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ABSTRACT 

SIMULATION OF POLYMER SOLAR CELL CHARACTERISTICS  

BY AMPS-1D 

 

By 

Lu Zhang 

 

 

Simulation of polymer solar cell characteristics is presented in this study.  The solar cells 

are made of materials such as the following: Poly (3-hexylthiophene): [6, 6]-phenyl C61-

butyric acid methylester (P3HT: PCBM) and poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-

bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]]: [6, 6]-phenyl C61-

butyric acid methylester (PCPDTBT: PCBM) are used as active layer materials. Analysis 

of Microelectronic and Photonic Structures One Dimension (AMPS-1D) is a computer 

simulation tool for solar cell device characteristics. The first part of this study focuses on 

the performance and comparison of current-voltage (I-V) simulations of indium oxide 

(In2O3) and tin oxide (SnO2) (ITO) and poly (3,4-ethylenedioxythiophene): poly 

(styrenesulfonate) (PEDOT: PSS) as transport layer. The other comparison is between 

single polymeric solar cell and tandem polymeric solar cells by current-voltage (I-V) 

simulations. Photovoltaic effect permits the conversion of sunlight to electrical energy by 

excitons. Excitons travel from highest unoccupied molecular orbital (HOMO) level of 

conjugated polymer material to lowest unoccupied molecular orbital (LUMO) level of 

fullerene material. Exciton is regarded as a bound state of electron and hole. 

http://en.wikipedia.org/wiki/Indium(III)_oxide
http://en.wikipedia.org/wiki/Tin(IV)_oxide
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background of Solar Cells 

 

Photosynthesis is a biological process. The most common form is chlorophyll-type 

pigment which can capture the sun’s energy and convert sunlight into biochemical energy 

needed for the plant life by a series of steps. Manmade Solar Cell is a device which can 

convert the energy of sunlight into electrical energy directly by a photovoltaic process. 

The first generation solar cell is a silicon solar cell that was invented by Russell Ohl in 

1941 [1], but the energy conversion efficiency was less than one percent. Satellite 

Vanguard developed by Pentagon is the first practical application of silicon solar cells in 

1955 [2]. Satellite Vanguard had silicon solar cells for its power requirements. The cost 

of space solar cells is in the millions of dollars, which kept it far from wide applications 

[3]. In 1968, Elliot Berman decided to quit his industrial chemist job and made efforts to 

lower the cost of silicon solar cells from $200 per watt down to $20 per watt.  

Several kinds of materials are utilized to fabricate solar cells.  These include the 

following: polycrystalline silicon, amorphous silicon, high-efficiency silicon, gallium 

arsenide and related III-V materials and thin-film materials including II-VI 

semiconductors. Thin film solar cell is the second generation solar cell, which has 

significant advantages of low cost, flexibility and easy fabrication process. GaAs has an 

ideal band gap of 1.42eV, and the energy conversion efficiency of GaAs cells can reach 

as high as 32%. Unfortunately, GaAs thin film solar cells also cost as high as million 

dollars. Until now, the first generation solar cell represents 86% of the solar cell market. 

At the end of 20
th

 century, many advanced concepts were utilized to improve power 
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conversion efficiency. Multiple junction cells, concentrator cells, nanotechnology-

specifically quantum dots and a process of low-temperature substrate were all used in 

thin film solar cell research. Even so there are still many challenges addressed by a 

variety of technologies. Available area, efficiency, reliability, light weight, easy process 

and, particularly, power at optimal cost are the specific issues that need to be addressed to 

make solar cells practical and viable from a commercial stand point. Taking them into 

account, organic photovoltaic devices can provide solutions in applications that: need low 

price; are used in recreational products and require environmental durability.  
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CHAPTER 2 

RESEARCH BACKGROUND 

 

2.1 Principles of Organic Photovoltaics 

2.1.1 Energy Transfer and Migration 

There are two non-radiative energy transfer mechanisms: 

        i. Főrster: It is a type of through-space or dipole-dipole energy transfer, and involves 

a long-range coupling of donor dipole and acceptor dipole. The resonance between donor 

and acceptor dipole moment is facilitated by the presence of intervening solvent dipoles 

[4]. The energy transfer rate (kET) is described by the following equation: 

J
R

k
kk

DA

D

ET *
*

*
6

20 
                                             (2.1) 

k  is a constant value (solvent index of refraction concentration). 
2  is related to interaction between the oscillating donor dipole and acceptor dipole. 
0

Dk   is a pure radiative rate of donor. 

