding to the IRE motifs were observed in the 

other IRE-containing RNA structures, but not in the “noisy” structures.  This result 
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indicates that this histogram-based scoring method is able to detect biologically significant 

motifs in multiple RNA structures. 
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Figure 3.3  Diagrams illustrating the effectiveness of the proposed scoring method.  IRE is 
found around base positions 20-60 in the RNA structures corresponding to the respective 
diagrams. 



22 

 

 
Figure 3.4  The interface of RmotifDB 2.0 where scientists can submit RNA structural 
motifs. 

3.4 The RmotifDB 2.0 System 

RmotifDB 2.0 is designed for storing the RNA structural motifs found in the UTRs of 

eukaryotic mRNAs.  It is a web-based system that supports the retrieval and access of RNA 

structural motifs from its database.  The system allows the user to search RNA structural 

motifs in an effective and user-friendly way.  RmotifDB 2.0 is accessible at http://datalab. 

njit.edu/bioinfo/UTRdb/.  It was implemented using Perl-CGI, Java, C and Oracle. 
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Figure 3.5  The search interface of RmotifDB 2.0 system. 

 
The RNA structural motifs stored in RmotifDB 2.0 come from three sources.  The 

primary source consists of manually collected motifs from the biomedical literature.  

Scientists who use this database can also submit motifs to RmotifDB 2.0.  The interface 

scientists use to submit RNA structural motifs is shown in Figure 3.4.  Lastly, motifs are 

obtained from those RNA structures discovered using a wide variety of motif mining 

methods (such as the method described in Section 3.3). 

Figure 3.5 shows the search interface for RmotifDB 2.0.  The system provides two 

search options: query-by-sequence (QBS) and query-by-structure (QBR).  In QBS, the user 
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enters an RNA sequence in the standard FASTA format [6] and the system matches this 

query sequence with motifs in the database using either RSmatch [9] or Infernal [13].  

Since RSmatch accepts only RNA secondary structures as input data, the system needs to 

invoke Vienna RNA v1.4 [1] in order to fold the query sequence into a structure before a 

match is made.  With QBR, the user enters an RNA secondary structure represented by the 

Vienna dot-bracket format [1] and the system matches this query structure with motifs in 

the database using RSmatch.  The result is a ranked list of motifs that are approximately 

contained in the query sequence or the query structure.  In addition, the user can search 

RmotifDB 2.0 by choosing a Gene ID or RefSeq ID from a pre-defined list of Gene IDs and 

RefSeq IDs provided by the RmotifDB 2.0 system where the Gene IDs and RefSeq IDs are 

obtained from http://www.ncbi.nlm.nih.gov/RefSeq/.  This pre-defined list contains the 

IDs of the genes (mRNA sequences) used by several motif mining methods to discover the 

structural motifs stored in RmotifDB 2.0.  The result of this search is a list of structural 

motifs containing the query gene ID (Gene ID or RefSeq ID). 

3.5 Integrating RmotifDB 2.0 with Gene Ontology 

While browsing the search results returned by RmotifDB 2.0, the user can click a motif to 

access pertinent detailed information.  Figure 3.6 shows the result of displaying a motif and 

its related information.  Here the motif is an iron response element (IRE) in humans shown 

in the Stockholm format [13].  This format is a multiple sequence alignment output with 

structural annotation in the Vienna dot-bracket format [1].  The motif is depicted in the 

bottom right-hand corner of the window.  Also displayed is the Gene Ontology (GO) 

information concerning the motif, and relevant articles in PubMed (not shown in the 

screenshot) that publish said motif. 
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Figure 3.6  The output showing a structural motif stored in RmotifDB 2.0 and related 
information.  The t-value inside the parentheses next to each GO entry indicates the 
significance of the association between the motif and the GO entry.  The smaller the 
t-value, the more significant the association. 

 
In general, a motif contains multiple genes (mRNA sequences) with similar 

functions.  The GO entries and their URLs that are highly associated with the motif are 

collected and stored in RmotifDB 2.0.  The GO entries belonging to three categories 

(molecular function, biological process and cell component) are obtained from the Gene 

Ontology Consortium (http://www.geneontology.org).  The mapping information between 

the GO entries and the genes is obtained from the LocusLink database [35].  A 

hyper-geometric test [36] is used to measure the significance of the association between the 

motif and each of the GO entries.  The significance is shown as the parenthesized t-value 

next to each GO entry in Figure 3.6.  The hyper-geometric test is appropriate as 
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considering a finite population sampling scheme with the entire population divided into 

two groups: those associated with a particular GO entry and those associated with the other 

GO entries. 

Generally speaking, the hyper-geometric test has four parameters (which shall be 

related to the problem in a moment): 

• m, the number of white balls in an urn, 

• n, the number of black balls in the urn, 

• k, the number of balls drawn from the urn, 

• x, the number of white balls drawn from the urn. 

The probability that x out of k balls drawn from the urn are white (from an urn 

containing m+n balls) is: 
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where x ≤ min(m, k). 

For each RNA structural motif M containing multiple genes, all GO entries are 

examined to evaluate their associations with M.  Through the mapping information 

between M and a GO entry G, in a GO category C, it is able to calculate four values: 

• N1, the number of genes associated with any GO entry in C, 

• N2, the number of genes associated with G in C, 

• N3, the number of genes in M associated with any GO entry in C, 

• N4, the number of genes in M associated with G in C, 

where N1 ≥ N2 and N3 ≥ N4. 
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The t-value of the GO entry G is calculated as: 

t(G) = f (N4, N2, N1-N2, N3)                                                  (3.2) 

where the function f is defined in Equation (3.1).  In general, the smaller the value of t(G), 

the more significant the association between G and M.  RmotifDB 2.0 displays G together 

with its t-value, if t(G) is smaller than a user-adjustable parameter value (0.05 in the 

present case). 

3.6 Conclusions 

In this chapter, an advanced RNA structural motif database called RmotifDB 2.0 was 

presented and some of its features were described, as well as techniques used for 

integrating RmotifDB 2.0 with Gene Ontology.  A motif mining method capable of 

discovering structural motifs in eukaryotic mRNAs was developed.  Data mining [18,20] 

and data integration [37-46] have emerged as important fields in bioinformatics at the 

interface of information technology and molecular biology.  The system presented is part 

of a long-term project [14,47] that aims to build a cyberinfrastructure for RNA data mining 

and data integration.  This cyberinfrastructure complements existing RNA motif databases 

such as Rfam and UTRdb [4,48] which lack structure-based search functions.  It 

contributes to this field in general and to RNA informatics in particular. 
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CHAPTER 4  

THE VISUALIZATION OF RSMATCH 

4.1 Preface 

This chapter describes RSview, a tool for graphically displaying the alignment results 

produced by RSmatch [9].  Figure 4.1 illustrates a sample output of pairwise sequence 

alignments generated by RSmatch.  Its output is presented in plain text format.  Since the 

plain text format of RSmatch output may be inconvenient for researchers interested in 

RNA structural motifs, it is important to have a software tool which can present the output 

in a visually effective graphical manner. 

4.2 RSview 

A visualization tool called RSview was developed, which is used with RSmatch that 

re-displays RSmatch’s plain text output of alignment results.  Given two RNA molecules, 

RSview displays the RSmatch’s output in a colored, graphical manner by integrating 

RNAView [49] with RSmatch.  The programming languages used to implement RSview 

are C, Java and Perl. 

The function of the RNAView program is to generate 2-dimensional (2D) figures 

of DNA/RNA secondary structures including tertiary interactions.  RNAView is able to 

identify and classify the types of base pairs formed in nucleic acid structures.  The 

RNAView program accepts RNA structures with 3-dimensional (3D) coordinate data in 

PDB, mmCIF or RNAML format and produces 2D diagrams of secondary and tertiary 

RNA structures in Postscript, VRML or RNAML formats.  Figures 4.2 and 4.3 show 
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example diagrams produced by RNAView with PDB ID’s 1GID Chain A (P4-P6 RNA 

RIBOZYME DOMAIN) and 1C2X Chain C (5S RIBOSOMAL RNA), respectively. 

 
Figure 4.1  One sample output of pairwise sequence alignment of RSmatch. 
 

Like RNAView, RSview accepts a pair of RNA structures with 3D coordinate data 

in PDB format and generates a pair of 2D diagrams in Postscript format, as illustrated in 

Figures 4.2 and 4.3, together with RNA structures with 3D coordinate data in RNAML 

format for the input RNA molecules.  The sequences of the input RNA molecules are 

extracted from the RNAML files and folded into the secondary structures using the Vienna 

RNA package [1].  These secondary structures are then aligned using RSmatch.  Finally 

RSview combines the two simplified 2D Postscript format diagrams for the RNA 

molecules with the alignment results obtained from RSmatch. 
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Figure 4.2  The diagram of 1GID Chain A (P4-P6 RNA RIBOZYME DOMAIN) 
produced by RNAView [49]. 
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Figure 4.3  The diagram of 1C2X Chain C (5S RIBOSOMAL RNA) produced by 
RNAView [49]. 
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Figure 4.4  The output diagram of RSview. 

 
Figure 4.4 shows the output of RSview for the two molecules in Figures 4.2 and 

4.3.  In Figure 4.4, the nucleotides in cyanine color are the unmatched region and the 

nucleotides in red are the matched (aligned) region.  The blue (starting) line and yellow 

(ending) line indicate the best local match with the largest alignment score among all 

matched (aligned) regions.  The web version of RSview with tutorial is available at 

http://datalab.njit.edu/biodata/rna/RSview/. 
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CHAPTER 5  

PREDICTING COAXIAL HELICAL STACKING IN RNA JUNCTIONS 

5.1 Preface 

In previous chapters, the topics mainly focused on the RNA secondary structures and their 

motifs in 2D.  However, since the advanced improvement of the crystallography on the 

RNA molecules in recent years, the study, analysis and prediction on the RNA tertiary 

structures has become extensive [50-52], which had not been possible over the past several 

decades.  Therefore, beginning with this chapter, the topic will focus on the study of RNA 

tertiary structures and their three-dimensional (3D) motifs. 

It is well-known that the RNA junction is one of the essential structural components 

in RNA molecules.  The RNA junction is formed by at least three helices in RNA tertiary 

structures.  In order to explore the analysis and prediction of the RNA tertiary structure, it 

is important to study the structural configuration of the RNA junctions. 

