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ABSTRACT 

A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS 

FOR GENOME WIDE ASSOCIATION STUDIES 

 

by 

Neha Singh 

 

 

Variations present in human genome play a vital role in the emergence of genetic 

disorders and abnormal traits. Single Nucleotide Polymorphism (SNP) is considered as 

the most common source of genetic variations. Genome Wide Association Studies 

(GWAS) probe these variations present in human population and find their association 

with complex genetic disorders. Now these days, recent advances in technology and 

drastic reduction in costs of Genome Wide Association Studies provide the opportunity to 

have a plethora of genomic data that delivers huge information of these variations to 

analyze. In fact, there is significant difference in pace of data generation and analysis, 

which led to new statistical, computational and biological challenges. Scientists are using 

numerous approaches to solve the current problems in Genome Wide Association 

Studies.  

In this thesis, a comparative analysis of three Machine learning algorithms is   

done on simulated GWAS datasets.  The methods used for analysis are Recursive 

Partitioning, Logistic Regression and Naïve Bayes Classifier. The classification 

 accuracy of these algorithms is calculated in terms of area under the receiver operating 

characteristic curve (AUC). Conclusively, the  logistic  regression  model  with  binary  

classification  seems  to  be  the  most promising one among  the other four algorithms, as 

it outperformed the other tools in the AUC value. 
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LIST OF DEFINITIONS 

 

Allele Also called allelomorph is any one of two or more genes that may occur 
alternatively at a given site (locus) on a chromosome are called as 

alleles, also known as allelomorph.  
 

Autosomes 
 

Chromosomal pairs which are other than sex chromosome present in 
somatic cells. 

Centromere It is a central region where the two chromatids are held together to each 

other and attach to spindle fibers in mitosis and meiosis stage. 
 

Chromatid It is one of the two identical, threadlike filaments of a chromosome. 
Chromatids are produced by the self-replication of the chromosome 

during interphase and are held together by a common centromere. 
 

Diploid stage Chromosomes are present in duplication, which means two chromatids 
per chromosome. 

 

Genetic Locus The specific position on a chromosome where a gene is located. 

Heterozygous Non-identical copies of genes alleles at corresponding loci on 

homologous chromosomes. An individual inherits an allele for that trait 
from one parent and an alternative allele from the other parent. 
 

Homozygous Identical alleles are present at corresponding loci on homologous 

chromosomes. An individual inherits from each parent one allele for that 
trait. 
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 CHAPTER 1 

                                                        INTRODUCTION 

1.1  Motivation 

The increasing power of Genome Wide Association Studies enables researchers to 

investigate the association of genomic variations with complex human genetic diseases 

such as Bipolar disorder (BD), Rheumatoid arthritis (RA), Type 1 diabetes (T1D), Type 2 

diabetes (T2D), Coronary Artery Disease (CAD) etc. (WTCCC, 2007). Now these days, 

recent advancement in technology and drastic reduction in costs of Genome Wide 

Association Studies provide the opportunity to have plethora of genomic data that 

delivers huge human variation information to analyze. The amelioration of high 

throughput SNP genotyping technologies providing huge amount of Single Nucleotide 

Polymorphism data which fuels Genome Wide Association Studies, and which  led us to 

new statistical, computational and biological challenges (Herbert, et al., 2006), (Ozaki & 

Ohnishi, 2002), (Roses, 2003). Every disease discovery project have aim to identify all 

genomic variation which leads to particular phenotype across the population which 

consists affected (Case) and unaffected (Controls). The result of these variations could be 

Disease Status, Drug Responder Status and Adverse Drug Reactions. GWAS raised the 

expectations of revealing the SNPs variations associations and their interactions involve 

in complex human genetic disorders, however the challenge is to deal with this huge 

amount of data and extract the underlying information. The considerable statistical and 

biological issues that are faced in the genomic datasets consists the dimensionality 

problem (Bellman, 1961) , Multiple Testing problem (Xie, Cai, Maris, & Li, 2010) and 

the presence of heterogeneity (Thornton-Wells, Moore, & Haines, 2006). But, this is 
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proved to be less fruitful than expected till this time as there are so many questions which 

need to be answer, as in a review study of 600 positive associations, some of which have 

been studied multiple times, only 6 association were consistent (Hirschhorn, Lohmueller, 

Byrne, & Hirschhorn, 2002), statistician and computational biologists need to apply some 

different methods and perspectives to reveal the underlying SNPs associations with 

genetic diseases. 

To face the above mentioned issues there are many methods which have been 

applied to whole genome data like biological interpretation is incorporated into the 

statistical analysis to filter the data (Bush, Dudek, & Ritchie, 2009) and also statistical 

analysis results can be applied for further biological interpretation. To deal with above 

mentioned problems and to incorporate every technique one may follow multi- step 

approach (Kropff, 2008).  Figure 1.1 describes the multi-step approach. 

 

Figure 1.1  Multi-step approach towards genome wide association studies. 

Biological  Interpretation and Application 

Pathway Analysis  Drugs and diagnostics Pathophysiology 

Staistical  and Computational Interpretaion 

Parametic Methods e.g. Logistic Regression Non- parametric Methods e.g. Random Forests 

Dimensionality Reduction of the data 

Chi -square s tatistical ranking of SNPs  t-square statistical ranking of SNPs 

Detection Of Heterogeneity in Genomic Data 

Al lelic Heterogeneity Non-a llelic Heterogeneity 
SNPs  Variations and other 

mutations 
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There are many Machine learning algorithms which have been already applied to 

Genome Wide Association Studies (Costello, Falk, & Ye, 2003) like classification and 

regression trees (CART) of (Breiman, 2001) (Uriarte & Andres, 2006), Support Vector 

Machines (SVM) (Vapnik, 1998) (Guyon, Weston, Barnhill, & Vapnik, 2002), Neural 

Networks (NN) (Bishop, 1995) and many more. At present, there is no single method 

which can be applied to all kind of datasets and deliver all the substantial information in 

Genome Wide Association Studies. This thesis work is basically focused over the 

application of some of the machine learning algorithms and their accuracy of classifying 

the data. 

1.2 Objective 

The objective of this thesis is to conduct the comparative analysis of the four Machine 

Learning (ML) Algorithms over simulated genomic data. The classifiers which are used 

for the study are Logistic Regression, Recursive Partitioning, and Naïve Bayes Classifier. 

These ML algorithms are implemented with the help of statistical software „R‟. The 

simulation program namely GWAsimulator (Li & Li, 2007) is used to simulate the whole 

genome data for this study. 

The simulation is done five times on different control file for the program and 

these simulated datasets are divided into training and test datasets as per the Case- control 

study design. Then above mentioned classifiers ML algorithms are applied on each 

training dataset to create prediction models. Then these prediction models are applied to 

the training dataset for classification. The classification accuracy is predicted by means of 

Area under the Curve (AUC) of Receiver Operating Characteristic (ROC) graphs. The 

prediction methods are applied with the help of the ROCR package (Sing, Sander, 
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Beerenwinkel, & Lengauer, 2005) available in R which provides the standard methods 

for examining accuracy of the classifier by providing the specific performance measures.  

