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ABSTRACT

HETEROGENEITY-AWARE AND ENERGY-AWARE SCHEDULING
AND ROUTING IN WIRELESS SENSOR NETWORKS

by
Mahesh Kumar Vasanthu Somashekar

A Wireless Sensor Network (WSN) is a group of specialized transducers, called

sensor nodes, with a communication infrastructure intended to monitor and record

conditions at diverse locations. Since WSN applications are usually deployed in an

open environment, the network is exposed to rough weather conditions, such as rain

and snow. Another problem that WSN applications need to deal with is the energy

constraints of sensor nodes. Both problems adversely affect the lifetime of WSN

applications. A lot of research has been conducted to prolong the lifetime of WSN

applications considering energy constraints of sensor nodes, but not much research has

gone into tackling both the environmental effects and energy constraints. The goal

of this research is to efficiently deal with these two problems and provide a solution

for scheduling and routing in a heterogeneous sensor network.

The research has been divided into two phases - Scheduling and Routing. In

the scheduling phase, only some sensor nodes are scheduled to run for a particular

timeslot and during that timeslot other sensor nodes are kept in sleep mode. A set

of sensor nodes for a timeslot is chosen based on their positional information. In the

routing phase, a least cost route from a sensor to the sink is dynamically determined

to prolong the lifetime of the sensor network.
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CHAPTER 1

INTRODUCTION

1.1 Background

A wireless sensor is a device which monitors and collects useful data from its surroundings.

Sensor nodes communicate each other via wireless channels to transmit data. Sensor

nodes are usually battery driven. A Wireless Sensor Network (WSN) is a network

infrastructure consisting of a group of wireless sensor nodes. In WSN applications,

sensor collected data is transmitted to a common sink node or base station. Sink node

processes the collected data to yield productive results. A simple WSN is shown in

Figure 1.1.

Figure 1.1 Wireless Sensor Network.

WSN technology has significantly impacted the efficiency of many military

and civil applications such as military surveillance, structural monitoring and robot

1
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control. Sensor nodes monitor and gather data of the area and transmit this data to

the remote system for analysis. For example, in an air pollution management system,

the sensor nodes are deployed in the area of interest. Sensor nodes monitor the

concentration of hazardous gases in the area and control the air quality as instructed.

WSN is more flexible than other typical air pollution management systems as they

are easy to deploy, less expensive, scalable and efficient.

Sensor nodes are constrained by energy, storage capacity and bandwidth. These

are the sensor-level challenges that affect the operation of the sensor network. Growing

interests in the field of wireless communication has triggered the evolution of WSN

technologies. Significant research has been taken undertaken to overcome the challenges

of the sensor in a sensor network. This research work is to analyze and design

scheduling and routing algorithm for the WSN which will efficiently handle the

environmental and energy constraint problems. Heterogeneity in this research indicates

the heterogeneity in the type of sensor nodes used and their behavior to the environmental

forces.

1.2 Problem Statement

As many WSN applications are deployed in an open environment, the network is

subject to the forces of the environment. Environmental forces refers to rain, extreme

temperature, the possibility of an animal stepping on a sensor node and other factors.

Energy is another constraint of the sensor node as these nodes run on battery. Both

problems adversely affect the lifetime of the WSN applications.

Environmental forces can have a severe impact on sensor networks. If the area

of deployment is windy then there is a high probability of the sensor node getting

damaged physically. If the area has a high prediction of snow storm then during that

period only a few of sensor nodes survive depending on their specifications. It is also

very important and difficult to express the effects of these environmental forces on the
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sensor network. A sensor node’s behavior changes under different weather conditions.

A sensor node might temporarily or permanently stop working depending upon the

impact of these forces on the sensor node.

Energy is another important factor that affects the functionality of the WSN

application. Sensor nodes have limited battery charge and their durability depends on

how fast the battery drains. Sources of energy consumption in sensor nodes are data

transmission, collisions, idle listening and others. Impacts of sensor energy constraints

on the sensor network are network partition, periodic decrement in coverage area and

improper functioning of the application.

Environmental forces can also affect the energy consumption of a sensor node.

During some environmental conditions, some sensor nodes stop operating causing

the surviving sensor nodes to take more load and/or the surviving nodes require

transmitting data to longer distance consuming more power. Proper handling of

these problems will drastically increase the performance and lifetime of the sensor

network.



CHAPTER 2

ASSUMPTIONS

A series of realistic assumptions have been made about Wireless Sensor Networks in

the research. WSNs have a wide range of applications and these assumptions would

suit to most of the applications.

Assumptions made on WSN are as follows:

• Environmental conditions are among the prime parameters considered in this
research. Environmental conditions considered include sunny and rainy weather.
The assumption is that, during rain, only robust sensor nodes sustain the
weather and they continue to function normally, whereas, regular sensor nodes
stop functioning. As the weather changes from rainy to sunny, a few of the
regular sensor nodes might not come back up depending on the intensity of rain.
During sunny weather, both regular and robust sensor nodes run normally.

• The weather forecast system considered is hourly. Each sensor node will be
knowledgable of the weather forecast of 5-10 hours from the current time.