J  is the spectral overlap integral. 

DAR  is the distance between donor and acceptor. 

        ii. Dexter: It is known as through-bond energy transfer and takes place through a 

double electron exchange mechanism within molecular orbitals of donor and acceptor [4]. 

The Dexter energy transfer rate ETk  is as follows: 

)
2

(

* L

R

ET

DA

eKJk



                                                 (2.2) 

L  is the Van Der Waals radii of donor and acceptor. 

K  is related to the specific orbital interactions. 

DAR  is the distance between donor (D) and acceptor (A). 

The relationship between Dexter energy transfer mechanism and Főrster energy transfer 

mechanism is described by Figure 2.1: 



4 

 

 

 

 
Figure  2.1  Plot of )log( ETk versus distance r  for both Dexter (solid line) and Főrster 

(dotted line) energy transfer mechanisms [4]. 

 

2.1.2 Solar Cell Characterization 

Characteristics of solar cells are described by the following terms: short-circuit current 

( SCJ ), open-circuit voltage ( OCV ), fill factor ( ff ), maximum power ( mP ), incident 

optical power ( OP ) and power conversion efficiency ( e ). 

OCSCmmOCSCm VIVIVIPff                                 (2.3) 

OOCSCOmme PVIffPVI /                                       (2.4) 

The short-circuit current depends on photon absorption and internal conversion 

efficiency. By increasing the device thickness, the quantity of absorbed photons can be 

increased. Due to low charge mobility, the number of recombination charges in larger 

thickness will increase. Consequently, the fill factor will decrease due to the 

recombination loss.  

In Figure 2.2, the fill factor can be represented by the ratio of the dark shaded part 

to the lightly shaded part of the curves. 
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Figure  2.2  Current-Voltage response of photovoltaic device under illumination. 

 

 

The incident photon conversion efficiency (external quantum efficiency), EQE is 

given by the number of electrons generated per incident photon: 

e

hc

P

I

n

n
EQE

O

SC

ph

e


                                                     (2.5) 

In theory, the power efficiency of a solar cell can be calculated by integrating the 

EQE over the solar spectrum and multiplying by the monochromatic power efficiency 

[5]. 

The working principle of organic solar cells is that excitons are excited in organic 

materials, and the exciton, which is a bound electron-hole (positive charge carrier) pair, 

needs to dissociate into free charge carriers [6].  

The processes of light absorption and sunlight conversion are described below:  

        (1) Active materials absorb photon energy hv , and the photons energy can help 

electrons to travel to the lowest unoccupied molecular orbital (LUMO), leaving holes at 

the highest unoccupied molecular orbital (HOMO). At the same time, an electron and a 

hole are still bound as an exciton by coulomb attraction forces. (2) The bound exciton 
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diffuses to the interface between donor phase and acceptor phase. (3) At the interface of 

donor phase and acceptor phase, exciton sets apart into an electron and a hole. (4) 

Electron and hole travel separately to cathode and anode. Donor material and acceptor 

material each has a LUMO level and a HOMO level. The energy difference between the 

LUMO level of donor and the HOMO level of acceptor has an influence on the open-

circuit voltage ( OCV ). The energy difference of LUMO levels of acceptor material and 

donor material must be higher than 0.3eV. 

The process can be seen below in Figure 2.3 

 
Figure 2.3  Schematic illustration of the photoelectric conversion mechanism [6]. 

 

2.1.3 Molecular Orbitals Structures 

A carbon atom has s+px+py atomic orbitals; the s+px+py atomic orbitals transform into a 

sp
2
 triangular planar and an un-hybridized pz orbital which is vertical to the sp

2
 triangular 

planar. The sp
2 

hybrid orbital forms conventional  -bond. The  -bond has fully paired 

electrons in its bonding state and empty anti-bonding state, resulting in a very strong and 

stable covalently-bonded molecular backbone. The un-hybridized, half-filled pz orbital 
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forms the  -bond [7]. Figure 2.4 (c) and Figure 2.4 (d) show resonant structure and non-

resonant structure, respectively. 

 
Figure 2.4  A schematic of the hybridization and bonding in chemical structure [7]. 

