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ABSTRACT

EXAMPLE BASED TEXTURE SYNTHESIS AND QUANTIFICATION OF
TEXTURE QUALITY

by
Chandralekha De

Textures have been used effectively to create realistic environments for virtual worlds by

reproducing the surface appearances. One of the widely-used methods for creating textures

is the example based texture synthesis method. In this method of generating a texture

of arbitrary size, an input image from the real world is provided. This input image is

used for the basis of generating large textures. Various methods based on the underlying

pattern of the image have been used to create these textures; however, the problem of

finding an algorithm which provides a good output is still an open research issue. Moreover,

the process of determining the best of the outputs produced by the existing methods is a

subjective one and requires human intervention. No quantification measure exists to do a

relative comparison between the outputs. This dissertation addresses both problems using a

novel approach. The dissertation also proposes an improved algorithm for image inpainting

which yields better results than existing methods.

Firstly, this dissertation presents a methodology which uses a HSI (hue, saturation,

intensity) color model in conjunction with the hybrid approach to improve the quality of the

synthesized texture. Unlike the RGB (red, green, blue) color model, the HSI color model is

more intuitive and closer to human perception. The hue, saturation and intensity are better

indicators than the three color channels used in the RGB model. They represent the exact

way, in which the eye sees color in the real world.

Secondly, this dissertation addresses the issue of quantifying the quality of the output

textures generated using the various texture synthesis methods. Quantifying the quality of

the output generated is an important issue and a novel method using statistical measures

and a color autocorrelogram has been proposed. It is a two step method; in the first



step a measure of the energy, entropy and similar statistical measures helps determine the

consistency of the output texture. In the second step an autocorelogram is used to analyze

color images as well and quantify them effectively.

Finally, this disseratation prsesents a method for improving image inpainting. In

the case of inpainting, small sections of the image missing due to noise or other similar

reasons can be reproduced using example based texture synthesis. The region of the

image immediately surrounding the missing section is treated as sample input. Inpainting

can also be used to alter images by removing large sections of the image and filling the

removed section with the image data from the rest of the image. For this, a maximum edge

detector method is proposed to determine the correct order of section filling and produces

significantly better results.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Textures

Texture refers to properties that represent the surface or structure of an object [1]. It can be

obtained from a variety of sources, such as hand-drawn pictures or scanned photographs.

Hand-drawn pictures can be aesthetically pleasing, but it is hard to make them photo-

realistic. In addition to that, it requires artists and their level of expertise, and could be

difficult for ordinary people to come up with good texture images. In industry, there is a

specific profession in game and film studios named texture artist, whose job is to produce

high quality textures. To recreate the surface appearance of objects textures can be applied

to objects by a technique called texture mapping [2, 3]. Scanned images, however, may be

of inadequate size or quality, e.g., containing non-uniform lighting, shadows, or geometry;

and could lead to visible seams or repetition if directly used for texture mapping.

Example based texture synthesis is a highly prevalent technique for creating textures

of arbitrary sizes. This method of texture synthesis takes an image from the real world and

uses that to generate a larger image such that the new generated image appears to have the

same underlying structure as the input image. This is a two-step method comprising of

analysis and synthesis. Analysis involves examination and determination of the underlying

structure of the texture and establishing a mathematical pattern for it. Synthesis on the other

hand involves using the data generated by the analysis phase to recreate a texture with the

same underlying pattern as the sample image.

Example based texture synthesis algorithms can be broadly classified as pixel based [4,

5, 6] and patch based [7]. Pixel based texture synthesis algorithms introduce blurs in the

texture, but helps maintain a consistent texture appearance. Patch based texture synthesis

1
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algorithms on the other hand, maintain the global structure of the texture, but sometimes

introduce visual artifacts along the edges in the texture.

Textures generated by all the existing algorithms work well on some categories of

textures and not so well on others, determining the best output from the algorithms still

requires human intervention for the most part and is still an open field for research. The

work of Chieh [8] introduced a method; however it is applicable only to a single class of

textures, the near regular textures.

Figure 1.1 Image without texture: A green patch representing grass.

Figure 1.2 Image with texture: A grass texture used. The quality of output is significantly
improved using the texture allowing for a more realistic look and feel.
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Figure 1.1 and Figure 1.2 shows two images representing greenery. Figure 1.1 shows

a flat image with green color whereas Figure 1.2 shows grass rendered using a texture

image. The second image is a significant improvement from the first in terms of appearing

realistic. It uses an image of grass captured with a traditional camera and mapped onto a

surface. In a computer generated image of a field depicting grass the second image is more

convincing and visually appealing as compared to the first image. It is closer to how grass

is perceived in the actual world and not merely a green patch representing it.

The role texture plays in creating computer generated images cannot be over em-

phasized. It helps give all surfaces and models in a scene more depth and realistic feel.

Textures have been used widely in multimedia [9], gaming [10, 11] and animation [10, 11]

to create a better virtual world. However different types of textures have been used in each

of these applications to create a realistic feel.

The image in Figure 1.3 shows four images from the MIT VisTex Image database

[12] representing flowers, fabric, food and grass. These images have been widely used in

the study and analysis of textures and texture synthesis algorithms.

1.1.1 Types of Textures

Textures used in computer graphics comprise of different structures and patterns and lay-

outs. Textures can be used for rendering surfaces of wood, brick, stone, water, fire, sky and

various other objects and surfaces. The images used for synthesis vary in many ways both

structurally and in color.

Texture can be broadly classified into the following five subtypes based on their

structure and appearance

a) Regular textures are textures with periodic patterns where the color/shape of all

texels (texture elements) are repeated in equal intervals along two linearly independent

directions. Regular textures are defined as wallpaper-like, congruent 2D tiling whose struc-

tural regularity can be completely characterized by the 17 wallpaper groups [13, 14]. The
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Figure 1.3 A subset of texture images from the VisTex image database. The images from
the MIT VisTex database has been widely used in texture synthesis algorithms and texture
analysis.

underlying lattice structure of each regular texture can thus be represented and generated

by a pair of linearly independent translations.

b) Near regular textures are statistical departures of regular textures along different

directions. They can be defined as textures which are regular globally but are random

locally. A near-regular texture deviates geometrically and photometrically from a regular

congruent tiling. Although near-regular textures are ubiquitous in the man-made and nat-

ural world, they present computational challenges for state of the art texture analysis and

synthesis algorithms [15].

c) Irregular textures are textures which have no periodicity in them. They comprise

of texels which cannot be isolated and no single texel can help recreate the entire texture.
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These textures are however not as random as stochastic textures, discussed next, but are

much harder to synthesize on larger scale on account of the fact that the underlying structure

varies a lot.

d) Stochastic textures are textures which appear like noise. This type of texture is

generally used to represent features like sand, smoke, fire and similar features. In most

cases synthesizing stochastic texture involves randomly choosing color values based on

parameters like minimum brightness, average colour or maximum contrast. They provide

low quality output but suffice when used for such textures.

e) Near stochastic textures are textures which appear similar to a stochastic texture

but comprises less of noise.

1.1.2 Homogeneous and Non Homogeneous Textures

Textures can be classified as homogeneous or non homogeneous based on their details.

Typically homogeneous textures consist of exclusively of single texels. Specifically, homo-

geneous texture contains ideal repetitive structures, and such uniformity produces idealised

patterns. Weak homogeneity involves local spatial variation in texture elements or their

spatial arrangement, which leads to more or less violates the precise repetitiveness. A non

homogeneous texture mostly refers to an image where repetition and spatial self-similarity

are absent. Since spatial homogeneity is considered an essential property of a texture, a

non homogeneous image is not treated as a “texture” in this dissertation.

1.1.3 Parametric and Non Parametric Textures

Textures can also be classified in a different manner based on the way they can be syn-

thesized. Parametric and non parametric textures are two broad classifications of textures

based on the manner of synthesis. The parametric method is the use of oriented linear

kernels at multiple spatial scales for image analysis and representation. The widespread

use of such kernels as descriptions of early visual processing in mammals inspired a large
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number of models for texture classification and segmentation. The development of wavelet

representations, which are based on such kernels, have revolutionized signal and image

processing. A number of inspirational results in texture synthesis are based on multi-scale

decompositions [16, 17].

1.2 Texture Synthesis

Texture Synthesis is the mechanism of building large textures of arbitrary shapes using a

small input image so that the new texture appears to be a part of the existing texture.

Figure 1.4 An example image showing a sample input texture to be used for synthesis.

Figure 1.5 A synthesized texture generated using provided sample input texture.
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1.2.1 Motivation

The problem is to generate an output texture which is as close to the input image structurally

and tonally without showing visible seams or artifacts. The new image should look like it

has been created by a continuation of the original image. It should have the same underlying

structure as the input image and the same characteristics. The problem is significant

because it helps create large textures of arbitrary size with a small sampler image. Scaling

the input image will not have the same effect. It will compromise the quality of the output

and also scale the texels which forms the basis of the image as opposed to using the texels

to create a large output. Figure 1.4 shows an original texture image which is provided as an

input to generate the larger image in Figure 1.5. The Efros and Freeman [18] method has

been used to generate the texture in Figure 1.5.

1.2.2 Markov Random Field

Although a variety of texture models have been proposed throughout the history, so far the

most successful model for graphics applications is based on Markov Random Field (MRF).

The MRF model is a 2 dimensional extension of the single dimensional Markov

Chain, inspired by the Shannon’s work on modelling the English language using n-grams [19].

The Markov Chain is a sequence of random variables with the Markov Property; given the

present state, the past and the future states are independent of each other. If the system is

at state Xi and moves to a new state Xj the subsequent state after Xj depends only on Xj

and not on Xi or any earlier state [20].

Markov Random Field methods model a texture as a realization of a local and station-

ary random process. That is, each pixel of a texture image is characterized by a small set

of spatially neighboring pixels, and this characterization is the same for all pixels. Imagine

that a viewer is given an image, but only allowed to observe it through a small movable

window. As the window is moved the viewer can observe different parts of the image. The

image is stationary if, under a proper window size, the observable portion always appears
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similar. The image is local if each pixel is predictable from a small set of neighboring

pixels.

Based on this Markov-Random-Field model, the goal of texture synthesis can be

formulated as follows: given an input texture, synthesize an output texture so that for

each output pixel, its spatial neighborhood is similar to at least one neighborhood at the

input. The size of the neighborhood is a user-specifiable parameter and is proportional to

the feature size of the texture patterns. Due to the MRF assumption, similarity of local

neighborhoods between input and output will guarantee their perceptual quality similarity

as well. In addition to this quality concern, the texture synthesis algorithm should also be

efficient and controllable.

1.2.3 Texture Synthesis over Surface

Turk’s [21] and Wei and Levoy’s [5] (WLS) surface synthesis methods both densely tessel-

late the input mesh using Turk’s re-tiler [22] and then perform a per-vertex color synthesis.