1.3 Background  

The whole stories of GWAS begins with the advent of the Human Genome Project in 

2000, and also with this the SNP Consortium and first phase of the International Hap 

Map project (Gibbs, Belmont, Hardenbol, & Willis, 2003) put it forward. Then with the 

completion of second phase of the International Hap Map project in 2007 provided the 

strong foundation to this new era of whole genome studies. The International Hap Map 

project provided us with SNP frequencies, Genotypes and Haplotype structures which 

initiated the SNP genotyping and then eventually Genome Wide Association Studies. The 

Human Genome Project (International Human Genome Sequencing Consortium, 2001), 

the SNP consortium (The International SNP Map Working Group, 2001) and the 

International HapMap Project (The International HapMap consortium, 2007) collectively 

provided approximately 10 million DNA variants, mainly SNPs (The International 

HapMap 3 Consortium, 2010). The data generated in the above mentioned projects was 

available to public domain which proved to be the boost for genomic researches. Another 

main factor in increment of Genome Wide Association Studies was the evolution of Bio 

repositories. Bio repositories are bank of all the biological sequences which are potential 

research objects in Computational Biology, Genomics and so on. Essentially, in order to 

learn about the Genome Wide association studies it would be rational to have a brief look 

over the events which took place collectively to make platform for these studies.  
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Table 1.1  Time Line of Events Leads to Genome Wide Association Studies  

 Main Events Years 

Human Genome Project 2000-2004 

The SNP Consortium 2000-2003 

The International Hap Map Project 2002-2007 

The SNP Genotyping 2005-Present 

Genome Wide Association Studies 2007-Present 

 

1.3.1 Human Genome Project 

The whole approach of genome wide association studies is started after the completion of 

Human genome project (HGP) in 2003 (Ventor, Adams, Myers, Li, & Mural, 2001), 

which was a multi country 13 year program to genotype human genome and later the 

SNPs data coordinated by United States Department of Energy (DOE) and National 

Institute of Health (NIH). The main aim was to generate as much data as possible and 

store the data into databases for further studies. The pioneer contribution United States 

Department of Energy (Deegan, 1989) (Barnhart, 1989) ignited the fire of Human 

Genome project in the mind of scientists, and later, the efforts of Welcome Trust Case 

Control Consortium (WTCCC, 2007) and countries like UK, later Japan, France and 

more made this Human genome project a milestone in the field of Computational 

Genomics. The vast support achieved by Human Genome project tells the story of its 

critical importance and success achieved (Gert, 1996). The genetic information is then 

stored in open access sequence database GenBank database of National Centre for 

Biotechnology Information and related organizations of Europe and Japan. This made the 
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availability of human genome data to researchers which proved important in revealing the 

human variations responsible for common genetic diseases. This also helped in the 

understanding of complex human biology. 

As the most important application of Human Genome Project, the Wellcome 

Trust Case-Control Consortium (WTCCC) undue approach towards the real SNPs data 

generation of the cases and controls of the seven complex diseases made the great 

contribution towards the analytical and computational solution of complex Human 

genetic diseases (WTCCC, 2007). Single Nucleotide Polymorphism is considered as the 

most common source of variations found in the human genome. As the result of Human 

Genome Project, it has been identified that Single Nucleotide Polymorphism occurs at 

approximately 1.4 million locations in humans (From genome to proteome., 2008). The 

results of HGP gave the platform which mobilized the investigations of locations and 

sequences of genes which are responsible complex human diseases.  

Basically, with the results of Human Genome Project and advanced high-

throughput technologies researchers could answer the complexity of human genome and 

complex diseases systematically and on a very big scale. 

1.3.2 The SNP Consortium 

The SNP Consortium (TSC) established in 1999 as the collaboration of major 

pharmaceutical companies, the WTCCC and academic centers (Holden, 2002). The main 

aim of the TSC was to identify more than 300000 SNPs up to 2001, which was resulted 

in exceeding of final results by release of approximately 1.4 million SNPs into the public 

domain (Sachidanandam, et al., 2001). The other objective of TSC was to manage the 

publications of the Haplotype Map (Holden, 2002) . The SNP Consortium is basically the 
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data repository which contains the initial data of SNP discovery process of that time and 

later on that SNP data is submitted to dbSNP (Thorisson & Stein, 2003). The Single 

Nucleotide Polymorphism data published as the result of the Human Genome Project was 

managed and analyzed by the SNP consortium and data management and analysis was 

conducted by Cold Spring Harbor Laboratory (SNP Fact Sheet, 2008). 

1.3.3 The International HapMap Project 

The International HapMap Project was initiated in 2002. This project was started with the 

collaboration among the researchers, laboratories, institutions and funding agencies form 

Japan, the United Kingdom, Canada, China, Nigeria and the United States (The 

International HapMap Project, 2002). This was the effort to investigate the genetic 

similarities and variations in human population (The International HapMap consortium, 

2007). The main aim of the HapMap project was to describe the Haplotype map of the 

human genome to provide the solution to the problem of major genetic diseases. The 

Haplotype map includes the strongly associated SNPs and SNP tags in particular regions 

of chromosome which replicate together in diseased and healthy individuals. The huge 

data generated in all the three phases of the International HapMap project resulted in the 

substantial cost reduction of genotyping the SNP data which led to the increment in pace 

of Genome Wide association studies. Almost all parts of human genome are similar to 

each other, but they have differences in some common haplotypes. Therefore, to found 

the differences in haplotype frequency data is collected from four different regions 

namely Nigeria (Yoruba), Japan, China and U.S. residents with northern and western 

European ancestry by the Centre d‟Etude du Polymorphisme Humain (CEPH). 
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1.3.4 Genome Wide Association Studies 

In defiance of the biological, statistical and computational intricacies related to 

discovering process of genomic variations in complex genetic disorders, the classic study 

design and analysis have not worked up to the mark. In 2001, linkage analysis has been 

done for T1D (European Consortium for IDDM genome Studies, 2001) and for many 

more diseases which produced some convincing results in diseases which have high 

sibling ratio (Altmuller, Palmer, Fischer, Scherb, & Wjst, 2001). But linkage studies 

could not find the genetic risk factors for familial Alzheimer‟s disease, Multiple Sclerosis 

and Autism, which are the very prominent candidates for linkage analysis, even after the 

number of studies. On the other hand, Linkage analysis was able to produce some 

significant results for rare forms of other familial phenotype, such as familial 

hypercholesterolaemia2 (Ott, Schrott, & Goldstein, 1974) (Ott, Kamatani, & Lathrop, 

Family based designs for genome-wide association studies., 2011) and familial breast 

cancer (Wooster & Weber, 2003). Similarly, genetic association studies proved less 

substantial when they are tested multiple times; therefore it‟s not wise to make 

conclusion over the association between genetic variant and susceptibility of disease from 

only one testing (Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002). Over the last two 

decades, the advancement in technology and drastic reduction in costs of 

Genome Wide Association Studies provided us the opportunity to investigate the intricacies 

of human genome variations which are responsible for complex diseases. The Genome 

Wide Association Studies aim to find out the difference in allelic frequencies in SNP 

haplotypes between healthy and diseased individuals.  In these association studies about 1 

million of SNPs, which responsible for maximum variations, are captured to find the 
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causal variations across the human genome (Barrett & Cardon, 2006). The basic principle 

of the Genome wide association studies is to follow the path of contiguous stretch of 

tagged SNPs or haplotypes which transmit from generation to generation through 

recombination. And, by further analysis the association between these markers and 

disease phenotype can be detected. This idea follows the Common Disease (CD) - 

Common Variant (CV) hypothesis, that onset of common genetic diseases relies on the 

common variations present in human genome (Shields, 2011). 