 

 

2.1.4 Chemical Structures of Conjugated Polymers 

In organic polymeric solar cells, there are donor organic materials and acceptor organic 

materials. Donor organic materials are usually conjugated structure polymers; acceptor 

organic materials are usually fullerene structure polymers. Delocalized π-electrons are 

along conjugated backbones of conducting polymers. In addition, formation of 

delocalized π-electrons is usually through overlap of π-orbital; they can build up a π-

system with a filled valence band. In conjugated polymer system, p-type doping assists to 

remove electrons from the π-system; similarly, n-type doping adds electrons into the π-

system; then a charge unit is formed. 
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Figure 2.5, below, shows the chemical structures of common conjugated 

polymers. 

 

 
 

Figure 2.5  Chemical structures of conjugated polymers used in OPVs [8]. 

 

 

2.2 Device Architecture 

2.2.1 Typical Device Architecture 

In polymeric solar cells, exciton is formed in either donor phase or acceptor phase, and 

then it will travel to the interface within its lifetime. By this means, the thickness of 

material must be less than the exciton diffusion length which is 10-20 nm. Within this 

layer thickness, more light photons can be absorbed. In order to address this requirement, 

polymeric solar cells need a nano-scale interpenetration network of donor phase material 

and acceptor phase material [9]. Consequently, efficient dissociation of excitons can be 
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ensured by transporting charges to the electrodes from the entire photoactive layer within 

the lifetime of exciton. It is called bulk hetero-junction (BHJ) solar cells [9]. Electron 

affinity of donor phase and acceptor phase blended polymer is larger than the electron 

affinity of non-blended polymer. Electron affinity can maintain the stability of exciton. In 

order to achieve higher power conversion efficiency (PCE), substrate structure should be 

taken into account. Substrate structure has normal geometry which means front-side 

illumination, or inverted geometry which means back-side illumination. It depends on 

whether the front electrode is anode (normal geometry) or cathode (inverted geometry). 

The metal electrode has to have an appropriate work function, which is a high work 

function for holes and low work function for electrons [10]. Figure 2.6 shows a simple 

device structure of polymer solar cell; the organic layer which is used as the active layer 

usually comprises multiple layers. 

 

 

Figure 2.6  Polymeric solar cell device structure. 
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2.3 Tandem Polymeric Solar Cells 

2.3.1 The Need for Tandem Polymeric Solar Cells 

Tandem polymeric solar cells are multilayer solar cells. Due to the tandem structure, 

polymeric solar cells have two or more photovoltaic cells in series; thus, the open circuit 

voltage, Voc, of cells can be increased. When two cells are connected in series, Voc of 

tandem solar cells is the sum of Voc of sub-cells, Voc1+ Voc2= Voc (tandem) [11]. Commonly, 

multilayer cells use different band-gap materials, one is a larger band-gap semiconductor 

and the other is a smaller band-gap semiconductor [12]. Consequently, the light 

harvesting will be improved. PCE of tandem polymeric solar cells is better than PCE of 

single cell made with the same material. Larger band-gap semiconductor and smaller 

band-gap semiconductor together can excite more excitons. Figure 2.7 shows a typical 

structure of tandem polymeric solar cells. 

 

 
 

Figure 2.7  Typical tandem polymeric solar cell device.
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2.3.2 Fabrication of Tandem Polymeric Solar Cells 

The process of fabricating active layers has three categories: all vacuum processing, all 

solution processing and a combination of vacuum and solution. Stacked polymeric solar 

cells cannot be fabricated by solution process easily. Difficulties of depositing sequential 

layers can almost be solved by vacuum processing of small molecules [13-16]. Since a 

first layer can be solution processed and the second layer vacuum deposited, this 

approach conceptually follows suite along with all solution processed devices employing 

orthogonal solvents and carefully chosen interfacial layers [17-19]. This approach has led 

to the highest reported efficiency of 6.5% for a polymeric solar cell [19]. 

A novel concept was developed whereby the tandem solar cell is realized in a 

reflective geometry thus avoiding complex multilayer solution processing [20]. One of 

the strengths of polymer and organic solar cells is the possibility for all solution 

processing and, while this has been demonstrated for tandem cells with evaporated metal 

electrodes, there are still severe limitations to the choice of solvents and the order of 

application of the individual layers [21].  

