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ABSTRACT 

 

DRIVER BEHAVIOR CLASSIFICATION AND LATERAL CONTROL FOR 

AUTOMOBILE SAFETY SYSTEMS 

 

 

by 

  Jing Yang 

 

Advanced driver assistance systems (ADAS) have been developed to help drivers 

maintain stability, improve road safety, and avoid potential collision. The data acquisition 

equipment that can be used to measure the state and parameter information of the vehicle 

may not be available for a standard passenger car due to economical and technical 

limitations. This work focuses on developing three technologies (longitudinal tire force 

estimation, driver behavior classification and lateral control) using low-cost sensors that 

can be utilized in ADAS.  

For the longitudinal tire force estimation, a low cost 1Hz positioning global 

system (GPS) and a steering angle sensor are used as the vehicle data acquisition 

equipment. A nonlinear extended two-wheel vehicle dynamic model is employed. The 

sideslip angle and the yaw rate are estimated by discrete Kalman Filter. A time 

independent piecewise optimization scheme is proposed to provide time-continuous 

estimates of longitude tire force, which can be transferred to the throttle/brake pedal 

position. The proposed method can be validated by the estimation results.  

Driver behavior classification systems can detect unsafe driver behavior and avoid 

potentially dangerous situations. To realize this strategy, a machine learning classification 

method, Gaussian Mixture model (GMM), is applied to classify driver behavior. In this 

application, a low cost 1Hz GPS receiver is considered as the vehicle data acquisition 



equipment instead of other more costly sensors (such as steering angle sensor, 

throttle/brake position sensor, and etc.). Since the driving information is limited, the 

nonlinear extended two-wheel vehicle dynamic model is adopted to reconstruct the driver 

behavior.  Firstly, the sideslip angle and the yaw rate are calculated since they are not 

available from the GPS measurements. Secondly, a piecewise optimization scheme is 

proposed to reproduce the steering angle and the longitudinal force. Finally, a GMM 

classifier is trained to identify abnormal driver behavior. The simulation results 

demonstrated that the proposed scenario can detect the unsafe driver behavior effectively.  

The lateral control system developed in this study is a look-down reference 

system which uses a magnetic sensor at the front bumper to measure the front lateral 

displacement and a GPS to measure the vehicle’s heading orientation. Firstly, the steering 

angles can be estimated by using the data provided by the front magnetic sensor and GPS. 

The estimation algorithm is an observer for a new extended single-track model, in which 

the steering angle and its derivative are viewed as two state variables. Secondly, the road 

curvature is determined based on the linear relationship with respect to the steering angle. 

Thirdly, an accurate and real-time estimation of the vehicle’s lateral displacements can be 

accomplished according to a state observer. Finally, the closed loop controller is used as a 

compensator for automated steering. The proposed estimation and control algorithms are 

validated by simulation results. The results showed that this lateral steering control 

system achieved a good and robust performance for vehicles following or tracking a 

reference path. 
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CHAPTER 1  

INTRODUCTION 

1.1 Objective 

Automobiles are ubiquitous in modern societies and they are indispensable in our daily 

life. Consequently, one of the most important aspects in vehicle design by the automobile 

industry is improving car safety. In the past few decades, automobile safety systems have 

been developed to reduce, prevent or avoid driver error and therefore, enhanced the safety 

of vehicles. These active vehicle safety systems are called advanced driver assistance 

systems (ADAS). 

Most applications in driver safety systems adopt multimodal sensors as the data 

acquisition equipment, which may be costly and inconvenient to install for general uses. 

This study aims at designing driver safety systems with low cost data acquisition 

equipment to measure vehicle states (sideslip angle, yaw rate, vehicle velocity, heading 

angle, and etc.), driving behavior information (steering angle and throttle/brake pedal 

position), and environment data (road condition, weather condition, and other environment 

conditions).  

The objective of this dissertation is concentrated on developments of advanced 

driver assistance systems in the following applications:  

• Longitudinal tire force estimation 

• Driver behavior classification 

• Lateral steering control  
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1.2 Background Information 

Driving safety is an important issue since driving is a common activity for many people in 

everyday life. Based on the traffic statistics and analysis available from the US Department 

of Transportation, Federal Highway Administration, Office of Highway Information, 

during the thirty-eight years from 1970 to 2008, the number of licensed drivers in the U.S. 

increased 86.82%, from about 111.5.0 million to 208.3 million. 57% of the driving-age 

population was licensed to drive a motor vehicle in 1950. That number has increased to 

87% of the driving-age population in 2008. Americans drove over 3 trillion miles in 2007. 

From 1980 to 2005, the average annual vehicle miles traveled (VMT) per licensed driver 

have increased 42.1%, from 10,043 miles to 14,273 miles [1].  Despite the safety 

improvements in road and vehicle design, the total number of fatal crashes still increased. 

Motor vehicle-related fatalities increased from 33,186 in 1950 to 43,510 in 2005, while the 

fatality rate per 100 million vehicle miles of travel (VMT) increased from 1.46 to 7.24 

[2-3]. The 2005 mortality data from the National Center for Health Statistics (NCHS) 

shows the 10 leading causes of death by age group. According to the statistics, motor 

vehicle traffic crashes were the leading cause of death for every group from age 3 to 34.  

The motor vehicle traffic crashes ranked third overall in terms of the year of lost, behind 

only to malignant neoplasms and diseases of heart [4]. The increasing number of fatalities 

demonstrates that driving safety represents a persistent and important issue. Developing 

advanced driver assistance systems to reduce crash involvements would benefit millions of 

people across the world. 

Motor-vehicle crashes can be attributed to multiple causes: driver error, road 

design, vehicle design and maintenance. A 1985 study, using British and American crash 
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reports as data, found that 57% of crashes were only due to driver factors, 27% to 

combined roadway and driver factors, 6% to combined vehicle and driver factors, 3% 

solely to roadway factors, 3% to combined roadway, driver, and vehicle factors, 2% solely 

to vehicle factors and 1% to combined roadway and vehicle factors [5]. It is obvious that 

driver error represents a dominant cause of crashes. For example, driver error includes 

speeding and driver impairment. On the one hand, the official British road casualty 

statistics show that “traveling too fast for conditions” was a contributory factor in 11% of 

all casualty-crashes [6]. On the other hand, most of the crashes are due to the impairments 

of the driver’s attention. There are six major categories of attention impairments: alcohol, 

fatigue, aging, physical impairment, drug use and distraction. Alcohol contributes to 

approximately 40% of fatalities in US highway [7] and 33.8% of motor vehicle deaths in 

Canada [8]. Accidents due to fatigues often involve young drivers and truck drivers 

because they tend to adopt risky strategies such as driving at night and/or lack good-quality 

sleep [7]. Old age drivers have low reaction speed and narrow field of attention [9-10]. 

Drivers who have poor eyesight or other physical impairment may cause fatal crashes if the 

vehicle modifications are not appropriate or they are not qualified to drive. When a person 

drives after using drugs (including some prescription drugs, over the counter drugs, and 

illegal drugs), the potential drug impairments may create a hazardous situation to 

themselves and other road uses, like pedestrians or cyclists. The last impairment is 

distraction, which has become increasingly important with the introduction of in-vehicle 

technologies (e.g., navigation systems, mobile phones, smart phones, and internet). Driver 

distraction diverts the driver’s attention away from the activities critical for safe driving 

towards a competing activity [11]. It contributes to 13-50% of all crashes, resulting in as 
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many as 10,000 fatalities and $40 billion in damages each year [7]. These statistics have 

motivated research in the development of advanced driver assistance systems (ADAS). 

Many ADAS have been investigated in the last decade to reduce driver error and 

avoid potentially dangerous situations. The advanced driver assistance system will 

enhance car safety and more generally road safety. This research is concentrated on three 

applications that are the key technologies used to design advanced driver assistance 

systems: longitudinal tire force estimation, driver behavior classification, and lateral 

control system. Until now, most of the research and development efforts have been 

dedicated to the development of these three individual technologies. For many approaches, 

the vehicle and driving related information, such as steering angle, throttle/brake pedal 

position, vehicle states (vehicle speed, acceleration, yaw angle, yaw rate, sideslip angle, 

and etc.), distance between the ahead/flowing vehicle, are directly obtained from the 

controller area network bus (CAN-bus) or multimodal sensors (GPS, steering angle sensor, 

throttle/brake pedal position sensors, cameras, microphones, etc.). These data acquisition 

equipment and methods are cost prohibitive and inconvenient to use for the general drivers. 

This research focuses in designing three strategies: estimating longitudinal tire force, 

detecting abnormal driver behavior, and automatic lateral control, by using as little 

measurement devices as possible, and will therefore reduces the design cost for advanced 

driver assistance systems.     

1.3 Dissertation Contributions 

The key contributions of this dissertation are:  

            1) For the vehicle state estimation, a task to estimate the longitudinal tire force 

which can be transferred to the corresponding throttle/brake positions has been addressed. 
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A low cost 1Hz GPS receiver and a steering angle sensor are used as the vehicle data 

acquisition equipment. A longitude force estimation scenario is developed for the 

nonlinear extended two-wheel vehicle dynamic model using only the GPS information.  

2) For the driver behavior classification scenario, a Gaussian Mixture model 

(GMM) classifier has been developed to assign the driving behavior into normal or 

abnormal category. The vehicle states and the driver inputs are estimated according to the 

GPS data and the vehicle dynamic models. GMM is used to capture the sequence of driving 

characteristics based on the reconstructed driver’s inputs. This application can enhance the 

safety of the drivers by warning drivers in potentially dangerous traffic situations.     

3) For vehicle lateral steering control, a GPS and front sensor based approach is 

adopted to estimate in real time the necessary states and model parameters (the steering 

angle, road curvature, and lateral displacements). The control strategy used is a look-down 

reference system which uses a sensor at the front bumper to measure the lateral 

displacement and a GPS to measure the heading orientation. An accurate and real-time 

estimation of the lateral displacements with respect to the road can be accomplished in 

such a control system. The simulation results show that the system provides a good and 

robust performance for path tracking. 

1.4 Dissertation Organization 

The rest of this dissertation is organized as follows: Chapter 2 presents the currently 

available technology and offers a review of the relevant literature. It begins with 

introduction of the advanced driver assistance system. Then, data acquisition equipment 

used in driver safety systems is investigated, followed by a discussion on the vehicle states 

estimation and longitudinal tire force estimation. The concepts of driver behavior 
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classification approaches are also presented. Finally, the current lateral control systems are 

discussed. Chapter 3 introduces two types of vehicle dynamics used in this thesis: 

single-track linear model and two-wheel extended nonlinear model. Chapter 4 is dedicated 

to the proposed a novel strategy to estimate longitudinal tire force for two-wheel extended 

vehicle model. The state estimator is studied. In order to estimate the longitudinal tire 

force, an optimizer is then developed. Chapter 5 discusses a scenario to detect the abnormal 

driver behavior. The driver behavior is reconstructed and a Gaussian mixture model 

classifier is used to determine whether the driver behavior is normal or abnormal. A novel 

lateral steering control system with a GPS and a front sensor is presented in Chapter 6. The 

entire system is a look-down system which has three parts: a road curvature and steering 

angle estimator, a lateral states observer, and a feedback controller. Chapter 7 concludes 

this dissertation. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Advanced Driver Assistance System 

In the past few decades, advanced automobile safety systems have been studied and 

developed mostly in research laboratories. Only until recently, automobile manufacturers 

are beginning to deploy them in the production of consumer vehicles. Automobile safety 

systems can be grouped into two categories: Passive safety systems and Active safety 

system.  

Passive safety systems are only deployed or effective in response to an 

automobile crash. These systems protect drivers and passengers from injuries or reduce 

severity of injuries during the collision. Passive systems include seat belts, air bags, 

headrests, and the passenger-safety cage. For example, air bags are now mandatory in 

every new automobile sold in the United States. Vehicle crashworthiness is another 

regulated passive system. The regulation of crashworthiness began in the late 1960s
 

and 

today all vehicles in the U.S. are required to pass mandated crashworthiness tests before 

they are sold to the public. 

Advanced Driver Assistance Systems (ADAS) are active safety systems that can 

reduce the possibility of crashes. They aim at providing assistance to the driver by 

informing them about the condition of the car, the condition of the road, any potential 

hazards, or by providing active assistance to the driver. An ADAS may include many 

types of practical systems, for example, lateral control systems, longitudinal control 

systems, automated highway system (AHS), driver distraction detection system, reversing 

or parking aids, vision enhancements systems, and intelligent speed adaptation, in-vehicle 
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navigation system, antilock brake system, electronic stability program, collision 

avoidance system, intelligent cruise control, lane departure warning system, lane change 

assistance, automatic parking, intelligent speed adaptation, night vision, adaptive light 

control, pedestrian protection system, traffic sign recognition, blind spot detection, driver 

drowsiness detection, vehicular communication system, hill descent control, electrical 

vehicle warning sounds used in hybrids and plug-in electric vehicles [12]. An overview 

of longitudinal tire force estimation, driver behavior classification system and lateral 

control system, which is the focuses of this study, is presented in the following sections. 

2.2 Data Acquisition Equipment 

An ADAS needs to measure or estimate vehicle and driving related information and 

process them to automatically control the vehicle or provide feedback to the driver. These 

data include steering angle, throttle/brake pedal position, vehicle states (vehicle speed, 

acceleration, yaw angle, yaw rate, sideslip angle, and etc.), distance between the 

ahead/flowing vehicles, and lateral displacement. The information can be obtained from 

multimodal data acquisition sensors and equipment installed in the vehicle. The 

commonly utilized data acquisition devices in ADAS include:  

• Controller area network bus (CAN-bus) 

CAN-bus is a vehicle bus standard designed to allow microcontrollers and devices 

to communicate with each other. The CAN-bus is a serial, asynchronous, multi-master 

communications protocol suited for networking a vehicle’s electronic control systems, 

sensors, and actuators. The CAN-bus signal contains real-time vehicle information in the 

form of messages integrating many modules. Usually, the open connector to the CAN-

bus is the On-Board Diagnostics (OBD-II) port. The driving parameters provided by the 
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CAN-bus usually include Revolutions per minute (RPM), Acceleration pedal position, 

Wheel speeds, Steering angle, Lateral acceleration and yaw rate. Different vehicle models 

may provide all or part of the above data. One of the limitations of the CAN-bus signals 

is that they are not available for every vehicle models. Besides, the CAN-bus signals are 

coded with standards that differ from one manufacture to another. Thus, the database 

used to decode the CAN-bus signal may not be available to the general public or the cost 

for the database and data acquisition software maybe prohibitive. 