• One of the main technical assumptions that this research uses is that the sink
node will have a very dense distribution of immediate neighbor sensor nodes.
This plays a vital role in evenly assigning set numbers to the sensor nodes and,
thereby, provides consistent coverage by all set of sensor nodes.

• All sensor nodes have data to transmit during each timeslot.

• Wireless links between sensor nodes are bi-directional and the radio channel for
communication is symmetric. This means that the energy required to transmit
data from sensor-A to sensor-B and from sensor-B to sensor-A is the same.

• All sensor nodes are static and they know their location details either by using
a GPS or by other localization methods [12].

• All sensor nodes are loosely time synchronized [7].

• Sink nodes have no energy constraints unlike other regular/robust sensor nodes.

4



CHAPTER 3

DESIGN

In Wireless Sensor Network, sequence of data transmission is dynamic because of

its ad-hoc nature. The goal of the research is to develop a methodology for such

ad-hoc networks to increase the lifetime of network. Some of the prime factors

that the research needs to handle are dynamically adjusting to the changes in the

weather condition, dynamically determining the surviving sensor nodes, maintaining

network connectivity and handling other factors. The research work is a combination

of scheduling and routing. Scheduling is used to schedule a set of sensor nodes

to be in on-duty mode during some particular timeslots and to be in sleep mode

during other timeslots. Sensor nodes in sleep mode will be in-directly contributing

in preserving energy of the WSN application. Routing is used to find an intelligent

route from a sensor node to the sink node considering energy level of sensor nodes and

environmental condition. Efficient routing make sure that the energy consumption of

the sensor nodes are evenly distributed. Scheduling and routing performing together

greatly increase the lifetime of the WSN application. Section 3.1 and Section 3.2

will be explaining in-detail on scheduling and routing design respectively.

3.1 Scheduling Design

The purpose of scheduling in WSN is to schedule a set of sensor nodes to run in some

particular timeslots. In each timeslot, only a set of sensor nodes will be in on-duty

mode and other sensor nodes will be in sleep mode. In order to achieve this, first thing

is to create disjoint set of sensor nodes and then schedule each set of sensor nodes

in particular timeslots. In the research, creation of set of sensor nodes is performed

5
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hop-level in order that each set of sensor nodes can maintain network connectivity

and cover the area of interest as much as possible.

3.1.1 Determine Minimum Hop Count to Sink

First operation is to determine minimum hop count to sink of all the sensor nodes.

This initial step is very important as hop count will be used for creating sets and it also

plays a vital role during routing phase. Figure 3.1 shows the pictorial representation

of hop count to sink of all the sensor nodes.

Figure 3.1 Minimum Hop Count of Sensors to Sink.

Steps to determine minimum hop count to sink are as follows:

1. The process is initiated by the sink. Sink initializes a packet with hop count=0
and broadcasts that hop information to its immediate neighbor sensor nodes.

2. Neighbor sensor node upon receiving hop count information, increments the
hop count, stored in the packet, by 1.

3. Then sensor node checks whether this incremented packet hop count value is
lower than its internally stored hop count, if it has already assigned hop count.
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4. If incremented packet hop count value is lower or the sensor is receiving hop count
packet for the first time, then it stores that hop count value and broadcasts
incremented hop count packet to its neighbor sensor nodes. This goes to Step-2.
The process is repeated till all the sensor nodes in the network are assigned with
minimum hop count value.

5. If incremented hop count is higher or equal to its stored hop count, then the
node will keep its current hop count information.

3.1.2 Create Sets

The main idea behind creating set of sensor nodes in WSN application [4] is that the

number of sensor nodes deployed is usually higher than the deterministic number of

sensor nodes required and consequently, the coverage of most of the sensor nodes will

be overlapping. Considering the overall picture of the network area, not all part of

area will be covered by more than one sensor. Therefore, the goal in creating sets is

that sensor nodes running in each set should provide consistent coverage of the area.

Before creating sets, it is required to determine the number of sets that can be

created. Number of sets depends on the total number of sensor nodes and the area

of the field. After determining the number of sets, next step is to assign set number

to all the sensor nodes in the network. While creating sets, it is very important to

make sure that each set of sensor nodes working independently will not cause network

partitioning.

Creating sets is performed at hop-level. First, all 1-hop sensor nodes are

assigned to set number, second, all 2-hop sensor nodes are assigned and so on. This

is performed in two phases. The first phase is to assign set number to all 1-hop

sensor nodes. The second phase is to assign set number to other hop sensor nodes

considering the previous hop sensor node’s set numbering. These two phases are

explained in Section 3.1.2.1 and Section 3.1.2.2 respectively.
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3.1.2.1 Set Numbering for 1-Hop Sensor Nodes

As per one of the assumptions, the sink will have very dense distribution of neighbor

sensor nodes. This assumption is helpful in evenly assigning set numbers to the sensor

nodes in 1-hop as well as in all subsequent hops.