The approach has so far employed different solvents for the different layers that 

are orthogonal. The next solvent in the process is a poor one for the material in the 

previously deposited layer [21]. When the first layer is formed and a dry thin film is 

made, it is difficult to process the next layer from solution because of the solvent 

occupied which may dissolve the first layer totally or partially. From this point of view, 

solubility properties of various layers can be controlled as stated by selecting appropriate 

solvents. Tandem polymeric solar cells have at least 6 layers or more; it is not practical to 

switch so many different solvents.  
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A new approach is that materials can be processed from solution and then made 

insoluble by a thermal treatment. Labile bond of the molecule, which is the linker to the 

solubility group, has the active material as its backbone. For example, the soluble group 

is a branched alkyl chain attached to the active conjugated polymer backbone through an 

ester bond. The bond breaks when it is heated eliminating a volatile alkene and leaving 

the polymer component insoluble [21].  

          
Figure 2.8  Thermo-treatment process. 

 

By this way, when subsequent layers are processed, there is no limit to the choice 

of the solvent. Sequential layers can be deposited from any solvent including the 

possibility of using the same solvent throughout the process [21]. There is no limit to the 

choice of processing solvent in the whole process. After thermal treatment, the material is 
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called thermo-cleavable. An all solution processed tandem polymer solar cells based on 

thermo-cleavable materials has been reported by Hagemann et al. [22].  
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CHAPTER 3 

RESEARCH OBJECTIVE 

 

 

Poly (3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methylester (P3HT: PCBM) and 

poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-

b']dithiophene-2,6-diyl]]: [6, 6]-phenyl C61-butyric acid methylester (PCPDTBT: PCBM) 

are used as active layer materials in polymeric solar cells. Analysis of Microelectronic 

and Photonic Structures - One Dimension (AMPS-1D), which has been developed by 

Pennsylvania State University, is utilized to the simulate current-voltage (I-V) 

characteristics of single polymeric solar cells and tandem polymeric solar cells. 

Additional comparison of the current-voltage (I-V) characteristics of poly (3, 4-

ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) and indium oxide 

(In2O3) and tin oxide (SnO2) (ITO) as transparent layer materials are simulated by 

Analysis of Microelectronic and Photonic Structures One Dimensional (AMPS-1D). 

 

http://en.wikipedia.org/wiki/Indium(III)_oxide
http://en.wikipedia.org/wiki/Tin(IV)_oxide
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CHAPTER 4 

EXPERIMENTAL DETAILS 

 

 

4.1 AMPS-1D 

AMPS-1D stands for Analysis of Microelectronic and Photonic Structures - One 

Dimension. It was engineered to be a very general and versatile computer simulation tool 

for the analysis of device physics and device design. It is a one-dimensional (1-D) device 

physics code which is applicable to any two terminal device. It can be used for diode, 

sensor, photodiode, and photovoltaic device analysis [23].  

AMPS-1D is the creation of Professor Stephen Fonash and his team of students 

and visiting scholars: John Arch, Joe Cuiffi, Jingya Hou, William Howland, Peter 

McElheny, Anthony Moquin, Michael Rogosky, Francisco Rubinelli, Thi Tran and Hong 

Zhu [23].  

 
Figure 4.1  AMPS-1D main window [23].
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The key part of AMPS-1D is to solve two continuity equations and Poisson’s 

equation with six boundary conditions. All parameters needed are fit to these three 

equations and then all related values are calculated.  

 

4.2 Molecular Structures of Materials of Polymeric Solar Cells  

[6, 6]-phenyl C61-butyric acid methylester (PCBM) is a fullerene derivative of the C60 

buck-ball. It is an electron acceptor material which is a more widely used material in 

polymeric solar cells than fullerenes, due to its solubility in chlorobenzene. 

Poly (3-hexylthiophene) (P3HT) comes from the polymerization of thiophenes. 

P3HT can become conducting when electrons are added or removed from the conjugated 

π-orbital via doping [24].  

Poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) is a 

conducting polymer based on 3, 4-ethylenedioxylthiophene or PEDOT monomer. 

Advantages of this polymer are optical transparency in its conducting state, high stability, 

moderate band gap and low redox potential. A large disadvantage is its poor solubility 

which is partly circumvented in the PEDOT composite [25]. 

ITO is a solid solution of indium (III) oxide (In2O3) and tin (IV) oxide (SnO2), 

typically 90% In2O3, 10% SnO2 by weight. In the infrared region of the spectrum, it acts 

as a metal-like mirror. 

Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-

b:3,4-b']dithiophene-2,6-diyl]] (PCPDTBT) is a kind of popular conjugated material. 

