

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

i

ABSTRACT

USING AN ONTOLOGY TO IMPROVE THE WEB SEARCH EXPERIENCE

by

Tian Tian

The search terms that a user passes to a search engine are often ambiguous, referring to

homonyms. The results in these cases are a mixture of links to documents that contain

different meanings of the search terms. Current search engines provide suggested query

completions in a dropdown list. However, such lists are not well organized, mixing

completions for different meanings. In addition, the suggested search phrases are not

discriminating enough. Moreover, current search engines often return an unexpected

number of results. Zero hits are naturally undesirable, while too many hits are likely to be

overwhelming and of low precision.

This dissertation work aims at providing a better Web search experience for the

users by addressing the above described problems.To improve the search for homonyms,

suggested completions are well organized and visually separated. In addition, this

approach supports the use of negative terms to disambiguate the suggested completions in

the list. The dissertation presents an algorithm to generate the suggested search

completion terms using an ontology and new ways of displaying homonymous search

results. These algorithms have been implemented in the Ontology-Supported Web Search

(OSWS) System for “famous people.”

 This dissertation presents a method for dynamically building the necessary

ontology of “famous people” based on mining the suggested completions of a search

engine. This is combined with data from DBpedia. To enhance the OSWS ontology,

ii

Facebook is used as a secondary data source. Information from “people public pages” is

mined and Facebook attributes are cleaned up and mapped to the OSWS ontology.

To control the size of the result sets returned by the search engines, this

dissertation demonstrates a query rewriting method for generating alternative query

strings and implements a model for predicting the number of search engine hits for each

alternative query string, based on the English language frequencies of the words in the

search terms. Evaluation experiments of the hit count prediction model are presented for

three major search engines. The dissertation also discusses and quantifies how far the

Google, Yahoo! and Bing search engines diverge from monotonic behavior, considering

negative and positive search terms separately.

iii

USING AN ONTOLOGY TO IMPROVE THE WEB SEARCH EXPERIENCE

by

Tian Tian

A Dissertation

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

January 2012

iv

Copyright © 2012 by Tian Tian

ALL RIGHTS RESERVED

v

APPROVAL PAGE

USING AN ONTOLOGY TO IMPROVE THE WEB SEARCH EXPERIENCE

Tian Tian

Dr. James Geller, Dissertation Advisor (date)

Professor of Computer Science, NJIT

Dr. Narain Gehani, Committee Member (date)

Professor and Dean of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member (date)

Associate Professor of Computer Science, NJIT

Dr. Michael Halper, Committee Member (date)

Professor of Information Systems, NJIT

Dr. Soon Ae Chun, Committee Member (date)

Associate Professor of Information Systems, CUNY

Dr. Hayato Yamana, Committee Member (date)

Professor of Computer Science and Engineering, Waseda University, Japan

BIOGRAPHICAL SKETCH

Author:	 Tian Tian

Degree:	 Doctor of Philosophy

Date:	 January 2012

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2012

• Bachelor of Science in Computer Science,
Beijing University of Posts and Telecommunications, Tianjin, P. R. China, 2007

Major:	 Computer Science

Presentations and Publications:

T. Tian, J. Geller, S.A. Chun, “A Prediction Model for Web Search Hit Counts Using
Word Frequencies ,” Journal of Information Science, vol. 37, issue 5, pp. 462-475,
Sage Publishing Co., 2011.

C. Ochs, T. Tian, J. Geller, S.A. Chun, “Google Knows Who is Famous Today: Building
an Ontology from Search Engine Knowledge and DBpedi a ,” 5 th IEEE
International Conference on Semantic Computing (ICSC), Palo Alto, CA, 2011.

T. Tian, J. Geller, S.A. Chun, “Enhancing Interface for Ontology-Supported Homonym
Search,” CAiSe’11 Workshop on Semantic Web Search (SSW), London, UK,
2011. Lecture Notes in Business Information Processing (LNBIP), issue 83, pp.
544-553, Springer Verl ag, Berlin, 2011.

T. Tian, J. Geller, S.A. Chun, “Improving Web Search Results for Homonyms by
Suggesting Completions from an Ontology ,” 2nd ICWE Workshop on Semantic
Web Information Management (SWIM), Vienna, Austria, 2010. Lecture Notes in
Computer Science (LNCS), issue 6385, pp. 175-186, Springer, 2010.

T. Tian, J. Geller, S.A. Chun, “Predicting Web Search Hit Counts,” 2010
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, pp. 162-166, Toronto, Canada, 2010.

vi

vii

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. James Geller, who not only served

as my research advisor, providing valuable and countless resources, insight, and intuition,

but also constantly gave me support, encouragement, and reassurance. I am heartily

grateful as well to my co-advisor, Dr. Soon Ae Chun, who gave me inspiration and

thoughtful guidance throughout this research. Special thanks are given to Dr. Narain

Gehani, Dr. Dimitrios Theodoratos, Dr. Michael Halper and Dr. Hayato Yamana for

actively participating in my committee.

I also would like to thank Christopher Ochs, Yuwen Sun and Shrutee Shah for

their assistance during the course of my study. Finally, I would like to express my deep

gratitude to all my family members for their love and support.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ……………………………………………………………... 1

 1.1 Problems …………………………………………………………………. 1

 1.1.1 Problem 1: Irrelevant Search Results (Especially for Homonyms)

Returned by the Search Engines ………………………………….

2

 1.1.2 Problem 2: Undesirable Size of Results Returned by the Search

Engines …………………………………………………………...

5

 1.2 Solutions ……………………………………………………….................

7

 1.2.1 Solution for Improving the Suggested Search

Completions ………………………………………………………

7

 1.2.2 Solution for Building the Ontology for the Suggested

Completions ………………………………………………………

8

 1.2.3 Solution for Predicting the Search Hit Counts ………................... 9

 1.3 Related Work ……………………………………………………….......... 12

 1.4 Structure of the Dissertation ……………………………………………... 14

2 IMPROVING WEB SEARCH RESULTS FOR HOMONYMS BY

SUGGESTING COMPLETIONS FROM AN ONTOLOGY …………………

16

 2.1 Introduction ……………………………………………………………… 16

 2.2 Generating Ontology-Based Search Term Completions ………………… 19

 2.2.1 An Algorithm for Suggested Completions with Positive Terms

Only ………………………………………………………………

19

 2.2.2 The Ontology-Supported Web Search (OSWS) System ………… 23

 2.2.3 Suggested Completions with Positive and Negative Search Words 31

 2.3 Enhancing the Interface for Ontology-Supported Homonym Search …… 34

 2.3.1 Improving the OSWS System with Parallel Result Display for

Homonyms ……………………………………………………….

35

ix

TABLE OF CONTENTS

(Continued)

Chapter Page

 2.3.1 Improving the OSWS System with Parallel Result Display for

Homonyms ……………………………………………………….

35

 2.3.2 Improving the OSWS System with Instant Visual Feedback......... 38

3 BUILDING THE “FAMOUS PEOPLE” ONTOLOGY FROM SEARCH

ENGINE KNOWLEDGE AND DBPEDIA …………………………………...

42

 3.1 Ontology Unde Venis? …………………………………………………... 42

 3.2 The Original “Famous People” Ontology ……………………………….. 44

 3.3 Building the New “Famous People” Ontology from Search Engine

Knowledge and DBpedia ………………………………………………..

47

 3.3.1 Focuses on the New Ontology for Famous People ……………… 48

 3.3.2 Who is Famous Today? …………………………………………. 50

 3.3.3 Classification of the Famous People …………………………….. 52

 3.3.4 Structuring the Relationships and the Attributes ………………… 59

 3.3.5 Building the Ontology of Famous People ……………………….. 63

 3.4 Dynamically Expanding the Ontology of Famous People ………………. 65

 3.5 Dynamic Ontology-Supported Web Search (D-OSWS) ………………… 69

4 ENHANCING THE FAMOUS PEOPLE ONTOLOGY BY MINING A

SOCIAL NETWORK…………………………………………………………..

71

 4.1 Introduction ……………………………………………………………… 71

 4.2 Extending the “Famous People” Ontology using Facebook ……………. 72

 4.2.1 Classification of the Famous People …………………………….. 73

 4.2.2 Extracting Attributes from Facebook Pages …………………….. 76

 4.2.3 Mapping Facebook Attributes to the DBpedia Ontology ……….. 82

x

TABLE OF CONTENTS

(Continued)

Chapter Page

5 PREDICTING WEB SEARCH HIT COUNTS ……………………………….. 88

 5.1 Introduction ……………………………………………………………… 88

 5.2 Hit Count Prediction Model ……………………………………………... 90

 5.2.1 Correlations between Term Frequencies and Page Hit Counts …. 91

 5.2.2 Evaluating the Prediction Model ………………………………… 99

6 EFFECT OF NEGATIVE AND POSITIVE WORDS IN THE SEARCH …… 106

7 CONCLUSIONS AND FUTURE WORK ……………………………………. 115

REFERENCES ……………………………………………………………………. 124

xi

LIST OF TABLES

Table Page

3.1 A Sample of YAGO to DBpedia Ontology Mappings …………………... 55

4.1 Facebook Person Categories to DBpedia Ontology Mapping …………… 83

4.2 Facebook Attributes to “Famous People” Ontology Mapping …………… 85

5.1 Number of Sample Words Used and Experiment Size for the N-word

Cases ………………………………………………………………………

97

5.2 Correlation between Word Frequencies and Hit Count Estimates ……….. 98

5.3 Correlation Summery for Thirty Cases …………………………………... 101

6.1 Results of Experiment on Effect of Negative Terms in Google Search ….. 109

xii

LIST OF FIGURES

Figure Page

1.1 Google’s suggested completions for search term “Barack Obama” ….. 3

2.1 Search screen example of previous Ontology-Supported Web Search

System …………………………………………………………………

17

2.2 Interface of the OSWS System for search term “Martina” …………… 24

2.3 Interface of the OSWS System for search term “Adam S” …………… 27

2.4 Interface of the OSWS System for search term “Michael Jackson” ….. 29

2.5 Use of negative terms in the OSWS System for search term “Michael

Jackson” …..……………………………...

32

2.6 Interface of the OSWS System with the parallel result display for

search term “Adam” …..…………………………….............................

37

2.7 Adjustable hover time of the instant feature in the OSWS System …... 40

2.8 Page options of the suggestions in the OSWS System ……………….. 41

3.1 Excerpt from the “famous people” knowledge base with homonym

example “Michael Jackson” …………………………………………..

44

3.2 Instance example of the musician ontology in Protégé ………………. 46

3.3 Google suggestions for search term “Robert” ………………………… 51

3.4 Partial “Person” hierarchy in the DBpedia ontology, in Protégé ……... 53

3.5 Flow of building the famous people ontology ………………………... 64

3.6 Flow of the expansion system ………………………………………... 67

4.1 Partial of the Facebook person categories ……………………………. 73

4.2 Top five results of Facebook pages for query “Michael Jackson” ……. 74

4.3 Partial view of the expanded “Person” hierarchy in Protégé …………. 84

xiii

LIST OF FIGURES

(Continued)

Figure Page

4.4 Distribution of the newly added famous people to the OSWS

Ontology ………………………………………………………………

87

5.1 Scatter plot of word frequencies and Google hits in log-log scale for

case of five positive words and five negative words ………………….

95

5.2 Clustering result of hit count transition within a six month period …… 104

6.1 Observed search engine behavior vs. ideal search engine behavior

(experiment 1: one positive word) ………………………………….....

110

6.2 Observed search engine behavior vs. ideal search engine behavior

(experiment 2: two positive words) ……………………………………

112

6.3 Observed search engine behavior vs. ideal search engine behavior

(experiment 3: only positive words) …………………………………..

113

1

CHAPTER 1

INTRODUCTION

1.1 Problems

Users’ information needs in the digital era can be fulfilled by keyword-based search

engines. Such search engines have become the universal catalogs for world-wide

resources. Unlike the old library catalogs that are mostly searchable by fixed fields (e.g.,

by authors, titles, and keywords predefined by authors), modern Web search engines

provide a flexible, easy way to express search terms. Users’ Web searches have never

become easier without the search engines.

However, the results returned by the search engines cannot always satisfy the

Web users. Covering world-wide resources on the Web, the search engines often return

millions of pages for one search, which may lead to information overload [1]. To

determine which documents are useful, users often have to sift through many hits to find

a few that are relevant [1], or repeatedly refine their search terms.

This dissertation work aims at providing a better, faster and easier search

experience for the users. The ideal search results would be less overwhelming, and yet

contain more relevant hits. In this dissertation, two approaches are discussed to

improving the users’ Web search experience.

2

1.1.1 Problem 1: Irrelevant Search Results (Especially for Homonyms) Returned

by the Search Engines

In what is shaping up to be the “Century of the Web” a computer literate person with an

information need is likely to eschew traditional sources of information such as libraries,

yellow pages and newspapers and turn immediately to a Web search engine. Such

information needs define the work sphere (“from where can I source this industrial part

that I need”) as much as private life (“where is a nice, affordable restaurant near my

home”) and everything in between (“I need a cheap flight for a job/private trip”). Thus,

the quality of the search experience of a user has become of major importance. A user

wants an answer, and she wants it now, and she wants it many times a day. Search

engines are expected to provide correct results quickly, and with a minimal amount of

user interaction.

To satisfy this expectation of an agreeable search experience, major efforts have

gone into improving both the backends and frontends of common search engines. For

example, Google has switched from making users type in complete search terms and

hitting return (or clicking a button) to suggesting to the user what she is mostly likely to

ask for. Such suggested completions [2] have also been introduced by other search

engines. Figure 1.1 shows Google’s suggested completions for the query term “Barack

Obama.” Google has access to the search terms entered by its millions of users, which

makes it easy for them to propose crowd-based suggested completions.

Changes to the backend are harder to discern for the user, but search results are

often long lists of snippets referring to a few relevant links among many irrelevant results

3

[1, 3]. Previous research has focused on refining the search terms and on filtering the

results, to improve the precision of the returned snippets [1, 4, 5].

Figure 1.1 Google’s suggested completions for search term “Barack Obama.”

Search engines also suffer from three common problems in Natural Language

Processing, the synonym problem, the homonym problem, and the wrong granularity

problem. The synonym problem appears in the form that the user might send a different

term to the search engine than what is contained in a document that would provide a

relevant answer. Thus, a query term “43
rd

 president of the US” might miss documents

with George Bush, even though these two terms are synonymous.

The wrong granularity problem would appear when a user performs a search with

a general or wide term, and a relevant document contains only a more specific or narrow

term (or vice versa). Thus, a search for “government officials having been impeached”

might not bring up President Clinton, who was indeed impeached.

The third problem in this category occurs when a search term is a homonym [6, 7,

8] (a term with multiple meanings or multiple referents) and the user does not know that.

For example, when using the search term “President George Bush” without any further

4

qualification, it might refer to George W. Bush or his father George H. W. Bush, the 43
rd

and 41
st
 president of the United States, respectively. If the user wants information about

the former, she would get results about both of them with this search term, which is an

unintended and misleading result.

Thus, when using a search engine to satisfy an information need about a

homonymous concept, a user is faced with two kinds of problems. She might get an

overwhelming number of responses about one homonym, especially if this meaning is

more popular, while the second homonym with a less popular meaning that she might be

really interested in is hidden in a snippet on a much later page of hits, returned by the

search engine. This is the case with lopsided preferences in meanings. For instance, the

“Michael Jackson” who is a singer is much more popular than the basketball player of the

same name. Hence many more search results contain references to the singer. In this

situation, the user is at least aware that the results she is getting are not about the

basketball player that she has been looking for. When formulating the initial query, it

escaped her attention that there are two concepts for her search term and that more

information might be available on the Web about the homonym that she is not interested

in.

The situation is even worse if the user is completely unaware of the fact that the

search term is a homonym with two (or more) references, and all results that appear on

the first few pages of hits are to the “wrong” reference. For example, a user located in the

New York area, who types “Penn Station” into Google will see many references to Penn

Station in New York City (NYC) and some references to Penn Station in Newark. These

two Penn Stations are separated by a 20 minute train ride. Unbeknownst to her, there is

5

also a Penn Station in Philadelphia, Pennsylvania. However, a reference to the latter does

not appear on the first page of search results.

1.1.2 Problem 2: Undesirable Size of Results Returned by the Search Engines

Common search engines often return too many results for an initial query, which may

lead to information overload [1, 9]. Most initial searches result in thousands or even

millions of relevant Web pages available for the given search terms. Such a result might

be perceived as overwhelming [10]. A user is not impressed by a million hits. Very often

she wants only a few hits that are all highly relevant to the search that was performed and

that address her immediate information need. While search engines have improved to the

point that the desired answer is often on the first page of results, users still may have to

sift through many hits to find a few that are relevant [1], or repeatedly refine their search

terms. In the latter case there is a danger of overspecifying the search, e.g., by using long

phrases in double quotes, with the effect that no results at all are returned.

It has been reported that search engines normally stop at about the 1000th result,

with all other matching pages remaining hidden from users [11]. Besides, research results

have shown that search engine users often give up their search after the first try,

examining no more than 10 documents or the first page of hits [12]. Eye-tracking studies

showed that we can expect clicks only for the top few results, and that the search engine

will probably receive almost no feedback about any result ranked above 100 [13]. A user

study by iProspect also showed that 62% of search engine users don’t look past the first

page of results [14]. Only 10% of users click on results beyond the third page [14]. To get

6

useful results without sifting through pages of hits, users often have to resort to a

“feedback loop” of repeated queries with increasingly refined search terms.

To provide a scenario for the problem we are addressing, if a user attempts to find

information about the US Senator Paul Simon, as opposed to the singer Paul Simon, she

will get pages of results about the singer, with the desired results about the senator hidden

among those. To find information about the senator, she will need to repeatedly refine her

search terms by adding words associated with politics. Another technique to increase the

number of useful results in the first few pages (i.e., the precision) is to include negative

search words. Thus, a negative search word of the form ‘‘–singer’’ should reduce the

number of irrelevant results.

However, this query refinement approach has its own problems. If a user specifies

too many positive or negative search words, relevant hits could be excluded, i.e., the

recall would suffer. It would be especially undesirable if no page hits at all are returned.

The interplay between the user and the browser could be described as a feedback loop.

The long range goal of this research is to automate this feedback loop in a manner that is

invisible to the user and implement it as a plug-in. The browser with this plug-in would

process the search terms of the user but would not actually show the results to her if there

are too many hits. The user would also never know when a search was attempted that

resulted in zero page hits.

7

1.2 Solutions

The goals of this research are:

 To categorize suggested completions by the different meanings of homonyms

and present them to the user in an improved way reflecting those different

meanings;

 To control the result size of the search engine results by predicting the search

hit counts and adding additional search terms.

1.2.1 Solution for Improving the Suggested Search Completions

The goal in this part of research is to improve the user search experience with suggested

search completions in three ways. First, the display of suggested search term completions

should be categorized visually to make it clear that homonymous terms exist. For this,

knowledge of the classes that terms belong to is necessary. This is the kind of knowledge

normally contained in ontologies.

Secondly, the knowledge in the ontologies should be used to increase the

precision of results, by making the suggested completions as discriminating as possible.

One tool for making Web searches more focused is to use negative search terms in

addition to the normal “positive” search terms. Naturally, the suggested search

completions should not be over-specified to the point that the search engine would not

return any results. As the public does not have access to the “most common search terms”

collected by commercial search engines, they cannot be used to generate suggested

completions. Instead ontologies are used both for creating the suggested completions and

for providing the knowledge needed to visually categorize them.

8

Including negative search terms in the search queries is a powerful tool for

discriminating between wanted and unwanted results. In the past, negative search terms

have not been used in suggested completions. This dissertation discusses the generation

of suggested completions with negative search terms and hint at the problems that arise

out of this pursuit.

The ontology has been extended to enrich the information provided for the search

terms (see Chapter 3).

Thirdly, combining support for the homonymous search terms, a Web search

mechanism is developed and implemented with an improved search experience for the

user that minimizes the necessity for input actions. This dissertation presents the “vertical

view” mechanism (see Section 2.3.1) and discusses the new instant feature incorporated

into the Web search system (see Section 2.3.2).

1.2.2 Solution for Building the Ontology for the Suggested Completions

 As discussed in Section 1.2.1, the goal of this work is to provide better suggested

completions to users, by disambiguating homonyms and appending suggested terms from

a robust ontology. Ontologies were chosen to serve this purpose, because they are well

suited for defining the important notions (classes, relations, objects) of a domain, using

concepts, roles, and instances (individuals), as they are known in Description Logics [15].