Algorithm 1 Set Number Calculation for 1-Hop Nodes
Notations:

1hopNodes[]: all 1-hop nodes and their position details
distances[]: the distances between all 1-hop nodes and sink
numOf1HopNodes: number of 1-hop nodes
numOfSets: number of sets
determineDistance(): method to determine the distance between
all 1-hop nodes and sink
sortInDescending(): method to sort in decending order

distances[]=determineDistance(1hopNodes, sink)
distances[]=sortInDescending(distances)
for i = 1→ numOf1HopNodes do

if 1hopNodes[i].set==0 then
1hopNodes[i].set=1
for j = 2→ numOfSets do

minCost = infinite
for k = 1→ numOf1HopNodes do

if i!=k and 1hopNodes[k].set==0 then
tmpDist = getDistance(1hopNodes[i], 1hopNodes[k])
if tmpDist < minCost then

minCost=tmpDist
minNode =k

end if
end if

end for
if minCost != infinite then

1hopNodes[minNode].set = j
end if

end for
end if

end for
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Figure 3.2 Steps for Assigning Set Numbers to 1-Hop Sensor Nodes.

Steps for assigning set numbers to 1-hop sensor nodes are as follows (depicted in
Figure 3.2):

1. Sink requests all its immediate neighbor sensor nodes to provide their position
details.

2. All neighbor sensor nodes upon receiving this request, transmits their position
details to the sink.

3. Sink after receiving position details from all its neighbors, it intelligently determines
set number using position details and assigns set number to all neighbor sensor
nodes. Determining set numbers is described as below and algorithm for determining
it is given in Algorithm 1.

(a) Sink calculates distance from itself to all its neighbor sensor nodes using
their position details.

(b) It iterates through all its neighbors in descending order of their distance.

(c) Assign further-most unassigned sink neighbor to Set-1. Then loop through
other set numbers, i.e. set numbers 2, 3 & so on, and try to assign these
set numbers to other unassigned neighbor sensor nodes. Sink performs all
these calculations to assign set number to 1-hop sensor nodes based on
their position details.

(d) After assigning a neighbor to Set-1, determine the unassigned sink neighbor
nodes which are close to that sensor node. Assign those sink neighbor nodes
to the consequent set numbers, i.e. Set-2, Set-3 and so on. This means,
assign a sensor node to Set-1, then find sensor nodes close to that sensor
node and assign those sensor nodes to consequent set numbers. This is
shown in Figure 3.3.
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Figure 3.3 Determining Set Numbers for 1-Hop Sensor Nodes.

(e) Iterate till all sink neighbors are assigned to a set.

4. Then sink broadcasts calculated set number to all its neighbor sensor nodes.

3.1.2.2 Set Numbering for x-Hop Sensor Nodes, where x>1, based on

(x-1)-Hop Sensor Nodes

Once all 1-hop sensor nodes are assigned with a set number, some of 1-hop sensor

nodes inform 2-hop sensor nodes to start the process of determining and assigning

set numbers to that hop sensor nodes. Once 2-hop sensor nodes are processed, it will

transmit control to its next hop sensor nodes and it continues till all the sensor nodes

in the network are assigned with set number.

Steps for assigning set numbers to x-hop sensor nodes, where x>1, are as follows
(depicted in Figure 3.4):

1. After (x-1)-hop sensor nodes complete their processing, some of (x-1)-hop sensor
nodes communicate x-hop sensor nodes to start set numbering process.

2. On receiving this message, a sensor node initiates by requesting its same-hop
immediate neighbor sensor nodes to send their possible set assigning numbers.
Possible set numbers of a sensor node is the set numbers of all its previous hop
neighbor sensor nodes.

3. Neighbor sensor nodes broadcast their possible set assigning numbers.
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Algorithm 2 Set Number Calculation for x-Hop Nodes, where x>1
Notations:

neighborDetails[]: same hop neighbor nodes details
counter[]: counter of set numbers assigned to nodes
frequency[]: frequency of possible set numbers of all unassigned nodes
numOfNeighbors: number of neighbors of process initiated node
1PossSetNeighbors: number of neighbors having only one possible set
minCountSet: set having minimum counter
maxFrequencySet: set having maximum frequency
matchCount: matching nodes count
assignSets(): calculates and assigns set numbers to nodes using
counter and frequency
getMinSet(): method to get mininum set number based on counter
getMaxSet(): method to get maximum set number based on frequency
findMatchingNode(): method to find matching node using matchcount,
mincounterset and maxfrequencyset

counter[]=updateCounter(neighborDetails)
frequency[]=updateFrequency(neighborDetails, Except Neighbors

Having One Possible Set)
assignSets()
counter[]=updateCounter(neighborDetails)
frequency[]=updateFrequency(neighborDetails, Include Neighbors

Having One Possible Set)
assignSets()

proc assignSets()
for i = 1→ (numOfNeighbors− 1PossSetNeighbors) do

minCountSet = getMinSet(counter)
maxFrequencySet = getMaxSet(frequency, ExceptMinCountSet)
for matchCount = 2→ numOfSets do

node = findMatchingNode(matchCount, minCountSet,
maxFrequencySet)

node.setNum = minCountSet
counter[]=updateCounter(node)
frequency[]=updateFrequency(node)

end for
end for
end proc
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Figure 3.4 Steps for Assigning Set Numbers to x-Hop Sensor nodes.