These two approaches are very similar (both use a multiresolution mesh hierarchy), yet

have three quite significant differences. (1) WLS uses both random and symmetric vector

fields, whereas Turk’s always uses a user defined, smooth vector field. (2) Turk’s uses a

sweeping order derived from the smooth vector field for vertex traversal, WLS visits the

mesh vertices in random order. (3) Turk’s uses surface marching to construct the mesh

neighborhood, while WLS performs flattening and resampling of the mesh. Results of the

two methods are comparable in quality.

Ying et al. [23] wish to overcome the drawbacks of surface marching methods (such

as [21]): (1) the sampling pattern is not guaranteed to be even in the presence of irregular

geometry, (2) the sampling is numerically unstable, as small surface variations can cause

large variations in the pattern and (3) the method is slow due to many geometric intersection

and projection operations. In their approach, texture is synthesized on surfaces per-texel

using a texture atlas of the polygonal mesh (a collection of rectangular domains Ui on
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which the surface is smoothly parameterized) and a common planar domain, the chart

V , from which neighborhood sample positions in the domains Ui are gathered. These

positions in the Ui then correspond to the neighborhood on the original surface along a

previously defined, orthogonal unit tangent vector field. They apply both Wei/Levoy [5]

and Ashikhmin [4] per-pixel synthesis strategies with convincing results [23].

Praun et al.s Lapped Textures [24] extend the chaos mosaic [25] to surfaces with a

pre-computed vector field to direct anisotropy. In their system, the user specifies a tan-

gential vector field over the surface, controlling texture scale and orientation. A (possibly

irregular) input texture sample is then repeatedly pasted onto the surface by growing a

surface patch and parameterizing it in texture space. The parametrization is optimized

(by solving a sparse linear system) such that the vector field aligns with the frame of the

texture patch. They render the resulting model both with a generated texture atlas and by

runtime-pasting, the latter significantly reducing texture memory at the cost of rendering

some faces multiple times.

1.3 Texture Quantification

Figure 1.6 Synthesized texture: Image showing a texture synthesized using the Efros
Freeman method.

Figure 1.6 and Figure 1.7 show two textures synthesized using two different algo-

rithms [18, 6]. The results of the two algorithms are different and the choice between the
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Figure 1.7 Synthesized texture: Image showing a texture synthesized using the Efros
Leung method.

two algorithms becomes a subjective one. This problem is interesting and more challenging

than just studying images as they involve comparing the input texture with all output

textures generated.

It involves studying which texture has consistently retained the global and local

features of the input image, which image consistently recreates the structure of the input

image and does not cause seams or noise to appear. As is visible in the above figures

some algorithms produce significantly better output than the other and at such points mere

inspection of the output is good enough to determine the better of the two. However in

many cases this decision is not easy when the margin of error is small.

1.4 Image Inpainting

Digital images are subject to the introduction of noise and corruption. Removing the noise

and restoring images to their original format is a widely researched topic and many different

approaches have been adopted to achieve this goal. Image inpainting is an extension of this

issue which deals with filling corrupt section in images or even filling a large section of

the image which has been removed. It allows an end user to pick an image which has

speckles [26, 27, 28] or large sections obfuscated and restore it to its original format [29].



11

As explained by Bertalimio and Sapiro [30] the modification of images in a way

that is non-detectable for an observer who does not know the original image is a practice

as old as artistic creation itself. Medieval artwork started to be restored as early as the

Renaissance, the motives being often as much to fill in any gaps [31, 32]. This practice is

called retouching or inpainting. The object of inpainting is to reconstitute the missing or

damaged portions of the work, in order to make it more legible and to restore its unity [32].

Figure 1.8 Corrupt image with speckles. Courtesy: G. Sapiro, Geometric Partial
Differential Equations and Image Processing, Cambridge University Press, January 2001.

Image inpainting focuses on automatically repairing the missing regions in a visually

plausible way. In cases where small sections have been removed image inpainting can help

restore the image to its original state, however in cases where an entire object or person

has been removed from the original image inpainting allows restoring the image in such

a manner that the restored image appears to have never had the removed object. This is

useful when undesired objects are present in an image and need to be removed.

Figure 1.9 and Figure 1.10 shows an example where a large section of the image has

been removed and then restored using the surrounding neighborhood.
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Figure 1.9 Image with section removed. People in the image have been manually removed
from the image leaving a void in the image.

1.5 Overview

This dissertation deals with these three problems and tries to address them. The following

chapters dwells deeper into each of the topics. Chapter 2 talks about using a HSI color

model for texture synthesis using the hybrid texture synthesis method, Chapter 3 deals

with quantification of the textures generated using the various algorithms. Chapter 4 deals

with the last topic of image inpainting and our solution using a maximum edge detector to

achieve better results. Chapter 5 provides the conclusions and the future work.
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Figure 1.10 Image with section restored. Removed section of the image is refilled using
the texture of the neighboring region.



CHAPTER 2

TEXTURE SYNTHESIS

2.1 Synthesis

The goal of texture synthesis can be stated as follows: given a texture sample, generate a

new texture that, when perceived by a human observer, appears to be generated by the same

underlying process.

Example based texture synthesis algorithm has been one of the most widely used

and explored method for texture synthesis. This method accepts a real world image and

tries to generate a texture of arbitrary size from the input texture. The goal is to make

the new texture perceptually similar to the input structure. The global features of the

texture are retained and it appears to have the same underlying pattern as the input texture.

This method of texture synthesis is an alternative way to create textures. As mentioned in

Chapter 1 the process of texture synthesis comprises of the two sub-processes of analysis

and synthesis.

Example based texture synthesis algorithms for the most part uses a pixel based or

patch based approach. The pixel based approach generates the new texture one pixel at a

time in scan-line order whereas patch based approach generates textures using a collection

of pixels called patches. Hybrid texture synthesis algorithm [33] combines these two

methods to improve the quality of the output texture.

2.1.1 Pixel Based Algorithm

Pixel-based algorithms synthesize a new texture pixel by pixel [5], with the value of each

new pixel determined by its local neighborhood. A very simple and yet elegant algorithm

works as follows. First, the output texture is seeded from a portion of the input, e.g. a 3

× 3 region. Starting from this seed, it generates new pixels outward in a spiral fashion.

14
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For each output pixel under investigation, a fixed-size window (with size picked by the

user) centering on the pixel is intersected with already synthesized pixels. This collection

of intersection pixels is then searched throughout the input image to find the most similar

N candidates. Finally, a random candidate is drawn uniformly from this candidate set, and

the input pixel centered on this neighborhood is copied to the target pixel. This process is

repeated for each not-yet-synthesized output pixel in a spiral fashion until the entire output

is synthesized.

2.1.2 Patch Based Algorithm

The quality and speed of pixel-based approaches can be improved by synthesizing patches

rather than pixels. Intuitively, when the output is synthesized by assembling patches rather

than pixels from the input, the quality ought to improve as pixels within the same copied

patch ought to look good with respect to each other. In pixel-based synthesis, the output

is synthesized by copying pixels one by one from the input. The value of each output

pixel is determined by neighborhood search to ensure that it is consistent with already

synthesized pixels. Patch-based synthesis is very similar to pixel-based synthesis, except

that instead of copying pixels, we copy patches. To ensure output quality, patches are

selected according to its neighborhood, which, just like in pixel-based synthesis, is a thin

band of pixels around the unit being copied (being pixel in pixel-based synthesis or patch

in patch-based synthesis).

Cohen et al. [34] presents a tile-based texturing algorithm that shares similar philoso-

phy to previous patch-based algorithms. Similar to patch-based synthesis, Cohen et al. [34]

used tiles as the basic units for synthesis. However, instead of using arbitrarily shaped

patches and handle patch overlaps via blending or cutting, Cohen et al. [34] used a special

kind of tile called Wang Tiles which have no overlap with each other and whose contents

are constructed carefully so that the texture patterns are continuous cross tile edges that
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have compatible colors. Once this tile set is constructed, an arbitrarily large texture can be

constructed by assembling these tiles so that adjacent tiles share identical edge colors.

2.1.3 Other Techniques

In addition to the the pixel and patch based approach other techniques to generate tex-

ture synthesis exist. The work of Kwatra et. al [35] suggests an alternative method for

synthesizing texture. Like the pixel based gorithms, texture optimization synthesizes an

output texture in the units of pixels. However, unlike previous pixel-based methods which

synthesize pixels one by one in a greedy fashion, this technique considers them all together,

and determine their values by optimizing a quadratic error energy function. The error

function is determined by mismatches of input and output neighborhoods, so minimizing

this function leads to better output quality [36].

2.2 Previous Work

Non parametric texture synthesis specifically example based texture synthesis has long

been a widely used method for generating textures in computer graphics.

One of the earliest and significant work was that done by Popat [37]. This texture

synthesis algorithm can be best classified as a nonparametric Markov chain synthesis al-

gorithm. The basis of the algorithm is to order the pixels and then synthesize a new pixel

from a nonparametric representation of the conditional probability function derived from

samples of the input texture. This algorithm proposed to use stochastic sampling of the

conditional probability function and also to compress the conditional probability function

via a set of Gaussian kernels. This compression allowed for fast look ups, but limited the

neighbourhood order that could be successfully modelled. The one flaw in this algorithm’s

approach was that it was causal. That is, the synthesis was performed in a sequential

sequence starting from a “seed” and gradually moving further away. The problem with this

type of approach is that if the past pixels start to deviate too far from those seen in the input
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image, the synthesis algorithm can get lost in a space where only garbage is produced. This

severely limited the algorithm from synthesising large areas of texture.

The problem with the sequential approach of Popat’s [37] algorithm is solved by the

work of Paget and Longstaff [38]. This algorithm introduced a top down approach, where

the frequency components of a texture are gradually introduced into a synthetic texture

from low to high frequency. This overcame a lot of problems inherent in a sequential

approach which was prone to having the synthesis algorithm wander into a non recoverable

“no man’s land”.

The noncausal nature of Paget and Longstaff [38] algorithm not only could synthesise

a texture to any size, but also better supported the idea that arbitrary textures could be

modelled by a Markov random field. The number and range of textures that could be

synthesised by their scheme also showed that nonparametric Markov random field models

were the models of choice for natural textures that included both stochastic and determin-

istic properties. However, the one draw back to their scheme was speed.

Another important algorithm was that proposed by Heeger and Bergen [39]. This

paper was one of the first papers to show the possibility of synthesising colour textures

to the graphics community. They did it using a combination of Laplacian and Steerable

pyramids to deconstruct an input texture. The histograms from each of the pyramid levels

was used to reconstruct a similar pyramid. Unfortunately the deconstruction was not

orthogonal, which meant that the algorithm had to use an iterative approach of matching

the histograms and expanding and reducing the pyramid.

A novel algorithm was suggested by Zhu [40] which amalgamated the filter technol-

ogy and MRF technology to produce the so-called FRAME model. It did this by comparing

the histograms of both the filter responses from the original texture and that of the synthetic

texture. The synthetic texture was then continually updated with respect to an evolving

MRF probability function, that was defined with respect to modulated filter responses. The

modulation was defined with respect to differences between the expected filter response
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using the current MRF probability function and the filter response from the original texture.