In this chapter, a data mining method is described to predict the configuration of the 

coaxial helical stacks and families (topologies) in RNA 3-way to 10-way junctions at the 

secondary structure level.  This method adopts the random forests classifier which is 

trained by solved RNA tertiary structures.  In Section 5.2, the background knowledge of 

the coaxial stacking and the family (topology) on RNA junctions is introduced.  The details 

of the materials and methods used for prediction are described in Section 5.3.  To ensure 

the accuracy and performance of the proposed method, the experiments and the 

performance evaluations, including the comparison with other works, are reported in 

Section 5.4.  Furthermore, the features, which are extracted from the junctions and used for 
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prediction, are analyzed for future improvement.  The analysis for the features is discussed 

in Section 5.5. 

5.2 Background 

An RNA molecule is composed of many different components such as helices, hairpin 

loops, bulge/internal loops, pseudoknots and junctions.  An RNA junction, also known as a 

multi-branch loop, can be defined as the enclosed area composed of more than two helical 

segments [53,54].  This structural component of RNA can be found in numerous RNA 

molecules, and is used in a wide range of functional roles such as the self-cleaving catalytic 

domain of the hammerhead ribozyme.  Due to the fact that junctions play a role as major 

architectural components in RNA, understanding the structural properties of junctions is 

necessary. 

A common tertiary motif among junctions is the coaxial stacking of helices [50,55].  

This motif is formed when two separate helical elements stack to form coaxial helices as a 

pseudo-continuous helix.  Coaxial stacking motifs are seen in several large RNA 

structures, including tRNA, group II intron, and the large ribosomal subunits.  Coaxial 

stacking provides thermodynamic stability to the molecule, and reduces the separation 

between loop regions in junctions.  Both coaxial stacking and long-range interactions are 

essential for the correct tertiary structure formation of many RNAs as well as the formation 

of different junction topologies [50,56,57]. 

Analyses from solved crystal structures have shown that, according to their 

three-dimensional shape or topology, RNA junctions can be categorized into several 

families.  Specifically, Lescoute and Westhof compiled and analyzed the topology of 

three-way junctions in folded RNAs, grouping these junctions into three families A, B, and 
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C [58].  In most of the structured three-way junctions, two of the helices stack coaxially.  

Laing and Schlick analyzed RNA four-way junctions and grouped them into nine families 

such as H, cH, cL, cK, π, cW, ψ, cX, and X, according to coaxial stacking interactions and 

helical conformation signatures [56]. 

One example of an RNA molecule (PDB ID: 1E8O) with a three-way junction is 

presented in Figure 5.1.  The three-dimensional view is rendered by Jmol (http:// 

www.jmol.org/).  The secondary structure view of the same molecule is rendered by S2S 

[59].  In this figure, each helix of the three-way junction is highlighted by different colors 

as well as the coaxial stacking.  It is clearly shown where two separated helices stack and 

form the helical coaxial stacking as a pseudo-continuous helix.  Another example of an 

RNA molecule (PDB ID: 3DIL) with a five-way junction is presented in Figure 5.2.  There 

are two coaxial stacks formed in this five-way junction.  One highlighted in light green is 

between Helix 1 and Helix 2.  Another highlighted in orange is between Helix 4 and Helix 

5. 

 

(a) 
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(b) 

 

(c) 

Figure 5.1  (a) An RNA molecule (PDB ID: 1E8O) with a three-way junction is rendered 
by Jmol. Helix 1 is highlighted in red. Helix 2 is highlighted in blue. Helix 3 is highlighted 
in yellow. (b) A coaxial stacking is formed by Helix 1 and Helix 3. It is highlighted in light 
green. (c) The secondary structure view of this RNA molecule is rendered by S2S. Helix 1, 
Helix2 and Helix 3 are labeled. Helix 1 and Helix 3 are aligned, which represents the 
formation of the coaxial stacking. 
 

 

 

Helix 2 Helix 1 

Helix 3 
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(a) 

 
(b) 

 

 

(c) 

Figure 5.2  (a) An RNA molecule (PDB ID: 3DIL) with a five-way junction is rendered by 
Jmol.  Helix 1 is highlighted in red.  Helix 2 is highlighted in blue.  Helix 3 is highlighted in 
dark green.  Helix 4 is highlighted in yellow.  Helix 5 is highlighted in magenta.  (b) One 
coaxial stacking highlighted in light green is formed by Helix 1 and Helix 2.  Another 
coaxial stacking highlighted in orange is formed by Helix 4 and Helix 5.  (c) The secondary 
structure view of this RNA molecule is rendered by S2S.  Helix 1, Helix2, Helix 3, Helix 4 
and Helix 5 are labeled.  Helix 1 and Helix 2 are aligned as well as Helix 4 and Helix 5, 
which represent the formation of the coaxial stacks. 

Helix 1 

Helix 2 

Helix 3 

Helix 4 Helix 5 
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5.3 Materials and Methods 

Dataset of RNA junctions, feature extraction and random forests algorithm are described 

and discussed in this section. 

5.3.1 Dataset of RNA Junctions 

The dataset of RNA junctions used in this study is the updated dataset from Laing’s 

previous works [56,57].  The dataset is collected from the 3D RNA structures of the RCSB 

Protein Data Bank [12] as of November 2010. A total of 216 RNA junctions were 

collected.  The information of coaxial stacking and junction family (topology) are 

manually entered into the dataset.  Figure 5.3 shows the number of junctions for each 

junction order.  In this dataset, only the Watson-Crick (AU, GC) and Wobble (GU) base 

pairs are considered and a helix is defined as at least two consecutive base pairs.  On each 

helix of a junction, the two consecutive base pairs closing the junction and all single bases 

between the helices are collected into the dataset, which defines the scope of a junction as 

shown in Figure 5.4 for example. 
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Figure 5.3  The number of junctions for each junction order. 
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Figure 5.4  The scope of a three-way junction.  On each helix of a junction, the two 
consecutive base pairs closing the junction are collected, as well as all single bases between 
helices. 

 
The dataset contains tables for each junction order.  For example, the attributes of 

the table for the three-way junction are described as follows.  The attribute PDB represents 

the PDB (Protein Data Bank) ID of the RNA molecule in which the junction is collected.  

The RNA Type attribute is the type of RNA molecule in which the junction is collected.  

The family (topology) type of each three-way junction is recorded under the Family 

attribute.  The family type of each three-way junction is either A, B or C.  The Coaxial 

attribute is the coaxial stacking configuration of each junction.  For three-way junctions, 

there are four different types of coaxial stacking including H1H2, H2H3, H1H3 and None.  

H1, H2 and H3 represent the first, second and third helix of a three-way junction 

respectively.  H1H2 represents a coaxial stacking formed by the first helix (Helix 1) and the 

second helix (Helix 2) in a junction.  H2H3 represents a coaxial stacking formed by the 
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second helix (Helix 2) and the third helix (Helix 3) in a junction.  H1H3 represents a coaxial 

stacking formed by the first helix (Helix 1) and the third helix (Helix 3) in a junction.  

Therefore, “None” represents no coaxial stacking formed in a junction. 

A three-way junction is completely described by attributes representing three RNA 

subsequences.  The position numbers and the nucleotides (A, U, C, G) are given for each 

RNA subsequence.  The attributes StrSeq1, StrSeq2 and StrSeq3 represent the first, 

second and third RNA subsequences.  The starting and ending position numbers of the first 

subsequence are named S1ID5 and S1ID3 which indicate the 5’ and 3’ ends of the first 

subsequence.  The position numbers of the second subsequence are attributes S2ID5 and 

S2ID3.  The position numbers of the third subsequence are attributes S3ID5 and S3ID3.  

By taking the three-way junction shown in Figure 5.4 as an example, S1ID5 is 132, S1ID3 

is 136, S2ID5 is 173, S2ID3 is 181, S3ID5 is 231 and S3ID3 is 234.  Similarly, the first 

subsequence (StrSeq1) is GGCAG, the second subsequence (StrSeq2) is CUUGAAAGU 

and the third subsequence (StrSeq3) is ACCC. 

Single/unpaired bases between helices in the junction and the number of these 

bases are shown as attributes J12, J23 and J31.  For example, in Figure 5.4, J12 represents the 

unpaired bases between the first and second helices, which is C.  Therefore, J23 is UGAAA 

and J31 is blank.  Therefore, the lengths of attributes J12, J23 and J31 are 1, 5 and 0 

respectively. 

5.3.2 Feature Extraction 

The dataset of junctions from solved RNA molecules are used for training by the random 

forests algorithm.  A trained random forests classifier will be used to predict the helical 

coaxial stacking and junction family types.  Since there are training and testing phases in 



41 

 

the random forests algorithm, it is necessary to extract features from the dataset of 

junctions.  The information, including the loops length between helices, sequence content 

and thermodynamic free-energy associated with the base pairs on helices and their 

common loop region, is extracted from the secondary structure level as features. 

Table 5.1 lists the 15 features for three-way junctions.  Because coaxial stacking is 

favorable to smaller loop region length, all loop region lengths (|J12|, |J23|, |J13|), their 

ascending order (Min(|J12|,|J23|,|J13|), Med(|J12|,|J23|,|J13|), Max(|J12|,|J23|,|J13|)) and the 

smaller length of two neighboring loop regions (Min(|J23|,|J13|), Min(|J12|,|J13|), 

Min(|J12|,|J23|)) are considered as features.  Furthermore, the maximum number of 

consecutive adenines in the loop region (A(J12), A(J23) A(J13)) is also considered since it 

has been reported that adenines in loop regions often form tertiary motifs named A-minor 

[60] in specific junction topologies [56-58]. 

To improve the prediction accuracy of coaxial stacking in junctions, 

thermodynamic free-energy associated with terminal base pairs on two neighboring helices 

and their common loop region is considered (∆G(H1,H2), ∆G(H2,H3), ∆G(H1,H3)).  When 

the length of the loop region is 0 or 1, the thermodynamic free-energy values are taken 

from the tables of the program RNAstructure [61].  When the length of the loop region is 0, 

the free-energy value is taken from the table of coaxial stacking for two helices with no 

intervening unpaired nucleotide.  When the length of the loop region is 1, the free-energy 

value is calculated from the table of coaxial stacking with one intervening mismatch and 

plus 2.1 kcal/mol for the terminal mismatch free-energy, as suggested by Tyagi and 

Mathews [62].  As a terminal mismatch in Ji can potentially form a non-canonical base-pair 
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with a nucleotide in Ji-1 or Ji+1, the minimum free-energy value is considered for these two 

possibilities. 

