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ABSTRACT 

EXPERIMENTAL EVALUATION OF NEAR INFRARED LIGHT 
PENETRATION INTO NEURAL TISSUE 

by 
Ujwal Anil Parikh 

Near infrared (NIR) lasers find applications in medicine both for diagnostic and treatment 

purposes. Penetration depth into the tissue is a critical parameter to be considered in these 

NIR laser applications. Published data on the optical properties of rodent neural tissue are 

rare, despite the frequent use of rats as animal models. The aim of this study was to 

directly measure the light intensity profile inside the rat brain gray matter that is 

illuminated by an NIR laser beam.  The local light intensities were sampled using an 

optical fiber inserted into the brain.  The intensity profile in the axial direction to the laser 

beam had an initial fast decreasing phase followed by a less steeper slope by distance. In 

general, the light penetrated several times farther in the direction of the beam than its 

spread in the radial direction. 
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CHAPTER 1 

INTRODUCTION 

Optical methods using near infrared (NIR) lasers is an emerging technology offering 

numerous therapeutic and diagnostic applications. NIR light has been widely investigated 

for a variety of biomedical applications ranging from spectroscopic imaging [1] to 

treatment of brain tumors [2]. NIR wavelengths approximately between 700 to 900nm 

offer maximum penetration in the gray and white matters of the nervous system due to 

minimal absorption and scattering [3].  They offer the advantage of being non-ionizing 

and therefore, repeated exposures can be applied to the tissue.  

In these applications, the penetration depth is a critical factor that needs to be 

determined. There are several reports on the optical properties of neural tissues [2, 4, 5]. 

However, data on the penetration depth in the neural tissue is rare and the results vary 

substantially [3, 6]. Also, studies on the rat nervous system are very limited. Rat has 

frequently been used as an animal model in testing of these laser applications [7]. The 

aim of this study was to determine the light intensity of NIR light at different depths 

inside the rat brain gray matter. 

 

1.1 Objective 

The objective of this study is to investigate the penetration profile of the NIR light in a 

2D vertical plane into the rat brain cortex. To achieve the desired goals, this study was 

performed on two Sprague- Dawley rats using a laser operating at 830nm.  A fiber optic 

was inserted into the brain to measure the light intensity at different depths of the brain 
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gray matter. As the current produced by the photodiode depends on the intensity of 

transmitted light reaching the diode; by measuring the current values at different depths 

we could study the amount of light intensity available at the given depth of the brain.  

The current values are then used to produce a graph of light intensity vs. depth.  The 

shape of the curve is compared with the published data to validate the result. 

 

1.2 Background Information 

1.2.1 Penetration Depth of NIR Light in the in vitro Rat Brain Slices  

In a previous study, the penetration depth into the gray matter of the rat brain was 

analyzed using an in vitro preparation [8]. The brain was explanted directly after 

sacrificing the animal and placed in sucrose cutting media. Horizontal brain slices were 

cut at thicknesses of 300, 400, 500, 600, 800, 1000, 1200, and 1500μm. In vitro 

measurements were conducted for each thickness using a photodiode and a laser source. 

The brain slices were laid down on the bottom surface of a petri dish, aligning an area of 

gray matter over and in direct contact with the photodiode and the laser was centered 

above at a distance of 15cm. The light intensity values were obtained for various 

thicknesses of the gray matter samples. Monte Carlo simulations were used to simulate 

the light intensity curve for each tissue thickness. The scattering coefficient was 

measured by manually adjusting the simulated light intensity to curve fit the 

experimentally calculated light intensity. 

The mean light intensity of the gray matter was 65.03±0.02%, 44.87±0.02%, 

32.16±0.02%, 22.68±0.03%, 14.14±0.01%, 7.78±0.005%, 5.38±0.005%, and 

3.02±0.004% at thicknesses of 300, 400, 500, 600, 800, 1000, 1200, and 1500μm 
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mechanical forces generated by ice crystals. Thus, in this study the explanted brain 

samples were not frozen or compressed. Samples were placed in cold sucrose solution 

(0oC), without any direct contact to ice, to cut them into intact slices.  