An ontology was developed, containing basic knowledge of more than 5000

musicians and more than 3000 basketball players, whose information is extracted from

Wikipedia. The ontology has been submitted to the Ontology Design Patterns (ODP) as

an exemplary ontology.

9

 This dissertation addressed the crucial question of how to enhance the system’s

ontology. The goal is to improve the ontology in four ways. Firstly, a method is presented

to mine the suggested completions from a search engine. Secondly additional information

is extracted from DBpedia [16] (see Chapter 3). Thirdly, this dissertation describes the

process of expanding the ontology dynamically during the normal operation of the OSWS

System. Finally, it discusses the process of enhancing the ontology by mining Facebook

as a secondary resource (see Chapter 4).

1.2.3 Solution for Predicting the Search Hit Counts

As addressed in Section 1.1.2, the users often need to repeatedly refine their search terms

in the query to get more relevant results from the search engines, which results in a

feedback loop. One approach is a query rewriting method (also query expansion) that the

browser would utilize to reduce the number of hits by appending additional words to the

search that are in line with the interests of the user. The previous research used an

approach similar to relevance feedback, however based on an ontology, to provide

additional search words [17, 18]. Fu et al. [19], Navigli and Velardi [20] and Andreou [21]

have presented various methods and algorithms to expand queries by applying ontologies.

The query rewriting mechanism augments user search terms with positive words from an

ontology. The specific model of query rewriting consists of adding additional terms to the

user query. For example, the query ‘‘Michael Jackson’’ can be augmented by additional

terms such as ‘‘singer,’’ ‘‘king of pop,’’ ‘‘thriller,’’ etc. More details about the query

rewriting method can be found in [17, 18, 22]. This model has been extended to negative

search words.

10

Negative search words can be derived, e.g., from a user model of an individual

user. This user model would contain subjects and their associated terms that the user is

definitely not interested in. However, the expanded search criteria can result in a list of

alternative search strings that need to be processed, one after another, by the user, until

the result is satisfactory. To automate this manual feedback loop, the output of the query

expansion approach can be processed by a browser plug-in ‘in the background’ and only

results that would not overwhelm the user should be reported to her. The idea of running

queries in the background is inspired by [23]. As part of a feedback loop, many such

searches would have to be executed, which would result in an unacceptable waiting time.

Thus, running several or many queries in the background is not practical.

Instead of executing searches in the background, this dissertation is therefore

attempting to predict the hit count estimates that will be returned for different expanded

search terms. Only a search for which the plug-in predicts a number of hits between pre-

specified limits will be executed. The output will only be presented to the user if the

prediction was correct, i.e., the number of results is between the pre-specified limits.

These limits could, for example, be 10 and 100, with a certain error range permitted.

Thus, one focus of this paper is on the prediction mechanism for alternative expanded

search terms. Such a mechanism helps users to avoid ‘zero results’ as well as information

overload from too many low precision results.

The major search engines return a list of hits, preceded by a number of

approximately how many hits should be expected. This number has been referred to as

‘hit count estimate’. It has been observed that the quality of hit count estimates goes

down considerably when transitioning from one search word to two search words [24].

11

The hit count estimates of the search engines were used in this research, because real hit

counts are difficult to obtain by manual counting, whenever there are many hits.

This dissertation presents an approach to developing a model for predicting the

number of hits for different combinations of search words. To develop the hit count

prediction model, a series of searches were conducted with search terms ranging from 1 –

5 words, correlation models were built between the search term frequencies and hit count

estimates returned by the search engines. Different prediction models have been

developed, based on the number of search words, allowing for up to five positive and up

to five negative search words.

To validate the prediction model, a series of searches were conducted. Their hit

count estimates reported by three commonly-used search engines, Google, Yahoo! and

Bing were compared with the hit counts reported by the prediction model.

During these experiments, it is observed that the hit count estimates for many

search words do not observe the monotonicity requirements expected as a minimal

constraint; that is, whenever a positive or negative search word is added to a prior search,

the number of hits should go down (monotonicity). Thus, the second part of this work

analyzes this (mis)behavior for positive and negative search words. A failure of a

negative search word to reduce the number of results should be considered more serious

than a failure of a positive search word. The results indicate that monotonicity often does

not hold, and that there are wide differences between search engines.

12

1.3 Related Work

This dissertation work aims at improving the suggested completions for homonymous

names of famous people. There is other research trying to solve the problem of personal

name disambiguation, but mostly in the context of clustering techniques [25, 26, 27].

Semantic search on the Web, which aims at enabling more intelligent Web

searches, has become one of the hottest Semantic Web research topics [28]. Keyword-

based approaches have been studied by many researchers in the field to improve the

search process [28]. For example, [29] improves the traditional search method by

augmenting the search results with relevant data aggregated from the Semantic Web.

Falcons is a keyword-based search engine for concepts and objects on the Semantic Web

[30]. SWSE [31] and Sig.Ma [32] allow users to locate RDF entities via keyword search

[28]. Some of the mentioned studies have also addressed the problem of query

disambiguation, considering user preferences or heuristics [28]. Chapter 2 discusses the

approach to improving the query disambiguation, in order to improve the search

experience.

Ontologies were used to provide the suggested completions in the search system.

In order to build such ontologies, search engine knowledge is mined. Yossef et al. [33]

have used the public interface to mine and sample the search engines’ query logs for

other research purposes. The ontology consists of the search engine knowledge as well as

the data extracted from DBpedia [34]. DBpedia is a large multi-domain ontology, which

has been commonly used for ontology building [35].

Besides DBpedia, Facebook was used as a secondary resource to mine knowledge

about famous people. Over the past few years, Facebook has become the largest social

13

networking site. Millions of users have integrated Facebook into their daily practices [36].

Research has been done on mining data from social networks. For example, Thelwall et

al. have mined MySpace comments to detect the emotion among them and to examine

how they differ among users with different age and gender [37]. Chu et al. have mined

Facebook live data concerning social networking forensics [38]. Xu et al. studied mining

user opinions in social network services [39]. Numerous tools have been developed to

mine social networks. For example, SONAR is an API for gathering and sharing social

network information [40]. POLYPHONET was built as a social network extraction

system [41].

This dissertation also discusses the approach to hit count prediction modelling.

Adding words from an ontology to a user’s search terms was demonstrated in the

previous ontology-based search system [6] as a method for improving the precision of

Web search results. Thelwall observed that search engine results are now widely used for

measurement purposes by researchers in Webometrics [42], and for commercial activities

such as Web analytics and search engine optimization. Cilibrasi and Vitanyi used search

engine hit counts to measure word similarity [43]. Similar work in the Semantic Web

community, using hit count estimates to calculate similarities between resources in a

semantic network, can be found in [44, 45, 46]. Search engine hit counts were used to

measure the popularity of a famous person [6] (see Chapter 3). Thus, there is a need for

research into the reliability of the results of search engines [11]. Other research has

focused on the consistency of the results of search engines. The hit count estimates that

they report for queries are interesting for at least two reasons. Webometric research has

used these hit counts as input for many studies of Web information, e.g., to determine

14

how many pages in one country link to another [11]. Secondly, it is useful to know how

reliable the estimates reported by search engines are [11].

Due to their great commercial and technological success, search engines have

been studied by many researchers. Yossef and Gurevich used random samples from a

search engine’s index to measure the size of the search engine [47]. However, the hit

count estimates are not utilized in their work and there is no research on predicting the

search engine hit count estimates. The query pool in [47] is built by crawling the ODB

directory, while this dissertation research is based on the British National Corpus (BNC)

[48], a 100 million word collection of samples of written and spoken British English.

Moreover, word frequencies are not considered in [47]. Matsuo et al. have done

researches to estimate the Google hit counts [49]. However, their method requires many

actual Google queries to be sent to evaluate the co-occurrence of terms. (See Section 4.2

for the method of utilizing the co-occurrence of search terms). Thus, in order to estimate

the hit count for one query, several other Google queries have to be made in Matsuo’s

method. Obviously, if this dissertation uses prediction in order to avoid spending time

making the actual Google queries, Matsuo’s method would not be suitable for the

purpose of predicting hit counts in real time.

1.4 Structure of the Dissertation

Chapter 2 describes the approach to improving Web search experience for

homonyms by suggesting completions from an ontology and enhancing the search

interface. Chapter 3 presents the ontology used in Chapter 2 and the methodology to

dynamically build and expand the ontology. Chapter 4 describes the approach to improve

15

the ontology presented in Chapter 3 by mining Facebook [50] as a secondary resource.

Chapter 5 presents the approach to hit count prediction modeling. Chapter 6 is devoted to

problems of search engines’ handling of negative and positive search words. Chapter 7

concludes the dissertation work.

16

CHAPTER 2

IMPROVING WEB SEARCH RESULTS FOR HOMONYMS BY SUGGESTING

COMPLETIONS FROM AN ONTOLOGY

2.1 Introduction

This chapter is based on work published in [6] and [51]. As mentioned in Section 1.1.1,

current browsers don’t deal well with search requests when the search terms are

homonyms. To improve the users’ search experience with the homonymous terms, this

chapter describes the approach to improving the search results for homonyms by

suggesting completions from an ontology.

In the previous research on an ontology-supported Web search system, the user

was presented with a number of choices of additional search terms for her input. She

could mark such terms as positive, i.e., they should be included in the Web search results,

by clicking on associated check boxes (see Figure 2.1 and 17]). One problem with this

approach was that users do not want to be bothered by (too many) questions. A more

benign approach to eliciting additional information from a user can be seen in the use of

suggested completions. While a user types in the first (few) word(s) of her search, the

search engine displays up to ten suggested search completions, which will possibly

describe the search that the user had in mind. These completions are presumably based on

the observed frequencies of many searches of other search engine users [2]. While the

user continues to type, the suggested completions change rapidly and are often limited to

fewer than ten. Most major search engines have such a mechanism. Google calls them

17

“query suggestions” appearing in the “search box” [2], Yahoo calls them “search

assistant” [52], and Bing calls them “search suggestions” [53].

Figure 2.1 Search screen example of previous Ontology-Supported Web Search System.

Another weakness of the approach in [17] was that it did not make use of the

information that may be inferred by a form of closed-world assumption from the terms

that the user did not select with a check mark. According to the documentation of major

search engines, the use of negative search words, marked with a minus sign before the

word(s), constitutes a particularly powerful tool for discriminating between different

results. Thus, the approach in [17, 18, 22] is extended in this dissertation work by adding

negative search terms.

Google’s suggested completions have problems described in Section 1.1.1. They

do not reflect distinctions between different concepts that are expressed by the same word

or the same multi-word term (homonyms). Suggested completions also do not appear to

be optimized for discrimination between homonyms. Appending well-chosen negative

18

search words to a search term given by the user would result in improved discrimination

between homonyms of that search term, if the appended words are characteristic for one

of the homonymic senses. However, the use of too many negative search terms might

exclude relevant results, i.e., the recall would suffer. It would be especially undesirable if

the search is so over-specified that no results are reported at all.

The suggested additional search terms in [17] (see Figure 2.1) were derived from

an ontology. For a given user input, all homonymous concepts were located in the

ontology. Then choices of additional terms were generated by looking at neighboring

concepts in the ontology. Thus “Michael Jackson” is categorized as a singer, or in more

technical terms, Michael Jackson is an instance of the class “singer.” Thus, a statement of

this nature with a check box was suggested to the user. If the user checks this box, then

the word “singer” was automatically appended to the Web search query before executing

it.

Finding information about Michael Jackson the singer on the Web is clearly not a

problem. There are millions of hits for this search term. However, when somebody is

interested in Michael Jackson the basketball player, or in any one of the other over 20

Michael Jacksons that have achieved some kind of fame over the years, then the task of

finding relevant information becomes much more difficult. Appending negative search

words such as “-songs” and “-lyrics” makes this task easier, by excluding the most

widely used homonym of Michael Jackson the singer.

19

2.2 Generating Ontology-Based Search Term Completions

2.2.1 An Algorithm for Suggested Completions with Positive Terms Only

The basic idea of generating suggested completions with positive search terms was not

changed from [17], however the interface model was changed considerably, improving

both on the previous work and on common search engines. The following pseudocode

demonstrates the processing steps.

ALGORITHM DISPLAY_SEARCH_SUGGESTIONS

INPUT: SEARCH_TERM, KNOWLEDGE_BASE

OUTPUT: Display of SEARCH_SUGGESTIONS

BEGIN

 NODE_COLLECTION = {}

 FOR EACH NODE IN KNOWLEDGE_BASE

 IF NODE contains SEARCH_TERM

 NODE_COLLECTION = NODE_COLLECTION U{NODE}

 /* NODE_COLLECTION now contains all homonyms */

 ITH_SUGGESTION = 1

 IF size_of(NODE_COLLECTION) > 4

 NODE_COLLECTION = MOST_COMMON(NODE_COLLECTION)

 /* NODE_COLLECTION now contains at most 4 homonyms */

 FOR EACH NODE IN NODE_COLLECTION

 NEIGHBOR_LIST = {}

20

 FOR N IN NEIGHBORS_PLUS_GRANDPAR(NODE)

 /* We add one additional level in the IS-A hierarchy to the immediate neighbors.

*/

 NEIGHBOR_LIST = NEIGHBOR_LIST U {<REL, N>}

 /* Pairs of all neighbors and their connecting relationships are collected in a list. */

 PRIOR_LIST = PRIORITIZE(NEIGHBOR_LIST)

 /* Pairs with important relationships, such as IS-A are placed first in the list. */

 SEARCH_SUGGESTIONS[ITH_SUGGESTION] = PRIOR_LIST

 ITH_SUGGESTION++

 SEARCH_SUGGESTIONS = LIMIT_SIZE(SEARCH_SUGGESTIONS)

 /* At most 12 lines are displayed over all homonyms. */

 DISPLAY_WITH_SEPARATORS(SEARCH_SUGGESTIONS)

 /* Suggestions for each homonym are displayed, visually separated from each other.

*/

END

The algorithm DISPLAY_SEARCH_SUGGESTIONS uses the following sub-

algorithms: MOST_COMMON returns at most four homonyms. The selection is done

based on the number of hit counts for each homonym. These hit counts are recorded in

the ontology during creation time. More details can be found in Section 2.2.2.

NEIGHBORS_PLUS_GRANDPAR returns for every instance in the ontology all

neighboring nodes that are one link away from it, plus the “grand parent,” i.e., the IS-A

parent of the class it is an instance of.

21

PRIORITIZE sorts the list of neighbors by importance. The importance is

determined by the types of connecting relationships. Thus IS-A relationships to parent

classes are considered more important than lateral semantic relationships. See Section

2.2.2 for more details on the importance of different relationship types. If several

neighbors are connected by the same relationship type, then the order of the connected

concepts is chosen arbitrarily.

LIMIT_SIZE controls the total size of the output. In order to avoid overloading the

user with information and in order to achieve a behavior similar to existing search

engines, the total number of search suggestions displayed is limited to at most 12. The

number 12 is divisible by 2, 3, and 4, which makes it a good choice for 2, 3, or 4

homonyms.

Finally, the sub-algorithm DISPLAY_WITH_SEPARATORS creates the actual

dropdown box that is shown to the user. It contains the computed search suggestions

with appropriate separators to express the semantic distances between them.

Altogether the algorithm specifies the following behavior. A user types words of a

search term into the search box. The algorithm locates nodes (classes or instances) in the

stored ontologies that correspond to the input words. If only one node is located, then

there is no problem with homonymy, at least according to the knowledge incorporated in

the set of all loaded ontologies. On the other hand, if two (or more) nodes are located in

the ontologies that match the user input, then additional processing is necessary.

22

For each located node, its neighbors 1 in the ontology network are retrieved,

starting with the parent(s), if it is a class, or if it is an instance, the class that it is an

instance of. Neighbors that are common to more than one sense (meaning) of the search

term are eliminated, as they have no discriminatory power. The algorithm now appends

subsets of these retrieved terms to the user terms to generate several suggested

completions.

Knowledge from different domains is assumed to be stored in separate ontologies.

However, when using this implemented knowledge, all ontologies are considered

connected and combined into a single knowledge base.

Consider the following abstract example.

 The user types in two words A B, for example A=Michael and B=Jackson.

 The system identifies two concepts referred to as A B, let us call them AB1 and

AB2.

 AB1 is an instance of K. AB1 has a neighbor L.

 AB2 is an instance of M. AB2 has a neighbor N. The concepts K, L, M and N are

distinct.

 The search engine generates the following suggested completions, three for

AB1 and three for AB2:

 A B K;

 A B L;

 A B K L;

 A B M;

 A B N;

1 The immediate neighbors of a class are the following: parent classes (more general), child classes (more specific)

and classes that are reachable from it by traversing a “semantic relationship.” The immediate neighbors of an instance
are the class which the instance belongs to, and the object properties and the data type properties of the instance.

23

 and A B M N.

 The total number of suggested completions is limited by a threshold and

controlled by strict priorities in which order to select neighbors (Section 2.2.2).

 The suggested completions are presented to the user in a way that visually

separates the AB1 meaning from the AB2 meaning, for example by using a bold line to

separate them or by different background colors (see Section 2.2.2).

2.2.2 The Ontology-Supported Web Search (OSWS) System

A special-purpose search engine (also known as vertical search engine) limits its

coverage in order to tailor the search results to one well-defined application domain [54].

There are many special-purpose search engines on the Web, e.g., Google Image Search,

Yahoo Video Search, Twitter Search, Technorati, etc. Our goal is to build a special-

purpose search engine for the domain of famous people.

The Ontology-Supported Web Search (OSWS) System for “famous people”

provides search suggestions based on the user input, every time she types a new character.

As seen in Figure 2.2, after the user completes the search term “Martina,” the system

finds all the famous people in the knowledge base with “Martina” in their names. (The

display is updated after every single letter that the user types.) Additional background

information about these famous people is extracted from the knowledge base for

generating suggested completions. In this example, the tennis players Martina Hingis and

Martina Navratilova and the singer Martina McBride are found. From the information

related to these three famous people the suggested completions in the dropdown box are

generated and displayed to the user.

2
4

Figure 2.2 Interface of the OSWS System for search term “Martina.”

25

2
7

In more detail, for each concept of a famous person of the same name, all

immediate neighbors along with the connecting relationships are retrieved from the

ontologies. In the OSWS System, the first proposed suggestion about a famous person is

always based on the class (modeling the occupation) of the person, which defines the

name of the domain that the person belongs to. For instance, Martina Hingis has the first

suggested completion “Martina Hingis tennis player” and Martina McBride has the first

suggested completion “Martina McBride singer.”

Then the remaining suggestions about each famous person are constructed based

on the knowledge retrieved from the ontologies. They may include the background

information of a person like the date of birth and the place of birth, and sometimes the

birth name. Besides, for musicians, the ontology stores the genres of music the artist

performs. For sportsmen, the league and the team he or she belongs to are represented in

the ontology. For instance, in Figure 2.2, from the suggested completions the user could

learn that Martina McBride plays country music, adult contemporary music, and country

pop music, which she may not have been aware of.

Note that the OSWS processing happens in real time, whenever a new letter is

added to the search term. Thus, when the user finishes the word “Martina,” these four

Martinas in the ontology are candidates for completion. They should be viewed as

“homonymous according to the input currently made available to the search engine.”

Different famous Martinas are separated by horizontal lines and background

colors. This separation clearly expresses the fact that there are conceptual distances

among the homonyms expressed by different sets of suggested completions. This makes

it easier for the user to learn or remember that she is dealing with a homonym. Current

26

2
7

search engines do not support such a separation. In fact, the visual display in the example

expresses the fact that Martina Hingis is conceptually closer to Martina Navratilova (both

tennis players) than to Martina McBride (the singer) by separating the tennis players by

thin lines from each other, and by separating them with a heavy line from the singer.

Besides the separating lines, the background color design in the dropdown box

also distinguishes famous people from different domains. In Figure 2.2, the suggestions

for the two tennis players are generated by the system with a blue background, in contrast

to the suggested completions of the singer that are displayed with a pink background.

Four preselected background colors are used for the at most four homonyms for which

suggested completions may be displayed.

After the user chooses one suggestion that fits her search needs and clicks the

“Google Search” button, a result page will be generated, using the Google AJAX API. In

the example shown in Figure 2.3, when the user types “Adam S” the visible choices

switch to “Adam Sandler,” “Adam Sherburne,” and “Adam Schmitt,” based on the

people known in the ontology. As noted before, there are cases where complete names

are still homonymous (recall examples of George Bush, Michael Jackson, etc. in Chapter

1).

2
7

Figure 2.3 Interface of the OSWS System for search term “Adam S.”

