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ABSTRACT 

 

THEORETICAL PREDICTION OF JOINT REACTION  

FORCE IN A DYNAMIC GENERAL 3-D PENDULUM  

TREE MODEL FOR HUMAN OR ANIMAL MOTION 

 

by 

Sucheta Goyal 

 

Lagrangian dynamics and the method of superfluous coordinates are applied to predict 

dynamic joint reaction forces in an idealized flexible model of a branched 3-D pendulum 

tree system. The number of segments and joints on the tree are adjustable as is the 

branching tree pattern. The segments that comprise the tree are assumed to be one-

dimensional rigid rods containing a discrete set of mass points that is both flexible in 

number and distribution on the tree. The idealized 3-D pendulum tree system is intended 

to provide a flexible theoretical framework to model and better understand the dynamics 

of human and animal movement as well as the forces associated with those movements. 

In particular, this work focuses on predicting the dynamic reaction forces that are 

produced in the simple idealized frictionless joints of the pendulum system during 

motion. The ability to predict dynamic joint reaction forces in this model system could 

prove helpful in assessing the potential effect of a posited movement technique in 

producing joint injury and/or pain. This thesis extends the findings of previous work on 

similar pendulum model systems in 2-D to model systems in 3-D.  
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

 

The approach of modeling human and animal motion as a dynamic rigid pendulum 

system has a long history with too many examples to describe here. To understand 

aspects of human walking models as concise as a simple inverted pendulum to those 

containing many connecting and interacting segments for the lower and upper extremities 

have been used. “These models are useful in better understanding movement and in 

estimating clinical parameters that are significant but otherwise difficult to access. For 

example, joint reaction forces and dynamic stability indices are clinically important but 

difficult to assess” (Lacker, 1997).  

In modeling any skilled movement task, it is important to ideally select the most 

direct representation that can best describe the motion. This choice can be difficult and 

requires scientific skill and experimentation perhaps, in part, for the same reason as it 

does to skillfully choose in real life which segments to move and what constraints to 

apply to produce an efficient motion technique. Complex interactions occur when 

connected segments move together that give rise to new dynamic forces that can only be 

„felt‟ when the system is in motion and that have significant effects both upon stability 

and mechanical efficiency.  

 Since the segments dynamically engaged in performing a given complete motor 

task can and often will vary in time during the course of that task, the mechanical 

pendulum system used to model that motor task can change depending on the phase of 

the motion being considered. Because of this required model flexibility, it is desirable to 
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be able to formulate the equations of motion (EOM) for a general pendulum tree system 

which can vary in the number of its segments, branching patterns and constraints applied 

to it. Having formulated the EOM for such a general pendulum system, it then becomes 

possible to solve for both the motions and the forces involved in producing those motions 

for any particular realization of that general pendulum system.  

This thesis considers an idealized, frictionless, pendulum system consisting of S 

segments, J joints and P mass points distributed on it where S, J and P are freely 

adjustable. The connectivity of the segments is also adjustable so that different branching 

patterns for the pendulum system are possible. In this laboratory, Rajai and Lacker have 

developed equations for predicting the dynamic joint reaction forces for such a general 

pendulum system in 2D. (Rajai, 2007). The ability to predict these constraint forces 

provides a theoretical framework that could be helpful in assessing the potential effect of 

a posited movement technique in producing joint injury and/or pain. This thesis extends 

the findings of Rajai and Lacker for such a general pendulum system from 2D to 3D 

systems. In particular, it focuses on predicting the pivot reaction force (PRF) equation for 

a general 3D pendulum system. Predicting the PRF represents a significant step towards 

predicting the general joint reaction force (JRF) in such a system.   The methods for 

determining the PRF are closely related to those for finding the general JRF. Predicting 

the general JRF equation concludes this thesis.  
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CHAPTER 2 

METHODS 

 

2.1 Introduction to Superfluous Coordinates For  

Finding Constraint Forces in Lagrangian Systems 

 

Using Lagrangian dynamics to describe the motion of a mechanical system, a desired 

constraint can be expressed in the EOM by implicitly assuming that a given symbol such 

as the length, l , of a rigid rod is to be considered a non-dynamic constant. Alternatively, a 

constraint can be represented by imposing an additional equation into the system that 

explicitly expresses a definite relationship that a dynamic variable or several dynamic 

variables of the system are to satisfy.  

For example, consider a single frictionless pendulum consisting of a rod without 

mass of constant length l and a point mass m at its end moving in 3-space where a 

constant vertically downward gravitational field of strength g, is present (see Figure 2.1).  

    

                                    


 



 

r̂
 

̂
 

mg 

 
sinmg 

 

2ml
 

2 2cosml  

 

x 

y 

z 

l m 

Figure 2.1 Single pendulum in 3-space.  
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             Let θ be defined as the counterclockwise angle that the pendulum rod makes with 

its projection onto the x,z plane and let ф be defined as the counterclockwise angle that 

this projection makes with the z-axis (see Figure 2.1).  In this case, there is a force of 

constraint that is often not explicit in the EOM but that must be present to keep l constant. 

To solve for the reactive force at the pivot joint, one needs to solve for the tension in the 

rod that is acting as the constraint force, keeping the rod at a constant length and 

preventing the mass from taking off into the air. 

 One method that can be used to solve for this dynamic constraint force is to 

introduce a superfluous coordinate variable into the system that in effect releases the 

implicit constraint on the system. This change will alter the equations of motion of the 

system in such a way that the forces that are required to maintain the constraint are 

revealed when the constraint is explicitly re-applied to the altered equations. 

