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ABSTRACT 

 
CONSEQUENCES OF STOCHASTIC mRNA SYNTHESIS 

IN A GENE REGULATORY PATHWAY 
 
 

by 
Khyati Shah 

Gene expression is a stochastic process, with elements of randomness present in both 

transcription and translation.  This stochasticity results in cell-to-cell variation in the 

amounts of gene products, mRNAs and proteins, and is observed in organisms ranging 

from bacteria and yeast to higher eukaryotes.  Randomness in the activation and 

inactivation of a gene is the preliminary cause of this variation.  At the level of proteins, 

these variations are buffered compared to levels of mRNA, due to the longer lifespan of 

proteins.  Nevertheless, there is substantial variation observed at the level of proteins, 

resulting in phenotypic diversity among genetically identical cells. 

In higher eukaryotes, sets of genes are often expressed in a coordinated manner, 

and function together in response to extracellular stimuli.  If the expression of such genes 

is indeed stochastic, how can a given cell produce a coherent response?  Additionally, 

during multi-subunit protein assembly, how does variation in levels of the component 

proteins affect their assembly and impact their function?  Furthermore, how does this 

variation propagate in a gene regulatory pathway, when protein products of an upstream 

gene, or a pair of upstream genes, aids in the expression of downstream genes?  Does 

variation in the expression of upstream genes affect the expression of downstream genes? 



 

These questions are addressed using the serum-mediated induction of c-Fos and c-

Jun as a model.  c-Fos and c-Jun are transcription factors that together form heterodimers 

and induce the expression of downstream genes.  With the aid of single-molecule 

fluorescence in situ hybridization for the detection of individual mRNA molecules, cell-

to-cell variation in the expression of c-Fos and c-Jun mRNAs, and variations in the 

expression of mRNAs from a pair of downstream genes, collagenase and cox-2 were 

studied.  Cell-to-cell variation in the number of c-Fos-c-Jun protein heterodimers in the 

nucleus was also studied.  It was found that, although c-Fos and c-Jun mRNA expression 

is highly variable and not correlated, the number of the c-Fos-c-Jun protein hetrodimers 

did not vary as much from cell to cell.  Despite relatively invariant heterodimer numbers, 

the downstream mRNAs, collagenase and cox-2, were expressed in a highly stochastic 

manner.  These results suggest that, despite the buffering of variation in intermediate 

steps, the downstream steps in a gene regulatory pathway are noisy.  These results are 

consistent with the view that noisy expression is an inherent property of the 

transcriptional machinery. 

As a second project, where in the nucleus, and at what step during mRNA 

biogenesis, does mRNA splicing occur was explored.  It is believed that splicing 

generally occurs co-transcriptionally at the gene locus.  Introns are removed before the 

mRNA is released.  However, during alternative splicing it is important that processing 

be delayed until all of the exons and introns involved in the splice choice are synthesized.   

Is processing just delayed briefly until the alternative splice sites are synthesized, or does 

alternative splicing involve the uncoupling of splicing from transcription, so that splicing 

occurs post-transcriptionally? 



 

The intracellular distribution and dynamics of individual molecules of pre-

mRNAs and their spliced products were imaged utilizing a set of synthetic reporter genes, 

as well as a classically well-studied alternatively spliced gene:  Sex-lethal (Sxl) in 

Drosophila.  The normally tight coupling between transcription and splicing was found to 

be broken in situations where an intron’s polypyrimidine tract is sequestered within a 

strong secondary structure.  Furthermore, it was also found that, in the case of the 

alternative splicing of Sxl mRNA in female Drosophila cells, particular exon is removed 

from the transcript, due to the activity of the RNA binding protein Sxl, which binds to 

nearby introns, causing splicing in those regions to be uncoupled from transcription.  This 

uncoupling occurs only on the perturbed introns, while the preceding introns are removed 

co-transcriptionally. 
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CHAPTER 1  

INTRODUCTION 
 

Gene expression is a process by which information encoded within the sequence of a 

gene is used for the synthesis of a functional gene product.  Most often, the gene product 

is a protein.  Transcription, mRNA processing, translation, and post-translational 

modification are the fundamental steps involved in the synthesis of a protein.  These 

processes need to be coordinated and regulated appropriately for a cell to function 

normally, to establish its polarity during early development, and to maintain its 

phenotype.  It has been found recently, through several studies in bacteria, yeast, and 

higher eukaryotes, that within a genetically identical population, there is great variation in 

gene expression from cell to cell (1-7). 

Variations in gene expression have been studied in detail using both reporter 

genes and natural genes at the single-cell level, and have been found to arise as the result 

of randomly initiated bursts of mRNA synthesis (4, 8, 9).  Random bursts of mRNA 

synthesis, and the short half-life of transcripts, gives rise to variations in the amounts of 

the encoded proteins, causing phenotypic variation (10).  Given this cell-to-cell variation, 

questions arise as to how coordinately expressed genes function in individual cells?   

Do they show any correlation in their expression relative to each other?  Furthermore,  

if two proteins are involved in the formation of a heterodimer, how does variation in the 

amounts of the individual protein components of the heterodimer affect its assembly and 

function?  Lastly, in a gene regulatory network, if there is variation in the expression of 

upstream genes, will this variation propagate and become amplified in the expression of 

downstream genes? 
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In the current study, these questions are addressed, utilizing a gene regulatory 

pathway that involves the immediate early response genes c-Fos and c-Jun, and delayed 

response genes (collagenase and cyclooxygenase-2) that they control.  These studies were 

carried out with the aid of single-molecule fluorescence in situ hybridization technique 

(to detect individual mRNA molecules), and with the aid of a proximity ligation assay  

(to directly visualize individual protein heterodimers). 

 In addition to transcription, pre-mRNA splicing is another step that contributes  

to variations in gene expression in eukaryotes (11).  Apart from co-transcriptional 

splicing, which occurs on the chromosome as a transcript is synthesized, alternative 

splicing can create different proteins from the same pre-mRNA by varying the exon 

composition of the spliced mRNA product.  Alternative splicing contributes to the 

generation of complex proteomes.  Various microarray data estimate that 73% of human 

genes are alternatively spliced, making alternative splicing the rule, rather than the 

exception.  Thus, alternative splicing is a fundamental aspect of post-transcriptional gene 

regulation that has significant functional and biological implications (12, 13).  

Where in the nucleus, and at what stage during mRNA synthesis, does splicing 

take place?  It is currently believed that introns are spliced out from pre-mRNAs during 

transcription while the pre-mRNA is still tethered by RNA polymerase to the gene locus. 

This is an efficient way for constitutively spliced exons to be joined to each other  

in sequential order.  However, when alternative splicing occurs, splicing must be delayed 

until all of the splice sites involved in the alternative choice have been synthesized.   

A key question concerning alternative splicing, is whether splicing is simply delayed 

until the alternative splice sites are transcribed, or does the alternative splicing 
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mechanism require the uncoupling of splicing from transcription, so that alternative 

splicing occurs after transcription is completed? 

In the current study, the question of whether splicing is coupled to, or uncoupled 

from transcription was addressed using a single-molecule in situ hybridization technique.  

The intracellular distribution and dynamics of individual molecules of pre-mRNAs and 

their spliced products were imaged, utilizing a set of reporter genes, and also utilizing the 

classically well-studied alternatively spliced gene:  Sex-lethal (Sxl) in Drosophila. 
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CHAPTER 2  

CONSEQUENCES OF STOCHASTIC mRNA SYNTHESIS  
IN A GENE REGULATORY PATHWAY 

2.1 Introduction  

As cells divide and produce tissues, different cells within the same tissue have to perform 

the same set of tasks.  To perform these tasks well it is expected that the expression of a 

given gene in different cells would be maintained at similar levels.  Similarly, as bacteria 

grow in a liquid culture they are expected to maintain similar expression levels.  

However, despite of identical genotypes and similar phenotypes, great variations in the 

expression of the same genes from cell to cell have been observed (6, 7). 

2.1.1 Origin of Gene Expression Variation in Prokaryotes 

In order to understand the origin of these variations in gene expression from cell to cell, 

we have to first understand the initial steps involved in gene expression – the synthesis 

pre-mRNAs.  For expression to occur, several factors are assembled at the promoter 

region of the gene.  Some of these factors, such as RNA polymerase and sigma factors, 

are global, i.e., they operate on all or most of the genes.  While others, such as 

transcriptional activators, are gene-specific or operate on only a few genes.  Both of these 

kinds of factors can be present in very low-copy number in individual cells (14, 15).  

Furthermore, most of the genes are present in a single copy in bacterial genomes.  

Therefore, it is less than certain that in a given cell the relevant factors will be able to 

assemble at the gene during any particular short time interval.  During this time interval, 

one cell may experience the productive assembly of these factors and produce mRNAs, 
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while the other cells may not, purely based on probability.  Thus, different cells will 

exhibit variation in mRNA synthesis over time (16). 

Early studies of cell-to-cell variation in gene expression were carried out in 

Escherichia coli, using fluorescent protein reporters.  These studies documented 

substantial cell-to-cell variation in the amount of proteins being produced in cell 

populations that were genetically homogeneous.  This variation was referred to as “noise” 

in gene expression.  When this noise was quantified, it was found that it had two 

components.  The first component, referred to as “extrinsic” variation, came from 

variations due to global factors, such as the shape and size of the cell, the particular stage 

of the cell cycle or fluctuations in the amount of global factors, such as the abundance of 

RNA polymerase.  The second component, referred to as “intrinsic” variation, came from 

fluctuations in the expression of the gene itself.  Intrinsic variation is likely due to a low 

number of gene-specific transcriptional activators (6).  By performing time-lapse 

measurements to determine the time scale over which such fluctuation persist in bacteria, 

it was shown that the time scale for intrinsic fluctuations was less then nine minutes, 

whereas the time scale of extrinsic fluctuations was about 40 minutes, the later 

corresponds to the doubling time of bacteria (17).  

These studies, along with several other studies (3, 18, 19), relied upon reporter 

constructs to obtain a picture of cell-to-cell variation.  In order to explore how the 

expression of particular genes vary, Taniguchi et al. counted the individual mRNA and 

protein molecules present in single E. coli cells for more than a thousand genes.  They 

found that, at any given time, there is cell-to-cell variation in gene expression of all the 

genes in E. coli cells (20).  
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2.1.2 Quantification of Variation 

In order to understand this variation, several different mathematical models were 

generated (21). The initial model suggested that mRNAs are produced and degraded 

according to the statistics of Poisson distribution. This mean that the synthesis and 

degradation of mRNAs might occur at random but the probability of a transcript 

produced within any given time is constant and does not change in time. Hence according 

to the Poisson model, as the mean mRNA number increases, the variability about that 

mean should decrease. However, if the variability in gene expression is found to be much 

higher then predicted by the Poisson model, the mRNA synthesis occurs in the form of 

random bursts. Hence to experimentally distinguish between transcriptional bursts from 

poissonian transcription, one needs to measure the mRNA number per cell. 

Mathematically, one can calculate a fano factor for each distribution. Fano factor is 

defined as the variance of a distribution divided by the mean and is exactly one for a 

poisson distribution and much larger than one for transcriptional bursts (7, 22, 23).  

2.1.3 Origin of Gene Expression Variation in Eukaryotes 

After these studies with bacteria, researchers began to investigate whether similar cell-to-

cell variations in gene expression occur in eukaryotes, and they found that variation in 

gene expression in these cells was even higher (2, 8). 

Initially studies were performed in yeast, using a pair of fluorescent reporters and 

fluorescence activated cell sorting (FACS).  This allowed precise measurement of protein 

levels at single-cell resolution.  The striking result of these studies was the observation 

that noise in protein expression was due to the random synthesis of mRNAs, and not due 

to the presence of low numbers of global factors (10, 24).  Even in the presence of a 
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saturating amount of transcription factors that turn on the gene, gene expression turned on 

and off in a stochastic manner. 

The next set of studies examined gene expression variation in higher eukaryotes.  

Chubb et al. (4) studied the dynamics of mRNA synthesis from an engineered gene locus 

in Dictyostelium discoideum.  They used an MS2-GFP fusion to visualize mRNA 

synthesis.  They found that this gene is not expressed in a continuous and steady manner, 

but rather, it is expressed in a pulsatile manner.  The pulses of expression began and 

ended randomly in individual cells, and the time interval between each pulse was 

irregular.  This study was the first to provide direct, in vivo visualization of pulses in 

transcriptional activity (4).  Similar observations were made in prokaryotes using the 

MS2-GFP approach (5).  Raj et al. (8) studied the variation in fixed cultured mammalian 

cells by fluorescence in situ hybridization.  They counted the number of mRNA 

molecules synthesized from reporter genes in individual cells, and they similarly 

observed large cell-to-cell variation in the expression of these genes. 

With their larger cell size, longer cell division time, and higher number of 

polymerase and transcriptional activator molecules, one would have expected the 

eukaryotes to display a lower variation in gene expression, as compared to prokaryotes.  

To explain eukaryotic gene expression variation, a two-stage gene activation model has 

been proposed (25).  The physical basis of this two-stage gene activation model resides in 

the structure of chromatin.  In higher eukaryotes, genes are sequestered in a tight 

chromatin structure.  In its quiescent state, the chromatin surrounding the gene is so 

compact that activator proteins cannot gain access to the promoter region of the gene, 

even when they are present in high numbers.  It was proposed that random breathing 
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events in the chromatin allow the activator proteins to bind to the promoter region of the 

gene.  The initial binding of these activators leads to the recruitment of chromatin 

remodeling factors that unfold the chromatin further, enabling the recruitment of the 

RNA polymerase machinery.  Hence, according to this model, randomness in access to 

the promoter region is the basis of stochastic gene expression (8).  

2.1.4 Intrinsic and Extrinsic Variation in Gene Expression 

In order to determine whether sources extrinsic or intrinsic to the gene are the cause of 

the variation, Raj et al. (8) integrated two different reporter genes, either at the same 

genomic location, or at different genomic locations.  These reporters could be turned on 

by the same transactivator protein (abundantly present in the cell).  They found that the 

expression of two reporters present at the same genomic location was correlated, but 

when present at distant genomic loci, expression of the two genes was not correlated.  If 

the transactivator, which is a global factor for this pair of reporter genes, was the main 

cause of variation, one would expect the expression of these genes to be correlated 

irrespective of their locations within the genome. The observation that reporter genes 

located at different genomic loci are not correlated suggests that the main component of 

variation is intrinsic to the gene locus (8).  Similar conclusions were reached in studies of 

gene expression with yeast, which indicate that intrinsic variation dominates extrinsic 

variation in eukaryotes (2, 10, 24).  

The dominance of intrinsic variation in eukaryotes contrasts with the dominance 

of extrinsic variation in prokaryotes.  Since most prokaryotic genes are present in single 

copy, and since there is no chromatin in prokaryotes, the accessibility of the transcription 

factors is not a significant factor, though their low copy number is.  Furthermore, in 
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prokaryotes cell size is small, and their doubling time is short, further enhancing extrinsic 

variation. 