All this avoided the messy process of trying to reconstruct a texture from arbitrary filter

responses and wrapped it all in some nice clean mathematics, but the synthesis/modelling

process was very slow.

A similar technique to that of Heeger and Bergen [39] was suggested by Simoncelli

and Portilla [41], but where Heeger and Bergen [39] updated the complete filter response

using histogram equalisation, Simoncelli and Portilla [41] updated each point in the pyra-

mid of filter responses with respect to the correlations using a method similar to projection

onto convex sets (POCS). They did this by finding an orthogonal projection from the filter

response of the synthetic texture to that of the original. After the projection of all filter

responses, the wavelet pyramid was collapsed, further projection was performed, and then

the pyramid was reconstructed. This iteration continued until a convergence was reached.

Simoncelli and Portilla [41]found that only a few minutes of processing time was required

to produce reasonable results. However they still had some failures, and had difficulty

maintaining fidelity with textures containing structure.

The work of Efros and Leung [6] gave a rendition of Popat’s [37] work. However

in their case they explicity used the exhaustive nearest neighbour searching. They also

initialised the synthetic texture with an arbitrarily placed patch of texture. However this just

changed the order in which the pixels were synthesised, and did not change the fact that it

was a sequential nonparametric Markov chain type of approach as proposed by Popat [37],

which had inherent stability problems.

In subsequent work both Wei [42] and Wei and Levoy [5] used Popat’s [37] approach.

However they did not change the synthesis order for a very good reason, speed. Keeping the

synthesis order as proposed by Popat [37], meant that the Markov neighbourhood was fairly

consistent over the whole synthesis process. This allowed for data compression. Popat [37]

had used Gaussian kernels to define a pdf, Wei and Levoy [5] used tree-structured vector
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quantisation to quickly search for the nearest neighbour. As highlighted by Efros and

Leung [6], synthesis via nearest neighbour gave superior results.

In subsequent work Turk [21] shows how the nonparametric MRF techniques of

Paget and Longstaff [38] and Wei and Levoy [5] can be extended to texture synthesis on

arbitrary meshes. He uses a similar coarse to fine synthesis approach as presented in both

papers. He also supplements the synthesis process with a directional field over the mesh to

help maintain a consistent orientation to the texture.

The work of Ashikhmin [4] was the first real solution to the time consuming pro-

cedure of exhaustive nearest neighbour searching, without loss of quality as in Wei and

Levoy’s approach. In fact the method of Ashikhmin [4] actually gives both an increase in

synthesis quality and speed. In his seminal paper, he proposes a new measure of nearest

neighbour instead of either the Manhatten or Euclidean distance, as he suggests that these

may not be the best measure to test for perceptual similarity. He notes that if we are only

taking pixel colours from the input image (and not sampling from a larger distribution),

then when we synthesise a colour for a pixel, we can be assured that each of its defined

neighbours correspond to a pixel within the input image. Speed can be gained if, instead

of doing a exhaustive search, we only sample from those pixels with a corresponding

neighbour. Unfortunately he applied his new technique to Wei and Levoy’s [5] algorithm,

which meant that his results were not as good as they should have been. Applying his

technique to Paget and Longstaff’s [38] algorithm, we get an algorithm that is arguable one

of the best for synthesising natural textures.

Developed concurrently with Liang [7] approach, Efros and Freeman [18] take patch-

based texture synthesis a step further. Instead of blending overlapping edges with a filter,

they propose cutting and joining the respective patches along a boundary for which the

difference in pixel values is minimal.

What if nearest neighbour comparisons could be avoided during synthesis? This is

what Zelinka [43] tries to accomplish by creating a k nearest neighbour lookup table as part
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Figure 2.1 (a) Input texture (b) Output generated by hybrid texture synthesis algorithm
(c) Output generated by enhanced hybrid texture synthesis algorithm.

of an input texture analysis stage. They then use this table to make random jumps during

their sequential texture synthesis stage. No neighbourhood comparisons are done during

synthesis, which makes the algorithm very fast.

The hybrid texture synthesis algorithm [33] combines the pixel and the patch based

algorithm to yield more effective results. Figure 2.1 shows an input texture and the output

generated using the hybrid texture synthesis algorithm and our enhanced hybrid texture

synthesis algorithm. As is evident, the outputs generated by both are close to the input

texture. The blurring caused in right bottom corner figure figure 2.1 (b) using the hybrid

texture synthesis algorithm has been eliminated in the figure 2.1 (c) using the enhanced

hybrid texture synthesis algorithm.

2.3 Hybrid Texture Synthesis

The name, hybrid texture synthesis algorithm [33] was derived from the nature of the

algorithm which combines the strengths of pixel-based algorithms, patch-based algorithms

and their variants. The algorithm starts with an initially empty output image R, which is

partitioned by a set of non-overlapping, connected pixel patches pi ∈ P . All patches pi

combined resemble a tiling of R, formally
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R =
⋃
i

pi (2.1)

and

∀i, j.i 6= j : pi ∩ pj = ∅ (2.2)

In algorithm step i, a patch of connected pixels Pi is selected from an example

texture T , which best fits the target region pi in the partially synthesized result Ri−1. This

selection/search procedure is constrained by overlap of ov pixels with Ri−1. The algorithm

constructs this overlap for arbitrarily shaped pixel patches pi by dilating the binary support

of pi once with a square shaped structuring element of corner length 2ov + 1. A candidate

patch Pi ⊂ T is used either if the overall error in the overlap region is below the maximum

overlap error ∆max or the patch cannot be further split - otherwise the search process is

repeated using smaller patches (a partition of pi). If a patch satisfying the error bound

has been found, every pixel in the overlap region exceeding the pixel error threshold ∂max

is marked as invalid and the binary support of the valid region is dilated to form a pixel

traversal-map Mi, thereby defining the order in which erroneous overlap pixels are then

re-synthesized on a per-pixel basis. This ensures sufficient valid neighborhoods for each

re-synthesized pixel. The algorithm repeats this process until each patch pi in the initial

patch list P has been assigned pixel values.

The Hybrid texture synthesis algorithm [33] uses every patch in the output texture to

find the best possible patch in the input texture. It uses the error image defined by

Ei = ERRORIMAGE(T, Ii, Ji) (2.3)
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where Ei is the 2D error image calculated using Ii , the 2D image mask and Ji the

2D binary support function for Ii

Given Ii , input texture T and the weighted error ∆i ∈ [0, 1] can be calculated

between the mask Ii and a circular shift x0 of T.

Ei(x0) = 1
Ki

∑
x

∑
c

[Ji(x)Wc(Ii,c(x)− Tc(x+ xo))
2] (2.4)

with Ki =
∑
x

Ji(x), c=R,G,B and
∑
c

Wc = 1 . Wc is a three element color channel

weighting vector.

Table 2.1 shows the variables used in the algorithm and their meanings. Algorithm 1

shows the pseudocode for the original Hybrid Texture synthesis algorithm described above.

It is a recursive algorithm as explained, which repeats until the error margin is reduced or

the algorithm is left with a single pixel.
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Table 2.1 List of variables

Variable Meaning

T 2D Input Texture

R,Ri resulting 2D Texture(final/in step i)

ov,ovs patch overlap in pixels (initial/split)

∆max user defined patch overlap error tolerance in [0,1]

∂max user defined pixel overlap error tolerance in [0,1]

P , Ps
list of non-overlapping pixel-patches pi, which, when combined, resem-
ble a tiling of the resulting texture area R =

⋃
i

pi (initial/split)

i i integer algorithm step, starting at 1

pi

a patch of connected pixels with index i in list P . pi defines a region in
R with Size(pi) > 0

Ri,composite intermediate 2D result after Compositing

Ii 2D image mask extracted from Ri−1, using pi and ov

Ji 2D binary support function for Ii

Ei, Ei,trim 2D error image computed from T, Ii, Ji

Pi 2D texture patch picked from T in step i

∆i patch overlap error in the interval [0,1] for Pi

Si 2D error surface between Ri−1 and Pi

Mi

2D pixel traversal-map, defining the order in which erroneous overlap
pixels are re-synthesized

Wc

a three-element, color channel weighting vector (c = R, G,B) with∑
c

Wc = 1

x, x0 a 2D vector/coordinate (x, y)
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Algorithm 1 HybridSynthesize:(T, P, ov,∆max, ∂max, R : R)

for all patches pi ∈ P do

[Pi,∆i]← FINDBESTPATCH(T,Ri−1, pi, ov)

if (∆i < ∆max or ISSINGLEPIXEL(pi)) then

Si ← ERRORSURFACE(Pi,Ri−1)

Pi ←MARKINVALID(Pi,Ri−1)

Mi ← BUILDTRAVERSALMAP(Pi,Ri−1)

Ri,composite ← COMPOSE(Pi,Ri−1)

Ri ← OVERLAPRESYNTHESIZE(Pi,Ri−1)

else

Ps ← SPLITPATCH(pi)

ovs ← max(3, ceil(ov/2))

Ri ← HybridSynthesize(T ,Ps,ovs,∆max,∂max,Ri−1)

end if

end for

2.4 Color Models

Color is the brain’s reaction to visual stimulus. Although we can precisely describe color

by measuring its spectral power distribution this leads to a large degree of redundancy.

The reason for this redundancy is that the eye’s retina samples color using only three

broad bands, roughly corresponding to red, green and blue light. The signals from these

cones, together with those from the rods, are combined in the brain to give several different

“sensations” of the color. These sensations have been defined as follows:

o Brightness: The human sensation by which an area exhibits more or less light.

o Hue: The human sensation according to which an area appears to be similar to one,

or to proportions of two, of the perceived colors red, yellow, green and blue.
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o Colorfulness: The human sensation according to which an area appears to exhibit

more or less of its hue.

o Lightness: The sensation of an area’s brightness relative to a reference white in the

scene.

o Chroma: The colorfulness of an area relative to the brightness of a reference white.

o Saturation: The colorfulness of an area relative to its brightness

The tri-chromatic theory describes how three colors can form the basis of all colors.

This theory is the basis for photography and print media.

A color model is a means for specifying, creating and visualizing colors. Various

color models have been proposed over the years based on the needs. Color is mostly

specified using three parameters. The various color models specify three of the “sensation”

described above as parameters. The value of these parameters defines the position of the

color in the color space.

Due to the availability of a large number of color models choosing the right model

becomes a daunting task. In most cases color models are chosen as per the need of the

application and the keeping in mind the limiting factors that dictate the size and type of

color space that can be used. Some color spaces are perceptually linear, i.e. a 10 unit

change in stimulus will produce the same change in perception wherever it is applied.