• Global Position System (GPS) 

A GPS is used to measure the position of the vehicle, its heading orientation, and 

even its vehicle velocity. Currently, a low-cost vehicle GPS has an updating rate of 1Hz  

or 5Hz . In research projects conducted by various vehicle research programs (such as 

DARPA Grand challenge, California PATH, Department of Transportation, and so on), 

more accurate GPS (for example, absolute GPS, differential GPS, or GPS with a higher 

updating rate) were employed.  In order to obtain the rate up to 100 Hz, a GPS/INS is 

usually adopted, where INS stands for Inertial Navigation System. It refers to the use of 

GPS satellite signals to correct or calibrate a solution from an INS. INS usually can 

continuously provide accurate measurements of a vehicle’s position, orientation, or 

velocity. 

• Steering angle sensor 

The overall steering wheel angle is measured by the steering angle sensor which 

is mounted on the steering shaft.   

• Throttle/brake pedal position sensors 
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Throttle pedal position sensor and brake pedal position sensor are used to measure 

the positions of the acceleration and brake pedal respectively. 

• Yaw rate sensor 

A yaw rate sensor is a gyroscopic device that measures a vehicle’s angular 

velocity around its vertical axis.  

• Magnetic sensor 

A magnetic sensor is a distance sensor, which can be used to measure the lateral 

displacement or longitudinal distance between two vehicles.  

• Cameras 

Video cameras can be used to record the driver’s eye, head movements, face 

features, vehicle’s motions or road condition. 

• Microphones  

Microphones can be used to record a driver’s speech.  

• Body sensors 

Body sensors can provide the information about a driver’s body movements, e.g., 

hand and neck movements. 

• faceLAB  

faceLAB is an eye and facial tracking system developed by Seeing Machines, Inc. 

[95]. It consists of a separate computer, Sony stereo cameras and loud-speakers. The 

computer is used for image processing. Cameras are positioned to the left and right of 

the screen above the dashboard for image capturing. It can capture the data on eye 

movement, head position and rotation, eyelid aperture, lip and eyebrow. 
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2.3 Vehicle States Estimation 

Knowledge of the vehicle variables is essential for advanced driver assistance systems. 

However, some of the fundamental variables (such as sideslip angle, vehicle velocity, 

yaw angle, yaw rate) are not measurable in a standard car due to both technical and 

economical reasons. Consequently, these variables must be observed or estimated. 

Among those fundamental variables, the sideslip angle and the yaw rate are of most 

critical.  

The vehicle sideslip angle can be calculated if the orientation (attitude) and 

velocity of the vehicle are known because the sideslip angle is the difference between the 

yaw angle and the direction of the velocity. For most cases when the orientation (attitude) 

and velocity are not available, a number of methods have been proposed to estimate the 

sideslip angle. Existing common methods can be based on dynamic handling models [21-

22], estimators that are designed according to the kinematic relationships [23], the 

combined measurements of the yaw rate gyro and lateral accelerometer [24-25].  The 

sideslip angle can be also estimated by the integration of the yaw rate and the lateral 

acceleration because the derivative of the sideslip angle can be expressed in terms of 

these measurements [26-27].  

2.4 Tire Force Estimation 

The tire force determines the vehicle’s motion in both lateral and longitudinal directions. 

Figure 2.1 illustrates the wheel dynamic variables [13] which can be used to model the 

tire force. Based on the tire model, tire force can be directly calculated by the wheel 

cornering stiffness and sideslip angle. The wheel cornering stiffness is a parameter 

closely related to the tire-road friction. Large amount of research have been reported in 



 

 

12 

 

 

the field of tire force estimation and many systems use model-based estimators to 

estimate the states. To improve the accuracy of the vehicle parameters estimation, one 

researcher used estimates of the tire cornering stiffness to improve estimation of the 

vehicle states using a model-based estimator [14].  Tire-road forces and sideslip angle 

observers are designed in vehicle-road system, which is modeled by combining a vehicle 

model with a tire-force model [15]. The tire cornering stiffness can be also estimated 

from the lateral vehicle models [16-17] and with the addition of non-linear tire models, 

the cornering stiffness and tire road friction can be estimated simultaneously [18-19]. A 

method to estimate both the lateral and longitudinal tire stiffness has been developed by 

using a non-linear tire model, which takes into account both the lateral and longitudinal 

tire models [20].  

 

Figure 2.1. Wheel dynamic variables [13]. 

This study will be concentrated on the longitudinal tire force estimation. The 

longitudinal tire force determines the vehicle’s longitudinal motion, such as velocity and 
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acceleration. Since longitudinal tire force can be transferred to the corresponding 

throttle/brake positions, the driver behavior could be reconstructed.   

2.5 Driver Behavior Classification 

Driver behavior can be classified into either normal or abnormal behavior. Numerous 

research studies have conducted to detect abnormal driver behavior. This section begins 

by discussing abnormal driver behavior and then driver behavior classification systems 

are introduced. Finally, currently existing abnormal driver behavior detection approaches 

are discussed.  

2.5.1 Abnormal Driver Behavior 

Abnormal driving behavior is defined as the behavior that is influenced by either mental 

or physical impairments. Six major categories of impairments are defined and they are: 

alcohol, fatigue, aging, physical impairment, drug use and distraction. It has been found 

that distraction represent the dominant cause of crashes [11].  

The International Standards Organization developed the following definition for 

distraction: Distraction is “attention given to non-driving-related activity, typically to the 

detriment of driving performance” [28]. The comprehensive definition of driver 

distraction is presented by the Australian Road Safety Board in 2006 [29]: “Driver 

distraction is the voluntary or involuntary diversion of attention from the primary driving 

tasks not related to impairment (from alcohol, drugs, fatigue, or a medical condition) 

where the diversion occurs because the driver is performing an additional task (or tasks) 

and temporarily focusing on an object, event, or person not related to the primary driving 

tasks.” The diversion reduces a driver’s situational awareness, decision making and/or 
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performance resulting, in some instances, in a collision or near-miss or corrective action 

by the driver and/or other road user. 

There are three types of driver distraction when considering the different sources 

that cause the driver’s inattention.  

Firstly, there is a general agreement that the existence of a triggering activity is a 

critical part of the definition. The triggering activity means a secondary task which 

diverts the driver’s attention away from the driving task. The triggering activity can be 

classified into three categories: purposeful activity (e.g., inserting a CD, texting on a cell 

phone, or inputting information into navigation systems); incidental activity (e.g., 

answering a phone, interacting with passengers or eating); and uncontrolled activity (e.g., 

movement of animal and child inside the vehicle, sneezing, coughing or itching) [30].  

Secondly, there is also a growing realization that “cognitive distraction” is a 

significant component of driver distraction. Cognitive distraction refers to the mental 

workload associated with a task (e.g., being lost in thought, emotionally upset or 

emotionally preoccupied). Cognitive distraction is generally not observable [30-31] in 

most situations.  

Finally, external distractions are also involved in the categorizations of driver 

distraction. The external distractions include unusual or unexpected events or activities 

(e.g., wild animals crossing), inclusion of relatively common driving situations (e.g., 

driver blinded by sun or by oncoming headlines, sirens of police emergency vehicles), 

and external objects (e.g., advertising signage, outside person objects or events) [32]. 

When considering the different ways that distracting tasks affect drivers, the 

driver distraction can be categorized into three types [33]: 
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• Visual distraction: Tasks that require the driver to look away from the roadway to 

visually obtain information; 

• Manual distraction: Tasks that require the driver to take a hand off the steering 

wheel and manipulate a device; 

• Cognitive distraction: Tasks that require mental workload so that the driver will 

be thinking about something other than the driving task.  

Each type of distractions can lead to hazardous behaviors such as large lane variation, 

abrupt steering control, slow response to hazards, and less efficient visual perception than 

attentive driving. Moreover, these types of distractions can occur in combination and 

interact with each other. Table 2.1 summarizes the effects of visual, cognitive and 

combined distractions on eye activities, lane position and steering control [36]. 

Table 2.1 Summary of Driver Distraction Effects [36] 
 

 

 Visual Distraction Cognitive Distraction Combined Distraction 

Eye 

Activities 

High frequency of off-

road glances, long total 

eye-off road time, and 

low percentage of road 

center 

Gaze concentration in 

the center of the road 

High frequency of off-

road glances and long 

total eye-off-road time 

gaze concentration 

when drivers look at 

the road 

Lane 

Position 

Large lane variation Unchanged or small lane 

variation 

Large lane variation 

Steering 

Control 

 

Discrete steering 

correction and large 

correct magnitude 

(large steering error) 

Small correction 

magnitude (small 

steering error) 

Discrete steering 

correction and both 

large and small 

correction magnitude  
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2.5.2 Driver Behavior Classification System 

 
 

 

Figure. 2.2  A general structure of driving behavior classification systems. 

 

Figure 2.2 illustrates the general structure of a driving behavior classification system. The 

operation of this system can be summarized with the following three steps.  

1) The raw data are measured using multiple sensors/devices and CAN-bus. There 

are mainly three types of raw data:  

• Driver input:  

They refer to steering operation and throttle/brake pedal operation. 

• Vehicle data:  

They refer to the kinematic state variables of a vehicle, e.g., vehicle speed, yaw 

angle, yaw rate, sideslip angle, acceleration and lateral position.  

 
   Sensor Technology 

 

 

Driving Behavior 

Classification 

Feature 

Extraction 

Classification 

 

Warning 

Strategy 

Warning Algorithm 

Normal 

 
Driver Data 

•Eye movements, hand 

movements,   

 
Vehicle Data 

•Vehicle States 

•CAN-Bus Signals 

   Driver Input 

•Steering 

•Throttle/brake pedal position 

Abnormal 
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• Driver data: 

They refer to the driver behaviors and reactions, like eye movement, head 

movement, hand movement, body movement or physiological response. 

2) Certain features of the data are extracted and used to represent the driving 

behavior. These features are then used to classify the driver’s state. For most system, 

there are two states: normal driving behavior and abnormal driving behavior. The 

decision whether a driver behavior is abnormal or not can be determined according to 

some rules (e.g., a classification approach or a classifier) based on these features.  

Prior studies have reported various features that can be used to measure the level 

of driver’s abnormality. They indicated the effects of distraction on the driver’s inputs, 

vehicle state information and driver’s behavior.  

• Driver control input features:  

Some researchers have adopted statistics of a driver’s operation signals to 

measure the driving performance. It was found that the mean, variance, root mean square 

(RMS) and entropy of steering angles are suitable to reflect a driver’s steering maneuvers 

[89, 92-93]. It was pointed out in [90] and [91] that driver distractions may cause a 

delayed accelerator release reaction time. This delayed accelerator release reaction time is 

defined as the time when the lead vehicle starts to brake until the driver releases the 

accelerator. In the UMTRI research in the SAVE-IT project, it was found that when 

drivers are performing an in-vehicle task, they control their speed by intermittently 

adjusting the throttle as shown in Figure 2.3 [94].  
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Figure 2.3 Throttle position when drivers are performing different in-vehicle tasks [94]. 

• Vehicle kinematic state features:  

Driver abnormal behavior is associated with unintended changes of a vehicle’s 

state resulting in unsafe driving performance. The vehicle state includes forward speed, 

lane position, sideslip angle, yaw angle, and yaw rate. Ranney [96] found that distraction 

may result in speed changes or allowing the vehicle to drift outside the lane boundaries. 

Zylstra et al. [97] point out that distracted driving does affect the mean lateral position. It 

was shown in [98] that the standard deviation of lane position was a good measure of 

visual distraction. Generally speaking, visual distraction affects lateral vehicle control, 

whereas cognitive distraction affects longitudinal vehicle control [99-100]. In summary, 

the driver’s abnormal behavior affects the lateral displacement, sideslip angle, yaw angle, 

yaw rate and vehicle speed.      

• Driver’s behavior and reaction features:  

Human factor professionals have indicated that eye movements (glance, gaze, and 

smooth pursuit), head movements and physiological responses are the ideal measures of 

the driver’s state.  
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a) Eye Movements: The eye glance (eye-off-road) is highly related to visual 

distraction. For example, the visual distraction causes long off-road glance duration [98, 

101-104]. Smooth pursuit occurs when the driver is tracking a moving object (e.g., a 

passing vehicle) [99]. SAVE-IT program uses eye glance behaviors to determine visual 

distraction in real time. Examples of statistical measures of eye glance include [105]: 

• Peak glance duration: It is defined as the time of the longest glance at a target 

area. 

• Mean glance duration: It is defined as the mean amount of time of all glances at a 

target area.  

• Glance frequency: It is defined as the number of glances at a target area during 

the performance of a task. 

• Total glance duration: It is defined as the cumulative time elapsed for all glances 

at a target area during the performance of a task. 

• Mean time between glances: It is defined as the cumulative time elapsed looking 

away from a target area, divided by the number of glances away from the target 

area. 

Prior studies in [106] showed that a driver’s visual field narrows both vertically and 

horizontally. This means that drivers who are under cognitive distraction spend less time 

checking mirrors for hazards. According to [107] and [108], cognitive distraction changes 

the pattern of the eye gaze distribution: Drivers spend longer time concentrating on the 

road but their mind is off the driving task. Increased cognitive load is associated with less 

frequent glances to the mirrors, speedometer, and traffic signals. Hence, the mean time 
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between glances for distracting driving is longer compared to the value for normal 

driving. 

b) Head movements: Miyaji et al. [109] found that the standard deviation of the 

head movement is suitable for measuring driver distraction.  Distraction levels can be 

measured by the changes of the head position. It was found that changes of the head 

position depend on different face orientations (i.e., frontal, left, right, up and down) 

[110].   

c) Physiological Responses: It was reported in [109] that pupil dilation occurs 

when a driver is talking, which results in cognitive distraction. The pupil diameter, 

vertical rotation “pitch angle” component and a lateral rotation “yaw angle” component 

are shown in Figure 2.4.  

 
 

Figure 2.4 Pupil diameter and gaze angles [109].  
 

The average value of the heart rate R-to-R interval (RRI) obtained from 

electrocardiograph (ECG) decreases when the drivers’ cognitive loads are imposed [109, 

111]. RRI is the distance between an R-wave and a consecutive one and is extracted from 

ECG signal. An example of the RRI in ECG waveform is shown in Figure 2.5. The 

temperature at the tip of the nose decreases when a driver is performing a cognitively 

distracting secondary activity, e.g., thinking about something or talking [112]. Wesley et 

al. [113] point out that skin temperature of supraorbital region increases when visual or 



 

 

21 

 

 

cognitive distraction occurs. A short film commissioned by DARPA and directed by 

Singer shows that electroencephalography (EEG) signals can be used to assess the 

cognitive workload [111]. 