2.1.5 Variation as a Consequence of Stochastic Synthesis and the Steady Decay of 
mRNA 
 
The variation in gene expression is thought to arise from random activation and 

deactivation of eukaryotic genes.  Several studies indeed observed bursts of mRNA 

synthesis corresponding to the “on” state of a gene, followed by a much longer period 

during which the gene is inactive.  Golding et al. observed bursts of mRNA synthesis in 

E. coli (5), and using additional techniques, transcriptional bursts were shown to be the 

prominent mode of gene expression in higher eukaryotes (4, 8, 26-29).  Although the 

occurrence of transcriptional bursts was random, the average length of these bursts was 

about nine minutes, and on average, about 250 mRNA molecules were made from a gene 

during each burst.  After being synthesized in transcriptional bursts, mRNAs decay with 

steady first order kinetics.  Since the half-life of different mRNAs varies from several 

minutes to hours, snapshots of cells by in situ hybridization techniques show only the 

mRNAs produced in recent bursts (8).  Furthermore, the kinetics of the transcriptional 

bursts is gene specific and the presence of multiple cis-acting regulatory elements, and/or 

the presence of a large number of transactivator proteins increases the average number of 

transcripts made during each burst, but does not affect the duration of the “active” state of 

the gene (26). 

 

 



10 
 

 

2.1.6 Propagation of Variation in mRNA Expression into Variation in Protein 
Levels 

 
As compared to mRNAs, the half-life of proteins varies from a couple of hours to a day 

or more (30, 31).  Since proteins have longer half-life, proteins made from a new burst of 

mRNA synthesis are added to the pool of proteins made from previous bursts of mRNA 

synthesis.  Hence, proteins show less variation than their parent mRNAs.  Furthermore, 

noise in protein expression should inversely correlate with its half-life (8, 10, 32, 33).  

Due to the short doubling times of bacteria and the long half-life of proteins in E. coli, the 

number of mRNAs and their corresponding proteins do not correlate (20). 

2.1.7 Variability in Gene Expression of Natural Genes 

Studies discussed so far utilized reporter gene constructs.  Several groups have studied 

the variable expression of natural genes in diverse biological contexts.  A study 

performed in Saccharomyces cerevisiae revealed that some genes have very high 

variability, whereas other genes are expressed at relatively uniform levels.  These studies 

analyzed gene expression of constitutively active housekeeping genes and inducible 

regulatory genes, using single-molecule fluorescence in situ hybridization.  They found 

that the variation in the expression of constitutively active genes is very small, and is due 

to irregular single transcription-initiation events, as compared to larger variation in the 

expression of regulated genes, characterized by transcriptional bursts (34).  The same 

group in another study found that the expression of functionally related constitutively 

active genes is not coordinated in individual cells (35). 

Two distinct modes of gene expression were also found in Drosophila embryos, 

using quantitative in situ hybridization.  The expression of 14 developmental genes was 
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visualized in early embryos.  Some of these genes contained RNA polymerase II bound 

to their promoter regions before their induction, and the former group showed uniform 

expression in all cells of an embryonic tissue.  Other genes that did not contain RNA 

polymerase II pre-loaded on their promoter regions, showed asynchronous, stochastic 

expression (9). 

The effect of stochastic gene expression on phenotypic variation in the nematode, 

Caenorhabditis elegans, was studied in a gene regulatory network for intestinal 

development.  By comparing transcripts of the genes in this network in individual wild 

type or mutant embryos, it was shown that the expression of a redundant gene from this 

network becomes highly variable in mutant strains.  Because of this variation, this gene 

fails to reach a threshold of expression that is required for the expression of its 

downstream master regulatory gene in certain mutant causing phenotypic variation.  

Hence, redundant pathways have evolved to mitigate the effect of gene expression in one 

pathway (36). 

Furthermore, to study the effect of tissue development on gene expression, 

Featherstone et al. used bioluminescence imaging to study the expression of the prolactin 

gene of the pituitary gland in a transgenic rat.  They observed that the transcription 

pattern changed during tissue development.  During early development of fetal tissues, 

prolactin gene expression was pulsatile, which later becomes more continuous and stable 

in neonatal tissue (37).  
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2.1.8 Questions Raised by High Cell-to-Cell Variation  

Cells express a number of genes simultaneously in response to extracellular stimuli for a 

short window of time.  For example, in response to serum stimulation, approximately 100 

genes are expressed simultaneously within a few minutes (38, 39).  The coordinated 

expression of these genes is necessary for the overall response of the cell.  Given the 

knowledge of variation in gene expression from cell to cell, one of the questions raised is 

that if the level of expression of any given gene is different from cell to cell, how are 

individual cells able to produce a coherent response? 

Another question raised by high cell-to-cell variation in gene expression is how 

the assembly of multi-subunit proteins is accomplished, and how variation in the levels of 

component proteins affects variations in the levels of the composite proteins.  For 

example, if two individual proteins need to form a heterodimer to carry out a particular 

function, how does variation in the amounts of the individual proteins affect their 

assembly and function? 

A third question is whether variation propagates and is amplified in a gene 

regulatory pathway.  For example, the genetic program of a living cell is determined by a 

complex set of gene regulatory networks.  The effective functioning of these networks 

relies on faithful signal propagation from one gene to another.  In a gene network, the 

protein product of an upstream gene, or a pair of upstream genes, is required to induce a 

downstream gene.  Although the large scale cell-to-cell variations observed at the mRNA 

level are buffered at the protein level, nonetheless there exists considerable variation in 

the levels of different proteins in cells (10).  When such a protein is a part of a gene 
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regulatory network, does variation in the amount of this protein amplify the expression of 

downstream genes? 

In the current study, these questions were addressed, utilizing c-Fos and c-Jun and 

the delayed response genes that they control as models.  c-Fos and c-Jun are a pair of 

genes induced in a coordinated manner within 15-30 minutes of the addition of serum in 

quiescent cells.  The expression of their mRNAs returns to the basal level after about one 

to two hours. However, their protein products are more stable, and work together by 

forming heterodimers that function as transcription factors. These heterodimers induce 

the expression of several downstream genes such as collagenase, cox-2, cyclin-D1, and 

IL-1

� 

b. The variation in the expression of c-Fos and c-Jun mRNAs, variation in the 

number of heterodimers, and variation in the expression of a pair of downstream genes 

(collagenase and cox-2) were studied (Figure 2.1). 

 
 

Figure 2.1  Experimental outline to address the proposed questions. 



14 
 

 

2.1.9 Immediate Early and Delayed Secondary Response Genes in Cell Proliferation 
and Differentiation 
 
Cell proliferation and differentiation occurs when an extracellular signaling molecule 

activates a cellular receptor.  This interaction leads to series of biochemical changes 

within the cytoplasm.  Afterwards, the activation signals cross the nuclear membrane and 

alter the expression of genes encoding proteins that dictate tissue or stimulus-specific 

functional responses.  Some of the genes are induced soon after the response and are 

referred to as “immediate early genes,” whereas others are induced only after the 

expression of the first set of genes, and they are referred to as “delayed secondary 

response genes” (38). 

The initial transcriptional response to growth factor stimulation leads to induction 

of approximately 100 immediate early response genes.  Their expression reaches a 

maximum within 30 minutes of growth factor stimulation, and returns to pre-stimulated 

levels within 60 to 120 minutes.  The expression of these genes does not require de novo 

protein synthesis, and they are over expressed in the presence of protein synthesis 

inhibitors.  Some of these early response genes perform structural functions within the 

cell (such as actin and tropomyosin).  Another important subset of early response genes 

encodes transcription factors.  These genes propagate their activation signals downstream 

by inducing the expression of delayed secondary response gene (38-40).  Figure 2.2 

shows the time course of early and delayed response genes in G0-arrested mammalian 

cells after the addition of serum.  Components of serum that are important for this 

response are growth factors. 
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Figure 2.2 The time course of early and delayed response genes in G0-arrested 
mammalian cells after the addition of serum containing growth factors. Source: (41) 

 
Among the most well studied early response transcription factors are the Fos and 

Jun family of transcription factors.  The Fos family includes four genes (c-fos, fosB, 

fra-1, and fra-2) and the Jun family includes three genes (c-jun, junB, and junD).  These 

genes are induced in various tissues and cell lines in response to various stimuli, such as 

cytokines, growth factors, serum, UV irradiation, stress, etc., through Ras-mitogen-

activated protein kinase (Ras-MAPK) signaling pathways.  The protein products of these 

genes are required for cell-cycle progression of serum-stimulated or asynchronously 

growing cells (42).  Their expression is regulated by both transcriptional and post-

transcriptional mechanisms.  Alteration in their expression by mutation or deregulation 

leads to tumorigenesis, hence they are also referred to as proto-oncogenes (40, 43-45). 

The proteins encoded by the Fos and Jun family members function by forming 

homodimers (in the case of the Jun protein family alone) and heterodimers (in the case of 

both the Fos and Jun protein families).  They bind to the heptamer consensus sequence, 

5’-TGA(C/G)TCA-3’, which is known as the “TPA response element” in their target 

promoters, and these proteins are generally referred to as “activator protein-1 (AP-1) 

transcription factors.”  They belong to a class of basic leucine zipper transcription factors 
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and function in the transcription of several secondary response genes involved in cell 

proliferation, differentiation, inflammation, and apoptosis, in a cell-type and tissue-

specific manner.  These genes require the protein product of the primary transcripts in 

order to express themselves, and consequently, in the presences of a protein synthesis 

inhibitor, their transcription is inhibited (44, 46-48).  Various Jun-Fos dimers, in spite of 

containing similar DNA binding sites, differ in their transcriptional activity, due to 

regulated phosphorylation at specific sites of non-conserved domains located outside the 

leucine zipper domain.  Thus, AP-1 dimers of different composition execute different 

cellular functions by inducing dimer-specific target genes.  The targets of c-Fos and c-Jun 

heterodimers include two delayed response genes, collagenase and Cox-2 (49). 

2.1.10 c-Fos-c-Jun Heterodimers 
 
Three different types of MAPKs, the ERKs, JNKs, and FRKs induce expression of Fos 

and Jun proto-oncogenes in response to growth factor stimuli (50, 51).  Among them, the 

expression of c-Fos is induced by phosphorylation of ERKs, whereas the expression of c-

Jun is induced by phosphorylation of JNKs, both occurring concurrently (52).  Several 

northern blot, real-time PCR, western blot, and immunoprecipitation analyses have 

shown that c-Fos and c-Jun mRNAs and proteins are produced in a coordinated manner 

in various cell lines on a population basis (53-55). 

Although, the half-life of individual c-Fos and c-Jun proteins is approximately 45 

minutes and 90 minutes, respectively, several in vitro and in vivo association studies have 

shown that once they form heterodimers, the heterodimers become more stable, with half-

lives of about four hours.  This is because they remain highly phosphorylated in their 

heterodimeric state.  In their heterodimer form, c-Jun binds to the AP-1 target region, and 



17 
 

 

c-Fos provides a transactivation function (56).  Furthermore, the deletion of certain 

regions of c-Fos protein, or inhibition of its synthesis by antisense RNA, prevents the 

induction of downstream target genes, suggesting that their association is not only 

required, but it is essential for them to function (47, 48, 57-59). 

2.1.11 Induction of Collagenase and Cyclooxygenase-2 (Cox-2) Genes by c-Fos-c-
Jun Heterodimers 
 
AP-1 transcription factors induce the expression of several genes that are involved in cell 

cycle progression and proliferation (57).  Among the genes that are known to be 

specifically induced by c-Fos-c-Jun heterodimers are Cyclin-D1, IL1

� 

b, collagenase, and 

cox-2 (60-62). The collagenase and Cox-2 genes were used as downstream targets of c-

Fos-Jun heterodimers.  Collagenase is a member of the metalloproteases family, and its 

expression is elevated in certain tumor cells, whereas cox-2 is an enzyme required for the 

synthesis of prostaglandins from arachidonic acid, and it is responsible for the production 

of elevated levels of prostaglandins during inflammation and carcinogenesis. 

There is strong evidence that c-Fos-Jun heterodimers directly control the 

expression of collagenase and Cox-2 (55, 62-65).  First, c-Fos-Jun heterodimers bind to 

the collagenase promoter and lead to its expression (55).  Second, in a pair of studies in 

which c-Fos and c-Jun were mutagenized, it was shown that these mutations lead to the 

abrogation of both collagenase and Cox-2 expression (58, 61, 62, 64).  Finally, when c-

Fos and c-Jun proteins were fused into one protein, the fused protein was able to bind to 

the collagenase promoter and induce the expression of mRNA from the gene, whereas, 

fusions between other members of the Fos and Jun family of proteins did not yield any 

expression (49).  



18 
 

 

2.1.12 Single-Molecule Imaging for mRNA Detection and Quantification 

Single cell analysis of gene expression has shown great variability in gene expression 

from cell to cell with significant biological consequences that were not observed in the 

population-based analysis. A reliable and sensitive method to count individual mRNA 

molecules to determine actual count of mRNA copy numbers in individual cell and their 

localization is needed (66). One such method is in situ hybridization, where labeled 

nucleotide probes bind to their complimentary sequences in fixed cells and renders their 

detection. Initially, the probes were labeled either with radioisotopes or linked to an 

enzymatic reaction for their detection (67, 68). Unfortunately, these reactions generated 

molecules that diffused away from the probe itself making it difficult to determine the 

spatial location of the target with poor sensitivity. Alternatively, one can label probes 

directly with a fluorophore to achieve spatial information but this approach showed poor 

sensitivity as individual probes give rise to low and diffused fluorescence signal. 

To over come these problems, a modification of fluorescent in situ hybridization 

technique was developed by Robert Singer and colleagues (69). Their approach was to 

have five, 50 nucleotide long probes, each labeled with five fluorophores hybridize to 

each mRNA target. This approach was sensitive enough to image single mRNA 

molecule. Further, by using probe sets labeled with different fluorophores, different 

mRNA targets can be imaged simultaneously. However, this method has two 

shortcomings: 1. The efficient synthesis and purification of multiple labeled probes is 

expensive and cumbersome and 2. The multiple dye molecules have the potential to 

quench each other due to close proximity, hence the signals generated using these probes 

were subject to more variability (69). 
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Raj et al. (66), elaborated the existing single-molecule detection method to over 

come both the sensitivity and specificity issue.  The basic idea was to use 48 probes, each 

20-nucleotides long, and each labeled singly at their 3’ end.  When 48 singly labeled 

probes bind to a target mRNA, sufficient fluorescence is generated for the target mRNA 

to be visualized as a single diffraction-limited spot under a fluorescence microscope.  

