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ABSTRACT 

ALTERATIONS IN BRAIN CONNECTIVITY AFTER SPINAL CORD INJURY 

USING FUNCTIONAL MRI 
 

by 

Yamin Ahmed Noor 

Every year, approximately 50 people per million of inhabitants are inflicted by Spinal 

Cord Injury (SCI). The long-term impairment of the SCI patients has led researchers to 

investigate different rehabilitation and treatment efforts that require careful observations 

to be made on reliable markers. Presently, a number of neuropsychological assessments 

are used for SCI rehabilitation and research purposes. However, there is a need for the 

discovery of sensitive biomarkers that can be used to characterize SCI. Altered functional 

connectivity in the brain has been observed in a number of neurological patient 

populations. Hence, it was hypothesized that such alterations in brain connectivity occurs 

after SCI as well. In this study, functional magnetic resonance imaging (fMRI) was used 

to study brain functions while at rest on 23 healthy control subjects and 38 SCI subjects. 

Based on the level of injury, SCI subjects were divided into two groups of paraplegic and 

tetraplegic subjects, respectively. Independent component analysis (ICA) was performed 

on the three groups of subjects as well as the on the study population in order to 

approximate underlying brain networks. Corresponding spatial independent components 

obtained from the three groups demonstrated difference in spatial maps. Analysis of 

variance revealed group differences among the three groups in three neural networks – 

default mode network, right lateralized fronto-lateral network, and sensorimotor network. 

In addition, correlations were found between the neuropsychological assessment scores 

and connectivity strength of the locations that demonstrated difference. The results from 

this study which is preliminary in nature demonstrated alterations in brain connectivity in 

SCI patients. Furthermore, this study may provide information that can be used as 

biomarkers for SCI patient population.  
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CHAPTER 1 

INTRODUCTION 

 

Spinal cord is part of the central nervous system which relays motor and sensory 

information between brain and peripheral nervous system (PNS). As a result, spinal cord 

injury (SCI) patients suffer from damage to neuronal pathways and demonstrate motor 

and sensory impairments. Globally, the number of SCI incidences range from 10.4 to 83 

per million of inhabitants per year (Wyndaele and Wyndaele, 2006). Based on the 

neurological assessment after the injury, SCI can fully or partially disrupt the flow of 

information between the brain and the body. Almost half of the SCI patients suffer from 

tetraplegia (or quadriplegia), which is the paralysis of all four limbs and the body, and the 

rest are diagnosed with paraplegia, which affects the two lower limbs. SCI can also be 

classified as complete or incomplete based on behavioral scores which correspond to the 

amount of motor or sensory activity that occurs below the level of SCI.  

 Spinal cord is surrounded by the vertebral column. Nerves consisting of axons of 

afferent sensory neurons and efferent motor neurons enter and exit the spinal cord, 

respectively, through foramina in the vertebral column. The level of SCI is defined 

according to the foramina through which the peripheral nerves enter or exit the spinal 

cord. Therefore, if the SCI is in the fourth vertebrae of the thoracic region then the level 

of SCI is T4 which might be responsible for motor and sensory impairment in the torso.  

Neurons in the afferent nerves receive sensory input from dermatomes whereas 

neurons in the efferent nerves innervate muscle units called myotomes. Usually, a one-to-

one correspondence is present between the dermatomes and the afferent nerves. However, 
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the connectivity between efferent nerves and myotomes are more complex. Most afferent 

nerves innervate more than one muscle and most muscles are innervated by more than 

one afferent nerve. However, it is possible to determine the level of SCI by systematically 

examining the myotomes and dermatomes (Maynard et al. 1997). A number of measures 

of neurological damage can be generated from such systematical assessment which 

includes examining sensory and motor level for each side of the body. Such behavioral 

assessments are primarily used in studies involving treatment or rehabilitation after SCI. 

The long-term impairment of the PNS in the SCI patients has led to different 

rehabilitation efforts. However, the ultimate goal lies within finding the clinically most 

effective treatment to remedy the effects of SCI. Although, presently, there is no remedy 

for SCI, recent discoveries suggest that the damaged neuronal pathways in SCI patients 

can be repaired (Schwab, 2002). The American Spinal Injury Association (ASIA) has 

developed elaborate guidelines for the neuropsychological assessment and 

characterization of SCI. The ASIA system assesses both, sensory and motor, 

performances and scores them. The system also has a provision for characterizing the SCI 

patients into five categories. While the ASIA scoring system is widely used, there is a 

need for carefully designed clinical trials in order to investigate the performance of such 

treatments which prerequisites the development of non-invasive biomarkers in order to 

quantify the effects of SCI on the functional connectivity of the cortical regions in the 

brain. In order to develop accurate and sensitive biomarkers involved with spinal injury it 

is imperative to understand the pathophysiological events following injury.  

 While the pathophysiology in SCI is not caused by lesions in the brain, a number 

of studies have reported cortical alterations in the brain after spinal injury (Frost et al., 
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2003; Jones, 2000; Sanes et al., 2003, Sanes et al., 2007; Wu and Kaas, 1999). SCI 

damages the axons and, thereby, disrupts neuronal pathways between the brain and spinal 

cord. However, most of the neurons in the affected neural pathway survive the damage 

and remain receptive to synaptic input (Hains et al., 2003; Beaud et al., 2008; Tseng and 

Prince, 1996). Studies suggest that axonal regeneration is a potential mechanism for 

functional reintegration of the injured neurons into the neuronal pathway (Freund et al., 

2006; Bareyre et al., 2004).  Axonal regeneration increases access to neurotrophic 

support, which increases the potential of the survival of damaged cells and contributes to 

cortical reorganization. Alterations in functional connectivity have been observed in brain 

injuries such as stroke, traumatic brain injury, and multiple sclerosis (Giorgio et al., 2010; 

Rico et al., 2011). Such reorganization has been reported after SCI as well (see review by 

Kokotilo et al., 2009).  

Functional MRI (fMRI) has also been used to study cortical reorganization after 

SCI. fMRI measures the blood-oxygen-level-dependent (BOLD) signal which can be 

correlated to the neural activity. A number of task-based studies have used fMRI to 

determine cortical reorganization in SCI patients. Since SCI patients are unable to 

perform most motor tasks, attempted or imaginary motor tasks are employed in most 

task-based SCI studies. Cramer et al. (2005) studied brain activation using fMRI for an 

attempt leg movement and an imaginary leg movement where they found reduced volume 

of activation as well as abnormal activation in SCI patients. Other studies using different 

tasks conformed to such conclusion regarding the abnormal activation pattern in SCI 

patients (see review by Kokotilo et al., 2009).  

Resting-state fMRI is being widely used to study the brain connectivity without 
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any priori hypothesis. To our knowledge, resting-state fMRI data has not been analyzed 

to identify biomarkers involved with SCI. At resting-state, large-amplitude spontaneous 

low-frequency (<0.1 Hz) fluctuations in the fMRI signal can be found which can be 

temporally correlated across functional brain regions (Biswal et al., 1995). A number of 

methods are in use to determine brain-connectivity from resting-state fMRI data.  

 A number of methods are being used to evaluate resting state connectivity which 

includes spatial Independent Component Analysis (ICA), seed based correlation, and 

small-world analysis. Resting state networks are often revealed by ICA. ICA is applied to 

fMRI data in order to determine spatially independent brain networks. This method is 

useful to study brain activity at resting state in both healthy controls and different types 

of patient groups (Calhoun et al., 2009). Differences in functional connectivity can be 

determined by comparing the ICA of the healthy controls with that of the patients. 

In this study, resting-state fMRI data is analyzed in order to determine the extent 

of alterations in functional connectivity after SCI. ICA is performed on resting-state 

fMRI data of a healthy control group as well as two groups of SCI patients – tetraplegia 

and paraplegia. Differences in connectivity strength among the three groups are 

determined from the spatial ICA maps. It is found that, three spatial IC networks 

demonstrate significant differences among the three groups which can provide useful 

clinical or cognitive information about SCI patient population. Furthermore, such distinct 

characteristics can be useful biomarkers for SCI patient population.  
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CHAPTER 2 

BACKGROUND OF SPINAL CORD INJURY 

 

The nervous system can be divided into the Central Nervous System (CNS) and 

Peripheral Nervous System (PNS). The CNS consists of the brain and the spinal cord 

whereas PNS encompasses the motor and sensory neurons throughout the body. Spinal 

cord relays motor and sensory information between brain and PNS. As a result, an injury 

to the spinal cord disrupts the flow of information from and to the brain and the PNS. 

There are various ways of characterizing SCI. For example, SCI may be characterized 

depending on the anatomical location of the injury on the vertebral column or the 

neurological level of spinal roots within the vertebral column. Furthermore, the sensory 

and motor assessments of the SCI patient may be used to characterize the pathology. The 

neuropsychological assessments might also be used to characterize SCI to be complete or 

incomplete. The American Spinal Injury Association (ASIA) has developed elaborate 

guidelines for the neuropsychological assessment and characterization of SCI. 

 

2.1 Anatomical and Neurological Levels of SCI 

The spinal cord is surrounded by the vertebral column. The vertebral column consists of 

bony segments called vertebra. Anatomically, the vertebral column can be divided into 

four regions as represented in Figure 2.1. The four regions are cervical, thoracic, lumbar, 

and sacral regions. There are seven cervical, twelve thoracic, five lumber, and five sacral 

vertebrae. The neurological level of spinal cord is not necessarily the same as the 

vertebral column. Different neurological levels can be defined by spinal roots that enter 
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or exit the vertebral column through space between two vertebras called foramen. For 

example, the neurological C8 cord is located at the anatomical C7 vertebra. Similarly, the 

neurological T12 cord is located at the anatomical T8 vertebra. Moreover, the lumbar 

cord is located between anatomical T9 and T11 vertebrae whereas the sacral cord 

between the T12 to L2 vertebrae. Therefore, the anatomical vertebral level and 

neurological spinal cord level are not necessarily the same.  