 
 

Figure 2.5 Heart Rate RRI in ECG wave [109].  

 

3) A warning strategy determines when and in which way the driver will be 

warned if abnormal driving behavior is detected. If certain criteria are met, the driver 

should not be warned. These criteria are introduced in [114]: 

• Vehicle speed: The driver’s gaze is often off the road but the driver is not being 

distracted when the vehicle speed is less than50km/h .   

• Direction indicators: No warning should be given while the driver is changing 

lanes and turning.  

• Reverse gear: The driver should look over the shoulder. 

• Brake pedal: The driver should not be warned if he or she is braking in order to 

not interfere with driving maneuvers. 

• Steering angle: The driver makes large changes of wheel direction, in order not to 

interfere with the main driving task. 

• Lateral acceleration: When the vehicle has to make strong movements in order not 

to interfere with a driving task, no warning should be given. 
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On the contrast, the warnings should be triggered while the driver distraction is 

detected and a driver is not at one of the above situations [115]. Basically, there are three 

main types of warnings: 

• Visual warning, e.g., lights, icons, or text warning. 

•  Auditory warning, e.g., sounds or voice.  

• Vibration warning, e.g., seat vibration or steering wheel vibration.  

2.5.3 Driver Behavior Classification Algorithms 

There have been many research studies on developing algorithms that can effectively 

detect a driver’s abnormality in advanced driver assistance systems (e.g., crash warning 

systems, lane keeping systems, and etc.). In order to determine whether a driver behavior 

is normal or not, the extracted features need to be mapped to a decision. Basically, a 

driver’s behavior is considered as being abnormal when a threshold is reached. This can 

be viewed as direct matching method. However, abnormal driver behavior can hardly be 

represented by a linear model and cannot be classified only by a simple matching 

method. Therefore, the machine learning technology is often employed. Different 

nonlinear classifiers are designed and tested in the prior research activities: 

1) K-nearest neighbor (K-NN):  

K-NN is a classification method based on closest training examples in the feature 

space. It is the simplest of all machine learning algorithms: an object is classified by a 

majority vote of its k  nearest neighbors [116].  Sathyanarayana et al. [117] propose a 

system for detecting driver distractions using K-Nearest Neighbors (K-NN) classifier 

(K=1). The accuracies of distraction detection (classification) using K-NN, principal 
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component analysis (PCA) with K-NN and Linear Discriminate Analysis (LDA) with K-

NN are 77.77%, 94.44%, and 88.30% respectively.  

2) Bayesian Networks (BNs):  

BN is a probabilistic model that represents a set of random variables. The nodes 

in it depict random variables and arrows depict conditional relationship between 

variables. There are two main types of BNs: static and dynamic. The former describes the 

situations that are not affected by previous states. The latter includes two Static BNs at 

successive time steps and the current state of variable depends on the state at the previous 

time step. It can modeled as a time-series signals according to a Markov process. BNs 

have been used for human behavior modeling, document classification, information 

retrieval, image processing, and data fusion. One advantage of BNs is that they provide 

an easier form of knowledge representation rather than a complete joint distribution. 

Another one is that they can handle situations with missing data. Their effectiveness has 

been demonstrated in the application of detecting cognitive distraction [118-119].   

3) Decision tree:  

A decision tree is a decision support tool that uses a tree-like graph or model of 

decisions and their possible consequences. It is commonly used in operations research to 

help identify a strategy most likely to reach a goal. Another use is to calculate conditional 

probabilities. It has two advantages: simple to understand and interpret, and easy to 

combine with other decision techniques. In [120], it is used to estimate the level of 

drivers’ cognitive workload from the information of eye glances and driving 

performance. A decision tree is used to estimate the driver’s cognitive workload from eye 

glances and driving performance [44]. 



 

 

24 

 

 

4) Support Vector Machines (SVMs):  

SVMs original proposed by Vapnik in 1995 are based on statistical learning 

theory. In the case of SVMs, a data point is viewed as a p-dimensional vector (a list of p 

numbers), and SVMs can find the best hyperplane that represents the largest separation, 

or margin, between two classes. SVMs can be used to represent nonlinear relationship 

between variables and classifying data [121]. SVMs have been applied to face 

recognition, speech recognition, image recognition, and information retrieval. They enjoy 

several advantages: they can generate both linear and nonlinear models with the same 

efficiency; provide more robust models compared to linear-regression algorithms; and 

can extract information from noisy data. Because of these advantages, they are suitable 

for measuring the level of cognitive distraction [122-123]. In [124], they successfully 

detect cognitive distraction with an accuracy of 81.1% from eye movements and driving 

data. There are detailed discussions about Support Vector Machines (SVMs) used to 

detect distractions in the SAVE-IT project’s final report [125]. The distraction mitigation 

system used in the SAVE-IT project is depicted in Figure 2.6. 

5) Artificial neural networks (ANNs):  

An ANN consists of an interconnected group of artificial neurons. Modern neural 

networks are non-linear statistical data modeling tools. They are usually used to model 

complex relationships between inputs and outputs or to find patterns in data. It has been 

successfully utilized in pattern recognition fields (classification and face identification), 

data processing (filtering, clustering and blind source separation); function 

approximation, or regression analysis (time series prediction and fitness approximation); 

and system identification and control (vehicle control and process control), and financial 
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applications (automated trading systems). One of its main advantages is its ability to be 

used as an arbitrary function to approximate the relationship between inputs and outputs 

from observed data. It does not need prior knowledge of the patterns in the data. Waard et 

al. [126] investigate the feasibility of detecting driver distraction by using ANNs. 

Wollmer et al. [127] uses long short-term memory recurrent ANNs to detect driver 

distraction and they significantly outperforms approaches such as SVM.       

 

 

 

Figure 2.6 The structure of distraction mitigation system used in SAVE-IT [125]. 
 

 

6)  AdaBoost:  

Adaboost is a machine learning algorithm. Its advantages include: it has short 

recognition process time and high classification performance; it is sensitive to noisy data 

and outliers; it has no parameters to tune; it requires no prior knowledge about the weak 

learner and so can be flexibly combined with any other methods; it can be used for text 
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categorization, face detection and object detection [128-129]. Miyaji et al. [109] 

employed Adaboost to detect driver’s cognitive distraction using physiological features. 

7) Hidden Markov Model (HMM):  

An HMM is a statistical Markov model in which the system being modeled is 

assumed to be a Markov process with hidden states. It consists of a number of states and 

transition probabilities and can be considered as the simplest dynamic Bayesian network. 

It has been applied in many fields, for example, speech, handwriting, gesture recognition; 

machine translation; and gene prediction. It is suitable to recover a data sequence that is 

not directly observable and could provide a better performance than conventional 

statistical approaches to model human factors and human behaviors. In [130], it was 

utilized to construct a framework to deal with the driver distraction detection and driving 

maneuver recognition.  

2.6 Lateral Control System 

The Automated Highway System (AHS) is a type of advanced driver assistance system. 

The research on AHS is supported by U.S. Department of Transportation from late 1994. 

AHS has been investigated by a number of research groups, such as National Automated 

Highway System Consortium in the United States, Intelligent Transport Systems (ITS) 

Japan, California PATH in the United States, etc [131-134]. The AHS concept defines a 

relationship between vehicles and the highway infrastructure. It uses vehicle and highway 

control technologies to shift driving functions from the driver/operator to the vehicle 

[51].  

The two basic tasks for the AHS are vehicle longitudinal control and vehicle 

lateral control. Longitude control includes vehicle speed regulation to maintain adequate 
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spacing between vehicles. This type of control is suitable for preview-based and 

anticipatory control. Lateral control mainly refers to automatic vehicle steering to follow 

a track reference [52]. This type of control prevents vehicles deviating from the road. 

This dissertation focuses on the steering lateral control for the purpose of enhancing 

driving safety.  

The lateral control strategies can be categorized into two groups: look-ahead and 

look-down reference systems. The former measures the lateral displacement from the 

lane reference ahead of the vehicle to do the preview-based control. Radar and machine 

vision based systems belong to this category and examples of successful projects using 

look-ahead reference system include VaMoRs-P, VITA-I and II, Carnegie Mellon 

University’s PANS, and California PATH’s stereo-vision based system [133, 135-137]. 

The latter measures the lateral displacement within or very close to the boundaries of the 

vehicle (e.g., straight down from the front bumper of the vehicle). For example, magnetic 

markers reference system and electric wire are its examples [54-55,138-139]. Magnetic 

markers use different encoding techniques to achieve the preview of road geometry. 

Electric wire is used to measure a vehicle’s lateral state via the sensing of a magnetic 

field. Compared with the look-ahead reference system, a look-down reference system has 

some advantages [58, 79]:  

1) It is reliable, yielding accuracy and good performance under any weather or 

light condition. 

2) Other vehicles will not block the lateral displacement sensing signal. 

Some steering control systems based on look-down reference system have been 

proposed in the literature [53-56]. More specifically, a general structure of the lateral 
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steering control system based on look-down reference system for lane keeping is shown 

in Figure 2.7 [57].  

 

Figure 2.7 Structure of lateral steering control system [57]. 

Most look-down reference steering control system reported in the literature can 

achieve only low speed of less than 20m s , i.e. 45mph  [53-55, 56]. To extend the look-

down reference systems to practical conditions of an automated highway system 

environment with speeds above ( )30m s 67.5mph≃ , [58] and [79] proposed two new 

systems respectively. Both can achieve high speed levels while still keeping a 

comfortable ride. In [58], an absolute GPS is introduced to obtain road geometry. 

However, the information of road curvature values are based on pre-recording GPS 

coordinates rather than real-time GPS readings, which means higher implementation 

costs and is not very flexible to situations like changes of road geometry. Another 

disadvantage of curvature estimation in [58] is that large sudden changes are introduced 

into the control loop resulting in poor ride comfort to the car passengers. In [79], a robust 
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automatic steering control system is investigated based on the road geometry information 

encoded in magnetic markers and lateral displacements from front and rear sensors.  

However, this approach utilizes a gyroscope to record the steering angles of the vehicle 

and requires a large amount of magnetic markers installed on a highway, which means 

higher costs. In addition, the encoding of the road information needs to be implemented 

in advance in this system. This is not flexible to changes of road geometry. Moreover, 

binary polarity coding technique used in this approach is susceptible to errors. 
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CHAPTER 3 

VEHICLE DYNAMICS 

This chapter explains fundamental concepts of vehicle dynamics by introducing 

single-track model and two-wheel extended nonlinear model which are used in this 

research work. The introduced models will help to form the basic idea of a vehicle’s states 

and parameters that are related to the driving behaviors and vehicle motions.  

3.1 Single-track Model 

The four-wheel car steering model featured in the horizontal plane is described by the 

“single-track model”, which is also named as “bicycle model”. The bicycle model is a 

standard representation in the area of ground vehicle dynamic. This model is obtained by 

lumping the front wheels into one wheel in the center line of the car. The same is done with 

the two rear wheels. The assumptions for the model are that slip angles on the inside and 

outside wheels are approximately the same and the effect of the suspension roll is small. 

These assumptions hold well for most typical driving situations. Besides, the roll, pitch and 

heave dynamics are not modeled. This model in this dissertation is used for lateral steering 

control [58].  

 

Figure 3.1 Single-track Model. 
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In Figure 3.1, 
f

δ is the steering angle, v  is the vehicle velocity at center of gravity 

(CG) , β represents the side slip angle between center line and velocity, ψ is the heading 

angle, and ψɺ ( r )denotes the yaw rate. sfd and srd are the lateral displacements of vehicle 

from the track reference with the front and rear sensors placed at distances sfl and srl  from 

the CG. refρ  is the curvature of the track, which is the inverse of the track radius. The state 

space representation of the vehicle dynamics then follows from the following fourth order 

model: 
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The matrix elements ija and ijb are defined as: 

( )11 r fa c c mv= − + ɶ  

( ) 2

12 1 r tr f tfa c l c l mv= − + + ɶ  

( )21 r tr f tfa c l c l J= + ɶ  

( )2 2

22 r tr f tfa c l c l Jv= − − ɶ

 

11 fb c mv= ɶ  

21 f tfb c l J= ɶ  

m m µ=ɶ  

J I µ=ɶ  
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where, µ  is common road adhesion factor with 1µ =  for dry road and 0.5µ =  for wet 

road. The vehicle mass m is normalized by µ , i.e., m m µ=ɶ  is a “virtual mass”. 

Similarly, the moment of inertia I is normalized as J I µ=ɶ . 

If considering the lateral displacements as state variables ( sfd and srd ), the vehicle 

model state-space function can be represented in equation (3.2) by applying a 

transformation from equation (3.1). 
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The entries of the matrices are given by 
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24

4 4

sf sfsf
l l g gg l g

a
mvg Ivg

++
= − +  

12
41

4 4

srl gg
a

mg Ig
= +  

( )1 31 2
42

4 4

sr srsr
l l g gg l g

a
mvg Ivg

−−
= −  

( )1 31 2

44

4 4

sr sfsf
l l g gg l g

a
mvg Ivg

++
= − −  

21

1 sf tf

f

l l
b c

m I
µ

 
= + 

 
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41

1 sr tf

f

l l
b c

m I
µ

 
= − 

 
 

where, 

( )1 f tf f tfg c l c lµ= −  

( )2 f rg c cµ= +  

( )2 2

3 r tr f tfg c l c lµ= +  

4 sf srg l l= +  

3.2 Two-wheel Extended Nonlinear Model 

 

Figure 3.2  Nonlinear extended two-wheel vehicle model [61]. 

The extended two-wheel model is selected for two main reasons:  

1) The longitudinal tire force can be directly evaluated instead of being modeled 

based on tire cornering stiffness and sideslip angle. 

2) It is a simplified model by neglecting roll angle, pitch angle, and the lateral 

motion, and groups the front and rear wheels as a single wheel.  
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This model has also been applied to represent the driver model in the commercial 

car simulation software veDYNA [59-60]. The nonlinear extended two-wheel vehicle 

dynamic model is represented in Figure 3.2. Table 3.1 summarizes the notations used to 

describe the dynamic variables of the nonlinear model and vehicle characteristics [61]. 