 

2.2 Application of Superfluous Coordinates and Lagrangian Dynamics to  

Determine the Pivot Reaction Force for a Single Pendulum in 3-D 

 

In the case of the single pendulum described in the previous section (see Figure 2.1), 

instead of initially considering the distance of the mass point to the pivot as the constant l 

the method of superfluous coordinates releases this constraint and allows the length of the 

rod to be a new variable r which, in effect, treats the mass point of the pendulum as if it 

were a free particle. The Cartesian coordinates of the mass point  , ,x y z expressed in 

polar coordinates are  cos sin , sin , cos cosr r r      . The Potential Energy, P, of the 

mass point is given by, 
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sinP mgy mgr                                                        (2.1)  

 

Its Kinetic Energy, K, is 

         

     2 2 2 21 1

2 2
K mv m x y z      2 2 2 2 21

cos
2

m r r     
 

.      (2.2) 

 

The Lagrangian function, L K P  , is therefore, 

 

                              2 2 2 2 21
cos sin

2
L m r r mgr       

 
.       (2.3) 

 

The EOM for the system are found by applying 

 

                                                     0
i i

d L L

dt x x

  
  

  
                               (2.4) 

 

to each of the three dynamic variables of the system  

 

, 1

, 2

, 3

i

r i

x i

i








 
 

.                               (2.5) 
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The resulting EOM for the system is 

 

  2 2 21 ˆ2 sin 2 cos                     (  direction)
2

mr mrr mr mgr          (2.6) 

 

             2 2 2 2 ˆcos 2 cos sin 2                     (  direction)mr mr r mr         (2.7) 

 

             2 2 2 ˆcos sin                                     (  direction)mr mr mr mg r       (2.8) 

 

The Lagrangian in Equation (2.3) has the same form for the system without the 

superfluous coordinate but in that case l replaces r and l is implicitly assumed to be a 

constant so the equation in the r direction is not part of the EOM for the system without 

superfluous coordinate r. 

Equation (2.8) reveals the forces acting on the free mass point in the r̂  direction 

that extend or contract its distance from the pivot point (origin). Therefore, a reactive 

constraint force, CF  must be applied that is equal and opposite to these forces to prevent 

the constraint condition r=l from being violated. Explicitly imposing the constraint 

condition r l (a constant) on Equation (2.8) which implies that 0r r   and adding CF , 

the reactive tension in the rigid rod, required to maintain the constraint yields the 

following expression for CF :   

        

                                   2 2 20 cos sin Cmr ml ml mg F               (2.9) 
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or 

 

                           2 2 2 ˆcos sin         (  direction)CF ml ml mg r                      (2.10) 

 

Equation (2.10) shows that the dynamic constraint force, CF  must oppose three 

dynamic forces, sinmg  comes from the contribution of the gravitational force on the 

mass and 2ml   and 2 2cosml    are dynamic contributions due to inertial (centrifugal) 

forces. Equation (2.10) does not represent a solution for the dynamic constraint force, CF  

until the solution    ,t t   for the dynamical system is found. This solution can be 

obtained by solving the closed system that results from explicitly substituting the 

constraint condition r=l (a constant), 0r  , 0r   into Equations (2.6) - (2.7) for the free 

mass giving 

 

                            2 2 21 ˆsin 2 cos        (  direction)
2

ml ml mgl                      (2.11) 

 

                            2 2 2 ˆcos sin 2                     (  direction)ml ml                    (2.12) 

 

This system of equations is the same as would be obtained by applying 

Lagrange‟s equations (Equation (2.4)) to the Lagrangian function (Equation (2.3)) with 

constant l replacing the dynamic r. Note that the inertial (Coriolis) force terms 2mrr  

and 22 cosmr r   in Equations (2.6) - (2.7) disappear. The idealized rigid rod does not 
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yield to extension or contraction forces and bending forces do not exist in the rod because 

of the idealized frictionless pivot joint. It should also be noted that Lagrange‟s EOM are 

not always force equations per Equation (2.8) is a true force equation, but Equations 

(2.6)- (2.7) do not have units of force but rather units of torque or angular force. This 

arises because the coordinates chosen do not always have units of length. In this case, 

only the third coordinate r has units of length while   and   are in radians. For these 

reasons, the terms for the EOM that are derived using Lagrange‟s method are often called 

generalized forces and the dynamic variables chosen are referred to as generalized 

coordinates.  

Finally, the unit vectors of the coordinate system ˆ ˆˆ( , , )r    in which the EOM are 

expressed represent those of a system that moves with the rod (see Figure (2.1)). This 

coordinate system is both natural for a pendulum system and simplifies the form of the 

EOM for that system but because the dynamic coordinate system is rotary it represents a 

non-inertial (accelerating) frame of reference in which inertial (fictitious) force terms 

arise such as the centrifugal and Coriolis terms in Equations (2.6)-(2.8). While these 

forces are “fictitious” in terms of their origin, they do generate “real‟ forces (tension) in 

the rods or segments that react to them. For a complex dynamic mechanical system, the 

dynamic value of the reactive forces that maintain a constraint may not be easy to deduce 

or evaluate. The application of superfluous coordinates in this context will prove to be 

invaluable when later applied to finding the joint reaction forces for a complex pendulum 

tree system. 
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CHAPTER 3 

3-D DYNAMIC PENDULUM TREE 

 

This work applies the method of superfluous coordinates to a generalized, frictionless 3D 

pendulum tree system that will now be described. The pendulum system consists of S 

segments with J joints and P mass points distributed on it. A 2-D example of such a 

branched tree system consisting of S= 5 segments, J=4 joints and P= 6 mass points is 

shown in Figure 3.1 below: 

 

Figure 3.1 A 2-D pendulum tree with six point masses and five segments and four joints. 

 

 The global origin of the system is located where the pendulum tree attaches to the 

ceiling, wall or floor. This joint (J1 in Figure 3.1) will be called the root pivot point and 

S1 

S2 

S3 

S5 

S4 

J1 

J2 

J3 

J4 

M1 

M2 

M3 

M4 M5 

M6 

(0,0) 
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its attached segment will be referred to as the root segment of the system (S1 in Figure 

3.1). All other segments of the tree will be connected or descended from this root 

segment.  Each segment of the tree belongs to a generation of the tree depending upon 

how far removed it is from the root segment. If it is directly connected to the root, it is a 

generation 1 or child of the root. If it is directly connected to a child of the root, then it is 

a generation 2 or grandchild of the root and so on. 

Each segment of the tree is given a number. A convenient labeling system is to 

give the segments with numbers in order of their relation to the root in such a way that 

each child of a segment has a number higher than any of its parent‟s sibling segments 

(aunts or uncles). Every branch point of the tree will represent a joint of the pendulum 

system and all joints except the origin of the system will have at least one proximal and 

one distal joint segment attached to it. The origin pivot joint will have only the root 

segment attached to it. No closed loops are allowed in the tree. 