4. After receiving possible set details from all the neighbor sensor nodes, the
current sensor node determines the set numbering for all its neighbor sensor
nodes. Determining set numbers is explained as below and detailed algorithm
is provided in Algorithm 2. Example for this is shown in Example 1.

(a) Node calculates counter and frequency using received neighbor sensor nodes
details. Frequency is calculated using all neighbor sensor nodes, except for
neighbor sensor nodes having only one possible set. Counter is the count
of set numbers assigned to all neighbor sensor nodes and frequency is the
number of possible set numbers of all unassigned neighbor sensor nodes.

(b) Using counter and frequency, set numbers are calculated for all neighbor
sensor nodes, except for one possible set neighbor sensor nodes.

(c) Counter and frequency are recalculated including neighbor sensor nodes
having one possible set.

(d) Set numbers for one possible set neighbors are calculated in the same
procedure using updated counter and frequency.

5. Then it broadcasts determined set numbers to all its neighbor sensor nodes.

6. Some of these assigned sensor nodes, say sensor nodes assigned to set-1, then
communicates to unassigned sensor nodes of same hop to start the assigning
process.

7. Some sensor nodes communicate with next hop sensor nodes to start their
process.
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Example 1 Set Number Calculation

Step-1: Counter and Frequency calculation without considering
nodes having only one possible set

Initializing sensor node receives possible set details from all the neighbor sensor
nodes. If a neighbor sensor node is already assigned to a set number, it will directly
send its set number. In below table, Node-1 has only one possible set and Node-4 is
assigned to Set-3. Initializing sensor node stores all these details as shown in table:

Node Possible Sets
Node− 1 Set− {1}
Node− 2 Set− {2|3}
Node− 3 Set− {1|3}
Node− 4 Set− 3
Node− 5 Set− {1|2|3}
Node− 6 Set− {2|3}

Initializing sensor node initializes counter and frequency on the possible sets
of all neighbor sensor nodes, except for one set possibility sensor nodes. Counter is
the count of set numbers assigned to all neighbor sensor nodes and frequency is the
number of possible set numbers of all unassigned neighbor sensor nodes.
Using the counter and frequency tables, set number is assigned iteratively to all
unassigned sensor nodes. In each iteration, counter and frequency tables are updated.
This calculation is described in-detail in Algorithm 2.

Counter calculation table:

Set Initially Iteration− 1 Iteration− 2 Iteration− 3 Final
Set− 1 0 1 1 2 2
Set− 2 0 0 1 1 2
Set− 3 1 1 1 1 1

Frequency calculation table:

Set Initially Iteration− 1 Iteration− 2 Iteration− 3
Set− 1 2 1 1 0
Set− 2 3 3 2 1
Set− 3 4 3 2 1

N − 3 = S − 1 N − 2 = S − 2 N − 5 = S − 1 N − 6 = S − 2
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Step-2: Counter and Frequency calculation considering all nodes

Now, except for sensor nodes having only one possible set, all other sensor nodes
are assigned to set number. For sensor nodes having only one possible set, possibility
of assigning to set numbers is again calculated using even the sensor nodes which got
assigned to set number in Step-1. In Step-1, Node-1 was having only one possible set
(i.e. Set-1), after recalculation, Node-1 is now having Set-1—2—3 possible sets.

Recalculated Node and its Possible Sets table:

Node PossibleSets
Node− 1 Set− {1|2|3}
Node− 2 Set− 2
Node− 3 Set− 1
Node− 4 Set− 3
Node− 5 Set− 1
Node− 6 Set− 2

Counter calculation table:

Set Initially/Iteration− 1 Final
Set− 1 2 2
Set− 2 2 2
Set− 3 1 2

Frequency calculation table:

Set Initially/Iteration− 1
Set− 1 1
Set− 2 1
Set− 3 1

N − 1 = S − 3

Final: N-1=S-3, N-2=S-2, N-3=S-1, N-4=S-3, N-5=S-1, N-6=S-2

3.1.3 Scheduling

After sensor nodes are divided and assigned to sets, each set of sensor nodes are

scheduled to run in particular timeslots. Scheduling sequence of this set of sensor

nodes is a sequential sequence, such as set-1, set-2, set-3,...set-k, set-1, set-2 and so

on. Example of scheduling sequence of set of sensor nodes is shown in Figure 3.5.
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Figure 3.5 Scheduling Sequence of Set of Sensor Nodes, When Number of Set is
Four.

3.2 Routing Design

Routing in WSN is the process of selecting route from a sensor node to sink to transmit

data. While finding the route, algorithm is required to consider heterogeneity of

sensor nodes, weather condition and energy-level of sensor nodes. Routing algorithm’s

moto would be to efficiently utilize the energy of the regular and robust sensor nodes

considering all parameters. During rain, only robust sensor nodes work, as a result

energy of robust sensor nodes will be drained more. Keeping all these into account,

during sunny weather, it is best to over-utilize energy of regular sensor nodes. This

routing idea, in combination with the sets concept of scheduling, will greatly influence

in conserving the energy of sensor nodes and, thereby, increasing the lifetime of the

WSN application.

