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ABSTRACT 

 
THE INCORPORATION OF ELECTROHYDRODYNAMICS AND OTHER 

MODIFICATIONS INTO A DRY SPINNING MODEL TO DEVELOP A 
THEORETICAL FRAMEWORK FOR ELECTROSPINNING 

 
by 

Yuki Imura 

 The objective of this research was the development of a mathematical model of the 

electrospinning process using dry spinning modeling principles as a basis.  This model is 

directed at the identification of parameters which influence final fiber characteristics, e.g., 

solvent concentration, temperature, spin line tension, and electric field.  Preliminary 

computer simulations were performed; however, the generated data was inconclusive and 

was determined to be due in part to the complexity of the modeled system and the 

subsequent computational difficulties encountered.  Although a comprehensive 

computational model of the electrospinning process has not yet been demonstrated, the 

theoretical development that was undertaken provides a firm foundation for 

understanding and evaluating the electrospinning process. This development also 

provides a basis for the future development of a computational model based on this novel 

approach to electrospinning. 

Electrospinning is a method of spinning nanoscale fibers that employs an electric 

field to propel a stream of polymer solution to create the sub-micron diameter fiber.  

Although much research has been done on the process itself, its wide-scale adoption has 

been inhibited by a lack of predictive control on the fiber properties.  By developing an 

accurate computational model, enhanced process control and the production of fibers 

with desired properties can be attained. A mathematical model of electrospinning was 



 
 

 

developed that incorporates dry spinning and electrohydrodynamics principles.  The 

model was based on the premise that the electrospinning of polymer solutions is, in many 

respects, an extension of dry spinning.  Dry spinning is the fiber spinning process where a 

polymer solution is extruded through a spinneret into a body of circulating air.  The air 

forces the solvent component to vaporize, forming a solid polymer fiber.  The model was 

constructed by incorporating modified components of published 1-dimensional dry 

spinning and electrospinning models for their treatments of the mass, energy, and 

electrostatic transport equations.  The momentum transport equation was derived 

independently in order to accurately describe the dynamic conditions unique to the 

electrospinning regime.  This equation also includes terms for electrostatic stresses to 

account for the electrohydrodynamic interactions between the electrical charges residing 

on the filament surface and the electrical field.  Initial modeling attempts were plagued 

with issues involving programming and the non-convergence of solutions.  The challenge 

was to properly adapt the aspects of dry spinning to the electrospinning regime.  In 

relation to dry spinning, electrospinning is characterized by high spin line velocities, high 

strain rates, increased solvent loss rates, and high air drag forces.  The extreme changes 

these quantities undergo within a small length of space, particularly in the initial region 

just beyond the jet origin, may be a factor in contributing to the numerical instability of 

the model. Reevaluating the material property formulations and a more robust 

computational scheme will be considered.  The novel incorporation of the principles of 

electrohydrodynamics (as a mechanism for fluid movement) coupled with very high 

solvent evaporation rate behavior contributed to a new and representative description of 

the extreme case of filament diameter reduction inherent in the electrospinning process. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

Electrospinning is a specialized fiber fabrication method that uses the potential difference 

of a static electric field as the driving force to propel a fine, charged stream of polymer 

solution or melt from a capillary orifice to a grounded collection device.  The fibers 

produced can range from 5 microns to 20 nanometers.  There are two basic types of 

electrospinning: polymer solution electrospinning and melt electrospinning.  Solution 

electrospinning is more widely used for its facility and capability of producing nanoscale 

fibers.  

Electrospinning is one of the few known methods of creating nanoscale fibers.  

Nanoscale fibers are an attractive material for their superior surface area-to-volume ratio, 

making it ideal for its two major applications as a filtration media1 and a biomaterial cell 

substrate.2-4  The lack of control of desired final fiber characteristics and low throughput 

have been barriers to the wide-scale adoption and commercialization for use as a 

scaffolding material for tissue and stem cell engineering applications.  This lack of 

control is not, comparatively, as much as an issue for use as a filtration medium and has 

therefore seen much more usage and even commercialization in this area. 

The advantages of electrospinning over the other methods of nanofiber fabrication 

are its ease of manufacture, and simple fabrication tools.  One of the issues plaguing 

electrospinning is the lack of control of the final product with respect to fiber diameter, 

uniformity, and morphology.  The inherent instability of the process makes its lack of 
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repeatability problematic.  Throughput is also an issue, as current industrial yield per day 

is measured in grams, as opposed to industrially melt-spun polyester fibers, which is 

measured in tons.  Underlying these difficulties is the lack of understanding of the 

fundamentals of the process.  The electro-hydrodynamic (EHD) behavior of 

electrospraying has been extensively studied for decades; however, though similar in 

many aspects, the electrospinning process has not been characterized and studied as an 

EHD-driven process in nearly the same way.   

 

1.2 The Electrospinning Process 

Electrospinning is an example of an electrohydrodynamic phenomenon.  In 

electrohydrodynamics (EHD), charges induce fluid motion within an electric field.  

During the process, the transport and distribution of these charges generate stresses that 

result in the movement of the fluid.  Work done in electrohydrodynamics dates back to 

the early 1900’s 5.  However, it was not until the 1930’s when Formhals devised a 

method to create fibers by electrostatic means and thus receive the first patent for the 

process in 1934 6.  Since then, the fundamental aspects of the electrospinning process 

have not changed.  As illustrated in Figure 1.1, a high voltage electrode is placed in 

contact with the polymer solution contained in a pipette or syringe-like vessel with a 

capillary tip.  This electrode provides a source of charge.  The ground electrode of the 

high voltage source is attached to collector plate, which serves as a target for the 

electrostatically-driven polymer fluid stream.  The potential difference between the 

capillary tip and the ground is typically on the order of 10 to 30kV.  At the capillary tip, 
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At a sufficiently high potential difference, the electrostatic stresses overcome the surface 

tension of the Taylor cone.  Then, a stream of polymer fluid is ejected and is propelled 

towards the grounded target.  As the ejected stream forms a filament that traverses the 

distance from the Taylor cone at the capillary tip to the grounded target, the solvent 

component is lost by evaporation processes and the remaining polymer solidifies into a 

coherent filament. The motion of the filament is straight for a relatively short distance 

and then becomes erratic due to an electric field-induced bending instability. The result of 

this dynamic process is a non-woven filament mat that collects on the grounded target. 

The electrospinning process can be divided into three stages: 1. jet initiation; 2. 

bending instability; 3. solidification of fiber. 8  Early investigations by Taylor examined 

the effect of an electric field on a water drop. 9  Taylor did further experiments where he 

studied the effects of an electric field on liquid jets using various viscous and non-viscous 

fluids in an electric field and determined the minimum voltage needed to make the fluid 

jet appear. 10  When a potential difference is applied, positive and negative charges 

undergo separation within the fluid and charges with the same sign accumulate as the 

capillary’s polarity migrate towards the exposed fluid’s bead surface, thereby increasing 

the surface charge density at the site.  The subsequent rise in the local tangential 

electrostatic stress competes against the surface tension forces holding the bead of liquid 

together and the hemispherical shape of the bead is transformed into that of an increasing 

cone-like projection.  Once the electrostatic stress dominates, a fluid jet emerges from the 

apex in order to eject the excess charge within to a lower energy level.  Detailed studies 

focusing on the jet initiation have been performed relating the electrohydrodynamic 

process to the formation of the cone jet. 7, 11 
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Once the jet has initiated, the fluid travels along a straight line for a certain 

distance.  The charged fluid travels towards the collector of the opposite polarity.  As the 

fluid traverses toward the collector, the fluid undergoes an electrically driven bending 

instability, also referred to as “whipping”.  The role this bending instability plays in the 

process is still unclear.  Several researchers believe that this bending instability is the 

most important factor in the formation of small diameter fibers in electrospinning 12.  

Shin et al. stated that the rapid growth of the non-axisymmetric instability causes bending 

and stretching of the jet. 12  However, this causal relationship has not yet been 

conclusively determined by other research.   