Since each probe is singly labeled, the fluorophores on two adjacent bound probes are at 

a sufficient distance from the each other that quenching does not occur (66).  This method 

has proven to be particularly reliable in yielding single-molecule sensitivity and has 

successfully been used in a diversity of biological contexts (36, 70, 71). 

The extremely high specificity of our system arises from the fact that when all or 

most of the probes bind simultaneously to the same mRNA molecule a spot-like signal is 

generated, whereas, the binding of one or a few probes to non-specific sites only 

generates a diffused signal.  Image processing algorithms designed to detect diffraction-

limited spots, and to neglect the diffused signals, can thus be used with high confidence.  

The high specificity that is achieved has been demonstrated in a number of different 

ways. 

When specific probes were used for mRNAs coding for an artificial, inducible 

gene, the cells yielded spots only when such mRNAs were expressed (66, 72).  In the 

case of endogenous mRNAs localized in specific subcellular zones, signals were detected 

only in the appropriate subcellular zones (66, 70).  In the case of inducible genes, spots 

were detected only upon induction, and their numbers correlated with the extent of 

induction (66).  Probe-based controls, such as antisense or irrelevant probe sets, do not 

generate any signals.  Finally, signals from two or more distinctly labeled probe sets 
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co-localize when the sets are complementary to the same mRNA, but do not co-localize 

when the probe sets are complementary to different mRNAs (66). 

Several different lines of evidence indicate that the spots in our method arise from 

single mRNA molecules.  The numbers of spots per cell corresponds with the number of 

mRNA molecules per cell obtained by real-time PCR (66, 70, 73).  The intensities of 

spots exhibit a unimodal distribution (73), and the magnitude of intensities scale with the 

number of probes used (66, 73).  Two isoforms of alternatively spliced mRNAs can be 

separately detected using one set of probes for the common region and a pair of distinctly 

labeled probes for the alternatively chosen region (74).  The most compelling evidence 

for single-molecule detection occurred in one of our studies, wherein before splicing, a 

larger number of intron spots co-localize with exon spots, than co-localize after splicing.  

It is conceivable that the spots arise from conglomerates of mRNA molecules, or from 

association with nuclear structures, but in those cases splicing would not have resulted in 

the segregation of spots (75).  Finally, the intensity of spots is the sum of intensities of all 

dye molecules that are tethered to the mRNA molecules (69). In the current study, the 

expression of c-Fos and c-Jun mRNAs, and the expression of the downstream genes 

(collagenase and Cox-2) were studied with the aid of single-molecule fluorescence in situ 

hybridization. 

2.1.13 Imaging and Quantification of Individual Protein-Protein Interactions  
 
Most of the gene expression analysis is predominantly performed at the level of mRNAs. 

However, specific interactions between proteins to form multi-subunit complex or their 

post-translational modifications are the key requirement for proper execution of a gene 

regulatory pathway. Recently, it has been shown that the number of mRNAs and proteins 
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for any given gene does not correlate in individual cells (20). Hence, in order to study the 

propagation of noise in a gene regulatory pathway, we need to count the amount of 

individual proteins from cell-to-cell. Techniques most commonly used for detection of 

individual or multiple proteins are protein microarray, co-immuno precipitation, 2-D gels 

and mass spectrometry. These techniques are efficient and specific to detect protein-

protein interactions. However, they provide information at population level and do not 

detect transient interactions. Furthermore, by performing immunofluorescence for two 

different proteins using different secondary antibodies, one can determine the amount of 

individual protein present from cell-to-cell but it does not provide information regarding 

their association.  

Fluorescence resonance energy transfer (FRET) is another method to determine 

protein-protein interactions in vivo. In this technique, either the proteins of interest are 

directly fluorescently labeled or two different antibodies specific to individual proteins 

are labeled with cy3 and cy5 as the donor and acceptor fluorophores.  It involves the 

nonradioactive transfer of energy from an excited state donor of the fluorophore (cy3) to 

a nearby acceptor (cy5). The efficiency of energy transfer is related to the distance 

separating a given donor and acceptor pair, which is usually 1-10 nm.  When this distance 

is more then 20 nm, no FRET occurs (76).  This is an efficient technique to visualize 

protein-protein interactions and it also provides spatial information of the proteins.  

However, this technique has certain limitations: 1. It requires either constructing reporter 

genes where in your protein of interests are fused to fluorescent proteins, or labeling of 

primary or secondary antibodies with fluorophores.  2. The signal to noise ratio generated 

is very low, giving rise to high background, and 3. If two proteins are at a distance more 
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then 20 nm due to their different conformation, but still in the same complex, FRET will 

not work efficiently.  In addition, in the current project, to address the question of effect 

of stochastic mRNA synthesis in a gene regulatory pathway, two of the fluorescence 

channels will be used to image individual downstream genes mRNAs, and using another 

two FRET pairs of fluorophore to determine c-Fos-c-Jun heterodimers would further 

interfere with the mRNA detection.   

Proximity ligation assay (PLA) is a technique capable of detecting single 

endogenous protein events, such as protein expression, dimerization, and modifications, 

such as protein phosphorylation in fixed culture cells or tissue sections.  In this method, 

initially two different primary antibodies raised in different species specific to individual 

endogenous proteins are used.  Thereafter, secondary antibodies containing a unique 

DNA probe are added.  If these two DNA probes are in close proximity, they hybridize to 

a connector oligonucleotide, and a ligation reaction occurs, that is followed by rolling 

circle amplification (RCA) of the ligated sequence, generating 1000 of amplified copies 

of single stranded DNA, which is then detected with fluorescent probes targeted against 

the amplified sequence.  Individual proteins that are not part of a complex are not able to 

elicit this reaction.  Figure 2.3 shows the steps in PLA.  PLA generates localized, distinct 

signal, which remain anchored to one of the proximity probes, thereby revealing the exact 

location of the proteins.  Also, since 100-1000s of amplified copies of template DNA are 

made, the signals generated from multiple probes binding to the amplified DNA gives 

higher signal to noise ratio giving rise to very less or no background.  By counting these 

localized signals, one can quantify and compare protein-protein interactions that occur in 

different cells and tissues, and that are the result of different treatments (77) 
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Figure 2.3  Steps Involved in detection of protein-protein interactions by proximity 
ligation assay.   
 

A number of studies indicate that the signals generated by the performance of 

PLA are specific and quantitative.  When PLA for inducible protein heterodimers was 

performed, signals were obtained only upon induction.  Furthermore, when non-specific 

primary antibodies or interfering mutant proteins were transfected into the cells, no 

signals were generated (78, 79).  PLA has been used to quantify the up-regulation of 

activated signaling proteins during the progression of various cancers and for drug 

screening in various tissues and cell lines (78, 80-84).  

2.1.14 Experimental Outline to Address Proposed Questions 

The questions raised in Section 2.1.8 will be addressed using a pathway in which c-Fos 

and c-Jun are expressed upon serum addition, resulting in the formation of heterodimers 

that turn on the expression of a pair of downstream genes, collagenase and cox-2 (Figure 

2.1).  This pathway provides a unique opportunity to study the questions raised.  The first 

question, whether two mRNAs that are expressed at the population level in a coordinated 

manner are also expressed in a coordinated manner in individual cells, was addressed by 

counting the number of c-Fos and c-Jun mRNAs in HeLa cells as a function of time after 
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serum induction.  With respect to the question of propagation of noise in the gene 

expression pathway, one would have counted the mRNAs for c-Fos, c-Jun, collagenase 

and cox-2, simultaneously; however, by the time collagenase and cox-2 are beginning to 

be expressed, the c-Fos and c-Jun mRNAs have disappeared.  Therefore, the number of 

heterodimers formed by c-Fos and c-Jun proteins were counted with the aid of PLA, as 

well as the number of mRNAs of collagenase and cox-2 were counted with the aid of 

single-molecule FISH within the same cells.  Finally, the use of this pathway also 

addressed the question of how variations in the number of mRNAs encoding the 

component proteins affect the variation of the multi-subunit proteins.  

2.2 Results 

2.2.1 Imaging Individual Molecules of c-Fos and c-Jun mRNAs  

The expression of c-Fos and c-Jun in individual HeLa cells was studied using the single-

molecule FISH procedure described above.  A set of 48 probes each for c-Fos and c-Jun 

mRNA were synthesized and labeled with Alexa 594 and tetramethylrhodamine, 

respectively (Figure 2.4 A).  HeLa cells were cultured on glass cover slips in the absence 

of serum for 48 hours, and 20 % serum containing 200 µM 12- O- tetradecanoylphorbol 

-13-acetate (TPA) was added to induce the expression of c-Fos and c-Jun mRNAs.  The 

cells were fixed and in situ hybridization was performed using both sets of probes.  20 to 

40 optical slices were acquired; each 0.2 µm apart, and they were imaged in each 

fluorescence channel with a one-second exposure.  For each mRNA species, discrete 

spots corresponding to individual mRNAs were observed in each channel.  These three-

dimensional stacks of images were further merged into one composite image, and the 
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resulting image was color coded with green for c-Fos mRNAs and red for c-Jun mRNAs.  

These color-coded merged images were further merged into one RGB image, to create 

the composites shown in Figure 2.4 B. 

In order to count the number of mRNA molecules for each species, the three-

dimensional stacks of images for each mRNA species were analyzed using a custom 

image-processing program.  This program identifies each spot in three dimensions, based 

on a user-provided threshold intensity, and counts the number of mRNA molecules in an 

area that corresponds to the cell boundary drawn by the user using a DIC image of the 

cell.  The locations of the identified color-coded spots were plotted over the DIC image 

(Figure 2.4 B). Evidence supporting the sensitivity and specificity of mRNA detection by 

this method was presented previously (59, 62, 75). 

 
Figure 2.4 Single-molecule imaging of c-Fos and c-Jun mRNAs in individual cells.  A. 
Scheme for imaging individual molecules of c-Fos and c-Jun mRNA molecules using 
labeled oligonucleotide probes.  B. Three-dimensional stacks for individual colors were 
merged and compressed into one composite image of cells induced with 20 % serum for 
30 minutes.  Red represents c-Jun mRNAs, and green represents c-Fos mRNAs.  C. 
Identification of mRNA species using our image-processing algorithm.  Filled circles are 
drawn around each detected mRNA molecule. 
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2.2.2 c-Fos and c-Jun mRNAs are Expressed in Bursts and are Not Coordinated 
with Each Other in Individual Cells 
 
The number of c-Fos and c-Jun mRNA molecules from 100 randomly selected cells was 

counted.  The result of these measurements is presented in Figure 2.5 A. The expression 

level of each mRNAs was wide-ranging between individual cells. c-Fos expression varied 

from 0 to 700 mRNAs per cell with a mean of 218, where as c-Jun expression varied 

from 0 to 200 mRNAs per cell with a mean of 87. 

In order to provide an understanding of the distribution of mRNAs in the 

population of cells, the data is presented as histograms in Figure 2.5 B. These histograms 

reveal extremely wide distributions of expression levels of each mRNAs in cell 

population. These distributions stem from a stochastic expression of mRNA as observed 

before for other genes (8).  These distributions depart from Poisson distribution, which 

would be expected if the mRNAs were produced in a steady manner in each cell.  The 

Poisson distribution is overlaid on the observed distributions (green dotted line) (Figure 

2.5 B). 
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Figure 2.5  Expressions of c-Jun and c-Fos mRNAs occur through transcriptional bursts. 
A. Scatter plot of total c-Jun and c-Fos mRNAs in 100 individual cells after induction of 
cells for 30 minutes. B. Histograms showing observed distribution of c-Jun and c-Fos 
mRNA molecules per cell (grey bars) overlaid with their calculated Poisson distribution 
(green dotted line) and Fano factor values. 
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A measure of the departure from the Poisson distribution is obtained by 

calculating the Fano factor (85).  

 

� 

FanoFactor =
Variance
Mean

 (2.1) 

 

 

If mRNAs were produced with constant rate and followed a Poisson distribution, 

the mean number of mRNAs per cell will be equal to its variance, yielding a Fano factor 

of 1.  Instead c-Fos and c-Jun yielded a Fano factor of 70 and 28 respectively. These 

large Fano factors signify that mRNAs are being produced in random bursts followed by 

steady decay over time (8).  Most surprisingly, we found that numbers of c-Fos mRNA 

molecules were not correlated with the number of c-Jun mRNA molecules in the same 

cells.  The correlation between these two measurements in the population was 0.184 

(Figure 2.5 A).  This indicates that the bursts of c-Fos mRNA synthesis are random in 

relation to the bursts of c-Jun mRNA synthesis.  Although the results are consistent with 

previous results of Raj et al (8), it is extremely surprising given that these two genes need 

to be expressed in a coordinate manner in each cell as their proteins form heterodimers. 

2.2.3 Expression of c-Fos and c-Jun mRNAs as a Function of Time 

The expression of c-Fos and c-Jun mRNAs as a function of time after the addition of 

serum was studied in a similar manner.  The mean values at each time-point for each 

mRNA are shown in Figure 2.6 A (upper panel), along with a measure of their dispersion 

(95 % confidence interval).  Expression peaked at 30 minutes, and returned to pre-serum 
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levels 60 minutes after the addition of serum. This time course resembles what was 

observed in the population-based measurements (Figure 2.6 B). 

In order to explore how c-Fos and c-Jun mRNA expressions are correlated in 

individual cells during the course of their expression, correlation coefficients (R-values) 

were calculated at each time point. These R-values are presented along with their 95 % 

confidence intervals in Figure 2.6 A (lower panel).  At all the time-points in which two 

mRNAs were expressed, the correlation between them was poor, indicating the absence 

of coordinated expression in individual cells over time.  Thus, although the expression of 

c-Fos and c-Jun is coordinated at the population level, it is uncorrelated in individual 

cells. 
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Figure 2.6  Expression of c-Jun and c-Fos mRNA is not correlated from cell to cell. A.  
Mean numbers of c-Jun and c-Fos mRNAs per cell at various times after induction with 
serum (top).  Correlation coefficients (R-values) between c-Jun and c-Fos mRNAs at 
various time intervals (bottom).  The error bar represents a 95 % confidence interval.  
Means and R-values were obtained after counting 100 cells in each category.  B. 
Expression of c-Fos and c-Jun induction as assessed by RT-PCR at various times after 
treatment with serum (55). 

2.2.4 Visualizing Heterodimers Formed by c-Fos and c-Jun Proteins in Individual 
Cells 
 
The proteins encoded by c-Fos and c-Jun function by forming heterodimers, which 

induce the expression of several secondary response genes involved in cell proliferation, 

differentiation, inflammation, and apoptosis, in a cell-type and tissue-specific manner 
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(57).  In order to study the propagation of noise from c-Fos and c-Jun mRNAs to their 

functional protein heterodimers, PLA was used to specifically detect c-Fos-c-Jun 

heterodimers with single-molecule resolution.  As described in detail in the introduction, 

this method utilizes specific primary antibodies against c-Fos and c-Jun proteins.  