3.2.1 Hop-by-Hop Routing Decisions

Based on the scheduling, in each timeslot only one set of sensor nodes will be in

on-duty mode. In each timeslot, running sensor nodes have to take decisions to

choose the best possible route to transmit data. These routing decisions are taken

at hop-level to transmit data to previous hop sensor node, i.e., sensor node at x-hop

takes decision to transmit data to (x-1)-hop sensor node and it continues till it reaches

sink. Example of this is shown in Figure 3.6.

Routing uses the Energy Difference model, explained in Section 3.2.3, to

determine best possible previous hop sensor node. The Energy Difference prediction

algorithm calculates the energy difference between the current residual energy and
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Figure 3.6 Routing Decisions taken 1 Hop at a Time.

predicted residual energy in one sensor node. When a current on-duty sensor node

chooses the next on-duty sensor node from its neighbor, it will choose the sensor node

with highest energy difference.

3.2.1.1 Routing Decision Hop Priority

Figure 3.7 Routing Decision When a Sensor is not Connected to any Previous Hop
Sensors.

As per the scheme used for assigning set number to the sensor nodes, it is

possible that some sensor nodes, belonging to a set, might not be connected to any



17

of its previous hop sensor nodes. This case has to be handled in routing phase. But

the routing decision first always looks for route on lower hop sensor nodes and in

case there is no lower hop sensor nodes connected, then only sensor node will look

for route in same hop sensor nodes, i.e. priority is given more to the previous hop

sensor nodes than the same hop sensor nodes while making routing decisions. This

is represented in Figure 3.7.

3.2.2 Priority Based on Weather Forecast

Sensor nodes in WSN application are deployed in open field and consequently they

are affected by the weather conditions. Based on the weather prediction, the routing

has to efficiently utilize both regular and robust sensor nodes. During rain, it is most

likely that only robust sensor nodes will be in running mode and regular sensor nodes

will go down. When weather condition changes from rain to sunny weather, a few of

the regular sensor nodes might will not come up and some of it will survive and start

functioning. Considering all these conditions, routing will take decisions such that it

consumes most of energy of regular sensor nodes during sunny weather. During rain,

routing decisions considers only robust sensor nodes, as all regular sensor nodes will

not be working. Depending upon the weather prediction, all these routing decisions

are taken. This is depicted in Figure 3.8.

Figure 3.8 Example: Weather Condition During Different Timeslots.

As in the Figure 3.8, weather prediction of p-timeslots is sunny weather, next

q-timeslots is rain and r-timeslots is again normal weather. It is known that during

q-timeslots of rain, only robust sensor nodes will be working and when it changes
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from rain to normal weather, only few of the regular sensor nodes will come up and

start functioning. The routing will try to utilize most of regular sensor node’s energy

during p-timeslots of normal weather, as later most of regular sensor nodes might stop

functioning. During q-timeslots of rain, algorithm will determine route using only

the robust sensor nodes. During next r-timeslots of normal weather, combination of

robust and surviving regular sensor nodes will be used to determine the route.

The above discussion is more of general idea being used in the research, as in

practical, application will not be knowing full weather forecast of the entire lifetime

of the WSN application. As per the assumption, application will be knowledgable

of only few hours, say 3-10 hours, of the weather forecast. This is as shown in the

Figure 3.9. Therefore, based on current and future predicted weather timeslots,

routing needs to determine which type of node, regular or robust, and which node is

best to route data.

Figure 3.9 Weather Forecast in Practical.

If current timeslot is rainy, it is obvious that only robust sensor nodes will be

in running mode. Consequently, routing needs to determine the best robust node to

route data. This is shown in Figure 3.10.

If current timeslot is normal weather, as in Figure 3.11, the routing can choose

either regular or robust sensor nodes. In this case, it mainly depends on the future

predicted weather. If predicted weather has rain, then routing needs to give more

priority to regular than robust sensor nodes. If predicted weather is full normal

weather, then equal priority for regular and robust sensor nodes.
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Figure 3.10 Current Timeslot is Rainy.

Figure 3.11 Current Timeslot is Normal Weather.

3.2.3 Energy-Difference Model

The Energy-Difference model calculates the energy difference between the current

residual energy and predicted residual energy of a sensor node. This model is as

shown in Figure 3.12. In the research, only one hop routing decisions are taken by

a sensor node. This routing decision, of choosing the next sensor node to transmit

data, is made by using the energy difference model. Sensor node, before transmitting

the data, calculates the energy difference, using Energy-Difference model, of all the

next possible sensor nodes. It will choose the sensor node with the highest energy

difference to route data. The sensor node with higher energy difference means the

sensor node has higher failure probability in the forecast hours comparing with other

sensor nodes. The Energy-Difference model calculates the difference between current

residual energy and predicted residual energy after few timeslots. Residual energy is

a function of failure probability of a sensor node. During rain, regular sensor node’s

failure probability is higher than robust sensor node, and during sunny weather, both

type of sensor nodes have same failure probability. This calculation is shown in

Algorithm 3.
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Figure 3.12 Energy-Difference Model of a Sensor Node.