 

Table 5.1  Features Used for Predicting Helical Coaxial Stacking and Topology of 
Three-way Junctions 

Feature Description 

|J12| Number of nucleotides in the loop region between helix H1 and 
helix H2 

|J23| Number of nucleotides in the loop region between helix H2 and 
helix H3 

|J13| Number of nucleotides in the loop region between helix H1 and 
helix H3 

Min(|J12|,|J23|,|J13|) The minimum value of |J12|, |J23| and |J13| 

Med(|J12|,|J23|,|J13|) The median value of |J12|, |J23| and |J13| 

Max(|J12|,|J23|,|J13|) The maximum value of |J12|, |J23| and |J13| 

Min(|J23|,|J13|) Minimum value of |J23| and |J13| 

Min(|J12|,|J13|) Minimum value of |J12| and |J13| 

Min(|J12|,|J23|) Minimum value of |J12| and |J23| 

A(J12) Maximum number of consecutive adenines in the loop region 
between helix H1 and helix H2 

A(J23) Maximum number of consecutive adenines in the loop region 
between helix H2 and helix H3 

A(J13) Maximum number of consecutive adenines in the loop region 
between helix H1 and helix H3 

∆G(H1,H2) Thermodynamic free-energy associated with helix H1, helix H2 
and the loop region between H1 and H2 

∆G(H2,H3) Thermodynamic free-energy associated with helix H2, helix H3 
and the loop region between H2 and H3 

∆G(H1,H3) Thermodynamic free-energy associated with helix H1, helix H3 
and the loop region between H1 and H3 
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Table 5.2  Features Used for Predicting Helical Coaxial Stacking on a Pair of Neighboring 
Helices Hi and Hi+1 in Higher-order Junctions 
Feature Description 
|Ji(i+1)| Number of nucleotides in the loop region between helix Hi 

and helix Hi+1 
|J(i-1)i| Number of nucleotides in the loop region between helix Hi-1 

and helix Hi 
|J(i+1)(i+2)| Number of nucleotides in the loop region between helix Hi+1 

and helix Hi+2 
Min(|J(i-1)i|,|J(i+1)(i+2)|) Minimum value of |J(i-1)i| and |J(i+1)(i+2)| 
A(Ji(i+1)) Maximum number of consecutive adenines in the loop region 

between helix Hi and helix Hi+1 
A(J(i-1)i) Maximum number of consecutive adenines in the loop region 

between helix Hi-1 and helix Hi 
A(J(i+1)(i+2)) Maximum number of consecutive adenines in the loop region 

between helix Hi+1 and helix Hi+2 
∆G(Hi,Hi+1) Thermodynamic free-energy associated with helix Hi, helix 

Hi+1 and the loop region between Hi and Hi+1 
∆G(Hi-1,Hi) Thermodynamic free-energy associated with helix Hi-1, helix 

Hi and the loop region between Hi-1 and Hi 
∆G(Hi+1,Hi+2) Thermodynamic free-energy associated with helix Hi+1, helix 

Hi+2 and the loop region between Hi+1 and Hi+2 

 
As it is currently impossible to calculate the thermodynamic parameters by wet lab 

experiments for any loop region length greater than one, the thermodynamic free-energy 

values are estimated by a linear or a logarithmic equation [63,64] as follows.  When the 

length of the loop region is between 2 and 6, the free-energy value is calculated as: 

chbLa ++  (5.1)

where a = 9.3, b = -0.3, c = -0.9, h = 2 and L is the length of the loop region.  When the 

length of the loop region is greater than 6, the free-energy value is calculated as: 

chLba +++ )6/ln(1.16  (5.2)

where a = 9.3, b = -0.3, c = -0.9, h = 2 and L is the length of loop region. 

Figure 5.5 illustrates an example of a three-way junction and its 15 feature values. 

Similarly, the four-way junction is associated with 18 feature values.  However, for 
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five-way or higher-order junctions, the features are determined “locally”.  Since there is 

less data for higher-order junctions than for three-way and four-way junctions, a common 

feature set for all higher-order junctions is necessary. 

 

Feature Name Feature Value 
|J12| 1 
|J23| 5 
|J13| 0 
Min(|J12|,|J23|,|J13|) 0 
Med(|J12|,|J23|,|J13|) 1 
Max(|J12|,|J23|,|J13|) 5 
Min(|J23|,|J13|) 0 
Min(|J12|,|J13|) 0 
Min(|J12|,|J23|) 1 
A(J12) 0 
A(J23) 3 
A(J13) 0 
∆G(H1,H2) 1.5 
∆G(H2,H3) 6.0 
∆G(H1,H3) -3.3 

Figure 5.5  An example of a three-way junction and its 15 feature values. 

 
Specifically, for five-way or higher-order junctions, every pair of neighboring 

helices and their in-between loop region is considered whether the coaxial stacking is 

formed or not.  In Table 5.2, one can observe a set of 10 feature values used for predicting 

helical coaxial stacking on a pair of neighboring helices Hi and Hi+1.  Therefore, for n > 4, n 



45 

 

sets of feature values are extracted from an n-way junction.  Like the features used for 

three-way and four-way junctions, the loop region length, the maximum number of 

consecutive adenines and thermodynamic free-energy values for the current pair of 

neighboring helices (|Ji(i+1)|, A(Ji(i+1)), ∆G(Hi,Hi+1)) are considered, as well as those for the 

previous pair (|J(i-1)i|, A(J(i-1)i), ∆G(Hi-1,Hi)) and the following pair (|J(i+1)(i+2)|, A(J(i+1)(i+2)), 

∆G(Hi+1,Hi+2)).  Figure 5.6 shows an example of a five-way junction and a set of 10 feature 

values for pair of helix H3 and helix H4. 

 

Feature Name Feature Value 
|J34| 2 
|J23| 2 
|J45| 3 
Min(|J23|,|J45|) 2 
A(J34) 0 
A(J23) 0 
A(J45) 3 
∆G(H3,H4) 6.9 
∆G(H2,H3) 6.9 
∆G(H4,H5) 6.6 

Figure 5.6  An example of a five-way junction and a set of 10 feature values for a pair of 
helix H3 and helix H4. 
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5.3.3 Random Forests Algorithm 

The random forests algorithm was first proposed by Breiman in 2001 [65].  This algorithm 

employs a number of Classification and Regression Trees (CART, a kind of binary 

decision tree) which are built, during the training phase, with the features introduced in the 

previous section.  In the testing phase, a test sample will be classified based on the majority 

votes from all decision trees.  The detail of random forest algorithm is explained below. 

 

(a) 

 

(b) 

Figure 5.7  (a) There are 7 possible splits if a categorical attribute contains 4 different 
categories: A, B, C and D.  (b) There are 4 possible splits if a numerical attribute contains 5 
different numerical values: 1, 2, 5, 7 and 8. 

 
Suppose the number of training records is N.  Randomly pick records N times with 

replacement (repeatedly picking the same record is allowed).  According to (1-1/N)N = 1/e 

= 0.368 when N approaches infinity, about 63.2% of training records will be picked to 

grow each decision tree.  The remaining set, with approximately 36.8% of training data, 
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will be used for error rate estimation.  Suppose the number of attributes in each training 

record is M.  When splitting each node, M attributes are randomly picked.  Each possible 

split from all picked attributes is examined and the best split, determined by the gini 

impurity measure, among them is used to split the node.  Suppose an attribute is a 

categorical variable of n different categories.  There are 2n-1-1 possible splits.  In Figure 

5.7a, there are 7 possible splits shown if a categorical attribute contains 4 different 

categories: A, B, C and D.  Suppose an attribute is a numerical variable of n different 

values.  There are n-1 possible splits.  An example in Figure 5.7b shows that there are 4 

possible splits if a numerical attribute contains 5 different numerical values: 1, 2, 5, 7 and 

8. 

Suppose there are m classes in a node t which is going to split to tL and tR.  The gini 

impurity measure for t is: 

∑
=

−=
m

i
iftg

1

21)(  (5.3)

where fi is the fraction of class i among all training records in t. If there is only one class in 

node t, then g(t) is zero; otherwise, g(t) is greater than zero. 

The equations to determine the best split are 

)()()(),( RRLL tgPtgPtgtsg −−=∆  (5.4)

and 

)),((maxarg* tsgS
s

∆←  (5.5)

where s is a split, PL and PR are the proportion of training records assigned to tL and tR 

respectively according to s.  S* is the best split among all possible splits.  Among all 
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possible splits from randomly picked attributes, the best split is the split with the greatest 

decrease in the gini impurity measure. 

Table 5.3 is an example of a sample dataset used to demonstrate how to train a 

random forests classifier.  In this dataset, sixteen records and four attributes are contained, 

including RNA_Type, Minimum_Loopsize, Protein_interaction and Family_Type.  

Coaxail_Stacking is the attribute/label to be predicted.  To build a CART binary decision 

tree, suppose that six records are randomly picked as shown in Table 5.4.  Since the square 

root of four (attributes) is two, two attributes need to be randomly picked to split the root 

node t.  Suppose two attributes Minimum_Loopsize and Family_Type are randomly 

picked.  The best split among all splits from Minimum_Loopsize and Family_Type will 

be used to split node t to child nodes tL and tR as shown in Figure 5.8.  In attribute 

Coaxial_Stacking, there are 4 records with “Yes” and 2 records with “No” in root node t.  

According to Equation (5.3), the gini impurity measure for t is 1-(4/6)2-(2/6)2=0.444.  For 

attribute Minimum_Loopsize, because it contains two different numerical values which 

are 1 and 2, there is only one possible split.  For attribute Family_Type, there are three 

possible splits as it contains three different categorical values which are A, B and C.  