Many color spaces, particularly in computer graphics, are not linear in this way. Some

color spaces are intuitive to us thus making it easy for the user to navigate within them

and creating desired colors relatively easily. Other spaces are confusing for the user with

parameters with abstract relationships to the perceived color. Finally, some color spaces are

tied to a specific piece of equipment (i.e. are device dependent) while others are equally

valid on whatever device they are used.
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Figure 2.2 An image showing the RGB color triad. The three colors form the primary
colors.

2.4.1 RGB Color Space

The RGB color space is the most widely used color models in image processing and

computer graphics. In the RGB model, each color appears as a combination of red, green,

and blue. This model is called additive, and the three colors, red, green and blue are

called primary colors. The primary colors can be added to produce the secondary colors of

light - magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). The

combination of red, green, and blue at full intensities makes white. Figure 2.2 shows the

three primary colors and the secondary colors formed by their combination. Thus, images

in the RGB color model consist of three independent image planes, one for each primary

color. RGB is a basic color model for computer graphics because color displays use red,

green, and blue to create the desired color. Therefore, the choice of the RGB color space

simplifies the architecture and design of the system. Besides, a system that is designed
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Figure 2.3 An image showing the color cube. The cube helps represent the various colors
and their gradients as they change from one color to the other.

using the RGB color space can take advantage of a large number of existing software

routines, because this color space has been around for a number of years. However, RGB

is not very efficient when dealing with real-world images. To generate any color within the

RGB color cube, all three RGB components need to be of equal pixel depth and display

resolution. Also, any modification of the image requires modification of all three planes.

2.4.2 HSI Color Space

The HSI color space as described by Gonzalez and Woods [44] is an extension of the HSL

(Hue Saturation Light) model for colors. The HSL type color models are a deformation of

the RGB color cube. Imagine the RGB color cube tipped onto the black corner then the line

through the cube from black to white defines the lightness axis. The color is then defined

as a position on a circular plane around the lightness axis. Hue is the angle from a nominal

point around the circle to the color while saturation is the radius from the central lightness

axis to the color.
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Figure 2.4 Illustration of the HSI color model. The HSI color model is based an the hue,
saturation and intensity component.

Figure 2.3 shows a RGB color cube with the white corner oriented towards the

viewer. The diagonally opposite corner of this cube corresponds to the black color.

The HSL color space rotates this cube about the diagonal running from the black to

the white corner.

The HSI color model uses the hue, saturation and the intensity instead of the value

to create and visualize color. The hue component describes the color itself in the form of

an angle between [0,360] degrees. 0 degree mean red, 120 means green, 240 means blue,

60 degrees is yellow, 300 degrees is magenta. The saturation component signals how much

the color is polluted with white component. The range of S is [0 1]. The intensity ranges

between [0 1] where 0 means black and 1 means white

Figure 2.4 shows an illustration of the HSI color model. In this model the point “A”

(shown in red), is an arbitrary color point, the angle form the red axis gives the hue. The

length of the vector represents the saturation normally ranging from [0 1].

The conversion formulae between RGB and HSI is given as follows
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Intensity is defined as

I = (R+G+B)
3

(2.5)

Saturation is defined as

S = 1− 3
(R+G+B)

∗ a (2.6)

where a is min(R,G,B).

and hue is defined as

H = cos−1 (0.5∗(R−G)+(R−B))

(((R−G)2+(R−B)(G−B))
0.5

)
(2.7)

2.5 Enhanced Hybrid Texture Synthesis

The Enhanced Hybrid Texture synthesis algorithm builds on the idea of the hybrid texture

synthesis algorithm and extends it to improve the quality of the images synthesized.

2.5.1 Approach

This algorithm alters the value of the weighting vector to reflect the intensity parameter of

the HSI model to thus changing the color model used in the algorithm. Algorithm 2 shows

the pseudocode for the enhanced hybrid texture synthesis algorithm. It shows how the new

color model has been effectively incorporated into the existing algorithm. The HSI color

model is used instead of the traditional RGB (red, green and blue) space because the HSI

model has a better color description for human interpretation [44].
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Algorithm 2 EnhancedHybridSynthesize:(T, P, ov,∆max, ∂max, R : R)

W ← HSIWEIGHT(R,G,B)

for all patches pi ∈ P do

[Pi,∆i]← FINDBESTPATCH(T,Ri−1, pi, ov)

if (∆i < ∆max or ISSINGLEPIXEL(pi)) then

Si ← ERRORSURFACE(Pi,Ri−1,W )

Pi ←MARKINVALID(Pi,Ri−1,W )

Mi ← BUILDTRAVERSALMAP(Pi,Ri−1,W )

Ri,composite ← COMPOSE(Pi,Ri−1,W )

Ri ← OVERLAPRESYNTHESIZE(Pi,Ri−1,W )

else

Ps ← SPLITPATCH(pi)

ovs ← max(3, ceil(ov/2))

Ri ← EnhancedHybridSynthesize(T ,Ps,ovs,∆max,∂max,Ri−1)

end if

end for

return R

2.5.2 Steps Involved

The proposed algorithm involves modifying the color channel weighing vector while cal-

culating the error image.

1. Build a dataset of textures to test and compare the new algorithm with the original

one.

2. Execute the hybrid texture algorithm to generate textures of size 128×128 using

the original color model

3. Modify the weight vectorWc in the algorithm to reflect the value of the parameters

from the HSI color model
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4. Execute the enhanced hybrid texture algorithm to generate the textures of size

128×128 for the same set of input textures as in Step 1.

2.6 Experimental Results

We tested our algorithm on twenty four test texture images and on a subset of the MIT

VisTex database. The first set of textures varied from regular to stochastic and were

obtained from the PSU texture database. Figure 2.5 shows the steps involved in comparing

the output of the two algorithms.

Figure 2.6 shows the input dataset we used for our experiment from the PSU database.

Of the texture set the three images on the first column are regular, six images are near-

regular, six are irregular, six are near-stochastic and three are stochastic. This set of test

data has a mix of different types of texture and serves well in testing the validity of our

algorithm. Figure 2.7 - Figure 2.10 show a subset of our results. The first image in the

set is the initial input image. The second, the result generated using the hybrid texture

synthesis algorithm and the third is the result generated using our enhanced hybrid texture

synthesis algorithm.

The second dataset was a subset of textures from the MIT VisTex texture database.

Figure 2.13 - Figure 2.15 show the comparison result for the output generated using two

images from the MIT VisTex database. A total of forty-three images have been used for

testing from this database.

2.7 Conclusions

The textures generated using our enhanced hybrid texture synthesis shows that the result

is appreciably better than that generated using the hybrid texture synthesis algorithm. The

results however differ with each texture and show noticeable improvement in some and

and very little improvement in a few others. The task of determining the better output from

the generated texture requires manual inspection and with slight improvement it becomes
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Figure 2.5 Image showing the steps involved in the enhanced hybrid texture synthesis.
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Figure 2.6 Input data set consisting of 24 images across five different texture types. These
images form the data set for the work.

Figure 2.7 Image showing the results obtained by the texture synthesis methods for the
tiger print texture image. Original image (left), output of hybrid texture synthesis (center),
output of enhanced hybrid texture synthesis (right).

a difficult task. The next chapter deals with this issue of quantifying textures based on the

output generated using texture synthesis algorithms.
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Figure 2.8 Image showing the results obtained by the texture synthesis methods for the
stone wall texture image. Original image (left), output of hybrid texture synthesis (center),
output of enhanced hybrid texture synthesis (right).

Figure 2.9 Image showing the results obtained by the texture synthesis methods for the
pebbles texture image. Original image (left), output of hybrid texture synthesis (center),
output of enhanced hybrid texture synthesis (right).
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Figure 2.10 Image showing the results obtained by the texture synthesis methods for
the mesh texture image. Original image (left), output of hybrid texture synthesis (center),
output of enhanced hybrid texture synthesis (right).

Figure 2.11 Image showing the results obtained by the texture synthesis methods for the
fire texture image. Original image (left), output of hybrid texture synthesis (center), output
of enhanced hybrid texture synthesis (right).



36

Figure 2.12 Image showing the results obtained by the texture synthesis methods for the
water texture image. Original image (left), output of hybrid texture synthesis (center),
output of enhanced hybrid texture synthesis (right).

Figure 2.13 Image showing the results obtained by the texture synthesis methods for the
food texture image from the MIT VisTex texture database. Original image (left), output of
hybrid texture synthesis (center), output of enhanced hybrid texture synthesis (right).
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Figure 2.14 Image showing the results obtained by the texture synthesis methods for the
food texture image from the MIT VisTex texture database. Original image (left), output of
hybrid texture synthesis (center), output of enhanced hybrid texture synthesis (right).

Figure 2.15 Image showing the results obtained by the texture synthesis methods for the
fabric texture image from the MIT VisTex texture database. Original image (left), output
of hybrid texture synthesis (center), output of enhanced hybrid texture synthesis (right).



CHAPTER 3

TEXTURE QUANTIFICATION

3.1 Quantification

As discussed in Chapter 2 there are many algorithms for texture synthesis using both the

pixel and the patch based approach. Each of these algorithm provides an output which

though a close match to the original image is not an absolute match. Comparing the

different output textures in relation to the input texture provided would be a good approach

to provide a basis for quantification and as such determining which output is the closest

match.

The best matching output will have to consistently recreate the underlying pattern of

the input texture, including all the global and the local features.

Figure 3.1 shows an input texture and the output generated using the Efros and

Leung [6] and the Efros and Freeman algorithms [18]. As is evident, the outputs generated

by both are close to the input texture, but not an exact match. Determining which of the two

outputs is better is a highly subjective matter. This could be done using manual inspection

and human interaction. However, to automatically determine which of the two is better and

reduce the amount of human involvement would be an ideal option for us as computer

scientists. This dissertation presents an algorithm to eliminate human involvement in

quantifying the output using classical statistical measures and a color correlogram.

3.2 Existing Techniques

3.2.1 Quantitative Evaluation on Near Regular Texture Synthesis

The method suggested by Chieh et. al. [8] is applicable for the near-regular class of textures

and not other classes. The algorithm compares the synthesis results of four algorithms on

regular textures and near-regular textures by comparing their underlying lattices. As a

38
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Figure 3.1 (a) Input texture (b) Output generated by Efros and Leung algorithm (c) Output
generated by Efros and Freeman algorithm

basis for comparison, the lattices of regular textures are automatically extracted, and those

of near-regular textures are specified interactively. The regularity preservation test and the

user evaluation test are used as a complementary pair to evaluate the synthesis results.

The first evaluation is objective since it checks if the global regularity is preserved

based on a pair of well-defined, quantitative geometric and appearance regularity measures.

The basic idea is to view a near-regular texture as a statistical distortion of a regular,

wallpaper-like congruent tiling and the degree of its regularity is determined by how much

the geometry and appearance of individual tiles differ from their regular state. Since a

near-regular texture can be transformed to its regular state by deforming its underlying

lattice, the geometric regularity of the near-regular texture is obtained by computing the

amount of deformation between the underlying lattice of the near-regular texture and that

of its regular counterpart. This method uses two measures called the Geometric Regularity

(G-score) and the Appearance Regularity (A-score) for the objective study.