Three steps in the initiation of the bending cycle were observed: (a) the straight jet 

forms that was described as a linear array of bends, (b) as the jet elongates, the linear 

array of bends spirals out with increasing size, and (c) as the spiral grows, the cross-

section diameter of the fiber decreases. 13 Although the spiraling fibers appear to be 

splitting with the naked eye, Baumgarten showed that with the aid of a high speed motion 

camera, the fibers were actually continuous throughout the process. 14 In addition, 

extensive use of such equipment by Reneker enabled the discovery of higher order 

bending instabilities in the jet. 13  As the jet undergoes the process of diameter reduction, 

its path becomes unstable and a smaller bending instability develops.  Three to four 

successively smaller instabilities have been observed in many cases thus giving the whole 

instability process a fractal-like configuration,13  However, Reneker et al. have also 

observed cases where both splitting and bending of the jet due to radial charge repulsion 

have occurred, thus providing an alternative mechanism for the reduction in fiber 

diameter. 15  
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1.4 Background and History 

Work on this research began with an extensive review of the literature on dry spinning 

and electrospinning modeling.  The initial step was the literature review of the dry 

spinning models.  In dry spinning, the fibers exhibit certain morphological qualities that 

arise from radial variations in temperature and solvent concentrations.  Brazinsky et al. 17 

developed a two-dimensional model of a cellulose acetate/acetone dry spinning system 

that takes those variations into account and the results from the model were compared 

with the experimental data.  Based on the review of this paper, questions arose whether 

those axial and radial variations existed in electrospinning and to be safe, a two-

dimensional electrospinning should also be made.  However, it was realized that robust 

and practical one-dimensional electrospinning model capable of generating detailed 

profiles for radius, solvent concentration, and temperature did not really exist and that it 

may be more prudent to create a simpler one-dimensional model in the beginning and 

build-up the complexity later on.  Therefore, a one-dimensional dry spinning model by 

Ohzawa et al. 18 was reviewed.  This model’s unique characteristic was the assumption 

that the tension was constant throughout the spin line.  Another one-dimensional dry 

spinning model by Gou19 was reviewed which focused on understanding the 

solidification mechanism and the prediction of the solidification point.  In addition, this 

model also included comparisons of the predictions of the jet behavior for both the 

Newtonian and viscoelastic constitutive cases. 

The published models on the electrospinning process can be categorized by the 

portion of the electrospinning process that was studied.  The process can be divided into 

three groups.  The first group is the Taylor cone and the jet initiation from the fluid bead.  
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The second group is the straight-line portion of the jet.  The third group is the bending 

instability portion.  Because the objective for the model was the determination of certain 

parameter profiles, the focus was on the portion of the jet beyond the apex of the Taylor 

cone.  However, in order to comprehensively understand the nature of the process, a 

review of the literature on the jet initiation10, 11 and the fluid mechanics of the Taylor 

cone 20 was done.   

Review of the papers on the straight-line portion of the jet began with the model 

by Spivak and Dzenis 21 that was a simplified view of the process with its assumption that 

the electric field is constant, despite the charge density gradients on the jet.  Work by 

Hohman et al. 22 introduced the slender-body theory that accounts for the effects of jet 

stretching, charge transport, and the electric field.  Feng 23 describes a similar model to 

the one developed by Hohman et al. with some key modifications that avoided the 

instability issues with the Hohman et al. model.  More significantly, Feng’s derivations 

for the electrostatic forces on the jet, which coupled the charge density effects on the 

tangential traction forces on the jet, were consistent with the conceptualization of the 

diameter reduction mechanism.  Therefore, several expressions for the electrostatic force 

were adopted for use in our model. 

The bending instability portion has been studied in detail by several groups.  

Reneker et al. 15 modeled the jet by a linear Maxwell equation and have suggested that 

the jet undergoes bending instability arising from the repulsive forces from the charged 

ions within the jet.  These forces have a destabilizing effect on the jet.  Shin et al. 12 based 

their model of the instability on the competition of several classes of instabilities which 

are influenced by the interaction of ions and the electric field.  These instabilities were 
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found to vary with respect to the location on the path depending on the jet material 

parameters and the operating conditions.  Along similar lines, Hohman et al. 22 developed 

an electrohydrodynamic theory for the instability behavior.  The theory predicts that, at 

increased field strengths, the electrical non-axisymmetric instability is dominant over the 

Rayleigh instability and is dependent on the surface charge density and the jet radius.  

Fridrikh et al.24  re-examined the model equations of Shin et al. to create a model to 

determine the final diameter of the fiber by including nonlinear instability effects of the 

bending instability as a function of surface tension, flow rate, and the electrical current 

within the jet.  Although this particular work is very similar in its goals with those of the 

research in this thesis with respect to the prediction of jet radius, the Fridrikh et al. model 

did not include solvent evaporation effects and the mechanism for diameter reduction was 

suggested to be as a result of the bending instability.    

So far, the electrospinning models that have been published did not simulate 

solution electrospinning for high evaporation rate solvents.  In certain cases, 

oversimplifications of the parameters were done resulting in data that may have limited 

use in the further understanding of the process.  Still other models tended to focus on the 

behavior and the simulation of the bending instability aspect, rather than the roles mass 

transfer and the electrostatics play in influencing the diameter reduction of the jet.  The 

researched model is unique in that it encompasses the entire physical range of the process, 

from the capillary exit to the nanoscale fiber at the collection plate. 
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CHAPTER 2 

THE ROLE OF ELECTROHYDRODYNAMICS IN ELECTROSPINNING  

 

2.1 Electrospinning: An Electrohydrodynamic Phenomenon 

Electrospinning is an electrohydrodynamic phenomenon where charges induce fluid 

motion within an electric field.  During the process, the transport and distribution of these 

charges generate stresses that result in the movement of the fluid.  Studies on the 

electrostatic forces involved in electrospinning are relatively fewer in amount compared 

to the number of applications-oriented electrospinning papers published today.  However, 

the field of electrohydrodynamics (EHD) and specifically the studies on the electrospray 

process, which is process-wise very similar to electrospinning, provide a rich source of 

information that clarifies the complex characteristics and behavior of the electrostatic 

forces involved in electrospinning.  

 

2.2 Development of Electrohydrodynamics 

EHD is the study of electric field-induced fluid motion.  It is the dominant phenomenon 

that allows the polymer solution to be stretched into a fine, continuous filament in the 

electrospinning process.  The focused study on EHD began in the 1960’s with Taylor’s 

investigation into the circulation produced within a dielectric fluid body in the presence 

of an electric field.25   The resulting observations supported the notion of the unique 

property of dielectrics where charges would reside at the interfaces of two substances 

with different permittivities.  The field of EHD also includes the areas of electrostatics, 

fluid dynamics, and electrokinetics.  Electrokinetics is the study of charged particles in 
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aqueous electrolytes.  This phenomenon is dominated by a diffuse charge-induced 

concentration gradient at an interface, resulting in counteracting electromigration effects.  

With leaky dielectrics, these conditions do not exist.  Therefore, although these two areas 

had fundamental processes in common, they were developed separately.  The two 

treatments began to develop into a single approach with the paper by Melcher and Taylor 

(1969). 26  The purpose of that study was to address some of the weaknesses of EHD 

research at the time, including lack of reproducibility of experiments and the 

inadequacies of theoretically-based models.  Adopting the techniques used in the study of 

fluid mechanics by investigating the relationship between experimental data and 

analytical models, an investigation into the behavior of regions of fluids with uniform 

ohmic conductivity and permittivity and the influence of interfacial electrical shear-force 

densities on their surface interactions was performed. 27   

 

2.3 The Leaky Dielectric Model 

This leaky dielectric EHD model is an appropriate model to use because the model of the 

fluid’s electrical properties as a poorly conducting liquid is comparable to the behavior of 

most polymer solutions, the most commonly-used type of fluid in electrospinning.  The 

leaky dielectric model is composed of the Navier-Stokes equations to describe fluid 

movement and a formulation of a current balance equation.  Electromechanical coupling, 

the core of EHD behavior, occurs only at the fluid-to-fluid interfaces.  The charges 

transported via conduction reside at these interfaces and their subsequent presence at 

these locations produce electrical stresses that differ from those in perfect dielectrics or 

perfect conductors.  For these media, the stresses act normal to the interface and are 
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subsequently balanced by changing the shape of the interface and interfacial tension.  