To summarize, the study reported these results: 

i. The light intensity curve did not follow like a second order filter as predicted by 

simulations. 

ii. The scattering co-efficient of the rat brain gray matter was found to be 108cm-1 

which was within range of the published data.  

iii. The penetration depth was a function of beam radius and increased with the beam 

radius up to a certain value. 

iv. By taking adequate precaution in tissue slice preparation, robust measurements 

can be achieved. 

 

1.2.2   Use of Near Infrared and Visible Spectroscopy to Determine Optical 

Properties of the Rat Neural Tissue  

The goal of another study was to determine changes in the light scattering and 

hemoglobin oxygen saturation in three cases: (i) a normal spinal cord, (ii) demyelinated 

sciatic nerve, and (iii) spinal cord under neuronal activity induced by peripheral electrical 

stimulation [9]. However, the scope of this study was restricted only to the measurement 

of light scattering in a healthy spinal cord. Fourteen adult male Sprague-Dawley rats 

(250-350g) were used for this study. Laminectomy was performed to expose the thoracic 

and lumbar regions of the spinal cord. After the surgery the rats were immobilized on a 

stereotaxic frame and the optical reflectance measurements were made using a light 
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to a spectrometer to produce a graph of reflectance versus wavelength. The trailing slope 

of this graph is used as a reflectance index[10].  

 
Figure 1.6 Schematic arrangement of NIR equipment [10].  
 
 When light propagates within tissue, it undergoes multiple elastic scattering and 

absorption depending on tissue optical properties. The prominent properties are the 

scattering coefficient of the tissue, μs, and the absorption coefficient of the tissue, μa. In 

the near infrared region, light scattering is more prominent than light absorption [9]. This 

is because the mean scattering free path (1/μs) of tissue for near-infrared light is on the 

order of 10-100 microns while the mean absorption free path (1/μa) is much longer. 

Anisotropy (g) is a measure of the amount of forward direction retained after a single 

scattering event. If a photon is scattered by a particle and deflected by an angle θ, the 

component of new trajectory aligned in the forward direction is given by cos(θ). 

Therefore, an average deflection angle and the mean value of cos(θ) is defined as 

anisotropy, i.e., g = cos(θ). The two limiting cases are g = 0 for ideal isotropic scattering, 

and g =1 for complete forward scattering of the incident beam. The reduced scattering 

coefficient (μs’) is defined as 

                                                        μs' = (1− g)μs                                                               (1.2)        
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1.3.1 Direct Method 

Two techniques have primarily been used to measure the optical properties of biological 

tissues; direct and indirect methods [11]. Direct method is based on Beer’s law where a 

thin piece of tissue is used, for instance, as in the collimated transmission technique. In 

this method, the unscattered transmitted light is detected and penetration depth is 

calculated according to Beer’s law (Figure 1.7).  

Beer’s law can be expressed as  

(1 ) e
x

aI t I o R


             
  (1.3) 

where, 

 It: transmitted light energy 

Io: incident light energy 

R: reflection coefficient of the surface 

a: penetration depth. Penetration depth is defined as the distance at which the total optical 

power is reduced to 37% of the incident light. 

  The scattering coefficient is predicted from experimental measurements of light 

intensity and reflectance together [12].  

 

 
 
 
 
 
Figure 1.7 Diagram of Beer’s absorption of a beam of light as it travels through a 
thickness of material [9]. 
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1.3.2 Indirect Method 

Indirect method is based on a model of light transport. The integrating sphere method is a 

common technique where the absorption coefficient (μa) and the reduced scattering 

coefficient (μs’) are deduced from measurements of diffuse reflectance and total light 

intensity. The coefficients are then predicted based on light transport models such as the 

Monte Carlo method [13]. 
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was polished using three different sizes of micro sand papers starting from largest to the 

smallest. The fiber optic was polished to have a uniform cross sectional area for the 

incident light. The two coatings and the cladding were removed using a surgical blade 

and a wire stripper. 