Table 3.1 Notations of Two-wheel Vehicle Model 

 

Symbol Definition 

v
δ  steering angle 

ψɺ  yaw rate 

β  sideslip angle 

ψ  yaw angle (heading angle) 

v  longitudinal velocity 

v
S  front lateral force 

h
S  rear lateral force 

H  rear longitudinal tire force 

V  front longitudinal tire force 

T  air resistance force 

X  X-coordinate of the center of gravity (CG) 

Y  Y-coordinate of the CG 

v
l  distance from front axel to CG 

h
l  distance from rear axel to CG 

m  vehicle mass 

I  moment of inertia 
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In order to derive the state space equations for the simplified vehicle model, the 

angles vδ  and β are assumed to be small and the front longitudinal force V is neglected. 

Then, the nonlinear mode can be described by equation (3.3). 

( ) ( )

( )

( )

( )
( )

1 1
3

4 44 4

3

4 2 1

4 2 1

1 11 1

0 0

0

11
0

0 0cos

0 0sin

h

vh
h

T x x S x x
x

mx m xm x m x

x

ll
S x

x wII

T x
mm

x x x

x x x

   − −+ −   
   
   
   
   −= +   
   
   −
   
   −
   

−    

ɺ                                (3.3) 

The six-dimensional state vector is: 

[ ] [ ]' '

1 2 3 4 5 6, , , , , , , , , , .x x x x x x x v X Yβ ψ ψ= = ɺ  

The two-dimensional input vector w  includes the front lateral force ( )vS x  and 

longitudinal force H : 

[ ] ( )
''

1 2 vw w w S x H = =   . 

The lateral force ( )vS x  generated by the front tire is dependent on the steering angle vδ . 

More specifically, 

( ) 1 3

4

v
v v v

l
S x x x

x
δ

 
= Γ − + 

 
                                             (3.4)                           

The rear force ( )hS x  and the air resistance ( )T x can be respectively described by 

equations (3.5) and (3.6): 

( ) 1 3

4

h
h h

l
S x x x

x

 
= Γ + 

 
                                                       (3.5) 
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( ) 2

4
2

L
wT x c Ax=
ℓ

.                                                            (3.6) 

 

 

Figure 3.3  Characteristic curve of the tires [61]. 

 

The air resistance ( )T x depends on the aerodynamic resistance coefficient wc , the 

atmospheric density Lℓ , and the surface of the vehicle’s cross section A . The functions 

vΓ  and hΓ  represent the characteristic curves of the tires, and they are plotted in Figure 

3.3. They are determined by the same characteristic line, which describes the lateral force 

values depending on the argument. For small values of argument, smaller that maxα , a 

linear relation of the side force can be recognized and when values of argument are greater 

than maxα , the side force decreases. Furthermore, at maxα  the side force value reaches its 

maximum value. The area between the maxα  values is described as the ascending part and 
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the area outside this area is the descending part of the characteristic line [61]. The 

maximum value of maxα is approximated to 6.5 deg [60].  
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CHAPTER 4 

LONGITUDINAL TIRE FORCE ESTIMAITON  

4.1    Introduction 

In this chapter, a driver behavior reconstruction problem is addressed. More specifically, 

the task in this study is to estimate the longitudinal tire force which can be transferred to the 

corresponding throttle/brake positions under the assumption that the steering angles are 

known.  

An advanced driver assistance system, utilizing information about the driving 

operation behavior (steering angle and throttle/brake positions) and/or vehicle states 

(velocity, acceleration, yaw angle, yaw rate, sideslip angle, etc.) can determine potentially 

dangerous situations and alert the driver. These critical vehicle parameters can be directly 

obtained from the controller area network bus (CAN-bus) in some cars. Although the 

parameters can also be collected by installing additional multimodal sensors (such as GPS 

receiver, steering angle sensors, throttle/brake pedal position sensors, cameras, 

microphones, and etc.), it is inconvenient and costly for the general drivers. Therefore, in 

this research, a low cost GPS receiver is used to acquire four types of signals (longitudinal 

velocity, yaw angle, lateral and longitudinal positions of the vehicle) instead of using the 

high cost vehicle data acquisition equipment. A low cost 1Hz GPS receiver is used as the 

vehicle data acquisition equipment. It is obvious that the values of the measurements are 

discrete and it is assumed that the steering angles are already known. The aim is to answer 

the question on how the longitudinal tire force can be deduced from the partly discrete 

knowledge. In this work, a longitudinal force estimation scenario is developed for the 

nonlinear extended two-wheel vehicle dynamic model only according to the GPS 
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information. Firstly, two states, i.e. the sideslip angle and the yaw rate are estimated since 

they are not available from GPS measurements. Secondly, an optimization scheme is 

proposed to estimate the longitudinal tire force. Finally, the estimation results can validate 

the proposed methods by comparing to the reference longitudinal tire force command. 

For the driver assistance system, the wireless communications technology includes 

vehicle data communication from vehicle to vehicle and from vehicle to infrastructure 

(e.g., road side station) [63]. The technology enables a number of vehicle safety 

applications that mainly focus on improving crash prevention performance and driving 

comfort. The Society of Automotive Engineers’ (SAE) common vehicle-to-vehicle safety 

message set includes warnings (such as post-crash warning, lane change warning, wrong 

way driver warning, etc.) that are transmitted between vehicles to enhance the safety of 

driving [64-65]. However, a vehicle-to-vehicle or vehicle-to-station communication 

infrastructure is not well established at this point and with the volume of vehicular flow, 

communication bandwidth conservation is an important concern. A vehicle-to-station 

scenario is considered, in which, the GPS data are transmitted from a vehicle to a road side 

station when the vehicle is moving along a certain section of the road. The station 

implements vehicle states estimation and the longitudinal tire force estimation tasks, and 

reproduces the vehicle’s interpolation motion every second. The station can also determine 

the driver behaviors and send the decision back to the vehicle and/or other interested 

vehicles that would help other drivers avoid the potential dangerous situation. 

Note that the sideslip angle and yaw rate cannot be measured by the GPS receiver. 

Since the whole vehicle states are necessary to reconstruct the longitudinal tire force, the 

sideslip angle and yaw rate have to be estimated based on the known discrete GPS data 
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points. This is precisely the vehicle state estimation problem. Many methods have been 

developed to solve the problem [66]. For example, Extended Kalman Filter (EKF) has been 

employed to estimate the dynamic states [67] and most of the EKF methods are designed 

based on the four wheel vehicle model. In this research, an estimation methodology for 

nonlinear extended two-wheel vehicle model [61] is derived by implementing an Kalman 

Filter estimation method. Then, the vehicle states estimation results together with the GPS 

signals are further used to calculate the longitudinal tire force. Since the vehicle states 

obtained by the GPS receiver and estimated by the Kalman Filter are both discrete, the 

procedure to estimate the longitudinal tire force can be viewed as a piecewise 

time-independent optimization problem. In the optimization scheme, the optimal 

longitudinal tire force is calculated by considering the kinematic constraints.  

4.2  Approximated Two-wheel Vehicle Dynamics       

The vehicle model used here is the nonlinear two-wheel vehicle model described in 

equation (3.3), Section 3.2. Since the tire forces are determined by a characteristic curve 

shown in Figure 3.3. The function of vΓ  and hΓ  defined in equations (3.4) and (3.5) have 

to be approximated.   

The assumptions adopted are that the angles 
v

δ  and β are small. Besides, the 

actual values of 3

4

hl x
x

and 3

4

vl x
x

are also small because the value of vehicle’s velocity is 

large as compared to that of 3hl x and 3vl x . Assume that the arguments of vΓ  and hΓ  

belong to the ascending area, i.e., 1 3

4

6.5degh
v

l
x x

x
δ− + < and 1 3

4

6.5deghlx x
x

+ < . Then, 
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both the functions vΓ  and hΓ can be approximated by linear functions, which are 

described in the following. 

( ) 1 3

4

v
v v v

l
S x x x

x
γ δ

 
= − + 

 
                                                     (4.1) 

( ) 1 3

4

h
h h

l
S x x x

x
γ

 
= + 

 
                                                           (4.2) 

where the constants vγ and hγ  are the slope coefficients for the two linear functions, 

respectively. Under the above approximation, the steering angle vδ and the longitudinal tire 

force H can be used as the new input vector for the vehicle model. The vehicle model 

described in equation (3.3) can be rewritten as 

( ) ( )x A x B x u= +ɺ                                                          (4.3) 

where, 

v
u

H

δ 
=  
 

 

( )

( ) ( )

( )
( )

1 3 4 1 3 44 1
3

4 4

3

1 3 1 3

4 4

2

4

4 2 1

4 2 1

2

1

2

cos

sin

h h v vw L

h h v v v

w L

x l x x x l x xc Ax x
x

m mx mx

x

l l l l
x x x x

A x I x I x

c Ax
m

x x x

x x x

γ γ

γ

 + −
+ − − 

 
 
 

    
− + + −    =     

 
− 

 
− 

 − 

ℓ

ℓ
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( )

4 1 4

0 0

0

0 1

0 0

0 0

v

v v

mx x m x

l I
B x

m

γ

γ

− − 
 
 
 

=  
 
 
 
 

 

4.3 Sideslip Angle and Yaw Rate Estimation 

In order to estimate the longitudinal force, it is necessary to measure the values of all the 

variables. The GPS receiver is used to measure the velocity, yaw angle, X-position and 

Y-position. The sideslip angle β  and the yaw rate ψɺ are not available and the vehicle state 

observer needs to be designed. The continuous observer used in [61] cannot be used in this 

case because the data collected by the GPS is not continuous. In addition, other discrete 

EKF methods based on four-wheel model [66-67] are also not suitable for this study. 

Therefore, the discrete-time Kalman Filter [68-69] is developed to estimate the sideslip 

angle and  the yaw rate in this case.  

To simplify the estimation problem, a subsystem is considered in which the state 

vector is composed of the sideslip angle, the yaw angle, and the yaw rate.  It is also 

assumed that the fourth variable, vehicle velocity, is constant. This subsystem model can 

be simplified to the following time varying nonlinear model from equation (4.3). 

1

2

2 2

0 1
2

0 0 1 0 0

00

w L h v h h v v v

v vv v h h v v

c Av l l x

m mv mv mv mv

x x u

ll l l l

II Iv

y x

γ γ γ γ γ

γγ γ

 + −  − − − −   
   

= +   
   − +   −
    

=

ℓ

ɺ
                       (4.4) 

where [ ]',vu Hδ=  and [ ] [ ]' '

1 2 3, , , ,x x x x β ψ ψ= = ɺ .  
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In order to develop a discrete-time KF, the dynamic model of equation (3.4) has to 

be discretized. The discretization is performed by a forward Euler approximation.  The step 

size is 1T s∆ = , because the receiver updates the data every second. The nonlinear 

discrete-time system of the form can be obtained: 

( )1 ,k k k

k k k

x f x u

y x n

+ =


= +
                                                            (4.5) 

where kn is the measurement noise vector, which is related to the accuracy of the GPS 

receiver. It is supposed to be non-intercorrelated, stationary, white and Gaussian with 

known covariance. The covariance of kn is denoted as kR . 

The discretized kinematic of the vehicle velocity is 

2

1

1

2

k
k k w L k

H
v v c Av

m m
+ = − +ℓ                                               (4.6) 

Then, the force at each time instant k  has the form of  

( ) 2

1

1

2
k k k w L kH m v v c Av+= − + ℓ .                                           (4.7) 

There is thus only one input ,v kδ  left if replacing kH  with the above expression. The 

mathematical description of discrete subsystem yields to a linear case,  

1 ,k k k k v k

k k k

x A x B

y x n

δ+ = +


= +
                                                     (4.8) 

where, 

[ ]' '

1, 2, 3,
, , , ,

k k k k k k k
x x x x β ψ ψ = =  ɺ  
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1

2

2 2

2 0 1

0 1 1

0 1

h v k h h v v

k k k

k

v v h h v v

k

v l l

mv v mv

A

l l l l

I Iv

γ γ γ γ

γ γ

+ + −
− − − 

 
 =
 

− + −  

 

'

0v v v
k

k

l
B

mv I

γ γ 
= − 
 

 

In real situation, the measurements are corrupted by noise. Denote  

,k k knψψ ψ= +ɶ as the measurements obtained by the GPS. ,knψ is the measurement noise for 

the yaw angle. Combining the GPS information and the linear subsystem model of 

equation (4.4), the measurement vector ky is defined by: 

1. 2 1 ,k k k k v ky a b c dψ ψ ψ δ+ += + + +ɶ ɶ ɶ                                              (4.9) 

2,k ky ψ= ɶ                                                          (4.10) 

3, 1k k ky ψ ψ+= −ɶ ɶ                                                      (4.11) 

where the coefficients , , ,a b c d are determined by equation (4.8). 

( )v v ha I l lγ= −                                                        (4.12) 

( ) ( )2 2 2h v v k k v v hb l l Iv v l lγ γ= + − −                                        (4.13) 

( ) ( )2 2

h v v k k v v hc l l Iv v l lγ γ= − + − −                                       (4.14) 

( )v v v v hd l l lγ γ= − − .                                               (4.15) 

 

Under these hypotheses, a discrete Kalman Filter can be applied to the estimation 

problem. The Kalman Filter algorithm is recursive and operates in two steps: a prediction 

step and an update step.  At time step k , { }| 1
ˆ |k k k kx E x y y= …  is a posteriori estimate of 
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the state, which is the mean of the state vector conditioned on the measurements from time 

step 1 to time step k . ( )( ){ }'

| | | 1
ˆ ˆ | ,k k k k k k k k kP E x x x x y y= − − … is the covariance of this 

estimation. kR is the measurement noise covariance. The operation of Kalman filter for the 

discrete model of equation (4.4) is shown in Table 4.1.  

 

Table 4.1  The Operation of Kalman Filter 

 

Predict (Time update ) 

Predict the state ahead                        

            
| 1 1| 1 , 1

ˆ ˆ
k k k k k k v k
x A x B δ− − − −= +  

Predict the error covariance ahead      

'

| 1 1| 1k k k k k k
P A P A− − −=  

Correct (Measurement update) 

Compute the Kalman gain            

( ) 1

| 1 | 1k k k k k k
K P P R

−

− −= +  

Update estimate with measurement 
k
y   

| 1| 1 1| 1
ˆ ˆ ˆ
k k k k k k k k
x x K y x− − − − = + −   

Update the error covariance            

'

| | 1 | 1k k k k k k k k
P P A K P− −= −  

4.4 Estimation of Longitudinal Tire Force 

In this section, the task is to calculate the continuous longitudinal tire force which makes 

the trajectory output of the nonlinear continuous model in equation (4.3) follow the actual 
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trajectory as accurately as possible. A piecewise time-independent optimization scheme is 

developed under the kinematic constraints of the vehicle.  