Therefore, the best split will be determined among these four possible splits which are s1, 

s2, s3 and s4.  In Figures 5.9, 5.10, 5.11 and 5.12, according to Equation (5.4), the 

calculation of each split’s decrease in the gini impurity measure is shown.  Through 

Equation (5.5), the best split is s3 since it has the greatest decrease in the gini impurity 

measure.  In Figure 5.13, the root node t is split to the left child node and the right child 

node by attribute Family_Type’s value B.  Furthermore, on the left child node, since the 

attribute Coaxial_Stacking’s values of both records are Yes, no further split is necessary 
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and this left child node is labeled as Yes.  That is, in the testing phase, any test record 

falling into this left child node will be classified/labeled/predicted as Yes to their 

Coaxial_Stacking attribute by the decision tree.  On the right child node, the training 

dataset is shrunk to four records (two Yes and two No) in the attribute Coaxial_Stacking.  

Therefore, the split is needed for the right child node as shown in Figure 5.13. 

 

Table 5.3  An Example of a Sample Dataset Used to Demonstrate How to Train a Random 
Forests Classifier 

RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 
tRNA 1 No A Yes 

16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes B Yes 
23S rRNA 2 Yes C Yes 
23S rRNA 1 No B Yes 
23S rRNA 2 Yes A Yes 
16S rRNA 1 Yes C No 

tRNA 1 Yes B Yes 
16S rRNA 2 No A No 

tRNA 2 No C Yes 
tRNA 2 No B Yes 

23S rRNA 2 No B Yes 
tRNA 2 Yes A No 
tRNA 2 Yes B No 

23S rRNA 2 No A No 

 

 

Table 5.4  Six Records Randomly Picked from Table 5.3 
RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 

tRNA 1 No A Yes 
16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes B Yes 
23S rRNA 2 Yes C Yes 
23S rRNA 1 No B Yes 
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Minimum_Loopsize Family_Type Coaxial_Stacking 

1 A Yes 
1 A No 
2 C No 
2 B Yes 
2 C Yes 
1 B Yes 

                                                        
Figure 5.8  The best split among all splits from Minimum_Loopsize and Family_Type will 
be used to split node t to child nodes tL and tR. 

 

 

 

Minimum_Loopsize Coaxial_Stacking 
1 Yes 
1 No 
2 No 
2 Yes 
2 Yes 
1 Yes 

                                                         
Minimum_Loopsize Coaxial_Stacking 

1 Yes 
1 No 
1 Yes 

g(tL)=1-(2/3)2-(1/3)2=4/9 

Minimum_Loopsize Coaxial_Stacking 
2 No 
2 Yes 
2 Yes 

g(tR)=1-(2/3)2-(1/3)2=4/9 
 

∆g(s1,t)=0.44-(3/6)(4/9)-(3/6)(4/9)=0 
 

Figure 5.9  The decrease in the gini impurity measure for the split s1. 
 

 

 

<=1 otherwise 

t 

tL tR
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Family_Type Coaxial_Stacking 
A Yes 
A No 
C No 
B Yes 
C Yes 
B Yes 

                                                        
Family_Type Coaxial_Stacking 

A Yes 
A No 

g(tL)=1-(1/2)2-(1/2)2=1/2 
 
 

Family_Type Coaxial_Stacking 
C No 
B Yes 
C Yes 
B Yes 

g(tR)=1-(3/4)2-(1/4)2=3/8 
 

∆g(s2,t)=0.44-(2/6)(1/2)-(4/6)(3/8)=0.028 
 

Figure 5.10  The decrease in the gini impurity measure for the split s2. 

 

 
Family_Type Coaxial_Stacking 

A Yes 
A No 
C No 
B Yes 
C Yes 
B Yes 

                                                        
Family_Type Coaxial_Stacking 

B Yes 
B Yes 

g(tL)=1-(2/2)2-(0/2)2=0 
 
 

Family_Type Coaxial_Stacking 
A Yes 
A No 
C No 
C Yes 

g(tR)=1-(1/2)2-(1/2)2=1/2 
 

∆g(s3,t)=0.44-(2/6)(0)-(4/6)(1/2)=0.11 
 

Figure 5.11  The decrease in the gini impurity measure for the split s3. 
 

 

B otherwise 

A otherwise 
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Family_Type Coaxial_Stacking 
A Yes 
A No 
C No 
B Yes 
C Yes 
B Yes 

                                                        
Family_Type Coaxial_Stacking 

C No 
C Yes 

g(tL)=1-(1/2)2-(1/2)2=1/2 
 
 

Family_Type Coaxial_Stacking 
A Yes 
A No 
B Yes 
B Yes 

g(tR)=1-(3/4)2-(1/4)2=3/8 
 

∆g(s4,t)=0.44-(2/6)(1/2)-(4/6)(3/8)=0.028 
 

Figure 5.12  The decrease in the gini impurity measure for the split s4. 
 

 

 

 

 

 

 

 

C otherwise 
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∆g(s1,t)=0 
∆g(s2,t)=0.028 
∆g(s3,t)=0.11 
∆g(s4,t)=0.028 

 
s3 is the best split among four possible splits 

 

RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 
tRNA 1 No A Yes 

16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes B Yes 
23S rRNA 2 Yes C Yes 
23S rRNA 1 No B Yes 

                       
RT ML PI FT CS 

23S rRNA 2 Yes B Yes 
23S rRNA 1 No B Yes 

 
 

RT ML PI FT CS 
tRNA 1 No A Yes 

16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes C Yes 

 

                   Yes                                                               ?                        ? 

Figure 5.13  The result of the split on the root node t. 
 

                            

Figure 5.14  The current status of the CART binary decision tree. 
 

t1
L 

? 
t1

R 
? 

t1 

Family_Type: B otherwise 

Yes 

t 

Family_Type: B otherwise 
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The current status of the CART binary decision tree is shown as Figure 5.14. The 

training records used to split t1 are listed as Table 5.5.  Since the square root of four 

(attributes) is two, two attributes need to be randomly picked to split the node t1.  Suppose 

two attributes RNA_Type and Protein_Interaction are randomly picked.  The best split 

among all splits from RNA_Type and Protein_Interaction will be used to split node t1 to 

node t1
L and t1

R as shown in Figure 5.15.  In attribute Coaxial_Stacking, there are 2 

records with “Yes” and 2 records with “No” in node t1.  According to Equation (5.3), the 

gini impurity measure for t1 is 1-(2/4)2-(2/4)2=0.5.  For attribute RNA_Type, there are 

three possible splits as it contains three different categorical values: tRNA, 16S rRNA and 

23S rRNA.  For attribute Protein_Interaction, there is only one possible split as it 

contains two different categorical values which are Yes and No.  Therefore, the best split 

will be determined among the following four possible splits: s1
1, s1

2, s1
3 and s1

4.  In Figures 

5.16, 5.17, 5.18 and 5.19, according to Equation (5.4), the calculation of each split’s 

decrease in the gini impurity measure is shown.  Referring to Equation (5.5), the best split 

is s1
3 as it has the greatest decrease in the gini impurity measure.  In Figure 5.20, the node t1 

is split to the left child node and the right child node by attribute RNA_Type’s value 16S 

rRNA.  On the left child node, since the attribute Coaxial_Stacking’s values of both 

records are No, no further split is necessary and this left child node is labeled as No.  On the 

right child node, since the attribute Coaxial_Stacking’s values of both records are Yes, no 

further split is necessary and this right child node is labeled as Yes. 

Therefore, in Figure 5.21, one complete CART binary decision tree is grown and 

trained by the randomly picked six records as shown in Table 5.4.  In Figures 5.22 and 

5.23, another two CART binary decision trees are grown and trained by two training sets of 
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records randomly picked from the sample datasets of Table 5.3.  In Figure 5.24, an 

unlabeled testing record is shown and three separate decisions/classifications are made for 

the testing record by three CART binary decision trees.  Since the majority vote is Yes (two 

for Yes and one for No), the random forests’ final decision/classification for the testing 

record is Yes. 

 

Table 5.5  The Training Records Used to Split t1 
RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 

tRNA 1 No A Yes 
16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes C Yes 

 

 

 

 

RNA_Type Protein_Interaction Coaxial_Stacking 
tRNA No Yes 

16S rRNA No No 
16S rRNA Yes No 
23S rRNA Yes Yes 

                                         

Figure 5.15  The best split among all of the splits from RNA_Type and Protein_Interaction 
will be used to split node t1 to child nodes t1

L and t1
R. 

 

 

 

 

 

t1
L t1

R 

t1 
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RNA_Type Coaxial_Stacking 

tRNA Yes 
16S rRNA No 
16S rRNA No 
23S rRNA Yes 

                                                       
RNA_Type Coaxial_Stacking 

tRNA Yes 
g(t1

L)=1-(1/1)2-(0/2)2=0 
 
 

RNA_Type Coaxial_Stacking 
16S rRNA No 
16S rRNA No 
23S rRNA Yes 

g(t1
R)=1-(1/3)2-(2/3)2=4/9 

 
∆g(s1

1,t1)=0.5-(1/4)(0)-(3/4)(4/9)=0.167 
 

Figure 5.16  The decrease in the gini impurity measure for the split s1
1. 

 

 

 

RNA_Type Coaxial_Stacking 
tRNA Yes 

16S rRNA No 
16S rRNA No 
23S rRNA Yes 

                                           
RNA_Type Coaxial_Stacking 
23S rRNA Yes 
g(t1

L)=1-(1/1)2-(0/2)2=0 
 
 

RNA_Type Coaxial_Stacking 
tRNA Yes 

16S rRNA No 
16S rRNA No 

g(t1
R)=1-(1/3)2-(2/3)2=4/9 

 
∆g(s1

2,t1)=0.5-(1/4)(0)-(3/4)(4/9)=0.167 
 

Figure 5.17  The decrease in the gini impurity measure for the split s1
2. 

 

 

 

otherwise 23S rRNA 

tRNA otherwise 
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RNA_Type Coaxial_Stacking 

tRNA Yes 
16S rRNA No 
16S rRNA No 
23S rRNA Yes 

                                           
RNA_Type Coaxial_Stacking 
16S rRNA No 
16S rRNA No 
g(t1

L)=1-(0/2)2-(2/2)2=0 

RNA_Type Coaxial_Stacking 
tRNA Yes 

23S rRNA Yes 
g(t1

R)=1-(2/2)2-(0/0)2=0 
 

∆g(s1
3,t1)=0.5-(2/4)(0)-(2/4)(0)=0.5 

 

Figure 5.18  The decrease in the gini impurity measure for the split s1
3. 