28

 2
4

To avoid overwhelming the user with too many suggestions, and to stay close to

the Google look and feel of the interface, the system is designed to show up to a

maximum of 12 suggestions for a maximum of four famous people.

As noted in Chapter 1, there may be too many potential suggested continuations

for one concept, and a selection process is required. The selection of lines for one

homonym is achieved by assigning different priorities to different relationship types. For

example, the IS-A link to the domain name (occupation) is considered to have the highest

priority. For musicians, the genres of music they play have higher priorities than their

dates of birth and places of birth. For basketball players, the team and league they play in

are treated as more important than their birth information. Thus, the system only shows

the high priority suggestions if there is more knowledge in an ontology than available

space in the dropdown box. For example, in Figure 2.4, it shows 12 suggestions in the

search box by eliminating the date of birth and place of birth information of the singer

Michael Jackson, since these have the lowest priorities.

2
9

Figure 2.4 Interface of the OSWS System for search term “Michael Jackson.”

30

 2
6

If there are more than four homonyms (such as the over 20 Michael Jacksons)

then the OSWS System selects up to four senses based on some criteria. There are two

candidate approaches for this selection process. One possible selection criterion is the

amount of information available in the ontologies about each sense. Thus, senses with a

large amount of attached knowledge should be preferred over other senses. This is based

on the pragmatic assumption that system implementers would not make the effort of

including a large amount of information about a concept in an ontology if that concept is

considered unimportant. However, this selection approach requires mature ontologies

covering many domains with rich knowledge. Unfortunately, such ontologies do not

always exist, and it is still a big challenge to build them (Section 2.3).

In the absence of sufficiently complete ontologies a second approach is needed,

which is the one used in the OSWS System. A possible criterion to select the most

popular homonyms is by using the Google hit count estimates. It is assumed that people

with higher hit count estimates are more popular and famous. For instance, the query

“Michael Jackson singer” returns almost twice the number of Web pages than the query

“Michael Jackson basketball.” Thus, Michael Jackson the singer should be preferred over

the others.

The suggested completions in the search box of the OSWS System change

dynamically after every single input character, just as in Google. The response time of the

OSWS System in the current implementation is near instantaneous, limited more by the

typing speed of the user than by the response time of the system. The initial ontologies in

the system contained semantic information about more than 5000 musicians, more than

3000 basketball players and a sampling of sportsmen in other domains. Altogether, only

31

 2
6

three of the over 20 Michael Jacksons known to us are included in the ontologies. Clearly,

with more and much larger ontologies in the OSWS knowledge base, the response time

will degrade. More ontology building and experimentation is needed to investigate the

effect of ontology size on response time.

2.2.3 Suggested Completions with Positive and Negative Search Words

The previous work [17, 18, 22] did not use negative search terms. The idea of using

negative search terms is akin to mutual inhibition as it occurs in neural networks. If

different neurons compete for achieving maximum activation, they inhibit neighboring

neurons. This should be seen only as a metaphor, not as a technical model, as there are

vast differences between the numeric approach of a neural network and the symbolic

approach of an ontology. Based on this metaphor, if the user types in Michael Jackson

and the ontology knows about Michael Jackson the singer and Michael Jackson the

basketball player, then two useful suggested completions would be:

Michael Jackson Singer –Basketball

Michael Jackson Basketball –Singer

In both those suggested completions, a bold font is used to indicate the words that

have been entered by the user. Thus, neighbors of a node that are used as positive search

terms for one homonym should be introduced as negative search terms for the other

homonym. As of writing, none of the major existing search engines suggests completions

with negative search terms.

3
2

Figure 2.5 Use of negative terms in the OSWS System for search term “Michael Jackson.”

33

 2
9

Many search engine users appear to be unfamiliar with the meaning of a minus

sign (–) in front of a search word. Thus, suggesting a completion with a minus sign is

syntactically unsatisfactory. Rather, the above completions need to appear as:

Michael Jackson Basketball [but not] Singer

Michael Jackson Singer [but not] Basketball

Figure 2.5 shows the use of negative search terms in the OSWS System for search

term “Michael Jackson.”

Using negative search words in suggested completions raises both conceptual and

practical problems. One big practical problem that has been discovered in this research

was that three major search engines do not process negative search terms as would be

expected from their documentations or from a logical understanding of the meaning of

“negative” words. This problem will be discussed in Chapter 6.

Conceptually, there is an issue of how many negative terms should be added in

each proposed query. Adding too many might result in getting no Web search results at

all. It is highly undesirable to propose a continuation to a user which will then not result

in any Web page hits. As a “straw man” solution for this latter problem, one could

imagine that all of the proposed complete search terms (user terms plus continuation

terms) are passed on to the underlying search engine “in the background.” The results are

then “reviewed” by the Ontology-Supported Web Search System. Only if a complete

search term results in a desirable (positive) number of Web hits would this search term be

proposed to the user.

34

 2
9

The reason why running several Web searches in the background is a straw man

but not a practical solution is that a single search would take an unacceptable amount of

time. Proposed continuations are presented to the user while she is typing and must be

generated very quickly to avoid any appreciable delay. This difficulty has engendered the

interest in methods for the high speed prediction of the number of Web sites that are

likely to be returned for a given search term. Results of this research are presented in

Chapter 5.

2.3 Enhancing the Interface for Ontology-Supported Homonym Search

Google has rolled out the new instant feature (Google Instant) in September 2010 [55].

As the user starts to type the first few letters of her search term, Google Instant

automatically shows snippets of results for the most popular search term (the first

suggested completion) that begins with those letters. The snippets appear below the box

with suggested completions. As the user keeps typing, the snippets are dynamically

updated. The user does not need to press enter or click the search button.

Google Instant helps the user to get better search results faster. Most importantly,

seeing results as the user types her input helps her formulate a better search term by

providing her with instant feedback [55]. However, Google Instant only displays result

snippets for the first suggested completion in the drop-down suggestion box, even if the

user moves the mouse over other suggestions. There are cases in which the user may be

interested in making a choice between two suggested completions below the first one, but

she cannot get instant feedback about them by using Google Instant. Rather she has to

“make a commitment” to one of the suggested completions by clicking on it, which

35

 2
9

defeats the purpose of the instant feature, which is to minimize the number of user actions

necessary to obtain a satisfactory result.

The following subsections discuss methods for combining Ontology-Supported

Web Search with techniques for providing the user with an improved search experience.

First, to help the user choose the desired homonym, the result screen is split vertically

and show result page snippets for the different homonymous terms next to each other.

This gives the user more detailed information about different categories to help her

decide what results best fit her interests. This display method gives the different

homonymous concepts the same visibility “in the first row” and thus does not have a

vertical bias towards one of the senses of the user’s search term.

Secondly, the system shows the result page snippets for one specific homonym

every time the user hovers with the mouse on top of a suggested completion for a

selectable time period, currently set to two seconds or longer. This helps the user to

acquire a deeper and clearer understanding of the suggested term without having to make

a choice. Google, at this point in time, does not automatically change the displayed

snippets when the mouse is moved down to a lower suggested completion.

2.3.1 Improving the OSWS System with Parallel Result Display for Homonyms

One innovative feature we have implemented into the OSWS System is the “vertical

view” of the returned search results. As the suggestions were categorized for the different

homonyms of a search term, such as singers, sports players, politicians, etc., the display

screen below the suggested completions box is also divided into a few (two to four)

vertical panels with result snippets for the different homonyms, so that the panels are

36

 2
9

displayed next to each other. Every vertical panel contains the Google results for the first

suggested completion of a different homonym. In this way, none of the homonyms is

given the privileged position of being displayed in the first row.

As seen in Figure 2.6, after the user types “Adam,” four homonymous famous

“Adams,” the singers Adam Lambert, Adam Sandler, Adam Bomb and the Basketball

player Adam Morrison are found in the ontology and suggested to the user. Before she

decides which Adam fits her interest or moves her mouse to a lower suggested

completion, the system instantly shows the result snippets for the first suggestion of each

of the four different Adams. The display screen is tiled into four vertical panels, which

are respectively the results for the search terms “Adam Lambert singer,” “Adam Sandler

singer,” “Adam Bomb singer” and “Adam Morrison basketball player.” Thus, the top

down order in the suggested completions is reflected in the left-to-right order of the tiled

windows containing result snippets.

As mentioned before, due to the structure of the ontology, the first suggested

completion of each homonym is in most cases the occupation of the famous person. The

returned snippets give the user richer and more detailed information about different

homonyms to help her decide what result best fits her interests.

The OSWS System shows the parallel results for all the homonyms only at the

beginning of the search. During the time that the user types letters into the search box, the

system features the vertical view of the returned results to help the user make a choice

among the homonyms. Once the user moves the mouse down, the display is changed to

the instant feature view that we are about to introduce in Section 2.3.2.

3
7

Figure 2.6 Interface of the OSWS System with the parallel result display for search term “Adam.”

38

2.3.2 Improving the OSWS System with Instant Visual Feedback

This section describes an improved implementation of the instant feature [55]. As

mentioned in Section 2.3.1, as soon as the user types letters into the search box, the

system will automatically display the result snippets for the first suggested completion of

each of the homonyms, if there are any, next to each other. Once the user moves the

mouse to another suggestion in the drop-down menu and hovers over it, the OSWS

System changes the display from horizontally parallel panels to one single panel, which

contains the returned snippets of the suggested completion the user is apparently

interested in because she is hovering on top of it.

As opposed to Google, not only the snippets of the first suggestion will be

displayed, but if the user moves down to any other suggested completion, the snippet

display is dynamically refreshed and updated. Thus, the user will instantly see results

elaborating the suggested completions, to help her acquire a deeper and clearer

understanding of the meaning of the suggested completion she is on. This helps her

improve her searches significantly and efficiently. Google currently only shows instant

results for the first suggested completion.

To avoid an overload of the server and to better react to the user’s interests, the

system has set a criterion for the minimum time required to be spent by the user hovering

over a selected completion. Thus, only if the user stays for a while on one suggested

completion (without clicking), the corresponding result snippets are displayed. The hover

time is currently set to two seconds, but this is a user-adjustable parameter (see Figure

2.7). To make it possible for the user to move back and forth between different suggested

completions, snippets are cached locally and do not have to be reloaded from the server.

39

 2
9

Once the user clicks on one of the suggested completions, the display will be

changed. The selected suggestion will be shown in its entirety in the search box. By

clicking the search button next to it, the user will be led to the regular Google result page

of the selected search term. For the extraction of the Web information we are using the

Google AJAX API.

Page options are also added the in the OSWS System to display the suggested

completions of the less popular homonyms (beyond the top 4). Note that in Figure 2.8,

the numbers to the right show 5-8. This indicates the homonymous terms now showing

are ranked 5th to 8th in popularity. The blue left arrow below the search box leads to the

suggestions of the more popular homonyms, while the blue right arrow shows the

suggestions of the less popular homonyms.

4
0

Figure 2.7 Adjustable hover time of the instant feature in the OSWS System.

4
1

Figure 2.8 Page options of the suggestions in the OSWS System.

42

CHAPTER 3

BUILDING THE “FAMOUS PEOPLE” ONTOLOGY FROM SEARCH ENGINE

KNOWLEDGE AND DBPEDIA

3.1 Ontology Unde Venis?

(Ontology, from where do you come?) Probably the biggest problem with all ontology-

based systems is from where to take the necessary ontologies, which is the same with the

OSWS System (Chapter 2). Developing the ontologies in-house is time consuming and

person-hour and/or budget intensive. Wide-scale ontology reuse has still not materialized,

even though the Semantic Web [56], ontology search engines such as Swoogle [57] and

ontology repositories [58, 59] have attempted to solve this problem. Many approaches to

automatically generating or extending ontologies [17] have met with partial success but

have also not reached the state of “shrink wrapped solutions.”

Outside of Medical Informatics, where huge terminological repositories are the

norm, many ontologies are small. There appears to be little interest in building large, fact-

oriented, regularly structured ontologies. Researchers prefer to focus on intricately

structured, abstract “upper level ontologies” [60, 61] or on rules and axioms. Building

even one ontology with sufficient depth, breadth and domain coverage is a major

challenge. Building ontologies just for the many existing categories of famous people in

science, religion, art, history, politics, etc., and their many subcategories such as biology,

chemistry, physics, computer science etc. in science, is a daunting task, even if we limit

those ontologies mostly to simply-structured facts and instance categorizations.

43

Nevertheless, human intelligence relies on both rules and large numbers of

simply-structured facts, including basic categorizations. For example, humans know

about a large number of people how they are categorized, such that each one may be

categorized as a

 family member

 friend

 workmate

 politician

 sportsman or sports woman

 “somebody from the history book”

 service provider (electrician, plumber, …)

 teacher, student or classmate

 etc., etc.

or as completely unknown. Therefore, ontologies have been developed, consisting

of information on US musicians and athletes. These ontologies were constructed by

programmatically extracting data, such as genres for musicians and leagues for athletes,

from Wikipedia.

This chapter is based on work published in [6] and [62].

44

 2
9

3.2 The Original “Famous People” Ontology

As mentioned in Section 3.1, the knowledge represented in these ontologies was mined

from Wikipedia using a Web parsing program and stored in a temporary relational

database. Not all information was available about every one of the over 5000 musicians.

The representation of three homonymous examples, “Michael Jacksons,” in the

knowledge base can be seen in Figure 3.1.

Classes in the figure are represented as boxes. Instances are shown as ellipses. IS-

A links are drawn as arrows from the child class to the parent class. Dashed arrows

connect instances to the classes that they are instances of. Finally, lines terminated by

little black squares indicate semantic relationships other than IS-A and instance of

relationships.

Figure 3.1 Excerpt from the “famous people” knowledge base with homonym example

“Michael Jackson.”

45

 2
9

The Google hit count estimates have been collected and assigned to the

appropriate instances of famous people while building the musician and basketball player

ontologies. Thus, this information is available before the user starts with her search.

However, this solution has several disadvantages. Hit counts are not stable. For example,

after the singer Michael Jackson’s untimely death, the number of hits greatly increased.

Thus the previously mentioned ontology-size-based criterion would be preferable.

A Protégé ontology was built, using the Protégé API, by extracting the mined data

from the temporary database. One of the problems encountered in this process was the

uniqueness requirement of Protégé. Thus, the city “Washington” and the state

“Washington” could not both be represented by the same atom, and we had to append

qualifiers to distinguish between them, in this case by appending the letters “DC” to the

city.

To make this work available to the ontology community, the musician ontology

(see Figure 3.2) has been submitted to Ontology Design Patterns (ODP) as an exemplary

ontology: http://ontologydesignpatterns.org/wiki/Ontology:Musician_Ontology.

4
6

Figure 3.2 Instance example of the musician ontology in Protégé.

47

4
6

One shortcoming of the OSWS System was the limited scope of knowledge stored

in its ontology. By focusing only on American musicians, basketball players, American

football players, and a few selected others the ontology was of limited practical use.

Additionally, the types of information stored in the ontology were generally not helpful

for an end-user. Many instances in the ontology were limited to information about their

dates of birth, given names, and locations where they were born. While most instances

also included information on musical genre(s) or athletic league, respectively, users

would prefer a wider variety of class-specific information, such as current sports team,

released albums, movies starred in, etc.

The remaining of this chapter describes work on a principled method for building

an extended ontology of famous people. The new ontology covers over 3,200 famous

persons including artists, athletes, politicians, scientists, and others (see Section 3.3).

Moreover, the OSWS ontology is dynamically expanded during use (see Section 3.4).

3.3 Building the New “Famous People” Ontology from Search Engine Knowledge

and DBpedia

One issue in this part of work was how to determine a selection of famous people, as the

ideas of who is famous might. There not be representative was not even a preconception

of how many people should be considered famous.

Turning these questions to Google itself, about 3200 people were found that are

currently famous in the USA by selectively mining Google’s suggested completions. This

idea relies on utilizing the search engines’ public interface, since the public do not have

direct access to their query logs.

48

 2
9

To collect a wider range of information about these mined famous people, it is

necessary to switch to using the already-structured knowledge of DBpedia instead of the

mostly text-based Wikipedia. DBpedia is a knowledge base that stores structured data

extracted from Wikipedia, and is accessible on the Web [34]. The DBpedia knowledge

base currently describes more than 3.5 million entities, including 364,000 persons [16,

34]. DBpedia is considered one of the largest multi-domain ontologies to currently exist.

Compared to other hand-crafted ontologies, however, DBpedia is less formally structured.

Also, the data quality is lower and there are inconsistencies within DBpedia [63, 64].

Kalender et al. [35] have built an ontology by mapping the Wikipedia instances to

WordNet, however, without having any relationship or attribute information. We needed

to build an ontology with well-defined classifications and a sufficient amount of useful

relationship information to serve the purposes of the OSWS System.

This section presents an approach for extracting useful information about famous

people that were determined by mining Google. The information about them is extracted

from DBpedia, organizing it as well structured data, and storing it in the ontology of

famous people used in the OSWS System. The DBpedia SPARQL interface [65] was

used throughout this research, which is publicly available, in addition to the Google

Autocomplete SOAP API [66].

3.3.1 Focuses on the New Ontology for Famous People

The OSWS System was designed to provide disambiguated search suggestions; therefore

its ontology must contain data useful for such a purpose. The first issue in this research

was how to best expand the domain of the OSWS ontology. After exploring the option of

49

 2
9

mining Wikipedia data, as in the previous research, instead it was chosen to use the

already well-structured data of DBpedia. However, it was found that the DBpedia

ontology could not be used “out of the box.” There were many types of relationships not

relevant to the purposes of the OSWS ontology, redundant relationships (multiple “artist

of” relationship types), frequent data errors, as well as inconsistent representations of

information (what is an attribute, as opposed to a relationship). To integrate knowledge

from DBpedia into the OSWS System subsets of information have to be extracted from

their ontology that are compatible for use within the system.

While planning the ontology, three key focus areas of research were identified.

The first area was domain coverage; previously the OSWS ontology focused only on

American musicians and sports stars (mostly basketball players). This small domain of

people is not sufficient for a real-world application, so the goal was defined to expand the

ontology and cover as many famous people as possible. However, this required an

objective method to determine who should be considered famous in the first place. The

second key area was assuring that we store up-to-date, relevant information in the OSWS

ontology. It was decided to design a dynamically expanding system that will identify

what users of the OSWS System are searching for and, whenever possible, the ontology

will be expanded to include those people automatically.

The third focus area was determining DBpedia relationships between classes that

are best for use in the OSWS ontology. Due to the nature and purpose of the ontology, it

was decided to mainly incorporate relationships from people classes to other relevant

target classes, such as movies starred in, songs produced, sports teams played on, etc.

This gives a fine granularity for describing people but also provides useful classifications

50

 2
9

for other classes they are related to. To develop the OSWS ontology the Google search

engine was mined to identify a small subset of famous people, also using government

census data [67] available to the public.

3.3.2 Who is Famous Today?

Here raises the question of who to include in the ontology. Who is famous today? It

turned out that Google knows this well, possibly better and certainly more dynamically

than other available sources of knowledge. It was hypothesized that famous people are

characterized by other people asking questions about them. Thus, it was necessary to find

out who those famous people are, even though the public has no access to the Google

query logs. However, Google’s query logs appear to inform its suggested completions,

which helped to develop the following process for mining “famous people” from

Google’s search suggestions.

Using publicly available US census data [67], the top 1,000 male and female first

names (the most common first names in the US) were extracted from the year 2,000

census data. These names were passed to Google, one by one, and the Google responses

were recorded by the program. For example, the mining program passed the first name

Robert to Google and then extracted the last names Frost, Pattinson, DeNiro, Half and

Downey Jr. as people that Google knows are famous right now (Figure 3.3). The returned

results were collected and looked for the ones of the form “n1 n2 n3,” where n1 is the

person’s first name, n2 is the optional middle initial, and n3 is the last name. The last

names were checked against the 5,000 most common last names from the US census

51

 2
9

database [67]. With this method, 5,286 potentially famous people were mined from

Google.

Figure 3.3 Google suggestions for search term “Robert.”

It is designated that these people as members of the “A-List,” as they are the

search suggestions returned by entering only a first name. This process was repeated with

“n1 l1” style queries, where n1 is a first name from the census data and l1 is a letter from

the alphabet. This type of query further refines the suggestions by potentially including a

specific middle initial or the start of a last name. The results from this set of queries were

named the B-List, which comprised of 132,896 candidates. Finally, the program queried

the search engine with a series of inputs of the format “n1 l1 l2,” where l1 and l2 are

letters in the alphabet, and mined the returned names, storing them as the C-List,

composed of nearly a million potentially famous people.