  The identification of Complement Factor H (CFH) as causal variant in Age-

related Macular Degeneration was the inaugural success of in the field of GWAS (Klein, 

et al., 2005). Since, then it has been seen the regular increment in the acceptance of 

GWAS. Genome wide association studies statistically investigated about and over 200 

disease traits in 700 genome wide association studies (Baker, 2010) which involves over 

1200 human genome till December 2009 (Johnson & O'Donnell, 2009). These studies 

identify the association of causal SNPs with the complex diseases but cannot fully 

identify the cause of disease. The journey of Genome Wide Association Studies is well 

described by the review analysis of GWAS by (Manolio, Brooks, & Collins, 2008). The 

following figure is the extension of the work of (Manolio, Brooks, & Collins, 2008) 

which is regularly updated as the catalog of published Genome-Wide Association Studies 

by (Hindorff, et al., 2011). 
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    Figure 1.2  Karyogram of SNP- Trait association investigated in GWAS 

                       Source: www.genome.gov/GWAStudies  
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Figure 1.3  Explanation of traits present in the GWA catalog.  

                   Source: www.genome.gov/GWAStudies 
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CHAPTER 2                                            

 BIOLOGICAL OVERVIEW OF GWAS 

2.1 Overview 

Genome wide association studies are basically the answer of the ever existing question 

that why some people are predisposed towards a certain trait or disease while others lives 

a healthy life. At the time of the birth of Genomic era, it was there in in every conscience 

that this will improve the understanding of the hidden aspects of biology and human 

genetics. In the field of Genomics; science, technology and medicine developed and 

progressed at very high pace in last two decades (Guttmacher & Collins, 2003). It is 

believed that human genome contains about 20,000-25,000 genes which encodes proteins 

(Stein, 2004), which transcribes into Ribonucleic acid (RNA) and then direct the 

translation of RNA into proteins (Lander, 2011). Every mere functional, developmental 

and organizational phenomena of human body depends on the Central Dogma; the 

informational flow in biological systems shown in Figure 2.1. 

                       

Figure 2.1  Central dogma: flow of information in biological systems. 

 

Now, the question arises that, what varies a person from another person? Where 

these variations came from? Which part of the human genome they affect? How they are

DNA 

Generally DNA 
transcribes into 

RNA 

But some times 
RNA also  reverse 

trancribes  into 
DNA 

RNA Protein 
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associated with diseases and traits and so on. These answers can be found by looking into 

the biology behind this. This can be understood by consider Genomes as book of the life 

which contains 23 chapters called Chromosomes (Barlow-Stewart, 2004). The Genes are 

the sections of each chapter which are the functioning part of the book and these genes 

are comprised of collection of words called Deoxyribonucleic Acid (DNA). And, these 

words which are called as DNA are comprised of only four letters A, T, G and C. The 

following diagram is the illustration of the packaging of the whole genomic information.

 

   Figure 2.2  The packaging of genetic information in humans.  

Genomes comprised of Chromosomes, Chromosomes comprised of Genes, and 

Genes are of DNA. 

GENOMES 

CHROMOSOMES 

GENES 

DNA 
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2.1.1 Genome 

The Genome is the entity that carries the whole genetic information of organisms in 

encrypted format. It has the complete set of genetic instructions which guides the 

functioning of the cells of organism, and passes hereditary information to next 

generation. It contains all the coding and non-coding DNA and RNA (Ridley, 2006). 

Apparently, every cell of an organism contains the whole copy of its genome. As it is 

illustrated in Figure 2.2, Genome is made up set of Chromosomes, Chromosomes are 

made up Genes and Genes are made of DNA. Every organism has a particular number of 

chromosomes copies like some are diploid as humans, triploid, or haploid only one copy 

of all chromosomes. Therefore, when it is said that an organism‟s genome is sequenced, 

it implies that a haploid or single copy of chromosomes or single set of autosomes 

(Chromosomal set without sex determination chromosome) is sequenced and store in 

database. Humans have 3.2 billion base pairs and approximately 20,000 to 22,000 genes 

on 23 pairs of Chromosomes in all cells of human body and decide their structure and 

functions.  

As we see, almost all the individuals of human population have same basic 

characteristics but yet different from each other. Consider these variations among human 

species; one cannot say a particular human genome a standard or normal. Everybody is 

abnormal in their own way; every genome is mutant (Feero, Guttmacher, & Collins, 

2010). To study these differences, Genome wide association studies can be an answer 

(Guttmacher & Collins, 2003). There are mainly three basic types of variations: First is 

Single-base-pair changes, second is insertion and deletion of nucleotide, and third is 

frame-shift mutation. The single-base-pair mutation is also known as SNPs. Over the past 
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several years, the association, candidate gene and linkage studies have made it possible to 

quantify the association of these SNPs with diseases (Baker, 2010). 

2.1.2 Chromosomes 

The Chromosomes are compact organization of DNA and proteins (which are used in 

packaging of DNA in compact form) as single unit which have genes (coding), non-

coding sequences and stackable proteins. In other terms it is a long chain of nucleotides 

which is compactly arranged in the form of chromatin which allows huge DNA 

molecules to fit into eukaryotic cells. Chromosomes are mostly found in pairs in human 

species and this is called diploid state. The diploid behavior of human chromosomes was 

observed about 50 years ago (Painter, 1924) (Jio & Levan, 1956). Chromosomes can be 

of different shapes and sizes, but humans and most of the eukaryotic organisms have 

linear shape. Chromosomes must be replicated and divided into single chromosomes and 

pass on to daughter cells to their later progeny. At this point both the sister chromatids 

are attached to each other. There is a constriction point which divides the chromosomes 

into two parts, called as Centromere. This constriction divides the chromatids into two 

parts; the shorter arm is called as p arm and longer one is called as q arm.  

The genome of every organism is divided into Chromosomes. Human have 23 

pairs of linear chromosomes which comprises of 22 pairs of autosomes and one pair of 

sex chromosomes. These vary slightly in shape, size and appearance. The chromosome 

contains a full stretch of a single DNA molecule. The number of chromosomes is nothing 

to do with the complexity of organisms, it‟s completely depend on nature as very small 

Goldfish has 94 pairs of chromosomes, on the other hand Cat has only 38 pairs of 
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Chromosomes. But on the contrary both the species have huge difference in their 

metabolic, structural and functional complexity.  

2.1.3 Genes 

The singular coding hereditary unit is called gene. Genes are the stretches of DNA which 

encodes proteins which are further responsible for specific traits and functions in the 

organisms. Genes are responsible for similarities and differences in the species, 

similarities like every human has “hair color gene” which codes for hair color but 

differences lies in which color like people have different color of hairs such as black, 

brown, grey, white, golden and many more (Davenport & Davenport, 1908). Mostly, all 

people have similar genes for each and every trait but these are alleles, the single variants 

of genes, which are responsible for variation in phenotype or physical appearance of 

people.  