The second evaluation is subjective, human subjects are used to examine and score

the overall quality of the synthesized textures in comparison to the input texture in terms of

color/intensity, statistical variations, and structures.
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Figure 3.2 A near regular texture overlaid with its lattice(left) and its geometric regular
counterpart(right).

Figure 3.2 shows an example of a near regular texture overlaid with its lattice and its

geometric counterpart.

3.2.2 Disadvantages

This basis of the work described in [8] is the fact that the near regular textures are departures

from their regular equivalent. This poses a problem for using this technique for evaluating

different classes of textures. The irregular, near-stochastic and the stochastic textures have

no regular conterpart to which they can be compared and which would be the basis for

underlying grid.

3.3 Color Correlogram

A color correlogram expresses how the spatial correlation of color changes with distance.

It is a color feature which can be used in various image processing and video processing

tasks as described by the work in [45, 46, 47, 48]. A color histogram captures only the

color distribution in an image and does not include any spatial information. Thus, the

correlogram is one kind of spatial extension of the histogram [49]. The highlights of this

feature are: (i) it describes the global distribution of local spatial correlations of colors,
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(ii) it is easy to compute, and (iii) the size of the feature is fairly small, (iv) it is stable to

tolerate large appearance changes, and (v) it is also scalable to large image databases.

Informally, a correlogram is a table indexed by color pairs and distance, where the

k-th entry for < i, j > specifies the probability of finding a pixel of color j at a distance

k from a pixel of color i. Such an image feature turns out to be stable in tolerating large

changes in appearance of the same scene caused by changes in viewing positions, changes

in the background scene, partial occlusions, camera zoom that causes radical changes in

shape, etc.

Let I be an n × n image. (For simplicity of exposition, we assume that the image is

square.) The colors in I are quantized into m colors c1; :::; cm. (In practice, m is deemed to

be a constant )

For a pixel p = (x, y) ∈ I , let C(p) denote its color. Let

Ic
∆
= {p|C(p) = c} (3.1)

Thus, the notation p ∈ Ic is synonymous with p ∈ I;C(p) = c. For convenience the L∞

norm is used to measure the distance between pixels, i.e, for pixels p1 = (x1, y1), p2 =

(x2, y2) we define |p1 − p2|
∆
= max{(x1 − x2), (y1 − y2)}.

The histogram h of I is defined as follows; for a color ci, i ∈ |m|.

Hci(I)
∆
= ||Ic|| (3.2)

i.e., the number of pixels of color ci in I . Randomly taking any pixel p from the

image I , the probability that the color of p is ci is

hci(I) = Pr[p ∈ Ici ] =
Hci (I)

n2
(3.3)
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Figure 3.3 Two sample images with same image histogram but different image correlo-
gram.

The histogram is easily computed inO(n2) time, which is linear in the size of I . Note

that the above definition of the histogram is as a probability distribution h.

In the light of viewing the histogram as a probability distribution of colors, consider

this question: pick any pixel p1 of color ci in the image I, at distance k away from p1 pick

another pixel p2, what is the probability that p2 is of color cj ? This gives us the conditional

probability distribution that depicts the spatial correlation between pixels. We define the

correlogram formally below. Let a distance d ∈ [n] be fixed a priori. Then, the correlogram

of I for i; j ∈ [m], and k ∈ [d], is defined to be

γkcicj(I)
∆
= Pr[p2 ∈ Icj , |p1 − p2| = k, p1 ∈ Ici ] (3.4)

Therefore the correlogram of an image I is a table indexed by color pairs and dis-

tance, where the k-th entry for < i, j > specifies the probability of finding a pixel of color

j at a distance k from a pixel of color i. Note that the size of the correlogram is O(m2d).

If only the correlation between the identical colors is considered, the result is the

autocorrelogram of I , which is defined by
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αkc (I)
∆
= γkc,c(I) (3.5)

While choosing d to define the correlogram, the following trade-off has to be ad-

dressed. A large d would result in expensive computation and large storage requirements.

A small d might compromise the quality of the feature.

To compute the correlogram, it suffices to compute the following count, which is

similar to the co-occurrence matrix [50] for texture analysis of gray images.

If

Γkci,cj(I)
∆
= |{p1 ∈ Ici , p2 ∈ Icj , |p1 − p2| = k}| (3.6)

then,

γkci,cj(I) =
Γk
cicj

hci (I).8k
(3.7)

The denominator is the total number of pixels at distance k from any pixel of color

ci. The factor 8k is due to the eight neighbors which are k distance (in L∞-norm) away

from the center pixel. As the histogram is the color distribution in I, the correlogram is the

color correlation distribution in I. Therefore both qualify as global features.

3.4 Algorithms Compared using Proposed Method

The texture synthesis algorithms analysed in this dissertation are the following: a) Efros and

Leung Algorithm [6] b) Efros and Freeman Algorithm [18], c) Hybrid Texture synthesis

Algorithm [33] and d)Proposed Algorithm.
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3.4.1 Efros and Leung

Efros and Leung Algorithm [6] is modeled as a Markov Random Field (MRF) []. That is,

the algorithm assumes that the probability distribution of brightness values for a pixel given

the brightness values of its spatial neighborhood is independent of the rest of the image.

The neighborhood of a pixel is modeled as a square window around that pixel. The size of

the window is a free parameter that specifies how stochastic the user believes this texture

to be. More specifically, if the texture is presumed to be mainly regular at high spatial

frequencies and mainly stochastic at low spatial frequencies, the size of the window should

be on the scale of the biggest regular feature.

They synthesize a texture Io by repeatedly matching the neighborhood around the

target pixel in the synthesis result with the neighborhood around all pixels in the input

texture Iin, starting from a seed pixel and growing outwards. For each to-besynthesized

pixel pout and its neighborhood of already synthesized pixels ∆i, an approximation to

the conditional probability P (p|ω(p)) is constructed for each pin ∈ Iin. This is achieved

by computing a gaussian weighted, normalized sum of square differences (SSD) between

ω(pout) and the pixel neighborhoods of each candidate in the input texture, ω(pin). A

target pixel is then selected from a set of pixels pin with high conditional probability. The

algorithm performs an exhaustive search in Iin for each synthesized pixel and is therefore

quite slow. Also, the algorithm has a tendency to slip into the wrong part of the search

space and start growing garbage or to perform verbatim copying of the input.

3.4.2 Efros and Freeman

The Efros and Freeman Quilting algorithm [18] is a patch based texture synthesis algo-

rithm. It is based on the notion that a lot of searching work is wasted on pixels that can

be assigned values using the existing information. It seems then, that the unit of synthesis

should be something more than a single pixel, a “patch” perhaps. Then the process of

texture synthesis would be akin to putting together a jigsaw puzzle, quilting together the
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patches, making sure they all fit together. The Efros and Freeman quilting algorithm

presents a very naive version of stitching together patches of texture to form the output

image. This method is called “image quilting”.

Efros and Freeman Image Quilting algorithm [18] iterates through a uniform quadri-

lateral grid of patches, which, combined, resemble a tiling of the output texture. In scanline

order, the algorithm selects, for each output patch, a congruent patch of pixels from the

input texture, constrained by overlap with the already synthesized result. It then per-

forms a minimum-error-boundary-cut (MEBC) within the overlap region of adjacent tex-

ture patches to reduce artifacts.

The MEBC is implemented by employing dynamic programming. The algorithm is

also well suited for texture transfer, which is demonstrated in the paper. Synthesis results

presented in are equal to or better than Efros/Leung-like, pixel-based algorithms. Still,

as also pointed out by [7], hard color changes along patch boundaries, termed boundary

mismatch, tend to occur.

3.4.3 Hybrid Texture Synthesis

The Hybrid Texture Synthesis algorithm [33] is an adaptive and hybrid algorithm. This

algorithm adaptively splits patches so as to use as large as possible patches while staying

within a user-defined error tolerance for the mismatch in the overlap region. Using large

patches improves the reproduction of global structure. The remaining errors in the overlap

regions are eliminated using pixel-based re-synthesis. It introduces an optimized ordering

for the re-synthesis of these erroneous pixels using morphological operators, which ensures

that every pixel has enough valid (i.e., error-free) neighboring pixels. A more detailed

explanation of this algorithm has been provided in Chapter 2.
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3.5 Proposed Method

Our approach deals with quantifying and identifying the best of the synthesized texture in

a quantifiable manner. To better understand our method, the following section gives a brief

overview of the classical statistical measures. Figure 3.7 shows the steps involved in our

quantification process.

3.5.1 Statistical Measures

Classically, a large number of statistical measures have been used to evaluate texture exam-

ples. It has been widely used in pattern recognition and computer vision fields. Statistical

texture method describes texture as a feature vector of properties which represents a point

in multidimensional feature space. For the purpose of quantification the co-occurrence

matrix of texture description and the autocorrelation method, which is based on spatial

frequencies [50, 51, 52] has been used. The co-occurrence matrix method of texture

description is based on the gray level configuration in the texture. For fine textures this

configuration varies rapidly with increased distance, for coarse textures it varies gradually.

The following five properties of the co-occurrence matrix, a) Correlation b) Contrast c)

Energy d) Homogeneity and e) Entropy have been used for the proposed method.

To understand the properties used for analysis, a brief understanding of the co-

occurrence matrix is useful. The co-occurrence matrix consists of values p(i, j) which are

created by calculating how many times a pixel with gray level value i occurs horizontally

from a pixel with a gray level value j. The size of the matrix depends on the intensity levels

in the input image.

a) Correlation of an image is a measure of how much a pixel is correlated to its

neighbor over the entire image. The range of correlation lies between -1 and 1.

Formally, correlation is defined as follows

∑
i,j

(i−µi)(j−µj)p(i,j)

σiσj
(3.8)
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Where µi and µj are the means and σi and σj are the standard deviations.

b) Contrast of an image is a measure of the intensity contrast between a pixel and its

neighbor over the whole image. The contrast of an image is defined as follows

∑
i,j

|i− j|2p(i, j) (3.9)

For a constant image the contrast is 0.

c) Energy of an image is the sum of the square of the probabilities of the intensity

of the image. If the cooccurrence matrix exists the energy calculation merely involves

calculating the sum of the square of that matrix.

The energy of an image is defined as follows

∑
i,j

p(i, j)2 (3.10)

d) Homogeneity of an image returns a value that measures the closeness of the

distribution of elements in the gray scale co-occurrence matrix with the elements which

lies on its diagonal.

The homogeneity of an image is defined as follows

∑
i,j

p(i,j)
1+|i−j| (3.11)

e) Entropy of an image is a useful statistical measure for determining the randomness

of an image. Entropy is defined by

where p is the probability of the intensity in the image

−
∑
p ∗ log(p) (3.12)
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Figure 3.4 A toroidal image set next to copies of itself merges into a single image without
any seams.