As many properly formatted suggestions were clearly not referring to people (for

example, Sterling Silver, Joseph A. Banks, John J. College), it was mandatory to identify

which names correlated to an actual person. For this purpose, the program passed the

5,286 names in the A-List to DBpedia to determine for each name whether it refers to one

or several people. The program analyzed the type and Wikipedia subject data stored

within DBpedia to make this determination. For example, if a given DBpedia page

contained the type “ontology:person” or “yago:person,” the program considered this a

52

 2
9

valid person. Similarly, if the name belonged to the Wikipedia category “Living people”

or belonged to Wikipedia categories that end in “Births” or “Deaths,” i.e., “1986_births,”

it considered the name to be that of a real person. Using this method, 3,241 famous

people were identified among the names in the A-List.

3.3.3 Classification of the Famous People

3.3.3.1 DBpedia Ontology. The OSWS ontology was based on the person hierarchy

within the DBpedia ontology. The DBpedia ontology is built from data stored on

Wikipedia pages. It forms a shallow subsumption hierarchy [63]. Specifically, the

DBpedia designers use the “Infoboxes” which are included on many Wikipedia pages.

Infoboxes are tables of attribute-value pairs that are located on the top right-hand side of

these Wikipedia pages [63]. These boxes have specific types associated with them, such

as “Actor infobox” or “MusicalArtist infobox.” DBpedia’s ontology is built using these

infobox types as class names, and a page with a specific type of infobox is assigned that

type. For example, Tom Hanks has an Actor infobox, and he is an instance of the class

“Actor” in the DBpedia ontology. This structure (shown in Figure 3.4) appeared adequate

for providing the appropriate granularity for use within the OSWS ontology. Protégé was

used as the ontology editing tool.

53

 2
9

Figure 3.4 Partial “Person” hierarchy in the DBpedia ontology, in Protégé.

The ontology was built by extracting the complete “Person” hierarchy from the

DBpedia ontology, and manually adding several other non-person hierarchies. The non-

person classes were selected based on the necessity of using them as targets for

relationships emanating from the person classes. Once the names of the A-List had been

extracted and correlated with real people, instances corresponding to them were inserted

into the OSWS ontology.

One major issue when using the DBpedia ontology, however, was that within the

A-List hundreds of people were found to exist in Wikipedia who did not have DBpedia

54

 2
9

ontology classes associated. A number of ways were developed to augment the DBpedia

ontology and to expand the domain coverage. Each correlated name in the A-List was

mapped to a class within the hierarchy. While the DBpedia ontology contains over

360,000 categorized people, and continues to expand, there was still a significant number

missing, amounting to approximately 520 (17%). Occasionally the DBpedia class was

very general and thus uninformative, such as “person.” In such cases more specific

classes were provided for these concepts.

3.3.3.2 Mapping from YAGO to DBpedia Ontology. YAGO (Yet Another Great

Ontology) is an ontology built from Wikipedia leaf categories being mapped to WordNet

[68] synsets (“synonym sets”) [69]. Because of the way the YAGO ontology was built,

instances often belong to many classes. Ontology mapping is becoming increasingly

important in the Semantic Web community [70]. The DBpedia ontology provides such

mappings to YAGO, and other ontologies. First the DBpedia ontology types and YAGO

“rdf:types” were collected for all pages correlated to a name in the A-List.

The YAGO types found in this way were often far too specific for mapping (e.g.,

“AmericanDanceMusicians”). Types that are too specific defeat the purpose of a

classification, as they are unlikely to occur in a Web search and likely to have very few

instances. Thus, it was needed to go to their broader types (“Musician” in this case),

which provided a more useful class name. With programmed string matching, it was

possible to match about 40 YAGO classes to DBpedia classes.

Additionally, the study used the approximately 450 pages which existed in both

DBpedia and YAGO to perform a statistical analysis and map YAGO classes to DBpedia

55

 2
9

classes. For example, if a certain percentage of pages with the DBpedia ontology type

“MusicalArtist” had the YAGO types “Singer” or “Soprano,” both of them would be

mapped to the DBpedia class “MusicalArtist.” Finally, a small number of the YAGO

classes were sorted through by hand and mapped to DBpedia classes. In total there were

85 of the most commonly found YAGO classes mapped to DBpedia classes. A sample of

YAGO types to DBpedia ontology mappings can be seen in Table 3.1. Most mappings

are either identical (Actor to Actor) or consist of more specific YAGO types mapped to

less specific DBpedia types. The future work involves augmenting the person hierarchy

with the YAGO types which appeared most frequently, in order to provide more specific

classifications for people.

Table 3.1 A Sample of YAGO to DBpedia Ontology Mappings

YAGO Class Name DBpedia Ontology Mapping

Actor Actor

Anthropologist Scientist

Biologist Scientist

Biographer Writer

Blogger Writer

Drummer MusicalArtist

Guitarist MusicalArtist

Admiral MilitaryPerson

Marine MilitaryPerson

Singer MusicalArtist

56

 2
9

For each page with a set of YAGO classes, the more general YAGO classes were

determined. Using the mappings, the DBpedia class was found for each YAGO class on

the page. Then the occurrences of each DBpedia class were counted and the one with the

maximum number of occurrences was selected as the correct mapping class. For example,

the YAGO ontology classes for Kurt Cobain are “American Diarists,” “Grunge

Musicians,” “Musicians From Washington (U.S.State),” “American Musicians Of Irish

Descent,” and “People From Olympia, Washington,” among others. The more general

classes are “Diarist,” “Musician,” “Musician,” “Musician,” and “Person,” respectively.

Our mapping system maps “Diarist” to “Writer,” “Musician” to “MusicalArtist,” and

“Person” to “Person” in the DBpedia ontology. In the above example, Kurt Cobain has

one mapping to the class “Writer,” three to the class “MusicalArtist,” and one to

“Person.” The program chose the most common mapping, in this case “MusicalArtist,”

and assigned the instance, in this case Kurt Cobain, to that class.

Using instances in the A-List that have both YAGO and DBpedia ontology types,

this method resulted in the same classification for 268 out of 401 (67%) instances.

Additionally, this mapping system determined a more specific class for 47 people (12%)

who were classified as “Person” in the DBpedia ontology. Many other mappings were

less specific than the DBpedia ontology type given (such as being mapped to “Athlete”

instead of “Wrestler”), but still usable.

3.3.3.3 Mapping from Disambiguation Tags to DBpedia Ontology. A large

number of pages not categorized by the DBpedia ontology were homonyms of more

famous people with the same name, such as Michael Jackson the anthropologist, who is

57

 2
9

classified as a “thing” in the DBpedia ontology. As homonyms are a common occurrence

in their data, Wikipedia handles homonyms by adding a “disambiguation tag” to the end

of a page name. For example, there are a number of Michael Jordan’s in Wikipedia. One

Michael Jordan, the famous basketball player, has a page name of “Michael_Jordan.”

Other Michael Jordans have page names such as “Michael_Jordan_(footballer)” and

“Michael_Jordan (Irish_politician),” a soccer player and a politician respectively.

The information between the parentheses was utilized to construct a set of

mappings from disambiguation tags to DBpedia classes. It was possible to map 50 of the

most commonly occurring tags. Many disambiguation tags are in the form of

[type]_born_[year] (for example “Footballer_born_1984”) or [nationality]_[type] (for

example “American_singer”). By matching the type to a mapped tag, it was possible to

correctly categorize many pages based on their disambiguation tags. Out of 233 people in

the A-List who had no DBpedia class and a disambiguation tag, 118 people (51%) were

mapped into the Ontology using the 50 most common tags. By adding more mappings it

was possible increase this to close to 100%.

3.3.3.4 Mapping from Wikipedia Abstracts to DBpedia Ontology. Whenever a

person’s type could not be identified using any of the previously discussed methods, the

following approach was used. A Wikipedia abstract is the paragraph that appears at the

top of a Wikipedia page. Many of the abstracts of person pages start in the form of

“someone is/was something,” which introduces the occupation of the person. For

example, basketball player Michael Jordan has his Wikipedia page introduction starting

with “Michael Jeffrey Jordan is a former American professional basketball player.”

58

 2
9

After analyzing the abstract of a page and extracting the occupation information,

the occupation was checked against the list of class names. Whenever there was a match

between the occupation and a class, the person was assigned to that class. In the example

above, Michael Jeffrey Jordan was determined to be a basketball player by finding

basketball player in the abstract and matching it to the “BasketballPlayer” class in the

ontology. Many abstracts have a list of occupations separated by commas or “and.” For

example, Martin Scorsese’s occupations are “American film director, screenwriter,

producer, actor, and film historian.” This research only considered the first class that the

program was able to match.

Using the described method, 248 new instances out of 473 previously unidentified

people were added into the ontology. In a random sample of 50 of these instances, their

disambiguation tags were manually compared with the mapped DBpedia classes. It was

found that 44 (88%) of the instances were matched correctly. All errors in this sample set

were due to the way we check occupations against classes. For example, “Martial Artist”

was matched to the class “Artist,” and “Personality” was matched to the class “Person.”

Using a more advanced method of string matching or natural language processing would

greatly increase not only accuracy, but also coverage of this method. Future work

involves implementing these improved methods of string matching in future iterations of

the OSWS project.

3.3.3.5 Choosing the Best Classification. To summarize the above four methods for

classifying famous people in DBpedia, the classification of a famous person was choose

as follows. For each name in the A-List, the program retrieved the DBpedia ontology

59

 2
9

class, YAGO classes, disambiguation tag, and abstract, whenever each existed. While

mapping, equal weight was given to the DBpedia class, the mappings from YAGO, and

the disambiguation tag. In the event that there are multiple possible mappings, the class

that is lowest in the hierarchy (the most specific class) was chosen and the instance was

assign to that class. In the event that no DBpedia class, YAGO class and disambiguation

tag exist for a person, the abstract was used to classify the person.

It was not possible to do an exhaustive audit of DBpedia and YAGO as part of

this project. Thus, certain of their problems might have propagated into the ontology. For

example, many athletes are associated with a college and the college is given only as a

state name instead of the full college name (e.g., “Colorado” instead of “Colorado State

University”). This study attempted to handle as many of these special cases as possible,

but it is noticed that problems from DBpedia were being propagated into the ontology.

Presently this study does not include any automatic quality control mechanisms to deal

with this problem. The whole process of building the OSWS System involved manual

and semi-automated testing and checks of portions of the ontology. In the future, it is

possible to develop automatic quality-control mechanisms for future versions of the

system.

3.3.4 Structuring the Relationships and the Attributes

DBpedia contains a rich set of relationships within their ontology, however for search

suggestions many of them are not helpful for end-users. Additionally, information is

often not organized well enough for use in search suggestions. The study used the

60

 2
9

existing relationship data derived from DBpedia for the ontology, but it had to be

restructured for use in the OSWS search suggestions.

3.3.4.1 Identifying Possible Relationships and Attributes After assigning each

of over 3241 people within the A-List to an appropriate class, the study proceeded to

query DBpedia for the types of relationships each instance possessed. It calculated how

often each relationship or attribute appeared, relative to its class. This is shown in

Formula (3.1), where Nr stands for the total number of people in a given class with a

particular relationship, while N is the total number of people belonging to the class.

Relationships and attributes that appear most often were more likely to be useful in the

ontology. Thus a threshold p was defined as a criterion for selecting useful relationships.

N

Nr
> p (3.1)

In practice, 50% appeared to be a good value for p. Common relationships that

were not useful for search results were manually excluded, such as “subject” (Wikipedia

category), “label,” and others. Finally, a manual review of the remaining 213

relationships and attributes was performed to make sure they made sense for their

assigned classes.

3.3.4.2 Organizing the Relationships and Attributes One problem with DBpedia’s

data is that there are often redundant relationships, for example Actors that have the

relationships “dbprop:starring” and “dbpedia-owl:starring,” which were treated as having

the same meaning.

61

 2
9

A second issue is that some relationships in DBpedia are lacking in granularity or

have multiple meanings. For example, the relationship “writer” can mean writer of a

book, movie, song, or television show. The context of a relationship often depends on the

class of the source. To distinguish between these semi-ambiguous relationships, many

DBpedia relationships were split into two or more relationships in the OSWS ontology.

This was done by analyzing the parent classes of the targets that a relationship points to.

When a large number of targets are of a few different classes (for example, if 30% of the

targets for the “writer” relationship are movies and 40% of the targets are television

shows) this relationship was selected as a candidate for splitting. In total the research split

up the five relationships that had the most variety of targets with close distributions. They

are the relationships “starring,” “writer,” “produced,” “genre,” and “musical artist of.”

These five relationships were split into 15 disambiguated relationships. One example is

the “starring” relationship, which links a person to a movie or television show. It was

replaced with the “stars in television show” and “stars in film” relationships and one or

the other was used depending on the type of the target in DBpedia.

For each relationship that was introduced into the ontology, the type of the target

was identified in DBpedia in two ways. One way was to retrieve the parent class of the

target in the DBpedia ontology, the other was to identify the corresponding Wikipedia

subject categories. For example, if DBpedia contains “Forest Gump starring Tom

Hanks,” while adding this relationship to the ontology, the program determines that

Forest Gump is assigned the DBpedia class “Film.” Knowing that Forest Gump is a film,

the relationship “Tom Hanks stars in film Forest Gump” was introduced into the ontology.

62

 2
9

The subject and object were switched in many relationships that exist in DBpedia,

which corresponds to using the inverse relationship. It is common in DBpedia to see

relationships for actors and musicians in the form of [Movie] starring [Actor] or [Song]

performed by [Musician]. For example, the actor Tom Hanks is the target of the

relationship “Forrest Gump starring Tom Hanks.” Since the ontology is person-focused,

these relationships were reversed to make the person the subject of the relationship. Thus,

in the ontology the relationships would be [Actor] stars in [Movie] and [Musician]

performs song [Song]. As for the above example, the relationship “Forrest Gump starring

Tom Hanks” was changed to “Tom Hanks stars in Forrest Gump.”

In the above process, the design choice was made to promote certain DBpedia

attributes to full relationships, such as the instruments played by a musician and the

comedic genres for comedians. By promoting these attributes to relationships to other

classes it was possible to more explicitly show a linking of instances, such as two

musicians playing the same instrument(s). There are cases where attributes are

represented as a comma separated list of terms in DBpedia. For example, if one musician

plays piano and keyboard, his or her instrument attributes would be listed as “piano,

keyboard.” In the described cases the attribute was broken apart at the commas and make

each resulting token its own instance.

For non-interpersonal relationships (where the source is a person but the target is

not) the targets were organized in a shallow hierarchy based on DBpedia’s ontology. All

unnecessary classes were removed in the DBpedia ontology (those that are not targets of

any relationships) and the ontology was augmented with a number of new classes.

63

 2
9

For interpersonal relationships a problem that had to be addressed was how to

handle targets that did not exist in the OSWS ontology. Recursively loading all

information for each target would rapidly cover a large percentage of DBpedia, filling up

the ontology with knowledge irrelevant to the task at hand. This would also run counter

to the idea of only storing famous people in the ontology. A person related to a famous

person is not automatically famous, although she might be famous in her own right, e.g.,

as is the case for Bill and Hillary Clinton.

The solution to this problem was the introduction of “stub” instances for such

persons. Like other target instances in the ontology, stubs consist of only a name and an

assigned class. This prevents the recursion problem while still including those instances

within the ontology. If a stub is later determined to represent a famous person, it will be

promoted to a full instance and relationship data for it will be loaded into the ontology.

Stubs only containing this minimum of information are not returned as search suggestions

by the OSWS System.

3.3.5 Building the Ontology of Famous People

The Protégé Java API was utilized to build the ontology programmatically. First the class

hierarchy was built and the required relationships were determined. Then, for each name

in the A-List, its parent class was identified and the corresponding instance was inserted.

For each instance included, the program queried DBpedia for the necessary relationship

and attribute information. For each valid relationship, the target was added as a “stub”

instance if it did not yet exist. This resulted in an ontology consisting of 3,241 people

instances and over 60,000 relationships emanating from them.

64

 2
9

Figure 3.5 Flow of building the famous people ontology.

Finally, this greatly improved ontology was reintegrated into the OSWS front end.

The OSWS System includes a number of user friendly features, such as displaying longer

versions of relationship and class names (see Section 3.5), class-specific relationships

being displayed first, and the ability to filter by class name [6, 51]. The work flow of

building the famous people ontology is illustrated in Figure 3.5.

65

 2
9

3.4 Dynamically Expanding the Ontology of Famous People

There are two general approaches to ontology development, (with a few exceptions):

automatically generated, covering a large domain, or hand crafted, covering a relatively

small domain. This is due to the great difficulty of building an ontology by hand. Both of

these approaches have disadvantages. Ontologies like DBpedia and YAGO fall into the

former. Information stored in these ontologies is generally less well organized and often

not reliable when compared to smaller, hand crafted ontologies. On the other hand,

handcrafted ontologies are often too small to be practical.

While the A-List ontology covered about 3,200 of the most famous people

according to Google (as queried in the Northeast of the USA), it is obvious that users’

search interests change on a regular basis. Who is popular and who is not often changes

overnight. Keeping an ontology of famous people up-to-date would require significant

time and effort if done by hand. To address this difficult issue, the system combines

features of automatically generated ontologies and of handcrafted ontologies. For this a

system has been developed that automatically keeps the ontology instances up-to-date.

Using the A-List as a “training set,” an expansion system was developed to

dynamically expand the OSWS ontology based on user searches performed with the

OSWS interface (Figure 3.6). By plugging the various programs developed for building

the A-List ontology into the OSWS front end, a way was devised to expand the ontology

with no input from the developers and minimal input of the end-users.

The expansion system works by analyzing user search queries and then including

people who are commonly searched for into the ontology. While the expansion system

could be used to extract information on the over 360,000 people covered in the DBpedia

66

 2
9

ontology, in addition to other people not covered by the DBpedia ontology, this much

knowledge would overwhelm both the users and the system itself. It is in the nature of

being famous that relatively few people are famous at the same time. Furthermore, it is

not practical to have potentially hundreds of possible search suggestions for each entered

query. Instead, it was decided to focus on providing suggestions only for people who the

users consider worthy searching for. If the users of the OSWS System were to query for

all of the people within the DBpedia ontology, the coverage of the OSWS System

ontology would eventually converge with DBpedia.

When a user enters a name or a certain-sized fragment of it into the OSWS

System, it is processed in two parallel threads. In the expansion thread, it passes the query

on to Google and retrieves the Google suggested search queries via its SOAP API. The

expansion system then checks Google’s suggested completions for valid names, using

census data for common names, as described in Section 3.3.2. It then queries DBpedia

and determines whether any of the possible names correlate to an actual person. If a name

correlates to a person then the program determines whether s/he already exists in the

ontology. If this is not the case, the program attempts to determine the correct class and

creates a new instance of it in the ontology.

If the instance exists in the ontology, but only as a stub, it is promoted to a full

instance and then treated in the same way as a new instance. Using the relationships

identified previously, DBpedia is queried for applicable relationships and targets. If a

given target does not exist in the ontology, a new instance for the target is created before

including the relationship. Once the instance has been fully created within the ontology, it

is added to the list of valid suggestions and returned to the user, along with any other

67

 2
9

previously existing instances that may qualify as search suggestions. The expansion

system ensures that OSWS remains up-to-date with search suggestions, and the domain

of the ontology expands with no input from the developers.

Figure 3.6 Flow of the expansion system.

The process of dynamically expanding the ontology of famous people is

diagramed in Figure 3.6. One question that might arise is what value is added by OSWS

as opposed to using Google itself. Once information has been extracted from Google into

OSWS, the user sees the OSWS search suggestions, as always, distinguished according to

homonyms. This service is not provided by Google.

68

 2
9

To maintain a reasonably fast response time, the expansion system runs as a

background task. There are a number of problems inherent in the described expansion

approach. The process of creating new instances dynamically is relatively slow. Also, a

single user querying for a person might be looking for his uncle, not a famous person.

Thus, it might be recommended only to add a person to the ontology who has been the

topic of several queries. Lastly, a person that became famous overnight will not have a

DBpedia page yet. Additionally, as there is no interaction with the developers when using

the expansion system, the reliability of data obtained dynamically is likely to be lower

than the quality of the initially built-in knowledge, which has gone through a partial

review by the developers. However, all the dynamically added knowledge is logged by

OSWS and may be reviewed by the ontology developers after the fact.

An evaluation experiment of the ontology expansion system was performed.

Three independent users were selected to perform in total 100 Web searches for famous

people using the OSWS System. Among the 100 input queries, 34 of them already

existed in the ontology, thus, their suggested completions were retrieved immediately

from the ontology. Another 59 taken from the user queries, did not exist in the ontology

and were automatically added.