 

 

Figure 2.1: Vertebral column (left) and spinal cord within vertebral column (right). The 

denoted parts in the spinal cord image are – 1. Spinal Nerve, 2. Dorsal Root, 3. Dorsal 

Root (Sensory), 4. Ventral Root (Motor)   Ganglion, 5. Central Canal, 6. Grey Matter, 

7.White Matter.  (http://en.wikipedia.org/wiki/File:Gray_111_-_Vertebral_column-

coloured.png), (http://www.apparelyzed.com/spinalcord.html). 

 

2.2 Sensory and Motor Levels of SCI 

Neurons in the afferent nerves receive sensory input from dermatomes, which are patches 

of skin that innervate the nervous system, whereas neurons in the efferent nerves 
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innervate muscle units called myotomes, which are muscle groups that are innervated by 

the nervous system. Usually, a one-to-one correspondence is present between the 

dermatomes and the afferent nerves. However, the connectivity between efferent nerves 

and myotomes are more complex. Most afferent nerves innervate more than one muscle 

and most muscles are innervated by more than one afferent nerve. However, it is possible 

to determine the level of SCI by systematically examining the myotomes and dermatomes 

(Maynard et al. 1997).  

 

Figure 2.2: Dermatomes as assigned by ASIA (Maynard et al. 1997). 

 

Figure 2.2 represents the ASIA location of the dermatomes across human body. 

Depending on the plasticity of the nervous system, the dermatomes may expand or 

contract. Dermatomes are named after the neurological level of spinal cord that are 
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innervated by the dermatome. For example, the C2 dermatome is located across the 

occiput and the top part of the neck whereas lower part of the neck to the clavicle is c C3, 

and the skin patch below clavicle is C4. The motor levels of SCI are determined from the 

assessment of ten muscle groups. The muscle groups consist of the biceps, triceps, 

flexors, and abductors in the arm and the hand, the flexors and the extensors in the leg 

and the foot, and the anal sphincter which is innervated by neurological levels of SCI 

located in the sacral region. The anal sphincter is located at the very end of the spinal 

cord, if a SCI patient can voluntarily contract the muscle; the pathology is defined as 

motor incomplete injury. It must be noted that the motor level of SCI defined by ASIA 

has been criticized to be an oversimplification of the actual pathology because muscles 

are usually innervated by more than one spinal cord level.  

 

2.3 Complete and Incomplete Injury 

Based on the voluntary motor or conscious sensory responses, SCI is commonly 

described as “complete” or “incomplete”. A SCI is defined to be complete if the 

voluntary movement and sensory excitation is utterly absent below the neurological level 

of SCI. However, the characterization of SCI as “complete” or “incomplete” can be 

ambiguous if partial preservation of sensory or motor function occurs. Also, there are 

cases of lateral preservation where the motor and sensory functions in one side of the 

body remains intact although becomes impaired on the other side. Also, rehabilitation 

efforts have led to partial recovery from SCI. Therefore, defining a SCI to be “complete” 

or “incomplete” can be deemed to be arbitrary in certain cases. Though ASIA has 

implemented a criterion which states that, if a SCI patient does not have any neurological 
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function below the neurological level of injury then the person may deem to have 

“complete” SCI. 

Since the axons and some neural pathways stay intact in spite of the absence of 

motor and sensory functions below the injury site, some clinicians define "complete" SCI 

when there is the lack of axons crossing the injury site. However, clinical and animal 

studies suggest that a vertebrate with no function below the injury site may recover 

certain neurological functions after the spinal cord has been decompressed, or treated. 

Therefore, the classification of SCI as “complete” and “incomplete” is not widely 

accepted. 

 

2.4 Characterization of SCI 

As it can be inferred from the aforementioned discussion, the terminology associated 

with SCI levels, severity, and classification can be confusing. Therefore, researchers have 

been trying to identify biomarkers associated with the characterization of SCI. Some 

studies have characterized SCI by the thickness of the spinal cord (Freund et al, 2011). 

Other studies have attempted to examine the brain for useful biomarkers (Frost et al., 

2003; Jones, 2000; Sanes et al., 2003, Sanes et al., 2007; Wu and Kaas, 1999).  

Henderson and colleagues (Henderson et. al, 2011) tested two hypotheses regarding the 

mechanism of cortical reorganization. The first hypothesis was that there are latent 

synaptic connections between the brain regions which are merely unmasked following 

SCI. The other hypothesis suggests that the absence of signal triggers cortical 

reorganization by inducing the formation of novel synaptic connections. Henderson and 

colleagues (Henderson et. al, 2011) combined anatomical information with the functional 
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results of displacement to suggest that the cortical reorganization is a combination of both 

of the mechanism where smaller displacements might be due to the unmasking of latent 

synaptic connections and larger displacements might be due to the formation of novel 

connections.  

The activation in the primary motor cortex during an imagining task of the lower 

limb movement as studied by Gustin and colleagues (Gustin et. al, 2010),  demonstrate 

the ability of the primary motor cortex to be activated in spite of the impairment of the 

lower limbs in the SCI subjects. Studies have reported conflicting results regarding the 

activation of the primary motor cortex in the past as discussed by Kokotilo and 

colleagues (Alkadhi et al, 2005; Bruehlmeier et al, 1998); Curt et al., 2002a, 2002b; 

Mattia et al., 2006). The particular imagining task in Gustin and colleague’s (Gustin et. 

al, 2010) study corresponds to the efferent pathway from the brain. The lower limb 

sensation tasks performed by Henderson and colleagues (Henderson et. al, 2011) and 

Freund and colleagues (Freund et. al, 2011) did not yield any significant activation in the 

cortical region of the brain which can be attributed to the absence of the afferent pathway 

to the brain. Henderson and colleagues (Henderson et. al, 2011) found that the functional 

region corresponding to finger sensation are displaced towards the midline which is near 

the cortical region that correspond to the lower limbs. Moreover, behavioral study on the 

SCI subjects in the study by Henderson and colleagues (Henderson et. al, 2011) reported 

that the SCI subjects perform finer upper limb activity after their injury compared to 

before injury. Such behavioral characteristics may be attributed to altered functional 

connectivity in the primary somatosensory cortex as reported by Henderson and 

colleagues (Henderson et. al, 2011). In addition, Freund and colleagues (Freund et. al, 
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2011) reported that both, the motor task of hand-griping and the sensory task of median 

nerve stimulation, showed higher activity in regions corresponding to the leg with in the 

primary motor cortex. Therefore, the results from the three studies may suggest that, 

although the efferent activity corresponding to lower limbs in SCI subjects are 

strengthened, the afferent impairment of the lower limbs results in cortical reorganization 

in the primary motor cortex resulting in recruitment of regions corresponding to the lower 

limbs by functional regions corresponding to the upper limbs.  

The contrasting shift in activation in the direction of the deafferented lower limb 

representation may be explained by the timeline of SCI. Lotez and colleagues (Lotze et 

al, 2006) reported that activation displacement toward the deafferented lower limb in the 

SCI subjects correlates with the time since the injury which supports the deduction made 

from the three reviewed studies. However, Bruehlmeier  and colleagues (Bruehlmeier et. 

al, 1998) reported that the shift in brain activation may be influenced by level of SCI. 

Kokotilo and colleagues (Kokotilo et. al, 2009) supports the aforementioned report based 

on their literature review which indicated that the type of activation shift occurring after 

SCI may depend on level of injury. Completeness and level of injury in SCI affect the 

amount, quality, or influence of afferent input to the brain which is important in motor 

control. Individuals with deafferentation lower limbs are often not capable of performing 

complex movements which require coordination between several joints accurately 

(Jeannerod et al., 1984) as well as controlling force output accordingly (Jeannerod et al., 

1984; Nowak et al., 2003). Therefore, the importance of sensory afferent feedback to 

movement is very much. The lack of such afferent sensory information in SCI subjects 

can lead to the cortical reorganization and therefore, irregular brain activation after SCI. 
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The above mentioned neuroimaging studies are task-based which means that 

participants were given sensory input or asked to move or attempt to move. Since a bulk 

of the SCI patients is unable to receive sensory input or perform voluntary motion, 

resting-state fMRI may be advantageous in studying SCI pathology.  

 



 

 

  13 

 

CHAPTER 3 

FOUNDATIONS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING 

 

Magnetic Resonance Imaging (MRI) has become one of the most used imaging 

modalities for research and clinical purposes because of its non-invasive nature, high 

spatial resolution resulting in excellent tissue contrast, and absence of ionizing or 

radioactive agents. MRI is based on a principle called Nuclear Magnetic Resonance 

(NMR). Flex Bloch and Edward Purcell discovered NMR in 1946 which helped 

researchers to explain different chemical properties of materials. Hermann Carr applied 

the principles of NMR to obtain one-dimensional MRI in 1952. In the 1970s, Paul 

Lauterbur and Peter Mansfield were able to obtain two and three-dimensional MR images 

using the principles of NMR which remains the precursor of present day MRI techniques. 

Both, Lauterbur and Mansfield, were awarded with the Nobel Prize in 2003 in Medicine 

for their work towards developing MRI. Functional MRI (fMRI) is a special type of MRI 

technique where reasonably fast rate of imaging and a specific contrast allow for the 

estimation of temporal activity across the brain. In the recent times, fMRI has become a 

popular technique in different fields of neuroscience research. This chapter includes 

description of how the MR signals are generated and localized during MRI and how the 

principle can be applied to acquire fMRI. 