Algorithm 3 Energy Difference Calculation of a Sensor Node
Notations:

T fc: weather forecast hours
e i: residual energy of a sensor node i
e’ i: predicted residual energy of a sensor node i
e diff: predicted energy difference
pf i: failure probability of sensor node i
e slot: energy consumption of sensor node at a timeslot
N slot: Number of unit time in a timeslot

ec = e i
n = T fc
for j = 1→ n do

ec = ec ∗ (1− pf
(j)

itp,w(k))− e slot ∗N slot

end for
e′ i = ec
e diff = e′ i− e i

The routing decision taken using Energy-Difference model is described as follows:

1. The sensor node, which requires to transmit collected data, determines hop
priority and sensor node type priority based on its neighbor sensor nodes and
weather forecast.

2. Sensor node short-lists all the possible neighbor sensor nodes based on the
determined priorities.

3. Sensor node calculates energy differences, using Energy-Difference model, of all
the possible neighbor sensor nodes. The energy difference calculation of a sensor
node is as given in the Algorithm 3.

4. The neighbor sensor node with the highest energy difference is chosen to transmit
data.

5. If more than one neighbor sensor node has same highest energy difference, then
rotation mechanism, described in Section 3.2.4, is used to chose the sensor node
between them.
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3.2.4 Rotation Mechanism

While making routing decisions, sensor node determines the energy difference of all

the possible next route sensor nodes. It is possible that two or more sensor nodes

having same energy differences. This scenario is depicted in below Figure 3.13.

Figure 3.13 Sensor Nodes Having Same Energy Difference.

During this case, routing algorithm uses rotation mechanism between the sensor

nodes having same energy difference to determine the route. In this rotation mechanism,

each sensor records the previously made routing decisions and it chooses the sensor

node which was not used in the nearest time. This mechanism provides fairness in

choosing the sensor nodes.



CHAPTER 4

PERFORMANCE RESULTS

The research has been implemented and tested on ns2 simulator. Evaluations are

conducted concentrating on how much it has prolonged the lifetime of the WSN

application. The research has been divided into scheduling and routing phases. Each

phase has its own goal and evaluations are conducted on both phases. The Section

4.1 and Section 4.2 are the evaluation of scheduling and routing phase respectively.

To evaluate the performance of the research, the schemes are simulated using

several random 200 sensor node networks with different weather forecast. Sink is

placed at (50, 0) in a 100m x 100m field. Simulated on different combinations of

regular and robust sensor nodes. In most of the cases, the schemes are simulated

using 100 regular and 100 robust sensor nodes. Simulation assumes all sensor nodes,

both regular and robust sensor nodes, have same initial energy. Assumptions on

weather forecast: during normal weather, failure probability of both regular and

robust sensor nodes are same, whereas, during rain, regular sensor nodes have larger

failure probability than the robust sensor nodes. Each sensor node will be knowledgable

of the weather forecast of 5-10 hours from the current time. Simulations include

evaluation of total sensing coverage, lifetime of WSN application, end-to-end packet

delivery delay and other results.

4.1 Scheduling Phase Results

Scheduling plays a vital role in increasing the lifetime of WSN application. It divides

the sensor nodes in the network into sets and each set of sensor nodes function in

tandem. Evaluation of this phase would be to how efficiently it divides and assignes

22
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the sensor nodes to sets and how much coverage each set of sensors provide running

individually.

The Figure 4.1 shows the number of sensor nodes and coverage provided by

each set of sensor nodes. The experiment conducted to divide the sensor nodes into

four sets. The graph shows that the coverage provided by each set of sensor nodes

is greater than 80% of the actual area of interest. It is also observed that the count

of sensor nodes in each set is consistent. While dividing sensor nodes into sets, it

is not considering the type of sensor nodes, regular or robust. It is assumed that

both regular and robust sensor nodes are evenly distributed in all the set of sensor

nodes. Differentiation between regular and robust sensors will be done while finding

the route to send data in routing phase. Scheduling phase mainly concentrates on

proper distribution of sensor nodes between sets and the network connectivity because

of this distribution.

Figure 4.1 Count and Coverage of Each Set of Sensor Nodes, Where k = 4.
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First task of scheduling phase is to determine how many number of sets it

should divide the application sensor nodes. Determining this value is a trade-off

between coverage provided by the set of sensors and the prolonged lifetime of the

WSN application. Larger the number of sets value (k-value), larger the lifetime of the

application and smaller the coverage provided by each set of sensor nodes. Likewise,

smaller the k-value, smaller the application lifetime and larger the coverage. Choosing

between this trade-off depends upon the requirements of the application. Experiments

conducted uses intermittent k-value in order that it provides fair coverage and decent

increment in lifetime of the application.

Figure 4.2 shows the experiments conducted on different number of sets value

and output being the average percentage coverage provided by set of sensor nodes

and how much percentage of lifetime it prolonged. The lifetime of application in this

case does not include the routing phase.