However, these models cannot explain the observed nature of very fine steady jets 

relative to their meniscus 28 or just the basic phenomena of fluid movement in an electric 

field. The reason is that, for example, a perfect dielectric still contains a finite amount of 

free charge density.  Although this charge density may be small enough to ignore bulk 

conduction effects, the charge will reside on the interfaces between fluids.  If a nonzero 

electric field is tangent to the interface, then a nonzero tangential stress will be induced 

on the interface.  The only possible force that can balance this tangential stress is viscous 

and therefore, under these conditions, such a fluid will be in motion. 22 

In 1966, Taylor 25 initiated the development of a new model for poorly-

conducting fluids, or leaky dielectrics, where the free charge accumulates at the interfaces, 

due to adjacent fluids having different conductivities, to modify the electric field and 

preserve the conservation of current.  The field-induced tangential stress components are 

then balanced by viscous fluid motion which ultimately leads to steady cone-jet 

formation. 26, 28   This leaky dielectric model assumes that the medium behaves as an 

ohmic conductor, where the electrical conductivity is constant.  This charge transport 

model combined with the Navier-Stokes equations of motion became the leaky dielectric 

model. 28 

The effects of the tangential forces on the fluid body has been observed and 

studied.  Circulatory fluid motion induced by an electric field was observed in the works 

of Taylor. 25, 27  Tangential stresses arising from charge conduction to the interface 

initiated the circulation patterns inside and outside the drop.  These accumulations of 

charge stem from differences between the conductivity of the interior and exterior fluids.  
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A circulation pattern also exists within the Taylor cone with fluid moving towards the 

apex along the cone surface (i.e., the interface between the two media) and away from it 

along the axis. The fluid is supplied to the jet from the surface of the cone, while a 

recirculating eddy current moves fluid down the axis of the cone back towards the 

supply.26 

 

2.4 Formulation of the Leaky Dielectric Model  

The validity of using electrostatic equations for the leaky dielectric model approximation 

is determined by whether the electrical relaxation time fulfills certain inequality 

relationships.  The electrical relaxation time, τe, is the ratio of the permittivity (εεο) and 

conductivity (σ).  Transport process time, or the hydrodynamic time, τh, represents the 

time required for fluid particles to move across a zone of space.  If τe is much smaller 

than τh, the liquid bulk is quasi-neutral and the free charges are confined to a very thin 

layer under the liquid-gas interface.  In cone-jet mode electrosprays, charges have to be 

relaxed at the cone-jet surface since any motion of charges inside the liquid bulk would 

result in being incompatible with the stability of the cone-jet mode. 29  Therefore, the 

inequality of τe  τh must be satisfied in electrospray atomization, and by extension, the 

electrospinning process.   

It is important to understand how this electromechanical coupling takes place by 

describing how certain key components of the leaky dielectric model were formulated.  It 

is the Maxwell stress tensor that couples the electrostatic phenomena and hydrodynamic 

behavior.  This can be understood by supposing that electrical forces exerted on free 

charge and charged dipoles are transferred directly to the fluid.  With dielectrics, steady 
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current cannot flow in them.  Therefore, unlike conductors, the static electric field is not 

zero and can be derived.30  The following derivation is based on Ref. 31 and Ref. 26.  

Starting with modified Maxwell’s equations representing electrical phenomena: 

e
οεε ρ∇ =Ei  and ∇× =E 0 with electric field, E, the total charge density, ( )eρ ,  

permittivity, ε , and the permittivity of the vacuum, οε . 

Electric fields polarize matter in two ways: by orienting molecules with 

permanent dipoles and by deforming electron clouds within individual atoms and 

molecules.  The polarization vector,P , is defined with respect to individual dipoles by

NQ=P dwhere, N is the number of dipoles per unit volume, Q  is the charge magnitude 

separated to produce the dipole, and d  is the dipole orientation.  Additionally, this 

polarization vector not only describes the volumetric charge density but also the surface 

charge density qualities30.                                                          

 οαεε=P N E  (2.1)  

The polarization vector is then used to define the volumetric polarization charge density 

( )pρ as,  

 ( )pρ∇ = −Pi  (2.2) 

It is also necessary to define the stress that an external field exerts on a surface.  This is 

done by first deriving the force due to electric field acting on an isolated dipole.  A pair 

of charges, Q and Q− , are at some position d .  Then the electrical force on the pair is 

( ) ( )Q Q− + +E x E x d .  Expanding the second term and taking limits yields the expression 

for the force on an individual dipole, ( )Q ∇d Ei .  For N dipoles per unit volume, the dipole 
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force is ∇P Ei .  The Coulomb force due to free charge is ( )fρ E .  Therefore, the total 

electrical force per unit volume is ( )fρ + ∇E P Ei .  These are body forces that have to be 

balanced by the pressure gradient, p∗−∇ , yielding ( ) 0fρ ρ∗−∇ + + ∇ =E P Ei  .  Using the 

expressions relating charge and dipole density to field strength, (2.1) and (2.2), the force 

terms can be transformed into an expression of the divergence of a tensor31:  

  

 ( )1
2

0p ο οεε εε δ∗−∇ + ∇ − =EE E Ei i  (2.3) 

 

The pressure p∗ is due to the isotropic influence of the electrical field, i.e. electrical 

modifications to the short-range intermolecular forces.  Pressure in the absence of an 

electric field owing to kinetic energy and short-range intermolecular forces is defined as 

p  so as to give the relation:  

 

 ( )1
2

1
T

p p ε
ο ρ
ε ε ρ∗ ∂

∂
⎡ ⎤= + − −⎢ ⎥⎣ ⎦

E Ei  (2.4) 

 

where, ρ is the density of the material and the derivative ( )ερ∂∂ is taken at constant 

temperature, T.  Determining the gradient and the divergence of the total stress in 

eauation (2.3) yields31   

 ( ){ }1
2

1 0
T

p ρ ε
ο ο ε ρ

εε ε ε δ∂
∂

⎡ ⎤−∇ + ∇ − − =⎢ ⎥⎣ ⎦
EE E Ei i

.
 (2.5) 
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The tensor within the braces, { } , is the Maxwell stress tensor, Mσ .  The gradient of the 

pressure along with the divergence of the stress tensor are components of the equation of 

motion for an incompressible Newtonian fluid of uniform viscosity:  

 

 2MD
p

Dt
ρ σ µ= −∇ + ∇ + ∇
u

ui  (2.6) 

 

where, u is the fluid velocity and µ is the viscosity.  Solving for the gradient and the 

divergence in equation (2.5) shows how the electrical stresses emerge as body forces due 

to heterogeneous permittivities and distribution of free charges and with the gradient of 

the pressure yields 26 the following: 

 

 ( ) ( ) 21 1
2 2

f

T

D
p

Dt
ε

ο ορ
ρ ε ρ ε ε ρ µ∂

∂
⎡ ⎤= −∇ − − ∇ + + ∇⎢ ⎥⎣ ⎦

u
E E E E E ui i

.
 (2.7) 

 

Equation (2.7) describes how the electrostatic forces cause the fluid jet to move.  For a 

detailed description of the derivation, please refer to Ref. 31 and Ref. 26.  A summary of 

the leaky dielectric equations can be found in Ref. 26. 

 

2.5 Validation and Assessment of the Model 

Taylor’s initial efforts in the leaky dielectric theory 25 in the study of drop deformations 

led to a function to determine if deformations were either prolate or oblate.  Subsequently, 

this function led to a derivation of a scaling law for drop deformation, thus allowing for 
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the theory to be evaluated quantitatively.  Taylor did not publish a comparison between 

theory and experiment and the first quantitative tests were done by Torza et al., in which 

the theory was applied to alternating fields as well as steady fields. 32  The results showed 

that although the theory was qualitatively sound, the quantitative agreement was very 

poor. 

Attempts were made by several researchers to improve the agreement between 

theory and experiment but they were met with varying success.  Ref.33 extended the 

model  by replacing the ohmic property with electrokinetic effects.  The assertion is that 

the ions are constantly mobile whose concentrations are governed by transport equations.  

However, the results were identical to the original theory. Other studies such as Ref.34 

and Ref.35  have taken steps to increase the accuracy of the measurements of certain 

physical properties, e.g., permittivity, and used novel techniques like finite element 

method to analyze the drop deformation, respectively.  In the end, the original ohmic 

model appears to remain valid and is satisfactory for drop deformation cases.   