 

3.1 Generation of MR Signal 

Human body is composed of approximately 70% water. Each water molecule contains 

two hydrogen atoms. As a result, hydrogen is the most abundant element in human body. 
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Hydrogen atom is a structurally simple element because it is constituted of a proton and 

an electron only. Although water is not an ionic molecule, the electronegativity of oxygen 

and small size of hydrogen makes it polar in nature. Polar molecules are affected by 

magnetic fields. Therefore, abundance of water in human body and polarity of water 

makes it a useful and suitable imaging molecule. Abundance of water within different 

types of tissues and body fluids varies distinctively. There is a direct relationship between 

the amount of MR signal generated and water concentration of the tissue or fluid type of 

interest. Hence, in MR images we are able to contrast between different tissue types as 

well as identify tissue types based on intensity. 

NMR can be explained by the quantum properties of nuclei. Nuclei are composed 

of protons and neutrons. Where neutrons are electromagnetically neutral, protons are 

considered to have electrical charge. The number of protons in the nucleus defines atomic 

number of an element. Nuclei with odd atomic number possess angular momentum which 

is also known as spin. A nucleus with spin rotates about its axis, similar to the rotations 

of planets in the solar system, which results in magnetic moment due to the presence of 

electrical charge. Because of such magnetic moment, in the presence of strong magnetic 

field such nucleus with magnetic moment aligns itself to the field as shown in Figure 3.1. 

There is a direct relationship between the nucleus and the strength of its magnetic 

moment.  

Hydrogen nucleus is the simplest of all elements since it merely has a proton in its 

nucleus. However, hydrogen nucleus has the strongest magnetic moment and is widely 

used to explain NMR. The magnetic moment of a proton, or in case of hydrogen its 
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nucleus, is proportional to its spin angular moment which can be represented by equation 

3.1, 

      

where   is the magnetic moment,   is the spin angular moment, and   is a constant 

known as gyromagnetic ratio which is a property of the nucleus. The energy level and 

orientation of the spinning protons can be characterized by a specific quantum number. In 

a collection of protons, as in Figure 3.1, when an external magnetic field,   , is absent, 

the orientations of magnetic moment of the protons vary randomly. When the protons are 

placed in a uniform magnetic field, they align themselves with or against the external 

magnetic field,   . This phenomenon is known as paramagnetic polarization. In room 

temperature, protons that align themselves in the direction of   , slightly outnumbers the 

protons that align themselves in the direction opposite of   . As a result, an overall net 

magnetization vector,   , evolves which is parallel to    and is the basis for MR signal. 

 

Figure 3.1: Spin characteristics of proton with and without applied magnetic field. (a) 

Randomly aligned individual spins in absence of magnetic field. (b) Spins aligned in 

either the same or in the opposite direction of the applied magnetism. Hence, a net 

magnetic moment is in the direction of applied magnetic field. 

 

While the protons align themselves along the direction of   , they rotate about 

their own axes as well as precess about axes parallel to the direction of   as shown in 

[3.1] 
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Figure 3.2a. The frequency of precession is called Larmor Frequency. Larmor Equation 

(equation 3.2) expresses the relationship between the magnetic field,   , and the Larmor 

frequency,   .  

       

The gyromagnetic ratio of hydrogen nucleus is 42.57 MHz/T. Therefore a magnetic field 

of strength 1.0 Tesla, the Larmor Frequency   = 42.57 MHz. For a constant magnetic 

field and known gyromagnetic ratio, elements can be selectively excited in order to 

generate varying MR signals. In case of MRI such excitation is performed by the 

application of a radio frequency (RF) pulse which has the same frequency as the 

precession frequency of the proton. This phenomenon is known as resonance and, hence, 

the signal is known is magnetic resonance (MR) signal. Resonance is the tendency of a 

system to maximally oscillate in the presence of a specific frequency called resonance 

frequency of that system. In MRI, resonance is a critical step where the energy of RF 

wave is transferred to protons in precession; consequently, Larmor frequency is the 

resonance frequency. 

 

Figure 3.2: Proton in precession in the presence of RF pulse and external magnetic field. 

Due to the added energy, the net magnetic moment shifts to the transverse plane from the 

longitudinal plane. 

[3.2] 
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By convention, the magnetic field,   , is parallel to the Z-axis in the three-

dimensional space. The net magnetization vector,   , can be decomposed into two 

components,     and    along the X,Y-plane and the Z-axis respectively. In the 

presence of   , after equilibrium has been reached,    is equal to    or the longitudinal 

magnetization vector as a result of paramagnetic polarization; consequently,     or the 

transverse magnetization vector zeros at equilibrium. When RF pulse is applied to this 

system, it acts as a second external magnetic field,   , which is perpendicular to that of 

   as shown in Figure 3.2b. Depending on the strength and duration of   , the 

magnitude of    decreases while the magnitude of     increases as    transitions 

between parallel and anti-parallel states. The angle at which    rotates away from    is 

called the flip angle,  , which is proportional to the strength and duration of   . The flip 

angle depends on the duration and strength of the RF pulse according to equation 3.3, 

        

where t is the duration of the RF pulse. If    is applied indefinitely, then    rotates 

away from the Z-axis and through the XY plane towards the anti-parallel direction or 

negative Z-axis. Displacement of    to the XY-plane results in changes within the 

magnetic flux which allows for overall variation in magnetization to be measured. 

Optimal results are expected for largest transverse magnetization as a result of application 

of 90° RF pulse. After the conclusion of RF pulse, the second external magnetic field 

  is withdrawn and the magnetization vector    gradually return back to the 

equilibrium while emitting MR signals. The MR signals and the rate of relaxation are 

proportional to the number of excited protons in the sample tissue type.  

 

[3.3] 



18 

 

3.2 Types of MR Signal 

The aforementioned generation of MR signals merely represents the local density of 

protons; also known as proton-density image. Hence, signal intensity increases with the 

presence of protons at a higher concentration. While proton-density images can be useful, 

MRI can be manipulated to weigh a number of biological properties of tissue. After the 

withdrawal of   ,    returns to its equilibrium state along the z-axis which is known as 

the relaxation process. The relaxation process can be characterized from two perspectives 

–regeneration of net magnetization along the Z-axis; and net magnetization decay along 

the XY-plane.  

The regeneration of the longitudinal magnetization is longer of the two relaxation 

times because each of the nuclei excited by the RF pulse needs to release energy to the 

local tissue or the lattice which further depends on the structure of the tissue or the lattice. 

  is defined as the relaxation time for longitudinal magnetization vector   . By 

convention,   is the time taken by    to recover to 63% of its original value following 

the application of the RF pulse (Figure 3.3(left)). Equation 3.4 represents the relationship 

between    and   , 

  ( )     (   
  

  
⁄ ) 

where   is the instantaneous time and   ( )is the magnitude of longitudinal 

magnetization vector at time  . The strength of the magnetic field,   , increases with 

increase in Larmor frequency which also increases   . As stated earlier,    depends on 

the tissue type and, thereby, varies for different tissue structures. In addition to the 

precession and rotation of nuclei, molecules, as a whole, exhibit motion and vibration. 

Larger molecules move slowly which exhibit low vibrational frequencies which are 

[3.4] 
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clustered within lower range of the frequency spectrum. Smaller molecules exhibit 

vibrational frequencies throughout the frequency spectrum. Energy transfer is the most 

efficient when the precession frequency of the excited spins overlaps with the vibrational 

frequency of the tissue.  

The decay of transverse magnetization occurs at a rate, much higher, than the 

longitudinal magnetization recovers. This decay is a result of the loss of phase coherence 

of the spins caused by inhomogeneity in the local magnetic field, which is a property of 

the tissue. This phenomenon is also known as spin-spin interaction. The decay is 

characterized by the time,     taken by the transverse magnetization vector to decay to 

37% of its peak value (Figure 3.3(right)). The relationship between   and     can be 

represented by equation 3.5, 

   ( )      
  

  
⁄

 

where   is the instantaneous time and    ( )is the magnitude of transverse 

magnetization vector at time  .  

Regardless of the software and the hardware efforts, in practical conditions it is 

literally impossible to achieve perfectly homogeneous   . Similar to the    relaxation, 

the net average magnetization decreases exponentially (Figure 3.3(right)) following the 

withdrawal of the RF pulse as a result of the loss of phase coherence of the spins caused 

by inhomogeneity in the local magnetic field as well as   . Hence, this phenomenon 

exhibits the total decay of the transverse magnetization vector, which includes the 

consequences of magnetic field inhomogeneity as well as of spin-spin interactions, and is 

defined by relaxation time   
 , where   

 <  .  

 

[3.5] 
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Figure 3.3:   (left) and   (right) relaxation. 

The motion and size of the molecules as well as the interaction between 

molecules defines the duration of the relaxation times. For example with soft tissue    

can be almost 10 times faster than   . Biologically,    ranges from 0.1 to 1 second for 

soft tissue and from1 to 4 seconds in aqueous tissue such as cerebrospinal fluid (CSF). 

Again, aqueous liquids such as CSF exhibit longer    as a result of rapid molecular 

motion which cancels the local magnetic inhomogeneity. With increase in the size of 

molecule,    decay also increases and ranges from 10 to 100 milliseconds. Such 

differences in the relaxation times can be utilized to obtain high definition and high 

contrast in MR images. Although    directly impacts   -relaxation time, it has no effect 

on   -decay. In summary, the relaxation times are functions of the tissue characteristics 

and   >    >   
 . Since spin density is a fundamental property of tissue, it can be 

exploited to obtain different MR signals which can be used to contrast between different 

types of tissues.  

 

3.3 Localization of MR Signal 

The discussion of MRI so far included the physics of MR signal which was introduced by 

Bloch and Purcell in 1946. The utility of MRI, however, lies in the ability to localize the 
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MR signal to anatomical locations, which was developed by Mansfield and Lauterbur. 