 

 

 

Protein_Interaction Coaxial_Stacking 
No Yes 
No No 
Yes No 
Yes Yes 

                                               
Protein_Interaction Coaxial_Stacking 

No Yes 
No No 

g(t1
L)=1-(1/2)2-(1/2)2=1/2 

Protein_Interaction Coaxial_Stacking 
Yes No 
Yes Yes 

g(t1
R)=1-(1/2)2-(1/2)2=1/2 

 
∆g(s1

4,t1)=0.5-(2/4)(1/2)-(2/4)(1/2)=0 
 

Figure 5.19  The decrease in the gini impurity measure for the split s1
4. 

 

 

 

 

 
 

otherwise No 

otherwise 16S rRNA 
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∆g(s1
1,t1)=0.167 

∆g(s1
2,t1)=0.167 

∆g(s1
3,t1)=0.5 

∆g(s1
4,t1)=0 

 
s1

3 is the best split among four possible splits 

 

 

 
RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 

tRNA 1 No A Yes 
16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes B Yes 
23S rRNA 2 Yes C Yes 
23S rRNA 1 No B Yes 

                                   
                                             Yes 
 
 
 

RT ML PI FT CS 
tRNA 1 No A Yes 

16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes C Yes 

 

 

 

 

 

 

                                                No                                                          Yes 

 

Figure 5.20  The result of the split on the node t1. 

 

 

 

Family_Type: B otherwise 

RNA_Type: 16S rRNA otherwise 

RT ML PI FT CS 
16S rRNA 1 No A No 
16S rRNA 2 Yes C No 

RT ML PI FT CS 
tRNA 1 No A Yes 

23S rRNA 2 Yes C Yes 
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RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 
tRNA 1 No A Yes 

16S rRNA 1 No A No 
16S rRNA 2 Yes C No 
23S rRNA 2 Yes B Yes 
23S rRNA 2 Yes C Yes 
23S rRNA 1 No B Yes 

                                                                  
 

                                        
Figure 5.21  The complete CART binary decision tree is grown and trained by the 
randomly picked six records as shown in Table 5.4. 

 

 
RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 

23S rRNA 1 No B Yes 
23S rRNA 2 Yes A Yes 
16S rRNA 1 Yes C No 
16S rRNA 2 No A No 

tRNA 1 Yes B Yes 

                                                                  
 

                               
Figure 5.22  A complete CART binary decision tree is grown and trained by five records 
randomly picked from Table 5.3. 

 

otherwise RNA_Type: 16S RNA 

Yes No 

Family_Type: B otherwise 

RNA_Type: 16S rRNA otherwise 

Yes 

Yes No 



60 

 

 
RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 

tRNA 2 No C Yes 
tRNA 2 No B Yes 

23S rRNA 2 No B Yes 
tRNA 2 Yes A No 
tRNA 2 Yes B No 

23S rRNA 2 No A No 
16S rRNA 2 No A No 

                                                                  
 

                       
Figure 5.23  A complete CART binary decision tree is grown and trained by seven records 
randomly picked from Table 5.3. 
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Family_Type: A otherwise 
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RNA_Type Minimum_Loopsize Protein_Interaction Family_Type Coaxial_Stacking 
16S rRNA 2 No B ? 

 

 

 
 

 

 
 

 

 
 

Figure 5.24  There is an unlabeled testing record and three separate decisions are made for 
the testing record by three CART binary decision trees.  Since the majority vote is Yes (two 
for Yes and one for No), the random forests’ final decision/classification for the testing 
record is Yes. 

Family_Type: A 

otherwise Protein_Interaction: No 

otherwise 

No Yes 

No 

otherwise RNA_Type: 16S RNA 

Yes No 

Family_Type: B otherwise 

RNA_Type: 16S rRNA otherwise 

Yes 

Yes No 

Yes 

Yes 

No 
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5.4 Experiments and Performance Evaluation 

To ensure the accuracy and the performance of the proposed method, the experiments and 

the performance evaluations including the comparison with other works are reported in this 

section.  In Table 5.6, all numbers regarding datasets used for the experiments are listed.  

For three-way junctions, there are 110 junctions which include 4 different coaxial stacking 

classes (H1H2, H2H3, H1H3 and no coaxial stacking) and 3 families (A, B and C).  For 

four-way junctions, there are 65 junctions that include 7 different coaxial stacking classes 

(H1H2, H2H3, H3H4, H1H4, H1H2-H3H4, H2H3-H1H4 and no coaxial stacking) and 9 families 

(H, cH, cL, cK, π, cW, ψ, cX, and X).  For a higher-order junction (5-way or more), due to 

the lack in the data collection, all higher-order junctions are combined (41 junctions in 

total), the common features locally extracted and the coaxial stacking locally predicted 

(two classes: positive and negative).  The programs of the training and prediction phases 

for all experiments are implemented on the R software for statistical computing with the 

random forest package installed [66]. 

5.4.1 Results of Experiments 

To avoid bias, 75 repeats of 10-fold cross validation and 200 trees grown for each random 

forests classifier are used for all experiments.  In one single example of 10-fold cross 

validation, the entire dataset is randomly separated into 10 groups. Each group of data 

takes turns as testing data while the remaining 9 groups are used as random forests 

classifier’s training data.  Therefore, there are 10 different sets of random forests generated 

with 200 trees each in one single of 10-fold cross validation.  Finally, the average of those 

750 accuracy percentages is reported for each experiment. 
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In Table 5.7, for three-way and four-way junctions, the accuracies of the coaxial 

stacking prediction without any family information are 81% and 77% respectively.  When 

considering the family information, the accuracies of the coaxial stacking prediction are 

83% and 87% for the three-way and four-way junctions respectively.  On the other hand, 

the accuracies of the junction family prediction without any coaxial stacking information 

are 85% and 74% for the three-way and four-way junctions respectively.  When 

considering the coaxial stacking information for the three-way and four-way junctions, the 

accuracies of the junction family prediction are 86% and 81% respectively. 

 

Table 5.6  The Numbers Regarding Datasets Used for the Experiments 
The order of 

junctions 
Number of 
junctions 

Number of coaxial 
stacking classes 

Number of 
families 

3-way 110 4 3 
4-way 65 7 9 

5~10-way 41 2 - 

 

Table 5.7 The Performance of the Coaxial Stacking and Junction Family Predictions for 
Three-way and Four-way Junctions 

  3-way junction 4-way junction 
Family is 
unknown 81% 77% Coaxial stacking 

prediction Family is known 83% 87% 
Coaxial stacking is 

unknown 85% 74% Junction family 
prediction Coaxial stacking is 

known 86% 81% 

 

Table 5.8  The Performance of the Coaxial Stacking Prediction for the Higher-order 
Junctions 

  5~10-way junction 
Accuracy 60% Coaxial stacking 

prediction Positive predictive value 76% 
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Table 5.9  The Performance of the Coaxial Stacking Prediction in Two Steps for the 
Three-way and Four-way Junctions 

 3-way junction 4-way junction 
Step1: Junction family 

prediction 85% 73% 

Step 2: Coaxial stacking 
prediction 82% 80% 

 

Table 5.10  The Performance of the Junction Family Prediction in Two Steps for the 
Three-way and Four-way Junctions 

 3-way junction 4-way junction 
Step1: Coaxial stacking 

prediction 82% 77% 

Step 2: Junction family 
prediction 86% 71% 

 
In Table 5.8, the accuracy and the positive predictive value of the coaxial stacking 

prediction for the higher-order junctions (five-way to ten-way junctions) are shown to be 

60% and 76%, respectively.  In this experiment of Table 5.8, 211 sets of common features 

are extracted from the entire higher-order junctions and applied to the experiment of 

10-fold cross validation. To improve the prediction performance, 590 sets of common 

features extracted from the three-way and four-way junctions are included in the training 

dataset during the experiment. 

The accuracy of the coaxial stacking prediction is improved when the junction 

family information is included in the feature sets.  However, the methods to manually 

collect the additional information such as junction topology might be expensive, 

impractical and time consuming.  Therefore, the random forests prediction for junction 

topology provides an alternative.  Here, a new prediction procedure for coaxial stacking in 

two steps is proposed.  In the first step, the type of junction family is predicted.  In the 

second step, the junction family information predicted in the previous step is added into the 

feature sets.  Thus the prediction of coaxial stacking is performed by using the feature sets 
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with their new contents.  In Tables 5.9 and 5.10, the results of this proposed two-step 

prediction procedure for three-way and four-way junctions are shown in two different 

orders.  In Table 5.9, the junction family is predicted in the first step and then the coaxial 

stacking is predicted in the second step.  On the other hand, in Table 5.10, the coaxial 

stacking is predicted first followed by the junction family prediction. 

To avoid bias, 75 repeats of 10-fold cross validation and 200 trees grown for each 

random forests classifier are used as parameters for all experiments.  The choices of these 

two parameters were analyzed and optimized by testing several values.  In Figure 5.25, all 

prediction performances of both coaxial stacking and junction family with a fixed number 

of trees and a series of different repeat times are shown on three-way and four-way 

junctions.  Figure 5.26 shows all prediction performances of both coaxial stacking and 

junction family with a fixed number of repeat times and a series of different numbers of 

trees on three-way and four-way junctions.  Through these figures, the convergence of the 

prediction accuracy is found and the smallest parameter values producing approximately 

the same prediction accuracy are selected. 
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(b) 

Figure 5.25  The prediction performances of coaxial stacking and junction family with a 
fixed number of trees and a series of different repeat times.  (a) The polygonal graph for 
three-way junctions.  (b) The polygonal graph for four-way junctions. 
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(b) 

Figure 5.26  The prediction performances of coaxial stacking and junction family with a 
fixed number of repeat times and a series of different numbers of trees.  (a) The polygonal 
graph for three-way junctions.  (b) The polygonal graph for four-way junctions. 
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Table 5.11  The Prediction Result Comparisons on Three-way Junctions of Unsolved RNA 
Structures 

RNA type Domain Lescoute & 
Westhof [58] 

Tyagi & 
Mathews [62] 

The proposed 
RF classifier 

VS ribozyme II-III-VI H2H3, Family A H2H3 H1H2, Family C 

VS ribozyme III-IV-V H1H2, Family C H2H3 H1H2, Family C 

DiGIR1 P3-P8-P15 H2H3, Family C H1H3 H2H3, Family C 

U4U6 I-II-III H1H2, Family B None H1H3, Family C 

HCV IIIo-IIIabc-IIId H1H2, Family C or 
H2H3, Family A H2H3 H1H2, Family C 

RNase P P5-P5.1-P7 H1H2, Family A None H1H3, Family C 

5.4.2 The Comparison with Other Publications 

By using free energy minimization, Tyagi and Mathews predicted coaxial stacking 

between pairs of consecutive helices with one or none intervening mismatch loops [62].  It 

is very difficult to formulate a direct comparison with the approach of Tyagi and Mathews 

as their prediction is restricted to the pair of consecutive helices with one or none 

intervening mismatch loops.  The method proposed in this dissertation is able to predict the 

coaxial stacking with any size of mismatch loops.  The definition of junctions differs as 

well.  Tyagi and Mathews consider helical stems as those formed by at least one base pair, 

while helical stems as those formed by at least two base pair are considered here.  The 

disagreement on coaxial stacking configuration for the same junction exists between their 

dataset and the one used in this dissertation. 