Studies on electrified fluid cylinders and free jets, which are the modes of 

electrospinning, were done to investigate stability behavior. 10  The leaky dielectric model 

was applied for a case of a viscous cylinder immersed in another viscous fluid under 

simplified conditions where charge transport by relaxation, convection and dilation of the 

surface were neglected.26 The results showed reasonable agreement with the behavior 

described in Ref.10.  However, certain characteristics could not be captured because of the 

simplified conditions used.  These omissions were determined to be critical in the 

description of the jet stability and were recommended to be included in further analysis 36.  
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Overall, the leaky dielectric theory’s qualitative analysis is consistent with the 

experimental data provided in Taylor’s 1969 study of electrically driven jets 26. 

 

2.6 Electrospinning: An Extension of Electrospraying 

The physical phenomena of electrospinning share many similarities with those of 

electrospraying.  This has allowed researchers to take advantage of the vast body of 

literature in the area of electrospray characterization to supplement the comparatively 

smaller amounts of relevant information available for electrospinning.  When a potential 

is applied to a spheroidal meniscus of fluid, charges migrate to the surface and create 

tangential stresses that deform the meniscus into a cone-like projection, or Taylor cone, at 

the limit of stability 26.  Further increases in tangential stresses pull the charged surface 

towards the tip of the cone providing sufficient axial momentum transfer to further 

deform the Taylor cone to eject a fluid jet. 29  Depending on certain conditions, the 

meniscus may eject charged droplets, emit a jet that disperses into drops, or emit a 

continuous jet that would eventually become a fiber 37. The level of balance between the 

electrostatic stresses and surface tension is what determines the outcome. 

In electrospraying, a Taylor cone is formed at the tip of a capillary from which 

jets a stream of fluid.  This electrically driven jet is inherently unstable and it undergoes 

instability modes due to either capillary instabilities resulting in break up into charged 

droplets or in the case of electrospinning, tornadic instabilities, i.e., whipping mode, due 

to the action of the electric field 38.  In electrospinning, formation of continuous fibers 

can be achieved by suppressing the capillary instability through, for an example, the use 

of polymer solutions of certain levels of viscosity to rheologically dampen, delay, or even 
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eliminate the axisymmetric perturbations so that longer jets may be obtained.  However, 

non-axisymmetric perturbations may still persist and even grow because of the charges 

that are still carried by the jet.   The tangential stresses generated serve to further deform 

a portion of the jet so that it intersects with the electrical field lines inducing charge26.  

Surface charge density gradients that have developed due to this action push that portion 

farther away from the original axis creating the observed tornadic instabilities known as 

whipping, or bending instabilities. 38  
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CHAPTER 3 

BUILDING THE PRELIMINARY MODEL 

 

The differences between the processes of dry spinning and electrospinning are both 

obvious and subtle.  In dry spinning, the fluid undergoes die swell upon exiting the 

spinneret.  This is a consequence of the relaxation of the fluid molecules.  This 

phenomenon does not occur in electrospinning because of the comparatively low flow 

rates used.  In addition, the mechanically metered flow rates are not necessary for the 

primary propagation of the electrospinning process.  It only serves a secondary role to 

supply the capillary tip with fresh polymer solution.  The spinneret size in dry spinning is 

an important factor in determining the final diameter of the filament.  However, in 

electrospinning , the only role the spinneret, or in this case, the capillary, plays is as a 

charge generation device.  The most significant difference is the method of filament 

traction.  In dry spinning, this is done by the use of a “take-up” winder assembly, which 

provides a mechanical traction to the spin line.  In electrospinning, the sole source of 

traction is by electrostatic means, generated by the electrohydrodynamics interaction of 

the surface charges residing on the filament surface and the surrounding external electric 

field.  However, the two processes are similar in major aspect.  The solvent loss 

mechanisms are primarily by evaporation.  Although dry spinning also includes diffusion 

as an important mechanism of solvent loss, the effect is neglected in electrospinning due 

to its relatively small fiber diameters. 
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3.1 Modeling the Dry Spinning and Electrospinning Processes 

Work on the solution for the electrospinning model began by first repeating the 1D dry 

spinning model by Gou 19 to learn and verify the modeling approach.  A model was 

formulated based on the published balance equations and the material property 

relationships.  Full profiles for solvent fraction, radius, velocity, and temperature were 

generated for a Newtonian fluid model shown in Figure 3.1.  Although the individual 

numerical values differed, the overall plot behavior and profiles closely approximated 

those published and so work progressed to the next stage. 

 

Figure 3.1  Initial results of the dry spinning model. 

 

Work on the actual electrospinning model began with the selection of Feng’s electrostatic 

formulations for the force and axial electric field.23 These equations were derived by 
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coupling the charge density effects on the tangential traction forces on the jet.  The 

significant role surface charge density plays in the electrostatic force terms could be 

clearly seen and understood, in comparison to the other published models, and therefore 

led to its inclusion in the proposed model.  Feng’s equations were to a certain extent, 

similar to Hohman’s model.22  The difference lay in Feng’s use of an approximation to 

one of Hohman’s more complex equation in order to avoid the instabilities that 

characterized the Hohman et al. model at the initial stages of the simulation.  The source 

of the problem was the boundary condition for the charge density, whose solution existed 

for a very narrow range.  The use of Feng’s equation allowed for a stable solution to be 

achieved with the only requirement that the boundary condition for the electrical field 

and the charge density be defined initially. 

For the solution to the electrospinning model, five balance equations were made 

for mass, momentum, energy, axial electrical field, and the charge.  The mass, 

momentum, and energy balance equations were from the Gou dry spinning model, with 

the last three terms of the momentum balance equation taken from the Feng model, as 

were the axial electric field and the charge balance equations.  The mass balance equation 

describes the change in the solvent concentration with respect to the spin line position, z, 

in terms of the material properties that influence solvent evaporation, e.g. the mass 

transfer coefficient, ky, and the saturation vapor pressure, p2
sat.  The momentum balance 

equation describes the change of the spin line velocity with respect to z, in terms of the 

rheological, gravitational, surface tension, air drag, and electrostatic forces.  The energy 

balance equation describes the change of the spin line temperature with respect to z, in 

terms of the interfacial temperature gradients, heat loss through vaporization, and 
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rheological heating.  The electric field balance equation describes the change in the 

internal, axial electrical field with respect to z, in terms of the external electric field and 

the charge densities.  The charge balance equation gives a description of the total current 

in terms of the current flows in the interior and exterior regions of the jet.  These 

equations are ordinary differential equations with respect to one independent variable, the 

position on the spin line, z.  Therefore, the model is considered a one-dimensional model, 

where the parameters depend only on the z position and not on the radial position.  At this 

time, it is unknown if radial dependencies of the material properties exist thereby not 

justifying the creation of a more complex, two-dimensional model.  Additionally, in the 

early stages, it was decided to keep the model as simple as possible and gradually build 

up the complexity as progress was made.  

The program was a modified version of the one written for the dry spinning 

modeling work done earlier.  In the interest of simplicity, as in the dry spinning model, a 

Newtonian fluid model was used along with a Runge-Kutta 2nd order numerical 

integration scheme. The modeled fluid was 8% by mass of cellulose acetate to acetone, a 

very common polymer solution system used in dry spinning.  During this initial period, 

plausible profiles for radius, velocity, surface charge density, temperature, and solvent 

volume fraction were made.  However, subsequent investigations into the model revealed 

numerous errors in the fundamental components of the model.  These errors include those 

made to the formulation for the mass flow rate, the incomplete conversion of material 

property units from MKS to CGS dimensions, and also errors discovered in the 

referenced literature.  After all the known errors had been rectified, the program still did 
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not run, which indicates a fundamental error in the program, the formulation of the 

parameters, or both.  The equations used for the preliminary electrospinning model were: 
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4.1 The Material Balance Equation: 

The total mass flow through the system is given by,  

 1 2W W W= +  

The mass flow rate of the polymer component (W1) throughout the system is constant, 

whereas the mass flow rate of the solvent component (W2) changes with z due to mass 

transfer by evaporation. 