 

2.2 NIR Laser Source 

A NIR laser source, DLS-500-830FS-100 manufactured by StockerYale, Canada was 

used in our experiment [19]. It is a laser diode that has a wavelength of 830nm and has a 

maximum peak power of 73.8mW. Since the beam operates at a fundamental transverse 

electromagnetic mode [TEM00] it has a Gaussian profile and a circular footprint [20]. The 

Gaussian profile is crucial for this experiment as it gives lower beam divergence and a 

good spatial coherence. This means that the beam can be focused to a smaller spot. 

The Gaussian function is of the form 

                                         (2.2) 

where, 

a: the amplitude 

c: the standard deviation 

x: variable 

b: constant value 

Here the transverse profile of the optical intensity (I) of the beam with a 

power P can be described with a Gaussian function as 

 

ሻݎሺܫ                                                    ൌ ௉

஠௪మ/ଶ
eሺ

షమೝమ

ೢమ
ሻ                                                     (2.3)      
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where,  

r: the distance from the center of the beam and is measured in polar co-ordinates 

w: the spot size of the Gaussian beam or the Gaussian beam radius where the intensity 

drops to 1/e2 (≈ 13.5%) of the maximum value.  

 

Figure 2.4 Laser beam having a Gaussian profile [20]. 

The spot size w is a function of z, i.e., the direction in which the wave is 

propagating and will be at a minimum value w0 at a specific point along the beam axis, 

known as the beam waist. For a beam of wavelength λ [21] 

ሻݖሺݓ                                                   ൌ ଴ට1ݓ ൅ ሺ ௭
௭ೃ
ሻଶ                                                 (2.4) 

where ݖோ is given as 

                                               Rayleigh range,  ݖோ ൌ
గ௪బమ

	஛
                                             (2.5) 
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Figure 2.5 Gaussian beam width w(z) as a function of the axial distance z. w0: beam 
waist; b: depth of focus [19]. 

 

2.2.1 Laser Calibration 

Laser was calibrated to determine the amount of power produced for a given range of DC 

control voltage. The laser was modulated with voltages from 0V to 4.5V in steps of 

50mV and changes in the power were recorded [22]. The light from the laser was incident 

on the fiber optic described in Section 2.1 which was connected to a photodiode. The 

photodiode produced an electric current corresponding to the incident laser beam power.  

The current from the photodiode was passed through a current to voltage converter 

(Figure 2.9) and using Equations 2.4 and 2.5 for an 830nm laser when it is at a distance 

of 13.5cm from the optic the spot size is 0.56mm [20]. The power of the laser is given by 

                                                                 ܲ ൌ ூ

ோ
                                                             (2.6) 

where, 

P: Light power (mW) 

I: Photodiode current (mA) 

R: Responsivity of the photodiode (mA/mW) 

Average power density is given by 



18 
 

   
 

ܦ.ܲ                                                         ൌ ௉

஺
	ܺ	ܹܲ	ܺ	݂                                               (2.7) 

where, 

A: Cross-sectional area of the beam at target (cm2) 

PW: pulse width (s) 

f: frequency (Hz) 

The product ܹܲ	ܺ	݂ is the called the duty cycle. 

Figures 2.6 and 2.7 show photodiode’s current output in the path of laser light as a 

function of laser control voltage. As seen from Figure 2.6 when the laser modulation 

voltage is increased from 0V to 4.5V the photodiode current reduces linearly from 1.1mA 

to 0mA.  A fourth order polynomial curve was fitted to the data using the least squares 

method.  Equation 2.6 was used to calculate the corresponding power which was plotted 

against the modulation voltage. Figure 3.7 shows that there is a linear correlation of R2 = 

0.99 between power and control voltage of NIR laser. The output power decreases with 

the increase in input voltage. The input-output relation was described by y = 3.4594 x – 

0.1863 where x is the control voltage in volts and y is the laser power in mW/mm2.  

