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ABSTRACT 

REDUCING THE RISK OF 
 SOFTWARE COST ESTIMATION 

by 
Shixian Yang 

Inaccurate cost estimation is a well-known problem in software development. The 

common cost estimation models are point estimates that are unable to quantify 

uncertainties. Furthermore, it is difficult to calibrate the uncertainties in cost estimation 

due to the lack of information. The purpose of this thesis is to prove that probability 

techniques could be synthesized into COCOMO (Constructive Cost Model) to quantify 

uncertainties. Another aim is to find out how to get more insight on reducing the risk of 

cost estimation. In this thesis, some historical data is presented to show the variance in 

factors of COCOMO. Monte Carlo simulation method is also introduced into COCOMO 

to quantify the uncertainties. Finally, a “What-if” study is facilitated to find the potential 

factor changes to affect the result of simulation. The result of the study reveals that 

process maturity has more influence than productivity on reducing variance of estimation. 

It indicates that synthesizing Monte Carlo simulation and “What-if” studies into 

COCOMO could produce insightful information to reduce the risk of software cost 

estimation. 
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CHAPTER 1  

INTRODUCTION 

1.1  Purpose 

The risk in estimating software engineering costs, schedule and reliability has been a big 

problem in the software industry in recent years. Many people are seeking a way to find 

variance in estimation. The purpose of the thesis is to find an effective method to reduce 

the variance.  The first step is to determine the feasibility of computing the variance for 

statistics used in software estimation. If it is proved that computing the variance for the 

variety of random variables and their distributions is feasible, then it can facilitate “What-

if” studies to explore potential resource changes to improve the likelihood of meeting 

software project commitments. For example, it can be determined how much computed 

variance may be reduced from a certain investment on staff training. Then the manager 

could make a decision that whether or not to invest more resources on staff training or not. 

Therefore, variance analysis can help provide more information if it is introduced to the 

traditional point estimates. Overall, the thesis will utilize Monte Carlo simulation with 

COCOMO to calculate variance of cost estimation and facilitate “what-if” studies to 

reduce risk.   

1.2  Scope 

A.  Estimation theories in Boehm’s approach to Software Estimation 
 
Software cost estimation is very complicated because it involves many factors and 

uncertainties. Barry Boehm introduces an approach named Constructive Cost Model 
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which relates software development efforts to source lines of code. Combined with other 

cost drivers, COCOMO becomes a very pragmatic tool for software estimation. Boehm’s 

basic COCOMO is introduced to the thesis first. Though it is an early model from the 

1980s and the data is outdated compare to its late models, it is necessary to understand 

because it shows the basic idea of Boehm’s theory in COCOMO. Meanwhile, it will 

include the study of Boehm’s risk analysis, as it is very important to find the upper bound 

and lower bound of variance. The thesis will be mainly based on the data from 

COCOMO II. COCOMO II has made many improvements from COCOMO 81 which 

reflects the latest study from Boehm’s work, and it is the core theory used in my thesis. 

To summarize, in Boehm’s theory, size, productivity and scale factors determine how 

much effort and time a software project will cost. Of course productivity is quite 

complicated because it is also affected by many other factors. However, the basic 

estimation process is very clear: size the project with Function Point or other methods, 

estimate the productivity with experience or historical data, and combine with the cost 

drivers in final calculation.  

B.  Software Project Management 
 
Software cost estimation is the most important and difficult part of Software Project 

Management. Because cost estimation is involved in the entire process of Software 

Project Management, it is necessary to understand the relationship between estimation 

and Software Project Management.  

C.  Monte Carlo simulation and implementation of its tools 
 
Monte Carlo simulation can help people to find the variance of cost estimation. The 

method has been widely used in the financial industry, but it is merely used in software 
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cost estimation. This thesis will discuss its feasibility in software estimation and 

implementation in sample issues. 

D.  “What-if” studies on reducing risk of cost estimation  
 
There are many potential factors that could affect the risk of cost estimation but their 

effects are not quantifiable. A “What-if” study can produce a quantified result of factor 

changes to help people reduce the risk. 
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CHAPTER 2  

OVERALL DESCRIPTION 

2.1  Study Perspective 

“Being able to accurately estimate software deliverables in terms of 
schedule, scope, and quality is a prized objective for software 
development teams and management. Any company that relies on 
software to help drive revenue, either directly or indirectly, needs to be 
able to trust the estimation capability of its software development group. 
Business leaders directly correlate revenue projections to software features, 
so delivering on time with committed scope and quality will provide better 
budget projections to the company and its stakeholders. I’ve been involved 
with large software development companies whose business departments 
do not trust the development organizations, and it was not pretty.”      

       by Neil Fox, The Two Metrics that Matter [1] 
 

People need an accurate estimation method which can be trusted, such as COCOMO. 

Because COCOMO involves many factors in estimation, finding the relationship between 

these factors and COCOMO is very important to improve estimation procedure in 

software industry. Furthermore, introducing a Monte Carlo simulation to software 

estimation is significant in risk analysis. If it is feasible to implement Monte Carlo 

simulation in COCOMO, it may provide a solution to reduce estimation risk effectively.  

2.2  Study Procedures 

1. Study project management and estimation. 
Study the content of software project management and find out the relationship between 
project management and estimation. 
 
2. Study Boehm’s COCOMO. 
Study Barry Boehm’s COCOMO and his later COCOMO II to learn the usage of 
COCOMO and understand all the cost drivers in COCOMO 
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3. Discuss the risks from COCOMO. 
Find out the uncertainties of all factors used in COCOMO, including sizing, productivity, 
and cost drivers. 
 
4. Find the tool to calibrate risks. 
Search the tools which can run a Monte Carlo simulation on COCOMO and learn how to 
use them.  
 
5. Implement the tool on COCOMO. 
Design an appropriate plan according to the tool chosen to run the Monte Carlo 
simulation to get the result.  
 
6. Analyze with “what-if” studies and conclusions. 
Based on the result from the simulation, establish the relationship between the factors and 
COCOMO. Then make the conclusion. 

2.3  Assumptions and Dependencies 

1. It is asserted that the COCOMO is correct based on its current data. 

2. It is asserted that all the probability software tools used in this thesis are working 
correctly. 
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CHAPTER 3  

PROJECT MANAGEMENT 

3.1  Introduction 

In the past few years, more and more people focus on project management in the software 

industry due to the high failure rate of software project. There is a common sense that the 

failure rate of software projects is between 40% - 70% and it varies on type, scale and 

many other features of the project. 

The Robbin-Gioia Survey (2001) reported that 51% viewed their ERP 

implementation as unsuccessful. Another report from The Conference Board Survey 

(2001) which interviewed executives at 117 companies that attempt ERP 

implementations gave a conclusion that 58% were “somewhat unsatisfied”, 8% were 

unhappy with what they got and 40% percent of projects failed to achieve within one year 

of going live [2]. 

What are the reasons for the failures of software projects and how to avoid the 

failure? It’s a complicated problem. There are factors that could cause a project to fail. 

The most common factors can be: 

“1.  Unrealistic or unarticulated project goals 

2.    Inaccurate estimates of needed resources 

3.    Badly defined system requirements 

4.    Poor reporting of the project's status 

5.    Unmanaged risks 

6.    Poor communication among customers, developers, and users 
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7.    Use of immature technology 

8.    Inability to handle the project's complexity 

9.    Sloppy development practices 

10.  Poor project management 

11.  Stakeholder politics 

12.  Commercial pressure”[3] 

There are several factors that relate closely to project management. In James 

McDonald’s theory, there are four major processes in software project management: plan, 

organize, monitor and control[4]. These processes are used sequentially, both forward 

and backward. The planning is the first and the most important process, which includes 

requirements, architecture and design phases of the software life cycle. It also requires 

determining how the project will be implemented, tested, deployed and maintained in the 

planning process. As a result, the planning process will cover the whole process of 

software project. The purpose of Organizing is to build a high-performance team and deal 

with the potential conflicts people may face. Monitoring is a process to find the 

deviations from the project plan, organized team and project status. There are many 

methods to monitor a project and the most common ways are seen as project meeting and 

Gantt chart. Controlling is closely related to monitoring because it will respond to the 

deviation generated by monitoring. For example, if team B is found to be behind of 

schedule in monitoring process, and then a solution is needed in controlling process such 

as change plan or team members.  



8 
 

 
 

3.2  Risk Management 

“Risk always involves uncertainty. The uncertainty is usually because there is some 

information lurking in the background that we do not know. They uncertainty involved in 

software development projects can affect us in either a negative way, in which case we 

will call it a risk, or it can affect our results in a positive way, in which case we will call it 

an opportunity.”[5] 

Risk Management is an important part of Project Management. The goal is to help 

the managers to make right decisions that minimize the risk and maximize the 

opportunity. Barry Boehm has given such decision rules for complete uncertainty in his 

book: 

“Maximin Rule: Determine the minimum payoff for each alternative. Choose the 

alternative which maximizes the minimum payoff. 

Maximax Rule: Determine the maximum payoff for each alternative. Choose the 

alternative which maximizes the maximum payoff. 