Figure 4.2 Average Coverage of Set of Sensors and Application Lifetime w.r.t.
Number of Sets.
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4.2 Routing Phase Results

Routing phase task is to intelligently determine the route to transmit data considering

the environmental parameters. To deal with the environmental effects, routing takes

advantage of regular and robust sensor nodes deployed in the WSN application. In

the experiments, it is assumed that the number of regular and robust sensors in the

application are equal. Key feature of robust sensor node is that it can keep functioning

even during environmental effects, like rain, whereas regular sensors go down. It is

also assumed that each sensor node, irrespective of type of sensor, will be knowing

few hours (5 hours in the experiment) of weather forecast.

Figure 4.3 WSN Application Lifetime. Weather Forecast: Rain Between 5000 &
6500 and 15000 & 16500 Timeslots.

The main idea in this phase is that if there is a prediction of rain in the future,

it should give more priority to regular sensor nodes than robust sensor nodes to route

data. This is because, during rain, regular sensor nodes will go down and only robust

sensor nodes will be in running state. In this manner, the routing phase is trying to

distribute the energy consumption of regular and robust sensor nodes.
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4.2.1 Energy Distribution between Regular and Robust Sensor Nodes

Figure 4.4 WSN Application Lifetime. Weather Forecast: Rain Between 11000 &
15000 Timeslots.

Figure 4.3 and Figure 4.4 show the results for different weather forecast.

Experiments use 100 regular and 100 robust sensor nodes. Both type of sensor node

have equal initial energy, but different failure probability during rain. Experiment

using different ratio between regular and robust sensor nodes are also conducted and

are explained in Figure 4.5.

In the experiment shown in Figure 4.3, weather forecast is rain between 5000

& 6500 and 15000 & 16500 timeslots and normal weather during other timeslots. It

can be observed that priority is given regular sensor nodes few timeslots before 5000

and 15000 as there is prediction of rain. It can also be observed that during rain, only

robust sensor nodes work and energy will be drained only from robust sensor nodes,

not from regular sensor nodes. After 16500 timeslot, as there is no prediction of rain,

equal priority is given to both regular and robust sensor nodes and thus, energy are

equally consumed.



27

In the experiment shown in Figure 4.4, weather prediction is rain between

11000 & 15000 timeslots and normal weather during other timeslots. The graph

clearly shows that regular sensor nodes are given more priority than robust sensor

nodes before 11000 timeslot and equal priority after 15000 timeslot. From the graphs,

the research has evenly distributed the energy consumption of both regular and robust

sensor nodes even when the field is struck by rain.

Figure 4.5 WSN Application Lifetime. Sensor Node Distribution: 133 Regular
Sensor Nodes & 67 Robust Sensor Nodes.

Figure 4.5 shows the energy distribution of regular and robust sensor nodes,

ratio between them being 2:1 respectively, i.e. 133 regular and 67 robust sensor nodes.

As regular sensor nodes are cheaper than the robust sensor nodes, it is likely that the

WSN application will using more of regular sensor nodes than robust sensor nodes.

Therefore, most of the experiments conducted are for equal ratio or regular sensor

nodes having higher ratio than robust sensor nodes. Energy distribution graphs shows
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that, even with varying ratio between regular and robust sensor nodes, the energy

consumption is distributed properly.

4.2.2 End-to-End Packet Delivery Delay

Figure 4.6 End-to-End Packet Delivery Delay w.r.t. Packet Size.

End-to-End packet delivery delay is the time taken by the data packet to traverse

from the source sensor node to sink. The packet delivery delay graphs will point

any packet loss during transmission of data and in what cases this packet loss has

occurred. Figure 4.6 shows the average, minimum and maximum packet transmission

delay w.r.t. the packet size. It is observed that packets with minimum packet delay

are transmitted by 1-hop sensor nodes and packets with maximum packet delay are

transmitted by the furthermost sensor nodes. In the simulation, 1 timeslot is equal to

10 seconds. As maximum packet delay for packet with size 256 kb is not more than
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Figure 4.7 End-to-End Packet Delivery Delay w.r.t. Hop Count. Packet used is
64 kb.

1 timeslot, it is concluded that there is no packet loss during this experiment. If the

packet size is increased further, then there is chances of packet loss.

Figure 4.7 shows the average, minimum and maximum packet transmission

delay w.r.t. the sensor nodes hop count. The average packet delay is consistent w.r.t.

the hop count sensor nodes, concluding that even by dividing the sensor nodes into

sets, it hasn’t introduced much packet delay.

4.2.3 Lifetime of WSN Application w.r.t. Different Schemes

Experiments are conducted with the combinations of the research scheduling, routing,

random routing and no scheduling schemes. Figure 4.8 shows the result of these

experiments. Lifetime calculation is performed with the benchmark using no scheduling

and random routing schemes. It can be observed from the graph that by only using
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Figure 4.8 Lifetime of WSN Application w.r.t. Different Combination of Schemes.

the research scheduling or routing, lifetime of the WSN application has increased and

by using both scheduling and routing, lifetime is prolonged significantly.