This is performed by emphasizing the differences among spin densities, and    and     

relaxation times, altering the order, polarity, timing, and repetition frequency of the RF 

pulses, and applying magnetic field gradients. Appropriate combinations of one or more 

RF pulses and gradients with intervening periods of recovery are called pulse sequences. 

Each pulse sequence consists of repetition time (TR), echo time (TE), flip angle, the 

number of excitations, bandwidth, and acquisition matrix. Spin-echo is one of the widely 

used pulse sequences applied in modern MRI techniques. 

Two coils of wire, wound in opposite direction, can be placed around the    field 

to superimpose a magnetic field gradient which would result in higher field strength for 

one end of the magnet than the other. Therefore, identical nuclei will precess at different 

Larmor   frequency as a predicted by   Larmor equation.  The deviation in frequency is        

 

Figure 3.4: Selection of a slice along the Z-axis by the application of RF pulse with 

specific frequency and hence resonating protons situated within a desired slice. 
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proportional to the distance of the center of the gradient coil to the nuclei as well as the 

current flowing through the coil. As a result, if the gradient is switched on, then a sole RF 

pulse applied to the field will allow a thin plane perpendicular to the longitudinal axis at 

the center of the patient’s brain to absorb the energy. Throughout the rest of the brain 

volume the absence of Larmor frequency will result in the lack of excitation for 

resonance to occur. Thereby, a slice with the thickness determined by the magnetic field 

gradient strength can be selected from the brain volume. This is how researchers activate 

the one slice within the brain volume at a time and avoid receiving overlapping data. The 

phenomenon is represented in Figure 3.4. 

Three magnetic field gradients are placed, orthogonal to each other, inside the 

bore of the magnet which generates the external magnetic field    as illustrated in Figure 

3.6. The gradients are used to encode spatial information along the three planes - axial 

(XY), sagittal (YZ), and coronal (XZ). After selecting a slice with the application of RF 

pulse, another gradient is switched on to spatially encode the excited protons in the slice 

along one of X- or Y-axis. Similar to the concept of selecting Z-slice, the gradient of the 

magnetic field forces all of the nuclei along the axis to precess at slightly different 

Larmor frequencies. Ideally the intensity of signal at each frequency is proportional to the 

number of protons in the corresponding column. This step is also known as phase-

encoding step. 

Following the phase encoding gradient, the frequency encoding gradient is turned 

on right before the receiver is turned on and it stays on while the fMRI signal is acquired 

by the receiver. The captured signal is formed as a result of the interference pattern of the 

different frequencies. After selecting a slice and frequency encoding the voxels within the 
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slice, the phase of the spins at one end of the gradient is different than those at the other 

end because of the difference in precessing frequency as a result of magnetic gradients. 

After switching of the frequency encoding gradient, spins precess at the same angular 

frequency, however, are not in phase with other anymore. Such a phenomenon is called 

phase memory. The phase encoding gradient, applied orthogonally to the other two 

gradients, does not change the frequency of the received signal because it is turned off 

during the acquisition of the signal. However, the phase memory maintains relative 

phases throughout the slice. Hence, the three dimensional location of the signal is 

modulated through the pulse sequence. 

 

 

 

Figure 3.5: X, Y, and Z coils, placed orthogonal to each other. The RF coil is placed 

above the anatomical region to be imaged, i.e. bird-cage RF coil will be placed on top of 

the head in order to capture brain MRI. (http://www.medwow.com/articles/wp-

content/uploads/2011/05/mri_magnets.jpg) 
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3.4 Echo Planar Imaging 

Echo Planar Imaging (EPI) is fast imaging technique. EPI is a single-shot technique 

where the whole brain image is captured within a TR. A single-shot EPI begins with a 

90° flip as a result of the RF pule which is followed by the acquisition of the data which 

is followed by a 180° echo-producing RF pulse. Multiple echoes provided by EPI pulse 

sequence allows for the capture of NMR signals through a single shot. However, the 

image clarity and resolution are compromised in order to produce the echo-planer 

images. Usually, EPI matrices are 64 x 64 or 128 x 64 as opposed to 256 x 256 or 512 x 

512. Regardless, the ability of EPI to take almost real-time images have proven to be very 

useful for it can acquire images as fast as 64 per second in a single slice or an entire brain 

at a rate of 2 per second. 

 

3.5 Instrumentation 

The physics of NMR is the basis for MRI. Most of the components used in a MRI 

machine have already been discussed. A modern MRI machine is consisted of a super 

conductive magnet, a RF coil, and a gradient coil. The super conductive magnet is about 

1 meter in diameter and 2-3 meters in length and it is an electromagnet. In order to 

increase the electromagnetism of the magnet, it is surrounded by liquid helium which is 

surrounded by liquid nitrogen containers with vacuum insulation barriers.  

The superconductive magnet is designed to achieve extremely high magnetic field 

strength. While clinical MRI systems have magnets with field ranging from 0.3- to 3.0-

Tesla, clinical research magnets range from 3.0- to 7.0-Tesla. The extremely high 

magnetic field is generated at a high cost of power. Inside the magnet is present a 
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shimming coil which increases the homogeneity of the magnetic field and, thereby, 

reduces artifacts. Again, the gradient coils are placed inside the magnet bore which are 

able to produce linear gradient magnetic fields. The RF coils creates the second magnetic 

field,   .  In most cases a bird-cage coil is used (Figure 3.5) for RF pulse which is placed 

closer to the brain. Furthermore, there are control interfaces, RF source, detector and 

amplifier, A/D converter, pulse programmer, computer system, gradient power supplies, 

and image display for the MR system. 

 

3.6 Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging or functional MRI (fMRI) is an MRI 

technique that measures brain activity. At its core, fMRI uses the blood-oxygen-level-

dependent (BOLD) signal, which was discovered by Seiji Ogawa in 1991. fMRI can be 

used to map neural activity in the brain or spinal cord by imaging the change in blood 

flow which is related the activity in the brain. fMRI is based on the same principles as 

MRI, however, it contrasts the change in magnetization between oxygen-rich and 

oxygen-poor blood. Usually EPI is implemented in fMRI in order to have a reasonable 

temporal resolution. Although, fMRI can localize activity to within millimeters its spatial 

resolution is compromised. 

 

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
http://en.wikipedia.org/wiki/Seiji_Ogawa
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Spinal_cord
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CHAPTER 4 

INDEPENDENT COMPONENT ANALYSIS  

TO STUDY FUNCTIONAL BRAIN CONNECTIVITY 

 

Among different computational methods, Independent Component Analysis (ICA) is one 

of the most widely used techniques for resting-state fMRI studies. ICA is a blind source 

separation method. ICA is used for separating statistically independent non-Gaussian 

source signal from a multivariate signal. ICA is widely used in analyzing resting-state 

fMRI data. There is no priori hypothesis in resting-state. Hence, ICA is a useful tool for 

separating the fMRI data to uncover underlying neural networks in the brain. On a single 

fMRI scan, two types of ICA may be performed – temporal and spatial. Temporal 

components are obtained from temporal ICA whereas spatial components are obtained 

from spatial ICA. In the context of resting-state fMRI, spatial ICA is especially useful 

because it can uncover statistically independent neural networks which may consist of 

anatomically distant yet functionally connected regions in the brain. Spatial ICA can be 

performed on a group of resting-state fMRI scans to obtain highly significant independent 

components. The larger the population size, the higher the significance of group 

independent components is. Group independent components can be back-projected onto 

individual scan to obtain spatially independent component specific to the scan for that 

independent component of interest. Hence, statistical analysis may be performed on 

groups of different populations to study group differences.  
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4.1 Principles of ICA 

ICA is a data-driven method. The usefulness of ICA lies in its ability to uncover source 

signals from a multivariate signal under simple assumption. ICA is often explained in 

terms of the “cocktail party” example. If two people are speaking simultaneously in the 

same room and there are two microphones located at two different locations receiving the 

mixture of their speech then there will be two recorded signals which are denoted as  

      and       where   is the time index. It can be assumed that each of       and        

is the weighted sum of the source speech signals       and      , respectively, which can 

be represented by Equations 4.1 and 4.2, respectively.   

                          

                          

where    ,    ,    , and     are parameters which are dependent on distances of the 

receivers from the sources. Equations 4.1 and 4.2 can be combined and expressed in 

matrix form where   and   are vectors of received signal and source signal respectively 

and   is a mixture matrix containing all the parameters (Equation 4.3). 

     

Traditionally, it is not possible to solve Equation 4.3 for   without the knowledge of  . 

However, it is possible to use ICA to make assumptions about the mixture matrix  , and, 

thereby, estimate   by knowing  . In order to do so,   and    need to be considered 

random variables. The primary assumption for ICA is that the components   are 

[3.1] [3.1] [3.1] 

[3.1] 

[4.1] 

[3.1] 

[4.2] 

[4.3] 
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statistically independent. The other assumption for ICA is that the independent 

components (IC) have non-Gaussian distribution.  

 

4.2 Application of ICA in fMRI Analysis 

As mentioned earlier, spatial ICA is applied on resting-state fMRI to uncover 

independent neural networks. In spatial ICA, fMRI data sets are modeled to be a linear 

mixture of spatially independent components which include both, Gaussian noises and 

brain activation signals. Therefore, the signal model of the spatial ICA can be presented 

as shown in Equation 4.4 – 

                

where       is the index of voxel and       is the index of time-point. 

Therefore,                              is a set of spatially independent components 

and                              is a set of observed brain images at different time-

points. Equation 4.5 can be rewritten to be 

                           

where   is a N x N unmixing matrix that needs to be estimated to yield the spatially 

independent components. 