Denote [ ], , , , 1, ,k k k kX Y v kψ ∀ ∈ɶ ɶ ɶɶ … ℓ as the measurements of the GPS, and ˆ ˆ,k kβ ψɺ as 

the estimation results from the Kalman filter. Let the vector 
'

ˆ ˆ, , , , ,k k k k k k kp v X Yβ ψ ψ =  
ɶ ɶɶ ɺ ɶ  

be the prior information of the vehicle states. The output of the nonlinear continuous model 

in equation (4.3) is [ ]' '

1, 2, , 3,, , ,k k k k k k ky y y y v X Y = =   at the end of the time segment k . 

Firstly, the states of the vehicle are initialized with 1kp −  at the beginning of each time 

segment k . Secondly, the continuous model in equation (4.3) is simulated for one second 

for each possible longitudinal force command, ( ) , -1k kH t h k t k= ≤ < . At the end of the 

time segment k , a cost function is then evaluated for all the possible force commands, and 

the force which minimizes this cost function is chosen. Figure 4.1 shows the block diagram 

of proposed scheme. 

   

Figure 4.1. Block diagram of the proposed method. 
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optH



 

 

47 

 

The cost function is the error term that combines both the position offsets from the 

actual trajectory and the velocity error from the actual value, because the tire force has 

impacts on both the vehicle’s position and velocity. The particular form of the cost function 

in time period k is as follows: 

( ) 2 2

, ,k k position k v v kC h E r E= +                                           (4.16) 

where positionE and vE are the position offset and the velocity error of the vehicle relative to 

the point measured by the GPS on the trajectory. Note that there is a length parameter vr in 

the cost function which is used to scale the velocity error relative to the position error. 

positionE  and vE  can be obtained by the following equations: 

( ) ( )2 2

, 2, 3,position k k k k kE y X y Y= − + −ɶ ɶ                            (4.17) 

, 1,v k k kE y v= − ɶ                                                           (4.18) 

The optimization algorithm can be summarized as: 

( )
( ) ( ) ( )

2 2 2

2, 3, 1,

1 1

min
k

k k k k v k k
h t

k k

y X y Y r y v
= =

 − + − + −  ∑ ∑
ℓ ℓ

ɶ ɶ ɶ                      (4.19) 

subject to the constraints: 

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

[ ]

( )

'

4, 5 6

0,

0, 1

,

1 1, ,

1

k

k k

x t A x t B x t u t

y t x t x t x t

t k k

t

x t p −

 = +


 =  
= − ∀ ∈

∆ =

=

ɺ

… ℓ
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where 0,kt is the start time at each time segment k , and t∆ is the length of the time 

segment. Finally, the solution of the optimization problem is 

( ) [ ]{ }, 1 , 1, ,opt

opt kH h t k t k k= − ≤ < ∀ ∈ … ℓ .                                  (4.20) 

4.5  Simulation Results 

4.5.1 Model Simulation 

Simulations were carried out using the Matlab Simulink software. The numerical values of 

the vehicle characteristics and the parameters used to simulate the model are shown in 

Table 4.2. 

Table 4.2  Values of Parameters 
 

Symbol Definition Values 

v
l  distance from CG to front tire 1.0065 m 

h
l  distance from CG to rear tire 1.4625 m 

m  vehicle mass 1550 kg 

I  moment of inertia 2200 2kgm  

v
γ  slope of front lateral force function 198000 N / rad  

h
γ  slope of rear lateral force function 470000 N / rad  

w
c  the aerodynamic resistance coefficient 0.2 

L
ℓ  atmospheric density 1.29

3kg / m  

A  vehicle’s cross-section surface 1.5
2m  

 

Figure 4.2 shows the input commands of the model, which consists of the steering 

angle and the longitudinal tire force.  
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Figure 4. 2 The reference commands of model simulation. 

 

It is assumed that a 1Hz GPS is used to measure the vehicle states: yaw angle, 

velocity, X-position, and Y-position. The model output states are sampled at the rate of 1 

Hz. The sampled results corrupted by the additive Gaussian white noise (AWGN) can be 

viewed as the measurements obtained by the GPS. A typical group of accuracy values of 

the GPS receiver are adopted:  

• The velocity accuracy is about 0.25m/s± ;  

• The heading accuracy approaches 1deg± ;  

• The position accuracy is around 3m± .  

The discrete vehicle states with the above random noises included are shown in Figure 4.3.  
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Figure 4.3 (a). Noisy sampled vehicle states (velocity and yaw rate), viewed as GPS 

measurements. 
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Figure 4.3 (b) Noisy sampled vehicle states ( X and Y coordinates), viewed as GPS 

measurements. 
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4.5.2 Sideslip Angle and Yaw Rate Estimation 

Using Kalman estimator provided in Section 4.3, the sideslip angle and yaw rate estimation 

results are given in Figure 4.4. Both these two estimates show great accuracy. The 

estimation errors are given in Figure 4.5.  
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Figure 4.4 Sideslip angle and yaw rate estimation results. 
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Figure 4.5 Sideslip angle and yaw rate estimation error. 
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4.5.3 Longitudinal Tire Force Estimation 

To evaluate the performance of the piecewise optimization strategy described in Section 

4.4, Figure 4.6 compares the optimal longitudinal tire force estimation results with the 

reference input command.   
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Figure 4.6 Longitudinal tire force estimation. 

 

Based on the longitudinal tire force estimation result, the trajectory of the car can be 

reconstructed. In another word, the inner points of each time segment can be reproduced by 

using the estimated tire force as input. This procedure is carried out in the road side station. 

Thus, the continuous information about the driver behaviors and vehicle status are known 

during each second. Figure 4.7 shows the vehicle position error between simulated and 

reconstructed trajectory. During each second, one hundred inner points are reconstructed.  
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Figure 4.7 Vehicle trajectory error on the X and Y directions. 

 

4.6 Summary 

In this chapter, the effort is to develop a novel framework to derive the driver behavioral 

information from GPS information and vehicle model. The estimation framework includes 

two parts: vehicle states Kalman Filter estimator and a piecewise optimizer. The 

performance of the simulation results confirms the feasibility of the proposed approach.  
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CHAPTER 5 

DRIVER BEHAVIOR CLASSFICATION 

5.1   Introduction 

This chapter describes a driver behavior classification system, which utilizes information 

about the driving operation behavior (steering angle and throttle/brake positions) and 

vehicle states (velocity, acceleration, yaw angle, yaw rate, sideslip angle, etc.) to determine 

whether the driving behavior is abnormal. To avoid the drawback that installing 

multimodal sensors which may be inconvenient and costly for the general drivers, a low 

cost GPS receiver is used to acquire four types of signals (longitudinal velocity, yaw angle, 

lateral and longitudinal positions of the vehicle) instead of using the high cost vehicle data 

acquisition equipment.  

A vehicle-to-station scenario is considered, in which, the GPS data are transmitted 

from a vehicle to a roadside station when the vehicle is moving along a certain section of 

the road. The station implements vehicle states estimation task and reproduces the 

vehicle’s interpolation motions every second. Then, the station can determine the driver 

behaviors (normal or abnormal) by using a Gaussian Mixture Models (GMM)-based 

classifier and send the detection result back to the vehicle and other interested vehicles that 

would help drivers avoid the potentially dangerous situation. 

Compared with other pattern recognition methods mentioned above, GMM has the 

following distinct advantages when used in classifying driving behaviors:  

1) A linear model can seldom represent driver behaviors. GMM can estimate the 

probability density distribution of nonlinear model.  
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2) GMM belongs to the class of “unsupervised” classifier which does not require 

prior knowledge. Although nobody knows exactly how the driver’s error impairs driving 

performance, GMM method may be able to extract the features of this relationship.  

3) GMM method produces more robust performance than traditional learning 

methods 

 GMM has been used to analyze the driving behavior in recent research. For 

example, [140] used GMM method to detect distracted driving based on in-vehicle 

CAN-bus data. A GMM framework was developed to model the driving behaviors with 

driving signals (e.g., following distance, vehicle speed) and model pedal operation with 

features extracted from raw pedal operation signals [141]. Authors modeled driving 

behavior employing GMM based on driving signals such as brake and accelerator pedal 

pressure, engine RPM, vehicle speed and steering wheel angle in [142]. In the above 

research, the critical driving information can be obtained through different methods. For 

instance, driving information can be directly obtained from the CAN-bus in some cars 

[140]. The CAN-bus signal contains real-time vehicle information in the form of messages 

integrating many modules. Usually, the open connector of the CAN-bus is On-Board 

Diagnostics (OBD-II). However, the CAN-bus signal is not available on the OBD-II 

connector for all cars. Furthermore, the database used to decode the CAN-bus signal may 

not be available to the general public or the cost for the database and data acquisition 

software maybe prohibitive. In addition, the driving information can also be collected by 

installing additional multimodal sensors, such as gyroscope, steering angle sensors, 

throttle/brake pedal position sensors, cameras, microphones, and other sensors [141-142]. 

It is inconvenient and costly for the general drivers to install these devices. In order to 
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lower the cost and simplify the procedures of data acquisition, this paper uses a low cost 

GPS receiver to acquire four types of signals (longitudinal velocity, yaw angle, lateral and 

longitudinal positions of the vehicle) instead of using the high cost vehicle data acquisition. 

The aim is to reproduce the driver’s input commands from the partial discrete knowledge 

of the vehicle data and use that to classify the driving behavior.  

Note that the sideslip angle and yaw rate cannot be measured by the GPS receiver. 

Since the whole vehicle states are needed to reconstruct the driver’s input commands (e.g., 

steering angle and the longitudinal tire force), the sideslip angle and yaw rate have to be 

estimated based on the known discrete GPS data points. This is precisely the vehicle state 

estimation problem. In this paper, the nonlinear extended two-wheel vehicle model is 

discretized firstly. The sideslip angle and yaw rate can be directly calculated according to 

the difference equations from the discrete GPS data. Next, the vehicle states estimation 

results together with the GPS signals are further used to estimate the driver’s input 

commands (the steering angle and longitudinal tire force). Since the vehicle states are 

discrete, the procedure can be viewed as a piecewise time-independent optimization 

problem. The length of the time-segment is the same as the period during which the GPS 

signal is updated. For example, the time-segment is 1s when using GPS receiver with 1Hz 

updating rate. In the optimization scheme, the optimal steering angle command and 

longitudinal tire force are calculated by considering the kinematic constraints of the 

vehicle. Certain features are extracted from the estimated steering and longitudinal tire 

force. Based on these features, the driving behaviors are divided into two classes by a 

GMM-based classifier: normal or abnormal.      
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5.2   Vehicle Model Simulation 

The vehicle model and the numerical values of the vehicle characteristics used here are the 

same as those in Section 4.2.   
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Figure 5.1  The reference commands of model simulation. 

 

Figure 5.2  The trajectory of a left turn. 
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Consider the situation when the vehicle makes a left turn, the driver turns the 

steering wheel to make a left angle and presses the brake pedal to reduce the speed. The 

reference input commands can be found in Figure 5.1. Using the vehicle model and the 

vehicle characteristic, a left turn trajectory is simulated, which is shown in Figure 5.2.  

In real situation, it is assumed that a low cost 1Hz GPS receiver is used to obtain the 

information: yaw angle, velocity, X -position, and Y -position. As we know, GPS can 

provide the measurements of the vehicle’s heading angle, velocity, the latitude, and 

longitude of the location of the vehicle. In order to obtain the driving data for the vehicle 

coordinate system ( , ,X Yψ ), the GSP measurements for initial point of a vehicle (origin of 

the vehicle’s coordinate plane) should be used as a reference.  It is assumed that the GPS 

measurements of the vehicle’s origin are ( )0 0 0, ,X Yψ and the GPS measurements of the 

vehicle’s current position are ( ), ,c c cX Yψ .  Then, the yaw angle ψ is the difference of the 

GPS measurements of the heading angle between the current position and the origin of the 

vehicle, e.g., 0cψ ψ ψ= − ; the vehicle’s position for the vehicle coordinate system ( ,X Y ) 

can be obtained by converting the geographical coordinates (latitude and longitude) of the 

initial position and the current position into the geographical distance [83].  

For computer simulation, the plant outputs for the vehicle coordinate system are 

simulated. The model outputs are sampled at the rate of 1 Hz. The sampled results are 

corrupted with additive Gaussian white noise (AWGN) which can be viewed as the errors 

in the GPS measurements (expressed in the vehicle coordinates system). Denote 

[ ], , , 1, ,k k k kv X Y kψ ∀ ∈ɶ ɶɶ ɶ … ℓ  as the outputs of the vehicle model at the thk  second. 

,k k knψψ ψ= +ɶ  
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,k k v kv v n= +ɶ  

,k k X kX X n= +ɶ  

,k k Y kY Y n= +ɶ  

where ,knψ , ,v kn , ,X kn , and ,Y kn are the measurement noise for the velocity, yaw angle, X 

coordinate and Y coordinate, respectively, which are related to the accuracy of the GPS 

receiver. The measurement noise is assumed to be non-intercorrelated, stationary, white 

and Gaussian with known covariance. Here, a typical group of accuracy values of the GPS 

receiver are adopted:  

• The velocity accuracy is about 0.25m/s± ;  

• The heading accuracy approaches 1deg± ;  

• The position accuracy is around 3m± .  

The discrete vehicle states with the random noises included are shown in Figure 5.3.  
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Figure 5.3(a) Noisy sampled vehicle states (velocity and yaw rate). 
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Figure 5.3(b) Noisy sampled vehicle states ( X and Y coordinates). 

5.3  Sideslip Angle and Yaw Rate  

In order to determine the sideslip angle and the yaw rate, the dynamic model of equation 

(4.3) has to be discretized. The discretization is performed by a forward Euler 

approximation.  The forward Euler method discretizes the continuous system 

( ) ( )( ) ( )0 0, ,x t f t x t x t x= =ɺ by using the first two terms of the Taylor expansion of x , 

which represents the linear approximation around the point ( )( )0 0,t y t . One step of the 

Euler method from kt to 1k kt t t+ = + ∆  is ( )1 ,k k k kx x tf t x+ = + ∆ . In this case, the step size 

is 1t s∆ = because the GPS receiver updates the data every second (sampling rate is 1 Hz). 