Then during the course of period the molecular biological definition of gene 

changed which says genes are the stretches of DNA which has definite end and beginning 

(Noble, 2008). The biochemical explanation of gene defines the ultimate process of 

transformation of Gene to physical form of trait expression. The gene is coding DNA 

which codes for protein and RNA, and this coding depends on Promoter and Enhancers. 

Here, promoters and enhancers decide which part of DNA will transcribe into pre-

mRNA. The pre-mRNA is composed of Exon and Introns, where Exon is coding part of 

pre-mRNA which later encodes for proteins, and Introns are spliced during the 

transformation from pre-mRNA to mRNA. And, later this mRNA translated to resultant 

proteins. According to classic genetics, the definition and functioning of gene was 

simpler but it is becoming complex day by day with the fact of overlapping genes 
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sequences (Pearson, 2006). The more comprehensive study of gene functionality will 

open path for better understanding of both rare and common diseases (Feero, Guttmacher, 

& Collins, 2010). 

2.1.4 DNA 

Deoxyribonucleic acid (DNA) is the basic biochemical entity of the gene and genome. 

DNA is written in language of four bases: adenine (A), thymine (T), cytosine (C) and 

guanine (G). And these bases with sugar and the phosphate group make nucleotides 

which are the chemical units of DNA. It is long double helical chain like structure which 

consist repeated units of nucleotides. The order of these nucleotides determines the 

biological instructions on genes (National Human Genome Reseach Institute, 2011). 

DNA is get transmitted to generations to generations and in its coded language it guides 

cell about its function and organization (Hershey & Crick, 1952). There are about 3 

billion bases in humans and these are almost similar up to 99% in all humans (Kidd, et 

al., 2008). 

The very first time DNA was characterized by Friedrich Miescher in 1869 during 

the analysis of constituents of the cell (Dahm, 2004). And then in 1915 Phoebus Levene 

described the structure of the fundamental unit of DNA, called nucleotide (Levene, 

1915).  In 1953, James Watson and Francis Crick discover the double helical structure of 

DNA and in this study they explained the probable pairing of adenine (A) with thymine 

(T) and cytosine (C) with guanine (G) (Watson & Crick, 1953). This discovery was the 

extension of Erwin Chargaff assumption of that DNA has approximately equal amounts 

of the adenine (A)-thymine (T) and cytosine (C)-guanine (G). 
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2.2 Genetic Variation 

Despite of all the similarities in the book of genome among human species, every 

individual‟s genome is slightly different from each other. Although all rules would still 

apply e.g. E. Chargaff‟s rule, but the two genome sequences would not match exactly 

base to base. Inheritance of variations in genome leads to difference in phenotypes which 

can increase the risk of disease and may environmental behavior. The common types of 

genetic variations are: Mutations, Genetic rearrangements and Polymorphisms. Mutations 

are the variations which present at the level of DNA in which random changes could 

happen to one or more base pairs. Genetics rearrangements happen at chromosome level 

in which deletions and insertions of DNA sequences take place in chromosomes. 

Polymorphisms are variations which present in each individual DNA but these are not 

mutations. These single base variations or differences are referred as alleles. This is 

mostly present in two forms Single Nucleotide Polymorphisms and Copy number 

variations (Rotimi & Jorde, 2010). Even after the rigorous studies of almost a decade the 

compendium of causal variants or SNPs is not complete, and this proves the need of 

introduction of new aspects of Genome Wide Association Studies over the wide range of 

populations (Rotimi & Jorde, 2010). 

2.2.1 Allele 

An Allele is one of the two or more variants of the gene. The entire genome of humans 

has two copies of it in each cell, which is called as the diploid state. One copy genome 

comes from mother and one comes from father. Therefore, an individual inherits two 

copies of each gene, which may have different phenotypic effects, called alleles. This 

inheritance is explained in Figure 2.3. There are two possibilities; if alleles are the same 
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then this is called as “homozygous” condition and if alleles are different then it is called 

as “heterozygous” condition. This can be explained by the condition that the same base 

pair position can be acquired by Cytosine in one individual and the same position can be 

acquired by Guanine in another individual. In this condition, the presence of two different 

nucleotides represents two alleles of same gene.  

 

Figure 2.3  Each individual inherits two copies of a gene called alleles from each of 

his/her parents. 
 

Out of the two alleles, one allele is always prevalent to another one in a particular 

population. The more frequent allele is often called as wild type and other allele is 

considered as mutation. Nevertheless, “mutation” is not the appropriate term for the less 

frequent allele because wild type or ancestral allele is not always the most frequent one. 

Therefore, “variation” will be the appropriate term should be used to describe the 

presence of alleles in genetics.  

 

Mother 
Allele 1 

Father 
Allele 2 

Child 
Genome 

Allele1 + Allele2 = Gene 
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2.2.2 Single Nucleotide Polymorphism 

Two or more than two variation of single DNA nucleotide at specific position among 

individuals is called SNPs. This can be explained as at a specific position one individual 

may have “A” in contrary of another individual who has “C”. 

    

SNP 
Position/ 

Person 

1 2 3 4 5 6 7 8 9 10 11 12 

John A T G A C G C C C T G A 

Joseph A T G A C G C C A T G A 

Thomas A T G A C T C C A T G A 

Michelle A T G A C G C C C T G A 

Acsede A T G A C T C C C T G A 

 

Figure 2.4  The two SNP positions 6th and 9th in different individuals have difference in 

nucleotides. At 6th position G/T is SNP and at 9th position A/C is the SNP. 

 

  This type of variation is considered as the most common form of variation in 

human genome as this contributes about 80% of the total variations (Levy, et al., 2007). 

Any two individuals may differ in their genomes at the frequency of approximately 1 

single nucleotide polymorphism in 1.9 kilobases (Sachidanandam, et al., 2001). SNPs are 

present throughout the genome, irrespective of coding and non-coding DNA (Musunuru, 

et al., 2010). In the matter of fact that SNPs are also present in non-coding DNA, the 

further study of SNPs association will be more complex. 
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CHAPTER 3 

DATA SIMULATION AND METHODOLOGY 

3.1 Data Simulation 

Whole genome case-control study datasets for this work are simulated by GWAsimulator 

(Li & Li, 2007). GWAsimulator is a based on C++. This program uses user specified 

disease model to produce whole genome case-control SNPs data. It simulates one causal 

SNP at each disease locus of the described disease model genotyped Single Nucleotide 

Polymorphisms chips data on the basis of rapid moving-window algorithm (Durrant, 

Zondervan, Cardon, Hunt, Deloukas, & Morris, 2004). This program takes phased 

genotypes as input and the output is based on local linkage disequilibrium (LD) patterns 

of the input data. For this study we used HapMap project (International Human Genome 

Sequencing Consortium, 2001) phased genotype of HapMap CEU population sample 

(Utah residents with Northern and Western European ancestry from the CEPH) which 

consists 120 phased autosomes for 90 individuals. 

The simulation program precisely follows the LD pattern of the input data. For the 

data generation of 2000 cases and 2000 controls, window size 5 is selected. Seven disease 

locus are specified, one causal SNP per chromosome, with disease prevalence of 0.1 to 

0.01. The information of disease loci like chromosome number, SNP position, disease 

variant allele, genotypic relative risks and start and end positions is given in Table 3.1. 