 

 

 

[4.4] 

[4.5] 
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4.3 Group ICA 

Group ICA is a computational method of identifying independent components in a group 

of data. Group ICA is a widely used method in resting-state fMRI studies. In order to 

obtain spatially independent components, data from different scans are temporally 

concatenated without assuming that the associated temporal response is consistent 

between sessions/subjects. A schematic diagram of group ICA is presented in Figure 4.1. 

Group ICA does not assume same temporal response pattern across the population. For 

each component the final mixing matrix contains the temporal response of all different 

data sets concatenated into a single column vector. The final reported time course will be 

the best rank-1 approximation to these different responses.  

 

Figure 4.1: Decomposition of spatial group fMRI data into components based on time, 

space, and subject. 
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CHAPTER 5 

EXPERIMENTAL DESIGN AND DATA ANALYSIS 

 

5.1 Subjects and Neuropsychological Measures 

Thirty eight SCI patients are scanned in this study. Participants include 22 paraplegic, 16 

tetraplegic, and 23 age-matched healthy control subjects. A comprehensive neurological 

examination is performed on patients and healthy subjects in order to exclude 

accompanying neurological disorders of the peripheral and central nervous system. No 

patient or healthy subject were suffering from a psychiatric disorder or had a history of 

brain trauma. All subjects are right handed. The study was approved by the local Ethics 

Committee of Third Hospital of Hebei Medical University. Patients and control subjects 

gave their written consent to participate in the study. The duration of injury (DOI) for the 

paraplegic and the tetraplegic subjects ranged from 1-20 months and from 1-51 months 

respectively. Demographical information of the subjects is presented in Table 6.1.  

Neuropsychological tests are used to assess the movement, touch, and pain 

perceptions of the two SCI groups for both of the left and right limbs. The level and 

extent of the effects of SCI (motor and sensory deficit) on the patients are assessed 

according to the protocol of the American Spinal Injury Association (ASIA, 2002). The 

ASIA scoring system allows to perform a semi-quantitative assessment of the 

neurological deficits (maximum of motor scores is 100; maximum of sensory scores for 

each light touch and pin prick sensation is 112). The assessments of motor and sensory 

scores of the upper and lower limbs describe the extent of SCI and the sensorimotor 

deficits. All patients suffered a complete traumatic paraplegia or tetraplegia and were in a 
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stable–chronic clinical condition.  

 

5.2 Imaging Parameter 

A high resolution structural image is acquired using magnetization-prepared rapid 

gradient echo sequence (MPRAGE). The imaging parameters for MPRAGE are as 

follows - FOV = 240 mm, 512x512 matrix, TR = 2300 ms, TE = 2.91 ms, flip angle = 

90°. The whole brain is imaged in an axial configuration where 176 slices are collected 

and each slice is 1mm thick. The functional images are acquired using echo planer 

imaging sequence (EPI). The imaging parameters for EPI are FOV = 240 mm, 64x64 

matrix, TR = 2000 ms, TE = 27 ms, and flip angle = 90°. The whole brain is imaged in an 

axial configuration where 20 slices are collected and each slice is 6 mm thick. The 

resolution is 3.75 mm x 3.75 mm x 6 mm for all functional scans. During the scans the 

subjects are asked to remain motionless and avoid falling asleep. A total of 195 volumes 

are collected over a period of 390 seconds during the scan.  

 

5.3 Data Processing 

The first 5 volumes are discarded to allow the MR signal to reach equilibrium. The 

remaining190 volumes are corrected for motion and intra-volume acquisition time offset 

between the slices using AFNI. Using FSL tools, the corrected fMRI data are spatially 

smoothed by a Gaussian kernel with 8.25 mm full-width at half-maximum, and 

temporally filtered with a band-pass filter of 0.01-0.1 Hz in order to reduce the effects of 

low-frequency drift and high-frequency physiological noise. Legendre polynomials of up 

to the second order are removed from the processed fMRI data using AFNI in order to 
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exclude artificial trends. Then all functional images are normalized into the Montreal 

Neurological Institute space using an optimum 12-parameter affine transformation and 

nonlinear deformations, and then resampled to 3-mm isotropic voxels. 

 

5.4 Image Analysis 

ICA is performed on the preprocessed functional data in two ways. In the first approach 

(Figure 5.1A), functional data of all of the subjects are temporally concatenated, and then 

decomposed into 18 independent components using Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC). The eight resting-

state networks estimated using MELODIC are visually identified by comparing with 

previously defined maps (Beckmann et al., 2005; Smith et al., 2009). Group-ICA spatial 

maps are back-projected for each subject’s fMRI dataset in order to estimate subject-

specific temporal components and associated spatial maps using the dual regression 

technique (Filippini et al., 2009; Zuo et al., 2010).  

Dual regression analysis involves two general linear models (GLM) using 

preprocessed data for individual subjects as a dependent variable. In the first GLM, by 

using the 18 group ICA component maps as a set of spatial regressors the temporal 

dynamics associated with each group ICA map are calculated which yielded 18 time-

series, each consisting of 190 time-points, for each subject. In the second GLM, the 18 

time-series for each subject are used as a set of temporal regressors which yielded 

subject-specific component maps for each component. The value assigned to a particular 

voxel in a component map represents a measure of probability that the independent 

component includes that voxel. Physiologically, the value represents the probability of 



33 

 

whether the voxel is a part of the brain network. Hence, the value assigned to the voxel is 

a measure of network strength, and is referred as network strength in this study, For each 

group ICA component, AFNI is used to perform voxel-wise one way Analysis of Variance 

(ANOVA) in order to asses any difference among the three groups of network strength 

maps obtained from the three subject groups. Finally, for each ICA component, the 

probability maps representing difference among the three groups are False Discovery 

Rate (FDR) corrected using AFNI.  

It is imperative that FDR correction be applied when performing multiple 

hypotheses testing in order to correct for multiple comparisons. FDR modulates the 

expected number of incorrectly rejected null hypotheses out of the total number of 

testing, which often referred to as type I error. Type I error can be defined to the error 

occurs when the null hypothesis is rejected while there is no statistical significance. In the 

study, FDR correction is particularly useful for avoiding mistakenly observed difference 

among the three groups.  

In the second approach (Figure 5.1B), the functional data is divided into three 

groups – control, paraplegic, and tetraplegic. Functional data in each group is temporally 

concatenated, and then decomposed using MELODIC into 17, 25, and 21 independent 

components, respectively. When studying the differences among pathologies and healthy 

characteristics, the hypothesis is that some difference exists among the groups. ICA is a 

statistical approach. Hence, if there are differences among the corresponding independent 

components for each group, the difference may not be identifiable because of the 

statistics of the study population as opposed to that of the sample populations 

corresponding to each group. Therefore, it can be useful to perform ICA on each group 

http://en.wikipedia.org/wiki/Multiple_testing
http://en.wikipedia.org/wiki/Multiple_testing
http://en.wikipedia.org/wiki/Multiple_comparisons
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Null_hypothesis
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separately.  

 

Figure 5.1: A schematic diagram used to depict the two approaches used in the study. (A) 

The first approach is depicted where the group ICA is performed on the study population, 

then back-projected to individual subject-data which was then divided into three study 

groups, and then ANOVA was performed. (B) The second approach is depicted where the 

group ICA is performed separately on each study group, then back-projected to individual 

subject-data, and then ANOVA was performed. 

 

An ambiguity of ICA is that the independent components are not necessarily 

ordered. As shown in Equations 4.1 and 4.2, observed signals are modeled to be weighted 

sum of its independent components. As a result, when ICA is performed on the three 

groups separately, there is no direct correspondence between the unraveled independent 

components. However, it is possible to correlate the independent components by 

calculating the correlation value between a pair of spatial maps. In this study, the 

sensorimotor network as reported in resting-state networks is, first, computationally and, 

then, visually identified from each of the three ICA results. A mask for the sensorimotor 

network is generated which encompasses the brain regions which showed statistical 

significance for the sensorimotor component yielded from all of the three ICA results. 

This mask is used, throughout, the rest of the analysis to avoid the discovery of any non-
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overlapping region in the brain. Similar to the first approach, subject-specific temporal 

and spatial components were estimated using the dual regression technique. ANOVA was 

performed on the three groups in order to asses any difference in network strength. 

Finally, for each ICA component, the probability maps representing difference among the 

three groups and the ICA maps are FDR corrected.  

 

5.5 Network Strength and Neuropsychological Measures 

For each ICA component, the back projected spatial maps yielded by dual regression 

represents the subject-level network strength of the brain network corresponding to each 

of the ICA component. For the two SCI groups – paraplegic and tetraplegic, Spearman 

correlation coefficients are calculated between the neuropsychological measurements and 

the mean network strength of the regions that exhibit group difference.  
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CHAPTER 6 

RESULTS 

 

6.1 Neuropsychological Performance 

Table 6.1 represents the neurospsychological performance of the two patient populations. 

The movement score for the paraplegic group was 27.1±6 whereas for tetraplegic group it 

was 14.6±12.8. The light touch score for paraplegic and tetraplegic groups were 38.1±9 

and 26±17.9, respectively. The pain score for the two groups were 37.2±7.9 and 

22.7±16.9, respectively. As shown in Table 1, the paraplegic group scored significantly 

higher (p<0.01) than the tetraplegic group in the three behavioral tests.  

 

Table 6.1: Demographical information of the three groups. Three Neuropsychological 

measurements were made on the two SCI groups. Averages of the contralateral scores 

were taken for each subject for each Neuropsychological measurement. Significant 

differences (p<0.05) in Neuropsychological scores were observed for the two SCI groups. 