3.5.2 Toroidal Image

To set a benchmark for this approach a toroidal image is used to create an ideal texture

image from an input texture. A toroidal image is one which wraps around itself without

creating any overlaps or inconsistency in the appearance of the image. This image success-

fully preserves all global features of the input texture and does not generate any artifacts in

the presence of high frequency features.

To set a benchmark the “green scale” tordoial image has been used.

Figure 3.4 shows the green scale image (64 × 64) being used to generate a (128 ×

128) image. Three copies of the image have been placed in the larger image and no seams

are visible.

3.5.3 Steps Involved in Proposed Method

The approach proposed is a two step process. In the first step the gray scale statictical

measures are used to determine the best output. In the second step an autocorrelogram

based approach is used to determine the best output match. This result is then used in

conjunction with the first set of outputs to determine the overall best output.
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Figure 3.5 Data set of images used in the experiments. The images are numbered and
results are shown using these numbers.

The first step using statictical measures involves a number of sub steps which initially

starts with generating output textures for different examples. To ensure a consistency in the

approach texture of types, regular, near-regular, irregular, near stochastic and stochastic

types have been used. The Figure 3.7 shows a schematic representation of the approach.

1. Create a dataset using twenty-four different images of different types of texture.

The initial sizes of all our images are roughly 64×64 pixels. Figure 3.5 shows a subset of

the initial dataset.

2. Generate synthesis results using the three different algorithms. Figure 3.6 shows a

subset of the result of the three algorithms along with the original image. The first column

shows the original image, the second the result generated by Efros and Leung algorithm,

the third the result generated by Efros and Freeman algorithm and the fourth the result

generated by the Hybrid algorithm.
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Figure 3.6 Subset of result showing original image and result with three algorithms.

3. Calculate the energy, entropy, correlation, contrast and homogeneity for each of

the image generated using the various texture synthesis algorithms.

4. Plot the difference in the statistical values of each of the synthesized image with

the original images. Figure 3.20 - Figure 3.24 show the respective plotted errors.

5. Pick the synthesized texture image with minimum error. This gives the best match

based on the statistical measures.

The comparison of the values in the synthesized case and the values obtained with

the original texture will give an estimate of the quality of the in a more specific way. A

finite number can be associated which will determine the quality of the output.

The second step uses an autocorrelogram to determine measures for all images. The

distance of k = 1, 2, 3, 4, 5, 6 have been used to generate the values for each of the images.

1. The synthesized texture images to be compared are first quantized into 32 colors.

2. The autocorrelogram of each image is generated using the distance all the different

values of k.
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Figure 3.7 Quantification of image quality.
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Figure 3.8 Output image set. This shows the results generated using three algorithms on
images numbered 4, 5 and 6. The left most image is the original input texture.

3. The autocorrelogram error is then generated for all images using the input image

as a standard.

3.6 Experimental Results

In this section the proposed method has been tested on a variety of texture images set

comprising of various types of textures. Figure 3.15 - Figure 3.19 shows the statistical

measures data for twenty four images. This data has been used to generate the error data

for each synthesized texture shown in Figure 3.20 - Figure 3.24. The first set of results

shown in Table 3.3 is generated using this data. This table shows the actual output of

the quantification process, where “Ef-Le” refers to Efros and Leung’s method [6], “Ef-

Fre” refers to Efros and Freeman’s method [18], “HTS” refers to Hybrid Texture Synthesis

method [33] and “Tie” indicates a tie between the output generated.

In the second step the k value associated with the autocorrelogram is set to the

following, k=1, 2, 3, 4, 5, 6. The results to determine the best output has been obtained
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Figure 3.9 Output image set. This shows the results generated using three algorithms on
images numbered 7, 8 and 9. The left most image is the original input texture.

using the value k=4. Figure 3.25 - Figure 3.28 shows the plot for the autocorrelogram

error using the different values of k for a subset of the images. The Figure 3.25 shows

the autocorrelogram error value for image number 2 using four different algorithms. The

fourth algorithm considered in this scenario is the proposed method described in Chapter

2. For the purpose of determining the best match we have selected k=4 and compared the

error with the input image. Table 3.2 shows the accuracy of the proposed method. Using

only the statistical measures we have a 62.5% accuracy whereas using the correlogram we

get a accuracy of 79.16%.

All the experiments are performed on a 1.5GHz Core 2 Duo machine with a 2GB

RAM.

3.7 Conclusions

The tabulated result clearly shows that the ideal synthesized texture has a significantly

smaller error and ideally as in the case of the entropy no error at all. The co-occurrence
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Figure 3.10 Output image set. This shows the results generated using three algorithms on
images numbered 10, 11 and 12. The left most image is the original input texture.

matrix method describes second-order image statistics and works well for a large variety

of textures. However it does not consider primitive shapes and colors and thus cannot

be used for a reasonable analysis of textures with large primitives. This method is also

computationally expensive and might be limited with respect to time. This approach can

still be used in such scenarios without the ideal texture to compare with. In such situation,

the input image can be used as a benchmark. The color correlogram based approach shows

a good set of output based on the autocorrelogram using variable distance k. This direction

of research can be taken forward using larger image
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Figure 3.11 Output image set. This shows the results generated using three algorithms on
images numbered 13, 14 and 15. The left most image is the original input texture.

Figure 3.12 Output image set. This shows the results generated using three algorithms on
images numbered 16, 17 and 18. The left most image is the original input texture.
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Figure 3.13 Output image set. This shows the results generated using three algorithms on
images numbered 19, 20 and 21. The left most image is the original input texture.

Figure 3.14 Output image set. This shows the results generated using three algorithms on
images numbered 22, 23 and 24. The left most image is the original input texture.
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Figure 3.15 Contrast data. This shows the contrast data for the 24 original and synthesized
images using the three algorithms. The x axis refers to an image, image 1 is the original
image, 2 the image synthesized using pixel based approach, 3 the image synthesized using
patch based approach and 4 is the image synthesized using hybrid approach.

Table 3.1 Accuracy of the Proposed Method (Using 24 Images)

Method Accuracy

Statistical Measure Based 62.5%

Correlogram Based 79.16%

Table 3.2 Accuracy of the Proposed Method (Using subset of MIT VisTex)

Method Accuracy

Correlogram Based 69.04%
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Figure 3.16 Correlation data. This shows the correlation data for the 24 original and
synthesized images using the three algorithms. The x axis refers to an image, image 1
is the original image, 2 the image synthesized using pixel based approach, 3 the image
synthesized using patch based approach and 4 is the image synthesized using hybrid
approach.
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Figure 3.17 Energy data. This shows the energy data for the 24 original and synthesized
images using the three algorithms. The x axis refers to an image, image 1 is the original
image, 2 the image synthesized using pixel based approach, 3 the image synthesized using
patch based approach and 4 is the image synthesized using hybrid approach.
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Figure 3.18 Entropy data. This shows the entropy data for the 24 original and synthesized
images using the three algorithms. The x axis refers to an image, image 1 is the original
image, 2 the image synthesized using pixel based approach, 3 the image synthesized using
patch based approach and 4 is the image synthesized using hybrid approach.
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Figure 3.19 Homogenity data. This shows the homogenity data for the 24 original and
synthesized images using the three algorithms. The x axis refers to an image, image 1
is the original image, 2 the image synthesized using pixel based approach, 3 the image
synthesized using patch based approach and 4 is the image synthesized using hybrid
approach.



62

Figure 3.20 Contrast error data. This shows the contrast error data for the 24 original
images. The input image is used as standard to calculate the error. The x axis refers to an
image, image 1 is the original image, 2 the image synthesized using pixel based approach,
3 the image synthesized using patch based approach and 4 is the image synthesized using
hybrid approach.
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Figure 3.21 Correlation error data. This shows the correlation error data for the 24
original images. The input image is used as standard to calculate the error. The x axis
refers to an image, image 1 is the original image, 2 the image synthesized using pixel
based approach, 3 the image synthesized using patch based approach and 4 is the image
synthesized using hybrid approach.
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Figure 3.22 Energy error data. This shows the energy error data for the 24 original images.
The input image is used as standard to calculate the error. The x axis refers to an image,
image 1 is the original image, 2 the image synthesized using pixel based approach, 3 the
image synthesized using patch based approach and 4 is the image synthesized using hybrid
approach.
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Figure 3.23 Entropy error data. This shows the entropy error data for the 24 original
images. The input image is used as standard to calculate the error. The x axis refers to an
image, image 1 is the original image, 2 the image synthesized using pixel based approach,
3 the image synthesized using patch based approach and 4 is the image synthesized using
hybrid approach.
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Figure 3.24 Homogenity error data. This shows the homogenity error data for the 24
original images. The input image is used as standard to calculate the error. The x axis
refers to an image, image 1 is the original image, 2 the image synthesized using pixel
based approach, 3 the image synthesized using patch based approach and 4 is the image
synthesized using hybrid approach.

Figure 3.25 Sample output showing the autocorrelogram values for image number 2. The
autocorrelogram values are show for distance k, where k=1,2,3,4,5,6.
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Figure 3.26 Sample output showing the autocorrelogram values for image number 15.
The autocorrelogram values are show for distance k, where k=1,2,3,4,5,6.

Figure 3.27 Sample output showing the autocorrelogram values for image number 17.
The autocorrelogram values are show for distance k, where k=1,2,3,4,5,6.
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Figure 3.28 Sample output showing the autocorrelogram values for image number 6. The
autocorrelogram values are show for distance k, where k=1,2,3,4,5,6.
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Table 3.3 Output Comparison for 24 Input Images

Image Number Data Based Actual Result

1 Ef-Le Ef-Le True

2 Tie HTS False

3 Tie HTS False

4 Ef-Fre Ef-Fre True

5 HTS HTS True

6 Ef-Fre Ef-Fre True

7 HTS HTS True

8 Ef-Le Ef-Fre False

9 Ef-Fre Ef-Fre True

10 Ef-Le Ef-Fre False

11 Tie Ef-Fre False

12 Tie HTS False

13 Tie HTS False

14 Ef-Le Ef-Le True

15 Ef-Fre Ef-Fre True

16 Ef-Le Ef-Le True

17 Ef-Fre Ef-Fre True

18 Ef-Fre Ef-Fre True

19 Ef-Le Ef-Le True

20 Tie HTS False

21 Ef-Fre Ef-Fre True

22 HTS HTS True

23 Tie HTS False

24 HTS HTS True
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Table 3.4 Autocorrelogram Data Based Output Comparison

Image Number Correlogram

Based

Actual Result

2 Tie HTS False

3 Ef-Fre HTS False

8 HTS Ef-Fre False

10 HTS Ef-Fre False

11 Ef-Fre Ef-Fre True

12 HTS HTS True

13 HTS HTS True

20 HTS HTS True

23 Ef-Fre HTS False



CHAPTER 4

IMPROVED INPAINTING USING MAXIMUM EDGE POINT DETECTOR

This chapter talks about the image inpainting method proposed and developed using maxi-

mum edge point detector method.