The multiplicative genetic model is used with the relative risk of 1.5. Approximately 

1000 to 2000 SNPs are simulated around the causal SNP, which gives the total simulation 

of around 19000 SNPs. 
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Table 3.1  Description of Disease Model used for Simulation 

Locus Chromosome 

Number 

SNP 

Position 

Disease 

Variant 

Allele 

Genotype 

Relative 

Risk 

Start 

Position 

End 

Position 

1 2 10714 0 1.5 10000 12000 

2 6 4322 1 1.5 3000 5000 

3 11 9067 1 1.5 8000 10000 

4 18 9659 1 1.5 6000 10000 

9 19 2885 1 1.5 1000 4000 

6 20 3357 0 1.5 1000 5000 

7 23 7607 0 1.5 7000 9000 

 
 

For this study we simulated five training datasets with disease prevalence of 0.1, 

0.075, 0.05, 0.025 and 0.01 respectively, with all the parameters same as above specified. 

Five test datasets are simulated to calculate the disease risk prediction accuracy with all 

parameters same and respective values of disease prevalence, as of training dataset 

simulation are used, except that of number of subjects, i.e. 200 cases and 200 controls.  

The GWAsimulator can provide the data output in three formats namely linkage, 

genotype and phased data. For this work genotype output format is selected, in which the 

datasets are kind of matrix where each column represents SNPs and each row represents 

an individual with genotype 0, 1 and 2, which tells the number of copies of allele 1 (as 

alleles have two copies per SNP position, “1” = allele 0 and “2” = allele 1).  The whole 

representation of genotypic data is explained in Appendix A. 
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3.2 Methodology 

The two important and challenging problems in Genome wide association studies are 

prediction accuracy and interpretation. This work is basically focused over the prediction 

of classification accuracy of the statistical models created by four machine learning 

algorithms. In this work two-stage testing is applied which was proposed by Van Steen 

(Steen, et al., 2005) is used. The two-stage testing approach is basically have two 

statistically independent steps, first is the screening or filtering step and the second is 

testing or prediction step (Murphy, Weiss, & Lange, 2010). Previous studies shows that 

the application of two-stage analysis by using Chi-square statistics for SNP ranking i.e. 

for screening step and then application of other testing methods over highly ranked SNPs, 

improves the ranking and stability of SNP (Roshan, Chikkagoudar, Wei, Wang, & 

Hakonarson, 2011).  Chi-square statistics is the most commonly applied method over the 

Genome Wide Association data till yet (Wang, Chen, & Zhang, 2010) (Jewell, 2003). 

There are lots of other machine learning approaches which have also been applied on the 

case-control study of Genome Wide Association Studies like classification and regression 

trees (CART) of (Breiman, 2001) (Uriarte & Andres, 2006) (Roshan, Chikkagoudar, Wei, 

Wang, & Hakonarson, 2011), Support Vector Machines (SVM) (Vapnik, 1998) (Guyon, 

Weston, Barnhill, & Vapnik, 2002), Neural Networks (NN) (Bishop, 1995) and many 

more. Another quality control issue is to control Type 1 error or family-wise error rate in 

these studies, which occurs due to increment in chance of false discoveries in multiple 

testing scenarios. There are many methods which have been used to control family-wise 

error rate in previous studies (Duggal, Gillanders, Holmes, & Bailey-Wilson, 2008) like 

permutation testing (Dudbridge, 2006), false discovery rate (Benjamini & Hochberg, 
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1993), Bayesian factors (Marchini, Howie, Myers, Myers, & Donnelly, 2007) and 

Bonferroni correction (Duggal, Gillanders, Holmes, & Bailey-Wilson, 2008). Among 

these Bonferroni correction is the most applied method but this has some limitations by 

considering all the SNPs independent.  

In this study 2-df chi-square statistics and holm‟s procedure is used for the 

screening step of the two-stage process.  The SNPs are ranked with 2-df chi-square 

statistics with the help of GWAsimulator incorporation of user specific “dataanalysis”   

function. And then according to results of the application of Holm‟s procedure top ranked 

SNPs are screened from each dataset for further statistical analysis. Further, Logistic 

Regression, Recursive Partitioning and Naïve Bayes Classifier are applied on the 

screened dataset for the prediction of classification accuracy, at testing step of the study.  

3.2.1 Logistic Regression 

Logistic regression is the parametric form of statistical methods which has been 

extensively applied in the field of Genome Wide Association studies (Albert & Zhang, 

1984) (Park & Hastie, 2007). Despite of the presence of many methods which can be 

used as test for association studies, logistic regression proved to be the consistent and 

reliable method to predict the association of causal variants and phenotype in case-control 

studies (Nagelkerke, Smits, Cessie, & Houwelingen, 1997).  Basically, logistic regression 

is often used in the presence of dichotomous response variable. The logit function can be 

described as follows: 

              (    )     
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In logistic regression structure, binary trees represent prediction models, where 

leaves signifies the variables used in prediction and nodes of the tree are binary 

expressions. Logistic regression frames the classifiers by simulating the prognostic 

combinations of dichotomous variables. Its primary aim is to predict the non-linear and 

additive interactions among the binary features for prediction (Ruczinski, Kooperberg, & 

LeBlanc, 2003).  

3.2.2 Recursive Partitioning (rpart)/CART 

Recursive partitioning is the technique which is adopted by many of the classification 

algorithms. The Classification and Regression trees method, which are popularly called 

as CART, is one of the most important among them (Breiman, Friedman, Stone, & 

Olshen, 1984). Each tree in CART method is based on recursive partitioning principle. 

Classification and regression trees have been applied to wide range of data mining 

problems (Hastie, Tibshirani, & Friedman, 2001).  

In this thesis work recursive partitioning is applied with the help of routine rpart 

in R (Therneau & Atkinson, 2011). The rpart routine uses a two stage procedure to 

structure general classification and regression models. Classification models which are 

generated by rpart represented as binary tree. In the first stage of the application; the 

algorithm adopts stepwise procedure to build the complex tree. In the process of building 

a tree, the splitting criterion is to decrease the risk. Let‟s say if a node A is split into two 

nodes B and C, then criteria is described as follows, 

 ( ) ( )   ( ) ( )   ( ) ( ) 

 The correctness and accuracy of the first stage is predicted by node impurity like 

Gini index or entropy. The splitting process continues till the daughter nodes cannot be 



26 

 

 

 

dividing further (Zhang, Wang, & Chen, 2009). And in the second stage of the 

application; the algorithm trims back the whole tree by using cross-validation techniques. 

This is done by sequential regression and stop at when F-test cannot achieve a particular 

level of significance (α). The best value for α is chose by cross-validation technique. 