Laplace or Equal-Probability Rule: Assume all of the states of nature are equally 

likely. Determine the expected value for each alternative, and choose the alternative with 

the maximum expected value.”[6] 

How to quantify uncertainties? There are two quantitative techniques that can 

help with it: simulation and event analysis. The simulation methods such as Monte Carlo 

and Bayesian Network can help to find the probability of completing a certain task. The 

event analysis method can identify the risky events that could cause loss of the project, 

thus people can prepare the plan to deal with the expected loss. 
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3.3  Value of Estimation in Project Management 

Planning is one the most important processes in project management: good planning will 

lead to a successful project. However, good planning requires accurate estimation on the 

size of the project, the effort of staff power, cost and schedule. The goal of a good 

estimation is to provide the cost and schedule to the manager. If the actual cost of a 

project is out of budget, no matter how complete the product is, the project is regarded as 

failure because there is no profit. Similarly if the promised deliverables are late to meet 

its delivering date, it is still regarded as failure because the contract is not fulfilled and 

the stakeholder may sustain loss. In addition, monitoring and controlling processes are 

iterative and estimation is required between the processes to find the deviations from the 

plan. For the same example in 3.1, how to know a solution can fix the problem and make 

Team B catch up with the schedule? A re-estimation would be preferred in this case. 

Therefore, estimation is needed throughout the entire project management process. 
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CHAPTER 4  

RISKS IN ESTIMATION 

4.1  Estimation and COCOMO 

COCOMO (Constructive Cost Model) is an estimating model which presents the 

equations for calculating the effort and schedule required to develop a software product. 

Though COCOMO is considered as a successful estimating model, it still involves risks 

that shouldn’t be ignored.  

The Basic COCOMO 1981 consists of effort and schedule equations for organic, 

semidetached, and embedded modes of software development. (See table 4.1). 

Table 4.1  Basic COCOMO Effort and Schedule Equations 

Mode Effort Schedule 

Organic 2.4 (KDSI)1.05  2.5 (Staff Month)0.38  

Semidetached 3.0 (KDSI)1.12  2.5 (Staff Month)0.35  

Embedded 3.6 (KDSI)1.20  2.5 (Staff Month)0.32  

Source: Barry W. Boehm, Software Engineering Economics, p75, Prentice-Hall, INC., 1981[7]. 
 
 

KDSI stands for Thousands of Delivered Source Instructions. It means that the 

estimated effort will include the work of design, coding, testing, and integration. Though 

today people are using KLOC instead of KDSI, the meaning is still the same. However, 

Basic COCOMO is still limited when it is used on a complicated product. Thus 15 cost 

drivers are introduced to COCOMO 1981. These cost drivers are RELY (Required 

software reliability), VEXP (Virtual machine experience), LEXP (Programming language 

experience), ACAP (Analyst capability), AEXP (Applications experience), PCAP 

(Programmer capability), DATA (Data base size), CPLX (Product complexity),
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STOR (Main storage constraint), VIRT (Virtual machine volatility), TURN (Computer 

turnaround time), MODP (Modern programming practices), TOOL (Use of software 

tools), SCED (Required development schedule). 

To better suit for modern software projects, COCOMO II is developed. It updates 

the data in the model and makes the model more flexible.  

“The amount of effort in person-months, PM, is estimated by the formula: 

PMNS = A * SizeE * ∏  where E = B + 0.01 * ∏  

The amount of calendar time, TDEV, it will take to develop the product is 

estimated by the formula: 

TDEVNS = C * (PMNS) F where F = D + 0.2 * 0.01 * ∏  = D + 0.2 * (E - 

B)”[8] 

A = 2.94   B = 0.91   C = 3.67   D = 0.28 

EM = Effort Multipliers 

SF = Scale Factors 

Effort Multipliers are inherited from the cost drivers from COCOMO 81 and 

Scale Factors are new introduced in COCOMO II. The five Scale Factors are 

Precedentedness (PREC), Development flexibility (FLEX), Architecture/risk resolution 

(RESL), Team cohesion (TEAM), and Process maturity (PMAT).  

4.2  Sizing 

Sizing is the most significant factor that affects COCOMO. There are many sizing 

methods such as Source Lines of Code (SLOC), Function Point, Use Case Point, Object 

Point, UML Metrics, etc. No matter what sizing method is used, it involves uncertainty.  
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The point is how accurate it can be. 

“A Source Line of Code is generally meant to exclude nondelivered support 

software such as test drivers. However, if these are developed with the same care as 

delivered software, with their own review, test plans, documentation, etc., then they 

should be counted [Boehm 1981, pp.58-59]. The goal is to measure the amount of 

intellectual work put into program development. …For general source code sizing 

approaches, such as PERT sizing, expert consensus, analogy, top-down, and bottom-

up.”[9] Sometimes people even convert used source lines of code to equivalent new code 

to simplify the estimation process. In COCOMO’s reuse model, it is explained: 

AAF = 0.4(DM) + 0.3(CM) + 0.3(IM) 

ESLOC =ASLOC [AA+AAF (1+0.02(SU) (UNFM))]/100, for AAF <= 0.5 

ESLOC = ASLOC [AA + AAF (SU) (UNFM)]/100, for AAF>0.5 

AAF: Adaptation Adjustment Factor 

DM: Percentage of Design Modified 

CM: Percentage of Code Modified 

IM: Percent of Integration Required for Modified Software  

ASLOC: Adapted Source Lines of Code 

ESLOC: Equivalent Source Lines of Code 

AA: Assessment and Assimilation effort 

SU: Software Understanding 

UNFM: Unfamiliarity  
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Function Point counts the number of inputs, outputs, files, Inquiries, and 

interfaces of the application. The weight of each category can be evaluated based on the 

numbers. Table 4.2 shows the Unadjusted Function Point Complexity Weights. 

Table 4.2  UPF Complexity Weights 

 Complexity - Weight 

Function Type Low Average High 

Internal Logical Files 7 10 15 

External interfaces Files 5 7 10 

External Inputs 3 4 6 

External Outputs 4 5 7 

External Inquiries 3 4 6 

Source: Barry W. Boehm, Software Cost Estimation with COCOMO II, pp.19, Prentice-Hall, INC., 
2000[10] 
 
 

Unadjusted Function Points can be converted to Adjusted Function Points but it is 

not required in COCOMO. In COCOMO, it is preferred to relate UFPs to SLOC in the 

implementation language such as Java, C++, PHP, etc. According to the data from QSM, 

it will result in significant variation in the number of source statements per function point 

which refers to uncertainty or risks. (See Table 4.3). 
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Table 4.3  Function Point Languages Table 

Language QSM SLOC/FP Data 
David 
Consulting 
Data 

  Avg Median Low High   

ABAP (SAP) 18 18 16 20 - 

Access * 36 38 15 47 - 

Ada 154 - 104 205 - 

Advantage  38 38 38 38 - 

APS 86 83 20 184 - 

ASP * 56 50 32 106 - 

Assembler *  209 203 91 320 
575 Basic/ 
400 Macro 

C *  148 107 22 704 225 

C++ * 59 53 20 178 C++ * 

C# *  58 59 51 66 C# *  
Source: http://www.qsm.com/resources/function-point-languages-table[12] 
 
 

DCG (David Consulting Group) conducted a detailed study during 1999 to 

determine the cost and accuracy of various counting techniques. In Table 4.4, “the results 

indicate that it is not always practical or necessary to invest in full counting for a given 

project or application.” [13] 
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Table 4.4  Cost Comparisons for Function Point Counting 

 
Source: DCG, Software Sizing with Function Points, http://www.davidconsultinggroup.com[12].  

4.3  Small Team Productivity 

According to the equation of COCOMO, the coefficient represents the value of 

1/Productivity (KLOC/PM). In COCOMO II, the value is 2.94. It hints the average 

productivity is about 340 SLOC per PM. But productivity is influenced by many factors.  

First of all, productivity is influenced by project size. In Table 4.5, the projects are 

classified into four groups by their size. Low is small size and high is large size. “There is 

an increasing trend for productivity with size increasing. Median of productivity of the 

high group is more than three times larger than the low group. The median of 

productivity of the middle group is more than 1.8 times larger than the low group.”[14]  

Table 4.5  Basic Summary Data for The CSBSG Data 

 
Source: Hao Wang, Software Productivity Analysis with CSBSG Data Set, 2008[13]. 
 

Figure 4.1 also shows an increase in productivity as the project gets bigger. 

However, it is inappropriate to conclude that bigger projects are more productive. “The 
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effective productivity based on the new functionality and the work involved in redesign, 

reimplementation, and retest, forming an effective productivity.  Some studies leave out 

such detail.” [15] If the projects are not of ultra-size or they are enhancement projects that 

mainly involve in reuse work, the result will make sense. And there is another reason 

productivity may increase when project gets bigger: the learning curve effect. The 

developing team often improves during the project to get more maturity in their working 

process. 