The remaining seven people had associated Google suggestions but were not

found in DBpedia. However, in all seven cases a correct individual existed in DBpedia.

In some cases the problem was due to the use of non-ASCII characters. For example, the

Spanish name José Luis Rodríguez Zapatero was not matched due to the letter “e” with

an accent on top of it. The most common error was not handling “redirects” in DBpedia.

For example, Franklin Roosevelt was not found in DBpedia, because he was stored as

69

 2
9

Franklin D. Roosevelt. However, there is a DBpedia resource named Franklin Roosevelt

which redirects to Franklin D. Roosevelt. DBpedia uses this redirect system to handle

variations in names. Future work may include using Unicode characters and handling

redirecting pages, to better accommodate name variations and various forms of a name.

3.5 Dynamic Ontology-Supported Web Search (D-OSWS)

The D-OSWS (dynamic) search suggestion mechanism remains largely unchanged from

the OSWS System. The user is still presented with up to 12 search suggestions comprised

of at most four person instances [6, 51]. One change is that instead of using hit counts to

determine the display sequence of the homonyms, now the total number of relationships

emanating from a given instance was used. The assumption is that the more relationships

an instance has, the more popular the person is, since there is more information about this

person.

A second change to how search suggestions are generated is based on the lack of

certain relationship information from an instance. If a relationship is within a class’s

domain, but a given instance does not have any target for it, the OSWS System provides a

search suggestion in the form of

[Instance Name] [Relationship Name].

For example, the system displays the suggestion “Kurt Cobain song,” even though

there is no song information for Kurt Cobain stored in the ontology (as there is no song

information in DBpedia for Kurt Cobain). This search suggestion still might improve the

search results, as the relationship name itself is likely to exist in relevant Web pages. This

method is only applied to class-specific relationships, to avoid using relationships with

70

 2
9

low discriminative power that apply to all people. Another potential issue is using a

relationship such as “Died in,” being suggested for a famous person who is still alive.

Search suggestions are now displayed with more user-friendly versions of the

relationship names than stored in the ontology. For example, a relationship in the

ontology is named “starsInFilm” but the user sees “stars in film.” The same method is

also used for class names. This more verbose form of search suggestions distances the

end-user from the underlying structure of the ontology and provides information he or

she is more likely to understand.

71

CHAPTER 4

ENHANCING THE FAMOUS PEOPLE ONTOLOGY

BY MINING A SOCIAL NETWORK

4.1 Introduction

As described in Chapter 3, an ontology of famous people was built for the OSWS System

by retrieving the Google search suggestions and extracting information from DBpedia.

Google search suggestions were mined to generate lists of famous people and checked

them against DBpedia. If a famous person in the lists exists in DBpedia, his or her

DBpedia profile was analyzed and useful information about this person was saved in the

OSWS ontology. DBpedia is a huge public resource to serve the purpose of ontology

building. However, it is found that many names in the lists do not exist in DBpedia. For

example, among the 5,286 names in the A-List, only 3,241 of them were identified in

DBpedia.

Besides DBpedia, Facebook [50] was used as a secondary resource to mine

information about the famous people who are not included in DBpedia. One of the

features of interest in Facebook is the ability to create public pages. Public pages are for

organizations, businesses and celebrities to broadcast information about them in an

official, public manner [71]. Different from common users, a Facebook public page can

be “followed” and “liked” by its fans. Statistics show that “celebrities” is one of the most

popular categories among pages with more than one million fans. More and more famous

people are using Facebook pages as a marketing tool. They fill out their profile and

regularly post new updates on their Facebook pages.

72

The focus of this part of study was on mining the Facebook celebrity pages in

order to increase the size of the OSWS ontology.

4.2 Extending the Famous People Ontology using Facebook

Every page in Facebook has a unique ID. For example, the official page for Barack

Obama has the ID 19292868552. One can access the attributes of a page by invoking the

Facebook Graph API [72] with the page ID. Thus, as long as the ID of a Facebook page

is known, all public information about this page can be retrieved, including attributes like

“id,” “name,” “picture,” “website,” “birthday,” “description,” etc. Among all the

attributes of a Facebook person page, the most important ones to serve the OSWS

ontology are “category” and “likes.”

Each Facebook page is associated with exactly one category. All Facebook person

pages are under the broad category “person.” When creating a Facebook person page,

there are 24 subcategories that can be selected. These include categories such as

“musician/band,” “politician,” “athlete,” “public figure” etc. For example, Barack

Obama’s Facebook page has the category “politician.” The category information is very

useful to classify famous people and to store this information in the ontology. Figure 4.1

shows some of the Facebook person categories.

73

 2
9

Figure 4.1 Partial of the Facebook person categories.

 “Likes” is another useful attribute, which returns the number of users who like

this page. In other words, the “likes” attribute represents the number of fans and the

popularity of one celebrity. For example, Michael Jackson is the most popular entity on

Facebook with more than 14 million fans [73]. Numerous applications have been built to

tracking the numbers of “likes” of Facebook pates in order to analyze market trends [74].

4.2.1 Classification of Famous People

It is possible to search over all public objects in the social graph of Facebook. For

example, the following search returns the top 50 results of the Facebook pages having

“Michael Jackson” in their name:

https://graph.facebook.com/search?q=michael%20jackson&type=page&limit=50.

74

 2
9

The attribute-value pair “type=page” expresses the fact that it is intended to search only

the public pages. Each returned result contains the name, ID, and category of the page

(see Figure 4.2). The first result is in most cases the official Facebook page of the queried

famous person.

Figure 4.2 Top five results of Facebook pages for query “Michael Jackson.”

Studies began with the 2,564 names in the A-List that could not be found in

DBpedia, which was named the “reduced-A-List.” Considering the possibility that the

first returned result may not be the official Facebook page when searching for a name, the

top 10 returned pages of each search were retrieved. Facebook Graph API calls were

made to extract detailed information about those pages. The one with the maximum

75

 2
9

number of “likes” was chosen as the selected page, as it was assumed that most of the

Facebook users tend to go to the official Facebook pages for updates. Thus, the higher the

number of “likes” of a page is, the more authoritative it may be. For example, there are

two Facebook pages titled “John Lennon.” One page has 4,795,634 “likes,” while the

other has only 1,189 fans. Obviously, the first page is more authoritative and more likely

to be the official Facebook page of John Lennon.

 Passing the 2,564 names in the “reduced-A-List” to Facebook, 1,894 of them

were found to have a Facebook page. By analyzing the categories of these pages, 954

among them were found to be classified as persons. Looking at the results, it is shown

that some pages were categorized as person, however, had very few fans. It was

necessary to define a threshold of the number of fans to determine which people are

important enough to be considered famous, or which page(s) of a celebrity is (are)

popular enough so that this person is stored in the ontology.

On average, a Facebook Page has 4,596 fans [73]. Records show that 4% of pages

have more than 10,000 fans (for example, as of writing, 32,253 people have liked Cristina

Aguilera’s Facebook page), 0.76% of pages have more than 100,000 fans (for example,

singer Paul Simon has more than 180,000 fans on his Facebook page), and 0.05% of

pages have more than a million fans (for example, Michael Jackson’s Facebook page)

[73]. The median page has 218 fans, meaning that 50% of the pages have fewer than 218

fans (for example, as of writing, New York’s local singer Kayla Bliss has 181 fans on her

Facebook page.) [73]. In this study, 300 as a minimum number of “likes” was determined

for a Facebook page to be selected for analyzing and storing its namesake in the OSWS

76

 2
9

ontology. Among the classified people in the “reduced-A-List,” 588 of them have over

300 “likes” and were kept for further data extraction.

4.2.2 Extracting Attributes from Facebook Pages

There are some common attributes of Facebook pages, such as “name,” “id,” “picture,”

“likes,” etc. Also, pages may contain other or additional category-specific attributes [75].

For example, pages of the “musician/band” category may have additional attributes like

“album,” “genre,” “record_label,” etc.

There are more than 30 different kinds of attributes among the 588 selected

people in the “reduced-A-List.” However, many of the attributes are of no use to serve

the purpose of providing search suggestions. Examples include the attribute “id,” the

page’s Facebook ID, the attribute “username,” the page’s Facebook username, the

attribute “link,” the Facebook link to the page, the attribute “picture,” the link to the

profile picture of the page, and many other attributes. Those fields are generally

Facebook-centric and do not help in suggested completions. Note that the attribute

“picture” may be useful in providing detailed information and disambiguating

homonymous people. However, the current research focuses only on text-based suggested

completions.

Moreover, many attributes are inconsistent and contain “bad” data. For example,

attributes such as “description,” “bio” and “personal_info” are supposed to hold valuable

information about famous people. Since Facebook pages can be created by any Facebook

user, however, values to those attributes are in many cases written in casual English,

77

 2
9

without a fixed format. Cleaning those attributes will involve a great deal of work with

Natural Language Processing tools, which is outside of the scope of this research.

Thus, considering the usefulness of the attributes and after manually checking the

quality and trustworthiness of the returned values to the attributes, the following person

attributes were chosen to keep in the OSWS ontology. They include attribute “name,”

“category,” “likes,” “birthday,” “location,” “current_location,” “hometown,” “affiliation”

for the category athlete, and “genre” and “record_label” for the category musician/band.

Most of the selected attributes need data cleaning and format fixing to fit the purpose of

increasing the size of the OSWS ontology. The remaining of this chapter explains the

process of cleaning and standardizing the values of those attributes.

In the experiment with the selected 588 people in the “reduced-A-List,” 234

people have slightly different names in their Facebook pages than in the list, but the

search returns them anyway. This problem mainly results from three sources, the use of

Unicode in names and the use of middle initials (recall that the name lists were built with

only first names and last names). Besides, some pages are titled with long names

containing the person’s nickname (for example, “X-Man Toney Freeman”) or additional

information about the person (for example, “Lynne Curtin of Real Housewife of Orange

County”).

To solve these problems, firstly the normalization was applied to all the names to

transform Unicode characters into equivalent text in English letters. For example,

“Penélope Cruz” was converted into “Penelope Cruz.” To remove the nicknames and

irrelevant information other than names, the names were trimmed so as to keep only the

first name, last name and text in between. Exceptions were made when the last names are

78

 2
9

followed by “jr,” (stands for junior) “sr” (stands for senior) and numbers such as “II” and

“III,” for example, “Marion Barber III.” If the last name is followed immediately by a

dash (“-”), both the dash and the word after it were kept, for example, “Kimberly

Williams-Paisley.” The text between the first name and the last name (if there is any) is

generally filled with the person’s middle name or middle initial. However, in some cases,

the page creator added the person’s nickname between the first name and the last name.

Examples include DeAndre “Touchdown” Brown, Nicole "Coco" Austin and Hector

“Macho” Camacho. It is noticed that the nicknames always appear inside parentheses.

Thus, all text between the first and last name and surrounded by parentheses was

removed. If none of the above solutions solves the mismatch problem, which occurred

only in rare situation, the original names from the “reduced-A-List” were kept.

The values of the attribute “birthday” are standardized in the format

“MM/DD/YYYY”, in which MM stands for the month with two digits, DD represents the

day with two digits, and YYYY is the year with four digits. In order to present better

suggestions, all birthday values were converted to be in the format “Month DD YYYY.”

“Month” stands for the full name of the month (for example, January, February, etc.),

while DD and YYYY are the same as in the original date.

The attributes “location” and “current_location” convey the same information: the

place where the famous person stays at. The value of the attribute “location” is stored in

an organized data set with various fields, such as “zip,” “street,” “city,” “state” and

“country.” To be consistent with the previous OSWS ontology (Chapter 3), only the city,

state (if within USA) and country were saved. The value of the attribute

“current_location,” on the other hand, does not have a standard style. A person living in

79

 2
9

Los Angeles, California may have the current_location “Los Angeles, CA” or “Los

Angeles, California, USA.” This does not cause a problem when serving as suggested

completion. However, a few cases appear to show irrelevant or even “wrong” information.

Common examples include data like “all over,” “in the world” and “home.” There are

two ways to solve this problem. One is to pass the returned location to a search engine,

such as Google. If one of the top (five) results shows a link from an official map site,

such as map.google.com, then the returned value is a valid location. This method works

fine for the “reduced-A-List,” but would cause delays when dealing with the much larger

B-List (recall the B-List in Section 3.3.2). In this study, yet another solution was used,

which is to filter the returned location with a list of stop words. Words such as “all over”

and “home,” typically do not appear in a valid location. Thus, a manual check of the

locations of the “reduced-A-List” was performed. Many elements of the reduced-A-list

did not contain any location. From the remaining members the stop words were extracted

and included in the stop word list. The values of the attribute “hometown” were cleaned

using the same method.

The attribute “category” is the most useful attribute for suggested completions in

order to disambiguate homonyms, yet cleaning it causes the most complications. As was

mentioned at the beginning of Section 4.2, there are 24 person categories in Facebook.

Most of the categories can be mapped directly to the previous OSWS ontology in Chapter

3. “Athlete” is one of the biggest categories in Facebook. In the DBpedia ontology

(Chapter 3), the class “athlete” is classified into 22 subcategories of athletes in different

sports, such as “BaseballPlayer,” “BasketballPlayer,” “Boxer,” etc. To serve the purpose

of providing suggestions for homonyms, it would help greatly if the Facebook “athlete”

80

 2
9

category is subdivided to provide more specific information. Thus, more detailed

information was extracted from the attributes “bio,” “description,” “personal_info” and

“affiliation,” if available. By analyzing the additional attributes and checking for matches

with the subcategories of athlete, it was possible to specify 51 people playing specific

sports among the 106 athletes found.

Facebook classifies actors and directors into one category: “actor/director.” To

determine if a famous person in this category is an actor/actress or a director, it was again

necessary to rely on the attribute “bio,” “description” and “personal_info.” If the word

“actor” or “actress” was found in those attributes, the person was classified as actor. If

“director” was found among the descriptions, the person was specified as a director. If the

person was mentioned as both an actor and a director, the occupation that first appears in

the description was used. In the last case, if none of the keywords was found, the person

was then classified as an actor since there are more actors than directors.

A similar case applies to the category “musician/band.” Since the ontology is

about famous people, focus is only on single musicians rather than bands. Once again,

there are considerably fewer bands than musicians in the results, because the queries

passed to Facebook were combinations of first names and last names. If any singular

pronoun was found, such as “he,” “she,” “his,” “her,” “I” and “my,” it is highly likely

that the queried name refers to a single musician. If none of the singular pronouns

appeared, but the word “band” was found in the description, it is then determined that the

information is about a band. Thus, it was removed from the results.

Another problematic category is “public figure.” Any famous person that cannot

be categorized as one of the other 23 person categories could be included in “public

81

 2
9

figure.” Among the 588 selected people in the “reduced-A-List,” 164 people are

classified as “public figure.” Category is considered the most important search suggestion

in the OSWS System, because it disambiguates homonyms by their occupations (recall

the example of the three famous Michael Jacksons in Section 2.2.2). However, having

“public figure” in the suggested continuation does not help much with the disambiguation.

Thus, it was necessary to extract “what the famous person does” and “who the famous

person is” from the other descriptive attributes, such as “bio,” “personal_info,”

“affiliation” and “description.”

During the study, it is found that some Facebook descriptions were copied from

various famous persons’ Wikipedia abstracts. Thus, using the same method as in Section

3.3.3.4, the person’s occupation was extracted by analyzing the Wikipedia abstract. Non-

Wikipedia descriptions were checked against a list of occupations generated in this

research. This list of occupations contains the other 23 person categories in Facebook,

class and subclass names in the DBpedia ontology, and their synonyms in WordNet [68].

The synonyms were retrieved using the Synonym API created by Abbreviations.com [76].

The Synonym API is based on REST (Representational State Transfer) calls which return

well-formatted XML results, providing synonyms based on the WordNet database. If

more than one matching occupation was found, the first one that appears in the

description was chosen. By using this method, it was possible to assign detailed

occupation information to 52 famous people with the “public figure” category.

Musician and athlete are two of the largest categories in both the DBpedia

ontology and among the Facebook person categories. For the category-specific attributes,

the attributes “affiliation” for athlete and “genre” and “record_label” for musician were

82

 2
9

kept. The attribute “affiliation” of athlete generally carries information of the team the

athlete is playing for. A list of stop words was built through manual checking, to remove

noise from the data. The attributes “record_label” and “genre” were processed with the

same filtering method. “Record_label” provides information about the company that

manages the musician. “Genre” describes the type of music the musician plays. If more

than one genre of music occurred, they were separated by various delimiters.

4.2.3 Mapping Facebook Attributes to the DBpedia Ontology

Section 4.2.2 described how the relevant Facebook attributes were selected and cleaned.

To integrate the Facebook data into the existing OSWS ontology, it is necessary to find a

way to effectively map the Facebook attributes to the DBpedia ontology. The study

started with mapping the Facebook person categories to the hierarchy of the DBpedia

ontology. It is found that more than half of the Facebook person categories could be

mapped directly or indirectly by string and synonym matching to classes in the DBpedia

ontology. Table 4.1 shows the mapping from Facebook categories to DBpedia ontology

classes.

As can be seen in Table 4.1, not all Facebook categories have exact matches in

the DBpedia hierarchy. A number of categories, such as “business person,” and “chef,”

“teacher”, are missing from the mapping. In order to fully integrate the Facebook

categories, the hierarchy of the DBpedia ontology was manually expanded by adding the

remaining Facebook categories. “Director,” “dancer” and “entertainer” were placed as

subclasses of “artist,” while “business person,” “chef,” “doctor,” “lawyer,” “news

personality,” “producer” and “teacher” were inserted as distinct classes under “person.”

83

 2
9

In total, ten new categories were added to the DBpedia ontology. A part of the newly

expanded person hierarchy in Protégé is shown in Figure 4.3.

Table 4.1 Facebook Person Categories to DBpedia Ontology Mapping

Facebook Person Category DBpedia Ontology Mapping

Actor Actor

Artist Artist

Athlete Athlete

Author Writer

Coach CollegeCoach

Comedian Comedian

Editor Writer

Fictional Character FictinalChracter

Government Official Governor

Journalist Journalist

Monarch Monarch

Musician MusicalArtist

Politician Politician

Public Figure Celebrity

Writer Writer

84

 2
9

Figure 4.3 Partial view of the expanded “Person” hierarchy in Protégé.

The other Facebook attributes were also mapped to the OSWS ontology, as seen

in Table 4.2. The third column in the table shows the type of property (data type or object)

when saved in the OSWS ontology. The attribute “name” and “birthday” were stored as

85

 2
9

data properties. The remaining attributes were mapped to the ontology as objects, thus, it

is necessary make sure that no repetition of objects exists in the ontology. An object

property was only added if it did not exist in the previous OSWS ontology.

Table 4.2 Facebook Attributes to “Famous People” Ontology Mapping

Facebook Attribute
“Famous People”

Ontology Mapping
Type of Property

name name datatype

birthday dateofBirth datatype

likes facebookLikes datatype

location currentPlace object

current_location currentPlace object

hometown placeofBirth object

affiliation playsForTeam object

genre musicalGenre object

record_label recordLabel object

The processing of the previous version of the “famous people” ontology used the

number of relationships and attributes to determine the popularity of a famous person.

The Facebook number of “likes” provides the same measurement, but at a different scale,

meaning the numbers cannot be combined. Thus, a separate new data type property

“facebookLikes” was created in the ontology to store this information. Similarly, another

new object property “currentPlace” was added to store the data of the Facebook attributes

86

 2
9

“location” and “current_location.” The Facebook attribute “affiliation” for athletes was

mapped to several properties in the “famous people” ontology, including

“playsForBasketballTeam,” “playsForBaseballTeam,” “playsForFootballTeam” and

“playsForSoccerTeam,” depending on the type of sports the athlete plays. If the kind of

sports the athlete plays was not specified, a new property “playforTeam” was created to

store the “affiliation” information.

In total, 584 additional famous people in the A-List were added to the OSWS

Ontology by mining Facebook, including 263 artists, 109 athletes, 109 celebrities and

many other famous people from the remaining categories. The distribution of the newly

added people is shown in a pie graph in Figure 4.4. Each colored area is marked with the

name of the category and the number of people that were found in this category.

This part of work was developed using the Facebook Graph API in Java.

Unfortunately, Facebook allows only a limited number of Graph API calls per minute.

Thus, a timer was set in the programs to send out one API call every two seconds.

8
7

Figure 4.4 Distribution of the newly added famous people to the OSWS Ontology.