All joints and mass points on the tree are also given numbers. A convenient 

labeling system is to number each joint so that every joint more distally related to the root 

joint will have a higher joint number than a more proximally related joint. Similarly, the 

mass points (the fruit) on the tree can be numbered so that no mass point on a given 

segment has a lower number than another mass point that is on a segment that is more 

central to the given segment, and so that all mass points that are on the same segment are 

numbered in order of their distance from the most proximal joint of that segment.    

Let the length of the j
th

 segment be denoted by jL  and let the distance of the i
th

 

mass point from its most proximal joint be denoted by id .  Define a matrix R called the 

relation matrix whose entries consist of 0‟s and the lengths id  and jL . There are S 
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columns in R and P rows. The i
th

 row refers to the i
th

 mass point and the j
th

 column to j
th

 

segment. If the j
th

 segment has the i
th

 mass point on it then the entry ,i jR = id . If the j
th

 

segment is a parent, grandparent, great-grandparent, or any fore-parent of the segment 

that the i
th

 mass point is on then ,i jR = il .  For all other entries, ,i jR =0. The relation matrix 

for Figure 3.1 is therefore, given by: 

 

 

 

Figure 3.2 The same dynamic pendulum tree as in Figure 3.1 but with segment lengths 

and mass point distances labeled from their proximal joints. The dynamic angle for each 

segment is also shown in this figure.  
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 
 
  

R                    (3.1) 

 

In general, the relation matrix R is a rectangular P S  matrix whose components 

ijR are lengths that summarize the connectivity of the mass points according to their 

position on the segment that they lie on and that segment‟s relative ancestry from the root 

segment of the tree: 

 

      

if  mass point is on (or belongs to) the   segment,

if the  segment is a forefather segment of the segment 
 

          that contains the  mass point,

0 otherwise.

th th

i

th

j

ij
th

d i j

L j
R

i





 




     (3.2) 

 

The dynamic segment angles for the example pendulum tree ( ), 1, , 5i t i S    

are also shown in Figure 3.2. These dynamic segment angles are defined in the following 

way.  In addition to the global coordinate system whose origin is located where the root 

segment attaches to the lab frame (ceiling, wall or floor), local coordinate systems can be 

defined that are parallel to the global system but whose origins are translated to each 

ancestral joint of the system.  

For a 2-D pendulum system, the dynamic position of the i
th

 segment can be 

uniquely defined by the polar coordinate angle ( )i t  that the segment makes with the 
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positive x-axis of the local coordinate system whose origin (vertex) lies on the joint at the 

segment‟s proximal end  (counterclockwise positive).  For a 2-D pendulum system, there 

is only one polar coordinate needed to define the angle that the segment makes with its 

proximal attached joint.  

For a 3-D pendulum system two polar coordinates ( ), ( )i it t   are required to 

uniquely define the dynamic position of the i
th

 segment. The angle ( )i t is the dynamic 

angle (counterclockwise positive) that the i
th 

segment makes with its projection onto the 

(x,z)-coordinate plane of the local coordinate system whose origin (vertex) lies on the 

joint at the segment‟s proximal end. The dynamic angle ( )i t is the angle formed by the 

above mentioned projection and the z-axis of the local coordinate system described above 

(see Figure 3.3).  

 

 

 

 

    

 

 

 

 

 

 

Figure 3.3 Local coordinate system is shown in red for the 2
nd

 joint in this double 

pendulum example. 
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The generalized dynamic configuration, X, for the 3D pendulum tree is defined as 

the vector  ,
T

X   where 1( , , )T

S   and 1( , , )T

S    . For a pendulum with S 

segments  X t  will have dimension 2S. The dynamic position of the i
th

 mass point on 

the tree in the global coordinate system in Cartesian coordinates is   , ,i i ix y z  where, 

 

       
1 1 1

cos sin , sin , cos cos
S S S

i ij j j i ij j i ij j j

j j j

x R y R z R    
  

          (3.3) 

 

and R is the relation matrix described above. Since this matrix only relates the 

connectivity of the segments of the pendulum system it remains unchanged for the same 

pendulum system restricted to planar 2-D motion or for that system dynamically allowed 

to move in 3-D space.  
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CHAPTER 4 

3-D DYNAMIC PENDULUM TREE WITH SUPERFLUOUS COORDINATE 

 

To determine the joint reaction force at the root pivot (origin) of the 3-D pendulum 

system described in the previous section, the distance 
1d from the origin to the first mass 

point on root segment will now be considered to be an additional dynamic variable of the 

system. The new dynamic generalized position vector is 

 1( ) ( ), ( )x t d t X t   1( ), ( ), ( )d t t t  . In effect adding this superfluous variable will 

allow the tree to “fly-away” from its pivot point. The constraint that 1d is to be held 

constant by the reaction force (tension) in the root segment will be applied explicitly after 

the inertial (motion dependent) and gravitational forces are determined from the new 

equation of motion that must be added to the pendulum system with superfluous 1d . 

The new equation is obtained by applying Lagrange‟s method in the radial 

direction, 1r , of the root segment to obtain, 

 

                                1

11

ˆ0 ( )
d L L

r direction
dt dd

  
  
 

                   (4.1) 

 

The pivot reaction force (PRF) must act equal and opposite to the inertial and 

gravitational force components in this direction to prevent the system from „flying off‟ in 

the radial direction, 1r .  The method is quite analogous to the method described earlier in 

Section 2.2 to obtain the joint reaction force for a single 3-D pendulum. 
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4.1 Lagrangian for Pendulum Tree with Superfluous Coordinate 

 

The Lagrangian for the system with superfluous coordinate is obtained from the kinetic 

and potential energies 

 

                                            , , ,L x x K x x P x           (4.2) 

 

where  

 

       1 1( ) ( ), ( ) ( ), ( ), ( ) , ( ), ( ) 1, ,T

i ii i
x t d t X t d t t t t t i S          . 