 

 

  
Control Paraplegic Tetraplegic p value 

Demographic Data         

                   N 23 22 16   

                    Age (years) 33.5±8.3 35±10 39.9±10.4   

                   Men:Women 11:12 15:1 17:5   

                   DOI (months)   1 – 20 1-51   

Neuropsychological Measures         

                 Movement Score
c
   27.1±6 14.6±12.8 0.0004 

                 Touch Score
c
   38.1±9 26±17.9 0.014 

                  Pain Score
c
   37.2±7.9 22.7±16.9 0.002 

      

DOI = Duration of Injury; 
a
three groups were compared using one way 

ANOVA, 
b
two patients groups were compared using unpaired t-test; 

c
average of left and right scores;  
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6.2 Resting-state Functional Networks 

Eight major resting-state networks (Figure 6.1) – visual, lateral occipital, auditory, 

sensory motor, default mode, executive control and left and right lateralized fronto-

parietal - were visually identified by comparing the 18 ICA components yielded by 

MELODIC with previous reports (Beckmann et al., 2005; Damoiseaux and Greicius, 

2009). The right lateralized fronto-lateral network (RLFL) and the default mode network  

 

Figure 6.1: Eight group spatially independent component analysis component maps from 

65 subjects: (A) primary visual, (B) lateral occipital cortex (LOC), (C) auditory, (D) 

sensory-motor, (E) the ‘‘default mode’’ network (DMN), (F) executive control, and (G, 

H) two right- and left-lateralized fronto-parietal networks. All images have been 

coregistered into the space of MNI template. The coordinates refer to millimeter distances 

from the anterior commissure and images are shown in radiological convention. Z value 

of 3.09 is used for thresholding the component maps. 
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 (DMN) showed significant differences among the three groups. Two regions in the 

RLFL showed significant difference. Using the Talairch and Tournoux atlas the two 

regions were identified to be in the right inferior frontal gyrus (RIFG) near right 

precentral gyrus (X = -60, Y = -5, Z = 25, Figure 6.2A) and the right cerebral white 

(RCW) matter near the right cingulate gyrus (X = -23, Y = 13, Z = 32, Figure 6.2C), 

respectively. Unpaired t-tests between pairs of the three groups indicated that the network 

strength within RIFG of tetraplegic group was significantly lower than that of the control  

 

Figure 6.2: (A) Significant group difference (p<0.05, FDR Corrected) for the RLFL 

network in the RIFG near right precentral gyrus, and right Brodmann areas 9 and 44 (X= 

-60, Y= -5, Z = 25). (C) Significant group difference (p<0.05, FDR Corrected) for the 

RLFL network in the RCW near right cingulate gyrus (X= -23, Y= -13, Z = 32). (E) 

Significant group difference (p<0.05, FDR Corrected) for the DMN network in the ACC 

near right Brodmann areas 24 and 33 (X= -4, Y= -20, Z = 23). (B,D) Box and whisker 

plot of the mean network strength of RIFG and RCW in the RLFL network for the three 

subject groups respectively. (F) Box and whisker plot of the mean network strength of 

right ACC in the DMN network for the three subject groups respectively. 
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and the paraplegic groups (Figure 6.2B). Unpaired t-tests between pairs of the three 

groups also indicated that the network strength in the RCW was significantly lower for 

the control group as opposed to the two SCI groups (Figure 6.2D). The right anterior 

cingulate cortex (ACC) near Brodmann areas 24 and 33 (X = -4, Y = -20, Z = 23, Figure 

6.2E) in the DMN was found to be significantly different among the three groups. 

Unpaired t-tests between pairs of the three groups indicated that the network strength in 

ACC was significantly higher for the tetraplegic group compared to that of the control 

and the paraplegic groups (Figure 6.2F). 

 
Figure 6.3: Sensorymotor component yielded from independent component analysis 

component of the three groups – (A) control, (B) paraplegic, (C) tetraplegic. (D) A mask 

of the sensory motor component defined by the regions that were included in all three 

sensorymotor component as shown in (A), (B), and (C). The coordinates refer to 

millimeter distances from the anterior commissure and images are shown in radiological 

convention. All maps were corrected for FDR (<0.05) and thresholded for p<0.05. 

 

In the second approach, ICA is performed on three groups of data separately. A 

spatial correlation between the independent components is calculate to find 

corresponding ICs from the three ICA results. The sensorymotor networks obtained from 

the three ICAs are illustrated in Figure 6.3. Since the spatial maps of the three ICs 

encompassed varying regions, in the study the focus is placed on the brain regions that 
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were significant in all three spatial maps. The overlapping brain-map is shown in Figure 

6.3D. Four clusters are identified in the difference map, which are illustrated in Figure 

6.4A. The clusters are named as cluster1(green), cluster2(light green), cluster3(orange), 

and cluster4(red). Cluster1 is located in the left postcentral gyrus near left Brodmann area 

3 (X= -39, Y= -36, Z = 51). Cluster2 is located in the right precuneus near right 

Brodmann area 7 (X= -18, Y= -63, Z = 60). Cluster3 is located in the right precuneus  

 

Figure 6.4: (A) Significant group difference (p<0.05, FDR Corrected) for the 

sensorymotor network. Four clusters were identified that showed significant difference 

among the three groups. Cluster-1 (green) is located in the left postcentral gyrus near left 

Brodmann area 3 (X= -39, Y= -36, Z = 51). Cluster-2 (light green) is located in the right 

precuneus near right Brodmann area 7 (X= -18, Y= -63, Z = 60). Cluster-3 (orange) is 

located in the right precuneus near left Brodmann area 7 (X=15, Y= 54, Z = 60). Cluster-

4 (red) is located in the medial frontal gyrus near Brodmann area 6 (X= 0, Y= 27, Z = 

57). 
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near left Brodmann area 7 (X=15, Y= 54, Z = 60). Cluster4 is located in the medial 

frontal gyrus near Brodmann area 6 (X= 0, Y= 27, Z = 57). The three samples of mean 

network strength of the three groups, for each of the four clusters, are represented in the 

box-and-whiskers plot in Figure 6.4B. Unpaired t-tests between pairs of the three groups 

indicated that the network strength in all of the four clusters was lower for the paraplegic 

group as opposed to the control and the tetraplegic groups (Figure 6.4B). Cluster1, 

located in the left-postcentral gyrus had higher network strength for the control group as 

opposed to both of the patient groups (Figure 6.4B1). 

 

6.3 Behavioral Score and Network Strength 

Figure 6.5 represents the relationship between neuropsychological performance of 

paraplegic and tetraplegic subjects with  the RLFL network strength of RIFG region 

which  showed difference among the groups. Linear trends for the sensory scores suggest 

that for paraplegic subjects the score increases with increasingly positive network 

strength whereas for tetraplegic patients the score increases with increasingly negative 

 

Figure 6.5: Relationship of network strength of RIFG in the RLFL network with the 

neurophysiological scores. Green and blue represents the paraplegic and the tetraplegic 

groups respectively. The neurophysiological scores for the right and the left sides are 

represented by dots and circles/squares respectively. A, B, and C represents the 

neurophysiological scores for touch, pain, and movement respectively.  
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network strength (Figure 6.5A,B). Linear trends for the movement score suggest that with 

increasingly positive network strength, the performance of movement improves for both 

of the patient populations (Figure 6.5C).  

Figure 6.6 represents the relationship between neuropsychological performance of 

paraplegic and tetraplegic subjects with the RLFL network strength of RCW region 

which showed difference among the groups. Linear trends for the sensory scores suggest 

that for paraplegic subjects the score increases with increasingly negative network 

strength whereas for tetraplegic patients the score increases with increasingly positive 

network strength (Figure 6.6A,B). Linear trends for the movement score suggest that with 

increasingly positive network strength, the performance of movement improves for both 

of the SCI patient populations (Figure 6.6C).  

 

Figure 6.6: Relationship of network strength of RCW in the RLFL network with the 

neurophysiological scores. Green and blue represents the paraplegic and the tetraplegic 

groups respectively. The neurophysiological scores for the right and the left sides are 

represented by dots and circles/squares respectively. A, B, and C represents the 

neurophysiological scores for touch, pain, and movement respectively.  

 

Figure 6.7 represents the relationship between neuropsychological performance of 

paraplegic and tetraplegic subjects with the DMN network strength of ACC region which 

showed difference among the groups. Linear trends for the sensory scores suggest that for 

paraplegic subjects the score increases with increasingly negative network strength 
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whereas for tetraplegic patients the score increases with increasingly positive network 

strength (Figure 6.7A,B). Linear trends for the movement score suggest that with 

increasingly positive network strength, the performance of movement improves for 

tetraplegic patients and deteriorates for paraplegic patients (Figure 6.7C).  

 

Figure 6.7: Relationship of network strength of right ACC in the DMN network with the 

neurophysiological scores. Green and blue represents the paraplegic and the tetraplegic 

groups respectively. The neurophysiological scores for the right and the left sides are 

represented by dots and circles/squares respectively. A, B, and C represents the 

neurophysiological scores for touch, pain, and movement respectively.  

 

 

Figure 6.8 represents the relationship between neuropsychological performance of 

paraplegic and tetraplegic subjects with the sensormotor network strength of left 

postcentral gyrus near left Brodmann Area 3, which showed difference among the 

groups. Linear trends for the sensory scores suggest that for both, paraplegic and 

tetraplegic, subjects the score increases with increasingly positive network strength 

(Figure 6.8A,B). Linear trends for the movement score suggest that with increasingly 

positive network strength, the performance of movement improves for the paraplegic 

subjects whereas deteriorate for the tetraplegic patient populations (Figure 6.8C). It can 

be also noted that the correlation r-value of the sensory scores with the network strength 

is much higher than that of the movement score. 
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Figure 6.8: Relationship of network strength of left postcentral gyrus in the 

sensorymotor network with the neurophysiological scores. Green and blue represents the 

paraplegic and the tetraplegic groups respectively. A, B, and C represents the 

neurophysiological scores for touch, pain, and movement respectively.  