 

 2
1 1f zW R vρ ω π=  (4.1) 

 

from which the equation for radius, R, is derived 

 

 

1
2

1

1f z

WR
vρ ω π

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

4.2 The Mass Balance Equation 

The derivation of the mass transport equation closely follows the one given in Ohzawa. 18  

The physical description is shown in Figure 4.2.  The equation follows the form: 

 

 
2 2 2

mass rate net mass solvent mass
of accumulation flow rate loss rate
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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 1 1 1,0
( , ) 2

R

zW z t r v drπ ρω= ∫  (4.3) 

 

The mass flow rate of the solvent entering the z-plane at time t is: 

 

 2 2 2,0
( , ) 2

R

zW z t r v drπ ρω= ∫  (4.4) 

 

Adding equations (4.3) and (4.4) gives the total mass flow rate: 

 

 ( ) ( ) ( )1 2, , ,W z t W z t W z t= +  (4.5) 

 

In reference to Figure 4.2, a macroscopic mass balance of the polymer component over a 

differential volume element (DVE) bound by the z and z z+ ∆  is as follows: 

The total mass of the polymer component in the DVE is: 

 

 ( )10
2

R
r dr zπ ρω ∆∫ i  (4.6) 

 

The rate of mass accumulation of the polymer component in this DVE is: 

 

 ( )10
2

R
r dr z

t
π ρω∂⎡ ⎤ ∆⎢ ⎥∂⎣ ⎦∫ i  (4.7) 
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The total input of the polymer component across the z plane is: 

 

 ( )1 ,W z t  (4.8) 

 

The total output of the polymer component across the z z+ ∆  plane is: 

 

 

 ( )1 ,W z z t+ ∆  (4.9) 

 

Then the mass balance becomes, 

 

 ( ) ( ) ( )1 1 10
2 , ,

R
r dr z W z t W z z t

t
π ρω∂⎡ ⎤ ∆ = − + ∆⎢ ⎥∂⎣ ⎦∫ i  (4.10) 

 

By dividing both sides by z∆ and taking the limit as  z∆ approaches zero, the continuity 

equation for the polymer component is given by, 

 

 ( ) 1
10

2 0
R Wr dr

t z
π ρω ∂∂

+ =
∂ ∂∫  (4.11) 

 

In electrospinning, the mechanism of mass transfer by diffusion is considered to be 

negligible due to the characteristically small diameters found in the process. 

Assumption 3: Solvent mass transfer is by the process of evaporation only.  Diffusion is 
considered to be negligible. 
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The solvent transfer in the gas phase from the filament interface follows the principles of 

the Whitman 2-film theory.18 

The rate of solvent transfer at the interface is given by the molar flux, 2,0N : 

 

 ( ) ( )2,0 2,0 2, 2,01N ky j j j∞= − −  (4.12) 

 

where, ky is the mass transfer coefficient, 2,0j is the mole fraction of the solvent vapor, 

and 2,j ∞ is the mole fraction of the ambient air. 

The rate of total mass accumulation of the solvent component in the DVE is: 

 

 ( )20
2

R
r dr z

t
π ρω∂⎡ ⎤ ∆⎢ ⎥∂⎣ ⎦∫ i  (4.13) 

 

 

Total input of the solvent component across the z plane is: 

 

 ( )2 ,W z t  

 
Total input of the solvent component across the z+ z∆  plane is: 
 

 ( )2 ,W z z t+ ∆  

 

Evaporation rate of solvent across the filament/air interface is: 
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 2 2.0 2M N R zπ ∆i  

 

By dividing both sides by z∆ and  taking  the  limit  as  z∆ approaches zero, the continuity 

equation for the solvent component is given by, 

 

 ( ) 2
2 2 2,00

2 2 0
R Wr dr RM N

t z
π ρω π∂∂

+ + =
∂ ∂∫  (4.14) 

 

Adding equations (4.11) and (4.14) gives the continuity equation for the polymer 

solution: 

 

 ( ) 2 2,00
2 2 0

R Wr dr RM N
t z

π ρ π∂∂
+ + =

∂ ∂∫   (4.15) 

 

Then, substitute equations (4.3) into (4.11) and divide both sides by 1W  

 

 1

1

1 1 1 0z

z

d dvdA
dz A dz v dz
ω

ω
+ + =i i i  (4.16) 

 

Then, substitute equation (4.4) into equation (4.14) and divide both sides by 2W  

 

 2 2,02

2 2

21 1 1 0z

z

RM Nd dvdA
dz A dz v dz W

πω
ω

+ + + =i i i  (4.17) 
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By subtracting equation (4.17) from equation (4.16), an ordinary differential equation is 

determined for the mass fraction of the solvent: 

 

 ( )22 2
2,0 2

1

2 1 0d M AN
dz W
ω π ω+ − =i  (4.18) 

 

4.3 Energy Balance Equation 

The energy transport equation is also adopted from Ohzawa18 and follows the law of 

conservation of energy over the DVE as shown in Figure 4.3. 

The macroscopic energy balance equation follows the form: 

 

 

 

Assumption 3: Energy transport by radiation and by conduction in the z-direction is 
negligible. 

 
Assumption 4: Kinetic energy contributions and work done by forces due to pressure, 
gravity, viscous, drag, and electrohydrodynamics are negligible. 

 
The spinning medium is a polymer solution; therefore, the contribution to the energy 

balance is from the difference in enthalpy of the solvent in the solution state and in the 

gas mixture. 
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 ( )
0

2
R

P z dr C v T T dr z
z

π ρ∂⎧ ⎫⎡ ⎤− − ∆⎨ ⎬⎢ ⎥⎣ ⎦∂⎩ ⎭∫ i
 

 

Time rate of accumulation in the DVE is, 

 

 ( )
0

2
R

P dr C T T dr z
t

π ρ∂⎧ ⎫⎡ ⎤− ∆⎨ ⎬⎢ ⎥⎣ ⎦∂⎩ ⎭∫ i  

 

Energy loss due to evaporation of the solvent across the filament/air interface is,  

 

 2 2.0 2H N R zπ ∆i  

 

where, H2 is the partial molar enthalpy of the solvent on the gas-side with respect to Td. 

 

 ( )0 2h T T R zπ∞ − ∆i  

 

h is the heat transfer coefficient. 

By assembling the above terms together and dividing the energy balance by z∆ , the 

macroscopic energy equation is determined after taking the z∆ limit to zero: 

 

 
( ) ( )

( )
0 0

2 2.0 0

2 2

2 2

R R

P d P z dr C T T dr r C v T T dr
t z

RH N Rh T T

π ρ π ρ

π π ∞

∂ ∂⎡ ⎤ ⎡ ⎤− = − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∂
− + −

∫ ∫  (4.19) 

 

After taking the integrals and simplifying: 



35 
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P
d P d

z
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t v z

RH N R T Tπ π ∞

⎡ ⎤∂ ∂⎡ ⎤− + −⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦
+ − − =

 (4.20) 

 

Then it is differentiated: 

 

 

( )

( )

0 2 2.02 2P
z

z

P d
z

C W T Tv Rh T T RH N
v t z

W WC T T
t v z

π π∞

∂ ∂⎛ ⎞+ = − − −⎜ ⎟∂ ∂⎝ ⎠

⎡ ⎤⎛ ⎞∂ ∂
− +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

 (4.21) 

 

Substituting equation (4.15) into the third term of equation (4.21) yields, 

Assumption 5: The difference between the enthalpy of the solvent on the filament-side 
and that on the gas-side is approximated by the latent heat of vaporization of the solvent, 

vapH∆  at the boiling point.  