 

Expressions for these energies will now be developed for the general pendulum 

tree system with superfluous coordinate 1d .  

 

POTENTIAL ENERGY 

The potential energy, P, is  

 

1 1 1 1 1 1

sin sin
P P P S S P

i i i i i ij j i ij j

i i i j j i

P m g y g m y g m R g m R 
     

 
     

 
      ,     (4.3) 

 

Defining the vector  TM  of mass points of the system as   

 

                                         1 2( , , )T

PM m m m ,                      (4.4) 
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then the sum 
1

P

i ij

i

m R


  in Equation (4.3) can be written as the j
th

 component of the vector 

matrix product TM R  where R is the relation matrix previously defined by Equation 

(3.2).  

                                          

                                             
1

P
T

i ij
j

i

m R M R


 .                     (4.5) 

 

Therefore, the potential energy can be written in the form 

 

                                         
1

sin
S

T

j
j

j

P g M R 


  .                   (4.6) 

 

Although this form for P is the same as for the 3-D pendulum system without 

superfluous coordinate, 1d , there is a significant difference. In the pendulum system 

without superfluous coordinate R is a non-dynamic (time independent) matrix but since 

R  has terms that depend upon the new variable 1d , R  is time dependent for the 

pendulum system with superfluous coordinate 1d . This dynamic property of R has 

significant consequences in the calculations that will follow and the dependence of R  on 

1d  will now be described more precisely. 

Even though the superfluous variable 1d  allows the tree to “fly-away” from its 

pivot point, this affects only the root segment length 1L . All other segment lengths 

remain intact and are not changed by making  1d  a variable. Since the root segment of the 
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tree is a forefather to all other branches every length in the first column of R will change 

with the superfluous coordinate
1d  but all lengths in the other columns of R will be 

independent of 
1d (see Example in Figure 3.2 with explicit R given by Equation (3.2)). 

More precisely the dependence of R on the superfluous coordinate 
1d  is given by, 

 

             

1

1, 1

1

, 1; 1

, 1; 2, ,
,

  (  independent), 2, , ; 1, ,

0,   otherwise

ij

j

d i j

L d Const j i P
R

L d j P i P

 


   
 

 



      (4.7) 

  

The Const  in 1, 1L d Const   represents the remaining fixed length from the variable 

position of the first mass point to the end of the root segment. 

 

KINETIC ENERGY 

The Cartesian velocity of the i
th 

mass point  , ,i i i iv x y z  is obtained by differentiating 

Equation (3.3) with respect to time resulting in  

 

                                            1 1 1cos sini i o
x d x           (4.8) 

 

                                               1 1sini i o
y d y                     (4.9) 

 

                                           1 1 1cos cosi i o
z d z   ,     (4.10) 
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where  

                     
1 1

sin sin cos cos
S S

i ij j j j ij j j jo
j j

x R R     
 

                   (4.11) 

 

                                            
1

cos
S

i ij j jo
j

y R  


                             (4.12) 

 

                     
1 1

sin cos cos sin
S S

i ij j j j ij j j jo
j j

z R R     
 

    ,               (4.13) 

 

are the velocity components for the system without superfluous coordinate . 

The velocity squared of the i
th 

mass point is 
2 2 2 2

i i i iv x y z   . Substituting the 

above Equations (4.8)-(4.10) and simplifying the expression using trigonometric 

identities results in 

 

         

 

 

1

1

4

1 1

12 2 2

o 1 1
4

1

1

1
sin sin sin

2
( )

1
1 sin

2

,
j

j

j j k jS
k

i i ij

kj

k j

k

C A

v v d d R

 

 







  
   

    
 
  
 






        (4.14) 

 

where  

 

      1 2 3 4, , ,ij ij ij ij ij ij ij ijij ij ijij
A B A B C B C B             ,       (4.15)  
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and 

          , , , 1: 1, ,ij i j ij i j ij i jA B C i j S             .             (4.16) 

 

Equation (4.14) shows the explicit dependence of  2

iv  on 1d . The term 2

o( )iv  

represents the velocity squared of the i
th 

mass point for the original pendulum system without 

superfluous coordinate. The kinetic energy of the i
th

 mass point, 21

2
i i iK m v  and the total 

kinetic energy
1

P

i

i

K K


 . Substituting Equation (4.14) into the expression for K yields 

 

                                               o nK K K                    (4.17) 

 

                                           2

o

1

1
( )

2

P

o i i

i

K m v


  ,                 (4.18) 

 

                                  2

1 1

1

2

T T

n TK m d d u q                     (4.19) 

 

where  

         2

o

1

1
( )

2

P

o i i

i

K m v


  is the total kinetic energy of the original system without 

superfluous coordinate 1d . The two vectors u  and q  are defined by, 

 

                                 
1

4

1 1

1

1 1
sin sin sin ,

2 4 j

T

j j j kj
k

u M R C A 


 
   

 
                       (4.20) 
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                                       
1

4

1

1
1 sin , 1, ,

4 j

kT

j kj
k

q M R j S


                  (4.21) 

 

1

P

T i

i

m m


 is the total mass of the system and the vectors TM  and TM R  are defined as 

in Equations (4.4)-(4.5). 

The kinetic energy, oK , of the branched 3D-pendulum tree system without  

superfluous coordinate can be expressed in terms of the generalized coordinates (Lacker, 

Unpublished). 

  

                                     0

1
,

2

TK X V V M X V ,                                            (4.22) 

 

where 

 

                        
 

     

( , ), ( , ), ,

, , , 1, ,

T T

jj

j j jjj j

X V

j S

     

     

  

   
               (4.23) 

 

              
  11 12

21 22

, ,

                           1,2; 1,2; 1, , ; 1, ,

I J i j

M M
M X M

M M

I J i S j S

 
  
 

   

               (4.24) 

  

                                   11 11 11 11(  is )i ji j i j j i
M C M M symmetric                  (4.25) 

 

                                        12 12 21i ji j i j j i
M C M                   (4.26) 
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                                                        21 21i ji j i j
M C                    (4.27)  

 

                                   22 22 22 22(  is  )i ji j i j j i
M C M M symmetric                  (4.28) 

 

                                  ( )T

DC R M R symmetric                  (4.29) 

 

               , 1, ,2 ; 1, ,2 (  is  )
kl lk

M M l S k S M symmetric                 (4.30) 

 

                     
,

, , 1, , ( )
0,

i

D nq

m n q
M n q P diagonal

n q


 


.               (4.31) 

. 