To make a consistent comparison, the junctions with agreement on the definition 

and on the coaxial stacking configuration between Tyagi and Mathews’ dataset and ours 

are used as the testing dataset.  The remainder of our dataset is used as the training dataset.  

For three-way junctions, there are 91 training junctions and 20 testing junctions.  For 
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four-way junctions, there are 49 training junctions and 27 testing junctions.  The random 

forests classifier shows an accuracy rate of 80% on three-way junctions and an accuracy 

rate of 92.59% on four-way junctions while Tyagi and Mathews have 30% and 70.37% 

respectively. 

Lescoute and Westhof predicted the topology and coaxial stacking configuration on 

three-way junctions of RNA whose structures have not yet been solved at atomic resolution 

[58].  The RNAs include the ‘Varkud’ satellite ribozyme (VS), the Didymium group I-like 

intron ribozyme (DiGIR1), a three-way junction formed between the U4 and U6 RNAs in 

the spliceosome (U4U6), the hepatitis C virus (HCV), and the recently solved RNase P.  

Tyagi and Mathews also presented their coaxial stacking predictions on the same junctions.  

Table 5.11 lists the prediction results of Lescoute and Westhof, Tyagi and Mathews, and 

the proposed random forests classifier as well as the RNA type and its domain.  Figure 5.27 

shows the result of three different accuracy comparisons with Tyagi and Mathews. 
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Figure 5.27  The bar chart of three different accuracy comparisons with the work of Tyagi 
and Mathews [62]. 
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5.5 Feature Ranking Analysis 

The feature sets used in this study are extracted from the size and sequence loop, as well as 

the base pair configuration of junctions.  In order to improve the prediction, the 

significance analysis of each feature used to predict coaxial stacking and junction topology 

on three-way and four-way junctions is reported in this section.  Two different feature 

ranking algorithms are used to analyze the features. The details of algorithms and the 

analyzing results are described below. 

5.5.1 Feature Ranking by Single Feature Accuracy 

The concept of feature ranking by single feature accuracy is quite simple.  The feature 

ranking could be acquired by following step 1 – 4. 

1. Each time, leaving only one feature within the feature set. 

2. Performing the 10-fold cross validation with parameters as 75 repeat times and 200 
trees for each random forest. 

3. The average accuracy of 75 times of 10-fold cross validations is recorded. 

4. Go to Step 1 until every feature is chosen. 
 

Obviously, after the above procedure, each feature is associated with a percentage 

of accuracy, thus permitting all of the features to be ranked by percentages of accuracy.  If 

a feature is ranked on top, that feature’s contribution to the prediction accuracy is more 

significant than the others. Tables 5.12, 5.13, 5.14 and 5.15 list the rankings, by accuracy, 

of features on predictions of the coaxial stacking and the junction family on three-way and 

four-way junctions.  To estimate the optimal size of feature set, another analysis is 

performed.  The number of features within the feature set in the order of ranking by 

accuracy from the best significant feature to the worst significant feature is accumulated.  
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In Figures 5.28 and 5.29, the polygonal graphs show the trend of prediction accuracies 

from the feature sets containing anywhere from one feature to the full set of features. 

Table 5.12  The Feature Ranking by Accuracy of the Coaxial Stacking Prediction on 
Three-way Junctions 

Features Rank by accuracy 
|J23| 52.71 

∆G(H2,H3) 50.045 

Med(|J12|,|J23|,|J31|) 49.765 

Max(|J12|,|J23|,|J31|) 49.7 

∆G(H3,H1) 48.295 

A(J12) 48.25 

|J31| 46.915 

∆G(H1,H2) 44.74 

Min(|J23|,|J31|) 44.685 

Min(|J12|,|J31|) 43.87 

A(J31) 41.07 

|J12| 40.78 

A(J23) 39.52 

Min(|J12|,|J23|,|J31|) 39.2 

Min(|J23|,|J12|) 34.455 

 

Table 5.13  The Feature Ranking by Accuracy of the Junction Family Prediction on 
Three-way Junctions 

Features Rank by accuracy 
∆G(H1,H2) 57.325 

A(J23) 55.2 

Max(|J12|,|J23|,|J31|) 54.74 

|J23| 51.92 

Min(|J23|,|J12|) 50.3 

|J31| 49.13 

Min(|J23|,|J31|) 48.105 

|J12| 46.625 

Min(|J23|,|J31|) 46.565 

∆G(H2,H3) 46.26 

Min(|J12|,|J23|,|J31|) 45.895 

Med(|J12|,|J23|,|J31|) 45.84 

∆G(H3,H1) 45.54 

A(J31) 44.14 

A(J12) 43.365 
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Table 5.14  The Feature Ranking by Accuracy of the Coaxial Stacking Prediction on 
Four-way Junctions 

Features Rank by accuracy 
∆G(H3,H4) 62.325 

Min(J12,J34) 61.33 

|J34| 61.025 

∆G(H1,H4) 60.07 

Medmax(|J12|,|J23|,|J34|,|J41|) 56.94 

|J41| 55.975 

Min(J23,J41) 55.75 

Max(|J12|,|J23|,|J34|,|J41|) 55.29 

Medmin(|J12|,|J23|,|J34|,|J41|) 54.35 

A(J41) 52.665 

A(J23) 50.5 

Min(|J12|,|J23|,|J34|,|J41|) 49.345 

A(J34) 47.305 

∆G(H1,H2) 45.055 

|J12| 44.26 

|J23| 42.745 

∆G(H2,H3) 39.77 

A(J12) 39.325 

 

Table 5.15  The Feature Ranking by Accuracy of the Junction Family Prediction on 
Four-way Junctions 

Features Rank by accuracy 
|J34| 47.33 

Max(|J12|,|J23|,|J34|,|J41|) 44.88 

Min(J12,J34) 42.905 

∆G(H3,H4) 39.14 

∆G(H2,H3) 38.2 

∆G(H1,H4) 36.82 

|J41| 36.77 

Medmax(|J12|,|J23|,|J34|,|J41|) 33.38 

|J23| 30.6 

∆G(H1,H2) 27.955 

Min(J23,J41) 24.865 

A(J12) 20.6 

|J12| 20.37 

Medmin(|J12|,|J23|,|J34|,|J41|) 20.02 

Min(|J12|,|J23|,|J34|,|J41|) 19.96 

A(J34) 17.66 

A(J23) 15.73 

A(J41) 13.4 
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Figure 5.28  Accumulating the number of features within the feature set in the order of 
ranking from the best significant feature to the worst significant feature.  The prediction 
accuracies from the feature sets containing one feature to the full set of features is plotted.  
(a) The polygonal graph of the coaxial stacking prediction for three-way junctions.  (b) The 
polygonal graph of the junction family prediction for three-way junctions. 
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Figure 5.29  Accumulating the number of features within the feature set in the order of 
ranking from the best significant feature to the worst significant feature.  The prediction 
accuracies from the feature sets containing one feature to the full set of features is plotted.  
(a) The polygonal graph of the coaxial stacking prediction for four-way junctions.  (b) The 
polygonal graph of the junction family prediction for four-way junctions. 
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5.5.2 Feature Ranking by the Gini Impurity Measure of Random Forests Algorithm 

As described in Section 5.3.3, in the random forests algorithm, every node split is 

associated with a maximum decrease in the gini impurity measure and one specific feature 

value.  When the training of the random forests classifier is complete, the average of the 

maximum decrease in the gini impurity measure, taken from every node split, for each 

feature can be calculated. 

For example, suppose that there are four features (F1, F2, F3 and F4) in a training 

set.  After the training phase of the random forests algorithm, there are two trees, Tree 1 

and Tree 2, generated for the classifier as shown in Figure 5.30.  For Tree 1, initially four 

variables, SUM1
F1, SUM1

F2, SUM1
F3 and SUM1

F4 are all zeros.  After Tree 1 is generated, 

the variables become as follows: 

SUM1
F1 = ),( 1 tsg F∆ + ),( 1,1

1 L
L

F tsg∆  

SUM1
F2 = ),( 1,1

2 R
R

F tsg∆  

SUM1
F3 = 0 

SUM1
F4 = 0 

Similarly, for Tree 2, initially four variables, SUM2
F1, SUM2

F2, SUM2
F3 and SUM2

F4 are all 

zeros.  After Tree 2 is generated, these variables become as follows: 

SUM2
F1 = ),( 1 tsg F∆ + ),( 1,1

1 R
R

F tsg∆  

SUM2
F2 = 0 

SUM2
F3 = 0 

SUM2
F4 = ),( 1,1

4 L
L

F tsg∆  

Finally, the average of each feature is calculated as follows: 

AVGFi = (SUM1
Fi + SUM2

Fi) / 2, where i is from 1 to 4. 
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Each feature can be ranked by its own AVGFi.  If a feature is ranked on top, that feature 

could contribute more decrease in the gini impurity measure than others ranked lower.  