 

 

Figure 4.1  Productivity – functions only vs. effective functions. 
Source: Dan Galorath, Software Staff Size Still Impacts Productivity: Brooks Law Lives!, 2010[15] 

 
Secondly, productivity is more likely impacted by the staff size. As Brooks Law 

stated, the staff gets bigger the productivity gets lower in Figure 4.2. 
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Figure 4.2  Productivity – Functions Only vs. Average Staff 
Source: Dan Galorath, Software Staff Size Still Impacts Productivity: Brooks Law Lives!, 2010[15] 

 
Furthermore, productivity is influenced by Project Type and Programming 

Language. (See Figure 4.3 and 4.4).  
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Figure 4.3   Boxplots of productivity for project groups classified by project type. N is 
the number of samples collected in a project type.  
Source: Hao Wang, Software Productivity Analysis with CSBSG Data Set, 2008[14] 

 
In Figure 4.3, New Development projects have larger range of productivity which 

means New Development projects have more uncertainties in productivity. 
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Figure 4.4 Boxplots of productivity for project groups classified by programming 
language. N is the number of samples collected in a programming language type. Red 
line is the median value and blue box represents the range of distribution of 50% of data. 
Source: Hao Wang, Software Productivity Analysis with CSBSG Data Set, 2008[14] 
 

4.4  Reliability 

“A software product possesses reliability to the extent that it can be 
expected to perform its intended functions satisfactorily. Quantitatively, 
we can define software reliability as a probability: the software performs 
its intended functions satisfactorily over its next run or its next quantum of 
execution time.”[16] 

 
Normally, reliability can be calculated with following steps: 

Choose N inputs or input sequences randomly from the probability distribution 

over the space of possible inputs or input sequences to the software. 

Execute the software N runs or a certain execution time with the inputs. 

Based on the success criterion to determine the M number of runs resulted in the 

satisfactory outputs. Meanwhile, collect the elapsed time between failures to calculate 

Mean Time to Failure. 

Calculate the estimator R = M/N.  
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Theoretically, estimator R should be constant when the code remains unchanged. 

“However, field experience shows that the software product failure rate often gets smaller 

with time, even when there are no code changes. This may be due to users learning to 

avoid the situations that cause failures or their using a small number of features.”[17] 

Apparently when the inputs are not randomly chosen, the result will not show the exact 

reliability. 

To improve reliability, all of the development phases need to be enhanced. But 

the phase weights are different: product design, 15%; detailed design, 30%; code and unit 

test, 30%; integration and test, 25%.[18] 

According to COCOMO II, the overall effort Multipliers for different Rating 

Levels of Reliability is 

Rating Levels Very Low Low Nominal High Very High 

Effort Multipliers 0.82 0.92 1.00 1.10 1.26 

 

As a result, a product requires very high reliability may cost 50% more effort than 

a product requires very low reliability. The effort may include the work on code 

inspection, unit test and program proving. 

4.5  Effects of the learning curve 

The effect of the learning curve shows that repetition of the same work results in higher 

productivity on that work. It is also effective in software development. If a development 

team begins working on a new applications domain and few people in the team are 

familiar with their new jobs, productivity will be relatively low. When they enhance their 

understanding of the new system, productivity will go up faster. However, there is a cap 
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when the productivity reaches a certain point. Then they can hardly make any 

improvements unless they introduce the new technique. The Scale Factor PREC gives the 

same explanation: “If a product is similar to several previously developed projects, then 

the precedentedness is high”. Table 4.6 shows the productivity range in size-dependent.  

Table 4.6  Size-Dependent Productivity Range 

 
Source: Barry Boehm, Safe and Simple Software Cost Analysis, 2000[19] 

4.6  Other Cost Drivers. 

COCOMO II involves five Scale Factors and seventeen Effort Multipliers. The five Scale 

Factors account for the relative economies or diseconomies of scale encountered for 

software projects of different sizes [Banker et al. 1994a]. The Effort Multipliers can be 

classified to Product Attributes, Computer Attributes, Staff Attributes, and Project 

Attributes. 
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Table 4.7 Scale Factors 

 
Source: COCOMO II Definition Manual version 1.4, 
http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf[20] 
 
 
 
 

Table 4.8 Effort Multipliers 

 
Source: COCOMO II Definition Manual version 1.4, 
http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf[20] 
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CHAPTER 5  

CALIBRATING RISK IN COCOMO 

5.1  Risks Identity 

No one denies that COCOMO has risks too. According to Boehm’s data, COCOMO II 

1998 estimation accuracy is shown in Table 5.1: 

Table 5.1 COCOMO 1998 Estimation Accuracy 
 Prediction Accuracy General Calibrate to Organization

Effort PRED(.30) 75% 80% 
Schedule PRED(.30) 72% 81% 

Source: Barry Boehm, COCOMO/SCM Forum #13, page 6, USC, 1998[21] 
 
 

There are several factors that result in uncertainties in COCOMO.  

The first reason is sizing. Table 4.4 shows the accuracy of different methods of 

Function Point counting. The accuracy may range from +/-100% to +/-5%. Even if the 

number of Function Point is correct, it still needs to be converted to SLOC in COCOMO. 

Table 4.3 shows a huge distribution of source lines of statement per function point. Thus 

the SLOC used in COCOMO may be overestimated or underestimated. Due to the 

exponential increasing of effort by size, the larger the size of the project, the bigger risks 

it takes. 

The second reason is productivity. In COCOMO, productivity is determined by a 

nominal value and a group of effort multipliers. The effort multipliers have both positive 

and negative effects on productivity. The effects are based on the rating of effort 

multipliers which is shown in Table 4.7. Then the productivity ranges of these effort 

multipliers can be calculated from the data. Here is an example in Figure 5.1. 
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Figure 5.1  COCOMO software life-cycle productivity ranges, 1985 
Source:  Barry W. Boehm, TRW, Improving Software Productivity, 
http://csse.usc.edu/csse/TECHRPTS/1987/usccse87-502/usccse87-502.pdf[22] 
 
 

These productivity ranges show the relationships between all effort multipliers 

and productivity which reflects one effort multiplier’s ability to increase or reduce effort 

required to develop a software product. However, the numbers in Table 4.8 are gathered 

by statistical method based on historical data. The number of each rating is possibly an 

average value that cannot be always accurate.  

5.2  Uncertainties in Effort Multipliers 

To find out the uncertainties in productivity, it is necessary to know the accuracy of 

COCOMO effort multipliers. The point is how to know the variance of each Effort 

Multiplier. In Boehm’s book “Software Engineering Economics”, he provides the data 

that COCOMO effort multiplier versus ideal effort multiplier. Because the ideal effort 

multipliers are the real project data, they can be considered as the range of the accuracy. 
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If the ideal effort multipliers are close to the COCOMO effort multiplier, the accuracy is 

relatively high. If not, the accuracy is relatively low. Because there are more than 60 

projects which are included in the data, it is possible to find a statistical distribution for 

Effort Multipliers. 

The procedure of selecting a statistical distribution that best fits to a data set 

generated by some random process is called Distribution Fitting. The purpose here is to 

find the best distribution for the Effort Multipliers because statistical distribution is a 

perfect way to express uncertainty. There are several basic characteristics in distribution, 

which are shown below.  

 
Normally, the distributions of Effort Multipliers are right-skewed but sometimes 

they can be symmetric.  

 
The normal distribution is defined on the entire real axis (-Infinity, +Infinity), and 

if the nature of your data is such that it is bounded or non-negative (can only take on 

positive values), then this distribution is almost certainly not a good fit. However, the 

distribution of Effort Multiplier is obviously bounded and our purpose is to find the upper 

bound and lower bound to determine the range of uncertainty. Therefore, the normal 

distribution is apparently not a good fit to Effort Multipliers. To simplify the estimation 

process, a triangular distribution is usually a good choice. Hence, it is important to find a 
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tool to calculate the triangular distribution of Effort Multipliers. EasyFit[23] is such 

software that can do the calculation to save our time. 

Here is an example of how to find a distribution for an effort multiplier.  

 
Figure 5.2 COCOMO versus ideal effort multiplier- required reliability 
Source: Barry W. Boehm, Software Engineering Economics, p379, Prentice-Hall, INC., 1981[24] 
 

Step 1: Collect the ideal effort multipliers from Figure 5.2 as shown below. 
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Table 5.2  Ideal Effort Multipliers of Reliability 
Very low  Low  Nominal High  Very High 
0.75  0.88  1  1.15  1.4 

1.1  2.1  1.42  2.05  2.1 
0.88  1.48  1.35  1.4  1.63 
0.8  1.2  1.08  1.4  1.6 
0.6  1.1  1.05  1.4  1.52 
0.4  0.95  1  1.3  1.45 

0.95  1  1.22  1.35 
0.94  1  1.2  1.25 

0.93  1  1.1  1.25 
0.92  0.95  1.05  1.2 
0.85  0.93  0.95 
0.8  0.9  0.83 
0.8  0.8  0.82 
0.8  0.6 
0.8 
0.75 

0.74 
0.73 
0.72 
0.71 
0.66 
0.58 
0.55 

 

Step 2: Calculate the ratio between the ideal effort multiplier and COCOMO 

effort multiplier, and the result will be: 
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Table 5.3  Adjusted Effort Multipliers of Reliability 
Very low  Low  Nominal  High  Very High 

0.75  0.88  1  1.15  1.4 

1.466667  2.386364  1.42  1.782609  1.5 

1.173333  1.681818  1.35  1.217391  1.164286 

1.066667  1.363636  1.08  1.217391  1.142857 

0.8  1.25  1.05  1.217391  1.085714 

0.533333  1.079545  1  1.130435  1.035714 

1.079545  1  1.06087  0.964286 

1.068182  1  1.043478  0.892857 

1.056818  1  0.956522  0.892857 

1.045455  0.95  0.913043  0.857143 

0.965909  0.93  0.826087 

0.909091  0.9  0.721739 

0.909091  0.8  0.713043 

0.909091  0.6 

0.909091 

0.852273 

0.840909 

0.829545 

0.818182 

0.806818 

0.75 

0.659091 

0.625 

 

Step 3: Import the result to EasyFit in one column. 