The   submatrices are 

 

        

 

11

1 2 3 4

1
cos( ) cos( )

2

1
                 cos cos cos cos

4

i j i jij

ij ij ij ij

    

   

     

   

( )symmetric         (4.32) 

 

                                    
4

12 21

1

1
1 cos

4

k

ki j ij j i
k

  


 
   

 
                 (4.33)      

 

                                 
4

22

1

1
cos ( )

4
ki j ij

k

symmetric 


 
  

 
 ,                           (4.34) 
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where 
kij

 are defined as in Equation (4.15).  

In summary, the Lagrangian for the system with superfluous coordinate 
1d  is 

   

       ,L x x =  2

1 1

1

2

T T

o TK P K m d d u q       
1

sin
S

T

j
j

j

g M R 


          (4.35) 

 

As was the case for P, the form for oK   is the same as for the 3-D pendulum 

system without superfluous coordinate but with the superfluous coordinate, 1d , R  

becomes time dependent. 

 

4.2 Lagrange’s Equation of Motion Applied to the Superfluous Variable 

 

As explained in the section introducing this chapter and also in Section 2.2, using the 

method of superfluous coordinates to determine the reaction force at the root pivot 

requires that Lagrange‟s equation of motion be applied to the superfluous component, 

Equation (4.1), where the Lagrangian L is that given by Equation (4.35) above. The 

derivation will proceed by calculating each component of Equation (4.1) separately. 

 

CALCULATION OF
1

d L

dt d

 
 
 

 

Taking the partial derivative of L =K-P, with respect to 1d  gives   

                               o n

1 1 1 1 1 1

K KL K P P

d d d d d d

     
     

      
,                        (4.36) 
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where P, 
oK  and 

nK  are defined as in Equations (4.3),(4.18) and (4.19). Note that in 

Equation (4.6) the potential energy does not depend upon the speed 1d , therefore
1

0
P

d





. 

Furthermore although the kinetic energy, oK ,  depends on 1d  it is also independent of 1d , 

thus, Equation (4.36) can be expressed as, 

 

                             1

1 1

T Tn
T

KL
m d u q

d d
 

  
    

  
                            (4.37) 

 

Taking the derivative of Equation (4.37) with respect to time, gives 

 

 

                        1

1

T T T T

T

d L
m d u q u q

dt d
   

 
     

 
                (4.38) 

 

Taking the time derivative of Equation (4.20) gives 

 

   

   

1 1

1

4

1 1 1 1

1

4

1 1

1

1 1
cos cos cos

2 4

1 1
                     sin sin , 1, ,

2 4

i i

i

T

i i i i i k k
i

ki

T

i i k
i

k

d
u u M R C C A A

dt

d
C A M R i S

dt

 







  
      
   

 
    
 





.   (4.39) 

 

 

 

 

 



25 

 

 

 

Since, 

 

                                     1

1

T T

i
i

d
M R M R d

dt d





,                 (4.40) 

and, 

 

                     
1 11 1 1

p p
jiT

j ji j
i

j j

R
M R m R m

d d d 

    
    

     
      .               (4.41) 

 

As described in Section 4.1 and Equation (4.7) only the first column of R  has 1d in each 

of its terms so 

 

                                           
1

1, 1
,

0, 1

jiR i

id

 
 

 
                            (4.42) 

     

                    1

11 1

, 1

0,                  2, ,

p

p
j TjiT

jj
i

j

m m iR
M R m

d d
i S






  

  
   


    (4.43) 

 

but when i=1,  
1

4

1 1

1

1 1
sin sin 0

2 4 ii i k

k

C A 


    which implies that 

 

                   
1

4

1 1

1

1 1
sin sin 0  

2 4 i

T

i i k
i

k

d
C A M R i

dt




 
    

 
 .     (4.44) 
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Therefore, the vector u  simplifies to 

 

          
   

1 1

4

1 1 1 1

1

1 1
cos cos cos ,

2 4

                                                                             1, ,

i i

T

i i i i i k k
i

k

u M R C C A A

i S

 


 
   

 




.             (4.45) 

 

A similar argument that was used above for u  can be applied to the vector q  giving 

 

                                    
1 1

4

1

1
1 cos , 1, ,

4 i i

kT

i k ki
k

q M R i S 


   .               (4.46) 
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Summarizing the results for the first term of Equation (4.1), 

 

   

   

   

1

1 1

1

1

1

4

1 1

1

4

1 1 1 1

1

,

where the vectors , , ,  are

1 1
sin sin sin ,

2 4

1 1
cos cos cos ,

2 4

1
1 sin

4

i

i i

i

T T T T

T

T

i i i k
i

k

T

i i i i i k k
i

k

kT

i k
i

k

d L
m d u q u q

dt d

u u q q

u M R C A

u M R C C A A

q M R

   



 







 
     

 

 
   

 

 
   

 

 





   
1 1

1 1

4

1

4

1

1 11 1

1 1 1 1

1 1 1 1

1 1
1 1

,

1
1 cos , 1, ,

4

and

, 1, 1

, 2 , 2
'

, 3 , 3

, 4

i i

i i

kT

i k k
i

k

i ii i

i i i i

k k

i i i i

i i
i

q M R i S

kk

k k

k k

k

 

      

       
 

       

       





  

      


       
 

         
        





1 1 1 1 1 1

1 1 1 1 1 1

, 4

, ,

, ,

i

i i i i i i

i i i i i i

k

A B C

A B C

     

     










     

     

.               (4.47) 

 

The vectors TM  and TM R  are defined as in Equations (4.4), (4.5) and Tm is the total 

mass of the system. 
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CALCULATION OF

1

L

d




 

 

Since,  

 

                                                              
1 1 1

L K P

d d d

  
 

  
,                 (4.48) 

 

each term will be calculated separately, starting with 
1

P

d




. 