 

 ( ) ( )0 2,0 2 22 2P
z P d

z

C W T Tv Rh T T RN H M C T T
v t z

π π∞

∂ ∂⎛ ⎞+ = − − − −⎡ ⎤⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠
 (4.22) 

 

 ( )0 2,02P z vap
T TC v h T T H N
t z A

πρ ∞

∂ ∂⎛ ⎞ ⎡ ⎤+ = − −∆⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠
 (4.23) 

 

At steady-state, the time derivatives become zero and equation (4.23) becomes 

 ( )0 2,02P z vap
dTC v h T T H N
dx A

πρ ∞⎡ ⎤= − −∆⎣ ⎦  (4.24) 
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By substituting equations (4.1) and (4.18), the ordinary differential equation for the 

temperature of the filament is derived: 

 

 ( ) ( )
2 2

0
1 2 2

11 2
1

vap

P

H ddT h A T T
dx C W M dz

ω ωπ
ω∞

⎡ ⎤∆−
= − +⎢ ⎥−⎣ ⎦

i i  (4.25) 

 

4.4 Momentum Balance Equation 

The overall momentum balance in the z direction follows the form, 

 

  (4.26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4  Differential volume element for the macroscopic momentum balance 

rate of momentum net momentum flow sum of the forces
accumulation into the DVE acting on the system
⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭
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The convective momentum rate entering the DVE at z is, 

 

 
0

2
R

z zr v v drπ ρ∫  

 

The net convective momentum flow for small z∆  is, 

 

 ( )2 2 2

0 0 0
2 2 2

R R R

z z z
z z z z z

r v dr r v dr r v dr z
z

π ρ π ρ π ρ
= = +∆

∂⎡ ⎤− = − ∆⎢ ⎥∂⎣ ⎦∫ ∫ ∫ i  

 
The rheological force due to the polymer solution viscosity is, 

 

 
0

2
R

zzF r drπ τ= ∫  

 

In addition to the convective momentum flow and the rheological force, there are the 

external forces acting on the system.  These forces are due to gravity, air drag, surface 

tension, and the electrohydrodynamic stresses.  With the downward direction of the 

filament representing the positive direction, the components of macroscopic equation of 

motion are shown (refer to Figure 4.4): 

Time rate of momentum accumulation in the DVE: 

 

 ( )0
2

R

zr v dr z
t

π ρ∂⎡ ⎤ ∆⎢ ⎥∂⎣ ⎦∫ i  

 

Net convective momentum flow into the DVE, i.e., the inertial term: 
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 ( )2

0
2

R

zr v dr z
z

π ρ∂⎡ ⎤− ∆⎢ ⎥∂⎣ ⎦∫ i  

 

Rheological force is: 

 

 ( )0
2

R

zzr dr z
z

π τ∂⎡ ⎤− ∆⎢ ⎥∂⎣ ⎦∫ i  

 

Gravitational force is given by 

 

 
0

2
R

r gdr zπ ρ⎡ ⎤ ∆⎢ ⎥⎣ ⎦∫ i  

 

The air drag force is: 

 

 2drag R zτ π− ∆i  

 

The surface tension force is: 

 

 ( )2 r
z
γ π∂

−
∂

 

 

The electrostatic force is: 

 

 2 e e
t n

drR t t
dz

π ⎛ ⎞−⎜ ⎟
⎝ ⎠  
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When these components are substituted back into the form of equation (4.26) and 

dividing the resulting equation by z∆ and taking the limit as z∆ approaches zero, the 

macroscopic equation of motion is obtained: 

  

        

( ) ( ) ( )
( )

2

0 0 0 0
2 2 2 2

2 2 2

R R R R

z z zz

e e
drag t n

r v dr r v dr r dr r gdr
t z z

drR r R t t
z dz

π ρ π ρ π τ π ρ

τ π γ π π

∂ ∂ ∂
= − + +

∂ ∂ ∂
∂ ⎛ ⎞− − + −⎜ ⎟∂ ⎝ ⎠

∫ ∫ ∫ ∫

i
 (4.27) 

 

At steady state, the time derivative term becomes zero and performing the integration 

yields: 

  

( ) ( ) ( ) ( )2 2 2 2 2 2 2 e e
z zz drag t n

d d d d dRR v R R g R R R t t
dz dz dz dz dz

π ρ π τ π ρ τ π γ π π ⎛ ⎞= + − − + −⎜ ⎟
⎝ ⎠

i (4.28) 

 

The rheological force is given by the normal stress difference: 

 

 03zz rr
dv
dz

τ τ η− =  

 

The Trouton viscosity, i.e., the Newtonian elongational viscosity, is three times the zero-

shear viscosity.  The normal stress, rrτ , is taken as zero because velocity in the radial 

direction is assumed to be constant. 
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4.5 The Axial Electric Field Equation 

The axial electric field within the filament is derived from Coulomb’s law for the 

potential along the center line of the jet:23 

  

( )2

2 2 2 2

1( ) ( )
2 4( ) ( )

d ER dRdz z d
z R z R

ζσ ζ βψ ψ ζ
ε ζ ζ

∞= + −
− + − +

∫ ∫  

 

The axial field is then given by, 

 

 ( ) ( )2 2

2

1( ) ( ) ln
2

d ERd R
E z E z

dz dz
σ βχ

ε∞

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 (4.29) 

 

In addition to the electric field equation, the value for the surface charge density is 

required for calculating the electrostatic forces.  It is derived from the conservation of 

charge equation, where the first term is for the charge traveling inside the filament and 

the second term is for the charge traveling on the outside surface of the filament:  

 

 2 2R KE Rv Iπ π σ+ =  (4.30) 

 

The final first-order ordinary differential equations used in the model are: 
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4.6 The Material Properties 

The molar flux of the solvent is given by 18 

 

 

 

The mole fraction of the solvent is given by 18 

 

 

 

The heat transfer coefficient is derived as a function of the Nusselt number: 
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The Nusselt number for parallel air flow is:18 
 

 ( )
0.520.360.35 0.146 1.03 0.685p wNu Re Re⎡ ⎤= + + −⎢ ⎥⎣ ⎦

 

 

The Reynolds numbers for the velocities of the filament and the air are respectively: 
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a
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The mass transfer coefficient is given by the analogy with the heat transfer coefficient:18 
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The air properties are shown below:19 
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The heat capacity of the filament is given by 19 
 

 

 

The volume fraction can be determined mass fraction and the density of the components: 

 

 

 
 

The latent heat of vaporization :39 

 

 
 

with reduced temperature as: 

 

 
 

The air drag coefficient is given by 40 
 

 

 

 

 

 
 

The glass transition temperature for a binary polymer solution is given by the Kelley-

Bueche equation:41 
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The zero-shear viscosity of the polymer solution is calculated depending on the 

temperature value of the filament with respect to its Tg.42, 43 

When the filament temperature is very high relative to its Tg: 

 

 

 

where 

 

 

 

 

 

 

When the filament temperature is near its Tg: 

 

 

 

 

where 
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The viscosity of the polymer solution, as function of the component viscosities, is then 

given by: 

 

 

 
 

4.7 Results of the Model Test 

Initial computer simulations generated data that was inconclusive and was determined to 

be due in part to the complexity of the modeled system and the subsequent computational 

difficulties encountered.  The results show values which indicate that the mathematical 

solution failed to converge properly.  Upon further investigation, it was found that the 

problems arose from the sections of the model responsible for calculating the polymer 

solution viscosity and the electrostatic forces.  The extreme changes these quantities 

undergo within a small length of space, particularly in the initial region just beyond the 

jet origin, may be a factor in contributing to the numerical instability of the model. In 

addition to reevaluating the formulation of certain properties such as viscosity and the 

electrostatic tractions involved in elongating the filament, further tests have to be done to 

the program to develop a more robust and appropriate computational scheme.   
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CHAPTER 5 

CONCLUSIONS 

 

Although creating electrospun fibers is a fairly simple procedure, one must appreciate 

that the process of electrospinning is very complex and still not completely understood.  

However, careful attention to the parameters that affect electrospun fiber formation will 

increase the probability of attaining fibers of desired size, morphology, and uniformity.  

A novel electrospinning model has been created, incorporating principles of the dry 

spinning process and electrohydrodynamics.  A theoretical framework has been 

established, from which a foundation for a deeper understanding of the complexities of 

the electrospinning process can be gained.  The novel incorporation of the principles of 

electrohydrodynamics (as a mechanism for fluid movement) coupled with very high 

solvent evaporation rate characteristics contributed to a new and representative 

description of the extreme case of filament diameter reduction inherent in the 

electrospinning process. 
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APPENDIX  

FORTRAN SOURCE CODE 

 

A print out of the source code for the electrospinning model is presented.  The “Main” 

program is shown below. 