Step 4: Press F9 to run the distribution.  
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Figure 5.3  Distribution of Required Software Reliability. Burr is a default statistics 
model in EasyFit and it can be ignored in this figure. X axle represents the percentage. 
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Step 5: Due to noise in the data, there are some samples which can be considered 

as outliers. Thus after refining the data, it shows a triangular distribution in Figure 5.4: 

 

Figure 5.4 Triangular Distribution of Required Software Reliability. 

 
 In Figure 5.4, the range of Required Software Reliability values is from 75% to 

130% which means the actual value could appear within this range. The other Effort 

Multipliers have the same issue and the same steps above can be applied to find the 

distributions of other Effort Multipliers.  These distributions are based on the data from 

COCOMO 81, in this study it assumes that the distribution remains the same until there 

are new data available. For example, in COCOMO II 2000, value of RELY for very high 

ratio is 1.26; the possible range will be from 0.95 to 1.64. 

When it applies the same steps to Use of Software Tools, the data from 

COCOMO 81 shows distributions in Table 5.4: 
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Table 5.4  Adjusted Effort Multipliers of Use of Software Tools 
Very high high Nominal Low Very low 

0.83 0.91 1 1.1 1.24 

1.373494 1.67033 1.5 1.790909 1.225806 
1.340659 1.22 1.445455 0.895161 
1.274725 1.17 1.436364 0.564516 
1.208791 1.15 1.245455
1.131868 1.12 1.145455
1.043956 1.1 1.145455
1.010989 1.08 1.081818
0.989011 1.08 1.045455
0.934066 1.05 1.027273
0.824176 1.02 0.990909
0.802198 1.01 0.954545
0.604396 0.99 0.945455

0.99 0.918182
0.97 0.863636

0.9 0.818182
0.9 0.736364
0.9 0.636364

0.89
0.88
0.86
0.85
0.85
0.83

0.8
0.76
0.73
0.67

Source: Barry W. Boehm, Software Engineering Economics, p463, Prentice-Hall, INC., 1981[25] 
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Delete the outliers which are smaller than 70% or greater than 150%, then import 

the data to EasyFit: 

 

Figure 5.5 Triangular Distribution of Use of Software Tools. 

 
In Figure 5.5, the range of Use of Software Tools values is from 75% to 140% 

When it applies the same steps to Schedule Constraint, the data from COCOMO 

81 shows distributions in Table 5.5.  
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Table 5.5  Adjusted Effort Multipliers of Use of Software Tools 
Very high  high  Nominal Low  Very low 

1.1  1.04  1  1.08  1.23 

1.653846  2.17  1.703704 1.227642 
1.134615  1.5  1.25  1.227642 
1.076923  1.43  1.212963 1.162602 
1.057692  1.43  1.138889 1.146341 
0.923077  1.39  1.055556 1.04878 
0.836538  1.35  1.027778 1.01626 

1.29  0.981481 0.97561 

1.14  0.953704 0.96748 
1.1  0.842593
1.07  0.648148
1.07 
1.05 
1.05 
1.03 
0.99 

0.99 
0.95 
0.94 
0.93 
0.93 
0.9 
0.9 
0.9 

0.89 
0.85 
0.85 
0.85 
0.84 
0.84 
0.82 
0.8 

0.75 
0.72 
0.6 
0.51 

Source: Barry W. Boehm, Software Engineering Economics, p469, Prentice-Hall, INC., 1981[26] 
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Delete the outliers which are smaller than 80% or greater than 140%, then import 

the data to EasyFit. In Figure 5.6, the range of Schedule Constraint value is from 84% to 

130%. 

 
Figure 5.6  Triangular Distribution of Schedule Constraint 

5.3  Uncertainty in Scale Factors 

Scale Factors are very different from Effort Multipliers because their influence on 

estimation is affected by the size of the project. In COCOMO II, the productivity range of 

Effort Multipliers does not involve the size of the project. However, the productivity 

range of Scale Factors is based on a 100 KLOC project. Therefore, the productivity range 

of Scale Factors is not normally the same in different projects.  
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COCOMO II is calibrated from 161 projects[27]. Thus, the values of Scale 

Factors are also calibrated from the data. For example, the latest value for Process 

Maturity is 7.80, 6.24, 4.68, 3.12, 1.56, 0.00 mapped to Very Low, Low, Normal, High, 

Very High, Extra High. However, the numbers also involve risks. The ideal value is 

possibly within a certain range around this number. PMAT Coefficient Range is shown in 

Figure 5.5. 

 

Figure 5.7  PMAT coefficient range. 4.22 is the mean value of sample A and 1.56 is the 
mean value of Sample B.  
Source: Bradford K. Clark, The Effects of Software Process Maturity on Software Development Effort, 
http://sunset.usc.edu/~bkclark/Research/Dissertation.pdf[26] 
 

 
In Figure 5.7, A is a sample of data from 112 projects collected in 1997 which is 

used to initially demonstrate the influence of process maturity on effort. B is another 

sample of 161 projects collected in 1998. The mean value of B was used to calibrate 

COCOMO II. The process is shown in Figure 5.8. 
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Figure 5.8  PMAT Scale Values. The levels are the rating of Process Maturity, I is 
initiated number. 
Source: Bradford K. Clark, The Effects of Software Process Maturity on Software Development Effort, 
http://sunset.usc.edu/~bkclark/Research/Dissertation.pdf[26] 
 
 

Each initial rating is multiplied by sample coefficient (4.22 or 1.56), and the result 

is called scale value. But the coefficient is a mean value which could introduce 

uncertainty to the result. For example, sample B shows the coefficient is from 0.84 to 

2.28. The distribution of PMAT scale factor is from 54% to 146%. Because the other 

scale factors are calculated by the same method, the risk in scale value will be predictable 

if the coefficient range is available. However, due to lack of the data for other four scale 

factors, the only way is to simulate the coefficient range of other scale factors in this 

study. 

In Figure 5.7, the mean value of PMAT coefficient range is 1.56. According to 

COCOMO II 2000, the value of scale factors for nominal ratio is 3.72 (PREC), 3.04 

(FLEX), 4.24 (RESL), 3.29 (TEAM), 4.68 (PMAT). There is an equation: scale value = 

scale coefficient * initial rating (4.68 = 1.56 * 3).  
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According to this equation, it is possible to get the coefficient value of other scale 

factors. For example, the scale values of PREC are shown in Table 5.6: 

Table 5.6  Scale Values of PREC 

 Precendentedness 

Very low Low Nominal High Very high Extra high

Initial 0.0500 0.0400 0.0300 0.0200 0.0100 0.0000 

B 0.0620 0.0496 0.0372 0.0248 0.0124 0.0000 

 

According to Table 5.6, the coefficient value of PREC is: scale value of Very low 

(0.0620) / initial rating of Very low (0.0500) = 1.24. 

If the equation is applied to the other scale factors, the coefficient values of scale 

factors would be: 

Table 5.7  Coefficient Value of Scale Factors 

PREC FLEX RESL TEAM PMAT 

1.24 1.01 1.41 1.10 1.56 

 

However, without accurate data of each scale factor it is difficult to find the 

variance of each scale factors. Thus the most effective way is to assume the same 

coefficient range of PMAT will happen to the other scale factors. The variance of PMAT 

coefficient is from -0.72 to +0.72, and in COCOMO the sum of five scale factors 

determine the value of exponent. Therefore, the variance of different scale factors is 

interchangeable.  

The lower bound of PREC coefficient range is 1.24-0.72=0.52, and the upper 

bound of PREC coefficient range is 1.24+0.72=1.96.  
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0.52    1.24                   1.96 

Because 0.52/1.24 = 42% and 1.96/1.24 = 158%, the variance of PREC 

coefficient is from 42% to 158%. If there is a triangular distribution for PREC, it will be: 

 
Figure 5.9  Probability density of PREC. 

 
 Implement the same method on the other scale factors, the result is shown in 

Table 5.8: 

Table 5.8  Coefficient Range of Scale Factors 

 PREC FLEX RESL TEAM 

Coefficient Range 0.52 – 1.96 0.29 – 1.73 0.69 – 2.13 0.38 – 1.82 

Percentage Range 42% - 158% 29% - 171% 50% - 150% 35% - 165% 
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5.4  Monte Carlo Simulation and Tools 

Chapter 4 explains that the uncertainties in COCOMO involves sizing, productivity, 

effort multipliers and scale factors. Hence, there should be a method to collect all of the 

data to calculate a value of overall variance. Monte Carlo Simulation is a method to 

repeat random samples in a certain range to compute their result. Theoretically, there are 

certain distribution ranges of sizing, productivity, effort multipliers and scale factors. 

Monte Carlo Simulation could help to calculate the overall distribution. Thus it may 

improve COCOMO by adding a range to the result to make it not only a point estimate. 

There are many kinds of software that can do Monte Carlo Simulation such as 

Oracle Crystal Ball, ModelRisk Standard 4.0, Palisade @Risk 5.7, and Frontline Risk 

Solver 11.0. Here is a comparison of these Monte Carlo Simulation tools from Crystal 

Ball Services<http://www.crystalballservices.com>. The conclusion is  

“Crystal Ball is an efficient modeling package that is easy to use. Like the other 

tools, they have formulas but they cannot be included in the sensitivity analysis. So use 

these with care. 