Tables 5.16, 5.17, 5.18 and 5.19 list the rankings, by the averages of decrease in the gini 

impurity measure, of the features on predictions of the coaxial stacking and the junction 

family on three-way and four-way junctions.  To avoid bias, the averages of decrease in the 

gini impurity measure of features are obtained from their random forests classifier with 

100,000 trees.  To estimate the optimal size of the feature set, another analysis is 

performed. The number of features within the feature set in the order of the ranking by the 

averages of decrease in the gini impurity measure from the best significant feature to the 

worst significant feature is accumulated.  In Figures 5.31 and 5.32, the polygonal graphs 

show the trend of prediction accuracies from the feature sets containing anywhere from one 

feature to the full set of features. 

5.6 Conclusions 

In this chapter, a data mining method is described to predict the configuration of helical 

coaxial stacks and families (topologies) in RNA three-way to ten-way junctions at the 

secondary structure level.  This method adopts the random forests classifier which is 

trained by solved RNA tertiary structures.  The features are extracted from the secondary 

structure level of RNA junctions and are used to train the random forests classifier.  The 

overall accuracy of the prediction from the proposed method is about 80% and the 

performance is comparable with previous work.  Furthermore, the features, which are 

extracted from the junctions and used for prediction, are analyzed for future improvement.  

In the next chapter, a web server named Junction-Explorer, built by the proposed method, 

is introduced.  Junction-Explorer can identify and locate the junctions on the RNA 
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secondary structure.  For each identified RNA junction, the web server is able to predict the 

presence of coaxial helical stacking and the topology (family) of the junction. 

 

 

 

 

 

 

 

Figure 5.30  Tree 1 and Tree 2 are trained and generated for the random forests classifier. 
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Table 5.16  The Feature Ranking by Average ∆g of the Coaxial Stacking Prediction on 
Three-way Junctions 

Features Rank by Average ∆g 
|J23| 8.550029 

|J31| 6.352978 

Max(|J12|,|J23|,|J31|) 6.124881 

∆G(H1,H2) 6.070076 

∆G(H3,H1) 5.841098 

∆G(H2,H3) 5.711437 

|J12| 5.430954 

Med(|J12|,|J23|,|J31|) 5.042766 

Min(|J12|,|J31|) 4.256208 

A(J12) 4.179075 

Min(|J23|,|J12|) 4.062099 

Min(|J23|,|J31|) 3.912962 

Min(|J12|,|J23|,|J31|) 3.544635 

A(J31) 3.279278 

A(J23) 2.126523 

 

Table 5.17  The Feature Ranking by Average ∆g of the Junction Family Prediction on 
Three-way Junctions 

Features Rank by Average ∆g 
Max(|J12|,|J23|,|J31|) 8.337547 

|J23| 6.594556 

∆G(H3,H1) 5.893594 

∆G(H1,H2) 5.51743 

|J31| 5.032459 

∆G(H2,H3) 4.826661 

Med(|J12|,|J23|,|J31|) 4.480854 

|J12| 4.321267 

Min(|J23|,|J12|) 4.044957 

Min(|J12|,|J31|) 3.988266 

Min(|J23|,|J31|) 3.936473 

Min(|J12|,|J23|,|J31|) 3.341332 

A(J12) 2.388057 

A(J23) 2.332821 

A(J31) 1.825746 
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Table 5.18  The Feature Ranking by Average ∆g of the Coaxial Stacking Prediction on 
Four-way Junctions 

Features Rank by Average ∆g 
Max(|J12|,|J23|,|J34|,|J41|) 3.9989777 

Medmax(|J12|,|J23|,|J34|,|J41|) 3.7811456 
|J34| 3.6126635 

∆G(H1,H4) 3.341576 
|J41| 3.2680157 
|J23| 3.2012284 

∆G(H2,H3) 2.9365629 
|J12| 2.3574117 

∆G(H1,H2) 2.3319014 

∆G(H3,H4) 2.2672316 
Medmin(|J12|,|J23|,|J34|,|J41|) 2.2476979 

A(J41) 1.469503 
Min(|J12|,|J34|) 1.4659094 
Min(|J23|,|J41|) 1.1926263 

Min(|J12|,|J23|,|J34|,|J41|) 1.0316831 
A(J34) 0.8037794 
A(J12) 0.7359678 
A(J23) 0.6250495 

 

Table 5.19  The Feature Ranking by Average ∆g of the Junction Family Prediction on 
Four-way Junctions 

Features Rank by Average ∆g 
|J34| 4.5648662 

Max(|J12|,|J23|,|J34|,|J41|) 4.4604382 

∆G(H1,H4) 3.968873 

∆G(H1,H2) 3.5989816 
Medmax(|J12|,|J23|,|J34|,|J41|) 3.5231683 

|J41| 3.4691833 
|J12| 3.410726 

Min(|J12|,|J34|) 3.2473648 

∆G(H2,H3) 3.1059134 

∆G(H3,H4) 2.8694219 
|J23| 2.3146823 

Min(|J12|,|J23|,|J34|,|J41|) 2.1493282 
Medmin(|J12|,|J23|,|J34|,|J41|) 2.0610557 

Min(|J23|,|J41|) 2.0104957 
A(J34) 1.3578364 
A(J41) 1.0358759 
A(J12) 0.9791774 
A(J23) 0.6498351 
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(b) 

 

Figure 5.31  Accumulating the number of features within the feature set in the order of 
ranking by average ∆g from the best significant feature to the worst significant feature.  
The prediction accuracies from the feature sets containing one feature to the full set of 
features is plotted.  (a) The polygonal graph of the coaxial stacking prediction for 
three-way junctions.  (b) The polygonal graph of the junction family prediction for 
three-way junctions. 
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Figure 5.32  Accumulating the number of features within the feature set in the order of 
ranking by average ∆g from the best significant feature to the worst significant feature.  
The prediction accuracies from the feature sets containing one feature to the full set of 
features is plotted.  (a) The polygonal graph of the coaxial stacking prediction for four-way 
junctions.  (b) The polygonal graph of the junction family prediction for four-way 
junctions. 
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CHAPTER 6  

JUNCTION-EXPLORER 

6.1 Overview 

As mentioned in the previous chapter, the RNA junctions are important structural elements 

of three or more helices in the organization of the global structure of RNA molecules.  A 

common motif among junctions is the coaxial stacking of helices.  This motif occurs when 

two separate helical elements stack to form coaxial helices as a pseudo-continuous helix.  

In addition, analysis from the solved crystal structures indicates that the RNA junctions can 

be classified into families according to their 3D shape or topology.  The information 

obtained from coaxial stacking and topology (family) prediction can help predict RNA 

three-dimensional structures and gain a better understanding of RNA tertiary interactions. 

By adopting methods and algorithms introduced in the previous chapter, a web 

server named Junction-Explorer is built.  Given an RNA secondary structure in text format, 

the Junction-Explorer web server can identify and locate the junctions on the RNA 

secondary structure.  For each identified RNA junction, the web server is able to predict the 

presence of helical coaxial stacking and the topology (family) of the junction.  

Junction-Explorer employs the random forests algorithm for prediction.  The random 

forests classifier uses helical coaxial stacking and junction topology information from 

solved RNA 3D junctions as training data.  Predictions are determined at the secondary 

structure level based on various features included in the classifier such as sequence, length, 

context, and thermodynamic parameters from RNA junctions.  Junction-Explorer predicts 

coaxial stacks and topologies for both three and four-way junctions and only coaxial stacks 
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for five-way and higher-order junctions.  The Junction-Explorer web server with help 

document is freely accessible at http://bioinformatics.njit.edu/junction. 

6.2 Method and Implementation 

To predict coaxial stacking and junction family types (topologies) for three and four-way 

junctions, the features are extracted from a given RNA sequence and secondary structure 

such as the loop size within junctions, sequence content, and free-energy associated with 

base-stacking interactions between the base-pairs at the end of helices and their common 

loop region.  Details of the features for these junctions are given in Chapter 5.  Similar 

features are constructed for higher-order junctions.  Specifically, Hi is used to represent the 

i-th helix according to the 5’ to 3’ orientation of the entire RNA secondary structure.  The 

definition of a helix requires at least two consecutive Watson-Crick canonical base-pairs 

(G-C, A-U and G-U) to be formed.  Jij represents the loop region between helix Hi and helix 

Hj, and |Jij| denotes the number of nucleotides in (the size or length of) Jij.  If the |Ji(i+1)| 

between a pair of neighboring helices Hi and Hi+1 is small (e.g., < 5nt) then a coaxial stack 

is likely to exist between Hi and Hi+1; yet because a smaller loop size from neighboring 

loop regions can compete in the coaxial stacking formation, the minimum of the sizes of 

two neighboring loop regions are also included as a feature.  Loop sizes are incorporated in 

ascending order to improve prediction accuracy.  In addition, the maximum number of 

consecutive adenines for each loop region is included, as it has been reported that adenines 

in loops often form A-minor motifs on specific junction topologies. 

The web server is implemented in C++, Perl-CGI, PHP, and R.  The server accepts 

as input an RNA sequence along with its secondary structure whereby the secondary 

structure can be represented in bpseq format, CT format, or Vienna dot-bracket notation 
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[1,67].  The server identifies and locates the junctions in the input molecule.  The feature 

values are then extracted from each identified junction.  The server invokes the pre-trained 

classification program to determine the coaxial stacking and topology of each identified 

junction according to the junction’s feature values.  The classification program is 

implemented using the random forests package within R for statistical computing.  Figure 

6.1 is the flow chart of Junction-Explorer. 

 

 

Figure 6.1  The flow chart of Junction-Explorer. 

 

6.3 Pseudoknot Removal Algorithm 

Since the pseudoknots may exist in the secondary structure which will cause the 

interference of junction identification, the web server uses K2N [68] for pseudoknot 

removal to make a pseudoknot-free secondary structure before performing the junction 

identification and the prediction.  A simple pseudoknot removal algorithm is described 

below. 



85 

 

The definition of a pseudoknot on RNA secondary structures is a single base in any 

loop region (including hairpin loop, junction loop, internal loop and bulge loop) is paired 

with any base outside the loop region. That is, any two base pairs (i, j) and (i’, j’) form a 

pseudoknot when i < i’ < j < j’.  Figure 6.2 is an example of RNA secondary structure with 

two pseudoknots. 

 

 

(a) 

 

(b) 

Figure 6.2  An example of RNA secondary structure with two pseudoknots (Kissing 
hairpins and H type Pseudoknot) in two different representations rendered by jViz.Rna 2.0 
[69].  The six helices/stems are marked from I to VI.  (a) The classical structure view.  (b) 
The linear structure view.  Pseudoknots form at the point where helices/stems are crossed. 
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In Figure 6.2b, pseudoknots form at the point where helices/stems are crossed.  To 

remove the pseudoknot, some helices should be removed to avoid the crossing.  