 

 

 

http://en.wikipedia.org/wiki/Fullerene_derivative
http://en.wikipedia.org/wiki/Buckyball
http://en.wikipedia.org/wiki/Conducting_polymer
http://en.wikipedia.org/wiki/3,4-ethylenedioxylthiophene
http://en.wikipedia.org/wiki/Monomer
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Transparency_(optics)
http://en.wikipedia.org/wiki/Electrical_conduction
http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Reduction_potential
http://en.wikipedia.org/wiki/Solubility
http://en.wikipedia.org/wiki/PEDOT:PSS
http://en.wikipedia.org/wiki/Composite_material
http://en.wikipedia.org/wiki/Solid_solution
http://en.wikipedia.org/wiki/Indium(III)_oxide
http://en.wikipedia.org/wiki/Tin(IV)_oxide
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Figure 4.2  Molecular structures: PCBM, P3HT, PEDOT: PSS, PCPDTBT. 

 

4.3 Experimental Parameters and Design 

4.3.1 Parameters of Polymeric Solar Cell Materials 

i. Front contact, back contact, Fermi level position and Bulk recombination 

parameters are described below. 

SNO/SNL: Electron recombination speed 

SPO/SPL: Hole recombination speed 

RF/RB: Reflection coefficient 

PHIBO/PHIBL: Barrier height 
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ND: State density for the donor Gaussian  

GSIG/ND: Capture cross section of the donor-like Gaussian state for electrons  

GSIG/PD: Capture cross section of the donor-like Gaussian state for holes 

Table 4.1  General Experimental Data 

Front contact 

SNO=SPO=1e+7 cm/s 

 

PHIBO=work function-LUMO (donor) 

 

Back contact 

SNL=SPL=1e+7 cm/s 

 

PHIBL=work function-LUMO (acceptor) 

Bulk Recombination 

Donor Like: 

ND=1e+10 #/cm
3 

GSIG/ND=1e-9 cm
2 

GSIG/PD=1e-10 cm
2 

Bulk Recombination 

Acceptor Like: 

ND=1e+10 #/cm
3 

GSIG/ND=1e-10 cm
2 

GSIG/PD=1e-9 cm
2 

 

ii. Important general layer parameters and their explanations are described below. 

EPS: Dielectric constant 

MUN: Electron mobility 

MUP: Hole mobility 

NC: Conduction band effective density of state 

NV: Valence band effective density of state 

NA: Number of acceptors 

ND: Number of donors 

EG: Energy of band-gap 

CHI: Electron affinity 

 

Tables 4.2-4.6 show general layer parameters of employed materials needed for 

AMPS-1D simulations.  
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Table 4.2  PEDOT: PSS General Layer Data 

 

Parameter EPS MUN MUP NC NV 

Value 3.0 1.0e-4 1.0e-3 1.0e+22 1.0e+22 

Unit  cm^2/V/S cm^2/V/S cm^3 cm^3 

Parameter NA ND EG CHI 

Value 0.0 0.0 1.6 3.4 

Unit #/cm^3 #/cm^3 eV eV 

 

Table 4.3  PCBM General Layer Data 

 

Parameter EPS MUN MUP NC NV 

Value 3.0 1.0e-3 1.0e-4 1.0e+22 1.0e+22 

Unit  cm^2/V/S cm^2/V/S cm^3 cm^3 

Parameter NA ND EG CHI 

Value 3.17e+13  2.1 3.70 

Unit #/cm^3 #/cm^3 eV eV 

 

Table 4.4  P3HT General Layer Data 

 

Parameter EPS MUN MUP NC NV 

Value 3.4 1.0e-4 1.0e-3 1.0e+22 1.0e+22 

Unit  cm^2/V/S cm^2/V/S cm^3 cm^3 

Parameter NA ND EG CHI 

Value 3.17e+13  1.85 3.10 

Unit #/cm^3 #/cm^3 eV eV 
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Table 4.5  PCPDTBT General Layer Data 

 

Parameter EPS MUN MUP NC NV 

Value 3.4 3.5e-4 1.5e-3 1.0e+22 1.0e+22 

Unit  cm^2/V/S cm^2/V/S cm^3 cm^3 

Parameter NA ND EG CHI 

Value 4.0e+13  1.5 3.7 

Unit #/cm^3 #/cm^3 eV eV 

 

Table 4.6  ITO General Layer Data 

 

Parameter EPS MUN MUP NC NV 

Value 4.6 210  4.1e+18  

Unit  cm^2/V/S cm^2/V/S cm^3 cm^3 

Parameter NA ND EG CHI 

Value   2.75 (indir) 

3.6-3.75 

(dir) 

4.1 

Unit #/cm^3 #/cm^3 eV eV 

 

 

i. Important band tail parameters and their explanations are described below. 