88

CHAPTER 5

PREDICTING WEB SEARCH HIT COUNTS

5.1 Introduction

This chapter is done based on work published in [5] and [77]. As mentioned in Section

1.2.3, it was suggested to add additional terms automatically to the user search terms to

get reasonably sized result sets. The additional search terms are retrieved from the same

ontology used for disambiguation of homonyms (see Chapter 2). To avoid unacceptable

running times by trying too many combinations with additional search terms, the system

predicts the number of results returned and only runs searches with expected reasonable

result numbers.

Search engines do not guarantee exact numbers of page hits; the total count of

results is a rounded estimate of the actual number of results for the search request [78].

Google estimates are sometimes rounded to multiples of 10, 100, or even 1000 [79]. They

provide exact numbers of page hits only in cases where these numbers are relatively

small [78]. This rounding is probably done because computing exact predictions is

expensive if the index is distributed and continually changing, as is the case for large data

sets [78]. In Uyar’s investigation, compared to other search engines, Google provides the

most accurate estimates for document counting. It provides less than a 10% error in 78%

of queries for a single-term query experiment [24]. Yahoo provides very accurate

estimates for almost half of the queries, but it gives very inaccurate results for the rest

[24]. Bing (previously called Live Search) provides a smaller number of accurate

89

estimates than Google and Yahoo, but the degree of estimate inaccuracy is smaller

compared to Yahoo [24]. Bing (Live Search) gives reasonably accurate estimates of the

total number of matching URLs with high initial page count estimates (over 8000) [11].

Another potential problem is instability of hit count estimates. The indexes

themselves are too big to be stored on one machine and are spread across multiple ones

[80]. For availability and efficiency reasons, multiple copies of the same part of the index

are kept, which are not always synchronized, since the different copies are updated at

different times [78]. As a result, it is possible to connect to different physical machines

and get different results for the same query [78]. This is known as search engine

“dancing” [78,81]. Uyar has studied the consistency of search engine estimates by

observing the fluctuations in estimates over time [24]. Among the three search engines,

Google results have the least amount of fluctuations [24]. [82] [83]

It would be difficult to have a human experimenter send thousands of interactive

queries to Google (Google.com), thus we are using the Google Ajax Search API
2
 instead.

This API is the substitute for the previous Google API, after Google partially

discontinued supporting it [84]. The estimated hit count of a Google query can be

retrieved using the Google Ajax Search API. We are not aware of a study about the

accuracy of the hit count estimates of the Google Ajax Search API, but there are many

documents describing investigations of the “old” Google API. The Google API and the

standard interface Google.com (the one used by humans) vary in range, structure and

availability [85]. Because Google Standard performs searches in a much larger and

2 Unfortunately, the Google Ajax Search API has been deprecated since November 2010 [82]. It will continue to

work as per their deprecation policy, but the number of requests one may make per day will be limited [82]. The
Google Custom Search API [83] is the new substituted search API.

90

 2
9

different index than the Google API [85], the Google API gives much lower hit counts

than interactive queries. Kilgarriff reports that a substantial number of API results were

one-eighteenth as large as comparable interface results [86].

Google is not always computing estimates using the actual words specified in the

query [78]. Yet another problem of Google is that it often exhibits non-monotonic

behavior, i.e., adding more words in the search query may increase the number of hits

instead of decreasing it [87]. This study quantifies the monotonicity problems caused by

negative and positive search words (see Chapter 5). Yahoo and Bing have similar

problems [79].

5.2 Hit Count Prediction Model

The basic idea for predicting the number of search results is based on the assumption that

there is a measurable correlation between the frequency of a word in the English

language and the number of Web pages returned by the common search engines. Keller

& Lapata have demonstrated a high correlation between page hits and corpus bigram

frequencies [88]. Many experiments have been performed on obtaining the frequencies

for phrases using the search engine’s hit counts. Keller & Lapata used the Web to retrieve

frequencies for bigrams. Nakov & Hearst [78] studied the use of search engine page hits

as a proxy for n-gram frequencies. Yet, it is not known of research predicting the hit

count estimates based on word frequencies. Thus, if a mechanism can be found

expressing the correlation between hit count estimates and word frequencies, it can be

used to predict the hit count estimates of a search engine. A regression–model was used

for this purpose.

91

 2
9

The approach for deriving the regression-based prediction model is based on a

series of experiments that associate commonly used words, passed them as keywords to a

search engine. The correlation analysis was performed between the frequency of the

search words and the hit count estimates returned from the search engine(s).

For this purpose the 5000 most frequent English words were chose from the

Brown Corpus [89].
3
 Stop words [90], bigrams and contractions, such as I’d were

removed, leaving 4632 words. The study sampled the most frequent English words,

because the public does not have access to the frequency distribution of the whole BNC.

The program queried the BNC to determine the frequencies of the words from the Brown

Corpus.
4
 Automated hit count extraction programs was developed to send the query and

extract hit count estimates from search results, using the Google Ajax API, Yahoo! API

and Bing API. The decision to use the most common words was made because the

observed frequencies decrease dramatically for infrequent words, even when using a

large corpus.

5.2.1 Correlations between Term Frequencies and Page Hit Counts

To derive the prediction model for one-word search terms, the hit count estimates were

extracted for many one-word search terms of different frequencies. The hit count

extraction program was used to send one search term at a time as input to the Google

Ajax API, Yahoo! API and Bing API. The returned page hit estimates were recorded.

Zipf observed [91, 92, 93] that given some corpus of natural language utterances, the

3 The Brown Corpus was used to extract the 5000 most common words because BNC does not provide a word

ranking list.
4 The BNC was chosen as the frequency source because after comparing the results using the Brown Corpus

frequencies and the BNC frequencies, it was found that the latter gave much better results.

92

 2
9

frequency of any word is inversely proportional to its rank in the frequency table. Zipf's

law is most easily observed by plotting the data on a log-log graph. Both the word

frequencies and the hit count estimates were converted to log scale. Based on this, a trend

line with a second degree polynomial equation was calculated. The same was done for

Yahoo! Search and Bing. Thus, there are three separate-prediction models for each

experiment.

The same analysis was applied to search terms consisting of several words, with

or without negative terms. The probability of a combination of terms can be computed,

using standard formulas, based on the frequency list of single words. For example if A

and B are both positive words, then the probability of the term ‘A B’, Pr(AB) can be

estimated as in Formula (5.1).

Pr(AB) = Pr(A) * Pr(B) (5.1)

where Pr(A) is the probability of A and Pr(B) is the probability of B, both of

which are estimated by using the frequency list. Importantly, this assumes that A and B

are statistically independent, an assumption that is commonly made for this kind of

analysis [94, 95, 96, 97].

For example, Patel and Lin proposed a term extraction algorithm ‘assuming words

are independent’ [94]; Szpankowski has proposed one model for digital data structures in

which ‘all words are statistically independent’ [96]. Srikanth [95] writes about the

independence assumption:

93

 2
9

The term independence assumption is used to approximate the query-likelihood

probability to a product of query-term probabilities based on the unigram

language model. While such an independence assumption is far from reality, it

does result in good performing information retrieval models. Language models

that incorporate term dependence in the form of N-gram with N > 1 have been

explored for retrieval [98 , 99]. However, limited improvements in retrieval

performance by models using these additional features have raised questions

about their contribution towards estimating relevance.

If A is a positive word while B is a negative word, Pr(AB) will be computed by

Formula (5.2).

Pr(AB) = Pr(A) * (1 - Pr(B)) (5.2)

The same method can be extended to searches with combinations of more than

two words.

Yossef and Gurevich sampled queries from a query pool according to their

volume distribution [33]. This research selected the words using the uniformly distribute

sampling. The case of one positive and one negative term is explained as an example. 250

words were sampled from the word list, evenly distributed among the sample data set.

Avoiding the use of the same word appearing as both a positive and a negative term and

assuming that ‘A B’ and ‘B A’ return similar results, 250*249/2!=31,125 pairs were

generated. After the trimming, 29,587 pairs remained.

94

 2
9

The system uses at most five positive search words and five negative words to

keep processing times tractable. The experiments in this research indicated that the

correlation between word frequencies and hit count estimates is different for different

numbers of search words in a query. Therefore, 30 different data sets were generated with

search terms of different lengths and computed the correlations for all of them. In other

words, a prediction regression model was generated for one positive search word, another

one for two positive search words, etc., up to five positive search words. Then each one

of these cases was combined with one negative search words, resulting in five more trend

lines. This process was repeated for two, three, four and five negative search words.

Thus, thirty cases were analyzed; a separate correlation function (trend line) was derived

for each case.

Figure 5.1 shows the scatter plot generated based on the term frequencies and the

Google hit count estimates for the case of one positive word. The X axis represents the

frequencies of the search terms and the Y axis measures the corresponding Google hit

count estimates. Both are in logarithmic scale. It was noticed that many outliers appear

when the frequencies or the hit counts are relatively low or high. Thus, a trimmed mean

method was applied [100]. The terms with the lowest 1 percent and the highest 1 percent

frequencies were discarded. The terms with the lowest 1.5 percent and the highest 1.5

percent hit count estimates were as well discarded. As a result of the trimming, 4.94

percent edge data were eliminated before the correlation analysis.

95

 2
9

Figure 5.1 Scatter plot of word frequencies and Google hits in log-log scale for case of

one positive word.

The program generated 30 second degree polynomial equations based on the

logarithmic values of the frequencies and the Google hit counts. For example, for the case

with one positive term, the corresponding equation would be as shown in Formula (5.3).

H = 0.226 * F
2
 + 2.672 * F + 14.415 (5.3)

In Formula (5.3), H is the logarithmic value of the estimated Google hit count and

F is the logarithmic value of the combined word frequency. The equation in Figure 5.1

uses the coefficient values before applying the log operator.

96

 2
9

All the 4632 words were used for learning the correlations between the term

frequencies and the hit count estimates. Constructing all pairs of words, or worse, all n-

tuples, from words in this list would put considerable stress on the computational

resources and would be impossible for larger values of n. Therefore, samples were

selected as follows.

For example, the program selected 250 sample words that are evenly distributed,

for 2-word samples. This covers two learning conditions (1) two positive words and (2)

one positive and one negative word, with the positive word always coming first in the

term passed to the search engine. In the same manner, 60 words were used for 3-word

learning conditions. Next, 30 words were selected for 4-word cases. Table 5.1 shows the

number of words used and the experiment size for each case. Except for the experiment

using one word, the size of the rest of the experiments is maintained to be close to

30,000. With the selected sample words, search terms consisting of different

combinations of positive and negative words were generated.

97

 2
9

Table 5.1 Number of Sample Words Used and Experiment Size for the N-word Cases

No. of Terms (N-term) No. of Sample Words Used Experiment Size

1 4632 4632

2 250 29587

3 60 32529

4 30 26051

5 23 31987

6 20 36845

7 18 30252

8 17 23109

9 17 23109

10 18 41596

Table 5.2 shows the values of Spearman’s correlation (C) between the term

frequencies and the hit count estimates returned by the search engines for all the thirty

cases. The cases are named in the format of aPbN, where aP represents the number of

positive terms and bN represents the number of negative ones (1 a5, 0b5). Thus

2P3N stands for the case with two positive and three negative search terms. Here

Spearman’s correlation was used because the data is sorted in descending order as ranked

data. The results of Table 5.2 verify the initial assumption, that is, for most cases there is

a positive correlation between the term frequencies and the hit count estimates returned

by major search engines. The p values for all experiments were < 0.001.

98

 2
9

Table 5.2 Correlation between Word Frequencies and Hit Count Estimates

 Google’s

Correlation

(C)

Yahoo’s

Correlation

(C)

Bing’s

Correlation

(C)

1P 0.706 0.684 0.572

2P 0.674 0.680 0.577

1P1N 0.699 0.657 0.636

3P 0.737 0.863 0.814

2P1N 0.701 0.725 0.734

1P2N 0.616 0.626 0.385

4P 0.639 0.863 0.783

3P1N 0.615 0.826 0.839

2P2N 0.550 0.554 0.506

1P3N 0.302 0.348 -0.195

5P 0.594 0.654 0.684

4P1N 0.595 0.663 0.801

3P2N 0.253 0.696 0.801

2P3N 0.508 0.678 0.557

1P4N -0.042 -0.324 -0.299

5P1N 0.553 0.762 0.718

4P2N 0.294 0.740 0.567

3P3N 0.646 0.635 0.375

2P4N 0.357 0.680 0.408

1P5N 0.435 0.580 0.625

99

 2
9

Table 5.3 Correlation between Word Frequencies and Hit Count Estimates (Continued)

 Google’s

Correlation

(C)

Yahoo’s

Correlation

(C)

Bing’s

Correlation

(C)

5P2N 0.732 0.260 0.465

4P3N 0.488 0.446 0.500

3P4N 0.391 0.469 0.505

2P5N 0.777 0.631 0.556

5P3N 0.770 0.787 0.769

4P4N 0.696 0.773 0.709

3P5N 0.233 0.604 0.534

5P4N 0.631 0.804 0.779

4P5N 0.719 0.739 0.643

5P5N 0.768 0.825 0.800

Mean 0.555 0.631 0.572

5.2.2 Evaluating the Prediction Model

In the experiments, the 10-fold cross-validation method [101] was used to evaluate the

prediction module. That means, the data were split into ten “folds” of equal size. Then the

data was “trained” with nine folds and its success was evaluated with the tenth fold. This

process is repeated ten times, such that every fold is used one time for testing. During

“training” a regression line is derived. During testing this regression line is used to

predict hit count estimates for terms which were not used during training. The predicted

hit count estimates are compared with the hit count estimates reported by the search

100

 2
9

engines, one at a time. Ideally, the two numbers should be equal. The same experiments

were performed for evaluating the three search engines.

To evaluate the effectiveness of these prediction models, we used the following

measures. Ei, the percentage of difference between the predicted hit count estimate and

the search engine hit count estimate, is calculated by Formula (5.4), where Pri stands for

the predicted hit count estimate and Hci represents the real search engine hit count

estimate:

Ei =
Pri i

i

Hc

Hc


100 (%)

(5.4)

E, the average percentage of error on the test set, is the average value of all Ei’s

from Formula (5.4), where n is the size of the test set:

E =
n

E
n

i

i
1

(5.5)

To analyze the accuracy of the predictions, we also used coefficient of variation

(CV), a normalized measure of dispersion, which is calculated by Formula (5.6) where

SD is the standard deviation of the Ei values. The smaller CV is, the better is the

prediction.

CV =

average

eviationstandard d
*100 (%) =

E

SD
 *100 (%) (5.6)

101

 2
9

Table 5.4 Correlation Summary for Thirty Cases

% G’s

E

G’s

SD

G’s

CV

Y’s

E

Y’s

SD

Y’s

CV

B’s

E

B’s

SD

B’s

CV

1P 75.0 54.3 87.1 88.4 61.2 85.1 113.0 69.6 76.0

2P 199.5 188.9 120.2 130.3 110.3 89.1 134.3 97.6 89.9

1P1N 94.8 70.6 67.3 110.5 84.1 68.7 103.4 59.9 72.1

3P 235.4 254.0 100.1 378.8 584.4 126.7 144.5 162.2 102.6

2P1N 275.8 279.3 93.1 132.0 126.6 79.0 119.9 121.0 81.9

1P2N 76.3 33.4 56.4 100.6 41.1 55.6 103.4 49.7 48.1

4P 156.7 127.7 80.6 145.7 198.4 114.6 141.2 100.7 82.4

3P1N 272.5 185.4 66.2 127.7 156.8 98.9 143.6 178.1 112.0

2P2N 987.5 1163.1 67.8 248.7 221.3 65.0 242.4 224.7 72.0

1P3N 81.1 45.0 57.9 92.9 60.2 49.1 84.6 18.3 26.1

5P 162.6 166.5 105.3 340.9 743.0 89.5 68.2 45.6 72.9

4P1N 146.6 108.5 74.6 140.1 156.2 82.5 63.3 54.7 89.6

3P2N 188.3 76.8 39.9 86.3 58.3 77.6 70.5 61.7 88.2

2P3N 140.0 86.2 51.6 59.2 39.5 69.5 75.2 48.8 62.3

1P4N 39.8 7.4 18.9 47.5 22.6 52.3 42.8 13.9 51.2

5P1N 125.7 98.5 86.4 189.7 167.1 86.8 120.0 86.7 75.4

4P2N 174.4 124.1 76.9 88.6 68.6 83.3 94.9 60.9 74.4

3P3N 274.6 164.0 76.1 95.0 57.7 65.4 139.2 62.7 56.5

2P4N 387.0 177.4 48.8 79.3 42.4 52.6 131.1 64.7 61.1

102

 2
9

Table 5.5 Correlation Summary for Thirty Cases (Continued)

% G’s

E

G’s

SD

G’s

CV

Y’s

E

Y’s

SD

Y’s

CV

B’s

E

B’s

SD

B’s

CV

1P5N 92.0 40.6 27.4 51.9 24.3 38.3 76.0 32.6 57.4

5P2N 86.6 28.8 44.0 203.5 93.5 51.6 82.4 41.5 61.7

4P3N 116.1 51.4 59.8 167.6 100.5 63.5 95.0 48.2 66.1

3P4N 172.0 93.4 63.8 141.6 68.4 58.8 114.3 57.2 60.0

2P5N 174.6 77.3 54.5 93.6 33.3 45.9 70.3 23.4 43.1

5P3N 88.2 56.5 68.4 137.3 131.0 104.1 79.2 60.4 79.7

4P4N 64.0 51.7 83.5 122.4 102.4 85.7 89.0 50.9 65.0

3P5N 57.0 35.6 72.1 140.8 88.6 70.1 97.2 81.0 65.1

5P4N 66.4 46.9 75.4 122.9 114.4 103.8 80.7 59.0 75.9

4P5N 62.9 49.6 79.8 132.8 98.9 81.5 104.6 60.6 60.4

5P5N 56.5 40.8 77.4 115.6 105.5 100.9 80.3 48.8 71.0

Mean 171.0 132.8 69.4 137.1 132.0 76.5 103.5 71.5 70.0

Table 5.3 shows the average results after applying the 10-fold cross-validation

method for all thirty cases. The cases are named in the same format as in Table 5.2. The

average error (E in equation (6)), standard deviation (SD) and coefficient of variation

(CV in equation (7)) of the three search engines are reported in this table. Due to space

limitation, we used the abbreviations in the table header. G, in Table 5.3, stands for

Google, while Y stands for Yahoo! and B represents Bing. To be consistent with the

variables used in the equations, we chose E to represent the average error, SD for the

standard deviation and CV for the coefficient of variation.

103

 2
9

Note that the coefficient of variation in Table 5.3 is not simply the result of the

corresponding standard deviation divided by the average error in the same row. For

example, in the case with one positive term only (1P), the coefficient of variation of

Google is 87.1 percent, which is not the value computed from the standard deviation

(54.3% in this case) divided by the average error (75.0%). Instead, it is the average of the

ten different observed coefficients of variation, since the 10-fold cross-validation method

was used during the evaluation. Similarly, the standard deviations and the average errors

in the table are the average values of ten sets of validation results.

From Table 5.3, one can see that the statistical results (E, SD and CV) measuring

the errors of predictions are in most cases relatively small. These results support the

assumption that there is a measurable positive correlation between the frequencies of

English words and the hit count estimates returned by three major search engines. Among

the three search engines in these experiments, Bing behaved better than both Google and

Yahoo! Search, producing error statistics around 100 percent or even smaller. While this

might appear as a large number, in the context of the goals of this study, 100 percent is

still acceptable. Practically speaking, if the system presents a user with at least 10 and at

most 100 Web page hits for a search term, a 100 percent error would imply that there

might be 200 hits instead, which is still a manageable number compared to the typical

results in the thousands to millions.

The hit count estimates of the three search engines were initially fetched in

February 2010 [5]. Considering the possibility of the search engines’ dancing [81], that is

the same search results in different reported hit count numbers, the reliability of the

results was tested by comparing the ones retrieved in February 2010 with the August

104

 2
9

2010 hit counts returned by the three search engines. For each of the 4632 queries in one

positive (1P) case, the two hit counts fetched in February and August were compared by

calculating their difference ratio DR, as shown in Formula (5.8). If the search engines

were stable during the six month interval, the difference ratio should be around 1 for most

of the queries.

DR =
)2010,(

)2010,(

FebruaryHc

AugustHc (5.8)

Figure 5.2 shows the scatter plot of difference ratios for all the queries in the 1P

case for Google, Yahoo! and Bing.

Figure 5.2 Clustering result of hit count transition within a six month period.

One can see that the major portions of Google’s and Bing’s clusters are around 1.

(According to the experiments in this study, the knee in Google’s cluster is observed to

be normal during Google’s stable period.) Thus, it is confirmed that the hit count

105

 2
9

estimates by Google and Bing were fetched during the stable period of the search

engines. However, Yahoo!’s cluster shows great dancing in this observation. It is

presumed that this was the case because Yahoo updated their indexes in March 2010.