 
Figure 2.6 Laser’s current output versus control voltage. Percent error in curve fit = 
0.79% [22]. 
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Figure 2.7 Laser’s power output versus control voltage [22]. 

 

2.3 Animal Preparation 

Five Sprague-Dawley rats (250-300g) were used for this study but only data from two 

animals had sufficient stability to report in this thesis. A mixture of ketamine (80mg/kg) 

and xylazine (12mg/kg) diluted with saline was injected intraperitorially for anesthesia. 

The heart rate (HR) was monitored continuously using a neonatal pulse oximeter. A 

sudden increase in the HR indicated the diminishing effect of anesthesia and further 

doses of ketamine were administered. The reflexes of the lower limbs were also checked 

periodically for signs of arousal from anesthesia. Marcaine (0.2ml) was injected at the 

site of incision as a local anesthetic. Dexamethasone (2mg/kg) was administered 

intramuscularly at the beginning of the surgical procedure to prevent edema in the central 

nervous system. The rectal temperature was continuously monitored and maintained 

between 35-36oC using a temperature regulated heating pad. Dehydration of brain tissue 

was prevented using a pool of warm saline over the exposed area of the brain. All 

procedures were approved and performed in accordance with the guidelines of the 

Animal Care and Use Committee, Rutgers University, Newark, NJ. 

y = 3.4594x - 0.1863
R2 = 0.9994
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and train duration, the input voltage can be controlled and trial number, recording time, 

sampling rate and min/max input range controls the signal from the fiber optic. This 

software also gives an option to show live plots of the signal and to save the data for 

future analysis.     

 
Figure 2.9 Custom Matlab software user interface [23].   

 

2.4.2 National Instruments Data Acquisition (NI DAQ) Board [24] 

NI PCI 6259 DAQ Board was used in this study. It is a high speed DAQ board with 

sampling rates upto 1.25MS/s. It has four 16-bit analog outputs, 48 digital I/O and 32-bit 

counters. However, only one analog input and output and one digital input & output were 

used in this study. The analog output from the DAQ board controlled the laser power. 

The signal from the fiber optic and through the amplifier is applied to the DAQ board, 

which digitized it and sent it to the computer for saving on the hard disk. 
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2.4.3 Current Amplifier 

A current amplifier circuit was used between fiber optic output and NI DAQ board to 

convert the photodiode current into voltage. The use of a current amplifier ensures that 

the photodiode output voltage is zero hence the current is transferred to the amplifier 

without a loss. The Op-amp circuit is a current amplifier with the value of R1 as 200kΩ 

and 5kΩ for the first and second experiment respectively. The schematic of circuit is 

shown in Figure 2.10. 

 

Figure 2.10 The current amplifier. 

 

2.5 Surgery 

The experiment was performed using two 250-300g Sprague- Dawley rats. Anesthesia 

was induced as described in Section 2.3 and the head was immobilized using a 

stereotaxic frame. A 4x6mm cranial opening was made rostral to the Bregma on the right 

side of the central fissure (Figure 2.11). The dura mater was removed.  Dehydration of 

brain tissue was prevented using a pool of saline.  
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Figure 2.11 Exposed area of the cerebral cortex for light measurements in the 
experimental animals [20]. 
 

 
Figure 2.12 Schematic representation of fiber optic into the cerebral cortex.  
 

A 25G needle was slowly inserted into the brain through the base of the skull, by 

avoiding major vessels, until it reached the cortical surface ~1mm rostral and ~1mm 

lateral to the Bregma through the skull opening as shown in Figure 2.12.  An optical fiber 

Bregma 
(4 X 6) mm 

Opening 
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(Ø120µm, AMP NETCONNECT) was attached to a micromanipulator and inserted 

through the needle from the lower end until its tip was leveled with the cortical surface as 

shown in Figure 2.13. 

 

Figure 2.13 Sketch of the preparation used to measure the light intensity due to light 
radiation in the rat brain.  