ModelRisk’s approach to building inputs and outputs offers lots of flexibility but 

can introduce errors into model if the user is not paying attention. Same is to be said 

about the color coding. 

@Risk is a very efficient modeling tool but some of the interface buttons could be 

clearer and easier to find. This makes rummaging around the interface more likely for 

inexperienced users. 

Risk Solver is almost there but have some bugs in their input definition process 

that result in lots of extra work. Otherwise a very interesting solution.” [28] 
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Table 5.9  Usability Comparison Between Four Monte Carlo Tools 

 
Source: http://www.crystalballservices.com/Resources/ConsultantsCornerBlog/EntryId/71/Excel-
Simulation-Show-Down-Comparing-the-top-Monte-Carlo-Simulation-Tools.aspx[27] 
 
 

The chart shows how many steps a tool requires for implementing a simulation, 

the smaller numbers mean better efficiency. In this experiment, the author chooses to use 

Palisade @Risk which can be downloaded from website of Palisade 

<http://www.palisade.com/risk/>. 

 @Risk is a kind of add-in to Microsoft Excel, thus it is required to install 

Microsoft Excel before implementing @Risk. The author is using Microsoft Excel 2007 

on his computer and it is perfectly compatible with @Risk 5.7. After installing @Risk 5.7 

to the machine, run @Risk 5.7.exe and it will startup Microsoft Excel 2007 which is a 

little different from original version. 
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Click the @Risk at the Toolbar, and then start defining the distributions. 

Step 1: Define Distribution 

Choose a cell and Click button “Define Distribution”, you will see 

 
 

Select Triangular Distribution and define the range. This example is using the 

percentage range from Table 5.8. 
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Step 2: Input the value and calculate 

After determining the distribution range, there should be the nominal value for 

this cell. For example, the nominal value for PREC is 3.72, and then input it to formula 

line: 

 
 

As for now, the cell for PREC factor is set. The same method is applicable to set 

the other factors such as effort multipliers or scale factors. 

Step 3: Add Output 

When all the needed factors are set, an output cell is required to run the 

calculations. For example, let cell H21 be the output cell and it should contain 

H19*H16^H14. Cell H19 represents the coefficient A in COCOMO, cell H16 represents 
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size and H14 represents the exponent E. Finally, select cell H21 and click button “Add 

Output”. The formula line of H21 will be like this: 

 
 

Step 4: Start Simulation 

Input Iterations and click button “Start Simulation” to display the result. Normally 

5000 iterations should be enough. 

 
 

 

Figure 5.10  Example of Monte Carlo simulation. 

 
Figure 5.10 shows the overall distribution of an ordinary COCOMO estimation. It 

contains the minimum, maximum, mean and standard deviation of effort in staff month. 

Therefore, Monte Carlo Simulation is an applicable method to calibrate risks in 

COCOMO and @Risk is also an appropriate tool in this field. 
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CHAPTER 6  

ANALYSIS AND SOLUTION 

6.1  Analysis on Historical Data 

In this chapter, there is an example to analyze the variance in COCOMO based on some 

real project data. The data is from Boehm’s paper Prototyping and Specifying: A Multi-

Project Experiment. In his experiment, there are seven groups of people developed a 

same small size software product. Four groups are using Specifying method and 3 groups 

are using Prototype method. The size is between 2 KLOC and 4KLOC. According to the 

result, “The COCOMO model strongly overestimated the amount of effort required to 

develop the experimental products. The overestimates were typically by a factor of about 

2.5, much larger than could be explained by not counting the typical 30–40% of the 

workday devoted to non-project activities.” [29]  

However, the productivity of the seven groups is very close to each other. The 

size and effort are shown in Table 6.1. 

Table 6.1  Summary of Projects 
 Specifying Prototype 
 Group1 Group2 Group3 Group4 Group5 Group6 Group7
Size (SLOC) 2985 3164 4606 2809 1952 2726 1514 
Effort (Staff Hour) 589 498 459 789 323 422 232 
Productivity 
(SLOC/SH) 

5.1 6.4 10 3.6 6 6.5 6.5 

Productivity 
(SLOC/SM) 

897.6 1126.4 1760 663.6 1056 1144 1144 

Source: Barry W. Boehm*, Terence E. Gray, and Thomas Seewaldt, PROTOTYPING VS. SPECIFYING: 
A MULTI-PROJECT EXPERIMENT University of California, Los Angeles Computer Science 
Department[30]
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The lowest productivity of Specifying teams is 663.6 SLOC/Staff Month. The 

highest is 1760 SLOC/Staff Month. And the average value is 1111.7 SLOC/Staff Month. 

Because the nominal productivity of COCOMO II is only 340 SLOC/Staff Month, it 

explains why COCOMO overestimated the amount of required effort so much. Then it 

can build a triangular distribution of Specifying:  

Lower bound = 663.6/1111.7 = 59.7% 

Upper bound = 1760/1111.7 = 158.3% 

Therefore, the productivity range of Specifying is from 59.7% to 158.3%. 

The lowest productivity of Specifying teams is 1056 SLOC/Staff Month. The 

highest is 1144 SLOC/Staff Month. And the average value is 1114.7 SLOC/Staff Month. 

Because the nominal productivity of COCOMO II is only 340 SLOC/Staff Month, it 

explains why COCOMO overestimated the amount of required effort so much. Then it 

can build a triangular distribution of Specifying:  

Lower bound = 1056/1114.7 = 94.7% 

Upper bound = 1144/1111.7 = 102.9% 

Therefore, the productivity range of Specifying is from 94.7% to 102.9%. 

According to the data, both methods have the same average productivity. But 

Specifying has much more variance in productivity. The reason is possibly that the 

prototyping teams’ products were 40% smaller on average, and required 45% less effort 

to develop. Admittedly, there might be some other factors that could affect the 

productivity. 
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Because the product in the experiment is so small that the scale factors will almost 

not affect the result, the main reason that causes the variance in productivity attributes in 

Effort Multipliers. 

Normally, it needs to consider that how much the Personnel Factors may affect 

the experiment. The experiment team characteristics are shown in Table 6.2. 

Table 6.2  Experimental Team Characteristics 

 
Source: Barry W. Boehm*, Terence E. Gray, and Thomas Seewaldt, PROTOTYPING VS. SPECIFYING: 
A MULTI-PROJECT EXPERIMENT University of California, Los Angeles Computer Science 
Department[30]. 
 

There are two Personnel Factors that could be responsible for the variance in the 

experiment. They are Programmer Capability and Language and Tool Experience. To 

rate the factors it needs to set a nominal value. In Specifying groups, a GPA of 3.37 and 

programming experience of 36 months are average numbers. In Prototyping teams, a 

GPA of 3.27 and programming experience of 53 months are average numbers. 

According to the team characteristics, the Personnel Factor ratings for the seven 

teams are shown in Table 6.3. 
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Table 6.3  Experimental Team Ratings 
 Team1 Team2 Team3 Team4 Team5 Team6 Team7 
PCAP Low High High Nominal High Low Nominal
LEXP Low High High Nominal High Nominal Nominal
 

If the above factors are applied to COCOMO estimation, after eliminating the 

possible effect of personnel factors which means to make all ratings to nominal, the 

productivity of the seven teams is shown in Table 6.4. 

Table 6.4  Adjusted Productivity and Effort 
 Group1 Group2 Group3 Group4 Group5 Group6 Group7
Productivity 
(SLOC/SM) 

1125.1 902 1409.4 663.6 845.6 1315.6 1144 

Adjusted 
Effort(SM) 

2.65 3.50 3.27 4.23 2.31 2.07 1.32 

 
Then the productivity range of the two methods is: 

Specifying: 

Average productivity = 1025 SLOC/Staff Month 

Lower bound = 663.6/1025 = 64.7% 

Upper bound = 1409.4/1025 = 137.5% 

In summary, the productivity range of Specifying is from 64.7% to 137.5%. The 

lower bound of Effort is 2.65 Staff Month and the upper bound of effort is 4.23 Staff 

Month. Average effort is 3.41 Staff Month. 

Prototype: 

Average productivity = 1101.7 SLOC/Staff Month 

Lower bound = 845.6/1101.7 = 76.8% 

Upper bound = 1315.6/1101.7 = 119.4% 
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In summary, the productivity range of Prototype is from 76.8% to 119.4%. The 

lower bound of Effort is 1.32 Staff Month and the upper bound of effort is 2.31 Staff 

Month. Average effort is 1.9 Staff Month. 

 

6.2  Assumption and Improvements 

The above calculations are based on that all the teams which have the same capability at 

the normal level. If there are better people in the teams, as somel of them can be rated as 

high in PCAP and LEXP.  