Thus, Yahoo!’s results in Table 5.3 were replaced by their stable hit counts. To retrieve

more reliable hit counts, the program used the hit count estimates appearing on the later

search result pages of Yahoo! [81].
5

The Google Ajax Search API, Yahoo! Boss API and Bing API were used

throughout this research. Unfortunately, however, the new Google Custom Search API

provides only up to 100 free queries per day [83]. This change of Google has caused

great obstacle in continuation of this study.

5 The offset of 900 was used for Yahoo!’s hit count estimates. It was not possible to retrieve more precise counts

from Google because Google provides up to the top 64 results in its API. Bing adjusts its hit counts to very small
numbers at different offsets for different queries.

106

CHAPTER 6

EFFECT OF NEGATIVE AND POSITIVE WORDS IN THE SEARCH

One of the observations made in the study in Section 5.2 was that negative search terms

change the hit count estimates in quite an unpredictable way, which has caused practical

problems when implementing the prediction model (Section 5.2). This dissertation has

investigated this problem with the search engines’ behaviors. This chapter is presenting

the results from this investigation.

It is assumed to be obvious, that when a negative search word is added to a

previous positive search term, then this would exclude some of the results of the positive

search term. Thus, the hit count estimates should always decrease when adding a negative

search word to a search term. This kind of behavior has been referred to as

“monotonicity.” However, the experiments in this part of study indicated that all three

search engines show non-monotonic behavior for negative terms.

The problem of non-monotonicity is especially vexing because (1) numbers are

not just wrong in a quantitative sense, they are qualitatively wrong, increasing instead of

decreasing; (2) non-monotonicity contradicts claims made by the major search engine

companies, i.e., in Google’s, Yahoo’s and Bing’s documentations [102, 103, 104].

To investigate the scope of this problem, another series of experiments were

performed, exclusively focusing on the question whether negative search terms reduce or

increase the hit count estimates reported by the search engines. A sample of 12,000 cases

was used, which were constructed as follows. Suppose there are random words w1, w2,

107

w3, w4, w5, and w6 from the sample word list. Then a series of six queries (marked as

queryi, where 1 i6) is constructed as follows:

w1 query1

w1 –w2 query2

w1 –w2 –w3 query3

w1 –w2 –w3 –w4 query4

w1 –w2 –w3 –w4 –w5 query5

w1 –w2 –w3 –w4 –w5 –w6 query6

Each series starts with the positive word w1 in query1 and is added one more

negative term in each query. Moreover, all the possible sequences of combinations of the

five negative words were considered. For example, two possible series of queries could

be as follows:

w1 query1

w1 –w2 query2

w1 –w2 –w3 query3

w1 –w2 –w3 –w4 query4

w1 –w2 –w3 –w4 –w5 query5

w1 –w2 –w3 –w4 –w5 –w6 query6

108

 2
9

and

w1 query1

w1 –w2 query2

w1 –w2 –w4 query3

w1 –w2 –w4 –w3 query4

w1 –w2 –w4 –w3 –w5 query5

w1 –w2 –w4 –w3 –w5 –w6 query6

In total there are 5!=120 possible series of queries considering all sequences of

combination constructed by the five negative words.

According to the major search engines’ documentations [102, 103,104], the query

“w1 –w2” returns the Web pages which exclude the term “w2” from the pages returned by

querying “w1.” The same analysis applies when moving from queryi to queryi+1, queryi+2,

etc. In other words, the hit count estimate of query should never be greater than the hit

count estimate of queryj, when i is greater than j. However, the experimental results in

this research show that this is not true for many cases.

These results were encoded as follows. Whenever adding a negative search word

decreased the hit count estimate, this was coded with a 1. In other words, whenever the

search engines behaved correctly, ‘monotonically’ and decreased the hit count estimate

after adding a negative word, this was coded with 1 (true). When an additional negative

search word increased the hit count estimate, this was represented as 0 (false). For

example, it is coded by 1 when the hit count of query4 is no greater than the hit counts

returned by query1, query2 and query3.

109

 2
9

Table 6.1 shows the results of analyzing the Google behavior. The results in Step

1 (from query1 to query2) reflect the correctness of adding one negative search word to

one positive search word. Similarly, results in Step 2 show the effect of adding two

negative search words to one positive word, and so on. In this case the comparison is

made between the new case (one positive and two negative words) with both previous

cases, i.e., with one positive word only as well as with one positive and one negative

word. Similarly, for later steps, the comparison is made with all previous queries.

Table 6.1 Results of Experiment on Effect of Negative Terms in Google Search

 Correct Incorrect

Step 1 (query1 to query2) 1645 (13.7%) 10355 (86.3%)

Step 2 (query2 to query3) 1749 (14.6%) 10251 (85.4%)

Step 3 (query3 to query4) 1903 (15.9%) 10097 (84.1%)

Step 4 (query4 to query5) 2055 (17.1%) 9945 (82.9%)

Step 5 (query5 to query6) 2192 (18.3%) 9808 (81.7%)

As can be seen in Table 6.1, 86.3% of the cases resulted in incorrect behavior

when adding one negative word to one positive word. As a result, among the 12,000

sample cases in the experiment, only 1,051 cases (8.8%) can be described to be totally

correct. Thus, it can be concluded that Google rarely behaves in the announced way for

cases with negative search words.

Figure 6.1 shows the results of this experiment by encoding the strings of 1s and

0s in the following way. Each string of 1s and 0s was interpreted as a binary number.

110

 2
9

Then the program computed the corresponding decimal number for each such five-digit

string. Next it sorted the resulting decimal numbers in descending order and plot them

over the number of cases (12000) of the experiment. If a 0 appears at the left-most

position, that means that a single negative term already leads to non-monotonic behavior

of the search engine, which is much more serious than if a 0 appears in the right-most

position. Therefore, a 0 in the leftmost position should reduce the “correctness” of this

case much more than a 0 in the rightmost position.

Figure 6.1 Observed search engine behavior vs. ideal search engine behavior

(experiment 1: one positive word).

This behavior of giving more weight to the left-most position is exactly the effect

of the binary encoding. A 0 in the left-most position will reduce the decimal value by 16,

111

 2
9

i.e., to less than half of the possible maximum. In the graph, the horizontal line at level

y=31 indicates the ideal case of a search engine behaving correctly for all experiments

(11111). Thus, the distance of the jagged line from the horizontal line indicates for every

case how far off it is from the correct behavior.

As can be seen in Figure 6.1, Google very rarely behaves in the announced way

for cases with negative search words. Yahoo! Search and Bing behave much better than

Google with respect to monotonicity. In this experiment, Yahoo! Search behaves the best

among the three search engines. Only 1.3% queries showed the monotonicity problem.

An additional experiment was also performed with the three search engines of the

effect of negative words on two positive terms. 12000 cases were constructed as follows.

Assume that there is another word w7. Thus, the six queries in one case are:

w1 w2 query1

w1 w2 –w3 query2

w1 w2 –w3 –w4 query3

w1 w2 –w3 –w4 –w5 query4

w1 w2 –w3 –w4 –w5 –w6 query5

w1 w2 –w3 –w4 –w5 –w6 –w7 query6

While non-monotonicity is obviously a serious logical problem with negative

search words, it cannot be neglected for positive search words either. Users intuitively

expect “AND semantics” when adding more words. Thus the number of search results for

a one word query should be reduced when adding a second positive search word.

112

 2
9

Unfortunately, it appears that Google is trying to ‘outsmart’ the user by making it hard to

reach single digit hit counts even when accumulating rare words from different domains.

Therefore, an investigation of this behavior is warranted.

Figure 6.2 Observed search engine behavior vs. ideal search engine behavior

(experiment 2: two positive words).

The following experiment studied the monotonicity of appending additional

positive search words at the end of a query. That is, taking six random words w1, w2, w3,

w4, w5, and w6 from the sample word list, a series of six queries was constructed by

appending one additional word to w1 each time. Similar to the previous experiments, the

113

 2
9

six queries are constructed as w1, w1 w2, w1 w2 w3, w1 w2 w3 w4, w1 w2 w3 w4 w5, and w1 w2

w3 w4 w5 w6.

With the same encoding method used as in Figure 6.1 and Figure 6.2, it is

possible to summarize the monotonicity results of adding positive search words for the

three search engines. As can be seen in Figure 6.3, Yahoo! and Bing behave much better

than Google with respect to monotonicity of positive search words.

Figure 6.3 Observed search engine behavior vs. ideal search engine behavior

(experiment 3: only positive words).

While considering these results as interesting in their own right, this study is part

of a larger project of building a browser (plug-in) that controls Web search in a manner

that avoids overwhelming users with too many search results but is not so restrictive as to

114

 2
9

return no results at all (Chapter 5). To control search results, negative terms are used.

However, if search engines exhibit non-monotonicity, the predictability of the results is

greatly reduced.

115

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation aims at providing a better search experience for Web users. Problems

arise with the weaknesses of the current keyword-based search engines. The major search

engines do not disambiguate homonymous search terms. The returned results contain

mingled information of all homonyms and typically contain long list of pages of hits. To

improve the Web search process with homonymous terms, the Ontology-Supported Web

Search (OSWS) System was developed. The system clearly categorizes and

disambiguates homonymous searches. The ontology used in the system was built from

DBpedia and Facebook, in addition to using the suggested completions mined from

Google.

To control the size of the returned Web results, to be neither too overwhelming

nor too limited, a prediction mechanism has been developed. The prediction model was

built based on the frequency of the search terms supplied to three common search engines,

Google, Yahoo! Search and Bing. The study also evaluated how well the mechanism

predicted the performance of the three search engines. During the study, it was found that

all three search engines show non-monotonic behavior for negative search terms.

Research results were presented, concerning the non-monotonicity of the three search

engines for both positive and negative search terms.

Chapter 2 described an algorithm and its implementation in the OSWS System

that improves previous work [17] on ontology-supported Web search. OSWS provides a

method that generates better (than existing search engines) suggested completions of user

116

search terms when those search terms refer to homonyms. The interface clearly separates

between suggested completions for homonymous concepts that fit the partial search term

that a user has already typed in. OSWS uses an ontology to derive the disambiguated

search terms and suggested search completions based on the knowledge about famous

people in the ontology. Furthermore, suggested completions in the OSWS interface may

contain positive and negative search words. OSWS allows users to include “negative

search terms” in suggested completions, which further refine searches by negating search

queries with information known not to apply to a given instance.

In order to improve the search experience of Web users, while discriminating

between different senses of a homonymous term, a new interface has been developed for

the OSWS System improving it in two ways. In the first stage, the system divides the

snippet display into vertical panels to visually separate the results for the different

homonyms. When the user moves the mouse down to one of the suggested completions

and hovers there, the processing enters the second stage. For every suggested completion

the user points to, the system instantly shows the result snippets of the suggestion he is

hovering over. This improves the Google Instant feature. Currently Google shows instant

results only for the first suggested completion. These two new features help the user

acquire a deeper understanding of the suggested terms and to enjoy a better search

experience than provided by today’s search engines, while minimizing the number of

actions she has to perform.

The current ontology is queried using special-purpose Java code. SPARQL is

considered to be used in the future, as the ontology grows in size and complexity.

117

 2
9

In future work, it is also planned to collect user feedback and to perform a formal

evaluation study of the new features, e.g., using a tool such as Morae™. In order to test

the usability of the OSWS System in improving the user search experience, future work

will include conducting a user study to compare the OSWS System with the major search

engines, such as Google, Yahoo and Bing, in aspects of usability and user satisfaction.

In [105], an evaluation study was conducted in an undergraduate course [105]. It

is planned to involve 20 to 30 university students and scholars to participate in the user

study. Each participant will be asked to perform Web searches using the same sets of

queries on the OSWS System and on one of the major commercial search engines,

depending on the user’s preference.

Each participant will perform a set of 20 queries of his or her choice. Each query

should consist of the name of a famous person. Based on such experiments, a post task

questionnaire will be filled out by all users. It will focus on the usability and user

satisfaction with the new features incorporated into the OSWS System, including the

search continuation interface for disambiguating the homonymous search terms, user

control of searching with negative terms, parallel result display and the instant feature.

Participant preferences will be obtained via questionnaires using Likert scales

[106]. Most Likert scales have either 5, 7, or 9 degrees to choose among; odd numbers

make it clear what the central or neutral choice is [107]. If comparing a new interface

against one that is known already to have strong positive reactions, a wider scale allows

for participants to clearly indicate a preference above and beyond what is already familiar

and available [107].

118

 2
9

The questionnaire will be designed based on a usability testing tool called

Questionnaire for User Interaction Satisfaction (QUIS) [108]. QUIS is a measurement

tool for evaluating computer users' subjective satisfaction with the human-computer

interface [108]. Most QUIS-based questionnaires are arranged in a hierarchical layout:

they start with a demographic questionnaire, which aims to determine user background

information such as level of computer literacy. This is followed by measures of overall

reaction towards the system. Finally, there are several specific interface sections.

The questionnaire will be adapted from QUIS and it will consist of:

(1) A background information section with questions relating to experience of

using search engines;

(2) An overall-reaction section with different measures, such as level of

satisfaction of using the OSWS System and the usability of disambiguating homonymous

search terms.

(3) A section on the measurement of user satisfaction with the key features in the

OSWS System; and

(4) A comments section which allows participants to provide comments and

feedback that are related to possible areas of improvement of the OSWS System.

In part (2) above, participants will be asked to give their responses for both the

OSWS System and the preferred commercial search engine, for each question being

asked, so that the answers can be compared.

Chapter 3 reviewed the old knowledge base used in the OSWS System and

described a new method for building an ontology of famous people by using search

suggestions retrieved from Google, together with information extracted from DBpedia

and YAGO. DBpedia is a huge public resource, but suffers from inconsistencies. The

DBpedia ontology contains well-structured and consistent data but is very limited and

119

 2
9

covers only a small portion of the domain. Thus, the person hierarchy was kept from the

DBpedia ontology and information about the famous people was extracted from DBpedia.

The A-List of famous people was mined from Google’s suggested completions.

Various methods have been applied to clean the extracted DBpedia information, in order

to consistently integrate the new knowledge into the ontology. This ontology was

integrated into the Ontology-Supported Web Search System, which provides

disambiguated search suggestions based on the ontology. A prototype expansion system

was also developed for dynamically expanding the content of the ontology at run time,

based on user-input queries, resulting in the D-OSWS System.

For the current version of this new ontology, the DBpedia person hierarchy was

used, which is shallow but provides reasonable granularity for search suggestions.

However, while comparing YAGO types to DBpedia ontology classes, it was found that

there were quite a few missing classes in the DBpedia person hierarchy. For example,

movie directors are grouped into the Actor class. Martin Scorsese is classified as an actor

instead of a director.

Future work involves further refining the class hierarchy to provide better search

results and exploring the use of new sources of data to include within the ontology. By

further analyzing class names from other sources, it will be possible to provide better

search suggestions in a number of cases. Additionally, research will continue on

improving the domain coverage.

One problem has been recognized, that DBpedia is a (largely) static data source,

when the goal is to keep up with a dynamically changing search environment. While

DBpedia is working on a live extraction system [34, 109], the DBpedia ontology is

120

 2
9

presently updated only twice per year. If the research relies solely on DBpedia as a data

source, it may be not possible to find up-to-date information on certain instances in the

ontology, and it is likely that some new instances will be missed entirely. It is planned to

use new, more frequently updated, data sources to augment the OSWS ontology with

fresh data, such as online news-feeds. By including new sources it will be possible to

provide up-to-date and relevant search results to the end-users. Future work may also

include expanding the OSWS System to perform what is called “Search What I Mean”

(SWIM) queries, which will return results for what the system believes the user intends to

search for. Lastly, work will continue with the B-List and possibly parts of the C-List.

Chapter 4 has presented the process of mining Facebook as a secondary resource

to enhance the OSWS ontology. The study focused on the 2,564 names that exist in the

A-List but could not be found in DBpedia, which were referred as the “reduced-A-List.”

Passing them to Facebook, it was possible to find 954 names that have a Facebook public

page and are classified as person. Since the OSWS System is about famous people, the

pages that have fewer than 300 fans were disregarded. A series of data extraction and

data cleaning steps were done to mine the Facebook public pages of the selected people.

The standardized data was then mapped to the OSWS ontology described in Chapter 3.

The process discussed in Chapter 4 involves data analysis and manual checking in

specific steps. Having the “reduced-A-List” analyzed and successfully mapped to the

ontology, mapping the people in the B-List and C-List would be a mostly automatic

process. Future work involves enhancing the OSWS ontology by adding the people in the

B-List and the C-List, who do not exist in DBpedia.

121

 2
9

 Chapter 5 has motivated and described a method for predicting hit count

estimates based on the frequency of the search terms supplied to three common search

engines, Google, Yahoo! Search and Bing. Frequencies were taken from a corpus of the

English language. Second degree correlation functions were derived, based on random

samples taken from the corpus. The derived regression functions were then used for the

purpose of predicting the hit count estimates. Due to the varying behavior of the search

engines, depending on the number of search terms passed to them, the study has derived

separate correlation functions for 30 different cases of search terms of varying length,

with and without negative terms. The experiments indicated that the predictions made for

the samples were sufficiently close to the hit count estimates returned by the search

engines to make them useful. Among the three search engines, Bing gives better results

(closer correlation between the term frequencies and the numbers of hits) than Google

and Yahoo! Search.

The Google Ajax Search API, Yahoo! Boss API and Bing API were used to fetch

the hit count estimates of the three search engines. The Google Custom Search API is the

substitute of the Google Ajax Search API. However, it provides only up to 100 free

queries per day [83], which has caused great inconvenience in continuation of this study.

Future research includes extending work on hit count estimates in several

directions. For common phrases, the frequency (co-occurrence) of a multi-word term is

often not the same as what would be predicted by the component word frequencies. Thus,

one can expect more Michael Jackson hits than predicted by Michael and Jackson

separately, in contrast to Alfred Jackson hits. In the future, the frequency of the

dependent terms will be updated using knowledge retrieved from relevant ontologies.

122

 2
9

Secondly, future research involves adding specialized word frequency lists to the

database, such as US Census first name and last name frequency information. This will

reduce the number of words for which the prediction model currently does not have any

frequency estimates. Besides, additional data sources will be looked into that cover

newly-coined, commonly-used words, e.g., ‘facebooking’.

The search engine hit count estimates are computed using sampling algorithms,

and thus are expected to vary significantly. Rather than choosing the 5000 most frequent

words, a random sample may be more interesting in terms of results.

The future study will also consider the Corpus of the American Contemporary

English (COCA) [110] as a data set. Most importantly, it is considered to integrate the

thirty prediction models into fewer, ideally one for each search engine, to simplify the

modeling and increase the usability of the prediction model. Moreover, since the Web is

constantly growing, the prediction models should be updated periodically. Another

possible extension of this part of the work could be to expose a REST API that provides

the predicted hit count estimates for given search queries.

One interesting research topic would be to analyze the correlation between the

popularity of a Wikipedia page and the search engines’ hit counts for this page.

Wikipedia has the advantage of multi-domain and multi-language coverage. Thus, it

would be interesting to investigate the correlation between page popularity and search

engine results.

Chapter 6 studied the effect of adding negative and positive search words to

existing queries. It was shown that when between one and five negative search words

were added to a single positive search word, the observed hit count estimates did not

123

 2
9

behave monotonically for many cases. For example, for one positive search word, Google

rarely behaves correctly when a sequence of negative search words is appended.

Compared to Google, Yahoo! Search and Bing behave much better in following the

announced behavior for adding negative terms. In this study, Yahoo! Search shows the

best behavior, with 98.8% of the experiments exhibiting the correct monotonic behavior.

The research also investigated the effect of adding negative search words after two

positive words and adding only positive search words in the queries. The three search

engines show better monotonicity results in those cases, but still do not conform to the

documented behavior.

Future work continues on investigating the monotonic behavior of the popular

search engines. For example, Google ignores common words and characters such as

where, the, how, and includes synonyms automatically in its processing. However,

adding a plus operator (+) in front of a word would indicate to Google that it should

search with the exact word the user included in his query [111]. In the future, it is

planned to analyze and compare the monotonicity of the search engines with and without

using the plus operator.

 124

REFERENCES

[1] D.R. Radev, W. Fan, and Z. Zhang, “WebInEssence: A Personalized Web-Based

Multi-Document Summarization and Recommendation Syatem”, NAACL

Workshop on Automatic Summarization, Pittsburgh, PA, 2001.