 
c  File: PhD ESPIN Imura  (Main program) 
c  3/30/12 
c 
 
      program chao1 
      implicit real*8 (a-h,o-z) 
      include 'common' 
      integer time 
      external time 
      dimension ycurrent(10),ylast(10) 
 open(10,file='inputdat',status='old') 
      open(20,file='output.m',status='unknown') 
      write(*,200) 
 pi=4.0d0*atan(1.0d0) 
 200  format(1x,'Input iflag'/) 
      read(10,*) iflag,ndim 
      write(*,210)  
 210  format(1x,'Input nfun') 
      read(10,*) nfun 
      write(*,220) 
 220  format(1x,'Input yinit dt tmax') 
      read(10,*) dt,tmax 
      do 21 i=1,ndim 
      read(10,*) yinit(i) 
 21   continue     
 xmf2=yinit(1) 
 xmf1=1.0d0-xmf2 
 vz=yinit(2) 
 xt=yinit(4) 
 e=yinit(5)  
 xden1=1.31d0 
 xden2=0.790d0  
 xdenf=1.0d0 
 xmw2=58.08d0  
 xtg1=468.0d0 
 xtg2=44.0d0 
 xq=8.5d-4 
 xg=980.7d0 
 xst=39.0d0 
 xw1=xmf1*xdenf*xq   
 xr=dsqrt(xw1/(xdenf*xmf1*pi*vz))     
 read(10,*) nwt 
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      nts=nint(tmax/dt) 
      write(20,100) 1,0.0d0 
      write(20,111) 1,yinit(1) 
      write(20,112) 1,yinit(2) 
      write(20,113) 1,yinit(3) 
      write(20,114) 1,yinit(4) 
      write(20,117) 1,yinit(5) 
      write(20,118) 1,yinit(6)   
 xrg=8.314472d7 
 xdiea=0.0796d0 
 xdief=1.4d0 
 xva=0.0d0   
 xta=300.0d0     
 xae=47.5d0     
 xb=(xdief/xdiea)-1.0d0   
 xl=20.0d0   
 xchi=xl/xr 
 xelcd=1.5d5 
 xcur=8994.0d0 
 sigmac=(xcur/pi-e*(xr**2)*xelcd)/(2.0d0*xr*vz)  
 xappvjc=2.0d4 
 xappv=xappvjc*(299.8d0**-1.0d0) 
 xeext=xappv/xl  
 phi2=xmf2/(xmf2+(xden2*(xmf1)/xden1)) 
 phi1=1.0d0-phi2 
 xxr=2.5d0 
 xtg=(xxr*phi2*xtg2+phi1*xtg1) 
     $   /(xxr*phi2+phi1) 
 write(20,115) 1,xr 
 write(20,119) 1,xq 
 write(20,120) 1,xcur 
 write(20,121) 1,sigmac 
 write(20,122) 1,xtg 
      it=0 
      do 23 i=1,ndim 
         ylast(i)=yinit(i) 
 23   continue 
      nc=0 
      ni=1  
      tlast=0.0d0 
 300  if (tlast+dt .le. tmax+2.0d-15) then 
  write(*,*) nc 
         nc=nc+1 
         it=it+1 
         if (iflag .eq. 10) then 
            call rk2(tlast,ylast,ycurrent) 
         endif 
         if (iflag .eq. 11) then 
            call euler(tlast,ylast,ycurrent) 
         endif 
         if (iflag .eq. 9) then 
            call rk4(tlast,ylast,ycurrent) 
         endif 
         if (mod(nc,nwt) .eq. 0) then 
            ni=ni+1 
            write(20,100) ni,tlast+dt*nwt 
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            write(20,111) ni,ycurrent(1) 
            write(20,112) ni,ycurrent(2) 
            write(20,113) ni,ycurrent(3) 
            write(20,114) ni,ycurrent(4) 
            write(20,117) ni,ycurrent(5) 
            write(20,118) ni,ycurrent(6) 
 
c  ****10.0d4 is micron/cm convert for radius in microns 
 
    xr=10.0d4*dsqrt(xw1/(xdenf*(1.0d0-ycurrent(1))*pi*ycurrent(2)))                 
    write(20,115) ni,xr 
    xsig=xcur/(2.0d0*pi*xr*ycurrent(2))-xr*xelcd*ycurrent(5) 
     $   /2.0d0/ycurrent(2)     
    xqcheck=(1.0d0-ycurrent(1))*pi*(xr**2)*ycurrent(2) 
    xicheck=pi*(xr**2)*xelcd*ycurrent(5)+ 
     $   2.0d0*pi*xr*ycurrent(2)*xsig 
    phi2=ycurrent(1)/(ycurrent(1)+(xden2*(1.0d0-ycurrent(1))/xden1)) 
    phi1=1.0d0-phi2 
    xtgcheck=(xxr*phi2*xtg2+phi1*xtg1) 
     $   /(xxr*phi2+phi1) 
            write(20,119) ni,xqcheck 
            write(20,120) ni,xicheck 
            write(20,121) ni,xsig 
    write(20,122) ni,xtgcheck 
       write(20,123) ni,xdenf       
         endif 
         tlast=tlast+dt 
         do 25 i=1,ndim 
            ylast(i)=ycurrent(i) 
 25      continue 
         go to 300  
      endif 
 100  format('z(',i10,')=',e26.16,';') 
 111  format('mf2(',i10,')=',e26.16,';') 
 112  format('vz(',i10,')=',e26.16,';') 
 113  format('dvz(',i10,')=',e26.16,';') 
 114  format('T(',i10,')=',e26.16,';') 
 115  format('R(',i10,')=',e26.16,';') 
 117  format('E(',i10,')=',e26.16,';') 
 118  format('dEz(',i10,')=',e26.16,';') 
 119  format('q(',i10,')=',e26.16,';') 
 120  format('i(',i10,')=',e26.16,';') 
 121  format('sig(',i10,')=',e26.16,';') 
 122  format('Tg(',i10,')=',e26.16,';') 
 123  format('denf(',i10,')=',e26.16,';') 
 
      stop 
      end 
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The subroutine: “Func” is shown below: 
 
 
c  PhD ESPIN Imura  (Subroutine-FUNC) 
c  3/30/12 
c 
c************************************************* 
 
      subroutine func(yvalout,tin,yvalin) 
      implicit real*8 (a-h,o-z) 
      include 'common' 
      dimension yvalout(10),yvalin(10) 
 pi=4.0d0*atan(1.0d0) 
 
 xmf2=yvalin(1) 
 xmf1=1.0d0-xmf2 
 vz=yvalin(2) 
 dvz=yvalin(3) 
 xt=yvalin(4)  
 e=yvalin(5) 
 de=yvalin(6) 
 
      if (nfun .eq. 11) then 
  xcp1=1.32d7 
  xcp2=2.16d7 
  xtc=508.1d0 
  xtr=xt/xtc 
  xxr=2.5d0 
  phi2=xmf2/(xmf2+(xden2*xmf1)/xden1) 
  phi1=1.0d0-phi2 
  xtg=(xxr*phi2*xtg2+phi1*xtg1) 
     $   /(xxr*phi2+phi1)        
   
  xts=1.2d0*xtg 
  xdenf=1.0d0 
  xr=dsqrt(xw1/(xdenf*xmf1*pi*vz)) 
  xa=pi*(xr**2.0d0) 
  xp2s=(10.0d0**(4.2184d0-(1197.01d0/(xt-45.09d0))))*1.0d6 
  xcp=phi1*xcp1+phi2*xcp2 
  xtf=0.5d0*xta+0.5d0*xt 
  xka=((4.49d-7)*(xtf**0.866d0))*(4.1868d7) 
  xdena=0.351d0/xtf 
  xvisca=((1.446d-5)*(xtf**1.5d0))/(xtf+113.9d0) 
  xhvap=(46.95d0*(dexp(-0.2826d0*xtr))* 
     $   ((1.0d0-xtr)**0.2826d0))*1.0d10 
c *********** fiber viscosity *********** 
  xtem=xae/(2.3d0*xrg*xt) 
  if (xt .gt. xts) then 
   xlgviscts=xae*((0.052d0-(8.5d-5)*xtg)/xtg) 
     $     -1.4d0+xtem*(xtg/xt-1.0d0) 
   xlgvisct=xlgviscts+xtem*(xtg/xt-1.0d0)    
  endif 
 