Furthermore, in order to maintain the integrity of a structure, a helix with the smallest 

length should be removed from the crossing.  Therefore, the goal of the pseudoknot 

removal algorithm works as follows: 

1. Calculate the score for each helix/stem.  The score of a helix/stem S is calculated as 
the number of base pairs on this helix minus the total number of base pairs on 
helices that cross with S. 

2. Remove the helix with the minimum score. 

3. Go back to Step 1 until all pseudoknots are removed. 

 
Figures 6.3, 6.4 and 6.5 show how the algorithm removes two pseudoknots from the RNA 

structure example shown in Figure 6.2. 

6.4 Input and Output of Junction-Explorer 

Junction-Explorer accepts as input an RNA sequence along with its secondary structure in 

one of the three formats: Bpseq format, CT format and Vienna dot-bracket format.  The 

screenshot of input interface is presented in Figure 6.6a.  The user takes the following three 

steps when using the web server: 

1. Paste an RNA sequence and its secondary structure represented in one of the three 
formats into the blank text field of the web server (or simply click any example 
button above the text field to retrieve an example RNA molecule). 

2. Select the corresponding format option. 

3. Click the “Submit” button. 
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(a) 

 

(b) 

               

(c) 

Figure 6.3  (a) The example of RNA secondary structure with two pseudoknots in linear 
structure view.  (b) The score of each helix is calculated.  The helix III is the one with the 
smallest score.  (c) The helix III is removed. 
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(a) 

 

(b) 

                      

(c) 

Figure 6.4  (a) This is the linear structure view after the helix III is removed.  (b) Since 
there is still one pseudoknot existing, the score of each helix is calculated.  The helix VI is 
the one with the smallest score.  (c) The helix VI is removed. 
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(a) 

 

                   

(b) 

Figure 6.5  (a) This is the linear structure view after all pseudoknots are removed.  (b) This 
is the classical structure view after all pseudoknots are removed. 
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(a) 

 

(b) 

Figure 6.6  (a) The screenshot of Junction-Explorer’s input interface.  (b) A screenshot of a 
Junction-Explorer’s sample output. 
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After the user submits the RNA molecule, Junction-Explorer identifies and locates 

the junctions in the molecule and predicts the presence of coaxial helical stacking and the 

topology (family) of each junction in the input structure.  The tool creates a detailed report, 

listing the type, location, loops, presence of predicted helical coaxial stacking, and 

predicted topology (family) of each identified junction in the molecule.  A graphical 

display of predicted results for each junction is also presented, which allows the user to 

visualize the stack and family configuration in the junction.  A screenshot of a sample 

output is presented in Figure 6.6b. 

Usually, the web server displays the output on the web browser promptly.  

However, when the size of the input data is too large, processing the input structure 

becomes time-consuming.  In this case, the web server provides a hyperlink instead.  The 

user can access the predicted result through the hyperlink. 

6.4.1 Input Format of Junction-Explorer 

The user can input an RNA sequence and its secondary structure in one of the following 

three formats.  If an RNA secondary structure has pseudoknots, it must be input in Bpseq or 

CT format, but not the Vienna dot-bracket format. 

• Bpseq format:  Here the first line constitutes the header of the format, listing the 

length and name of the input molecule.  Subsequently multiple lines follow the 

header, wherein each line is comprised of three columns.  The first column 

contains the position number of a nucleotide.  This position number must start 

with 1.  The second column contains the nucleotide name (A, C, G, or U).  The 

third column contains the position number of the base with which the nucleotide 



92 

 

is paired.  If the nucleotide is not paired with any base, the third column is 0.  A 

space must be used to separate the two neighboring columns. 

• CT format:  Here the first line constitutes the header of the format, which contains 

the length and name of the input molecule.  In the CT format, each line consists of 

6 columns.  The first and sixth columns contain the position number of a 

nucleotide (base).  This position number must start with 1.  The third (fourth, 

respectively) column contains the position number minus one (plus one, 

respectively).  The second column contains the nucleotide name (A, C, G, or U).  

The fifth column contains the position number of the base with which the 

nucleotide is paired.  If the nucleotide is not paired with any base, the fifth column 

is 0.  A tab must be used to separate the two neighboring columns. 

• Vienna dot-bracket format:  Here the first line constitutes the header, which starts 

with the “>” character followed by the name of the input molecule.  The second 

line contains the input sequence from 5’ to 3’.  The third line contains the 

secondary structure of the input sequence, where a base pair is represented by an 

opening and closing bracket and an unpaired base is represented by a dot. 

6.4.2 Output Format of Junction-Explorer 

The web server displays a table for each identified junction, listing the following 

information concerning the junction.  If no junction is identified, the web server displays a 

message so indicating.  An example of the predicted results is shown in Figure 6.6b. 

• Junction Type:  This field shows the type of the junction, which can be three-way, 

four-way, five-way or of a higher-order, depending on how many helices are 

involved. 
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• Junction Location:  This field shows the nucleotides and their positions for the 

helices involved in the junction.  These positions define the location of the 

junction.  For each helix, only the two consecutive base pairs that are closest to the 

junction are displayed. 

• Junction Loops:  This field shows the size and the nucleotides in the loop region 

between every two neighboring helices.  For example, “J23 (4): GUAG” means 

that the loop region between Helix 2 and Helix 3 contains four nucleotides G, U, 

A and G.  As another example, “J12 (0): -” indicates that the loop region between 

Helix 1 and Helix 2 has zero nucleotide.  

• Coaxial Stacking Prediction:  This field shows the predicted outcome for coaxial 

stacking. 

• Topology Prediction:  This field shows the predicted outcome for junction family. 

• Prediction Visualization:  This field presents a graphical display of the predicted 

coaxial stacking of helices and predicted topology for the junction. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Contributions and Conclusions 

In addition to the traditional role of RNA sequential motifs, RNA secondary or tertiary 

structure motifs play important roles in cells.  However, until today, very few online web 

servers were available for RNA motif search and prediction.  In this dissertation, a 

cyberinfrastructure named RNAcyber is proposed, designed and implemented, which is 

capable of performing RNA motif search and prediction.  The RNAcyber infrastructure is 

fully operational, with all of its components accessible on the Internet. 

In Chapter 2, the first component of RNAcyber is introduced, which is a web-based 

search engine named RmotifDB.  This web-based tool integrates an RNA secondary 

structure comparison algorithm with the secondary structure motifs stored in the Rfam 

database.  With a user-friendly interface, RmotifDB provides the ability to search for 

ncRNA structure motifs in both structural and sequential ways.  The second component of 

RNAcyber is an enhanced version of RmotifDB, which is introduced in Chapter 3.  This 

enhanced version combines data from multiple sources, incorporates a variety of 

well-established structure-based search methods, and is integrated with the Gene 

Ontology.  To display RmotifDB’s search results, a software tool, called RSview, is 

developed.  RSview is able to display the search results in a graphical manner, which is 

described in Chapter 4. 

The important application of secondary structure motif search includes finding 

ncRNA motifs similar to newly discovered motifs from ncRNA gene in a fast way; 

especially when motifs are related with biological functions or diseases.  Furthermore, by 
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motifs searching over the databases, scientists may discover and explore more 

motif-relevant information such as RNA type, gene id, species name, gene segment 

location and gene ontology, which may never been explored before. 

In Table 7.1, it shows the function comparison between RmotifDB web server and 

closely relevant programs/servers such as Rfam [4], RSmatch [9], RADAR [14] and 

UTRdb [48].  In this table, several different functions with varied aspects are examined and 

compared.  All tools, except RSmatch, contain a motif database and a convenient web 

interface, but only RmotifDB’s database was integrated with the Gene Ontology 

information.  RmotifDB, RSmach and RADAR are able to perform a secondary structure 

search, but Rfam and UTRdb can only perform a sequential search.  Lastly, only RmotifDB 

allows its users to submit new data through a web submission system.  Through this table, 

it proves that RmotifDB is strongly comparable with other closely related tools. 

Table 7.1  The Function Comparison between RmotifDB Web Server and Closely 
Relevant Programs/Servers 

 RmotifDB Rfam[4] RSmatch[9] RADAR[14] UTRdb[48] 
Motif Database Yes Yes No Yes Yes 
Gene Ontology Yes No No No No 

Secondary Structure Search Yes No Yes Yes No 
Web Interface Yes Yes No Yes Yes 

New Data Submission Yes No No No No 
 

Finally, in Chapters 5 and 6, RNAcyber contains a web-based tool called 

Junction-Explorer, which employs a data mining method for predicting tertiary motifs in 

RNA junctions.  Specifically, the tool is trained on solved RNA tertiary structures obtained 

from the Protein Data Bank, and is able to predict the configuration of coaxial helical 

stacks and families (topologies) in RNA junctions at the secondary structure level.  

Junction-Explorer employs several algorithms for motif prediction, including a random 

forest classification algorithm, a pseudoknot removal algorithm, and a feature ranking 
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algorithm based on the gini impurity measure.  A series of experiments including 10-fold 

cross-validation were conducted to evaluate the performance of the Junction-Explorer tool.  

Experimental results demonstrate the effectiveness of the proposed algorithms and the 

superiority of the tool over existing methods.  While data analysis results were reported 

previously, to the best of current knowledge, this is the first web server capable of 

performing the predictions online.  The server provides an important step toward RNA 3D 

structure modeling and understanding.  Predictions made by the web server can add 

reasonable constraints to the conformational space of RNA three-dimensional structures. 

7.2 Future Work 

In future work, the plan is to develop new data mining and data integration techniques for 

finding RNA structural motifs in various organisms and for integrating the motifs with 

several biomedical ontologies beyond Gene Ontology.  Advanced search methods that 

combine statistical methods with efficient data structures or algorithms for a high-recall 

and high-precision search engine for RNA tertiary motifs are under development.  Another 

future work includes the development of new methods for predicting other RNA tertiary 

motifs such as A-minors, pseudoknots or ribose zippers and their interactions with 

junctions.  Furthermore, the higher-order junctions, as well as proteins’ interactions within 

junctions, have not been fully explored. 
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