4.1 Introduction

Texture synthesis is an alternative way to create textures. In most cases exemplar texture

synthesis algorithms have been used to generate a large image based on a smaller input

image. The new image generated using this method has a similar structure and property as

that of the input image, thus perceptively it appears to be a continuation of the same input

image. The idea of texture synthesis has been extended and used in a novel method for

fixing damaged images called inpainting. This is based on a large body of texture synthesis

research, which seeks to replicate texture ad infinitum, given a small source sample of pure

texture [4, 53, 54, 55, 56].

Image inpainting allows repair of damaged images. One of the critical step in in-

painting is determining the order in which the damaged patch is fixed. Various algorithms

have dealt with this problem and suggested different solutions. Initial image inpainting

algorithms have been presented to repair small missed or damaged sections in an image

[57, 58, 30], such as speckles, scratches and text in image. The texture synpaper method

[6, 59] can effectively repair the damaged image, but is more suitable for repairing the

image with single or simple texture. Since texture synpaper [6, 59] is based on a known

texture sample, it is not appropriate for repairing images involving complex and unknown

textures.

The most important issue for image in-painting of large missing area is to determine

the structure information of these areas, and repair them seamlessly from existing surround-

71
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ing information. Previous studies address this issue by solving two problems: analyzing the

structural information from the remainder image (e.g., the contour and shape), and keeping

the texture information in order to reduce the visual artifact of repaired image. The work

of Bertalmio [58] and [30] adopted a method that utilizes partial differential equations to

propagate the structure of the missing area, but they produces a vague repaired result if

the missed area is large. The work of Jia [60] addressed color and texture segmentation,

applying the tensor voting algorithm to segment the image for propagating the structure

of the missed area. The resulting structure is used to identify the searching range and the

filling order.

Figure 4.1 Schematic representation of an image showing the source region Φ, target
region Ω and the contour δΩ. The point p is a point on the contour, Ψp is a square patch,
centered at p, p is the normal vector of the contour at p.∇ is the gradient operator and ⊥ is
an isophote orthogonal to the gradient.

Since two parameters control the smoothness of propagate curve, the algorithm can

repair not only linear structures, but also non-linear structures, in a missed area. However,

it takes a long time for color segmentation and structure propagation. To reduce the time

taken, the missed area can be filled manually according the structure drawn. The algorithm
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of Wang [61] and Rares [62] presented similar algorithms to Jia [60]. The method of

Rares [62] adopted the constrained texture synthesis suggested by Wang [61] to analyze

the texture distribution, and then defined the searching range for the filling image. Due to

the visual artifacts in the repaired image, an algorithm was presented to detect the artifacts

and re-fill these regions again. Rares [62] proposed an algorithm that first extracts the

edges or corners of an image and then defines an order for edge permutation. However, the

algorithm is only suitable for some structure distribution and produces a blur effect in the

repaired image.

To repair an image effectively without apparent artifacts, Criminisi [63] adopted the

magnitude of the gradient and undamaged area of an image to define the filling order and

searching direction for finding the best patches. The advantage of this algorithm is that it

is very suitable for repairing linear structures in the missed area, and it smoothly connects

the repaired region with the nearby undamaged region.

The method of Criminisi [63] was extended by Chang [64] to modify the order

determination method. They use a value, structure priority value different from the priority

value used by Criminisi [63]. This method modifies the priority value to calculate the edge

pixels in a patch called E(R). This value along with the confidence term helps determine

the exact order of filling to repair a damaged image.

4.2 Image Inpainting

Image inpainting has long been one of the most interesting ways of repairing damaged

images. The method suggested by Bertalmio [65] suggests an algorithm for the simultane-

ous filling-in of texture and structure in regions of missing image information is presented

here. The basic idea is to first decompose the image into the sum of two functions with

different basic characteristics, and then reconstruct each one of these functions separately

with structure and texture filling-in algorithms. The first function used in the decomposition

is of bounded variation, representing the underlying image structure, while the second
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function captures the texture and possible noise. The region of missing information in

the bounded variation image is reconstructed using image inpainting algorithms, while the

same region in the texture image is filled-in with texture synthesis techniques. The original

image is then reconstructed adding back these two sub-images. Another method suggested

by Cheng [66] focuses on the development of a generic priority function to provide robust

performance. However this algorithm requires user intervention to be applied to any image

contents with different characteristics. The algorithm proposed by Li [67] uses a two pass

matching algorithm for efficiency. Their method also reduces growing errorenous regions

within the image.

Of the various inpainting algorithms Ciminisi’s [63] and [68] makes a significant

contribution in this field. Their work presents a novel and efficient algorithm that combines

the advantages of two different approaches for object removal and region filling in images.

The first approach is based on texture synthesis which generates large regions and the

other is the inpainting approach which generates small regions. It is noted that exemplar-

based texture synthesis contains the essential process required to replicate both texture

and structure; the success of structure propagation, however, is highly dependent on the

order in which the filling proceeds. This algorithm proposes a best-first algorithm in which

the confidence in the synthesized pixel values is propagated in a manner similar to the

propagation of information in inpainting. Figure 4.1 shows a schematic representation of

an image I with the source region, target region and the contour of the target region.

Many algorithms have used the approach suggested by Criminisi [63] and further

improved on it. The method of Nie [69] uses a similarity based approach. In this method, a

more robust method is adopted to compute the filling order, which overcomes the problems

arising when the image gradients of some pixels on the source region contour are just zeros.

Another method suggested by Wang [61] uses the inpainting method for smart cameras.



75

4.3 Existing Methods

4.3.1 Previous Work

As explained in the work of Bertalmio [30] classical image denoising algorithms do not

apply to image inpainting. In common image enhancement applications, the pixels contain

both information about the real data and the noise (e.g., image plus noise for additive noise),

while in image inpainting, there is no significant information in the region to be inpainted.

The information is mainly in the regions surrounding the areas to be inpainted. There is

then a need to develop specific techniques to address these problems.

Mainly three groups of works can be found in the early literature related to digital

inpainting. The first one deals with the restoration of films, the second one is related to tex-

ture synthesis, and the third one, a significantly less studied class is related to disocclusion.

Kokaram et al. [70] use motion estimation and autoregressive models to interpolate

losses in films from adjacent frames. The basic idea is to copy into the gap the right pixels

from neighboring frames. The technique can not be applied to still images or to films where

the regions to be inpainted span many frames.

Hirani and Totsuka [71] combined frequency and spatial domain information in order

to fill a given region with a selected texture. This is a very simple technique that produces

incredible good results. On the other hand, the algorithm mainly deals with texture syn-

thesis (and not with structured background), and requires the user to select the texture to

be copied into the region to be inpainted. For images where the region to be replaced

covers several different structures, the user would need to go through the tremendous work

of segmenting them and searching corresponding replacements throughout the picture.

Although part of this search can be done automatically, this is extremely time consuming

and requires the non-trivial selection of many critical parameters, e.g., [6]. Other texture

synthesis algorithms, e.g., [6, 39, 41], can be used as well to re-create a pre-selected texture

to fill-in a (square) region to be inpainted.
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In the group of disocclusion algorithms, a pioneering work is described in [72].

The authors presented a technique for removing occlusions with the goal of image seg-

mentation. The basic idea is to connect T-junctions at the same gray-level with elastica

minimizing curves. The technique was mainly developed for simple images, with only

a few objects with constant gray-levels, and will not be applicable for the examples with

natural images presented later in this paper. Masnou and Morel [26] recently extended

these ideas, presenting a very inspiring general variational formulation for disocclusion

and a particular practical algorithm (not entirely based on PDEs) implementing some of

the ideas in this formulation. The algorithm performs inpainting by joining with geodesic

curves the points of the isophotes (lines of equal gray values) arriving at the boundary of the

region to be inpainted. As reported by the authors, the regions to be inpainted are limited

to having simple topology, e.g., holes are not allowed. In addition, the angle with which

the level lines arrive at the boundary of the inpainted region is not (well) preserved: the

algorithm uses straight lines to join equal gray value pixels.

In more recent work, several researchers have considered texture synthesis as a way to

fill large image regions with pure textures repetitive two-dimensional textural patterns with

moderate stochasticity. This is based on a large body of texture synthesis research, which

seeks to replicate texture ad infinitum, given a small source sample of pure texture. The

ones of particular interest are exemplar-based techniques which cheaply and effectively

generate new texture by sampling and copying colour values from the source. One of

the earliest work done with replacing image sections with texture synthesis was done by

Harrison [73].

As effective as these techniques are in replicating consistent texture, they have diffi-

culty filling holes in photographs of realworld scenes, which often consist of linear struc-

tures multiple textures interacting spatially. The main problem is that boundaries between

image regions are a complex product of mutual influences between different textures. In
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constrast to the two-dimensional nature of pure textures, these boundaries form what might

be considered more one-dimensional, or linear, image structures.

A number of algorithms specifically address the image filling issue for the task of

image restoration, where speckles, scratches, and overlaid text are removed. These image

inpainting techniques fill holes in images by propagating linear structures (called isophotes

in the inpainting literature) into the target region via diffusion. They are inspired by the

partial differential equations of physical heat flow, and work convincingly as restoration

algorithms. Their drawback is that the diffusion process introduces some blur, which

becomes noticeable when filling larger regions.

4.3.2 Criminisi Algorithm

The core of Criminisi’s algorithm [63] is an isophote-driven image sampling process.

It is well-understood that exemplar-based approaches perform well for two-dimensional

textures. But, it is to be noted that in addition that exemplar-based texture synthesis is

sufficient for propagating extended linear image structures, as well i.e., a separate synthesis

mechanism is not required for handling isophotes. The filling order in the repairing process

is determined by the gradient information of an exemplar. Figure 4.1 illustrates a single

iteration in filling the target region centered at point p. An image I is divided into disjoint

regions, the target region Ω and the source region Φ. The target region is the selection

area that needs to be filled in, and the corresponding contour is denoted as δΩ. An image

excluding the target region and the contour of is defined as the source region, i.e.Φ = I−Ω.

Ψp denotes a square patch centered at a point p, where p is located at δΩ.

A key part of the inpainting process is to determine the filling order for the target

region. The priority value of each square patch P (p) is adopted to find the filling order for

all unfilled pixels. The priority value is defined as the product of two terms

P (p) = C(p) ·D(p) (4.1)
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where C(p) and D(p) are called confidence term and data term, respectively. These

terms are defined as follows

C(p) =
∑

q∈ΨP∩(I−Ω) C(q)

|Ψp|
(4.2)

D(p) =
|∇I⊥p ⇀

np|
α

(4.3)

where |Ψp| denotes the area of Ψp and α is a normalized parameter.