For example, Team 1 is rated Low in PCAP and Low in LEXP. Because the 

ratings of PCAP and LTEX are: 

Low High 

PCAP 1.15 0.88 

LTEX 1.09 0.91 

The updated productivity of Team 1 will be 897.6*(1.15/0.88)*(1.09/0.91) = 1405 

SLOC/SM 

In summary, the productivity of the seven teams will be: 

Table 6.5  Adjusted Productivity and Effort Under High Ratings 
 Group

1 
Group
2 

Group
3 

Group
4 

Group
5 

Group
6 

Group
7 

Productivity 
(SLOC/SM) 

1405 1126.4 1760 828.7 1056 1642.9 1428.6

Adjusted Effort 
(SM) 

2.12 2.81 2.62 3.39 1.85 1.66 1.06 

 

With updated data, the new productivity range of Specifying and Prototype is 

calculated: 
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Specifying: 

Average productivity = 1280 SLOC/Staff Month 

Lower bound = 828.7/1280 = 64.7% 

Upper bound = 1760.4/1280 = 137.5% 

In summary, the productivity range of Specifying is from 64.7% to 137.5%. The 

lower bound of Effort is 2.12 Staff Month and the upper bound of effort is 3.39 Staff 

Month. Average effort is 2.74 Staff Month. 

Prototype: 

Average productivity = 1375.8 SLOC/Staff Month 

Lower bound = 1056/1375.8 = 76.8% 

Upper bound = 1642.9/1375.8 = 119.4% 

In summary, the productivity range of Specifying is from 76.8% to 119.4%. The 

productivity range of Specifying is from 64.7% to 137.5%. The lower bound of Effort is 

1.06 Staff Month and the upper bound of effort is 1.85 Staff Month. Average effort is 

1.52 Staff Month. 

Table 6.6  Effort (Staff Month) of Specifying Method 
Capability of PCAP, 
LTEX 

Total Numbers Mean(Average) Standard Deviation 

Normal 4 3.41 0.653 
High 4 2.735 0.525 

 

Table 6.7  Effort (Staff Month) of Prototype Method 
Capability of PCAP, 
LTEX 

Total Numbers Mean(Average) Standard Deviation 

Normal 3 1.9 0.516 
High 3 1.52 0.412 
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6.3  Conclusion 

 
The distribution of Effort doesn’t change much with higher capability of programmer but 

the average effort and standard deviation reduces greatly. Because the project in this 

example is too small, the scale factors are not included in the experiment.  

However, the assumption in Section 6.2 proves the possibilities that changing 

factors in COCOMO may cause reduction of variance. Traditionally, there are several 

reasons that are believed to be responsible for the deviation between estimated and actual 

effort occurred. The reasons include but not limited to: 

“Requirement changes 

Unclear requirements 

Additional requirements 

Delay of decisions concerning requirements due to 

Team members’ lack of responsibility and motivation 

Internal differences (due to political decisions) 

Technical problems 

Use of unknown technology 

New and inexperienced team members 

Change of technology 

Occurrence of risks 

Lack of sufficient customer communication 

Unforeseen problems due to high complexity 

Lack of qualified consultants”[30] 
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Among these reasons, some can be attributed to personal problems such as new or 

inexperienced team members. Most of the reasons can be reflected to the factors in 

COCOMO. If there is a “What-if” study based on the factors of COCOMO, it is possible 

to find the effect of target factor to help reducing the risk. 
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CHAPTER 7  

MONTE CARLO PROBABILITY DISTRIBUTIONS 

7.1  Simulation Design 

Chapter 6 shows an example to reduce variance by higher capability of the programmer. 

However, better programmer capability is not the only factor to reduce variance. The 

scale factors can also have similar effect on variance. They are not discussed in Chapter 6 

due to the size of the experiment project. In fact, all the scale factors and other effort 

multipliers can be considered as candidates to reduce variance. The problem is that how 

to find out the exact influence of each factor to help make a better solution and to reduce 

risk.  

The reason why better individuals produce lower risk is that they are more 

productive, and higher productivity leads to smaller effort and variance. Therefore many 

managers prefer to have smarter people in their groups. But hiring better people is not 

always the best solution because it involves higher cost which should be also taken into 

consideration. Thus people are seeking alternatives such as improving process maturity to 

improve productivity and making such decisions has become a new challenge to the 

managers. If the effect of each method can be predicted and compared, the managers may 

have more helpful information to make a decision to reduce risk. And as it is explained in 

Chapter 6, Monte Carlo simulation is an ideal method to estimate the risks. In this chapter, 

the data from Figure 3.5 in Boehm’s book[31] is used as an example to show how to use 

Monte Carlo simulation to calculate the risk. 



53 
 

 

The first step is to elicit project information: 

Project Size: 44700 lines of code 

Optimistic Productivity: 604.9 SLOC/Staff Month 

Most Likely Productivity: 484 SLOC/Staff Month 

Pessimistic Productivity: 387.2 SLOC/Staff Month 

The range of productivity has included the uncertainties introduced by the effort 

multipliers, thus there is no need to involve effort multipliers in this simulation. The only 

thing should be cared about are the scale factors: 

Precedentedness: 3.72 

Development Flexibility: 3.04 

Architecture/Risk resolution: 4.24 

Team Cohesion: 3.29 

Process Maturity: 4.68 

All of above scale factors are rated as nominal value, and the distribution of 

PMAT is set from 54% to 146% based on the data in chapter 5. 

The second step is to determine the formulas: 

Process Maturity = RiskTriang(0.54,1,1.46) * 4.68 

Exponent E = 0.91 + 0.01 * (SF1+SF2+SF3+SF4+SF5) 

Exponent F = 0.28 + 0.2 * (E - 0.91) 

Productivity A = RiskTriang(1000/604.9,1000/484,1000/387.2) 

Effort = RiskOutput(“Effort in Staff Month”) + A * 44.7^E 

Schedule = RiskOutput(“Schedule in Month”) + 3.67 * Effort^F 
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Finally, input above information to @Risk and get ready to run Monte Carlo 

simulation. 

7.2  Implementation 

With the information and formulas discussed in Section 7.1, @Risk can perform a 

complete Monte Carlo simulation and the iterations are set to 5000 times. The original 

result is shown below: 

 

Figure 7.1  Original effort distribution. The iteration time of this simulation is 5000. 
Minimum effort is 104.69. Maximum effort is 178.51. Mean effort is 137.23. Standard 
deviation is 13.26. 
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Figure 7.2  Original schedule distribution. The iteration time of this simulation is 5000. 
Minimum schedule is 15.78 months. Maximum schedule is 19.46 months. Mean schedule 
is 17.53. Standard deviation is 0.608. 

 
Because traditional COCOMO estimation is point estimate, it won’t show such 

distribution but the result is very close to the mean value in Figure 7.1 and Figure 7.2. 

Here is the comparison between Boehm’s estimation and Monte Carlo simulation: 

Table 7.1  Comparison Between Boehm’s Data and Monte Carlo Simulation 

 Effort Schedule 

 Boehm Monte Carlo Boehm Monte Carlo 

Optimistic 73.9 104.69 13.7 15.78 

Most Likely 92.4 137.23 14.7 17.53 

Pessimistic 115.5 178.51 15.7 19.46 

Source: Barry W. Boehm, Software Cost Estimation with COCOMO II, pp.15, Figure 3.5, Prentice-Hall, 
INC., 2000[30] 

 

In Boehm’s data, his estimation has a smaller value because he doesn’t include 

the scale factors in the calculation. Maybe Boehm has already included the effect of scale 
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factors in productivity range. But in this experiment it is assumed that the scale factors 

still have influence on the estimation.  

The standard deviation of effort and schedule are 13.26 and 0.608 and the goal is 

to find methods to reduce standard deviation. In Chapter 6, it is proved that programmer 

capability can reduce variance by producing less effort. Compared to programmer 

capability, how will Process Maturity help reduce variance? Thus it is required to observe 

the change of standard deviation when different productivity or Process Maturity is 

applied to Monte Carlo simulation. For example, it can use different productivity in 

simulation without changing the distribution of the process maturity. Here is an 

experiment that shows the change of standard deviation when productivity is increased 

from 100% to 140%. 

 

Figure 7.3  Effort distribution when productivity is increased by 10%. 
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Figure 7.4  Schedule distribution when productivity is increased by 10%. 

 
When productivity is increased by 10% to 532 SLOC/PM, mean effort is 124.76 

staff months which is reduced by 10% respectively. And mean schedule is 17.01 months 

which is reduced by 3%. These numbers are very close to the normal calculation of 

COCOMO (without variance). The standard deviation of effort and schedule is 12.11 

staff months and 0.595 months. 
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Figure 7.5  Effort distribution when productivity is increased by 20%. 

 
Figure 7.6  Schedule distribution when productivity is increased by 20%. 

 

When productivity is increased by 20% to 580 SLOC/PM, mean effort is 114.35 

staff months which is reduced by 20% respectively, and mean schedule is 16.55 months 

which is reduced by 5.6%. The standard deviation of effort and schedule is 11.02 staff 

months and 0.571 months. 
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Figure 7.7  Effort distribution when productivity is increased by 30%. 

 

Figure 7.8  Schedule distribution when productivity is increased by 30%. 

 
When productivity is increased by 30% to 629 SLOC/PM, mean effort is 105.57 

staff months which is reduced by 30% respectively. And mean schedule is 16.13 months 
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which is reduced by 8%. The standard deviation of effort and schedule is 10.30 staff 

months and 0.559 months. 

 

Figure 7.9 Effort distribution when productivity is increased by 40%. 

 

Figure 7.10  Schedule distribution when productivity is increased by 40%. 
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When productivity is increased by 40% to 678 SLOC/PM, mean effort is 98.02 

staff months which is reduced by 40% respectively. And mean schedule is 15.75 months 

which is reduced by 10% and standard deviation is reduced by 12%. The standard 

deviation of effort and schedule is 9.5 staff months and 0.534 months. Therefore, the 

effort is disproportionately affected by increasing productivity. But schedule shows an 

apparent diseconomy of scale when productivity increases.  