Secondary antibodies that mediate a rolling circle amplification reaction recognize these 

primary antibodies.  Subsequent hybridization of complimentary oligonucleotide probes 

to the rolling circle amplification products generates strong fluorescence signals that 

remain localized at the site of each heterodimer. 

In order to demonstrate that the resulting signals detect individual c-Fos-c-Jun 

heterodimers, HeLa cells were cultured in the absence of serum for 48-hours and were 

induced with serum for six hours.  After fixing the cells, antibodies were added, rolling 

circle amplification was carried out, and signal detection was performed, as described in 

detail in the material and methods section below.  About 100 bright fluorescence spots 

were observed in the nucleus of each cell (Figure 2.7 A).  c-Fos and c-Jun proteins forms 

heterodimers in the cytoplasm. However, upon phosphorylation, the heterodimers migrate 

into the nucleus (86).  Consistent with this, spots were infrequently found in the 

cytoplasm (Figures 2.7 B and C).  In contrast to cells six hours after induction with 

serum, there were very few spots in cells that were not induced with serum (Figure 2.7 

C).  Further evidence of the specificity of detection emerged when we inhibited c-Fos 

expression with U0126 (a MEK 1/2 inhibitor) (87).  In the presence of this inhibitor, no 

spots were detected, even after induction with serum.  As a control to highlight the 

specificity of PLA, one of the primary antibodies or one of the secondary antibodies was 
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omitted from the mixture, which resulted in the complete absence of signals (Figure 2.7 

C). 

 

Figure 2.7  Detection of c-Fos-c-Jun heterodimers using the proximity ligation assay.  
HeLa cells were induced by the addition of serum and TPA for six hours.  Proximity 
ligation assays were then performed, and the resulting amplification products were 
detected with fluorescein-labeled hybridization probes.  A. Composite image showing a 
merged three-dimensional stack of images of several cells, where red spots represent 
individual c-Fos-c-Jun heterodimers, and blue DAPI staining highlights the nucleus of 
each cell.  B. Identification and quantification of individual heterodimers using an image-
processing algorithm. Filled red circles are drawn around each detected spot.  C. Mean 
number of c-Fos-c-Jun heterodimers per cell under various conditions, in the nucleus and 
in the cytoplasm. The means were calculated by counting 100 cells in each category, and 
the error bars represent the 95 % confidence interval. 
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To further demonstrate that the signals are specific to the c-Fos-c-Jun 

heterodimers, a recombinant protein in which the coding sequence of c-Jun was fused 

with the coding sequences of c-Fos (with a spacer sequence in between them) was 

engineered (Figure 2.8 A).  This recombinant construct was placed under the control of a 

doxycycline promoter, and it was integrated into the genome of a HeLa cell line that 

constitutively expressed the doxycycline-controlled transactivator (88).  Even in the 

absence of serum induction, this cell line expresses the c-Fos-c-Jun fusion protein upon 

removal of doxycycline from the culture medium.  As shown in Figure 2.8 B, the 

fluorescent spots were visible only when this hetrologous gene was turned on by the 

removal of doxycycline.  Since the removal of doxycycline from the culture medium 

leads to the production of just one extra protein in the cell, the c-Fos-c-Jun fusion protein, 

these experiments unambiguously demonstrate that the spots produced by PLA represent 

authentic c-Fos-c-Jun heterodimers. 
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Figure 2.8  Specificity of the proximity ligation assay for the detection of c-Fos-c-Jun 
heterodimers using an engineered recombinant protein.  A. Schematic representation of 
the engineered recombinant protein containing both the c-Fos and c-Jun sequences.  B. 
Composite image showing merged three-dimensional stacks of images of several cells 
induced for four hours in the absence of doxycycline (left), and in the presence of 
doxycycline (right), with red representing individual c-Fos-c-Jun heterodimers, and blue 
DAPI staining highlights the nucleus of each cell. 

2.2.5 c-Fos-c-Jun Heterodimers Show Less Cell-to-Cell Variation 

In order to study variation in the number of c-Fos-Jun-heterodimers in each cell, the 

HeLa cells were imaged at various times after serum addition. PLA spots were counted 

using the same algorithm used to count mRNA spots.  The distribution of the number of 

PLA spots per nucleus four hours after induction is shown in Figure 2.9.  Compared to 

the distribution of c-Fos and c-Jun mRNAs, the distribution of c-Fos-c-Jun heterodimers 

was less variable.  While the Fano factors of c-Fos and c-Jun mRNAs were 70 and 28, 

respectively, the Fano factor for the heterodimers was only 5, indicating that their 

distribution departs little from a Poisson distribution (Figure 2.9, green dotted line).  
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This indicates that the great variation observed in the mRNA distribution is 

diminished at the level of heterodimers.  As discussed earlier, this is because gene 

expression noise is generally lower in the proteins, as compared to their parent mRNAs, 

due to the longer half-lives of proteins.  Moreover, the observed reduced noise in the 

number of heterodimers reflects the half-life of the heterodimers, which is longer than 

that of their component proteins (57). 

 
Figure 2.9  c-Fos-c-Jun heterodimers exhibit less cell-to-cell variation. Histogram 
showing distribution of c-Fos-c-Jun heterodimers per nucleus as determined by PLA after 
induction with serum + TPA for 4 hours. 

 
The distribution of heterodimers in the cell population as a function of time after 

serum addition is presented in Figure 2.10.  These results show that the heterodimers 

appear within 15 minutes of serum induction, and are present at a level of about 100 

heterodimers per nucleus between four and ten hours, finally declining after 12 hours.  

The Fano factor varied from 3 to16 over this time course. 
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Figure 2.10  Cell-to-Cell variation in the number of c-Fos-c-Jun heterodimers as a 
function of time.  Histograms showing the distribution of c-Fos-c-Jun heterodimers per 
nucleus (and their observed mean, shown in green letters) at various time interval after 
induction with 20 % serum and TPA. 
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2.2.6 The Expression of Collagenase and Cox-2 Genes is Stochastic and Not 
Correlated with Each Other 
 
As discussed above, we found that cell-to-cell variation in c-Fos and c-Jun mRNAs is not 

propagated to the level of c-Fos-c-Jun heterodimers – their levels were relatively similar 

between cells.  Since, these dimers are less variable from cell to cell, the level of 

variation in the expression of the downstream genes collagenase and cox-2 was explored.  

The levels of these downstream mRNAs in the same cells were measured as a function of 

time, using single-molecule FISH and two sets of probes, one specific for collagenase 

mRNA, and the other for cox-2 mRNAs, each set labeled in a different color.  With a 

great surprise, the expression of collagenase and cox-2 was found to be highly variable 

(Figures 2.11 A and B).   After six hours of expression, only a few cells expressed 

collagenase mRNA (4 out of 50 cells), however, when collagenase mRNA was 

expressed, there were 75 to 200 molecules in each cell.  By contrast, cox-2 was expressed 

in a larger fraction of the cells, with expression levels ranging from 0 to 350 molecules 

per cell.  A set of three fields that had at least one cell expressing each mRNA is shown 

in Figure 2.11 A.  The distribution of each mRNA species is shown in the plot and in the 

histograms outside the plot in Figure 2.11 B.  
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Figure 2.11  Expression of collagenase and cox-2 genes is stochastic.  A. The upper and 
middle panel shows three-dimensional merged raw images of cells expressing 
collagenase and cox-2 mRNAs, respectively.  The lower panels show molecules 
identified with an image processing algorithm (green and red representing signals from 
collagenase and cox-2 mRNAs, respectively) overlaid on DIC images.  For these images, 
the fields were chosen with the criterion that there would be at least one cell expressing 
each mRNA (an infrequent occurrence).  B. Scatter plot of total collagenase and cox-2 
mRNAs after induction of cells with serum and TPA for six hours.  Histograms outside 
the plot indicate the distribution of collagenase mRNA/cell (top) and cox-2 mRNA/cell 
(right). 
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In keeping with the stochasticity of the expression of c-Fos mRNA and c-Jun 

mRNA, we found that expression of these two mRNAs is not correlated with each other, 

and the pair gave a correlation coefficient of only 0.25.  Furthermore, we measured how 

the level of their expression as a function of time.  Figure 2.12 (top and middle panels) 

shows that for the first two hours after the addition of serum, neither of the two mRNAs 

can be detected.  Their expression peaks between four to six hours, and ultimately 

declines.  At no point during their expression do they show any significant correlation 

between each other (Figure 2.12, bottom panel).   

 
Figure 2.12  Expression of collagenase and cox-2 mRNAs are not correlated from cell to 
cell.  Mean numbers of collagenase and cox-2 mRNAs per cell (top, middle) and the 
correlation coefficient (R-value) between collagenase mRNA and cox-2 mRNA (bottom) 
as a function of time.  The error bar represents a 95 % confidence interval.  Mean and R-
values were obtained by counting 100 cells in each category. 

 
These results indicate that the expression of collagenase mRNA and cox-2 mRNA 

in any given cell is independent of each other at any given time, and occurs in randomly 

initiated bursts that are uncorrelated.  The evidence for bursts in synthesis was also seen 

by the clustering of many mRNAs at the gene locus in the case of each gene. 
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2.2.7 Expression of Collagenase and Cox-2 mRNAs are Poorly Correlated with the 
Transcription Factor Heterodimers that Induce Them 

 
Since a large variation in the level of collagenase mRNA and cox-2 mRNA was 

observed, whether these variations correlate with the levels of c-Fos-c-Jun heterodimers 

in the same cell was explored.  PLA for c-Fos-c-Jun heterodimers and single-molecule 

FISH for collagenase and cox-2 mRNAs within the same cells (that were induced with 

serum for six hours) was performed.  In these three-label imaging experiments, 

collagenase was detected using cy5, cox-2 using Alexa 594, and PLA signals with 

fluorescein-labeled probes.  The results are shown in Figures 2.13 A and B.  Surprisingly, 

it was found that the cells contained a similar number of heterodimers show different 

amounts of collagenase and cox-2 mRNAs with many cells showing no expression of 

either of these two genes (Figures 2.13 A and B). The correlation between the number of 

heterodimers and the number of each of the two mRNAs was 0.47 and 0.46, respectively. 
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Figure 2.13  Expressions of collagenase and cox-2 genes  are poorly correlated with the 
number of c-Fos-c-Jun heterodimers. A. Three-dimensional merged raw images of cells 
expressing collagenase mRNA (left), cox-2 mRNA (center) and individual c-Fos-c-Jun 
heterodimers (right) B. Scatter plot of total collagenase mRNAs and c-Fos-c-Jun 
heterodimers (left) and total cox-2 mRNAs and c-Fos-c-Jun heterodimers (right) in 50 
individual cells after induction of cells with serum + TPA for 6 hours. Marginal 
histograms indicate the distribution of collagenase (top left), cox-2 (top right) mRNAs / 
cell and c-Fos-c-Jun hetrodimers / nucleus (right). 
 

The manner in which these correlations change as a function of time after the 

addition of serum is shown in Figure 2.14.  These plots indicate that, although a certain 

minimum level of heterodimer (indicated by the blue line) is needed for the expression of 

each of the two mRNAs, the expression of neither mRNA correlates significantly with 

the number of heterodimers at any time after induction (Table 2.1). 
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Figure 2.14  Correlation between c-Fos-c-Jun heterodimers and collagenase and cox-2 
mRNAs as a function of time.  Scatter plots showing the number of cox-2 mRNAs and 
the number of c-Fos-c-Jun heterodimers (top) and the number of collagenase mRNAs and 
the number of c-Fos-c-Jun heterodimers (bottom), at various times after induction. 
 
Table 2.1  Correlation Coefficient Values:  I (between c-Fos-c-Jun Heterodimers and 
Cox-2 mRNAs); and II (between c-Fos-c-Jun Heterodimers and Collagenase mRNAs) at 
Various Time Intervals 
 

Time in 
Hours after 
serum 
addition 

0 0.25 0.5 1 2 4 6 8 10 12 

I 0.04 0.04 0.45 0.39 -0.05 0.29 0.43 0.11 0.10 0.13 

II 0.12 -0.31 -0.10 0.08 0.04 0.16 0.46 0.08 0.38 0.21 

 
These results demonstrate that, although the heterodimers are needed for the 

expression of collagenase mRNA and cox-2 mRNA, the presence of these heterodimers 

in the nucleus is not sufficient to produce these mRNAs at any given time.  Instead, these 

two mRNAs are produced in randomly initiated bursts of expression, followed by periods 

of no expression, but steady mRNA decay.  Therefore, at the time of fixation of the cells, 

only recently produced mRNAs are visible. 
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2.3 Discussion 

The propagation of gene expression noise in an archetypical gene expression pathway 

was studied.  The pathway that was chosen involves the production of c-Fos mRNA and 

c-Jun mRNA after serum induction, translation of these mRNAs into their respective 

proteins, formation of heterodimers between the two proteins, and induction of 

downstream genes (collagenase mRNA and Cox-2 mRNA) by the heterodimers (Figure 

2.1).  In this pathway, cell-to-cell variation in the number of c-Fos and c-Jun mRNAs, c-

Fos-c-Jun protein heterodimers, and collagenase and cox-2 mRNAs, was measured.  c-

Fos mRNA  and c-Jun mRNA was imaged in the same cells to determine if they are 

expressed in a coordinate manner in individual cells.  Furthermore, c-Fos-c-Jun 

heterodimers were simultaneously imaged, along with collagenase mRNA and Cox-2 

mRNA in the same cells, in order to explore correlations between the three.  All of these 

measurements were performed as a function of time after the addition of serum. 

The expression of c-Fos, c-Jun, collagenase and cox-2 mRNAs occurs through 

transcriptional bursts.  Several copies of mRNAs are transcribed during each burst.  On 

an average 150-200 copies of mRNAs were made for each individual gene.  Such 

pulsatile pattern of gene expression has also been observed previously in yeast, 

Drosophila and mammalian cells, suggesting that occurrence of transcriptional bursts in 

expression of endogenous genes is a common phenomenon (4, 26, 27, 34).  However, 

recently in one of the study in Drosophila embryos, both stochastic and synchronous 

pattern of gene expression was observed for a set of developmental genes.  This change 

in expression pattern was found to be due to presences or absences of RNA polymerase II 

at the gene before their induction.  Hence the genes containing RNA polymerase 
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prepositioned on them before their induction showed synchronous pattern of gene 

expression whereas others that did not contain RNA polymerase II prepositioned on them 

before their induction showed stochastic pattern of gene expression (9).   Furthermore, 

using fetal and neonatal pituitary tissues, it was observed that the pulsatile expression 

pattern of pituitary hormone gene became stabilized as the tissue develops (37).  This two 

examples of developmental genes suggest that transcriptional bursts is a general 

phenomenon for gene expression, and the pattern of gene expression of certain genes 

might get changed during their developmental stages.  