3.2.3 Naïve Bayes Classifier 

Naïve Bayes classifier (Tan, Steinbach, & Kumar, 2006)works on the assumption that 

feature vector is independent of the class.  Even though it has been always observed that 

assumption of independence proved inefficient, but Naïve Bayes Classifier has given 

remarkable accuracy in many prognostic applications, like in the field of classification of 

text, diagnostics in medical field and performance management of systems (Domingos & 

Pazzani, 1997), (Hellerstein, Thathachar, & Rish, 2000), (Mitchell, 1997). Basically it 

estimates the conditional probability of class by assuming that features are conditionally 

independent: 

 (  )⁄   ∏  (   )⁄
 

   

 

 
Where, X = (         ), represents the feature vector, n is the number of 

feature variables in the model and C represents the class (Positive and Negative in binary 

classification problem). The probability of the feature class is predicted by  (  )⁄ , in 

this thesis work it is determined by the training datasets of cases and controls. This 

algorithm assumes that the distribution of variables is normal. The Naïve Bayes classifier 

calculates the posterior probability of each class, symbolizes as   : 

 



27 

 

 

 

 (   ⁄ )   (  ) ∏  (    ⁄

     

)  ( ) 

Where   (   ⁄ ) represents the posterior probability of class   ,  (    ⁄ ) 

represents the class-conditional probability of feature j,  (  ) represents the prior 

probability of the class   , and P(x) represents the prior probability of x. As the prior 

probability of x is fixed for all the value of ω, the classifier chooses that particular value 

of class or ω that maximizes the numerator.  

Naïve Bayes classifier has its own simple approach to compute the classification, 

robust to background noise and good in feature selection by disregarding the irrelevant 

features (Tan, Steinbach, & Kumar, 2006). At the same place, its assumption that each 

feature set has normal distribution and those features are independent of each other are 

the disadvantage of Naïve Bayes Classifier. 
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CHAPTER 4 

RESULTS 

4.1 Datasets  

As described in Chapter 3, in this thesis five training datasets are simulated to train the 

models of the four classification algorithms. The classification models of the following 

algorithms, Logistic Regression, Recursive Partitioning and Naïve Bayes are trained on 

each dataset separately. Each training dataset has 2000 cases and 2000 controls, so total 

4000 individuals. From now on these five datasets will be referred as Dataset1, Dataset2, 

Dataset3, Dataset4 and Dataset5, respectively. Also, five test dataset containing 200 cases 

and 200 controls are simulated respective to the training dataset. After the first screening 

stage, the resultant datasets have the following number of SNPs, shown in Table 4.1. 

Table 4.1  Resultant Number of SNPs Dataset After the Application Chi-square Statistics      
and Holms Procedure at the Screening Level 

Name of Dataset Number of SNPs  

Dataset 1 149 

Dataset 2 164 

Dataset 3 152 

Dataset 4 155 

Dataset 5 171 

       In this thesis work, the classification accuracy is calculated in terms of the area under 

the ROC (Receiver Operating Curve) on the five datasets separately. The AUC (Area 
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Under the Curve) values of the test data prediction of classification algorithms at 100%, 

75%, 50% and 25 % of top ranked SNPs also compared.  

4.1.1 Receiver Operating Curve 

Receiver Operating Curve methodology has been applied to many practical problems of 

classification since 1950 (Green & Swets, 1966) (Metz, 1986). The ROC curve has been 

proved the best tool to measure the discriminative and classification ability of the 

algorithm. The ROC curve is a curve between the classification‟s true positive rate 

(Sensitivity) and false positive rate (1- Specificity). The ROC accumulates all possible 

combination of Sensitivity and Specificity, and hence it gives a comprehensive review of 

a classifier‟s discriminative accuracy over the whole possibilities of the scenario. 

4.1.2 Area under the ROC Curve (AUC) 

AUC is most promising indexes among the other summary indexes of the Receiver 

Operating Curve. The AUC is connected to two most important statistics: Mann-Whitney 

statistic and P (     ). Where, Mann-Whitney statistic gives a non-parametric way to 

estimate the area under the ROC curve with the standard error. And, P (     ) defines 

for AUC as the probability of randomly chosen cases ranked higher than the randomly 

chosen control subject (Hanley & McNeil, 1982). The most important thing here which 

makes AUC as most reliable statistic is that it considers average value of True Positive 

Rate (Sensitivity) over the complete range of False Positive Range (1-Specificity).
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4.2 Individual Application of Algorithms 

The four machine learning algorithms are applied on the five datasets individually and 

the prediction accuracy as the AUC value is calculated on the 100%, 75%, 50% and 25% 

of SNPs. The average AUC value is calculated for all the five datasets at 100 % of SNPs, 

75% of SNPs, 50% of SNPs and 25% of SNPs separately to estimates the classification 

accuracy of algorithms at different number of SNPs. The application of the following 

tools Logistic Regression, Recursive Partitioning and Naïve Bayes Classifier is done in 

R. The source code for R is provided in Appendix B. The functions which are used for 

creating the models are described in the Table 4.2. Table 4.3 lists the R packages required 

for the each tool and also the common packages for other estimations.  

Table 4.2  R Functions used to Create Model on the Training Data 

Machine Learning Algorithm Function of R 

Logistic Regression glm 

Recursive Partitioning rpart 

Naïve Bayes Classifier 

 

 

naiveBayes 
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Table 4.3  R Packages used in the Study 

R Packages Description 

DESIGN Regression Modeling 

e1071 Misc. Functions of Department of 

Statistics for Naïve Bayes Classification 

gllm Generalized log-linear model 

glm2 Fitting Generalized Linear Models 

gplots Plotting of Data 

gtools Basic functionality tools 

MASS Support functions and dataset 

ROCR Visualizing performance of scoring 

classifiers 

rpart Recursive Partitioning 

 

4.2.1 Logistic Regression Results 

Logistic Regression model classifies the test dataset with fairly high AUC values. Almost 

all the dataset are following the same pattern in the AUC values for different number of 

SNPs. It is observed that Logistic Regression gives the highest AUC values at 75% of 

SNPs. It gives average AUC value of 0.729632 at 100% of the SNPs, 0.738643 which is 

highest at 75% of SNPs, 0.733541 at 50% of SNPs and 0.706394 at 25% of SNPs. Table
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 4.4 list the AUC values for each dataset at different number of SNPs with average AUC 

values. And, figure 4.1 shows the difference in AUC values at different number of SNPs.    

Table 4.4  List of all the AUC Values for Logistic Regression 

Percentage 
of SNPs 

DATASET1 
AUC 

VALUES 

DATASET2 
AUC 

VALUES 

DATASET3 
AUC 

VALUES 

DATASET4 
AUC 

VALUES 

DATASET5 
AUC 

VALUES 

AVERAGE  
AUC 

VALUES 

100 0.7189464 
 

0.7202455 
 

0.7185465 
 

0.7555652 
 

0.7348556 
 

0.729632 

75 0.7198683 
 

0.7298855 0.7581559 0.7588455 0.7264598 0.738643 

50 0.7184816 0.7250758 0.7411554 0.7593560 0.7236341 0.733541 

25 0.6784452 

 

0.7104564 0.7324498 0.7330510 0.6775686 0.706394 

 

 
 

Figure 4.1  Graphical representation of Average AUC values at different number of 
SNPs for Logistic Regression.
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4.2.2 Recursive Partitioning 

Recursive Partitioning model classifies the test dataset with fairly high AUC values but 

comparatively lower than logistic regression. Almost all the dataset are following the 

same pattern in the AUC values for different number of SNPs. It is observed that 

Recursive Partitioning gives the highest AUC values at 75% of SNPs. It gives average 

AUC value of 0.698692 at 100% of the SNPs, 0.711312 which is highest at 75% of 

SNPs, 0.709135 at 50% of SNPs and 0.689681 at 25% of SNPs. Table 4.5 list the AUC 

values for each dataset at different number of SNPs with average AUC values. And, 

figure 4.2 shows the difference in AUC values at different number of SNPs.    