 The laser was placed 13.5cm above the brain using another micromanipulator and 

aimed at the fiber from above (Figure 2.13). The laser source and acquisition of the 

signals into the computer were controlled by a MATLAB code. A train of NIR pulses 

were sent to the fiber with a circular footprint of 0.56mm in diameter at the cortex. 

Vertical displacements of the probe were controlled by moving 1-axis micromanipulator 

into the tissue as mentioned above, therefore making measurements in a 2D vertical plane 

sagittally oriented. The light intensity was measured at different depths (250-1500µm in 

steps of 250µm). For each depth of the fiber position, the laser beam was horizontally 
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moved by 600µm from the origin in steps of 125µm while taking measurements at each 

step.
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Experimental Results 

Figure 3.1 depicts an example of light intensity signal recorded during the second 

experiment at a depth of 625μm and 500μm horizontally from the central position of the 

pia matter surface. The signal is measured in terms of its equivalent voltage by passing it 

through a current amplifier having a resistance of 200kΩ and sampled at a sampling 

frequency of 100kHz.  The variation of the peaks is due to the breathing motion of the 

rat. 

 
Figure 3.1 Raw light intensity signal at 625 by 500μm (depth and horizontal 
displacement). The output of the current amplifier is shown in the plot. 
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This signal was then filtered using a second order low pass butterworth filter to 

eliminate the noise. Figure 3.2 represents a filtered version of Figure 3.1. 

 
Figure 3.2 Filtered light intensity signal shown in Figure 3.1. 
 

The data was averaged to get the mean for each pulse train. The equivalent 

current was then calculated by dividing the mean with the resistor in the current 

amplifier. Tables 3.1 and 3.2 summarize the mean, current and light intensity values for 

displacements in the horizontal directions up to 625μm and for depths up to 1500μm. 
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Table 3.1 Summary of NIR Intensity in terms of Voltage, Current and Light Intensity 
during the 1st experiment.  
                                

Resistance=200kΩ 
 

Horizontal 
Displacement 

(μm) 

Voltage 
(Volts) 

Current 
(μA) 

Light 
intensity 

(%) 
Depth=250μm       

-125 3.608 18 100.00 
0 7.5401 37.7 209.44 

125 1.6595 8.3 46.11 
250 0.6029 3.01 16.72 
375 0.1342 0.671 3.73 
500 0.0341 0.171 0.95 

Depth=500μm 
-125 1.8323 9.16 50.89 

0 5.964 29.8 165.56 
125 2.0165 10.1 56.11 
250 0.8875 4.44 24.67 
375 0.2893 1.45 8.06 
500 0.0549 0.275 1.53 

Depth 750μm 
-125 1.6878 8.44 46.89 

0 2.9237 14.6 81.11 
125 2.3702 11.9 66.11 
250 1.1687 5.84 32.44 
375 0.3836 1.92 10.67 
500 0.1251 0.626 3.48 

Depth=1000μm 
-125 0.3205 1.6 8.89 

0 0.446 2.23 12.39 
125 0.5259 2.63 14.61 
250 0.4824 2.41 13.39 
375 0.3614 1.81 10.06 
500 0.2421 1.21 6.72 

Depth=1250μm 
-125 0.1887 0.944 5.24 

0 0.145 0.725 4.03 
125 0.2485 1.24 6.89 
250 0.2304 1.15 6.39 
375 0.2376 1.19 6.61 
500 0.2649 1.32 7.33 

Depth=1500μm 
-125 0.171 0.855 4.75 

0 0.1531 0.76 4.22 
125 0.1205 0.603 3.35 
250 0.0895 0.448 2.49 
375 0.0662 0.331 1.84 
500 0.0494 0.247 1.37 
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Table 3.2 Summary of NIR Intensity in terms of Voltage, Current and Light Intensity 
during the 2nd experiment. 