Although both c-Fos mRNA and c-Jun mRNA are expressed during the same time 

period (15 to 30 minutes), and they are expressed, on an average, in a coordinated manner 

after the addition of serum (55), their levels do not correlate with each other in individual 

cells.  This lack of correlation is because each of the two mRNAs is expressed in 

randomly initiated bursts in different cells, followed by a period of no RNA synthesis 

during which there is steady RNA decay (8).  The short half-life of these mRNAs (the 

half-life of c-Fos mRNA and c-Jun mRNA is 9 minutes and 11 minutes, respectively (89, 

90)) contributes to the observed variation.  Gandhi et al showed similar uncorrelated 

expression in yeasts.  While measuring the level of coordination in the expression of 

functionally related genes within single Saccaromyces cerevisiae cells, transcription of 

these genes was found to be not coordinated in individual cells due to stochastic 

fluctuations in gene expression (35).  

Raj et al. (8) showed that the high variation in the number of mRNAs is buffered 

for the protein products, because the half-life of proteins ranges from hours to a day, 

whereas mRNA half-life range from a few minutes to hours.  The extent of buffering of 
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this noise depends on the actual half-life of the proteins.  The longer the half-life, the 

greater is the buffering.  For a multi-subunit complex, each subunit will have its own 

characteristic variation.  Therefore, when a given cell assembles a multi-subunit complex, 

the number of molecules of complex that the cell can make, will be equal to the number 

of the type of subunit that is present in the lowest amount.  The remaining excess 

subunits will remain, either unused or, in some cases, will be used for the assembly of 

other complexes. 

Multi-subunit complexes can have longer half-life then the component proteins.  

This is the case for c-Fos-c-Jun heterodimers (57).  Therefore, it is expected that the 

variation in the number of c-Fos-c-Jun heterodimers will be less compared to the 

variation in individual c-Fos and c-Jun proteins.  This is likely to be the reason why there 

was low variation in the amounts of c-Fos-c-Jun heterodimers in each cell. 

Given the relatively low level of variation in c-Fos-c-Jun heterodimers, a priori, 

one expects that the downstream genes will show less variation.  However, the opposite 

was observed. Cell-to-cell variation in the expression of two downstream genes was very 

high, and their expression was not correlated with each other in individual cells.  

Furthermore, although the downstream genes were expressed in a noisier manner then the 

upstream genes, it was not due to the propagation of noise from the former to the latter.  

This is because only a limited variation in the number of heterodimers was observed.  

These observations suggest that the transcription machinery is inherently noisy, both for 

the upstream genes and for the downstream genes – and this occurs for mechanistic 

reasons. 
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The mechanism of inherently noisy transcription likely resides in the structure of 

chromatin in higher eukaryotes.  In the interphase nucleus, chromatin exists in an 

extremely compact organization.  Therefore, even if transcriptional activators are present 

in large numbers in the nucleus, they cannot access the promoter region of the gene.  

Random "breathing" events at the promoter sites in the chromatin permit the initial entry 

of the activator proteins.  Once bound at the site, these proteins attract the chromatin 

decondensation apparatus and the RNA polymerization machinery, which lead to 

decondensation of the relatively large region of chromatin surrounding the gene locus 

(91).  Transcription of all the genes located in the decondensed region can then take 

place, if their respective transcription factors are present.  The c-Fos, c-Jun, collagenase, 

and cox-2 genes are located on chromosomes 1, 14, 11, and 9, respectively.  This 

explains why c-Fos, c-Jun, cox-2, and collagenase expression were not correlated with 

each other in current study and observed co-regulated expression of two reporter genes 

that were present at the same genomic locus in Raj et al (8). 

There are a few other mechanisms that may occur during transcription and that 

might be the source of these bursts of synthesis.  The first one is variation in the 

availability and the retention of the transcriptional activators for their genes.  Within a 

cell, these molecules exist in very low-copy number; hence their characteristic binding 

times and falling off times might result in pulsatile mRNA synthesis.  Secondly, pre-

initiation complex proteins are assembled sequentially near promoter regions, and similar 

to the activators and repressors, these components are also present in low copy number, 

and they are responsible for the transcription of most of the mRNA in a cell.  Hence, 

competition for these proteins might result in the stochastic expression of any given gene. 
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In summary, the transcription patterns of c-Fos, c-Jun, collagenase and cox-2 

mRNAs were studied as a function of time at a single molecule level in HeLa cells and 

evidence for transcriptional bursts have been provided.  Furthermore, despite of their 

coordinated expression at the population levels, the expression of c-Fos and c-Jun; and 

cox-2 and collagenase mRNAs was found to be not correlated with each other in 

individual cells.  Lastly, by imaging and counting individual c-Fos-c-Jun heterodimers 

and cox-2 and collagenase mRNAs within the same cells, it was shown that in a gene 

regulatory pathway, even though the variation in the expression of upstream gene 

mRNAs gets buffered at their protein levels, the expression of downstream genes are still 

stochastic due to their own inherent property.  These data directly provided evidence that 

the expressions of functionally related genes are coordinated post-translationally.  

2.4 Experimental Methods 

2.4.1 Cell Culture 

HeLa cells were cultured in modified Eagle’s minimal essential medium (Sigma, St. 

Louis, MO) supplemented with Tet-system-approved 10 % fetal bovine serum (Clontech, 

Mountain view, CA).  For the induction experiments, the cells were cultured on gelatin-

coated glass cover slips and serum-starved for 48 hours.  After starvation, expression 

from the c-Fos and c-Jun genes was induced by adding 20 % serum for 0, 0.25, 0.5, 1, 2, 

and 4 hours.  At the end of induction, cells were fixed (along with serum-starved cells 

and cells growing in regular medium, as controls to count the basal level of c-Fos and c-

Jun mRNA expression).  For the expression of the downstream genes, collagenase and 
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cox-2, HeLa cells were induced with 20 % serum plus 200 µM TPA for 0, 0.25, 0.5, 1, 2, 

4, 6, 8, 10, and 12 hours. 

2.4.2 Cloning of c-Fos-c-Jun Fusion Protein 

To tether c-Jun and c-Fos proteins together, c-Jun gene was amplified using specific 

primers from DNA obtained from HeLa cells and was cloned into pCR-4 TOPO cloning 

vectors.  The primer sequences were:  5’-UTR_c-Jun forward primer,  GTGTCCCCCGC 

TTGCCACAG; and 3’-UTR_c-Jun reverse primer, TCAGCCCCCGACGGTCTCTC.  

Utilizing site directed mutagenesis (Agilent Technologies, Santa Cruz, CA), BamHI and 

MluI restriction enzyme sites were created before the start codon in the c-Jun gene and at 

the end of the c-Jun gene.  The BamHI-MluI-digested fragment containing the c-Jun 

coding sequence was inserted into a pTRE-c-Fos-Hygromycin vector (75) in front of the 

c-Fos coding sequence. A fragment containing a FLAG-tag sequence with a stop codon 

(5’ GAC TAC AAG GAC GAC GAC GAC AAG TGA-3’) was inserted at the end of the 

c-Fos coding sequence, followed by an EcoRI restriction enzyme recognition site, using 

site-directed mutagenesis.  Furthermore, the c-Jun stop codon was removed, and a 24-

nucleotide oligonucleotide encoding many glycine and serine residues was inserted 

between the last codon of the c-Jun coding sequence and the initiation codon of c-Fos, 

using site-directed mutagenesis. The primer sequences were as follows.  

Insert_24nt_forward: TAACGCAACAGTTGCAAACATTTAAGCTTGGGGGATCAG 

GCTCGAGCACGCGTGCCACG, Insert_24nt_reverse: CGTGGCACGCGTGCTCGAG 

CCTGATCCCCCAAGCTTAAATGTTTGCAACTGTTGCGTTA. The pTRE-Jun-linker 

-Fos-FLAG-hygromycin plasmid was linearized with FspI and was transfected into 

HeLa-tet-off cells (Clontech) using FuGene-6 (Roche, Applied Science, Indianapolis, 
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IN).  After ten days of selection in a medium containing hygromycin (200 µg/ml) and 

doxycycline (10 ng/ml), individual clones were isolated and were confirmed by 

performing in situ hybridization. 

2.4.3 Probe Sets and Antibodies 

Sets of probes containing 48 labeled oligonucleotides were designed to hybridize to each 

target mRNA.  The sequences of the individual probe sets can be found in Appendix A.  

The probes were 20 nucleotides in length, containing about 45 % GC and bind to mRNA 

target sequences that are at least two nucleotides apart from each other.  Each probe set 

was purchased from Biosearch Technologies (Novato, CA) with a 3’-amino modification.  

Each probe set was pooled in equimolar amounts, coupled to either tetramethylrhodamine 

(TMR), Alexa 594, or Cy5 dyes, using their succinimidyl esters, and were purified by 

high pressure liquid chromatography.  A detailed procedure for the attachment of labels 

and purification of the probes has been described previously (66, 92).  Primary antibodies 

specific for c-Fos and raised in a mouse (Cat #SC-8047) and specific for c-Jun and raised 

in a rabbit (Cat #SC-1694) were obtained from Santa Cruz Biotechnology Inc. (Santa 

Cruz, CA).  Fluorescein-conjugated goat anti-rabbit IgG secondary antibody (Cat #SC-

2012) was purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA), and Cascade 

blue conjugated goat anti-mouse IgG (Cat #C-962) was obtained from Life Technologies 

(Grand Island, NY). 
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2.4.4 Fluorescence in situ Hybridization 

Cover slips containing HeLa cells were washed with 1X phosphate buffer saline (PBS), 

fixed in 4 % formaldehyde in 1X PBS for 15 minutes, washed with 1X PBS, and were 

permeabilized with 7 0% ethanol at 4 °C for one to two hours.  The cells were 

equilibrated with 10 % formamide in 2X SSC solution, and were then hybridized 

overnight with one or more probe sets.  Hybridization was performed in a moist chamber 

maintained at 37 °C, with the cover slips placed upside over the hybridization solution.  

The hybridization solution contained 10 % (w/v) dextran sulfate (Sigma), 1 µg/µl E. coli 

tRNA (Sigma), 2 mM ribonucleoside vanadyl complex (Sigma) to inhibit ribonucleases, 

0.02 % RNase-free bovine serum albumin (Ambion), 10 % formamide (Ambion), and 10 

ng/µl of each probe set.  After hybridization, the cover slips were washed twice with a 

solution containing 10 % formamide in 2X SSC.  The cover slips were mounted on glass 

slides, using deoxygenated mounting medium, and sealed with clear nail polish (66). 

2.4.5 Proximity Ligation Assay 

To image individual c-Fos and c-Jun heterodimers, cover slips containing HeLa cells 

induced with 20 % serum plus TPA were washed, fixed, permeabilized, blocked, and 

treated with both c-Fos and c-Jun primary antibodies, as described in Section 2.2.5.  Anti-

rabbit PLA plus and anti-mouse PLA minus probes were obtained from Olink Bioscience 

(Uppsala, Sweden), and were diluted 1:5 in blocking solution.  The cells were incubated 

with the secondary antibody probe mixture, and the cells were then incubated with in a 

preheated humidified chamber for an hour at 37 °C.  The cells were washed twice in 1X 

PBS, and were then incubated with a ligation mixture containing connector 

oligonucleotides and ligase enzyme (diluted 1:5 with RNase-free water) for 30 minutes in 
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a preheated humidified chamber at 37 °C.  The cells were once again washed twice with 

1X PBS, and were then incubated with amplification solution (diluted 1:5 in RNase-free 

water) containing labeled oligonucleotides and polymerase enzyme in a preheated 

humidified chamber for two hours at 37 °C.  Cells were washed twice with 2X SSC, and 

were mounted for imaging, as described in Section 1.4.4.  

2.4.6 Proximity Ligation – Fluorescence in situ Hybridization Assay 

To image c-Fos-c-Jun heterodimers and mRNAs for downstream target genes, a modified 

protocol was used.  First, the entire PLA protocol up to the detection step was performed 

in the presence of RNase inhibitor (NEB, Ipswich, MA).  Once the signals were detected 

and amplified, they were further fixed with 4 % formaldehyde in 1X PBS for 10 minutes, 

and then washed with 2X SSC.  The cells were then hybridized overnight with a 

hybridization mixture containing labeled probe sets in a moist humidified chamber 

maintained at 37 °C.  The rest of the protocol was followed as Described in Section 2.4.4. 

2.4.7 Imaging 

Wildfield epifluorescence microscope was used for imaging along with strong light 

source such as mercury lamp and cooled CCD camera.  The resolution of a given 

microscope is proportional to the size of its objective lens used and is inversely 

proportional to the wavelength of light at which the samples are being observed.  Hence, 

the ultimate limit to the resolution of a light microscope is set by the wavelength of 

visible light, which ranges from about 0.4 µm (for violet) to 0.7 µm (for far red).  

Furthermore, the limiting separation at which two objects can be still seen as distinct 

spots is called limit of resolution or diffraction limits of a given microscope.  This 
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depends on both the wavelength of light (

� 

l) and numerical aperture (NA) of the lens 

system used and can be obtained by following formula (93). 

 

� 

d =
l

2*NA
                                                   (2.2) 

 

 

The NA is usually 1.4 for most of the 100X optical lens; hence the diffraction 

limit is roughly half of the wavelength of light used.  For the epifluorescence microscope 

used in the current study, the diffraction limit was found to be 250 nm and was used as a 

limit in our image analysis computer program.   

2.4.8 Image Analysis 

For each image, 20 to 40 optical slices, 0.2 µm apart were acquired in each fluorescence 

channel with a one-second exposure using an Axiovert 200M inverted fluorescence 

microscope (Carl Zeiss, Thornwood, NY).  The images were obtained using Openlab 

acquisition software (Perkin-Elmer, Sheffield, united Kingdom).  Three-dimensional 

stacks of images were analyzed using custom computer programs written in Matlab 

(Mathworks, Natick, MA).  These programs enhance the stack of images using a 

Laplacian filter optimized for the size of spots that we expect, permit users to select a 

threshold based on a three-dimensional display of spot intensity, segment the image 

based on the provided threshold, and produce a list of coordinates of the centers of all 

spots in three dimensions in each channel.  Using the cell and nucleus boundaries and 
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location determined by DIC and DAPI images, the number of mRNAs and PLA signals 

were counted in each cell. 

2.4.9 Statistical Analysis 

75 to 100 cells were analyzed for each category of data reported in Figures 2.1 to 2.11.  