ED: Energy Ed for donor-like tails 

GDO: gd = GDO exp (E/Ed-Ev/Ed) 

TSIG/ND: Electrons in donor tail states 

TSIG/PD: Holes in donor tail states 

EA: Energy Ea for acceptor-like tails 

GAO: ga = GAO exp (E/Ed-Ev/Ed) 

TSIG/NA: Electrons in acceptor tail states 

TSIG/PA: Holes in acceptor tail states 
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Tables 4.7- 4.9 show band tail parameters of employed materials needed for AMPS-1D 

simulations [23]. 

Table 4.7  PEDOT: PSS Band Tail Data 

 

Parameter ED GDO TSIG/ND TSIG/PD EA 

Value 1.05 1.0e+10 1.0e-9 1.0e-10 1.05 

Unit eV #/cm^3/eV cm^2 cm^2 eV 

Parameter GAO TSIG/NA TSIG/PA 

Value 1.0e+10 1.0e-10 1.0e-9 

Unit #/cm^3/eV cm^2 cm^2 

 

Table 4.8  P3HT Band Tail Data 

 

Parameter ED GDO TSIG/ND TSIG/PD EA 

Value 1.05 1.0e+10 1.0e-9 1.0e-10 1.05 

Unit eV #/cm^3/eV cm^2 cm^2 eV 

Parameter GAO TSIG/NA TSIG/PA 

Value 1.0e+10 1.0e-10 1.0e-9 

Unit #/cm^3/eV cm^2 cm^2 
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Table 4.9 PCBM Band Tail Data 

 

Parameter ED GDO TSIG/ND TSIG/PD EA 

Value 1.05 1.0e+10 1.0e-9 1.0e-10 1.05 

Unit eV #/cm^3/eV cm^2 cm^2 eV 

Parameter GAO TSIG/NA TSIG/PA 

Value 1.0e+10 1.0e-10 1.0e-9 

Unit #/cm^3/eV cm^2 cm^2 

 

 

ii. Absorption coefficient parameters 

 

Absorption coefficient determines how far light can penetrate into materials at a 

particular wavelength before it is absorbed. The absorption coefficient depends on the 

optical characteristics of the material and the wavelength of light. Semiconductor 

materials have a sharp edge in their absorption coefficient since photons with energy 

lower than the band gap energy cannot excite an electron into the conduction band from 

the valence bad.  

 

4.3.2 Design of Comparable Experiments 

The active layer of bulk-hetero-junction (BHJ) solar cells is a mixture of nano-scale 

donor materials and nano-scale acceptor materials. Exciton is created inside the BHJ and 

then it can diffuse to the interface to form donor and acceptor within its diffusion length. 

Obviously, active layer structure of simulation device can be designed as a donor layer, a 

generation layer and an acceptor layer.  

http://www.pveducation.org/glossary/2#term57
http://www.pveducation.org/glossary/2#term51
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PEDOT: PSS has similar EQE as ITO and its conductivity is high enough to be 

used as the electrode for the diode. These two organic solar cells are under high-intensity 

illumination of AM 1.5 (1000W/m
2
) 

Part I of simulations by AMPS-1D: (1) PEDOT: PSS transport layer polymeric 

solar cell. (2) ITO transport layer polymeric solar cell. Figure 4.3 shows device structures 

of these two organic solar cells: 

 

Table 4.9  Thickness of Polymeric Solar Cells Layers 

 

 Generation ITO P3HT:PCBM PEDOT: PSS 

Thickness 

(nm) 

2 2 100 2 

 

 
Figure 4.3  Device structures of organic solar cells. 