Taking the partial derivative of Equation (4.6) yields 

 

                                           
 

11 1

sin

T
S

j

j

j

M RP
g

d d







 
 .                 (4.49) 

 

Substituting Equation (4.5) into the above expression and exchanging the order of 

summation produces 

 

                                           
1 11 1

sin
P S

kj

k j

k j

RP
g m

d d


 




 
  .                           (4.50) 

 

Using Equation (4.42) gives the final form 

 



29 

 

 

 

                                                            1

1

sinT

P
m g

d






.                 (4.51) 

Physically Equation (4.51) represents that component of the total gravitational 

force (weight) of the system that is in the radial direction of the root segment
1r .   

The second term of Equation (4.48) 
1

K

d




 will now be considered. Taking the 

partial derivative of Equation (4.17) with respect to the superfluous coordinate yields 

 

                     1

1 1 1 1 1 1

T T

o n oK K KK u q
d

d d d d d d
 

        
        
          

               (4.52) 

 

Taking the partial derivative of Equations (4.20) and (4.21) with respect to the 

superfluous coordinate produces                                           

 

                                                   

 
 

1

4

1 1

11 1

1 1
sin sin sin ,

2 4 i

T

i i
i i k

k

M Ru
C A

d d




  
      

             (4.53) 

 

                            
 

 
1

4

11 1

1
1 sin , 1, ,

4 i

T

ki i
k

k

M Rq
i S

d d




  
      

                (4.54) 

 

 It has been shown in Equation (4.43) that all components of  
1

0T

i
M R

d





 

except for the first, 1i  , component but when 1i  ,  
1

4

1

1 sin 0
i

k

k

k




   and 
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 
1

4

1 1

1

1 1
sin sin sin 0

2 4 ii i k

k

C A 


   . Therefore, the vectors 
1

u

d




and 

1

q

d




are both equal 

to 0  and Equation (4.52) above reduces to  

            

                                                                
1 1

oKK

d d




 
.                  (4.55) 

 

Taking the partial derivative of Equation (4.22) with respect to the superfluous coordinate 

yields 

 

                    

11 12

1 1

21 221 1 1

1 1

1 1
( , )

2 2

To

M M

d dKK M
V V

M Md d d

d d


 



  
           
      
 
  

             (4.56) 

 

Expanding the quadratic form gives 

 

                11 12 21 22

1 1 1 1 1

1

2

T T T TM M M MK

d d d d d
       
    

    
     

.         (4.57) 

 

The dependency of each submatrix 
1

, 1,2; 1,2;IJM
I J

d


 


on the superfluous 

variable 1d occurs through  
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 
 

1 1 11 1 1 1 1

                                                                             1, , ; 1, ,

P P P
ki kji j kjT ki

D k k ki k kj

k k k

R RC R R
R M R m m R m R

d d d d d

i S j S

  

  
   

    

 

  

.      (4.58) 

 

Applying Equation (4.58) above to the first term in Equation (4.57) gives 

 

                                         11
1 2

1

,T M

d
 


  


                 (4.59) 

 

where, 

 

                                1 11

1 1 1 1

S S P
kj

i j k kiij
i j k

R
m R

d
  

  


 


                   (4.60) 

 

                                2 11

1 1 1 1

S S P
ki

i j k kjij
i j k

R
m R

d
  

  


 


    .               (4.61) 

 

Using Equation (4.42) in the form, 

 

                               
1

1, 1; 1, ,

0, 1; 1, ,

kjR j k P

j k Pd

  
 

  
.                 (4.62) 
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and summing Equation (4.60) over j yields, 

 

                                   
1 1 11 1

1 1

S P

i k kii
i k

m R  
 

    .                 (4.63) 

 

Substituting Equation (4.5) into the equation above gives 

 

                                    1 1 11 1
1

S
T

i ii
i

M R  


                    (4.64) 

 

Summing Equation (4.61) over i and applying Equation (4.62) in the form 

 

                         
1

1, 1; 1, ,

0, 1; 1, ,

ki
i k PR

i k Pd

  
 

  
 yields,                (4.65) 

 

                                   2 1 111
1

S
T

i ii
i

M R  


   .                 (4.66) 

 

Since 11  is symmetric 11 111 1i i
   (see Equation (4.32)), the first term of the quadratic 

form in Equation (4.57) evaluates to  

 

                          11
1 2 1 11 1
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M
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Using the same procedure to evaluate the remaining terms of Equation (4.57) gives the 

following result 
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where the submatrices are defined as Equations  (4.32) – (4.34) and where kij
 are 

defined as in Equations (4.15) – (4.16) with j=1. 
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CHAPTER 5 

 

PIVOT REACTION FORCE FOR THE 3-D PENDULUM TREE SYSTEM 

 

 

Now that both terms in Lagrange‟s equation of motion for the superfluous component 

(Equation (4.1)) are evaluated, it can be used to determine the dynamic equation for the 

pivot reaction force of the 3-D pendulum tree. Substitution of Equations (4.47), (4.48) 

and (4.51) into Equation (4.1) gives 

 

                      1 1

1

sinT T T T

T T

K
m d u q u q m g

d
    


     


.                 (5.1) 

 

 

Note that both Tu  and Tq   in Equation (5.1) are each composed of quadratic 

terms in the velocities ,i i   (see summary Equation (4.47)). Terms with the same 

quadratic velocity components can be collected and compared to similar terms in 

Equation (4.68) for 
1

K

d




.  The result produces considerable cancellation and 

simplification so that the RHS of Equation (5.1) can be written in the form 

 

          2 2

1 1 2 3 1

1
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T T

K
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
      


     (5.2) 
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where the vectors 1 2 3, ,w w w  are defined by 

 

             
1
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1 1 1
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i i k
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                            
1

4

2

1

1
1 cos
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kT

k
i

k

w M R 

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        
1

4
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1
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4i i

T

k
i

k

w M R i S


 
  

 
 .     (5.5) 

 

Lagrange‟s EOM for the superfluous component (Equation (4.1)) in the radial direction 

of the root segment 1r   is therefore 

 

            
2 2

1 1 1 2 3sinT T T T T

T Tm d u q m g w w w                    (5.6) 

 

5.1 Physical Interpretation of the Pivot Reaction Force  

 Equation for the 3-D Pendulum Tree System 

 

To interpret Equation (5.6) physically it is helpful to write it in the following form 

 

            2 2

1 1 1 2 3sin T T T T T

T Tm d m g w w w u q            .      (5.7) 

 

The RHS of Equation (5.7) reveals the force terms that are acting on the 

pendulum system in the 1̂r direction to extend or contract the distance 1d  from the pivot. 
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Besides the first term which represents the conservative gravitational force component, 

all of the remaining force terms are motion dependent. When the pendulum system is at 

rest, these inertial forces disappear leaving only the gravitational force component to 

change 1d .  The first three inertial force terms are quadratic in angular velocity 

(centrifugal) while the last two depend on angular acceleration.  