Then, the nonlinear discrete-time system is obtained in the form of 

( ) ( )

[ ]
1

' '

1, 2, , 3, 4,, , , , ,

k k k k k

k k k k k k k k k

x x A x B x u

y y y y y v X Yψ

+ = + +

 = = 
                                       (5.1) 
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According to the discretized model above, the yaw rate can be calculated by using  

1k k kψ ψ ψ+= −ɺ                                                                    (5.2) 

The sideslip angle is determined from the expression 

1

1

arctan k k
k k

k k

y y

x x
β ψ +

+

 −
= −  − 

                                                 (5.3) 

In real situation, the measurements are corrupted by noise. Denote that discrete estimations 

of the sideslip angle is ˆkβ  and the yaw rate is ˆkψɺ . Therefore, the estimation results will be 

obtained from the following two estimators: 

1

1

ˆ arctan k k
k k

k k

y y

x x
β ψ +

+

 −
= −  − 

ɶ ɶ
ɶ

ɶ ɶ
                                              (5.4) 

1
ˆ

k k kψ ψ ψ+= −ɺ ɶ ɶ                                                                     (5.5) 

Consider the measurements shown in Figure 5.3. Using the estimators provided in 

equations (5.4) and (5.5), the sideslip angle and yaw rate estimation results are given in 

Figure 5.4. The solid lines mark the simulated results from simulation of the continuous 

nonlinear model. The dots represent the estimated results. It is noted that both of these two 

estimates are quite accurate.  

As mentioned before, this estimation procedure is carried out in the roadside station. 

When the measurements of two consecutive seconds (say k  and 1k +  second) are 

obtained, the state estimates at the previous second ( k  second) are calculated. Therefore, 

the state estimators are real time.  
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Fig 5.4 Sideslip angle and yaw rate estimation. 

5.4  Piecewise Optimization Scheme 

In this section, the task is to estimate the continuous driver’s input commands which 

include steering angle and longitudinal tire force. The goal is to find an optimal solution of 

input commands which makes the trajectory output follows the simulated trajectory as 

accurately as possible. These are the kinematic constraints of the vehicle. A real time 

piecewise optimization scheme under such constraints is developed to solve this estimation 

problem.  

    At the end of the time segment k  , [ ], , , , 1, ,k k k kX Y v kψ ∀ ∈ɶ ɶ ɶɶ … ℓ  are the 

measurements of the GPS receiver, and ˆ ˆ,k kβ ψɺ as the estimation results. Let the vector 

'
ˆ ˆ, , , , ,k k k k k k kp v X Yβ ψ ψ =  

ɶ ɶɶ ɺ ɶ  be the prior information of the vehicle states. At the end of the 

time segment ,k the output of the discrete model in equation (5.1) is 
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[ ]' '

1, 2, , 3, 4,, , , , ,k k k k k k k k ky y y y y v X Yψ = =  . Firstly, the states of the vehicle are initialized 

with 1kp −  at the beginning of each time segment k . Secondly, the continuous model in 

equation (4.3) is simulated for one second for each possible steering angle command 

( ), , , -1v k v kt k t kδ∆ = ≤ < and longitudinal force command, ( ) , -1k kH t h k t k= ≤ < . At the 

end of the time segment k , a cost function is then evaluated for all of the possible input 

commands, and the input commands that minimize this cost function are chosen.  

The cost function is the error term that combines both the position offsets from the 

actual trajectory and the velocity error from the actual value. The particular form of the 

cost function in time period k is as follows: 

( ) ( )( ) 2 2

, , ,,k v k k position k v v kC t H t E r E∆ = +                                          (5.6) 

where positionE and vE are the position offset and the velocity error of the vehicle relative to 

the data point k  measured by the GPS receiver on the trajectory. Note that there is a length 

parameter vr in the cost function which is used to scale the velocity error relative to the 

position error. positionE  and vE  can be obtained by the following equations: 

( ) ( )2 2

, 3, 4,position k k k k kE y X y Y= − + −ɶ ɶ                                       (5.7) 

, 2,v k k kE y v= − ɶ                                                                   (5.8) 

The optimization algorithm can be summarized as: 

( ) ( )
( ) ( ) ( )

,

2 2 2

3, 4, 2,
,

1 1

min
v k k

k k k k v k k
t H t

k k

y X y Y r y v
∆

= =

 − + − + −  ∑ ∑
ℓ ℓ

ɶ ɶ ɶ                       (5.9) 

subject to the constraints: 
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( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

[ ]

( )

'

2 4 5 6

0,

0, 1

, , ,

1 1, ,

1

k

k k

x t A x t B x t u t

y t x t x t x t x t

t k k

t

x t p −

 = +


 =  

= − ∀ ∈

∆ =

=

ɺ

… ℓ
 

where 0,kt is the start time at each time segment k , and t∆ is the length of the time 

segment. Finally, the solution of the optimization problem is 

( ) [ ]{ }, , 1 , 1, ,opt opt

v v k t k t k kδ = ∆ − ≤ < ∀ ∈ … ℓ                                          (5.10) 

( ) [ ]{ }, 1 , 1, ,opt opt

kH H t k t k k= − ≤ < ∀ ∈ … ℓ .                                       (5.11) 

The global search method is employed to solve the above optimization problem. In 

order to simply the searching procedure, the search range can be determined using discrete 

kinematics of the vehicle in equation (5.1). The longitudinal force at each time instant k  

has the approximate form of  

( ) 2

1

1ˆ
2

k k k w L kH m v v c Av+= − +ɶ ɶ ɶℓ .                                            (5.12) 

The steering angle’s approximation at each time instant k can be obtained by the 

expression 

, 2 1
ˆ ˆ
v k k k k ka b c dδ ψ ψ ψ β+ += + + +ɶ ɶ ɶ                                          (5.13) 

where the coefficients , , ,a b c d are 

v v

I
a

lγ
= , 

2 2 2
h v v k

k v v

l l Iv
b

v l

γ
γ

+ −
=  
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2 2

h v v k

k v v

l l Iv
c

v l

γ
γ

+ −
= −  

v v h

v v

l l
d

l

γ
γ
−

= − . 

During the time segment k , the search range for the steering angle is 

, , 1
ˆ ˆ,v k v kδ δ +

 
  and the search range for the longitudinal force is 1

ˆ ˆ,k kH H +
 
  . This will reduce 

the time needed by the search method.   

To evaluate the performance of the piecewise optimization strategy, Figure 5.5 

compares the optimal steering angle and the optimal longitudinal tire force estimation 

results with the reference input commands, respectively. Based on the steering angle and 

the longitudinal tire force estimation results, the trajectory of the car can be reproduced. In 

other words, the trajectory interpolation for each time segment can be implemented by 

using the optimal estimated steering angle and tire force as input commands. 
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Figure 5.5 Steering angle and longitudinal tire force estimation. 
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5.5 Driver Behavior Classification 

1) Block Diagram:  

Figure 5.6 shows the block diagram of proposed scheme. The driving information 

acquisition and states estimation will be obtained based on the discussion in the previous 

sections. Feature extraction and GMM-based classifier will be discussed in the next 

sections 

 

Figure 5.6 Block diagram of the proposed scheme. 

2) Gaussian Mixture models as a classifier:  

In order to detect whether the driver behavior is normal or not, Gaussian mixture 

models (GMMs) [70-71] are used as a two-class classifier. The driver’s behavior will be 

divided into two classes which are normal or abnormal.  
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Gaussian mixture model is a probabilistic model for probability density function 

(pdf) estimation using a set of multiple Gaussian distributions. GMM have been a powerful 

nonlinear classification tools in many applications of pattern recognition [72-73], 

particularly in speech and face recognition. Gaussian mixture models are suitable for 

classification of driver behaviors. First, a linear model can seldom represent driver 

behaviors. GMM can estimate the probability density distribution of nonlinear model. 

Second, GMM belongs to the “unsupervised” classifier category which does not require 

prior knowledge before training. Third, the GMM method produces more robust 

performance than traditional learning methods (e.g., logistic regression, multi-layer 

perceptron). The GMM method may have computational difficulty if the volume of 

training data becomes great. However, the GMM method is a robust approach to classify 

the driver behavior.  

GMM non-linear pattern classifier works by estimating the underlying probability 

density functions (pdf’s) of the observations. In the GMM classifier, the conditional-pdf of 

the observation vector with respect to the different classes is modeled as a linear 

combination of multivariate Gaussian pdf’s. Each of them has the following form: 

( )
( )

( ) ( )1

2
2

1 1
exp

2
2

T

d
p

π

− = − − Σ − 
 Σ

x x µ x µ                                             (5.14) 

where x is a d-component feature vector, µ is the d-component vector containing the mean 

of each feature, Σ is the d-by-d covariance matrix, and Σ is its determinant.  It is noted that 

each multivariate Gaussian pdf can be completely defined if [ ],θ = Σµ is known.  
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In this case, each class (normal or abnormal) is modeled as a GMM based on its 

own features. The feature vector is denoted as tx . The assumptions made to build a GMM 

are the following [74]: 

• The samples come from a known number c  ( 2c = ) of classes. The two classes are 

denoted as 0C (abnormal) and 1C (normal).  

• The priori probabilities ( )iP C for each class iC  are known (They are taken to be 

all equal to 
1 1

2c
= ). 

• The forms of the class-conditional probability densities 

( )| , , 1, , 1,2i ip C i cθ = =x …  are known for all classes. It is assumed that they are a 

sum of K multivariate Gaussian probability density functions. 

• The unknowns are the values of the parameter vectors 1,2iθ = (for each class, the 

mean vector and covariance matrix).   

Assuming that the probability density function ( )|t ip Cx is a mixture of 

K multivariate Gaussian distributions:  

( ) ( ) ( )
1

| | | ,
K

t i i t i

l

p C P l C p l C
=

=∑x x                                     (5.15) 

where ( ) ( ), ,| , ,t i l i l ip l C N=x µ Σ  is the probability of tx being produced by the Gaussian 

distribution of index l  in class i . ( )| iP l C  is the prior probability of having a Gaussian 

distribution l for class i . There are two phases for this classification problem: GMM 

training and the classification test.  
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In the training phase, the aim is to estimate the parameters of the GMMs for the two 

classes: ( ){ }, ,| , , , 1,i i l i l iP l C l KΘ = =µ Σ …  with 1,2i = , 1l K= … . An optimization 

algorithm called Expectation Maximization (EM) [75] is used to estimate all the 

parameters.  

The progress of EM algorithm: there are m  observations of the features for each 

class iC  : 1 2, , ,i i i iC C C C

m
 =  X x x x… . Assuming that the observations are independent and 

identically distributed, the likelihood that the entire set of observations has been produced 

by class iC  is: 

( ) ( )
1

| , |
m

i i t i

t

p C p C
=

Θ =∏X x .                                                  (5.16) 

Using the above likelihood function, EM algorithm gives the maximum likelihood 

estimates of all the parameters ( ),
ˆ argmax log | ,ML i i ip CΘ = ΘX . Since it is hard to directly 

maximize the log-likelihood function, EM algorithm maximizes the lower-bound of 

log-likelihood function ( ),F q Θ . It has been proved that maximizing the lower-bound is 

equivalent to maximizing the expected log-likelihood [84]. EM algorithm is consisted of 

two steps: E-step and M-step: 

E-step: 
( ) ( )( )1

argmax ,
t t

q

q F q
+ = Θ  

M-step: 
( ) ( )( )1 1

argmax ,
t t

F q
+ +

Θ
Θ = Θ  

Making a first guess on the values of the iΘ and compute E-step and M-step. And the 

algorithm converges to a local optimum after conducting iterations. Note that the training 



 

 

70 

 

set provided to the GMM has to be well thought out in order for the model to be general 

enough and avoid the common problem of over-fitting the training data.  

In the classification phase, the classification tests using the trained GMMs is 

performed. According to the Bayesian rule, a feature vector tx  is said to belong to class i  

if it maximizes 

( ) ( ) ( )
( )

|
|

t i i

i t

t

p C p C
p C

p
=

x
x

x
.                                              (5.17) 

In the case it is assumed that the two classes occur with the same probability, 

( ) ( )0 1 0.5p C p C= = .  It is actually only concerned with maximizing ( )|t ip Cx .  

The decision rule for the two-class classifier is:  

• tx belongs to the abnormal case if ( ) ( )0 1| |t tp C p C>x x ;  

• Otherwise, tx  belongs to the normal case.            

5.6 Feature Extraction 

Since the estimated steering angle and longitudinal tire force are both continuous segment 

signals, root mean square (RMS) statistical method is suitable to reflect the driver’s input 

activities [85-86]. For example, RMS of the steering angle can reflect the driver’s steering 

maneuvers; RMS of the longitudinal tire force can reflect the throttle and brake pedal 

operation.  

RMS is a second order statistical measure of the magnitude of a continuously 

varying function (or waveform). The RMS formula of a continuous function ( )f t  defined 

over the time interval 1 2T t T≤ ≤  has the following form [87]: 



 

 

71 

 

( )2

1

2

2 1

1 T

rms
T

f f t dt
T T

=   − ∫                                               (5.18) 

In this study, the feature vector provided to the GMM-based classifier consists of 

the RMS of the reconstructed steering angle and longitudinal tire force. 

,opt opt

t Hδ =  x                                                      (5.19) 

5.7 Simulation Results   

The performance of abnormal driver behavior detection is verified by simulating the 

vehicle model for a left turn (described in section 5.2).  

1) Simulating abnormal driving behavior:  

 Abnormal driving behaviors usually occur when the driving patterns the drivers 

make are not smooth, e.g., the sharp movement of the steering wheel [77]. In the UMTRI 

research in the SAVE-IT project, it was found that when drivers were performing an 

in-vehicle task, they controlled their speed by intermittently adjusting the throttle [78]. 

According to the above facts and experiments, some assumptions are made to simulate the 

abnormal driving patterns for training set:  

• Large variations of the reference steering angle and the longitudinal tire force 

within a short period of time may reflect abnormal driving behaviors. The form of 

such large variations is modeled as AWGN.  

• It is assumed that the driving behavior can be viewed as an abnormal case when:  
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where , ,,
v ref H refA Aδ are the RMS amplitude of the reference steering angle and the 

reference longitudinal tire force, respectively. , ,,
v error H errorA Aδ  are the RMS 

amplitude of the variations between the actual and the reference values of the 

steering angle and the longitudinal tire force, respectively. The values of ,v errorAδ  

and ,H errorA are generated using AWGN method. 

 

2) GMM training:  

The probability density function ( ) ( )| , 1, 2t ip C i =x  is modeled by using four 

mixtures of Gaussian distribution ( )4K = . The number of training data for both normal 

driving and abnormal driving are 50n aM M= = . EM algorithm is used to train the two 

GMMs. Experiments demonstrated that the EM method had an acceptable computational 

load with this volume of training data. 

3) Testing phase:  

Since the goal is detecting the abnormal driving behaviors, only classification 

performance for the abnormal cases is needed to test.  The number of testing data for 

abnormal driving is 25aN = . Fifty independent simulations and tests were implemented.  