The data points represent the mean values, and the error bars represent a 95% confidence 

interval. The 95% confidence interval for calculating correlation coefficients (R-values) 

was obtained with a bootstrapping method in Matlab (Mathworks, Natick, MA). 
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CHAPTER 3  

SINGLE-MOLECULE IMAGING OF TRANSCRIPTIONALLY  
COUPLED AND UNCOUPLED SPLICING 

3.1 Introduction  

As a eukaryotic gene is transcribed, the pre-mRNAs contain both coding sequences 

called exons, interrupted by non-coding sequences called introns.  These introns need to 

be removed from the transcript before it is exported out of the nucleus to the cytoplasm, 

where it is translated into functional protein. The process of removal of the introns and 

joining of the exons occurs via two transesterification steps with the help of a large 

ribonucleoprotein complex called a spliceosome. 

The spliceosome consists of five small nuclear ribonucleoproteins (snRNPs) and 

more then 100 other proteins.  Each snRNP (U1, U2, U4, U5, and U6) is made up of a 

single uridine-rich, small nuclear RNA and multiple proteins.  As the introns are 

transcribed, the splicing machinery recognizes specific cis-acting sequences within the 

introns that defines their boundaries.  Once the introns are recognized, their excision 

occurs in two chemical steps:  in the first step, the 5’ splice site is cleaved and a lariat is 

formed.  In the next step, the 3’ splice site is cleaved and the exons adjacent to the splice 

sites are ligated to each other.  Once the exons are ligated, the spliceosome is 

disassembled, releasing its components for the de novo synthesis of other spliceosomes 

(94).  
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3.1.1 Co-transcriptional Splicing 

Whether splicing is coupled to transcription, or whether it takes place after the 

pre-mRNA is released from the transcript, has been an unsolved question for several 

years.  When Lamond et al. first discovered that splicing factors are concentrated in 20 to 

50 sub-nuclear structures called speckles, it was suggested that they could be the sites 

where splicing occurs (95).  However, later in situ hybridization studies indicated that, 

even though the speckles might be present next to the site where active transcription takes 

place, splicing does not occur in the speckles (96, 97).  Instead, splicing occurs during the 

time when nascent transcripts are still tethered to their encoding gene via RNA 

polymerase II (97-102). 

3.1.2 Proposed Models for Coupling of Transcription and Splicing 

While it is nearly universally accepted that transcription and splicing are coupled, two 

views concerning the mechanism of coupling prevail:  structural coupling and kinetic 

coupling.  According to the structural coupling model, splicing factors are pre-positioned 

on the C-terminal domain of RNA polymerase II and attach to the introns as they emerge 

from the polymerase (103-105).  The kinetic coupling model is based on evidence that 

links the rate of transcriptional elongation and splice-site selection.  Owing to their high 

concentration and mobility (106), splicing factors directly assemble on the nascent 

introns into productive spliceosomes as fast as the RNA polymerase can synthesize them 

(107, 108).  Hence, the rate-limiting step is not splicing, but rather, it is the completion of 

mRNA synthesis, 3’-end processing, and release.  If there is a perturbation in 

transcription elongation, the co-transcriptional recruitment of splicing factors to splice 

sites is greatly affected (109).  In addition, with the aid of a chromatin 
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immunoprecipitation assay, Listerman et al. showed that some splicing factors, such as 

U2AF65, U1, and U5 snRNP, associate with introns at the sites of genes undergoing 

transcription, supporting the co-transcriptional model of splicing (110).  Further support 

for the kinetic coupling model comes from the finding that exon inclusion is promoted by 

an intrinsically slow RNA polymerization, or by nucleosomes that impede the progress of 

the polymerase (111, 112).  Furthermore, there is evidence that the rates of the two 

processes are sometimes coordinated, ensuring that only fully spliced mRNAs are 

released (36, 113-115). 

Although, the co-transcriptional removal of introns as they emerge from RNA 

polymerase provides an attractive explanation for the high fidelity of splicing in joining 

constitutively spliced exons in the proper sequential order, it is not ideal for explaining 

alternative splicing, wherein splicing must be slowed down until all of the splice sites 

involved in the choice have been synthesized (30, 31, 37, 70, 72, 83, 116-120).  Is 

processing just delayed briefly until alternative splice sites are generated, or does 

alternative splicing result instead in the uncoupling of splicing from transcription, so that 

it is concluded post-transcriptionally?  The former has been found to be the case for 

several alternatively spliced transcripts (74, 101, 121).  However, the manner in which 

RNA-binding splicing regulators impact splicing-transcription coupling, in situations 

where strict tissue and developmental stage-specific alternative splicing patterns occur, 

remains to be explored.  Moreover, when synthetic pre-mRNAs were injected into the 

nucleus, rapid splicing was observed, suggesting the possibility of post-transcriptional 

splicing (122). 
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3.1.3 Alternative Splicing 

Alternative splicing leads to the joining of different 5’ and 3’ splice sites, allowing  

an individual gene to express multiple processed mRNAs that encode different proteins.   

This mechanism contributes to the generation of complex proteomes.  This occurs 

frequently in metazoans, in the nematode, Caenorhabditis elegans, in the fruitfly, 

Drosophila melanogaster, and in humans.  Genetic and biochemical approaches have 

identified cis-acting regulatory elements, such as enhancers and silencers, and trans-

acting factors that control the alternative splicing of specific pre-mRNAs.  Analyses of 

expressed sequence tags, and microarray data, estimated that 73% of human genes are 

alternatively spliced, making alternative splicing the rule, rather than the exception.  

Apart from constitutive splicing, alternative splicing also plays an important role in the 

quantitative control of gene regulation, by targeting RNAs for nonsense-mediated decay 

(12, 13).  There are many examples of cell-line and tissue-specific proteins that bind to 

introns and cause alternative splicing (119). 

3.1.4 Sxl Protein in Drosophila 

One of the many proteins involved in alternative splicing is Sxl protein in the fruitfly, 

Drosophila melanogaster.  In Drosophila, the expression of the binary switch gene Sex-

lethal (Sxl), which controls somatic sexual development, is regulated at the level of 

alternative splicing.  The X-chromosome to autosome ratio determines initial sexual 

identity.  The activation of the Sxl gene depends on four X-encoded proteins:  SISA, 

SCUTE, RUNT, and UNPAIRED. 

In females (XX), when the expression levels of these X-linked proteins reach a 

threshold, the four X-encoded transcription factors, SISA, SCUTE, RUNT, and 
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UNPAIRED, stimulate the transcription of the Sex-lethal (Sxl) gene by binding to the Sxl 

establishment promoter (Sxl-Pe).  When this occurs, the resulting mature mRNAs do not 

contain exon-2 and do not contain exon-3, joining exon-1 to exon-4, thus preventing the 

inclusion of exon-3, which contains a stop codon, thereby resulting in the formation of 

fully functional Sxl protein.  In males (XY), on the other hand, the expression levels of 

the four X-linked proteins produced from the single X chromosome fail to reach the 

threshold concentration needed to activate the Sxl establishment promoter (Sxl-Pe), and 

the gene remains turned off.  The establishment promoter remains active for only a short 

period of time, becoming inactive at the cellular blastoderm stage, about three hours after 

fertilization.  Figure 3.1 shows the initial establishment of Sxl protein during early 

embryogenesis.  To further maintain the expression of the Sxl gene during development 

in females, an autoregulatory mechanism is established, in which Sxl protein controls its 

own synthesis by promoting the female-specific splicing of Sxl pre-mRNAs transcribed 

from the Sxl maintenance promoter (Sxl-Pm) (123). 

 
 

Figure 3.1  Initial establishment of Sxl protein during early embryogenesis.  
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3.1.5 Splicing of Sxl Gene 

The Sxl gene is made up of seven introns and eight exons, within which exon-3 is the 

male-specific exon.  In females, after the initial establishment, the constitutively active 

maintenance promoter drives the expression of the Sxl gene.  The Sxl protein binds to 

multiple polypyrimidine tract sites on both the upstream and the downstream introns of 

male exon promoting female-specific splicing of Sxl pre-mRNA, skipping the male exon.  

The translation of the resulting mRNA ensures the maintenance of female identity by 

providing a continuous source of Sxl protein.  In males, on the other hand, since the 

initial establishment of Sxl protein does not take place, exon-3 is incorporated by the 

default splicing machinery, which has an in-frame stop codon.  Hence, a truncated, non-

functional protein is made. (124). 

By performing ribonuclease protection assays on poly (A) RNAs, the splicing of 

the regulated exons (exon 2, 3. and 4) was observed to be slower than the splicing of the 

unregulated exons.  Also, Sxl protein requires poly (A) binding protein to promote 

female-specific splicing (125).  Furthermore, while studying the mechanism of the 

default and the regulated splicing of the Sxl gene, Horabin et al. (126) found that multiple 

cis-acting elements, both upstream and downstream of the male exon, are required, and 

the 5’ splice site of the male exon appears to be dominant in regulation, whereas the 

3’-splice site plays a secondary role.  However, the timing of the splicing of the regulated 

exon, as compared to the timing of the unregulated exons is not known.  Moreover, since 

the Sxl gene requires poly (A) binding protein to function, it might be possible that the 

splicing of the regulated male exon occurs after the transcript is released from the gene 

locus. 
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3.1.6 Proposed Study  

The question of whether splicing is coupled to or uncoupled from, transcription during 

certain cases of alternative splicing will be addressed using a single-molecule in situ 

hybridization technique. The intracellular distribution and dynamics of individual 

molecules of pre-mRNAs and their spliced products were imaged utilizing a set of 

reporter genes, and also utilizing the classically well-studied alternatively spliced gene:  

Sex-lethal (Sxl) in Drosophila. 

3.2 Results 

3.2.1 Imaging Individual Molecules of pre-mRNA, mRNA and Introns 

The coupling of splicing to transcription was first examined utilizing a pair of green 

fluorescent protein (GFP) reporters that have a tandemly repeated sequence, array 3, 

inserted into their 3’-untranslated region (3’-UTR) and one of two tandem arrays (1 or 2) 

inserted into an artificial intron (with canonical splice sites) placed in the middle of the 

GFP-coding sequence (Figure 3.2 A).  The tandem arrays of randomly selected sequences 

were used to achieve single-molecule sensitivity with just one oligonucleotide probe.  

Doxycycline-controlled versions of the two genes were stably integrated into the genome 

of Chinese hamster ovary (CHO) cell lines.  Upon induction by removal of doxycycline 

from the culture medium, both cell lines produced appropriately spliced mRNAs and 

exhibited GFP fluorescence. 

The pre-mRNAs and their spliced products were imaged by fixing the cells after 

six hours of induction, followed by in situ hybridization with fluorescently labeled probes 

against array 3 repeats, and against either array 1 or array 2 repeats.  Three classes of 

diffraction-limited spots were observed.  Two of these corresponded to single molecules 
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containing either the intron array or the 3’-UTR array (Figure 3.2 B).  The third class 

consisted of unspliced molecules containing both the intron and the 3’-UTR arrays 

(Figure 3.2 B). When the center of a spot seen in one channel was located within 0.25 µm 

of the center of a spot seen in the other channel, it was considered to be co-localized and 

was represented as an unspliced pre-mRNA (Figures 3.2 C and D). 

Transcripts expressed from the two reporter genes exhibited striking differences  

in how they coordinate transcription and splicing.  In the case of array 1, high levels of  

pre-mRNA accumulated at the gene locus, while pre-mRNA was rarely seen elsewhere in 

the nucleoplasm.  While splicing and transcription were tightly coupled for array 1 

transcripts, this was not true of array 2 transcripts.  Most array 2 pre-mRNA molecules 

were scattered throughout the nucleoplasm, with little retention at the transcription site.  

In addition, the spliced introns from array 1 and 2 transcripts degraded differently.  Only 

a few spliced array 1 intron molecules diffused away from the gene locus, whereas, a 

large number of array 2 intron molecules were found scattered in the nucleoplasm.  For 

both constructs, the spliced mRNAs were exported efficiently into the cytoplasm, while 

the pre-mRNAs and the introns were retained within the nucleus (Figures 3.2 B-D). 
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Figure 3.2  Imaging the intracellular distribution of single-molecules of pre-mRNAs and 
their spliced products expressing from a pair of reporter genes. A. Schematic depiction of 
two reporter genes. B. Images of cells from clone expressing the reporter gene in two 
fluorescence channels.  The targets of the probes are indicated on the top of the panels, 
and the array within the intron is shown on the left. In the composite images, red 
represents the 3’-UTR and green represents the introns.  C. Identification of RNA species 
using an image-processing program.  Circles of different colors are drawn around each 
detected mRNA species.  D. Percentage of three different species in the nuclei of 
individual cells from two cell lines.  Examples of regions from which the counts were 
obtained are indicated by blue circles in C.  Error bars represent 95% confidence 
intervals. The scale bar is 5 µm. This experiment was performed by Diana Vargas (75). 

3.2.2 Pre-mRNA Molecules Dispersed in the Nucleus are Capable of being Spliced 

To show that the array 2 pre-mRNAs that are dispersed into the nucleoplasm  

are substrates for splicing, the reporter was induced for a short period (two hours), and 

then, after turning off the reporter, the fate of the previously synthesized pre-mRNAs was 

monitored.  In cells fixed immediately after two hours of induction, many pre-mRNA 
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molecules were seen scattered within the nucleoplasm, with little accumulation of spliced 

mRNA molecules in the cytoplasm (Figure 3.3 A).  After the chase period, there was a 

decrease in the proportion of pre-mRNA molecules with a remarkable increase in spliced 

mRNA molecules in the cytoplasm (Figure 3.3 B), suggesting that the dispersed array 2 

pre-mRNAs are splicing competent.   

 

Figure 3.3  Demonstration that pre-mRNA molecules dispersed in the nucleus are 
capable of being spliced.  A. Upper panels show composite images of cells in which the 
gene containing the array 2 as intron was induced for a brief period (two hours). Lower 
panels show images from the same batch of cells as above, but in which induction was 
followed by a period of suppression (two hour).  Raw images are shown on the left, and 
overlays with colored circles identifying the RNA species are presented on the right.  B. 
Percentage of three different RNA species in individual cells as a function of time after 
the addition of doxycycline. This experiment was performed by Diana Vargas (75). 

3.2.3 The Intron with Array 1 is Removed Co-transcriptionally and the One with 
Array 2 is Removed Post-transcriptionally Irrespective of their Order in the Gene  
 
In order to see if there will be any change in the splicing behavior of array 1 or array 2 

when both arrays are included in the same pre-mRNAs, a pair of reporter genes, “array 1-

array 2” and “array 2- array 1,” in which the two arrays are present in the same pre—

mRNA, but in different order (surrounded by the same splice sites as before), were 

constructed (Figure 3.4 A).  The first intron was placed towards the 5’ end, and the 

second intron was placed in the middle of the GFP-coding sequence.  The detection of 
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spliced mRNA molecules was accomplished using 48 labeled oligonucleotides 

complementary to the GFP-coding sequence.   