To maintain the constant length of root segment in the pendulum tree a reactive 

constraint force, CF must be applied that is equal and opposite to the net force that is 

acting to change the distance 1d . This reactive constraint force is the tension in the 

idealized rod that represents the root segment. Explicitly imposing the constraint 

condition that 
1d is constant implies that both 1d 0r r   and 1d are both 0. Adding the 

pivot reaction force term CF  that maintains the constraint to Equation (5.7) gives the 

equation for the pivot reaction force (PRF), 

 

     2 2

1 1 2 3 1sin 0T T T T T

T c Tm g w w w u q F m d                    (5.8) 

 

or  

 

               2 2

1 1 2 3sin T T T T T

c TF m g w w w u q           .      (5.9) 

 

Since Equation (5.9) represents the final form for the PRF it will be written now with all 

terms previously defined collected here for future reference: 
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




    (5.10) 

 

 

5.2 Consistency Checks of the Pivot Reaction Force 

 Equation for the 3-D Pendulum Tree System 

 

Consider the special case when the number of segments S in the pendulum tree system is 

reduced to one and where there is only one mass point of mass m   at the end of the 

segment whose length is  l  Equation (5.10) should then simplify to PRF for a single 3-D 

pendulum that was derived in Section 2.2, (Equation (2.10) 

where 1 1 1 1, , ,Tm m m l l         . In this special case , , TM m R l M R ml    . In 
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this case the vectors  2, ,u q w  evaluate to 0 and 2

1 3, cosw ml w ml   . Therefore, 

Equation (5.10) reduces to 

 

                               2 2 2sin coscF mg ml ml       ,      (5.11) 

 

which is the same as Equation (2.10) in Section 2.2.  If the pendulum is hanging 

down at rest in its stable equilibrium position 
2


    then, cF mg  . Since the radial 

direction of the root segment 1r  is pointing down in this configuration therefore cF is 

upward, equal and opposite to the mass‟s weight. If the single pendulum motion is 

constrained to a 2-D motion in the x,y plane, then 0  and Equation (5.10) reduces to  

 

                                           2sincF mg ml                    (5.12) 

 

Now the force of constraint is dynamic and must oppose both the gravitational 

component and the outward centrifugal force. The gravitational component can be either 

outward (positive) or inward (negative) relative to 1( )r t  depending on the pendulum‟s 

dynamic angular position  t . If the motion is restricted to be in the x,z plane, then 

0   and 2

cF ml  acts only to oppose the outward centrifugal force. If the motion 

is uniform circular motion, then   and cF are constant and cF  has the correct magnitude 

and direction. 
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 A more complicated special case is to consider a general 2-D pendulum tree with 

S segments but with those segments restricted to move in the x,y plane only, that is, for 

the case when 0 1, , .i i i i S        For this special case, 2w and q  are both 0 as 

are the terms 2

3

Tw   and Tq  . Equation (5.10) simplifies to 

 

                               2

1 1sin T T

c TF m g w u     ,      (5.13) 

 

where the vectors 1w and u  also simplify to  

 

                                     1 1cos ,
i

T

i
i

w M R                     (5.14) 

 

                                     1

1
sin

4

T

i i
i

u M R    .                 (5.15) 

 

This is the same result found in the page 30, Equation (4.20), (Rajai, 2007) for the 

general 2-D pendulum tree.  

 

5.3 Dynamic Solution of the Pivot Reaction  

Force for the 3-D Pendulum Tree System 

 

As the previous section illustrates, Equation (5.10) for the PRF does not yet represent an 

explicit dynamic solution for  cF t until the dynamic functions    ,i it t   are specified 

for each of the 1, ,i S segments of the general 3-D pendulum tree. The dynamic 

functions    ,i it t   can be theoretically predicted by solving Lagrange‟s Differential 
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EOM for the 3-D pendulum tree system without the superfluous coordinate. The system 

of differential equations can be written in the form  

 

                                           
Grav InertialMX F F  ,               (5.16) 

 

where M is the generalized mass matrix used in Equation (4.22) to express the 

system kinetic energy K ,  ,TX    is the generalized acceleration vector with 2S 

components GravF is the generalized gravitational force (torque) 

 

                      
  cos 1, ,

0,                           1, ,2

T

ii
iGrav

g m R i S
F

i S S

 
 

 

 

                  (5.17)  

 

and 
,

1 , 1, ,

2 1, ,

i

i

Inertial

Inertial

Inertial

F i S
F

F i S

 
  
  

 represents a vector of generalized inertial 

(centrifugal) force terms quadratic in the angular velocity components 

   ,i it t  (Lacker, unpublished).  

Equation (5.16) can be solved numerically by standard methods used to solve 

systems of ordinary differential equations with suitable initial value or boundary  

conditions (see, for example, Numerical Recipes (Rajai, 2007)). 
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CHAPTER 6 

 

GENERAL JOINT REACTION FORCE (JRF) FOR THE 3-D PENDULUM TREE 

 

Consider the J
th

 joint of the pendulum tree system. If it is not a branch point of the 

system, then all segments distal to it and descended from it (children, grandchildren…) 

form a sub-tree of the system. In general, this sub-tree will have S segments and P  mass 

points distributed on it. The immediate distal segment whose proximal end attaches to the 

J
th

 joint forms the root segment of this sub-tree. The distance from the J
th

 joint to the first 

mass point on this sub-tree root segment can be treated as a superfluous coordinate in the 

same way that 1d  was treated for the root pivot joint of the whole tree.  