4) Detection Results:  

Table 5.1 summarizes the classification results.  The average accuracy of the 

abnormal driving behavior detection is 87.2%, which means that the average miss 

detection rate is approximately 12.8%. The reason for the miss detection is that the GPS 

data is sparse and somewhat inaccurate. If the GPS with a higher update rate is adopted, a 

more accurate detection result will be achieved.    
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Table 5.1 Classification Results 

 
 

The number of Gaussian mixtures: 4K =  

The size of training set (normal): 50nM =  

The size of training set (abnormal): 50aM =  

The size of testing set (abnormal): 25aN =  

The times of testing: 50 

Average classification accuracy:  87.2% 

Miss detection rate: 12.8% 

5.8  Summary 

In the proposed driver behavior classification system, data obtained by a GPS are 

employed to reproduce the driver behavior. Gaussian Mixture model (GMM) is used to 

capture the sequence of driving characteristics according to the reconstructed vehicle’s 

information and it is also used as a classifier to assign the driving behavior to normal or 

abnormal category.  

In this work, it is considered using a low cost 1Hz GPS receiver as the vehicle data 

acquisition equipment instead of the costly sensors (steering angle sensor, throttle/brake 

position sensor, etc). The nonlinear extended two-wheel vehicle dynamic model is adopted 

in this study.  Firstly, two states, i.e., the sideslip angle and the yaw rate are calculated since 

they are not available from GPS measurements. Secondly, a piecewise optimization 

scheme is proposed to reconstruct the driving behaviors which include the steering angle 

and the longitudinal force. Finally, a GMM classifier is applied to identify whether the 

driver behavior is unsafe.  
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Simulation results show that the GMM based driver behavior classification scheme 

can effectively detect the potentially dangerous situation when the driving behavior is 

abnormal. 
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CHAPTER 6 

LATERAL CONTROL FOR AUTOMATED STEERING 

6.1 Introduction 

To overcome the disadvantages of the two lateral control methods introduced in [58] and 

[79] (which are briefly described in Section 2.7), this chapter proposes a novel design of a 

look-down reference control system using only a GPS and front sensor. Compared to the 

lateral control system proposed in [58], the basic idea and general structure of the proposed 

control system is the same. The novelties lie in 1) utilizing a GPS and front sensor to obtain 

data, and 2) designing effective steering angle estimator and road curvature estimator for 

real-time situations. This resultant system has the advantage of low cost and can realize the 

real-time estimation of road curvature. In the proposed system, a front sensor is used to 

measure the front lateral displacement and a GPS is used to measure the heading of the 

vehicle. According to such measurements, the steering angle can be estimated in real-time 

from an extended observer instead of being measured by additional costly sensors (e.g., 

feedback potentiometer attached to the front wheel in [58], or gyroscope at center of 

gravity in [79]). Accordingly, the road curvature is estimated based on its relationship with 

the steering angle in real-time. This can overcome the restriction of pre-recording the road 

geometry in [58] and pre-encoding the road information in [79], representing a significant 

advance in the field. Therefore, this approach is able to handle the real-time changes of 

road geometry without introducing large sudden transition changes into the control loop as 

in [58]. It is noticed that [58] employs the parameters of test vehicle and controller in [20] 

to validate its control system. In [79], a lateral displacement controller is designed 

according to the actual experimental data in the California PATH project. Such controller 
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is well developed and demonstrated to be robust for practical highway environment. 

Similar to [58], the proposed system also employs the well developed controller in [79]. In 

addition, the proposed system is also validated by using the data from the California PATH 

test vehicle used in [79]. The vehicle dynamic and this control system are both simulated 

with MATLAB Simulink. The proposed estimation and control algorithms are validated by 

computer simulation results. The simulation results show that this lateral steering control 

system achieves a good and robust performance for vehicles that follow or track a 

reference path and therefore would enhances driver safety. 

6.2  Vehicle Dynamic 

6.2.1  Single Track Vehicle Dynamics 

 

 

 

Figure 6.1 Single track model including path tracking. 
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This vehicle dynamic used here is the single track model described in Section 3.3.  In this 

case, sketch of a vehicle following a lane reference ( refZ ) is shown in Figure 6.1. For the 

look-down reference system here, the front lateral displacement of the vehicle from the 

lane reference sfd  is measured by using an actual magnetic sensor at the front bumper. 

srd corresponds to the rear lateral displacement. Since the rear sensor does not exist at the 

rear bumper, srd is not available but can be viewed as a measurement by a “virtual 

magnetic sensor”.  The sensors are mounted at sfl in the front of and srl behind of the center 

of gravity (CG). The curvature of the reference track is refρ , which is the reciprocal of the 

track radius refR . 
f

δ is the steering angle, β  represents the side slip angle, ψ is the heading 

orientation, r denotes the yaw rate and v is the velocity of the vehicle.  

The state space representation for this model can be expressed in two ways 

described in Section 3.3: 

1 2f refX AX B Bδ ρ= + −ɺ                                             (6.1) 

where, 

sf

r
X

d

β

ψ

 
 
 =
 
 
  

求

11 12

21 22

0 0

0 0

0 1 0 0

0s

a a

a a
A

v l v

 
 
 =
 
 
 

 

11

21

1
0

0

b

b
B

 
 
 =
 
 
 

           



 

 

78 

 

2

0

0

0

B
v

 
 
 =
 
 
 

 

 

The other representation is:  
 

X AX BU= −ɺ                                                         (6.2) 
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The first vehicle model is used to design the steering angle observer and the second 

one is used to develop the lateral displacements. The values of the vehicle’s parameters 

used for the subsequent designs of the steering angle observer, displacements estimator and 

controller are based on a 1986 Pontiac 6000 STE sedan, an experimental vehicle used by 

the California PATH program (see [58] and [79]). All parameters are constant and are 
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assumed to be known. The descriptions and values of the vehicle plant parameters are 

listed in Table 6.1. 

 

Table 6.1 Parameters and Values for Vehicle Dynamic 

 

Symbol Definition Values 

m Vehicle mass 1573 kg  

I  Yaw moment of inertia 2873 2kgm  

tfl  Distance from front axles to center of gravity (CG) 1.1m 

trl  Distance from rear axles to CG 1.58m 

sfl  Distance from front sensor to CG  1.96m 

srl  Distance from rear sensor to CG  2.49m 

fc  Cornering stiffness of front tire 80000 N rad  

rc  Cornering stiffness of rear tire 80000 N rad  

µ  Road adhesion factor 

1 (dry road),   

0.5(wet road) 

6.2.2 Actuator Dynamics 

The steering actuator of the Pontiac 6000 STE sedan is formulated as a third-order 

low-pass model, which is used to generate the steering angle 
f

δ . A low-bandwidth 

actuator is a low-pass solution. This actuator is considered in the control design phase and 

it is a linearized third-order low-pass actuator model, which can avoid excitation and 

saturation. This actuator has a complex pole pair at 5Hz with 0.4 damping, and a third pole 

is at 10Hz . The transfer function [58] is: 
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( )
( )( )( )

80000

62.8 12.56 28.77 12.56 28.77
A s

s s j s j
=

+ + + + −
                  (6.3) 

This actuator can avoid excitation and saturation, with a complex pole pair at 5 Hz with 0.4 

damping, and a third pole at 10 Hz.  

6.3  State Estimation 

6.3.1  Relationship Between Road Curvature and Steering Angle 

In the situation that the speed of the car is steady, the car will trace a circle of a certain 

radius ( R ) if the steering angle is constant. The vehicle path curvature is the reciprocal of 

the road radius. In [80], it has been proved that the vehicle path curvature can be estimated 

via two methods: 1) least-squares method and 2) method based on the mathematical 

representation of the vehicle model. In this study, the former one “linear-squares fitting 

method” is adopted, in which, only information of the steering angle is needed. On the 

contrast, the information of yaw angle and yaw rate are needed if the second method is 

adopted. Generally, the estimation of yaw angle and yaw rate are more difficultly 

implemented than the estimation of steering angle. Therefore, “linear-squares fitting 

method” has the advantage of simple and fast computation.  

Since the vehicle will follow the road geometry accurately in a steering control 

system, the vehicle path curvature can be approximately viewed as road curvature [79]. 

Therefore, the road curvature approximately equals to the reciprocal of the road radius 

(
1

R
ρ ≈ ). The relationship between the road curvature (

1

R
ρ = ) and the steering angle ( fδ ) 
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is nearly a straight line according to [80] and the above approximation. It can be 

approximated as 

fρ α γδ= +                                                             (6.4) 

where,  parameters α and γ are the constant parameters. 

α and β can be determined through repeated independent simulations repeated for 

.many times (say, 500 times). On the one hand, the vehicle model used in the simulation 

only employs the first two variables ( β and r ) in equation (6.1). Therefore, the steering 

angle 
f

δ is the only input. Therefore, the front wheel steering angle 
f

δ is the only input. 

The subsystem of the model of equation (6.1) is: 
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ɺ

ɺ
                                                (6.5) 

The coordinates of the vehicle position to further calculate the values of the road curvature 

ρ is introduced. The derivative of the vehicle position coordinates are: 

cosX v β=ɺ                                                                   (6.6) 

sinY v β=ɺ                                                                    (6.7)  

Therefore, the entire vehicle dynamic is formed from the combination of equations (6.5) - 

(6.7) with the following nonlinear state space representation: 

 

11 12 11

21 22 21

cos 0

sin 0

f

a a r b

a a r br

vX

vY

ββ
β

δ
β
β

+     
     +     = +
     
     
      

ɺ

ɺ

ɺ

ɺ

                                                    (6.8) 

 

The road curvature can be calculated by the following expression: 

2 2

1 1

R X Y
ρ = =

+
                                                             (6.9) 
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During the independent simulations, the values of the steering angle 
f

δ are 

randomly sampled. Based on the road curvature and the steering angle experimental data 

used or obtained in those independent simulations, the unknown parameters α and γ  can 

be calculated by using the linear least squares estimation method [81]. Then, the linear 

relationship between the road curvature and the steering angle is determined. If the steering 

angle is already estimated ( ˆ
fδ ), the road curvature estimation ρ̂  is realized according to 

their linear relationship: 

ˆˆ
fρ α γδ= +                                                                   (6.10) 

6.3.2 Steering Angle Estimation 

Consider the front displacement
sfd and the heading angleψ as the outputs of the model in 

equation. (6.1), the plant is described as: 

1 2f refX AX B Bδ ρ= + −ɺ                                               (6.11) 

CX=y  

with  

0 0 1 0

0 0 0 1
C

 
=  
 

 

sfd

ψ 
=  
 

y . 

 It is assumed that the second-order derivative of the steering angle is zero 

( 0fδ =ɺɺ ). The reference road curvature input adopts the linear expression  

ref fρ α γδ= +                                                     (6.12) 
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Furthermore, two additional state variables are introduced: the first-order and 

second-order
fδ and fδɺ . The model in equation (6.1) is then extended to a new six-order 

system which has no input signal:  

E E E EΧ = Α Χ −Β                                                     (6.13) 

E E= Χy C  

with 

E
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X , A , 1B  and 2B defined in equation. (6.1) and C is defined in equation. (6.11). 

Since the steering angle 
f

δ  is currently one of the state variables, its value can be 

estimated by a state observer. Such continuous-time observer for the six-order extended 

model (equation (6.13)) has the following structure: 
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( )ˆ ˆ ˆE E E E E ELΧ = Α Χ −Β + − Χy C
ɺ

                                        (6.14) 

ˆ EΧ  is the estimation of the vehicle states:  

ˆˆˆ ˆˆ ˆˆ
T

E

sf f fr dβ ψ δ δ Χ =   
ɺ                                       (6.15) 

The continuous-time vector y  is produced by two first-order holds used to interpolate the 

discrete measurement vector 
*
y . 

*ψ corresponds to the discrete measurement of the 

vehicle’s heading angle from the GPS and  *

sfd  is the discrete measurement of the vehicle’s 

front lateral displacement.  

sfd

ψ 
=  
 

y                                                               (6.16) 

*

*

*

sfd

ψ 
=  
  

y                                                              (6.17) 

In real life situation, *

sfd  is the discrete measurement from the front sensor. 

However, *ψ  is not the direct measurement of the heading angle from the GPS since the 

measurements of the heading angle provided by the GPS are values in the geographic 

coordinate system. In order to obtain the heading angle for the vehicle coordinate system 

*ψ , the GSP  measurement of the heading angle at the initial point of a vehicle (origin of 

the vehicle coordinate plane) should be used as a reference.  For example, *ψ is the 

difference of the GPS measurements of the heading angle between the current position and 

the origin of a vehicle. During simulation, *

sfd  is a simulated discrete value of the vehicle’s 

front lateral displacement. It is assumed that the GPS measurement of the heading angle for 
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the initial position of a vehicle is 0 degree. *ψ  corresponds to the simulated discrete value 

of the vehicle’s heading angle. 

In order to choose the optimal gain ( L ), this state observation problem is solved by 

by solving its dual problem.  Here, the linear quadratic regulator (LQR) theory is applied 

[82]. The parameters for LQR are adjusted by experiments and an accurate estimation of 

the steering angle ( ˆ
fδ ) is obtained from the fifth variable of ˆ EΧ . Correspondingly, the 

estimation of the actual road curvature ( ˆ
refρ ) is given by: 

ˆˆ
ref fρ α γδ= +                                                      (6.18) 

6.3.3 Lateral Displacement Estimation 

The front and rear lateral displacements (
sfd and srd ) must be estimated in order to design 

the steering feedback controller. The front magnetic sensor measures the actual front 

lateral displacement with respect to the road (
*

sfd ). Based on the single track vehicle model 

in equation (6.2), the estimator has the form of  

( )ˆ ˆ ˆ ˆ
sfX AX BU L d HX= + + −ɺ

                                       (6.19) 

A  and B describe the state-space vehicle dynamics in equation (6.2). X̂ is the estimation 

of the vehicle state with the following structure:  
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                                                        (6.20) 

The front magnetic sensor is represented by: 
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[ ]1 0 0 0H =                                             (6.21) 

Û is composed of an estimation of the steering angle ( ˆ
fδ ) and the actual road curvature 

( ˆ
refρ ), and they are provided by the estimators in Section 6.3.2.  

ˆ
ˆ

ˆ

f

ref

U
δ
ρ

 
=  
  

                                                     (6.22) 

sfd is the output of a first-order hold used to interpolate the discrete measurements of the 

front lateral displacement provided by front sensor (
*

sfd ).  