4.3.3 Enhanced Examplar Based Algorithm

The work described by Chang [64] builds on the method described by Criminisis algo-

rithm [63] to improve the image inpainting algorithm. This method changes the method for

determining the filling order. Instead of using the priority value they use what is called the

structure priority value which is defined as follows

SP (p) = C(p)× ER(p) (4.4)

where C(p) is the confidence value that determines the reliability of the correspond-

ing patch and ER(p) denotes the edge value. The term ER(p) is defined as the ratio of

edge points relative to the source region inside the patch, and the equation is as follows

ER(p) =
∑

q∈Ψp∩Φ e(q)∑
q∈Ψp∩Φ C(q)

(4.5)

e(q) =

 1 if q ∈ edge

0 otherwise
(4.6)
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where e(q) denotes whether pixel p is an edge point. For the detection of the edge

value this algorithm uses the canny edge detector.

4.4 Proposed Method

The method builds on the idea introduced by the enhanced examplar based method. As with

the existing algorithms the proposed algorithm is a two step process which involves finding

the filling order of the target region and then determining the best match for that patch from

the existing source region. As with most algorithms it also focuses on the determination of

the filling order to effectively remove objects and fill gaps in images. Using the structure

priority value from [64] the algorithm has

SP (p) = C(p)× ERI(p) (4.7)

where C(p) is the confidence value that determines the reliability of the correspond-

ing patch and ERI(p) defines the modified edge value which is defined as follows

ERI(p) = max(Sr)∑
q∈Ψp∩Φ C(q)

(4.8)

where Sr is defined as follows

Sr =
∑

q∈Ψp∩Φ e(q) (4.9)

Here the value r varies based on the number of edge detection algorithm used.

Different edge detection algorithms provide results with varying accuracy. This is a key

issue in detecting the contours accurately. The proposed method uses more than one edge

detection algorithm where r represents the number of algorithm used. When all structure

priority values of the patches along δΩ have been computed, the patch with the maximum
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priority value is selected as the first one to be filled. If Ψp̂ is with the maximum priority

value after the filling order determination, the next step is to search for a patch around the

source region that is most similar to Ψp̂ according to the following equation

Ψ_
q

= arg min
Ψq∈Φ

d(Ψ_
p ,

Ψq) (4.10)

where the distance d(Ψp̂,Ψq) between two patches Ψp̂ and Ψq is defined as sum of

square different (SSD) of the already repaired pixels in this two patches. After a patch has

been filled, the confidence is updated as follows:

C(p) = γC(p̂)∀p ∈ Ψp̂ ∩ Ω (4.11)

4.5 Experimental Results

In this section the proposed method has been tested on a wide variety of image set compris-

ing both natural and computer generated images. The natural images are complex images

with a multitude of textures. The computer generated images incorporate a broad band

of colors from the color spectrum and strong edges and contours. The results have been

compared with the results obtained by the algorithm in [64] and have shown a comparative

result for our images. In addition for the purpose of testing the value of r =3 is set

thereby using three different edge detection algorithms. The three algorithms selected by

are the canny, the prewitt and the sobel edge operators. The results have been discussed

with a subset of four images tested using this algorithm, two from each class. All the

experiments are performed on a 1.5GHz Core 2 Duo machine with a 2GB RAM. Figure 4.2

and Figure 4.3 show the result of testing two computer generated images using the proposed

algorithm and then comparing them to the output produced by [64]. Figure 4.2(a) and

Figure 4.3(a) shows the original image, Figure 4.2(b) and Figure 4.3(b) shows the damaged
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image, Figure 4.2(c) and Figure 4.3(c) the result produced by [64] and finally Figure 4.2(d)

and Figure 4.3(d) shows the result produced by the proposed method.

Figure 4.2 Test image. A synthetic image generated using four regions with three colors.
The subfigure (a) shows the original image. The subfigure (b) shows the corrupted image
which needs to be repaired. The subfigure (c) shows the results using Chang’s algorithm.
The subfigure (d) shows the results using proposed algorithm.

Figure 4.2(d) shows the result generated by the proposed method. The section in

lower left corner is restored accurately using both algorithms. The size of the section being

small it poses no challenge to either algorithm. However with larger patches the problem

becomes significant and the accuracy of the algorithms come into play. As is evident from

Figure 4.3(d) the results produced by the proposed method shows significantly better output

than that produced by Chang [64]. On closer examination of the output produced by the

proposed method it is observed that though the quality is significantly better there still
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Figure 4.3 Test image. A synthetic image generated using four regions with three colors.
The subfigure (a) shows the original image. The subfigure (b) shows the corrupted image
which needs to be repaired. The subfigure (c) shows the results using Chang’s algorithm.
The subfigure (d) shows the results using proposed algorithm.

exists errors and due to the nature of the image and the colors used the errors look more

obvious. However in Figure 4.3(d) it is seen that a large section of the image removed

from the lower right corner is restored accurately as opposed to the output generated in

Figure 4.3(c). However the sections in the top right and top left corners have not been

restored accurately and their output is almost comparable to the output produced by [64].

Figure 4.5 and Figure 4.6 show the result of testing two real images using the proposed

algorithm and then comparing them to the output produced by [64]. As in the earlier

examples Figure 4.5(a) and Figure 4.6(a) shows the original image, Figure 4.5(b) and

Figure 4.6(b) shows a foreground section of the image which is to be removed, Figure 4.5(c)
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Figure 4.4 Test image. A synthetic image generated using four regions with three colors.
The subfigure (a) shows the original image. The subfigure (b) shows the corrupted image
which needs to be repaired. The subfigure (c) shows the results using Chang’s algorithm.
The subfigure (d) shows the results using proposed algorithm.

and Figure 4.6(c) the result produced by [64] and finally Figure 4.5(d) and Figure 4.6(d)

shows the result produced by the proposed method. Figure 4.5 shows an image where the

people in the foreground need to be removed from the image leaving the image of the sea

behind. Figure 4.5(c) shows the result where a section of the image has been altered using

[64] and we see a section of the sky has been wrongly copied; this error has been corrected

using the proposed method

Figure 4.6 shows an image with a person standing against a rock-face. Figure 4.6(c)

shows the person removed using [64] but instead of a continuous rocky background the

result shows a section of the sand being copied in. This error is corrected using the proposed
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Figure 4.5 Test image. A natural image showing a scene in the background and people in
the foreground. The subfigure (a) shows the original image. The subfigure (b) shows the
image with a section removed which needs to be filled with the background. The subfigure
(c) shows the results using Chang’s algorithm. The subfigure (d) shows the results using
proposed algorithm.

method in Figure 4.6(d) resulting in a more consistent background. The algorithm used

in [64] uses the canny edge detector to detect the edges. As is evident when the value

max(Sr) is the value calculated by the canny edge operator, equation (8) is same as equation

(5). This will lead to identical results for certain images. However the particular set of

images set for testing did not produce any identical results
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Figure 4.6 Test image. A natural image showing a scene in the background and a human
being in the foreground. The subfigure (a) shows the original image. The subfigure (b)
shows the image with a section removed which needs to be filled with the background.
The subfigure (c) shows the results using Chang’s algorithm. The subfigure (d) shows the
results using proposed algorithm.

4.6 Conclusions

The proposed method is based on using an edge detection algorithm which will provide

a clear contour of the edges. By using the max(Sr) value a significant improvement

is made in determining the number of edge pixels thus providing a higher accuracy in

detecting the edges. Since determining the filling order is critical in accurately inpainting

an image the proposed method gives significantly improved results as compared to the

existing algorithms. The next phase of the work presented in this chapter will involve
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Figure 4.7 Test image. A synthetic gray scale image showing two ellipses. The subfigure
(a) shows the original image. The subfigure (b) shows the image with a section removed due
to corruption. The subfigure (c) shows the results using Chang’s algorithm. The subfigure
(d) shows the results using proposed algorithm.

further improvement of the structural priority value to refine the filling order. In addition to

focusing on the edge ratio the work also intends improve the confidence value.
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Figure 4.8 Test image. A natural image showing a scene in the background and a human
being in the foreground. The subfigure (a) shows the original image. The subfigure (b)
shows the image with a section removed which needs to be filled with the background.
The subfigure (c) shows the results using Chang’s algorithm. The subfigure (d) shows the
results using proposed algorithm.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, advanced algorithms are designed and implemented for high quality

texture generation using sample input texture, quantification of texture quality based on

an autocorrelogram and effective inpainting using a maximum value edge detector. These

algorithms can be used for generating textures used in a large number of commercial tools,

automatic quantification of image quality and restoration and effective manipulation of

digital images.

In the first case, an enhanced hybrid texture synthesis method is proposed and im-

plemented, which uses a HSI color model instead of the standard RGB color model to

create large textures from a provided input sample. The HSI color model is closer to

human perception as it represents colors similarly to how the human eye senses colors.

Used in conjunction with the hybrid texture synthesis approach, it proves more effective in

accurately reproducing local and global features of the texture in such a manner that the

larger texture created appears to be a continuation of the provided input texture. The new

color model is better than the one used in the earlier algorithms to preserve features and

reproduce the texture.

In future work a hybrid color model for enhancing hybrid texture synthesis will be

used. It will help determine the features in underlying textures irrespective of the texture

type. Hybrid color models have been effectively used in various fields of image processing

and computer vision very effectively to achieve what traditional color models have been

unable to. It is also possible to extend the work to allow texture synthesis for 3D object

surfaces and video synthesis. By using GPU driven hardware, the texture synthesis method

can be significantly improved and made more efficient.
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In the second case, an efficient quantification method is proposed and implemented.

This combines gray-scale statistical measures with a color autocorrelogram to efficiently

choose the best texture output generated. This method generates a large number of in-

termediate data values. The entire bunch of data is used to generate error data and use

that for determination of the best match. This is a two-step method which involves using

first the gray-scale statistical measures and then the color correlogram. To determine the

accuracy of the method, user input is used to check validity of the output. However, as

always the user input on the best texture is inconsistent and leaves the accuarcy test a little

subjective. Each user provides a different input while choosing the best generated texture.

The color correlogram, however, proves to be a good measure for color textures, and when

the distance measure is chosen intelligently, it results in good output. Reducing the error to

a minimum is an effective approach though not the most elegant one.

In future work a special dataset will be used, which consists of entirely tordoial

images. Since real life textures are almost never tordoial, the data set would consist of

synthetic textures, allowing to accurately measure the statistical values and comparing

against the texture generated using the tordoial image. This would completely eliminate

the need of human intervention and would give a better measure of the accuracy of the

proposed method. With the accuracy proved, this methodology can be used to quantify

real life textures. Moreover, the autocorrelogram approach can be further improved using

dynamic programming and also by using the feature to select the best match using a SVM.

In the third case, an improved inpainting algorithm is proposed and implemented,

which uses a maximum edge value detector to perform inpainting. Determining edges

accurately plays a crucial role in the inpainting process, and the proposed method uses a

modified edge value. A better choice of the edges helps determine which region of the

surrounding area needs to be copied onto the removed section. The method, however,

improves only on the edge value but not the confidence value associated.
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In the future work, the confidence value will be improved ensuring that the structured

priority values show a better improvement. In addition, future work will also involve

improving the quality of the output for synthetic images, which so far have not shown

as significant an improvement as real life images.
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