 

Figure 6.9 represents the relationship between neuropsychological performance of 

paraplegic and tetraplegic subjects with the sensormotor network strength of right 

precuneus near right Brodmann Area 7, which showed difference among the groups. 

Linear trends for the both, sensory and movement, scores suggest that for both, 

paraplegic and tetraplegic, subjects the score increases with decreasing network strength 

(Figure 6.9). It can be also noted that the correlation r-value of the paraplegic motor score 

with the network strength is much higher than that of the tetraplegic score. 

 
Figure 6.9: Relationship of network strength of left precuneus in the sensorymotor 

network with the neurophysiological scores. Green and blue represents the paraplegic and 

the tetraplegic groups respectively. A, B, and C represents the neurophysiological scores 

for touch, pain, and movement respectively.  
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Figure 6.10 represents the relationship between neuropsychological performance 

of paraplegic and tetraplegic subjects with the sensormotor network strength of left 

precuneus near left Brodmann Area 7, which showed difference among the groups. 

Linear trends for the both, sensory and movement, scores suggest that for both, 

paraplegic and tetraplegic, subjects the score increases with decreasing network strength 

(Figure 6.10). It can be also noted that the correlation r-values of the paraplegic sensory 

score with the network strength are nominal. The correlation r-values of the tetraplegic 

motor as well as sensory score with the network strength are higher than that of the 

paraplegic group (Figure 6.10). 

 

Figure 6.10: Relationship of network strength of right precuneus in the sensorymotor 

network with the neurophysiological scores. Green and blue represents the paraplegic and 

the tetraplegic groups respectively. A, B, and C represents the neurophysiological scores 

for touch, pain, and movement respectively.  

 

Figure 6.11 represents the relationship between neuropsychological performance 

of paraplegic and tetraplegic subjects with the sensormotor network strength of the 

medial frontal gyri near Brodmann Area 6, which showed difference among the groups. 

Linear trends for the sensory scores suggest that for tetraplegic subjects the score 

increases with decreasing network strength (Figure 6.11A,B) whereas strong correlation 

is absent between the paraplegic sensory scores and the network strength. It can be also 
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noted that the correlation r-values of the paraplegic sensory score with the network 

strength are nominal. The correlation r-values of the motor score of the two groups with 

the network strength is negative and nominal as well (Figure 6.11C). 

 

Figure 6.11: Relationship of network strength of medial frontl gyri in the sensorymotor 

network with the neurophysiological scores. Green and blue represents the paraplegic and 

the tetraplegic groups respectively. A, B, and C represents the neurophysiological scores 

for touch, pain, and movement respectively.  

 

 

 

Table 6.2: Correlation values for the network strength and neurological score. 

 



47 

 

 Table 6.2 summerizes the correlation values of the network strength with the 

neurological assessment scores for the two subject group. Significant correlation was 

observed in six cases and similar trends were observed for lower correlation values. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

 

The present study uses resting state fMRI analysis in order to delineate altered functional 

changes in brain networks after SCI. Although preliminary in nature, a number of 

observations are made in this study. This study demonstrates altered resting state brain 

connectivity in patients with SCI. Furthermore, distinct differences between the two SCI 

groups suggest alterations in functional connectivity. Finally, significant correlation 

between network strength and clinical measures in the SCI patients is observed. By using 

ICA, a number of different networks - primary visual, lateral occipital cortex (LOC), 

auditory, sensory-motor, the ‘‘default mode’’ network (DMN), executive control, and 

two right- and left-lateralized fronto-parietal networks – were revealed. Distinct 

differences were found among the three groups for three of the neural networks. 

 It is observed that the right Brodmann areas 44 (BA44) and 9 (BA9), near RIFG 

and right precentral gyrus, of the tetraplegic group have significantly lower network 

strength than that of the control and the paraplegic groups. RIFG has been typically 

associated with go/no-go tasks (Aron et al., 2004). In such a task, the participant has to 

inhibit a prepotent response; for instance stop pressing a button when a red signal 

appears. The same region has been associated with risk aversion; a study found that 

higher risk aversion correlated with higher activity in the IFG (Christopoulos et al., 

2009). This might be explained as an inhibition signal to accept a risky option. Disruption 

of activity in this area with Transcranial Magnetic Stimulation (TMS) or Direct Current 

Stimulation (tDCS) leads to changes in attitude towards risks, as behaviorally 
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demonstrated by choices over risky outcomes (Knoch et al., 2006; Fecteau et al., 2007). 

The lateral prefrontal region near BA 9 is typically involved in working memory tasks, in 

tasks of sustained attention and (bilaterally) in tasks demanding problem solving (Cabeza 

and Nyberg, 2000). Hence, the weaker network strength in the tetraplegic group suggests 

an impairment of higher level cognitive and executive functions after SCI. Precentral 

gyrus works in association with the planning and execution of movements. Interestingly, 

no significant difference was seen between the healthy control group and the paraplegic 

group. Since the upper-body movement functions are mostly intact in the paraplegic 

patients, the weaker network strength in the tetraplegic group may be associated with the 

impairment of most limb movement functions. 

The second difference is observed in the right cerebral white (RCW) matter near 

the right cingulate gyrus. The network strength in the RCW is significantly lower for the 

control group as opposed to the two SCI groups. White matter, long thought to be 

composed of passive tissues, actively affects how the learning process and other brain 

functions. While gray matter is associated with the cognitive processes in the brain, white 

matter is associated with the modulation of signals that neurons in gray matter generate 

with rest of the brain and, thereby, coordinates different brain regions (Fields et al, 2008).
 

Unlike gray matter, which peaks its development in the twenties, the white matter 

continues to develop and peaks at middle age (Sowell et al, 2003). It should be noted that 

the claim has been disputed in recent years. 

Diffusion tensor imaging (DTI) has the potential to non-invasively provide 

information about altered connectivity between different brain regions in response to SCI. 

DTI utilizes the directionality of water diffusion in tissue. The fiber structure within the 
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white matter results in higher diffusion anisotropy relative to gray matter that is typically 

made of cell bodies with relatively little preference for orientation. It is generally 

believed that the directionality or anisotropy in diffusion reflects the integrity of tissue 

microstructural reorganization. Diffusion anisotropy is determined both by the axonal 

structure and the condition of myelin (Beaulieu, 2002; Gulani et al., 2001). Both, damage 

to axonal structure and demyelination, affect the observed anisotropy. Therefore, 

diffusion anisotropy can provide valuable information about altered white matter 

structure. The anisotropy or directionality of diffusion can be quantified by scalar 

quantities such as fractional anisotropy (FA). 

The results also show that the right anterior cingulate cortex (ACC) near 

Brodmann areas 24 and 33 in the DMN was significantly different among the three 

groups. The network strength in ACC was significantly higher for the tetraplegic group as 

opposed to that of the control and the paraplegic groups. The DMN has received 

increasing attention in recent years. DMN reflects an ensemble of cortical regions 

typically deactivated during demanding cognitive tasks in fMRI studies (Raichle et al., 

2001). Using functional connectivity, this network can be conceptualized and studied as a 

"stand-alone" function or system. Major regions in the DMN include the precuneus, 

anterior cingulate gyri, and posterior cingulate gyri. Additional regions include the 

superior and middle temporal as well as frontal gyri, the inferior parietal lobule and 

parahippocampal gyrus. Briefly, these regions are thought to be related to recognition, 

social communication, working memory, and some auditory demands. The activation of 

this network has been reported, in numerous studies, to increase during resting state and 

suspend during specific goal-directed behaviors (Garrity et al., 2007; Raichle et al., 
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2001). 

Ventral anterior cingulate (Brodmann area 24) relate to many areas in the brain. 

ACC receives, primarily, its afferent axons from the intralaminar and midline thalamic 

nuclei. The anterior nuclei receive mammillo-thalamic afferences. The mammillary 

neurons receive axons from the subiculum. The overall network contains a portion of the 

Papez circuit. The ACC sends axons to the anterior nucleus and through the cingulum to 

other Broca's limbic areas. The ACC is involved in error and conflict detection processes, 

such as in the go/no-go task. Our SCI affected right ACC corresponds to the “default 

mode network” that participates in episodic memory (Buckner et al., 2005) and became 

known for its task-related deactivations across fMRI studies (Fox et al., 2005; Fransson, 

2005; Greicius et al., 2003). Thus, it seems unlikely that this local increase in 

connectivity is due to loss of association fibers or lower acetylcholine levels. A possible, 

but at this stage highly speculative, explanation could be that the connectivity reflects a 

compensation mechanism in a relatively healthy part of the network.  

A PET study (Roelcke et al., 1997) at rest found relatively higher CMRGlu in the 

frontal lobe of patients with spinal cord injury, which bilaterally comprised most of the 

supplementary motor area, caudally extended into the anterior cingulate (Brodmann area 

24), and more laterally towards the motor cortex. These brain regions are involved in 

movement preparation and execution, as well as in intentional aspects of motor tasks, 

particularly in the supplementary motor cortex, putamen, and anterior cingulated 

(Brodmann area 32). Relatively increased CMRGlu in the above mentioned regions could 

be attributed to hyperactivity of neurons which originate within, or which project to these 

regions. It may reflect a relative disinhibition, secondary to reduction or loss of afferent 

http://en.wikipedia.org/wiki/Subiculum
http://en.wikipedia.org/wiki/Papez_circuit
http://en.wikipedia.org/wiki/Cingulum_(anatomy)
http://en.wikipedia.org/w/index.php?title=Go/no-go_task&action=edit&redlink=1
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impulses, which mediates synaptic reorganization. Our results may be explained using 

the viewpoint.  