Cells expressing these reporters were imaged for the two intronic arrays and the  

GFP-coding sequence in three different fluorescence channels, and molecules 

corresponding to each of the seven possible permutations were computationally identified 

(Table 3.1).  For both constructs, the partially spliced array 2-GFP pre-mRNA was one of 

the most abundant species, and was found scattered throughout the nucleus (Figure 3.4 B 

and Table 3.1).  By contrast, the other partially spliced product, array 1-GFP, and the 

unspliced array 1-array 2-GFP or array 2-array 1-GFP pre-mRNAs were rarely detected, 

except at the gene locus.  These observations indicate that, irrespective of their order in 

the transcript, array 1 is spliced co-transcriptionally and array 2 is spliced post-

transcriptionally.  Significantly, in the case of the array 2-array 1 transcript, array 2 was 

not spliced at the gene locus, even though the splicing apparatus assembled on the 

downstream array 1 intron and spliced it co-transcriptionally. 
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Figure 3.4  The splicing behavior of array 1 and array 2 remained the same irrespective 
of their order within the GFP coding sequence. A. Schematic representation of two genes 
that contain the two introns in a different order. B. Raw, composite, and interpreted 
images of a cell expressing the construct array 2-array 1 in the three different 
fluorescence channels that detect the GFP coding sequence, array 1, and array 2.  The 
composite image shows the GFP-coding sequence in red, array 1 in blue, and array 2 in 
green.  The color key on the right lists each of the seven combinations of spliced and 
unspliced RNA species that can occur. 
 
Table 3.1  Percentage of pre-mRNA and Spliced Products in Individual Cells from 
Reporter Genes Containing Two Introns  
 

Spliced Introns Partially Spliced Unspliced 

Species 
GFP Array 1 Array 2 GFP- 

array 1 
GFP- 
array2 

Array1- 
array2 

GFP- 
array1- 
array2 

Array1-
array2 31.4±6.0 21.04±6.8 15.5±6.1 6.6±2.7 17.6±4.7 3.7±1.5 4.0±1.6 

Array2-
array1 39.7±6.9 5.7±1.7 19.0±2.9 1.0±0.5 30.9±5.2 1.8±1.1 1.8±0.7 

3.2.4 The splicing Behavior of Array 1 and Array 2 Remained the same, 
Irrespective of the Chromatin Context in which the Gene was Integrated 
 
To demonstrate that the site of integration of the reporter genes within the genome does 

not influence the splicing behavior of the array 1 intron and the array 2 intron, these 

reporter genes were integrated at the same chromatin location using Flip-recombination.   
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Flip-recombinase target sites were integrated into different genomic sites in CHO cells 

and five different clones were isolated.  The reporter genes containing array 1 or array 2 

were separately inserted into these sites by targeted cloning.  In each clone, the array 1 

and array 2 genes are present at the same genomic locus, which varies between the 

clones.  Introns with two arrays appear to be processed in their characteristic manner, 

irrespective of which clone they are in, indicating that chromatin context is not a 

significant determinant of their behavior, as seen in Figure 3.5. 

 

Figure 3.5  Demonstration that the location of the reporter genes within the genome of 
CHO cells does not influence their splicing behavior.  Merged z-stacks in two colors are 
shown with green representing the intron signal, red representing the exon signal, and 
yellow representing the pre-mRNA signal. 

3.2.5 Sequestration or Mutation of Intronic Polypyrimidine Tract Uncouple 
Splicing from Transcription 
 
Post-transcriptional splicing of array 2 is either an intrinsic property of the array 

sequence, or it arises from interactions between array 2 and the splice sites in the GFP 

reporter construct.  Secondary structure folding patterns of full-length GFP array 2  
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pre-mRNA predict that the polypyrimidine tract (a key intron recognition element that is 

situated towards the 3’ end of introns) is sequestered in a double-stranded region.   

If sequestration of the polypyrimidine tract causes post-transcriptional splicing in 

transcripts containing array 2, then would sequestration of the polypyrimidine tract in the 

array 1 reporter cause its transcripts to behave in a similar manner? 

To test this possibility, the array 1 intron sequence upstream of the 

polypyrimidine tract was modified so that it would be present within a strong double-

stranded region (Figures 3.6 A and B).  The cell line expressing this construct exhibited 

an increased number of unspliced pre-mRNAs in the nucleoplasm compared to the parent 

construct (Figure 3.6 C and D).  The uncoupling of transcription and splicing likely arises 

because splicing factor U2AF has reduced or slower access to the polypyrimidine tract.  

This hypothesis suggests that other means of reducing the U2AF polypyrimidine 

interaction may produce the same effect.  This was tested by weakening the 

polypyrimidine tract by converting two pyrimidine residues into purines (Figure 3.6 B).  

This perturbation resulted in the release of unspliced pre-mRNA molecules into the 

nucleoplasm (Figure 3.6 C and D). 
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Figure 3.6  Sequestration of the polypyrimidine tract of array 1 leads to an increase  
in the number of unspliced pre-mRNAs in the nucleus.  A. The sequence of the 3’ region 
of the intron in the array 1 construct and the sequence modifications (highlighted in blue) 
that were introduced. B. Merged z-stacks in a composite image are shown, with green 
representing the intron signal, red representing the exon signal, and yellow representing 
the pre-mRNA molecules for each cell line.  C. Percentage of pre-mRNAs in the nucleus 
for three different array 1 construct:  unmodified array 1; array 1 in which an upstream 
sequence forms a secondary structure with the polypyrimidine tract; and array 1 in which 
the polypyrimidine tract is modified.   

3.2.6 Regulated Splicing in Sxl pre-mRNAs Occurs Post-Transcriptionally 

Drosophila gene Sxl controls sex determination by regulating the splicing of several pre-

mRNAs, including its own.  In males, where Sxl is off and there is no Sxl protein,  

pre-mRNAs are spliced in the default pattern to include a translation-terminating male-

specific exon, exon-3 (Figure 3.7 A).  In females, Sxl protein binds to multiple 
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polypyrimidine tracts in introns 2 and 3, forces the splicing machinery to skip exon-3, 

thereby linking exon 2 directly to exon 4 (119, 125, 127) (Figure 3.7 A).  Translation of 

the resulting mRNAs into Sxl protein establishes a positive feedback loop that serves to 

maintain female identity.  To examine the coordination between transcription and 

splicing, the Drosophila male and female cell lines were used that have been used to 

study the mechanisms of Sxl-dependent splicing regulation (127, 128). 

Initially the coupling of transcription and splicing of the first Sxl intron was 

examined, using sets of distinctly labeled fluorescent probes for this intron and for 

downstream exon 8.  This intron is spliced in the same pattern in both sexes.  When the 

number of pre-mRNAs and spliced products were counted from 50 randomly selected 

cells and a histogram of their distribution was plotted, there was, on an average, about 

one molecule of pre-mRNA containing intron 1 and exon 8 in both male (1.12 ±0.09) and 

female (1.27±0.09) cells (Figure 3.7 C).  This suggests that this constitutively spliced 

intron is generally processed co-transcriptionally in both sexes.  

Next, the splicing pattern of the regulated intron 2- exon 3-intron 3 cassette in 

both male and female cells was examined using distinctly labeled probes specific to 

intron 2, intron 3, and exon 8.  As observed for constitutively spliced intron 1, only about 

one pre-mRNA molecule per cell containing the intron 2, intron 3, and exon 8 sequences 

was detected in nuclei from the male cell line (Figure 3.7 B and C).  Thus, in spite of the 

fact that the splice sites of the male exon are sub-optimal (126-128), the default splicing 

machinery joins the regulated cassette exons 2, 3, and 4 together co-transcriptionally.  

Strikingly, a quite different result is obtained with female cells.  Pre-mRNAs containing 

intron 2, intron 3, and exon 8 sequences were dispersed throughout the nuclei of female 

cells (Figure 3.7 B).  On average, there were about 3 pre-mRNA molecules containing 
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both of the introns and exon 8 in female nuclei, with many nuclei having 5-7 molecules 

of these incompletely spliced pre-mRNAs (Figure 3.7 C).  Thus, unlike the processing of 

constitutively spliced intron 1, which is co-transcriptional, the splicing of the regulated 

Sxl intron 2-exon 3-intron 3 cassette is uncoupled from transcription in female cells. 

 
Figure 3.7  Alternative splicing that skips Exon-3 of Drosophila Sex-Lethal Pre-mRNA  
in female cells occurs post-transcriptionally A. Sxl protein (green ovals) binds to 
polypyrimidine tracts of introns 2 and 3, there by preventing inclusion of exon 3, which 
contains a stop codon (red triangle).  Males do not have Sxl protein, and constitutive 
splicing yields a transcript containing exon 3, generating a truncated version of non-
functional protein.  B. Images of spots produced by probes against the indicated 
components of Sxl transcripts in female and male cells. The locations of the identified 
molecules are shown on DIC images.  C. Histogram showing frequency distribution with 
which the given numbers of pre-mRNA molecules were found in a group of 50 cells. 
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Furthermore, to show that the pre-mRNAs that are dispersed into the nucleoplasm  

in female cells are substrates for splicing, female cells were incubated with 

actinomycin-D (a transcription inhibitor) for various time periods to monitor the fate of 

previously synthesized pre-mRNAs.  As seen from the results shown in Table 3.2, the 

number of pre-mRNAs was reduced within five mins of exposure to actinomycin-D and 

the number of spliced mRNAs increased.  However, due to rapid mRNA degradation and 

to there being no new mRNA synthesis, the number of mature mRNAs decreased after 30 

minutes exposure to actinomycin-D.  

Table 3.2  Mean Number of pre-mRNAs and Spliced Products with 95% Confidence 
Interval in Individual Female Cells after Treatment with Actinomycin-D 

 

3.3 Discussion 

Using single-molecule imaging, the splicing pattern of constitutively spliced introns of 

both artificial and natural genes was examined and was shown to complete prior to 

transcription termination. This supports the idea that co-transcriptional splicing is the 

default mechanism. One likely mechanism for coupling transcription and splicing is 

suggested by recent studies in yeast.  These studies showed that RNA polymerase pauses 

Spliced Introns Unspliced 
Female cells 

Exon 8 Intron 2 Intron 3 Exon 8-Intron 2-Intron 
3 

No Actinomycin-D 14.68±2.88 0.32a±0.21 0.16±0.14 2.52±1.73 

5mins AMD 14.48±3.20 0.32±0.24 0.08±0.10 0.24±0.17 

10mins AMD 15.76±6.5 0 0.28±0.24 0 

15mins AMD 9.18±4.07 0.47±0.18 0.28±0.47 0 

30mins AMD 8.78±1.56 0.06±0.08 0.09±0.10 0 
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at regular interval during elongation at each 3’ splice-site, which functions as a check 

point to ensure splicing is completed before polyadenylation (36, 114, 115).  Similar 

checkpoints are likely to exist in higher eukaryotes (27, 113), and might account for the 

co-transcriptional splicing of constitutively spliced introns that we observed. 

However, there might be certain situations wherein these checkpoints might have 

been escaped and the transcripts might get released from the gene locus before the 

splicing of certain introns takes place.  One of these situations might be in artificial 

introns that have functionally impaired splice signals.  For example, when polypytimidine 

tract of array 1 was sequestered in a secondary structure or was weakened, the splicing 

was delayed until after transcription is completed, and large number of unprocessed pre-

mRNAs accumulated in the nucleoplasm. In this situation, the signals that normally 

trigger pausing might not be properly activated, and instead of pausing, the polymerase 

might transcribe through the termination signals and release incompletely processed 

transcripts.  Once a functional complex is assembled on the defective 3’ splice site, the 

remaining processing steps should proceed unimpeded.  In these instances, functionally 

compromised splicing signals are, by themselves, sufficient to uncouple splicing from 

transcription. 

The other circumstances in which splicing is uncoupled from transcription occur 

during the alternative splicing of Sxl pre-mRNAs.  However, the uncoupling seen in this 

regulated event is different from that observed when the 3’ splice site is functionally 

compromised.  When the alternatively spliced Sxl cassette is processed in the default 

pattern, as occurs in male flies, splicing is co-transcriptional, just like the constitutively 

spliced introns in the same transcript.  Thus, even though the splicing signals in the 

regulated Sxl cassette are suboptimal, this is not sufficient to uncouple default splicing 



 

 
 

73 

and transcription in males.  A plausible explanation is that these sub-optimal sites differ 

from functionally compromised signals, in that they are capable of directing the 

association of the needed splicing factors on at least a subset of the regulated splice sites 

while the mRNA is being actively transcribed.  This allows them to signal to the 

polymerase to pause until the default splicing of the regulated cassette is complete.  On 

the other hand, in female flies, Sxl bound at the regulated cassette is somehow able to 

disrupt this signaling and cause the release of the partially processed transcript. 

One of the key principles that emerged from this study is that when transcription 

and splicing are uncoupled, uncoupling is restricted to the affected intron, and the 

preceding and succeeding introns continue to be removed co-transcriptionally.  We found 

that no matter how introns containing array 1 and array 2 sequences are arranged within 

our GFP splicing reporter, splicing of the array 1 intron is co-transcriptional, while 

splicing of the array 2 intron remains post-transcriptional.  Likewise, the processing of 

intron 1 and the regulated cassette in Sxl pre-mRNA were independent of each other.  

This indicates that spliceosomes assemble at each intron independently of the 

surrounding introns, and they catalyze the splicing reaction of each intron with its own 

unique kinetics. 

3.4 Experimental Methods 

3.4.1 Cell Cultures and Gene Expression 

1. Chinese hamster ovary tet-off cells:  CHO tet-off Cells were cultured in modified 

Eagle’s minimal essential medium (Sigma, St. Louis, MO) supplemented with Tet-

system-approved 10 % fetal bovine serum (Clontech, Mountain View, CA) at 37 0C.  

The expression of tetracycline-controlled genes was turned off by the inclusion of 10 
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ng/ml doxycycline in the culture medium, and turned on by replacing this medium 

with a medium that did not contain doxycycline. 

2. Drosophila cell-lines:  Schnieder cells for male and KC167 cells for female were 

bought from the Drosophila genomic resource center (Bloomington, IN) and were 

grown in M3+BPYE media at 25 0C without carbon dioxide.  The experiments with 

actinomycin-D were performed by treating the KC167 cells with media containing 

100 ng/ml actinomycin-D. 

3.4.2 Cloning 

1) Sequences of the introns and the 3’-UTR in GFP reporters 
Introns and 3’-UTR sequences were inserted into the coding sequence of GFP  

in plasmid pTRE-d2EGFP (Clontech).  The sites chosen for the insertion of the introns 

were after the first codon of GFP (referred to as the “5’ site”, introduced into position 447 

in the plasmid sequence (GenBank accession number CQ871827.1) and after the 95th 

codon (referred to as the “middle site,” position 729 in the plasmid sequence). 