Table 4.5 List of all the AUC Values for Recursive Partitioning 

Percentage 
of SNPs 

DATASET1 
AUC 
VALUES 

DATASET2 
AUC 
VALUES 

DATASET3 
AUC 
VALUES 

DATASET4 
AUC 
VALUES 

DATASET5 
AUC 
VALUES 

AVERAGE  
AUC 
VALUES 

100 0.6262709 0.6836918 0.7187203 0.7085345 0.7562431 0.698692 

75 0.6347955 0.7022565 0.7298123 0.7198512 0.7698454 0.711312 

50 0.6300086 0.7156654 0.7199965 0.7124651 0.7675412 0.709135 

25 0.6095652 0.6802354 0.7100245 0.6984552 0.7501248 0.689681 
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Figure 4.2  Graphical representation of Average AUC values at different number of 

SNPs for Recursive Partitioning. 

 

4.2.3 Naïve Bayes Classifier 

Naïve Bayes Classifier model classifies the test dataset with moderate AUC values which 

are comparatively lower than Logistic Regression and Recursive Partitioning 

classification algorithm. Almost all the dataset are following the same pattern in the AUC 

values for different number of SNPs. It is observed that Naïve Bayes Classifier gives the 

highest AUC values at 75% of SNPs. It gives average AUC value of 0.53753 at 100% of 

the SNPs, 0.542118 which is highest at 75% of SNPs, 0.538542 at 50% of SNPs and 

0.536684 at 25% of SNPs. Table 4.7 list the AUC values for each dataset at different 

number of SNPs with average AUC values. And, figure 4.4 shows the difference in AUC 

values at different number of SNPs. 
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Table 4.6  List of all the AUC Values for Naïve Bayes Classifier 

Percentage 
of SNPs 

DATASET1 
AUC 
VALUES 

DATASET2 
AUC 
VALUES 

DATASET3 
AUC 
VALUES 

DATASET4 
AUC 
VALUES 

DATASET5 
AUC 
VALUES 

AVERAGE  
AUC 
VALUES 

100 0.5386914 0.5124555 
 

0.5189625 
 

0.5555958 
 

0.5619432 0.53753 

75 0.5421558 
 

0.5247845 0.5581712 0.5588509 0.5266294 0.542118 

50 0.5401578 

 

0.5283762 0.5411754 0.5593721 0.5236303 0.538542 

25 0.5298722 

 

0.5104656 0.5324214 0.5330846 0.5775748 0.536684 

 

 

 

Figure 4.3 Graphical representation of Average AUC values at different number of SNPs 

for Naïve Bayes Classifier. 
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4.3 Comparative Analysis of all the four machine learning algorithms 

Logistic Regression algorithm performed best among the other four tools which have 

been used in this thesis work over the simulated dataset. The Recursive Partitioning 

algorithm is also performed somewhere equivalent to the Logistic Regression. The 

Logistic Regression got highest value of overall AUC value that is 0.727052; overall 

AUC value for Recursive Partitioning is 0.702205; and overall AUC value for Naïve 

Bayes Algorithm is 0.53871853. Table 4.8 lists the values of overall AUC values of the 

four Machine Learning Algorithms used in this thesis work. 

As described earlier and also we can observe it from the figure 4.1, 4.2, 4.3 and 

4.4 that average value of AUC for all the four machine learning algorithms peaked at 

75% of SNPs. Therefore it shows that all the four classifiers are performing better with a 

particular number of SNPs. Figure 4.5 shows the overall performance of all the tools over 

the simulated datasets. 

Table 4.7  Overall AUC Values of Four Machine Learning Algorithms 

Machine Learning Algorithms Overall AUC values 

Logistic Regression 0.727052 

Recursive Partitioning 0.702205 

Naïve Bayes Algorithm 0.538718 
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Figure 4.4  Graphical representation and comparison of Average AUC values at different number of SNPs for Logistic  Regression, 

Recursive Partitioning and Naïve Bayes Classifier. This shows that Logistic Regression performed best among the all, and Recursive 

Partitioning performed almost similar to it. Naïve Bayes Classifier is comparatively lower than the above mentioned two tools.   
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CHAPTER 5 

           CONCLUSION  

 

It has been shown that the Logistic Regression using binary model with classification 

function with a target variable SNPs set is a superior predictor of cases and controls in 

test dataset as compared with other classification models under study. Logistic regression 

is more sensitive over the whole range of specificity which is clearly shown by the area 

under the receiver operating curve. The two-stage testing which is used in this work can 

be compared to other testing criteria and can be refined by implementation of other 

features. 

This Classification strategy can be tested on the real data to see the classification 

accuracy in it. And also can be applied to other case-control studies in genetics and 

medical field to see its performance on class prediction. Also the performance can be 

elevated by using some better screening techniques and other quality control measures, as 

we observed the better values of AUC for particular set ranked SNPs. The combination of 

other screening and testing strategies can be used to improve the classification accuracy.
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 APPENDIX A 

BASICS OF STANDARD NUMERICAL ENCODING OF SNPS AND                         

SNP GENOTYPING 

The GWAsimulator uses standard method of encoding of SNP genotypic data is based on 

the method of Principal Component Analysis (Edwarde, 2003), which is initially applied 

to genetic data for population stratification (Price, Patterson, Plenge, Weinblatt, Shadick, 

& Reich, 2006). Genotyping of Single nucleotide polymorphism is the procedure to 

transform the SNPs alphabetical data to numerical data for statistical, mathematical and 

computational applications (Gunderson, et al., 2006). The SNP genotypic data is a matrix 

in which each column is SNP and each is an individual. Each SNP has two copies of 

alleles represents as first copy is “allele 0” and second copy is “allele 1”. Let‟s assume 

“allele 0” as “A” and “allele 1” as “B”. So, the total possibilities of the combination of 

alleles at one position are AA, AB and BB. 

The main idea behind this conversion of data is that we have to consider SNPs in 

alphabetical order. Let say if A/B is the SNP name which is in alphabetical order then to 

change it in numerical data we have to count the number of time B appears in a SNP. 

Suppose we have several SNPs positions for different subjects in our data for 

consideration and also we have the SNP name according to their real and replaced 

nucleotides. This alphabetical name is then transformed to numerical data by counting the 

number of allele 1 i.e. “B” (which comes later in alphabetical order). The final 

conversion of the data for all three possibilities is given in the following Table A.1 and 

Table A.2. 
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Table A.1  Numerical Encoding of Genomes 

Allele Combination Numeric Genotype Reason 

AA 0 Number of ―allele 1‖ or B is 0 

AB 1 Number of ―allele 1‖ or B is 1 

BB 2 Number of ―allele 1‖ or B is 2 

 

Table A.2  Real Time Scenario of SNP Genotyping 

 SNP Name A/T   C/T   G/T    …    A/T    C/T    G/T... 