A study using rest SPECT found significantly reduced blood flow rates in some of 

the movement-cortical and subcortical areas following SCI. The areas of significantly 

reduced rCBF consisted of bilateral anterior cingulate gyrus in the paraplegic patient 

group and left anterior cingulate gyrus in tetraplegic patient group. It may be possible to 

determine the disrupted regional blood flow areas because of the loss of function 

resulting from the cell atrophy (Çermika et al., 2006). Disinhibition and cell atrophy were 

the results accompanying SCI. The contrary results may relate to the duration of SCI. 

A DTI study (Wrigley et al., 2009) found that SCI results in significant changes in 

the anatomy of the medial prefrontal and anterior cingulate cortices. These brain regions 

are known to be critical for the processing of emotional relevant information and in 

modulating states involved with attention. It has been shown by Damasio et. al that the 

peripheral arousal levels may influence the emotional state, and it has been suggested that 

the decoupling of the brain from the body, as it happens following SCI, may modify 

emotional experiences (Damasio, 1994). Indeed, a recent fMRI investigation has revealed 

reduced activity in the subgenual anterior cingulated cortex during emotional processing 

in SCI subjects (Nicotra et al., 2006). It may be that changes in the anatomy of the 

prefrontal/anterior cingulate cortices are reflected in changes in emotional processing in 

SCI subjects, although the precise nature of these anatomical changes cannot be 

determined using MRI techniques. Our results may reflect the modulating compensation 

to emotional processing in SCI.  
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In this study, four regions show significant differences among the three groups for 

the sensorimotor network. The first region, Cluster1, is located in the left postcentral 

gyrus which is an important landmark in the brain. The primary somatosensory cortex 

includes postcentral gyrus. It has been found to be the main area receptive to the sense of 

touch. Brodmann area 3 (BA3) is referred to as "primary somatosensory cortex" because 

it receives the most of the thalamocortical projections from the sensory inputs (Reed et. 

al, 2008). BA 3 receives dense inputs from the pulvinar nucleus of the thalamus. Also, 

the neurons located in BA3 are highly responsive to somatosensory stimuli, however, not 

to other stimuli. Furthermore, lesions in BA3 can impair somatic sensation while 

electrical stimulation of BA3 can evoke somatic sensory activation. BA3 has also been 

associated with proprioception. In this study, it is found that the left-postcentral gyrus 

near BA3 of the paraplegic group has lower connectivity strength than that of the control 

group. Since all of the subjects in the study were right-handed, left hemisphere is the 

dominant in the brain. After SCI, paraplegic patients receive sensory inputs from the 

upper two limbs and most of the torso, however, does not receive any sensory input from 

the lower limbs. Hence, the reduction in network strength may be correlated to the 

reduction of input sensory signal. In addition, the network strength in the postcentral 

gyrus of the tetraplegic group is significantly less than that of the healthy control group. 

Tetraplegic subjects receive little to nothing from the four limbs and most of the body. 

The less sensory signal received by tetraplegic subjects may explain the reduction of 

network strength in the postcentral gyrus. Interestingly, the tetraplegic group appears to 

have higher network strength than that of the paraplegic group.  

http://en.wikipedia.org/wiki/Somatosensory_system
http://en.wikipedia.org/wiki/Somatosensory_system
http://en.wikipedia.org/wiki/Thalamocortical_radiations
http://en.wikipedia.org/wiki/Pulvinar_nuclei
http://en.wikipedia.org/wiki/Proprioception
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The second and the third regions, Cluster2 and Cluster3, are located in the right 

and left precuneus near Brodmann area 7 (BA7), respectively. The precuneus is involved 

with visual-spatial processing, episodic memory, and different aspects of consciousness. 

The precuneus is situated between the two somatosensory cortices and forward of the 

visual cortex.  Although, connections have not been reported between the precuneus and 

the primary motor cortex, there are connections between the precuneus and the 

sensorimotor cortex as well as the primary visual cortex. It has been suggested that the 

precuneus is involved in directing attention in space when both, an individual makes 

movements and when imagining or preparing to make a movement (Cavanna and 

Trimble, 2006; Kawashima et. al, 1995). The motor coordination required for shifting 

attention to spatial locations has also been attributed to the precuneus (Wenderoth et. al, 

2005). While the premotor regions engage in the mental operation of imagining a motion, 

the precuneus is suggested to be aiding the monitoring of that operation by incorporating 

visual images (Oshio et. al, 2010). This study found that the network strength in the 

precuneus of the paraplegic group is less than that of the healthy control group whereas is 

unchanged for the tetraplegic group. 

Since paraplegic subjects are unable to receive or send signal to the lower limbs, 

their visual-spatial processing needs to be adjusted which may be done through 

alterations in the precuneus and/or postcentral gyrus regions of the sensorimotor network 

(Kim et. al, 2010).  It is possible that, as opposed to the paraplegic group, tetraplegic 

subjects do not receive any sensory input signal and, therefore, it is not only the reduction 

in the signal received but also an “all or none” system that causes reduction in signal 

strength. In this case, the “all” and the “none” in the system are analogous to the healthy 

http://en.wikipedia.org/wiki/Visuospatial
http://en.wikipedia.org/wiki/Episodic_memory
http://en.wikipedia.org/wiki/Consciousness
http://en.wikipedia.org/wiki/Visual_cortex
http://en.wikipedia.org/wiki/Primary_motor_cortex
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control group and the tetraplegic group, respectively. Therefore, for the tetraplegic group, 

because significantly less amount of sensory input is received by the brain, the reduction 

in network strength is less than that of the paraplegic group as the system may not have 

been able to detect the change whereas for the paraplegic group the reduction of sensory 

input signal is essentially half of that of the healthy control group which may have been 

easily detected by the system causing more alteration in the functional connectivity. 

Conversely, the drastic loss of sensory input and motor output in tetraplegic patients may 

resume a faster compensatory mechanism which may explain the higher network strength 

in tetraplagic subjects.  

The fourth brain regions showing difference for the sensorimotor network is 

located in the Brodmann area 6 (BA6) near medial frontal gyrus. BA6 is reported to 

bridge the prefrontal and the primary motor cortices. The caudal portions of BA6 are 

related to the primary motor cortex, which send extensive corticospinal projections. The 

rostral portions of BA6 have close connections with the prefrontal cortex, however, lack 

a direct projection to the spinal cord (Barbas and Pandya, 1987; Luppino et al., 1993; Lu 

et al., 1994). Neuroimaging studies reported that BA6 is activated during both, 

demanding motor tasks (Roland et al., 1980; Catalan et al., 1998; Grafton et al., 1998) 

and various cognitive tasks (Jonides et al., 1993; Mellet et al., 1996; Lamm et al., 2001; 

Simon et al., 2002; Hanakawa et al., 2003a,b). However, the functions of BA6 for 

cognition are poorly understood as opposed to those for motor control (Picard and Strick, 

2001; Schubotz and von Cramon, 2003).  

From the correlation analysis of the neuropsychological assessments with the 

network strength of the regions that demonstrated difference among the groups, it may be 
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inferred that there may be some relationship between the network strength in the 

sensorimotor network and the neuropsychological assessment score. The correlation of 

both of the sensory scores is high and positive for the paraplegic group with the network 

strength in the left postcentral gyrus near BA3. Similar trend is visible for the tetraplegic 

group; however, the correlation values are lower than that of the paraplegic group. As 

mentioned earlier, postcentral gyrus is associated with proprioception and highly 

responsive to somatosensory stimuli. Since the network strength in the region for the 

healthy control group is significantly higher than that of the two SCI patient groups, the 

positive correlation of network strength and sensory neurological assessment scores 

further validates the finding. Moreover, the region may be used as a biomarker for the 

rehabilitation research of SCI patients. The correlation between the motor neurological 

assessment for the paraplegic group and the network strenght in the right precuneus is 

negative and high. Similar trend is visible for the tetraplegic group; however, the 

correlation values are lower than that of the paraplegic group. It was previously 

mentioned that the precuneus is significant for the visual-spatial processing which is an 

essential step for any motor movement. It may be inferred from the results that a 

compensatory mechanism may be present that causes the network strength to increase for 

increasingly impaired SCI patients. Moreover, all of the subjects are right handed and the 

right hemisphere is non-dominant which strengthens the claim regarding the 

compensatory mechanism and plasticity in the brain (Ivaneko et. al 2009; Manning, 2008; 

Scivoletto et. al, 2007). Hence, there is a negative correlation between network strength 

and motor assessment score. A similar inference may be drawn for the region showing 

difference in the right precuneus, except that the correlation value is high for the 



57 

 

 

tetraplegic group as opposed to that for the paraplegic group. The results suggest that 

there is a negative and high correlation between the network strength of BA3 near medial 

frontal gyrus for the tetraplegic group where as it is positive for the paraplegic group. 

BA3 is associated with demanding motor tasks and cognitive tasks. The more sever 

impairment of the tetraplegic patients may be attributed to the negative correlation as a 

result of a compensatory mechanism which increases the network strength more in more 

impaired paraplegic subjects. Conversely, a positive correlation trend is present between 

the network strength and the sensory scores; although the correlation values are lower 

than that for the tetraplegic group.   

In conclusion, this study, although preliminary in nature, confirms that a simple 

resting-state condition may be sufficient to demonstrate widespread changes in functional 

connectivity in SCI. Analysis of resting state network activity in SCI demonstrated 

significant changes not only in cortex but also in white matter. Besides involved in 

movement preparation and execution, the present results demonstrate extra-motor 

involvement in SCI. The default mode involved has been linked to cognitive processes, 

consisting of episodic memory, processing of emotional, and performance of motor 

activity. Hence, RSNs can provide useful clinical or cognitive markers during task-free 

conditions after SCI. 
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