Resistance=5kΩ 
 

Horizontal 
Displacement 

(μm) 

Voltage 
(Volts) 

Current 
(μA) 

Light 
Intensity    

(%) 
Depth= 250μm

0 0.1215 24.3 100.00 
125 0.1146 22.9 94.24 
250 0.153 30.6 125.93 
375 0.1622 32.4 133.33 
500 0.0578 11.6 47.74 
625 0.0401 8.02 33.00 

Depth= 500μm
0 0.0509 10.2 41.98 

125 0.0641 12.8 52.67 
250 0.153 30.6 125.93 
375 0.0816 16.3 67.08 
500 0.0438 8.76 36.05 
625 0.0105 2.1 8.64 

Depth= 750μm
0 0.0509 10.2 41.98 

125 0.1146 22.9 94.24 
250 0.0452 9.04 37.20 
375 0.0524 10.5 43.21 
500 0.0302 6.04 24.86 
625 0.0264 5.28 21.73 

Depth= 1000μm
0 0.138 27.6 113.58 

125 0.0173 3.46 14.24 
250 0.0215 4.3 17.70 
375 0.0282 5.64 23.21 
500 0.0173 3.46 14.24 
625 0.0182 3.64 14.98 

Depth= 1250μm
0 0.0072 1.44 5.93 

125 0.0093 1.86 7.65 
250 0.0099 1.98 8.15 
375 0.0139 2.78 11.44 
500 0.0093 1.86 7.65 
625 0.0105 2.1 8.64 

Depth= 1500μm
0 0.0044 0.88 3.62 

125 0.0059 1.18 4.86 
250 0.0055 1.1 4.53 
375 0.0075 1.5 6.17 
500 0.0061 1.22 5.02 
625 0.006 1.2 4.94 
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Using the data in Tables 3.1 and 3.2 the light intensity curve was plotted for 

different horizontal displacements of the laser beam by 625μm from the origin in steps of 

125μm as a function of depth. Figures 3.3-3.8 represents the NIR intensity inside the 

brain as a function of depth for different horizontal displacements of the laser beam. Each 

plot is normalized by its intensity measurement at a corresponding point at the cortical 

surface. 

 
Figure 3.3 Light intensity curve when the laser beam is at central location. 

 

 
Figure 3.4 Light intensity curve when the laser beam is at 125μm from center. 
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Figure 3.5 Light intensity curve when the laser beam is at 250μm from center. 
 

 
Figure 3.6 Light intensity curve when the laser beam is at 375μm from center. 
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Figure 3.7 Light intensity curve when the laser beam is at 500μm from center. 
 

  
Figure 3.8 Light intensity curve when the laser beam is at 625μm from center. 
 

Figure 3.9 shows the average NIR intensity of the two experiments inside the 

brain as a function of depth at the center of the laser beam. The mean values were 56%, 

40%, 26%, 7%, 3%, and 2% at depths of 250, 500, 750, 1000, 1250 and 1500µm 
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respectively. The data in Figure 3.9 predicts a steady rate of decrease in light intensity up 

to 1000µm and then a slower rate of decrease afterwards.                

 

Figure 3.9 The average light intensity measurements in two animals as a function of 
depth in the rat brain gray matter. 
 

Figure 3.10 shows the 2D map of light intensity within the vertical half plane in 

the rostro-caudal direction. In the horizontal direction, the light intensity profile drops 

quickly almost following the same course as the laser intensity curve. However, it 

extends a few times the laser diameter in the vertical direction. Measurements were made 

in steps of 250µm in the vertical and 125µm in the horizontal directions and then 

interpolated for intermediate points. The light intensities are normalized by the light 

intensity at the pial surface in the beam center. Note that vertical and horizontal axes are 

not on the same scale. The bell shaped curve in Figure 3.10 shows the laser intensity 

profile aligned with respect to the 2D temperature plot. The white area indicates the 
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superficial layers of the cortex where the measurements had a large variation, and thus 

not included in the plots. 

 

Figure 3.10 2D illumination inside the rat brain due to a total laser power of 74mW. The 
light intensities are shown in logarithmic scale as a percentage of the maximum value at 
(0, 0) point. 