Next there is another experiment on how the Process Maturity can impact the 

variance of effort and schedule. In this study, the standard deviation is traced when 

Process Maturity is improved from 4 to 1.  

 

Figure 7.11  Effort distribution when PMAT is improved to 4. 
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Figure 7.12  Schedule distribution when PMAT is improved to 4. 

 
When Process Maturity is 4, mean effort is 133.71 Staff Month and standard 

deviation is 12.68. Mean schedule is 17.27 and standard deviation is 0.573. 

 

Figure 7.13  Effort distribution when PMAT is improved to 3. 
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Figure 7.14  Schedule distribution when PMAT is improved to 3. 

 
When Process Maturity is 3, mean effort is 128.69 Staff Month and standard 

deviation is 11.93. Mean schedule is 16.90 and standard deviation is 0.524. 

 

Figure 7.15  Effort distribution when PMAT is improved to 2. 
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Figure 7.16  Schedule distribution when PMAT is improved to 2. 

 

When Process Maturity is 2, mean effort is 123.88 Staff Month and standard 

deviation is 11.34. Mean schedule is 16.54 and standard deviation is 0.487. 

 

Figure 7.17  Effort distribution when PMAT is improved to 1. 
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Figure 7.18  Schedule distribution when PMAT is improved to 1. 

 

When Process Maturity is 1, mean effort is 119.25 Staff Month and standard 

deviation is 10.82. Mean schedule is 16.19 and standard deviation is 0.460. Mean 

schedule is reduced by 7.6% and standard deviation is reduced by 24%. 

Compared to productivity, Process Maturity has smaller influence on effort but it 

is more likely to reduce standard deviation. 

 

 

7.3  Results and Conclusion 

Due to the result of Monte Carlo simulation, both productivity and PMAT can reduce risk 

of estimation. But they have different effects on effort and schedule. Here is the summary: 
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Figure 7.19  Relationship between productivity and effort. When productivity is 
increased from 532 SLOC/Staff Month to 678 SLOC/Staff Month, Effort is reduced from 
124.76 staff month to 98.02 staff month. 

 

 

Figure 7.20  Relationship between PMAT and effort. When PMAT is improved from 4 
to 1, Effort is reduced from 133.71 staff month to 119.25 staff month. 
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According to Figure 7.19 and Figure 7.20, when productivity reduces effort by 

21%, it can reduce same proportion to standard deviation. When PMAT reduces effort by 

11%, it can reduce standard deviation by 15%.  

 

Figure 7.21  Relationship between productivity and schedule. When productivity is 
increased from 532 SLOC/Staff Month to 678 SLOC/Staff Month, schedule is reduced 
from 17.01 month to 15.75 month. 
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Figure 7.22  Relationship between PMAT and Schedule. When PMAT is improved from 
4 to 1, schedule is reduced from 17.27 month to 16.19 month. 
 

According to Figure 7.21 and Figure 7.22, when productivity reduces schedule by 

7%, it can reduce standard deviation by 10%. When PMAT reduces schedule by 6%, it 

can reduce standard deviation by 20%. 

In summary, productivity has more impact on reducing mean value of effort and 

schedule while better PMAT is more effective to reduce standard deviation. 
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CHAPTER 8  

EPILOGUE 

 
“Inaccuracy of cost estimation is well known. Appendix B is a recent 
paper by the SEI proposing the use of Bayesian Belief Network (BBN) 
models and Monte Carlo simulation that quantifies Uncertainty. This is 
similar to Yang's thesis except that the SEI approach concentrates on early 
life cycle cost estimates and not on periodic measures of estimation 
variance throughout the development.  The variance is used as the measure 
of risk and the model is used to study the effects of cost driver changes on 
the variance calculations. The SEI technical report was issued in 
December 2011, Yang became aware of it when it was published in the 
Journal of Software Technology in Feb. 2012. Yang started work on his 
thesis in July 2011.  While the processes are surprising similar the goals 
are different and the approaches complement each other.” 
 

by Larry Bernstein, NJIT Software Engineering Adjunct Professor 

The SEI technical report[32] shows a similar idea that people are aware about the 

risks in estimation and Monte Carlo simulation could be an ideal tool to help people find 

the risks. It introduced the QUELCE (Quantifying Uncertainty in Early Cost Estimation) 

method and it contains the following steps: 

“Step 1:  Identify Program Change Drivers 

Step 2:   Identify States of Program Change Drivers 

Step 3:   Identify Cause-and-Effect Relationships for Dependency Matrix 

Step 4:   Reduce the Dependency Matrix Using a Design Structure Matrix 

Step 5:   Construct a BBN Using the Reduced Matrix 

Step 6:   Populate BBN Nodes with Conditional Probabilities 

Step 7:   Define Scenarios by Altering Program Change Driver Probabilities 
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Step 8:   Select Cost Estimating Relationships or Tools to Generate an Estimate 

Step 9:   Obtain Program Estimates Not Computed by the BBN 

Step 10:  For Each Scenario, Run a Monte Carlo Simulation 

Step 11:  Report Each Scenario Result Independently”[33] 

The SEI’s technical report includes scenario building and Bayesian Belief 

Network (BBN) modeling. Bayesian Belief Network is a very useful modeling method to 

calibrate risk and the author was thinking about adding it to his thesis at beginning but it 

was removed because the thesis was focused on an engineering phase. The goal of this 

thesis is to find a practical way to calibrate the risk in COCOMO and an engineering 

solution to reduce the risk. The solution is aimed to be as simple as possible, such as 

making a choice between hiring better developers and improving developing process. A 

practitioner never wants the things to become complicated. That’s why COCOMO was 

chosen to be the basic cost estimate model in this thesis and spend more effort on 

introducing the tool of Monte Carlo simulation rather than the estimation and statistics 

theories.  

QUELCE is a very detailed method to quantify uncertainty in early lifecycle cost 

estimation. However, no one can predict the change in a project in the later phases. That’s 

why “Management processes need to account for moving targets” and “Effort needs to be 

re-estimated when change requests occur”[30]. Therefore, to monitor the status of the 

project, the method mentioned in this thesis should be repeated when any change occurs. 

If the result shows any reduction of the risk, it means the accuracy of estimation has been 

improved. Admittedly, QUELCE is a more complex method that may provide more 

explicit, quantified result of uncertainty. The method in this thesis may take advantage of 
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QUELCE in the further research. Combining other probabilistic methods such as 

Bayesian Belief Network and Monte Carlo simulation, traditional cost estimates will gain 

more improvements in accuracy and risk control. 
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APENDIX A 

SAMPLES OF DISTRIBUTION OF EFFORT MULTIPLIERS 

Figure A.1 to A.13 show distribution of Effort Multipliers in COCOMO, which is based 

on the data of COCOMO 81. 

 

Figure A.1 Distribution of database size 
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Figure A.2 Distribution of product complexity 

 

Figure A.3 Distribution of execution time constraint 
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Figure A.4 Distribution of main storage constraint 

 

Figure A.5 Distribution of virtual machine volatility 



75 
 

 
 

 

Figure A.6 Distribution of computer turnaround time 

 

Figure A.7 Distribution of analyst capability 
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Figure A.8 Distribution of application experience 

 

Figure A.9 Distribution of programmer capability 
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Figure A.10 Distribution of virtual machine experience 

 

Figure A.11 Distribution of programming language experience 
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Figure A.12 Distribution of modern programming practices 

 

Figure A.13 Distribution of use of software Tools 
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APPENDIX B 

AN INNOVATIVE APPROACH TO QUANTIFYING UNCERTAINTY IN 
EARLY LIFECYCLE COST ESTIMATION  

By SEI Cost Estimation Research Group: Robert Ferguson, Dennis Goldenson, James 
McCurley, Robert Stoddard, and David Zubrow. Reproduced from reference[33]. 
 
 
The inaccuracy of cost estimates for developing major Department of Defense (DoD) 

systems is well documented, and cost overruns have been a common problem that 

continues to worsen. Because estimates are now prepared much earlier in the acquisition 

lifecycle, well before concrete technical information is available, they are subject to 

greater uncertainty than they have been in the past. Early lifecycle cost estimates are 

often based on a desired capability rather than a concrete solution. Faced with investment 

decisions based primarily on capability, several problems are encountered when creating 

estimates at this early stage: 

• Limited Input Data -The required system performance, the maturity of the 

technology for the solution, and the capability of the vendors are not fully understood. 

• Uncertainties in Analogy-Based Estimates - Most early estimates are based on 

analogies to existing products. While many factors may be similar, the execution of the 

program and the technology used as part of the system or to develop it are often different. 

For example, software product size depends heavily on the implementation technology, 

and the technology heavily influences development productivity. Size and productivity 

are key parameters for cost estimation. 
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• Challenges in Expert Judgment - Wide variation in judgment can exist between 

experts and the confidence in the input that they provide is generally not quantified and 

unknown. 

• Unknown Technology Readiness – Technology readiness may not be well-

understood, and is likely to be over or under estimated. 