The proportional gain L  is defined as: 

[ ]1 1 1 1L l=                                              (6.23) 

and is chosen to achieve a small estimation error. The value l  is gain scheduled related to 

the vehicle velocity [19].  

The estimator in equation (6.19) allows for the estimation of the front and rear 

lateral displacements ( ˆ
sfd and ˆ

srd ). Note that the estimated  ˆ
sfd  can be viewed as the actual 

measurement from the front sensor, which physically exists. And, the estimated ˆ
srd is the 

measurement from a “virtual rear sensor”, which does not physically exist.    

6.4  Lateral Control Design 

6.4.1 System Block Diagram 

A block diagram of the lateral steering control system is shown in Figure 6.2. The single 

track vehicle dynamic, steering actuator and feedback controller are described in Section 

6.2.1, Section 6.2.2 and Section 6.4.2.   
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Figure 6.2 Block diagram of lateral steering control system using the estimations of front 

and rear lateral displacements as feedback.   

 

 

 

Figure 6.3 Implementation of the lateral control system. 
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Figure 6.3 shows the implementation of the entire closed-loop lateral steering 

control system. The boxed pad in Figure 6.3 shows the steering control by using the 

estimations of front and rear displacements ( ˆ
sfd and ˆ

srd ) as feedback, which is similar to 

the lateral control system developed in [58]. The improvement is that a GPS and a front 

sensor are used as the data acquisition devices. 
*

sfd  and 
*ψ are the discrete measurements 

for the front lateral displacement and the heading angle, respectively. Continuous-time 

values of front lateral displacement and heading angle ( sfd and ψ ) are both provided by a 

first-zero hold, which is used to interpolate each discrete measurement. The proposed 

system only has one front magnetic sensor. The second rear sensor does not physically 

exist, but it could be viewed as a virtual sensor. The information of the rear sensor can be 

provided by the lateral displacements estimation procedure described in Section 6.3.3. The 

estimations of steering angle and actual road curvature are realized in Section 6.3.2.  The 

feedback controller will be developed in the following section. 

6.4.2 Feedback Controller Structure 

The feedback controller structure in Figure 6.3 was developed in [79]. The controller 

structure has three poles, which could prevent the displacement measurements noise 

propagating through the closed loop system. Such controller provides good damping at all 

frequencies to prevent excitation of a single noise frequency and controller roll-off to 

protect the actuator from high frequency noise. Besides, such controller is robust with 

respect to changes in the road adhesion parameter (e.g., µ reduces from 1 to 0.5  ) and 

presents acceptable levels of maximum lateral displacement to step inputs [58, 79].  

The structure of the controller is: 
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( ) ( )f rC s C s                                              (6.24) 
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The parameters of the controller structure are chosen as:  

• Denominator poles : 

1 2 4ω ω π= = . 

• Damping factor: 

0.8D = . 

• Integral gain:  

0.1IK = ; 

• Zeros and the steady-state gains of ( )fC s :  

0.0001
fDDK = , 

0.087
fD

K = , 

0.51
fP

K = , 

• Zeros and the steady-state gains of ( )rC s :  

0DDrK = , 
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0.024DrK = − , 

0.28PrK = − . 

6.5. Simulation Results 

The state estimator and feedback controller design shown in Figure 6.3 is implemented and 

tested with the data from the Pontiac 6000 STE sedan in the MATLAB Simulink 

environment. The plant parameters used are listed in Table 6.1.  A GPS is carried in the 

vehicle and it is assumed that the sampling rate is 1 second. A magnetic sensor is installed 

at the front bumper and the sampling rate for all simulations is 1second . In order to test the 

robustness of the controller for actual situations, the simulations of the GPS and the 

magnetic sensor signals are carried out by introducing additive white Gaussian noise 

(AWGN). The measuring noise of the GPS is a normal distribution with mean of 0 degree 

and variance of 1 2degree  or ( )0,1N . The measuring noise of the displacement sensor is a 

normal distribution with mean  of 0cm  and variance of 
2

1cm or ( )0,1N .  

The vehicle’s reference path consists of a straight section, a right turn followed by a 

left turn, another right turn and finally a straight section. There are no transitions between 

the curves to obtain the step response. The radius of each turn is 800mrefR = , which 

means that the road curvatures for each turn is 31.25 10 / mrefρ −= × . The simulation time is 

for 60s . This road curvature map of the reference track is shown in Figure 6.4.  In the 

following simulations, four different test cases with speeds of 45mi/hv = ( 20 m/sv = ) and 

80mi/hv =  ( 35.56 m/sv = , a highway speed) are considered, respectively, on a dry road 
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( 1µ = ) and wet road ( 0.5µ = ).  The parameters used for such four test cases are listed in 

Table 6.2. 
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Figure 6.4  Actual road curvature of the reference track.  

 

Table  6.2 Simulation Test Cases 

 
 

Test Case Vehicle Speed Road Condition  

1 45mi/hv =  Dry road ( 1µ = ) 

2 80mi/hv =   Dry road ( 1µ = ) 

3 45mi/hv =  Wet road  ( 0.5µ = ) 

4 80mi/hv =  Wet road ( 0.5µ = ) 
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Based on the mathematical representation of the vehicle models in (6.1) and (6.2), 

the observer is with respect to the vehicle’s linear velocity and road adhesion. The observer 

becomes time-varying if the velocity and road adhesion are time-varying. However, the 

observer can be considered as time-invariant in the case that the velocity and road adhesion 

are constant. In this study, four cases are simulated under two different speeds and two road 

adhesion conditions (Table 6.2).  For each simulation case, the vehicle speed and road 

adhesion are kept at constant values. Therefore, the observer gain can be fixed a-priori 

before each simulation. The realization of the observers is as follows: 

1) The observer gains ( L  and L ) are properly pre-selected before each simulation 

case based on certain constant speed and road adhesion factor. 

2) During each simulation case, the vehicle speed and road factor are kept at 

constant values. Then, the observer gains ( L  and L ) are fixed. 

This realization method is also employed in [58].  

Figure 6.5 shows the controller performance on a dry road with a speed at 

45mi/hv = . The estimation results of both steering angle and road curvature are within the 

accuracy specifications. The RMSE value of steering angle estimation is 8.84% and the 

RMSE value of road curvature estimation is 9.98%. Both of these two estimates are quite 

accurate. The yaw rate is under an acceptable level. The lateral displacement control result 

has no overshoot and is well damped. This simulation result yields a very small maximum 

vehicle lateral displacement (steady state error is approximately0.1m ), which shows an 

extremely accurate road tracking performance.   
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Figure 6.5 Simulation results for a speed of 45mi/h on dry road (road adhesion factor 

1µ = ). 

 

In order to test the performance of the control system on a highway, the simulations 

are implemented with a speed at 80mi/hv = . Figure 6.6 shows the controller performance 

on a dry road with a speed of 80 mi/h . The RMSE value of steering angle estimation is 

9.13% and the RMSE value of road curvature estimation is 11.28%. The value of 

maximum lateral displacement (steady state error) for each turn is bigger that in Figure 6.5, 

but it is still small ( 0.2m≈ ).  The overshoot of the yaw rate at a higher speed is larger than 

at a lower speed, but still at an acceptable level. This will result in an uncomfortable ride 

for the car passengers at each curvature transition.  
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Figure 6.6 Simulation results for a speed of 80 mi/h on dry road (road adhesion factor 

1µ = ). 

 

To simulate a wet road (road adhesion factor is 0.5µ = ), all controller gains 

(described in Section 6.4.2) are reduced to 50% of their original values [79]. Figure 6.7 

shows the simulation results for a vehicle with a speed at 45mi/hv =  on a wet road. With 

all controller gains halved, the lateral displacement increased accordingly compared to the 

result with the same speed but on a dry road as shown in Figure 6.5. The RMSE value of 

steering angle estimation is 10.58% and the RMSE value of road curvature estimation is 

12.26%.  The steady state error of lateral displacement is approximately 0.2m .  
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Figure 6.7 Simulation results for a speed of 45mi/h on wet road (road adhesion factor 

0.5µ = ). 

 

The controller performance with a highway speed at 80mi/hv =  on a wet road 

( 0.5µ = ) is shown in Figure 6.8. The RMSE value of steering angle estimation is 11.54% 

and the RMSE value of road curvature estimation is 13.37%. The steady state error of 

lateral displacement increases compared to those in Figure 6.6 and Figure 6.7. In this case, 

the yaw rate result yields a large overshoot of nearly 150% , which means it is unsafe and 

uncomfortable for passengers to drive on a wet road with a highway speed. This problem 

has been discussed in [58], in which the smooth curvature algorithm created from the 

off-line actual road curvature database is applied to improve the control performance. A 

tradeoff when applying such curvature smoothing is that the while lateral displacement 
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increases in over-shoot (but still at acceptable levels), and oscillations in the steering angle 

and yaw rate are considerably reduced in magnitude.  

As mentioned before, very large sudden changes in the curvature transition are 

introduced into the lateral control system presented in [58]. The results, when compared to 

the results of [58] on the same simulation cases, clearly shown to have smaller steering 

angle and yaw rate overshoots. Consequently, the proposed control strategy can clearly 

provide more a comfortable and safer ride experience. Only for the worst case (when 

driving at a highway speed on a wet road), some smooth curvature algorithms to ensure the 

high performance need to be employed.  
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Figure 6.8 Simulation results for a speed of 80 mi/h on wet road (road adhesion 

factor 0.5µ = ). 
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6.6. Summary 

This chapter investigates the automatic steering control for passenger vehicle. By using a 

GPS and a front magnetic sensor, a novel look-down reference lateral control system is 

developed. In such a system, accurate and real-time estimations of the steering angle, road 

curvature, and vehicle’s front and rear lateral displacement are accomplished. The 

performance of the steering angle extended observer, displacement estimation module and 

the feedback controller is validated by simulation results. The results show that the 

proposed steering control system is effective enough to be used for the automated steering 

control both on dry and wet road under a high vehicle speed. This application could be used 

in advanced driver assistance systems, such as lane keeping system, path control system, 

collision avoidance system, and so on. This system could enhance the safety of driving.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

With the availability of low-cost GPS and other low cost sensors, this dissertation 

investigates the use of such devices to develop vehicle state estimation, driver behavior 

classification, and lateral control technologies which are needed in advanced driver 

assistance systems. Since these low cost devices can only provide limited driving 

information, the driver dynamics and kinemics are employed to estimate the vehicle states 

and the driver behaviors.        

For the vehicle state estimation, a task to estimate the longitudinal tire force which 

can be transferred to the corresponding throttle/brake positions is addressed. A low cost 

1Hz GPS receiver and a steering angle sensor are used as the vehicle data acquisition 

equipment. A longitude force estimation scenario is developed for the nonlinear extended 

two-wheel vehicle dynamic model using only the GPS information. The sideslip angle and 

the yaw rate are estimated and an optimization scheme is proposed to estimate the 

longitude tire force. The estimation results validate the proposed method by comparing 

with the reference longitude tire force command. 

For the driver behavior classification scenario, GPS data are employed to reproduce 

the driver behavior. Gaussian Mixture model (GMM) is used to capture the sequence of 

driving characteristics according to the reconstructed vehicle’s information and it is also 

used as a classifier to assign the driving behavior into normal or abnormal category. The 

nonlinear extended two-wheel vehicle dynamic model is adopted in this study.  Two states, 
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i.e., the sideslip angle and the yaw rate are calculated, a piecewise optimization scheme is 

proposed to reconstruct the driving behaviors which include the steering angle and the 

longitude force. A GMM classifier is applied to identify whether the driver is under an 

abnormal driving situation. This application can enhance the safety of the drivers by 

warning drivers of the potentially dangerous traffic situations.     

Controlling a vehicle requires the ability to measure or estimate its motion and to 

determine parameters such as the vehicle states and vehicle displacements. As a 

fundamental building block for the vehicle lateral control work, a GPS-based approach to 

estimate in real time the necessary states and model parameters (the steering angle, road 

curvature, and lateral displacements) has been developed. The control strategy used is a 

look-down reference system which uses a sensor at the front bumper to measure the lateral 

displacement and a GPS to measure the heading orientation. The road curvature estimator 

is designed based on the steering angle. The steering angles are estimated by using the 

sensor and the GPS information. The estimation algorithm employed is an observer for a 

new extended system model, in which the steering angle and its derivative are viewed as 

two state variables. Then, the lateral displacements estimation and the control algorithm 

are investigated. An accurate and real-time estimation of the lateral displacements with 

respect to the road can be accomplished in such a control system. The closed loop 

controller is used as a compensator to control the lateral dynamics of the vehicle. The 

vehicle dynamic and control system are simulated with MATLAB Simulink. The proposed 

estimation and control algorithms are validated by simulation results. The results show that 

the system provides a good and robust performance for path tracking. 
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7.2 Future Work 

Based on the current studies, the near future work of interest would include: 

1) Developing tire force estimation algorithm for four-wheel nonlinear vehicle 

model. 

Four-wheel nonlinear vehicle model is a more accurate model since it considers 

both the lateral and longitudinal motions. On the one hand, the lateral tire forces are usually 

modeled as linear with respect to lateral sideslip angle (λ ) for each axle (front and rear): 

( ) , 1,2
lateral i i i
F C iλ λ= =  

where 
i
C is the wheel cornering stiffness, a parameter closely related to the tire-road 

friction. Therefore, effective algorithms for estimating cornering stiffness need to be 

developed. On the other hand, the longitudinal tire force for four-wheel nonlinear model is 

determined by longitudinal motion (sideslip angle, velocity and acceleration). The vehicle 

longitudinal motion is related to the vehicle dynamics and kinematics. The algorithm 

presented in this dissertation for the four-wheel model should be further considered.    

2) Developing driver state detection algorithm for the proposed GMM 

classification method. 

In this dissertation, the GMM classifier for abnormal driver behavior is 

investigated. However, driver state (distraction or fatigue) is difficult to assess and detect 

by using the driver inputs features.  More driver data and features should be extracted to 

detect the driver’s state. For instance, the distractions that are linked to the eye movements 

and biological signals, such as ECG or EOG, are good indicator of fatigue.  Future study 

can include the driver’s state analysis into the proposed GMM scenario.   

3) Designing smooth algorithms for lateral control system. 
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Since the lateral control system proposed in this study is based on estimated road 

curvature, the sudden changes in curvature transition on the road will result in undesirable 

levels of fluctuations in the lateral acceleration and the yaw rate. This will result in a poor 

riding comfort to the passengers in the car. A smoothing algorithm could be used to 

decrease their overshoots by providing smoother curvature changes. In the future, a 

corresponding smoothing algorithm can be introduced into the control loop.     
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