 

3.2 Discussion 

Optical properties of neural tissue play an important role. NIR Laser light can penetrate 

with more ease into neural tissue than visible light. The dominant form of interaction 

with the neural tissue at NIR wavelength is scattering [11]. Since grey matter has lower 
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scattering coefficient than white matter, NIR light penetrates more readily into the grey 

matter [6, 8].  

This study reports the spatial distribution of photons inside the rat brain gray 

matter while being radiated by a beam of NIR laser. As seen from Figures 3.5- 3.10 there 

is an exponential decrease in photon density by depth into the neural tissue. Tables 3.1 

and 3.2 tabulate the numerical values. These results are consistent with the available in 

vitro data [3, 8, 9]. The outliers in the light intensity values are mainly due to the 

mechanical limitations in measuring the light intensities. The mean light intensity of the 

gray matter shown in Figure 3.11 is in agreement with the in vitro data measured in 

unfrozen samples of rat brain gray matter [8]. Some reports in literature suggest that in 

vitro measurements of optical properties can adequately match the in vivo case if 

appropriate precautions are taken [4].  

Figure 3.12 represents the 2D spatial distribution of light photons in the neural 

tissue giving rise to a bell shaped curve. As predicted the maximum amount of light 

intensity is at the center and at a depth of 250μm. As the beam deviates from the central 

position the light intensity falls and is around 0.5% at 625μm. This effect is justified by 

Gaussian shape of the laser beam. As the light penetrates deeper into the tissue the light 

intensity falls to around 10% at a depth of 1000μm. This is mainly due to the multiple 

scattering that takes place within the tissue and due to low scattering co-efficient of the 

gray matter. Overall, the light intensity decreases exponentially as a function of depth. 

The light intensity at a depth of 1000μm is around 10%. The same light intensity point 

(10%) in a horizontal direction occurs at around 250μm. Thus, the spatial gradient of 

light intensity decrease is steeper in the horizontal direction in comparison to the decline 
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in the vertical direction. In other words, NIR laser penetration is much stronger in the 

vertical direction than horizontal direction.  

Sample preparation technique is very important in measurements of tissue optical 

properties. The data presented in this report are more realistic because the measurements 

were made in live animals. Roggan et al. found that both shock and slow freezing 

procedures alter the optical properties of biological tissue [25]. The freezing procedure 

changes the optical properties by damaging the tissue due to mechanical forces generated 

by ice crystals. Chan et al. observed that compressing the tissue between microscope 

slides also alters the optical properties [26].  

 

3.3 Limitations 

The measurements near the pial surface were not very consistent due to external 

disturbances. Moreover, motion artifacts due to breathing and beating of the heart may 

have contaminated the signal. Accidental puncture of any blood vessel caused bleeding 

which could have been one of the potential reasons for the inconsistent readings at the 

surface. Despite these disturbances, a certain level of reproducibility was achieved in the 

measurements. 

The study was performed by moving the laser horizontally in steps of 125μm and 

by moving the fiber optic vertically in the steps of 250μm. A better spatial resolution can 

be obtained by taking measurements in smaller steps both horizontally and vertically. A 

smaller diameter fiber could also yield a better spatial resolution. Another advantage of 

using a smaller diameter fiber optic is that it would reduce damage to the surrounding 

tissues during insertion. 
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During one of the reference experiments, there was blood coagulation in the 

tissues. Blood coagulation is an important factor that needs to be considered while 

measuring the NIR beam intensity as it might change the optical properties of the brain 

tissues [4]. These changes can significantly influence the resulting distribution of the 

optical radiation within tissue, and consequently the outcome of therapeutic procedure. 

During the coagulation process, the effective penetration depth of light into the tissue 

decreases for all the tissues investigated [4]. Thus, if laser irradiation leads to the 

structural changes within the tissue, the changes in the light penetration depth should be 

accounted while planning the therapeutic procedure. 

Other factors include anesthesia, mechanical setup and the surgical procedure. 