4.3 Other Results

Node-level evaluation is also very important to evaluate any protocol. From the

experiments, results are process to find to what percentage the sensor nodes prolonged

their lifetime in the WSN application. Based on the calculation, sensor node which

failed first due to energy drain, prolonged its lifetime by 20-25% and sensor which

failed last, prolonged its lifetime by 45-50%. On an average, each sensor stretched its

survivability by 30-35%.

Assumption that the network is disconnected when all the 1-hop sensor nodes

are down. Experiments show that the lifetime of the WSN application is prolonged

by more than 30% before network being disconnected. This means, on an average

all 1-hop sensor nodes go down and prolong lifetime of the application by more than

30%.



CHAPTER 5

RELATED WORK

In recent years, the research field of WSNs has been very active. Finding an energy

efficient way to perform scheduling and routing is among the top research priorities.

Many research works are conducted dedicated completely on scheduling or routing,

and some works are a joint of both.

Many research works have been devoted to scheduling that concentrates on

efficiently turning-off redundant sensor nodes for energy saving [21][2][16][4]. In all

these studies, sensor nodes are deployed either in grids or randomly. Energy-efficient

scheduling works are surveyed in [10]. Some scheduling works even work on solving

coverage and connectivity problems [18][8][4]. Research works on routing protocols

can be broadly classified [9] into four classes: data centric, hierarchical, location-based

and network flow and QoS awareness.

One such similar research work in scheduling is conducted in randomized scheduling

algorithm [4]. References [6][3][15][5] have studied sensing coverage problems and

References [1][11][20] have studied connectivity problems. But it is hard to combine

and solve sensing coverage and network connectivity problems together. Reference [4]

provides solution to the joint problem without the availability of per-node location

information. The paper mainly aims at providing three features: sensing coverage

above the given requirement, all active sensor nodes are connected and each active

sensor node known at least one shortest route to sink.

Another work, [19], mainly investigated the properties of randomized scheduling

algorithms in sensor networks. This focuses on performance modeling and mathematical

properties of a random coverage algorithm (also called k-set randomized scheduling

algorithm) for WSNs. Many works, such as in References [21][6][4][3][15][5], use only
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network sensing coverage as the QoS constraint. The research in Reference [19], in

addition to the coverage intensity, it also considers detection delay and detection

probability as very important measures. It also provides an efficient search algorithm

similar to binary search for obtaining the optimal solution is discovered based on the

properties of performance metrics. The goal of scheduling in this research work is to

provide consistent coverage by all the set of sensor nodes and each set of sensor nodes

running independently should not cause network partitioning.

Previous research work on routing can be broadly classified as: data centric,

hierarchical, location-based and network flow and QoS awareness. Hierarchical based

work is more related to this research work. Hierarchical protocols separate the

nodes into clusters in order to segregate the areas of the monitoring environment as

LEACH [17] and PEGASIS [13] [14]. To allow communication between the clusters, a

leader is selected from each cluster. Leaders are responsible for the management and

transmission of the collected data in the region they control. The idea of Low-Energy

Adaptive Clustering Hierarchy (LEACH) is to form clusters based on the received

signal strength and use local cluster heads as routers to the sink. All the data

processing such as data fusion and aggregation are local to the cluster. This will

save energy since the transmissions will only be done by such cluster heads rather

than all sensor nodes. Power-Efficient GAthering in Sensor Information Systems

(PEGASIS) forms chains from sensor nodes so that each node transmits and receives

from a neighbor and only one node is selected from that chain to transmit to the

sink. Gathered data moves from node to node, aggregated and eventually sent to

the base station. Hierarchical-PEGASIS is an extension to PEGASIS which aims

at decreasing the delay incurred for packets during transmission to the base station

and proposes a solution to the data gathering problem by considering energy*delay

metric. Hierarchical protocol uses different clustering protocols to determine the

energy efficient route. These do not consider the environmental forces which calculating



33

the routing path as considered in this research scheme. In this research, Energy-

Difference model, which considers the environmental forces, is used to take routing

decisions. Other features that the work is embedding with the routing are: routing

decision hop priority, priority based on weather forecast and rotation mechanism.

All of these previous works concentrate on determining the energy-efficient

algorithm considering only the energy levels of the sensor nodes, but not the effects

of environmental forces. This research considers both environmental conditions and

the energy levels of each sensor nodes providing an energy-efficient scheme to prolong

the lifetime of the sensor network.



CHAPTER 6

CONCLUSIONS

In recent years, routing has attracted a lot of attention in the field of sensor networks

to solve the energy problem, but not much work has been conducted to overcome

the environmental problems considering the heterogeneity of the sensor nodes. The

research provides a combination of scheduling and routing protocols to solve both

the environmental and energy problem and thereby increase the lifetime of the WSN

application. The scheduling protocol properly distributes sensor nodes into the sets

and schedules them. Routing protocol takes predictable environmental forces and the

energy model of regular and robust sensor nodes into consideration and determines

the best possible route from a sensor node to the sink. Evaluation of these two

protocols, individually and together, has shown significant improvement in prolonging

the lifetime of a WSN application.
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