An Improved Method for Early Cost Estimation 
 

In 2011 the SEI introduced the QUELCE (Quantifying Uncertainty in Early Cost 

Estimation) method, an integrative approach for pre-Milestone A cost estimation. The 

method aims to provide credible and accurate program cost estimates within clearly 

defined, statistically valid confidence intervals. QUELCE produces intuitive visual 

representations of the data that explicitly model influential relationships and 

interdependencies among the drivers on which the estimates depend. Assumptions and 

constraints underlying the estimates are well documented, which contributes to better 

management of cost, schedule, and adjustments to program scope as more is learned and 

conditions change. Documenting the basis of an estimate facilitates updating the estimate 

during program execution and helps others make informed judgments about estimation 

accuracy. 

The QUELCE method differs from existing methods because it 

• uses available information not normally employed for program cost estimation 

• provides an explicit, quantified consideration of the uncertainty of the program 

change drivers 

• enables calculation (and re-calculation) of the cost impacts caused by changes 

that may occur during the program lifecycle 
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• enhances decision-making through the transparency of the assumptions going 

into the cost estimate 

Figure B.1 shows the flow of information in a typical MDAP Acquisition, with 

blue boxes added to represent the contributions from the QUELCE method. 

How QUELCE Works 
 

QUELCE synthesizes scenario building, Bayesian Belief Network (BBN) 

modeling, and Monte Carlo simulation into an estimation method that quantifies 

uncertainties, allows subjective inputs, visually depicts influential relationships among 

change drivers and outputs, and assists with the explicit description and documentation 

underlying an estimate. It uses scenario analysis and design structure matrix (DSM) 

techniques to limit the combinatorial effects of multiple interacting program change 

drivers to make modeling and analysis more tractable. Representing scenarios as BBNs 

enables sensitivity analysis, exploration of alternatives, and quantification of uncertainty. 
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Figure B.1  Information Flow for Early Lifecycle Estimation, Including the QUELCE 
Method 

 
The BBNs and Monte Carlo simulation are then used to predict variability of what 

become the inputs to existing, commercially available cost estimation methods and tools. 

As a result, interim and final cost estimates are embedded within clearly defined 

confidence intervals. The method can be described as a series of eleven steps, 

summarized in the following sections. Our recent SEI technical report, CMU/SEI-2011-

TR-026, elaborates further on the method and its application. 

Step 1: Identify Program Change Drivers 
 

The identification of program change drivers is best accomplished by the experts 

who provide programs with information for consideration in cost estimation. Workshops 
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with DoD contractors, domain experts, and former DoD program managers are used to 

identify drivers that could affect program costs. These experts should consider all aspects 

of a program that might change (and affect cost) during the program’s lifecycle—

particularly given the new information developed during the Technology Development 

Phase in preparation of Milestone B. The Probability of Program Success (POPS) factors 

used by the Navy and Air Force can be used to start the discussion. 

Step 2: Identify States of Program Change Drivers 
 

In the workshops, experts are asked to brainstorm ideas about the status of each 

program change driver. The specific, assumed state as proposed by the Materiel Solution 

is identified and labeled as the nominal state. Experts then brainstorm about possible 

changes in the condition of each driver that may occur during the program lifecycle. The 

experts identify possible changes that might occur to the nominal state and use their best 

judgment for the probability that the nominal state will change. 

Step 3: Identify Cause-and-Effect Relationships for Dependency Matrix 
 

Once the changed condition— referred to as potential driver states—are fully 

identified, participants subjectively evaluate the cause and effect relationships among the 

drivers. Expert judgment is applied to rank the causal effects. A matrix is developed that 

provides the relationship between nominal and dependent states and contains the 

conditional probability that one will affect the other, but not the impact of the change. 

This exercise can result in a very large number of program change drivers and states 

identified for an MDAP. 

Step 4: Reduce the Dependency Matrix Using a Design Structure Matrix 
 

Using the Design Structure Matrix (DSM) technique the change drivers can be 

reduced to an efficient set that has the most potential impact to cost. The DSM technique 
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is a well-established method to reduce complicated dependency structures to a manageable 

size. An example of a dependency matrix after DSM transformation created during an SEI pilot 

workshop is provided in Figure B.2. 

 

Figure B.2  Example Dependency Matrix After DSM Transformation 
 
Step 5: Construct a BBN Using the Reduced Matrix 
 

Using the program change drivers derived from Step four and their cause and 

effect relationships established in Step 3, a BBN is constructed. This BBN is a 

probabilistic model that dynamically represents the drivers and their relationships, as 

envisioned by the program domain experts. Figure B.3 depicts an abbreviated 

visualization of a BBN, in which the circled nodes represent program change drivers and 

the arrows represent either cause and effect relationships or leading indicator 

relationships. This example shows that a change in the Mission and CONOPS driver most 

likely will cause a change to the Capability Analysis driver, which in turn will likely 
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effect a change in the Key Performance Parameter (KPP) driver and subsequently the 

Technical Challenge outcome factor. The three outcome factors (Product Challenge, 

Project Challenge, and Size Growth) are then used to predict some of the input values for 

traditional cost estimation models. 

 

Figure B.3  Example BBN 

 
Step 6: Populate BBN Nodes with Conditional Probabilities 
 

Conditional probabilities are assigned to the nodes (drivers) in the BBN. Each 

node can assume a variety of states, each of which has an associated likelihood identified 

by the domain experts. This allows the calculation of outcome distributions on the 

variables. 

Step 7: Define Scenarios by Altering Program Change Driver Probabilities 
 

Domain experts use the BBN to define scenarios. The realization of a potential 

state in a particular node was specified in Step 6, and the cascading impacts to other 

nodes and the resulting change in the outcome variables were recalculated. Any change in 

one or more nodes (drivers) constitutes a scenario. Once the experts are satisfied that a 
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sufficient number of scenarios are specified, they use their judgment to rank them for 

likely impacts to cost. An example scenario created during an SEI pilot workshop is 

provided in Figure B.4. 

 

Figure B.4 Example of a Scenario With Two Driver Nodes In A Nominal State  

Data & Analysis Center for Software (DACS) 

 
Step 8: Select Cost Estimating Relationships or Tools to Generate an Estimate 

 
Parametric cost estimation models for software use a mathematical equation to 

calculate effort and schedule from estimates of size and a number of parameters. A 

decision is made as to which cost estimating tool or tools, CERs, or other methods will be 

used to form the cost estimate. COCOMO II is a well-known estimation tool and is open 

source. The SEI has so far developed the relationships between BBN-modeled program 

change drivers and COCOMO, shown in Figure B.5. The use of the commercial SEER 

cost estimating tool is being explored. 
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Figure B.5  Mapping BBN Outputs to COCOMO Inputs 

 
Step 9: Obtain Program Estimates Not Computed by the BBN 
 

The Program Office estimates of size and/or other cost model inputs such as 

productivity are used as the starting point in this step. Often these values are estimated by 

analogy and aggregation. They are adjusted by applying the distributions calculated by 

the BBN. 

Step 10: For Each Scenario, Run a Monte Carlo Simulation 
 

From each selected scenario in Step 7, use the outcome to parameterize a Monte 

Carlo simulation. Along with the information from Step 9, this provides probability 

distributions for adjusting the input factors to the cost estimating models. This also 

provides explicit confidence levels for the results. Figure B.6 shows the simulation results 

the SEI obtained when modeling a factor (person-months) in three different scenarios. 

Step 11: Report Each Scenario Result Independently 
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Report the final cost estimates for each scenario, including the nominal program 

plan. The explicit confidence levels and the visibility of all considered program change 

drivers allows for quick comparisons and future re-calculations. The transparency 

afforded by the consideration of alternative scenarios enables improved decision making 

and contingency planning. 

Results and Future Research 
 

QUELCE as an approach to early cost estimation is unprecedented in many ways. 

The SEI spent much of the past year developing and refining the analytical methods used. 

So far, trials of the earlier steps of the method have been conducted in workshops, and 

post hoc reviews of previous estimation artifacts were used for later steps. The SEI’s 

experience and the results achieved thus far suggest that the approach has considerable 

merit. Feedback about the value of the approach from the participants in workshops and 

from leaders in estimation research has been very positive. 

Empirical validation of QUELCE is ongoing, and the results of this evaluative 

research will be used to refine the approach and demonstrate its value. Future efforts will 

benefit from the participation of programs that are willing to provide access to the 

artifacts developed prior to Milestone A or to use the QUELCE method in upcoming 

Milestone A estimates. Through these joint efforts, the SEI will evaluate the extent to 

which the probabilistic methods proposed improve the accuracy and precision of cost 

estimates for DoD programs. 
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Figure B.6 Simulation Results for Three Scenarios 

 
Conclusion 
 

Extensive cost overruns have been endemic in defense programs for many years. 

A significant part of the problem is that cost estimates for unprecedented systems must 

rely heavily on expert judgments made under uncertain conditions. QUELCE aims to 

reduce the adverse effects of that uncertainty. Important program change drivers and the 

dependencies among them that may not otherwise be considered are made explicit to 

improve the realism and likely accuracy of the estimates. The basis of an estimate is 

documented explicitly, which facilitates updating the estimate during program execution 

and helps others to make informed judgments about their accuracy. Variations in the 

range of possible states of the program change drivers that may occur under different 
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likely scenarios are explicitly considered. The use of probabilistic methods combining 

Bayesian belief systems and Monte Carlo simulation will ultimately place the cost 

estimates within a more defensible range of uncertainty. 
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