Individual 1 AA     TT     GG    …       0        2        0 … 

Individual 2 AT      CC     GT    …      1        0        1 … 

Individual 3 AA      CT     GT    …       0        1        1 ... 

 



 
 

41 

 

APPENDIX B 

SOURCE CODE FOR IMPLEMENTATION OF CLASSIFICATION 

ALGORITHMS IN R 

The following code is the implementation of the Logistic Regression, Recursive 

Partitioning and Naïve Bayes Classifier in R. Here it is provided for Dataset1 for 100% of 

SNPs. 

B.1 Logistic Regression 

 

DATASET1 

> train01<-read.table("train1") 

>y<-c(rep(0,2000),rep(1,2000)) 

>names(train01) 

>attach(train01) 

>train01.logr<-glm(y ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 + 

V12 +   V13 + V14 + V15 + V16 + V17 + V18 + V19 + V20 + V21 + V22 + V23 + V24 

+ V25 + V26 + V27 +  V28 + V29 + V30 + V31 + V32 + V33 + V34 + V35 + V36 + 

V37 + V38 + V39  +V40 + V41 + V42 + V43 + V44 + V45 + V46 + V47 + V48 + V49 + 

V50 + V51 + V52 + V53 + V54 + V55 + V56 + V57 + V58 + V59 + V60 + V61 + V62 + 

V63 + V64 + V65 + V66 + V67 + V68 + V69 + V70 + V71 + V72 + V73 + V74 + V75 + 

V76 + V77 + V78 + V79 + V80 + V81 + V82 + V83 + V84 + V85 + V86 + V87 + V88 + 

V89 +  V90 + V91 + V92 + V93 + V94 + V95 + V96 + V97 + V98 + V99 + V100 + 

V101 + V102 + V103 + V104 + V105 + V106 + V107 + V108 + V109 + V110 + V111 + 

V112 + V113 + V114 + V115 + V116 + V117 + V118 + V119 + V120 + V121 + V122 + 



42 

 

 

 

V123 + V124 + V125 + V126 + V127 + V128 + V129 + V130 + V131 + V132 + V133 + 

V134  + V135  + V136  + V137 + V138 + V139 + V140 + V141 + V142 + V143 + V144 

+ V145 + V146 + V147 + V148 + V149, family=binomial("logit")) 

> test01<-read.table("test1") 

 >predictiontest01=predict(train01.logr,test01) 

> prediction01<-inv.logit(predictiontest01) 

 >ytest01<-c(rep(0,200),rep(1,200)) 

 >pred01<-prediction(prediction01,ytest01) 

 >auc01<-performance(pred01,measure="auc") 

 >auc01.75<-performance(pred01.75,measure="auc") 

 >auc01.50<-performance(pred01.50,measure="auc") 

 >auc01.25<-performance(pred01.25,measure="auc") 

 

B.2 Recursive Partitioning 

 

 
DATASET1 

> train01<-read.table("train1") 

 >y<-c(rep(0,2000),rep(1,2000)) 

 >names(train01) 

 >attach(train01) 

>train01.rpart<-rpart(y ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 

+ V12 + V13 + V14 + V15 + V16 + V17 + V18 + V19 + V20 + V21 + V22 + V23 + V24 

+ V25 + V26 + V27 +  V28 + V29 + V30 + V31 + V32 + V33 + V34 + V35 + V36 + 

V37 + V38 + V39  +V40 + V41 + V42 + V43 + V44 + V45 + V46 + V47 + V48 + 
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V49 + V50 + V51 + V52 + V53 + V54 + V55 + V56 + V57 + V58 + V59 + V60 + V61 + 

V62 + V63 + V64 + V65 + V66 + V67 + V68 + V69 + V70 + V71 + V72 + V73 + V74 + 

V75 + V76 + V77 + V78 + V79 + V80 + V81 + V82 + V83 + V84 + V85 + V86 + V87 + 

V88 + V89 +  V90 + V91 + V92 + V93 + V94 + V95 + V96 + V97 + V98 + V99 + V100 

+ V101 + V102 + V103 + V104 + V105 + V106 + V107 + V108 + V109 + V110 + V111 

+ V112 + V113 + V114 + V115 + V116 + V117 + V118 + V119 + V120 + V121 + V122 

+ V123 + V124 + V125 + V126 + V127 + V128 + V129 + V130 + V131 + V132 + V133 

+ V134  + V135  + V136  + V137 + V138 + V139 + V140 + V141 + V142 + V143 + 

V144 + V145 + V146 + V147 + V148 + V149, >train01,method="anova") 

>test01<-read.table("test1") 

>pred01rpart<-predict(train01.rpart,test01) 

>ytest01<-c(rep(0,200),rep(1,200)) 

>predict01rpart<-prediction(pred01rpart,ytest01) 

>auc01<-performance(predict01rpart,measure="auc") 

B.3 Naïve Bayes Classifier 

 

DATASET1 

> train01<-read.table("train1") 

 >y<-c(rep(0,2000),rep(1,2000)) 

>test01<-read.table("test1") 

>pred01rpart<-predict(train01.rpart,test01) 

 >names(train01) 

 >attach(train01) 
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>train00.nb<-naiveBayes(y ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + 

V11 + V12 + V13 + V14 + V15 + V16 + V17 + V18 + V19 + V20 + V21 + V22 + V23 + 

V24 + V25 + V26 + V27 +  V28 + V29 + V30 + V31 + V32 + V33 + V34 + V35 + V36 

+ V37 + V38 + V39  +V40 + V41 + V42 + V43 + V44 + V45 + V46 + V47 + V48 + V49 

+ V50 + V51 + V52 + V53 + V54 + V55 + V56 + V57 + V58 + V59 + V60 + V61 + V62 

+ V63 + V64 + V65 + V66 + V67 + V68 + V69 + V70 + V71 + V72 + V73 + V74 + V75 

+ V76 + V77 + V78 + V79 + V80 + V81 + V82 + V83 + V84 + V85 + V86 + V87 + V88 

+ V89 +  V90 + V91 + V92 + V93 + V94 + V95 + V96 + V97 + V98 + V99 + V100 + 

V101 + V102 + V103 + V104 + V105 + V106 + V107 + V108 + V109 + V110 + V111 + 

V112 + V113 + V114 + V115 + V116 + V117 + V118 + V119 + V120 + V121 + V122 + 

V123 + V124 + V125 + V126 + V127 + V128 + V129 + V130 + V131 + V132 + V133 + 

V134  + V135  + V136  + V137 + V138 + V139 + V140 + V141 + V142 + V143 + V144 

+ V145 + V146 + V147 + V148 + V149 + V150 + V151 + V152 + V153 + V154 + V155 

+ V156 + V157 + V158 + V159 + V160 + V161 + V162 + V163,train00) 

> predict01nb<-predict(train01.nb,test00,type="raw") 

> predictiontest01nb<-predict01nb[,1] 

> prediction01nb<- inv.logit(predictiontest01nb) 

>ytest01<-c(rep(0,200),rep(1,200)) 

> pred01nb<-prediction(prediction01nb,ytest01) 

> auc01nb<-performance(pred01nb,measure="auc") 

> auc01nb 
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