  if (xt .le. xts) then 
   xvk1=xtem*(xtg/xt-1.0d0) 
   xvk2=33.0d0*(xtg/xt)-27.8d0 
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   xvk3=(8.0d0*(xtg/xt)-6.5d0-0.01d0*xtem) 
     $    /(0.6d0-0.02d0*xtem) 
   xvk=log10((10.0**xvk1)+(10.0d0**xvk2) 
     $    +(10.0d0**xvk3)) 
   xlgvisct=xae*((0.052d0-(8.5d-5)*xtg)/xtg) 
     $    +1.6056d0+xvk 
  endif 
c ***************** filament viscosity***** 
  xviscf=(10.0d0**(xlgvisct+5.0d0*log10(phi1)))*10.0d0 
       xrew=2.0d0*xr*vz*xdena/xvisca 
c ****** heat transfer coeff. (parallel case)***** 
  xrep=2.0d0*xr*xva*xdena/xvisca 
  xnu=0.35d0+0.146d0*dsqrt(xrep+(1.03d0*(xrew 
     $   **0.36d0)-0.685d0)**2.0d0)   
  xh=xka*xnu/2.0d0*xr 
  xky=xh/(4.86d8) 
  xj2=xp2s*xmf2*dexp(xmf1)   
  xj2a=0.0d0 
  xnx2=xky*(xj2-xj2a)/(1.0d0-xj2) 
  yvalout(1)=-2.0d0*(dsqrt(pi*xa)) 
     $     *xmw2*xnx2*(xmf1**2.0d0)/xw1 
  yvalout(2)=dvz   
  yvalout(4)=((xmf1/xw1)*2.0d0*xh*(dsqrt(pi*xa)) 
     $    *(xta-xt)+(xhvap/(xmw2*xmf1)) 
     $    *yvalout(1))/xcp 
  xdr=0.5d0*(dsqrt(xw1/(pi*xdenf*xmf1*vz))) 
     $   *((yvalout(1)/xmf1)-(dvz/vz)) 
  xtf=xt/2.0d0+xta/2.0d0 
  xdtf=0.5d0*yvalout(4)  
  xdka=16.2797d0*(xtf**-0.134d0)*xdtf 
  xddena=-0.351d0*(xtf**-2.0d0)*xdtf 
c  **** derivative of Nusselt number **** 
 
  xrewu=2.0d0*xr*vz*xdena 
  xrewv=xvisca 
  xrewdu=2.0d0*(xdr*vz*xdena+xr*xdena*dvz 
     $   +xr*vz*xddena) 
  xdvisca=1.446d-5*(1.5d0*(dsqrt(xtf))*xdtf 
     $    /(xtf+113.9d0)-(xtf**1.5d0) 
     $    *((xtf+113.9d0)**-2.0d0)*xdtf) 
  xrewdv=xdvisca 
  xdrew=(xrewdu*xrewv-xrewu*xrewdv)/(xrewv**2.0d0) 
  xrepu=2.0d0*xr*xva*xdena 
  xrepv=xvisca 
  xrepdu=2.0d0*(xdr*xva*xdena+xr*xva*xddena) 
  xrepdv=xdvisca 
  xdrep=(xrepdu*xrepv-xrepu*xrepdv)/(xrepv**2.0d0) 
  xdnu=0.073d0/dsqrt(xrep+(1.03d0*(xrew**0.36d0) 
     $   -0.685d0)**2.0d0) 
     $   *(xdrep+2.0d0*(1.03d0*(xrew**0.36d0) 
     $   -0.685d0)*(0.3708d0*(xrew**-0.64d0)*xdrew)) 
  xdh=-2.0d0*xdr*xka*xdnu/(xr**2.0d0) 
     $   +xdka/(2.0d0*xr)+xka*xdnu/(2.0d0*xr) 
  xdky=xdh/(4.86d8) 
  xdp2s=1.0d6*((10.0d0**(4.2184d0- 
     $   (1197.01d0/(xt-45.09d0))))*(dlog(10.0d0))) 
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  xdj2=xdp2s*xmf2*(dexp(xmf1)) 
     $   +xp2s*yvalout(1)*(dexp(xmf1)) 
     $   +xp2s*xmf1*(dexp(xmf1))*(-yvalout(1)) 
  xtem=1.0d0-xj2 
  xdnx2=xdky*xj2/xtem+xky*xdj2/xtem 
     $   +xky*xj2*(xdj2/(xtem**2.0d0)) 
  xda=2.0d0*pi*xr*xdr 
c ******** double deriv. of mass frac. solvent******** 
  x2dmf2=(-2.0d0*xmw2/xw1)*((0.5d0/dsqrt(pi*xa)) 
     $   *pi*xda*xnx2*(xmf1**2.0d0) 
     $   +(dsqrt(pi*xa))*xdnx2*(xmf1**2.0d0) 
     $   +(dsqrt(pi*xa))*xnx2*2.0d0*xmf1 
     $   *(-yvalout(1))) 
c ********* double deriv. of r *********************** 
  xaa=xr/2.0d0 
  xdnn=(xmf1**-1.0d0)*(-vz**-2.0d0)*dvz 
     $   +((xmf1**-2.0d0)*yvalout(1)/vz) 
  xdaa=0.25d0*(1.0d0/xr)*(xw1*xdnn/pi/xdenf) 
  xbb=yvalout(1)/xmf1-dvz/vz 
  xdbb1=x2dmf2/xmf1+(yvalout(1) 
     $   /(xmf1**2.0d0))*yvalout(1) 
  xdbb2=yvalout(3)/vz+(-vz**-2.0d0)*(dvz**2.0d0) 
  xdbb=xdbb1-xdbb2 
  x2dr=xaa*xdbb+xdaa*xbb 
c *********electrical equations*********************** 
  xdsig=xdr*(-xelcd/vz-1.0d0/(xr*vz)) 
     $   -(xelcd*xr/2.0d0/vz)*de 
     $   -(dvz/vz) 
  xsig=xcur/(2.0d0*pi*xr*vz)-xr*xelcd*e/2.0d0/vz 
  xdsigr=xr*xdsig+xsig*xdr 
  yvalout(6)=(2.0d0/(xr**2.0d0)/xb) 
     $   *((e-xeext)/dlog(xchi)+xdsigr 
     $   /xdiea)-4.0d0*de*xdr/xr 
     $   -2.0d0*e/(xr**2.0d0)*(xdr**2.0d0) 
     $   -2.0d0*e/xr*x2dr 
c ******** drag coeff.:vibrating air  ************** 
  xre=2.0d0*xr*xdena*(vz-xva)/xdena 
  xcf=0.77d0*(xre**-0.61d0) 
  xdviscf=((10.0d0**(xlgvisct+5.0d0*(log10(phi1))) 
     $   )*dlog(10.0d0))*10.0d0  
  yvalout(3)=(-xdenf*xda*(vz**2.0d0) 
     $   -dvz*(2.0d0*xa*vz+3.0d0*xda 
     $   *xviscf+3.0d0*xda*xdviscf) 
     $   +xa*xdenf*xg-xst*2.0d0*pi*xdr 
     $   -xcf*pi*xr*xdena*((vz-xva)**2.0d0) 
     $   +2.0d0*pi*xr*xsig*e 
     $      -pi*(xsig**2.0d0)*xdr/xdiea 
     $   -pi*(xdiea-xdief)*(e**2.0d0) 
     $   *xr*xdr)/(3.0d0*xa*xviscf) 
c write(*,*) xvism,xdvism 
 write(*,*) yvalout(1),yvalout(2),yvalout(3) 
 write(*,*) yvalout(4),yvalout(5),yvalout(6) 
 endif 
      return 
      end 
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The subroutine “RK4” (Runge-Kutta 4th order) is shown below: 
 
 
c Subroutine rk4 (Runge-Kutta 4th order) 
 
 subroutine rk4(tlast,ylast,ycurrent) 
 implicit real*8 (a-h,o-z) 
      include 'common'       
 dimension ycurrent(10),ylast(10),yvalin(10) 
      dimension tem1(10),tem2(10),tem3(10),tem4(10) 
      call func(tem1,tlast,ylast) 
      do 10 i=1,ndim 
      yvalin(i)=ylast(i)+dt*tem1(i)/2.0d0 
 10   continue   
 tin=tlast+dt/2.0d0 
      call func(tem2,tin,yvalin)   
      yvalin(i)=ylast(i)+dt*tem2(i)/2.0d0 
      tin=tlast+dt/2.0d0 
      call func(tem3,tin,yvalin) 
      yvalin(i)=ylast(i)+dt*tem3(i) 
      tin=tlast+dt 
      call func(tem4,tin,yvalin)    
      ycurrent(i)=ylast(i)+dt*(tem1(i)+2.0d0*tem2(i) 
     $ +2.0d0*tem3(i)+tem4(i))/6.0d0 
      return 
      end
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