 

 

Part II of simulations by AMPS-1D is to compare the PCE of single polymeric 

solar cells with PCE of tandem polymeric solar cells. Figure 4.4 shows the proposed 

device structures. 
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Table 4.10  Thickness of Polymeric Solar Cells Layers 

 

 Generation ITO PEDOT: 

PSS 

 

PCBM P3HT PCPDTBT 

Thickness 

(nm)  

2 2 2 50 50 50 

 

 
Figure 4.4  Device structures of single polymeric solar cells and tandem polymeric solar 

cells. 
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CHAPTER 5 

RESULTS, DISCUSSION AND CONCLUSIONS 

 

 

Comparison of the results of Part I and Part II are obtained by building suitable 

parameters of organic polymers for AMPS-1D. 

a) Figure 5.1 shows the current-voltage (I-V) curves between PEDOT: PSS transport 

layer polymeric solar cell and ITO transport layer polymeric solar cell. 

 

Figure 5.1  I-V curves: PEDOT: PSS transport layer polymeric solar cell and ITO 

transport layer polymeric solar cell. 
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Table 5.1  Characteristics of PEDOT: PSS Transport Layer Polymeric Solar Cell and 

ITO Transport Layer Polymeric Solar Cell 

 

Anode JSC (mA/cm
2
) VOC (V) FF PCE (%) 

PEDOT: PSS 7.582 1.070 0.628 5.094 

ITO 6.861 1.062 0.633 4.61 

 

 

From Table 5.1, power conversion efficiency of PEDOT: PSS is higher than that 

of ITO. PEDOT: PSS is transparent and has good conductivity. The reason for higher 

efficiency is that the work function of PEDOT: PSS is closer to the first layer in the 

conduction band.  

b) Single polymeric solar cells versus Tandem polymeric solar cells. 

 
Figure 5.2  I-V curves: Single polymeric solar cells and tandem polymeric solar cells.     
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Table 5.2  Characteristics of Single Polymeric Solar Cells and Tandem Polymeric Solar 

Cells  

 

Anode JSC (mA/cm
2
) VOC (V) FF ECE (%) 

PCPDTBT: 

PCBM 

 

10.188 0.699 0.504 3.589 

P3HT: PCBM 7.582 1.070 0.628 5.094 

Tandem 6.395 1.207 0.663 5.123 

 

In AMPS-1D, transport layers are considered as front and back contact 

conditions. Simulation with middle transport layer was not successful. This is because the 

middle transport layer is considered as black and blocks the sunlight through the entire 

solar cell. In the simulations of tandem solar cells, there is no transport layer between two 

single solar cells. 

From the results of the simulations, power conversion efficiency of P3HT: PCBM 

polymer solar cell is noted to be higher than that of PCPDTBT: PCBM polymer solar 

cell. The power conversion efficiency of tandem solar cells is 5.123%, which is not 

consistent with the experimental results that have been reported in the literature. PCE of 

tandem polymeric solar cells is slightly higher than that of P3HT: PCBM polymeric solar 

cell. The reason for similar PCEs of tandem solar cells and P3HT: PCBM polymeric solar 

cell is that the total short-current of tandem solar cells follows the lower one of two single 

polymeric solar cells.  

Interestingly, open circuit voltage is due to the linearity of the donor HOMO level 

and the acceptor LUMO level. Voc=1.207 of tandem polymeric solar cells is not exactly 
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equal to the sum of Voc of these two single polymeric solar cells. AMPS-1D considers 

transport layers as front contact and back contact. Tandem polymeric solar cells need a 

transport layer that is connected to two single polymeric solar cells; the software cannot 

support suitable parameters for it. In order to fulfill tandem polymeric solar cell 

simulation by AMPS-1D, the tandem polymeric solar cell design cannot be simply a 

composition of two or more single polymeric solar cells. Thickness of each single 

polymeric solar cell must be calculated ahead. 

 
Figure 5.3  Generation positions of single and tandem polymeric solar cells. 

 

From Figure 5.3, the generation positions in tandem polymeric solar cells are in 

the range of 50-52nm and 152-154nm. The generation positions of single polymeric solar 
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cells are both in the 110-112nm range. All generation positions range with the thickness 

of polymeric solar cells. 

c) Incident photon current efficiency (IPCE)  

IPCE can be calculated by equation 5.1 

IPCE=1240*Isc/λ*Pin                                               (5.1) 

For λ=600 nm 

P3HT: PCBM polymer solar cells, IPCE=1240*15.683e-2/ 600e-9*1000=0.32 

PCPDTBT: PCBM polymer solar cells, IPCE=1240*14.326e-2/600e-9*1000=0.296 

Tandem solar cells, IPCE=1240*17.321e-2/600e-9*1000=0.358 

A low IQE indicates that the active layer of the solar cell is unable to make good 

use of the photons. 
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