The use of continuous gas anesthesia can prevent the frequent doses of anesthesia and can 

provide a more uniform level of anesthesia. A robust mechanical setup could prevent 

small slippage of the fiber optic during vertical displacement of the fiber optic. Finally, 

by improving the surgical procedure the damage to the neighboring tissues can be 

reduced which would further improve the reproducibility of data in this study. 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

 

4.1 Conclusion 

The analysis of the results obtained in this study shows that data is in agreement with the 

values reported in the literature. The shape of the light intensity curve also matches 

closely with the in vitro results obtained previously [8]. The discrepancies as well as the 

variations within the values reported in the literature for selected brain tissue structures 

are most probably due to the different theoretical models and sample preparation 

techniques employed [2, 4, 11, 27]. 

The results clearly demonstrate that the maximum penetration of the NIR beam is 

in the center. Figure 3.12 shows that the spatial distribution of NIR light intensity has a 

bell shaped curve. Since the beam is entering the medium vertically and due to the 

anisotropic property of the neural tissue, the NIR light spatial gradient is direction 

dependent. The spatial gradient is much smaller vertically than horizontally, i.e., the 

beam penetrates more in the vertical direction than horizontally. 

Beam radius is a critical factor in many NIR laser applications [28]. The total 

amount of exposure depends on the beam size. An increase in exposure can increase the 

temperature induced which can in turn cause permanent damage to the surrounding 

tissue.  As seen from Equation 2.3, the beam intensity is a Gaussian function of distance.  

Also, light penetrates deeper into the tissue as the beam radius increases up to a certain 

value (Figure 1.2). Thus, larger beam sizes are preferable in order to minimize the total 

NIR exposure while maintaining a certain photon density at the deep targets. Similarly, if 
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small diameter beam is used, a large temperature peak can occur in the center of the 

beam. To prevent such a situation, optical microlenses can be used to eliminate the spatial 

peak effect. 

 

4.2 Future Work 

The use of NIR light in medicine has increased tremendously over the last twenty years. 

Better understanding of these applications can be obtained by studying the interactions 

between NIR light and neural tissue. In this study, the penetration of the NIR beam at 

various depths inside the gray matter was studied and its spatial distribution was plotted. 

Monte carlo simulations is a powerful mathematical tool that can be used to further 

validate the results obtained. Also, by using the curve fitting method the reduced 

scattering co-efficient μs’ and scattering co-efficient μs of NIR can be calculated.  

Temperature elevation profile inside the tissue is a critical factor in many NIR 

applications. A temperature elevation of 1°C causes fatal damage in neural tissue [29]. 

Thus, studying the relationship between the light penetration and temperature profile 

would be extremely beneficial for these laser applications.  

Furthermore, a similar study can be conducted in other parts of the central 

nervous system like the white matter in the brain and the spinal cord. Thus, complete 

understanding of NIR light interaction with neural tissue can be obtained by interpreting 

these results and comparing them with published data.  
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APPENDIX 

MATLAB CODE FOR FILTERING AND AVERAGING SIGNAL 

1 Filtering Signal 

This matlab file filters the raw signal using a second order low pass butterworth filter. 

fc= 10000;                                               %  corner frequency of the filter (in Hz)  

fs= 1000;                                                 % sampling freq(in Hz)  

fn= 2*fc/(fs);                                           % normalize the corner frequency with fs  

[b,a]=butter (2, fn);                                 % design a 2nd order butterworth filter, low pass   

f= filter (b, a, data);                                 % filters the raw signal 

plot (f);                                                    % plots the filtered signal 
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2 Averaging Filtered Data 

for i = 1: length (f)            % creates a loop of the length of filtered data 

if f (i, 1) >= 0.015             % compares each value of the filtered data with pre set noise 
xcvxcvxcvcxxcvxc           amplitude 

d (i,1) = f (i,1);     % if value of filtered data greater than 0.015, that value stored 
in new matrix  

else                                   % if value of filtered data less than 0.015 the condition ends 

end  

end                                   % end of for loop 

I = find (d~=0);               % finds non-zero values 

d=d(I);                            % rewrites the matrix with non-zero values 

clc 

plot (d)                                        

g=mean (d)                      % finds mean 
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