In effect, the J
th

 joint has become the root pivot joint for this sub-tree of the J
th

 

joint. Associated with this sub-tree of the J
th

 joint is its own relation matrix of segment 

connectivity ( )JR with its own superfluous coordinate 
 

1

J
d  that allows the sub-tree to “fly 

away” from the J
th

 joint.  The ( )JR  matrix is simply a particular submatrix of the general 

relation matrix of the whole tree R. The superscript J of  J
R and 

 
1

J
d does not here 

represent power  multiplication but rather is simply a way to denote which joint in the 

tree  is to be associated with this particular submatrix and its corresponding superfluous 

coordinate. The brackets around the superscript will be used to distinguish it from the 

usual meaning of multiplication to the J
th

 power. The submatrix  J
R  is in general a 

rectangular matrix with P  rows and S columns.  

The submatrix  J
R  is in every way analogous to R except that it refers only to the 

sub-tree associated with the J
th

 joint. In particular, only the first column of  J
R  will have 
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 
1

J
d  dependence. Because all other entries of  J

R  are independent of the superfluous 

coordinate  
1

J
d , the derivative   

 

                        
 

 
1

1, 1; 1, ,
, 1, ,

0, 1; 1, ,

J

ki

J

i k PR
i S

i k Pd

 
 

  
 ,                  (6.1) 

 

which is analogous to Equation (2.1)  for the whole tree.  All the steps that were used to 

obtain the PRF for the whole tree will proceed to yield the same reaction force equation 

for the tension in the root segment of the sub-tree associated with the J
th

 joint with  J
R  

replacing R in Equation (5.10) and with the dynamic angle variables renamed to refer to 

the corresponding segments of the sub-tree associated with the J
th

 joint. The reactive 

tension in the root segment of this sub-tree of the J
th

 joint will be called PRF_J. In a 

simple non-branching joint, it is the dynamic tension in the connecting segment just distal 

to the J
th

 joint and is given by Equation (5.10) with suitable replacement for R and 

renaming of the angle variables as just described. 

 However, there is a significant difference between the pivot root of the whole tree 

and that of the J
th

 joint „root‟ of the sub-tree. The pivot root of the whole tree is fixed to 

the ceiling or wall of the lab frame and does not move with respect to it. The J
th

 joint is 

not fixed but rather is a moving part of the dynamic system. It will move due to the 

reactive tension in the connecting segment that is just proximal to it. The joint reaction 

force (JRF) on a simple non-branching joint of the system will be the vector sum of the 

two reactive tensions in the connecting segments just distal and proximal to it.  
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The dynamic tension force in any given segment at each of its ends, is equal and 

opposite. Therefore, the reactive tension exerted on the J
th

 joint from its proximal 

segment must be equal and opposite to the reactive tension exerted on the joint just 

proximal to it. Denoting this joint as the (J-1)
th

 joint, then this joint has its own associated 

(J-1)sub-tree and the root segment of this (J-1)sub-tree is the proximal segment to the J
th

 

joint.  The dynamic tension associated with its sub-tree root is PRF_(J-1) and is given by 

Equation (5.10) with  1J
R


 replacing R and the dynamic angles properly interpreted for 

the (J-1)sub-tree.  

The joint reaction force (JRF) on a simple non-branching joint of the system will 

be the vector sum of the two reactive tensions in the connecting segments just distal and 

proximal to it. Therefore, if the J
th

 joint is non-branching then JRFJ for this joint is given 

by 

 

                                       PRF_ J PRF_ J 1  JJRF    .       (6.2) 

 

What if the J
th

 joint is not simple but rather a branch point of the pendulum tree? 

A simple example occurs in the joint labeled J2 in the specific tree illustrated in Figure 

3.1. This joint has two distal segments S2 and S4 connected to it and therefore two distal 

sub-trees associated with it. In this case the (J-1) proximal joint is J1 the root of the whole 

tree. Labeling the PRF of the two distal sub-trees of J2 as  1PRF _ J=2  and  2PRF _ J=2  

The JRF for J2 in this case will be  

 

                                 2 1 2PRF _ 2 PRF _ 2 PRF JJRF            (6.3) 
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In general, because there are no closed loops allowed in the tree structure system 

that is considered in this thesis, any given joint may have more than one directly 

connecting distal tree associated with it but will have only one directly connecting (J-1) 

proximal joint. If the J
th

 joint has K distal branches, then 

 

                                    k

1

PRF _ PRF 1  
K

J

k

JRF J J


   .       (6.4) 
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CHAPTER 7 

 

CONCLUSION 

 

In this thesis, the idealized 3-D pendulum tree system is intended to provide a flexible 

theoretical framework to model and better understand the dynamics of human and animal 

movement as well as the forces associated with those movements. The 3-D pendulum 

model developed here is particularly applicable to ballistic movements where muscles act 

primarily to impulsively initiate a movement phase such as the swing phase of human 

walking (toe-off to heel-strike). In such ballistic movements, impulsive muscular force 

generates the initial velocity of the system while the bulk of the motion phase is 

completed efficiently with relatively little further muscular effort by gravity and 

momentum transfer between body segments. Many skillful motor tasks probably have 

significant phases that can be modeled effectively as ballistic movement.  

This thesis applies Lagrangian dynamics and the method of superfluous 

coordinates to determine constraint forces on the 3-D pendulum tree model system during 

ballistic movement.  In particular, the dynamic reaction forces that are acting on the pivot 

joint and other joints in the general tree model system are considered. While consistency 

checks have been applied to the pivot joint, further consistency checks on the general 

joint reaction force equation developed in the thesis are required in future work. 

The modeling approach developed in this thesis can be used to help estimate 

clinical parameters that are significant but otherwise difficult to access. It is hoped that in 

the future the ability to predict dynamic joint reaction forces in this dynamic general 3-D 
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pendulum tree model will be used to help assess in a given individual the potential effect 

of proposed new movement techniques in producing joint injury and/or pain.   
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