[2] Google Query Suggestion, http://www.google.com/support/websearch/bin/

answer.py?hl =en&answer=106230, retrieved 12/01/2011.

[3] E. Al-Masri, Q.H. Mahmoud, “Discovering Web Services in Search Engines,” IEEE

Internet Computing, issue 3, pp. 74-77, 2008.

[4] S.R. Lawrence, “Personalization of Web Search Results Using Term, Category, and

Link-Based User Profiles,” United States Patent Appl. 20100228715. Kind Code:

A1, 2010.

[5] T. Tian, J. Geller, S.A. Chun, “Predicting Web Search Hit Counts,” 2010

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology, pp. 162-166, Toronto, Canada, 2010.

[6] T. Tian, J. Geller, S.A. Chun, “Improving Web Search Results for Homonyms by

Suggesting Completions from an Ontology,” 2nd International Workshop on

Semantic Web Information Management (SWIM). Lecture Notes in Computer

Science, pp. 175-186. Vienna, Austria, 2010.

[7] F. Radlinski, M. Szummer, N. Craswell, “Inferring Query Intent from

Reformulations and Clicks,” WWW 2010, Raleigh, North Carolina, USA, 2010.

[8] M. Henzinger, “Search Technologies for the Internet,” Science, vol. 317, no. 5837,

pp. 468-471, 2007.

[9] R. Capra, G. Marchionini, J. Velasco-Martin and K. Muller, “Tools-at-hand and

Learning in Multi-session, Collaborative Search,”: 28th International Conference on

Human Factors in Computer Systems (CHI’10) Atlanta, Georgia, 2010.

[10] L. Yuen, M. Chang, Y.K. Lai, C.K. Pool, “Excalibur: A Personalized Meta Search

Engine,” 28th Annual International Computer Science Software and Applications

Conference (COMPSAC’04), vol. 2, pp. 49-50, September 2004.

[11] M. Thelwall, “Extracting Accurate and Complete Results from Search Engines: Case

Study Windows Live,” Journal of the American Society for Information Science

and Technology, vol. 59, issue 1, pp. 38-50, 2007.

[12] E.T. Jepsen, P. Seiden, P. Ingwersen, L. Björneborn, P. Borlund, “Characteristics of

Scientific Web Publications: Preliminary Data Gathering and Analysis,” Journal of

the American Society for Information Science and Technology, vol. 55, issue 14,

pp. 1239-1249, 2004.

125

 2
9

[13] T. Joachims and F. Radlinski, “Search Engines that learn from Implicit Feedback”,

IEEE Computer, IEEE Computer Society, vol. 40, issue 8, pp. 34-40, 2007.

[14] iProspect Search Engine User Behavior Study, http://www.iprospect.com/

premiumPDFs/WhitePaper_2006_SearchEngineUserBehavior.pdf, 2006, retrieved

12/01/2011.

[15] F. Baader, “Description Logics,” Reasoning Web: Semantic Technologies for

Information Systems, 5th International Summer School, vol. 5689, pp. 1–39,

Lecture Notes in Computer Science,. Springer Verlag, 2009.

[16] DBpedia, http://dbpedia.org/About, retrieved 12/01/2011.

[17] Y. An, S. Chun, K. Huang, J. Geller, “ Enriching Ontology for Deep Web Search,”

DEXA, Lecture Notes in Computer Science, pp. 73-80, Turin, Italy, 2008.

[18] Y. An, J. Geller, Y. Wu, S.A. Chun, “Semantic Deep Web: Automatic Attribute

Extraction from the Deep Web Data Sources,” 2007 ACM Symposium on Applied

computing (ACM-SAC), pp. 1667-1672, Seoul, Korea, 2007.

[19] G. Fu, C.H. Jones, A.I. Abdelmoty, “Ontology-based Spatial Query Expansion in

Information Retrieval,” ODBASE: OTM Confederated International Conferences,

Agia Napa, Cyprus, 2005.

[20] R. Navigli R, P. Velardi, “An Analysis of Ontology-based Query Expansion

Strategies,” Workshop on Adaptive Text Extraction and Mining (ATEM 2003),

14th European Conference on Machine Learning (ECML 2003), Cavtat- Dubrovnik,

Croatia, 2003.

[21] A. Andreou, “Ontologies and Query Expansion,” M.S. thesis, School of Informatics,

Edinburgh Univ., Edinburgh, UK, 2005.

[22] Y. An, S.A. Chun, K. Huang, J. Geller, “Assessment for Ontology-Supported Deep

Web Search,” 10th IEEE Conference on E-Commerce Technology and the Fifth

IEEE Conference on Enterprise Computing, E-Commerce and Eservices, IEEE

Computer Society, pp. 382-388, Washington D.C, 2008.

[23] D.L. McGuinness, “Ontologies Come of Age,” In D. Fensel, J. Hendler,

H. Lieberman, W. Wahlster (eds) Spinning the Semantic Web: Bringing the World

Wide Web to Its Full Potential, MIT Press, 2003.

[24] A. Uyar, “Investigation of the Accuracy of Search Engine Hit Counts,”

Journal of Information Science , vol. 35, issue 4, pp. 469-480, 2009.

[25] K. Sugiyama, M. Okumura, “Personal Name Disambiguation in Web Search Results
Based on a Semi-supervised Clustering Approach”, Lecture Notes in Computer

Science, vol. 4822, pp. 250-256, 2007.

[26] C. Chen, J. Hu, H. Wang, “Clustering Technique in Multi-Document Personal

Name Disambiguation”, ACL-IJCNLP 2009 Student Research Workshop, Suntec,

Singapore, August 2009.

126

 2
9

[27] D. Rao, J. Garera, D. Yarowsky, “JHU1: An Unsupervised Approach to Person

Name Disambiguation using Web Snippets”, 4
th

 International Workshop on

Semantic Evaluations, Prague, June 2007.

[28] B. Fazzinga, T. Lukasiewicz, “Semantic Search on the Web,” Semantic Web –

Interoperability, Usability, Applicability, vol. 1, pp. 1-7, 2010.

[29] R.V. Guha, R. McCool, E. Miller, “Semantic Search,” WWW’03, pp. 700-709,

Budapest, Hungary, 2003.

[30] G. Cheng, W. Ge, Y. Qu, “Falcons: Searching and Browsing Entities on the

Semantic Web,” WWW’08, pp. 1101-1102, Beijing, China, 2008.

[31] A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, S. Decker, “SWSE: Answer

before Links!,” Semantic Web Challenge, CEUR Workshop, 2007.

[32] G. Tummarello, R. Cyganiak, M. Ctasta, S. Danielczyk, R. Delbru, S. Decker,

“Sig.Ma: Live Views on the Web of Data,” WWW 2010, pp. 1301-1304, Raleigh,

NC, USA, 2010.

[33] Z. B. Yossef, M. Gurevich, “Mining search engine query logs via suggestion

sampling,” VLDB Endowment, Auckland, New Zealand, vol. 1, issue 1, pp. 54-65,

2008.

[34] C. Bizer et al., “DBpedia - a Crystallization Point for the Web of Data,” Web

Semantics: Science, Services and Agents on the World Wide Web, vol. 7, issue 3,

pp. 154-165, 2009.

[35] M. Kalender, J. Dang, S. Uskudarli, UNIpedia: “A Unified Ontological Knowledge

Platform for Semantic Content Tagging and Search,” ICSC '10 2010 IEEE Fourth

International Conference on Semantic Computing, Washington DC, pp. 293-298,

2010.

[36] D.M. Boyd, N.B. Ellison, “Social Network Sites: Definition, History, and

Scholarship,” Journal of Computer-Mediated Communication, vol. 13, issue 1, pp.

210-230, 2007.

[37] M. Thelwall, D. Wilkinson, S. Uppal, “Data Mining Emotion in Social Network

Communication: Gender Differences in MySpace,” Journal of the American Society

for Information Science and Technology, vol. 61, issue 1, pp. 190-199, 2010.

[38] H. Chu, D. Deng, J.H. Park, “Live Data Mining Concerning Social Networking

Forensics Based on a Facebook Session Through Aggregation of Social Data,”

IEEE Journal of Selected Areas in Communications, vol. 29, issue 7, pp. 1368-1376,
2011.

[39] K. Xu, S.S. Liao, Y. Song, L. Liu, “Mining User Opinions in Social Network

Webs,” The Fourth China Summer Workshop on Information Management, Wuhan,

China, 2010.

127

 2
9

[40] I. Guy, M. Jacovi, E. Shahar, N. Meshulam, V. Soroka, “Harvesting with SONAR -

The Value of Aggregating Social Network Information,” CHI, Florence, Italy, 2008.

[41] Y. Matsuo, J. Mori, M. Hamasaki, “POLYPHONET: An Advanced Social Network

Extraction System from the Web,” International World Wide Web Conference

(WWW), Edinburgh, Scotland, 2006.

[42] M. Thelwall, “Introduction to Webometrics: Quantitative Web Research for the

Social Sciences”, Synthesis Lectures on Information Concepts, Retrieval, and

Services, vol. 1, no. 1, pp. 1-116, 2009,

[44] R. Cilibrasi, P. Vitanyi, “The Google Similarity Distance”, IEEE Trans. Knowledge

and Data Engineering, vol. 19, issue 3, pp. 370-383, 2007.

[44] D. Sánchez, M. Batet M, A. Valls, “Web-Based Semantic Similarity: An Evaluation

in the Biomedical Domain,” International Journal of Software and Informatics, vol.

4, issue 1, pp. 39-52, 2010.

[45] R. Mirizzi, A. Ragone, T. Noia, E. Sciascio, “Semantic Tags Generation and

Retrieval for Online Advertising,” 19th ACM International Conference on

Information and Knowledge Management (CIKM), pp. 1089-1098, Toronto,

Canada, 2010.

[46] R. Mirizzi, A. Ragone, T. Noia, E. Sciascio, “Ranking the Linked Data: the Case of

DBpedia,” 10th International Conference on Web Engineering (ICWE), pp. 337-

354,Vienna, Austria, 2010.

[47] Z.B. Yossef, M. Gurevich, “Random Sampling from a Search Engine’s Index”, 15
th

International World Wide Web Conference (WWW), Edinburgh, Scotland, 2006.

[48] British National Corpus, http://www.natcorp.ox.ac.uk/, retrieved 12/01/2011.

[49] Y. Matsuo, H. Tomobe, T. Nishimura, “Robust Estimation of Google Counts for

Social Network Extraction”, WWW 2007, Banff, Canada, May 2007.

[50] Facebook, www.facebook.com, retrieved 12/01/2011.

[51] T. Tian, J. Geller, S.A. Chun, “Enhancing the Interface for Ontology-Supported

Homonym Search,” CAiSe’11 Workshop: 1st International Workshop on Semantic

Web Search (SSW), Lecture Notes in Computer Science, London, UK, 2011.

[52] Yahoo Search Assistant, http://tools.search.yahoo.com/newsearch/searchassist.html,

retrieved 12/01/2011.

[53] Bing Search Suggestions, http://onlinehelp.microsoft.com/en-us/bing/

ff808490.aspx, retrieved 12/01/2011.

[54] Y. Ke, L. Deng, W. Ng, D. Lee, “Web Dynamics and their Ramifications for the

Development of Web Search Engines,” Computer Networks: The International

Journal of Computer and Telecommunications Networking – Web Dynamics, vol.

50, issue 10, pp. 1430-1447, 2006.

128

 2
9

[55] Google Instant, http://www.google.com/instant/, retrieved 12/01/2011.

[56] T.B. Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific American

Magazine, May 2001.

[57] L. Ding, T. Finin, A. Joshi, R. Pan, R.S. Cost, “Swoogle: A Search and Metadata

Engine for the Semantic Web”, thirteenth ACM international conference on

Information and knowledge management, pp. 652-659, ACM Press, 2004.

[58] Ontology Design Patterns (ODP), http://ontologydesignpatterns.org/wiki/

Main_Page, retrieved 10/15/2010.

[59] Open Biological and Biomedical Ontologies (OBO), http://www.obofoundry.org/,

retrieved 12/01/2011.

[60] L. Niles, A. Pease, “Towards a standard upper ontology,” International Conference

on Formal Ontology in Information System, pp. 2-9, ACM, New York, 2001.

[61] J.F. Sowa, “Knowledge Representation: Logical, Philosophical, and Computational

Foundations,” Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[62] C. Ochs, T. Tian, J. Geller S.A. Chun, “Google Knows Who is Famous Today:

Building an Ontology from Search Engine Knowledge and DBpedia,” 5th IEEE

International Conference on Semantic Computing (ICSC), Palo Alto, CA, 2011.

[63] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, “DBpedia: a

Nucleus for a Web of Open Data,” ISWC'07/ASWC'07 6th International Semantic

Web and 2nd Asian Conference on Asian Semantic Web, Busan, Korea, pp. 722-

735, 2007.

[64] DBpedia Disadvantage, http://wiki.dbpedia.org/UseCases, retrieved 12/01/2012.

[65] DBpedia SPARQL, http://dbpedia.org/sparql, retrieved 12/01/2012.

[66] Google Autocomplete SOAP API, http://docs.jquery.com/UI/Autocomplete,

retrieved 12/01/2012.

[67] Government Census Data, http://www.census.gov/, retrieved 12/01/2012.

[68] WordNet, http://wordnet.princeton.edu/, retrieved 12/01/2012.

[69] F. M. Suchanek, G. Kasneci, G. Weikum, “YAGO: a Core of Semantic

Knowledge,” WWW '07 16th International Conference on WWW, pp. 697-706,

Banff, Alberta, Canada, 2007.

[70] J. Euzenat, P. Shvaiko, “Ontology Matching,” Springer-Verlag, Berlin, Heidelberg,

2007.

[71] About Facebook Pages, http://www.facebook.com/help/pages/admin, retrieved
12/01/2011.

[72] Facebook Graph API, http://developers.facebook.com/docs/reference/api/, retrieved

12/01/2011.

129

 2
9

[73] Inside Facebook Pages, http://www.sysomos.com/insidefacebook/, retrieved

12/01/2011.

[74] T. McCorkindale, “Can You See the Writing on My Wall? A Content Analysis of

the Fortune 50’s Facebook Social Networking Sites,” Public Relations Journal, vol.

4, no. 3, pp. 1-10, 2010.

[75] Facebook Pages, http://developers.facebook.com/docs/reference/api/page/, retrieved

12/01/2011.

[76] Stands4 API, http://www.abbreviations.com/api.asp, retrieved 12/01/2011.

[77] T. Tian, S.A. Chun, J. Geller, “A Prediction Model for Web Search Hit Counts

Using Word Frequencies,” Journal of Information Science, vol. 37, issue 5, pp. 462-

475, Sage Publishing Co., 2011.

[78] P. Nakov, M. Hearst, “A study of Using Search Engine Page Hits as a Proxy for n-

gram Frequencies”, Recent Advances in Natural Language Processing, Borovets,

Bulgaria, September 2005.

[79] J. Pollard, “Google result counts are a meaningless metric”,

http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/google-result-counts-

are-a-meaningless-metric.html, retrieved 12/01/2011.

[80] S. Brin, L. Page, “The Anatomy of a Large-scale Hypertextual Web Search

Engine”, Computer Networks, vol. 30, issue 1-7, pp. 107-117,1998.

[81] T. Funahashi, H. Yamana, “Reliability Verification of Search Engines’ Hit Counts”,

1
st
 International Workshop on Quality in Web Engineering, Vienna, Austria, July

2010.

[82] Google Search API, http://code.google.com/apis/websearch/, retrieved 12/01/2012.

[83] Google Custom Search API, http://code.google.com/apis/websearch/, retrieved

12/01/2012.

[84] Google SOAP Search API, http://code.google.com/apis/soapsearch/, retrieved

12/01/2012.

[85] P. Mayr, F. Tosques, “Google Web APIs: An Instrument for Webometric

Analyses”, ISSI 2005 Conference, Stockholm, Sweden, July 2005.

[86] A. Kilgarriff, “Googleology is Bad Science”, Computational Linguistics, vol. 33,

issue 1, pp. 147-151, 2007.

[87] R. Gligorov, W.T. Kate, Z. Aleksovski, F. V Harmelen, “Using Google Distance to

Weight Approximate Ontology Matches”, 16th International World Wide
WebConference, pp. 767-776, Banff, Alberta Canada, May 2007.

[88] F. Keller, M. Lapata, “Using the Web to Obtain Frequencies for Unseen Bigrams”,

Computational Linguistics, vol. 29, issue 3, pp. 459-484, 2003.

130

 2
9

[89] Brown Corpus, http://www.edict.com.hk/lexiconindex/frequencylists/words2000.

htm, http://www.edict.com.hk/lexiconindex/frequencylists/words2-5k.htm, retrieved

03/21/2010.

[90] Stop words, http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words, retrieved

12/01/2012.

[91] G. Zipf, Selective Studies and the Principle of Relative Frequency in Language,

Cambridge Press, Cambridge, Mass, 1932.

[92] G. Zipf, Human Behavior and the Principle of Least-Effort, Cambridge Press,

Cambridge, Mass, 1949, Addison-Wesley, 1965.

[93] G. Zipf, The Psycho-biology of Language: An Introduction to Dynamic Philology,

Houghton-Mifflin Company, 1935, MIT Press, 1965.

[94] P. Pantel, D. Lin, “A Statistical Corpus-Based Term Extractor”, 14th Biennial

Conference of the Canadian Society on Computational Studies of Intelligence:

Advances in Artificial Intelligence, LNCS, vol. 2056, pp. 36-46, 2001.

[95] M. Srikanth, “Exploiting Query Features in Language Modeling Approach for

Information Retrieval”, PhD thesis, State University of New York at Buffalo, 2004.

[96] W. Szpankowski, “Digital Data Structures and Order Statistics,” LNCS:

Proceedings of Workshop WADS’89, pp. 206-217, Ottawa, Canada, 1989.

[97] S. Goldwater, T.L. Griffiths, M. Johnson, “Distributional Cues to Word Boundaries:

Context is Important,” 31st Annual Boston University Conference on Language

Development, Cascadilla Press, Somerville, MA, 2007.

[98] D. Miller, T. Leek, R.M. Schwartz, “A Hidden Markov Model Information

Retrieval System,” SIGIR’99, pp. 214-221, Berkley, California, 1999.

[99] F. Song F, W.B. Croft, “A General Language Model for Information Retrieval,”

SIGIR’99, pp. 316-321, Berkeley, California, 1999.

[100] R.R. Wilcox, Trimmed Means, In B.S. Everitt, D.C. Howell, Encyclopedia of

Statistics in Behavioral Science, Wiley, Chichester, England, 2005.

[101] I.H. Witten, E. Frank, Data mining: Practical machine learning tools and

techniques (second edition), Morgan Kaufmann, San Francisco, CA, 2005.

[102]Google Search Basics: Basic Search Help, http://www.google.com/support/

websearch/bin/answer.py?hl=en&answer=134479, retrieved 12/01/2012.

[103]Yahoo Help: Search Tips, http://help.yahoo.com/l/us/yahoo/search/

narrowyoursearch/basics-04.html;_ylt=AggxCl0pmWi9tjzBuKskoYh6YXhG,
retrieved 12/01/2012.

[104]Bing Help: Search Tips, http://onlinehelp.microsoft.com/en-us/bing/ff808438.aspx,

retrieved 12/01/2012.

131

 2
9

[105]M. Chau, C.H. Wong, “Designing the User Interface and Functions of a Search

Engine Development Tool,” Decision Support Systems, vol. 28, issue 2, pp. 369-

382, 2010.

[106]R. Likert: “A Technique for the Measurement of Attitudes,” Archives of

Psychology, vol. 22, no. 140, pp. 1-55, 1932.

[107]M. Hearst: Search User Interfaces, Cambridge University Press, 2009.

[108]J. Chin, V. Diehl, K. Norman: “Development of an Instrument Measuring User

Satisfaction of the Human–Computer Interface,” Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, Washington, D.C., USA,

1988, pp. 213–218.

[109]DBpedia Next Step, http://wiki.dbpedia.org/NextSteps, retrieved 12/01/2012.

[110]Corpus of the American Contemporary English (COCA), http://corpus.byu.edu/

coca/.

[111]Google Plus Operator, http://www.google.com/support/websearch/bin/answer.py?

answer=136861, retrieved 12/01/2012.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Improving Web Search Results for Homonyms by Suggesting Completions from an Ontology
	Chapter 3: Building the "Famous People" Ontology from Search Engine Knowledge and DBpedia
	Chapter 4: Enhancing the Famous People Ontology by Mining a Social Network
	Chapter 5: Predicting Web Search Hit Counts
	Chapter 6: Effect of Negative and Positive Words in the Search
	Chapter 7: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