The 5’-site intron sequence, along with the surrounding coding sequences, were:  

ATGCAGGTAAGTGGTTAG(array)32TCGACTACCGGGCCCAGGGTTTCCTTGAC

AATATCATACTTATCCTGTCCCTTTTTTTTCCACAGGTGAGCAAG.  The middle 

site intron sequence, along with the surrounding coding sequences was: 

GTCCAGGTAAGTGGTTAG(array)32 or 96TCGACTACCGGGCCCAGGGTTTCCTTG 

ACAATATCATACTTATCCTGTCCCTTTTTTTTCCACAGGAGCGC. 

The identity of the highlighted sequences is as follows:  (i) GFP-coding 

sequences, blue; (ii) intronic portions of the splice donor, branch point, and splice 

acceptor sites, green; (iii) putative pyrimidine-rich sequence, yellow; (iv) array of probe-
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target repeats, purple; and (v) spacer containing restriction endonuclease recognition 

sites, clear. 

 The sequences of the repeats in the arrays are: array 1, 

TCGACCGATCGTGGCCTAAGGAGTTTATATGGAAACCCTTACCAGCCGC; array 

2, TCGACAGGAGTTGTGTTTGTGGACGAAGAGCACCAGCCAGCTGATCGACC; 

and array 3 (in the 3’UTR), TCGACGCGGAGACCACGCTCGGCTTGTCTTTCGCGC 

CATGCGACGCACGCGGATAGTTAGCTGCGGCGACGAGGCACC. 

2) Cloning of introns and 3’ UTR with Repeats 
Our overall strategy was to first insert a host sequence that contained the canonical splice 

sites, along with a set of unique restriction endonuclease recognition sites within the 

GFP-coding sequence, and then insert the tandemly repeated probe-target sequences 

cloned into separate plasmids within the host sequence, utilizing these restriction sites. 

To construct the plasmids that served as sources for the tandem repeats, the 

method of Robinett et al. was followed (129).  A synthetic double-stranded 

oligonucleotide containing the repeated sequence possessing phosphorylated sticky ends 

and restriction recognition sites for endonucleases SalI and XhoI, was cloned into 

plasmid pGEM-11Zf(+) (Promega, Madison, WI), which possesses a polylinker 

containing restriction sites for SalI, XhoI, and BamHI, in that order.  First the SalI-

BamHI fragment containing the inserted sequence was isolated from the recombinant 

plasmid.  In a separate step, the BamHI-XhoI fragment containing the inserted sequence 

and the rest of the plasmid was isolated.  Since the sticky ends created by SalI and XhoI 

are compatible, the two isolated fragments were ligated to each other, creating a plasmid 

containing two head-to-tail tandemly repeated 50-nucleotide inserts.  Since the union of a 

SalI sticky end with an XhoI sticky end generates a sequence that cannot be cut by either 
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restriction endonuclease, the process of isolating a small fragment and a large fragment 

from the same plasmid and then ligating these fragments to each other to create a new 

plasmid containing twice the number of tandem repeats was carried out five times, 

eventually resulting in a plasmid containing the desired 32 tandem repeats.  Array 1 was 

moved from pGEM-11Zf(+) into pTRE2Hyg-YFP (8), and the resulting plasmid served 

as the source of repeats (this step was omitted in the case of array 2).  The repeats for 

array 3 were cloned into pSV2-DHFR (American Type Culture Collection, Manassas, 

VA), using the same strategy. 

The first step in the construction of the introns was to insert a host sequence that 

contained sites for restriction enzymes Sal1 and Apa1, surrounded by the splicing donor 

and acceptor sequences at the two sites in the GFP-coding sequence (discussed in the 

previous section).  The resulting plasmids were used to insert the repeated sequence at the 

Sal1 site.  In order to introduce the host sequence at the 5’ site in GFP, the GFP-coding 

sequence was amplified using tailed primers TCCCCGCGGATGCAGGTAAGTGG 

TTAGTCGACTACCGGGCCCAGGGTTTCCTTGACAATATCATACTTATCCTGTC

CCTTTTTTTTCCACAGGTGAGCAAGGGCGAG and CGAGCTCGAATTCCTACAC 

ATTGAT. 

The amplified DNA fragment contained sites for restriction enzymes SacII and 

EcoRI near its 5’- and 3’-termini.  It was digested with SacII and EcoRI and used to 

replace GFP from pTRE-d2EGFP.  Insertion of the host sequence in the middle position 

was accomplished by amplifying GFP in two parts with tailed overlapping primers, and 

then joining the two parts together.  The primers used for the 5’ fragment were:  

TCCCCGCGGATGGTGAGCAAG and CTGTGGAAAAAAAAGGGACAGGATAAG 
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TATGATATTGTCAAGGAAACCCTGGGCCCGGTAGTCGACTAACCACTTACCG

GACGTAGCCTTCGGGCA, and the primers used for the 3’ fragment were: 

CAGGTAAGTGGTTAGTCGACTACCGGGCCCAGGGTTTCCTTGACAATATCACT

TATCCTGTCCCTTTTTTTTCCACAGGAGCGCACCATCTTC and CGAGCTCGAAT 

TCCTACACATTGAT. 

After separately amplifying the two fragments, they were purified by gel 

electrophoresis, mixed together, and re-amplified using the outer primers.  The joined 

amplified product was digested with SacII and EcoRI and used to replace GFP 

pTRE-d2EGFP.  The source plasmids were digested with SalI and XhoI, and the 

fragment containing the repeat was inserted into host plasmids that were digested with 

SalI (within the intron sequence).  This resulted in plasmids pTRE-GFP-array (1 or 2) at 

the 5’ site and pTRE-GFP-array (1 or 2) at the middle site.  In order to create plasmids 

with both introns, we digested them with restriction enzyme BtgZI that cleaves these 

plasmids in two places:  once within GFP, between the two introns, and again within the 

ampicillin gene.  The two fragments were then cross ligated, resulting in plasmids having 

both introns within the GFP pre-mRNA. 

The addition of array 3 at the 3’ end of the GFP-coding sequence was 

accomplished by first removing array 3 from pSV2DHFR-array 3 using SalI-BamHI, and 

then transferring the array into pTRE-d2EGFP digested with XhoI-BamHI.  The resulting 

plasmid was then digested with ScaI and XmnI and cloned into pTRE-GFP-array (1 or 2) 

at the middle site digested with ScaI and EcoRI.  The identities of the inserts in all of the 

plasmids were confirmed by restriction mapping and sequencing. 
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3. Cloning two introns within GFP coding region 
Plasmids pTRE-GFP-array (1 or 2)-5’ and pTRE-GFP-array (1 or 2)-middle were used in 

order to create plasmids with both introns within the GFP-coding region.  They were 

digested with restriction enzyme BtgZI, which cleaves these plasmids in two places:  

once within GFP, between the two introns, and then within the ampicillin gene.  The two 

fragments were then cross-ligated, resulting in plasmids having both introns within their 

GFP-coding region.  The resultant plasmids were linearized with ScaI and were 

co-transfected with a pTRE-hygromycin vector.  Selection for the integrants was 

performed by culturing cells in the presence of hygromycin for ten days.  Pure individual 

clones were selected by performing FACS sorting. 

4. Inserting the array 1 and array 2 constructs at the same genomic site within CHO 
cells using the FLIP recombinase system 

The FLIP-In System (Invitrogen, Carlsbad, CA) was utilized to integrate the two reporter 

genes at the same genomic locations within Chinese hamster ovary (CHO) cells.  First, 

the Flippase Recognition Target (FRT)-sites was inserted at different locations within the 

genome of CHO cells by transfection with a pFRT/lacZeo vector (Invitrogen) that was 

linearized by digestion with ScaI.  Five independent Zeocin-resistant clones were selected 

by culturing the cells for ten days in the presence of 250 ng/ml Zeocin (Invitrogen).  

Fragments corresponding to GFP-array 1 and GFP-array 2, that lacked the TRE region 

and the 3’-UTR region, were excised from plasmids pTRE-GFP-array (1 and 2) 

(containing arrays at the middle site) and were separately inserted into a pcDNA5/FRT 

vector (Invitrogen), resulting in two plasmids pcDNA5/FRT/ GFP-array 1 and 

pcDNA5/FRT/GFP-array 2.  Each of the five CHO cell clones harboring the FRT site 

was co-transfected with either the linearized array 1 construct or the linearized array 2 

construct and pOG44 (Invitrogen).  Selection for the integrants was performed by 
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culturing the cells in the presence of hygromycin for ten days.  At least three pairs of sub-

clones for each FRT clone were isolated.  Site-specific integration at the FRT site was 

confirmed by checking their sensitivity to Zeocin.  

5.  Modification of the array 1 intron sequence to create a secondary structure and to 
alter the polypyrimidine tract  

Alteration of the polypyrimidine tract of the array 1 intron was accomplished using the 

pTRE-GFP-array 1 in the middle.  The sequences were modified as indicated in Figure 

5.5 B with the aid of a Quick Change site-directed mutagenesis kit (Stratagene, San 

Diego, CA).  Clones containing appropriate mutated sequences were confirmed by 

sequencing.  Furthermore, the clones were linearized by digestion with ScaI and were co-

transfected with a pTRE-hygromycin vector.  Selection for the integrants was performed 

by culturing cells in the presence of hygromycin for ten days.  Pure individual clones 

were selected by performing FACS sorting. 

3.4.3 Probe Sets 

The in situ hybridization probes for binding to array 1 and to array 2 contained multiple 

fluorescent label moieties attached to internal thymidines (shown as R in the sequences 

below).  Array 1 : CGGCRGGTAAGGGRTTCCATARAAACTCCTRAGGCCACGA; 

Array 2 : RCGAGGTCGARCAGCTGGCTGGRGCTCTTCGRCCACAAACA 

48 or more oligonucleotides, each labeled with a single fluorophore at their 3’ end 

via an amino group, were used for binding to the GFP-coding sequence and to all natural 

intronic and exonic targets.  The labels that were used were tetramethylrhodamine 

(TMR), Alexa 594, or Cy5.  Methods for the attachment of labels, purification of probes, 

in situ hybridization conditions, and the preparation of deoxygenated mounting medium 

have been described before (66) 
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3.4.4 Fluorescence in situ Hybridization 

For in situ hybridization, cells were attached to thin gelatin-coated cover slips, which 

were fixed with 4 % formaldehyde, permeabilized with 70 % alcohol and hybridized 

overnight with the probe sets in 2X SSC supplemented with 10 % formamide.  The cover 

slips were washed and mounted in a special deoxygenated medium that limits photo 

bleaching, and then imaged in a wide-field microscope. 

3.4.5 Imaging 

For each image, 10 to 30 optical slices, with 0.2 µm separation between them, were 

acquired in each fluorescence channel with a 1-second exposure.  These z-stacks were 

analyzed using custom computer programs written in the Matlab programming 

environment.  These programs enhance the stack of images using a Laplacian filter 

optimized for the size of spots that we expect, permitting users to select a threshold based 

on a three-dimensional display of intensity in spots, to segment the image based on the 

provided threshold, and to produce a list of coordinates of the centers of all spots in three 

dimensions in each channel.  The programs can also determine the distances between 

spots in two or three fluorescence channels, identify co-localized spots based on provided 

distance limits, draw circles to produce overlays on the raw images, and count the 

number of spots in a user-defined region.  
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3.4.6 Statistical analysis 

Ten to twenty-five cells for each category of data reported in Figures 5.1 to 5.3, 5.5, and 

Table 5.1; and 50 cells for each category of data reported in Figure 5.6 and Table 5.2, 

were analyzed.  The data bars represent mean values, and the error bars represent a 95 % 

confidence interval (CI).  

 

 

� 

CI =  t(n -1) ∑  SD
n  

(3.1) 

 

 

Where, t is a value obtained from a table of t statistics corresponding to a 95% confidence 

interval, and n is the number of cells or nuclei, and SD is the standard deviation (130).  

Probabilities (P-values) described in the legend of Figure 5.1 are the probabilities of 

obtaining average percentages as large as reported for the pre-mRNAs by random chance 

from the total data set.  These probabilities were calculated by bootstrapping, using a 

custom Matlab program. 
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APPENDIX A 

LIST OF PROBE SEQUENCES 

A list of sequences that were designed to image indicated mRNA species are as follows. 

1. c-Jun 
TCGTTTCCATCTTTGCAGTC CGTTGAGGGCATCGTCATAG 
CGCTCTCGGACGGGAGGAAC TGGGGTTACTGTAGCCATAA 
GGGTCATGCTCTGTTTCAGG TCCCCACTGGGTCGGCCAGG 
TGGCGCGGAGGTGCGGCTTC GCGAGGTGAGGAGGTCCGAG 
CCAGCTTGAGCAGCCCCACG TCAGGCGCTCCAGCTCGGGC 
TGTGCCCGTTGCTGGACTGG GGGTGGGGGTCGGCGTGGTG 
TCACGTTCTTGGGGCACAGG CGGCGAAGCCCTCCTGCTCA 
CGGCCAGGGCGCGCACGAAG GCAGCGTGTTCTGGCTGTGC 
GCTGCGCCGCCGACGTGACG CCACCATGCCTGCCCCGTTG 
CTGCCACCGAGGCTACCGCG TGAAGCCGCCGCTGCCGCTG 
GCGGCTCGCTGTGCAGGCTG AGTTGCTGAGGTTTGCGTAG 
CGCTGCTCAGCGCGCCTGGG CGCCGTAGGAGGGCGCCCCG 
GCGCGGGAAAGGCCAGGCCG GCGGCTGCTGCTGCTGCTGG 
GCATCTGCTGGGGCAGGTGG CCTGCAGCCGCGGGTGCTGC 
CTGTCTGAGGCTCCTCCTTC GTGTCTCGCCGGGCATCTCG 
CCATGTCGATGGGGGACAGG CCGCCTTGATCCGCTCCTGG 
TGCGGTTCCTCATGCGCTTC TTTTTCGGCACTTGGAGGCA 
GCCGGGCGATTCTCTCCAGC TCAAGGTTTTCACTTTTTCC 
ACGCCAGCTCCGAGTTCTGA GTTCCCTGAGCATGTTGGCC 
CTTTCTGTTTAAGCTGTGCC ACCCACTGTTAACGTGGTTC 
ACTGCTGCGTTAGCATGAGT 
 

2. c-Fos 
TCTTCTAGTTGGTCTGTCTC TCTGCAAAGCAGACTTCTCA 
TTCAGCAGGTTGGCAATCTC ACTCTAGTTTTTCCTTCTCC 
TCGGTGAGCTGCCAGGATGA AGGTCATCAGGGATCTTGCA 
AGACATCTCTTCTGGGAAGC AGTCAGATCAAGGGAAGCCA 
TGAAGGCCTCCTCAGACTCC AGGGTCATTGAGGAGAGGCA 
ACAGGTTCCACTGAGGGCTT TCCATGCTGCTGATGCTCTT 
ATCAAAGGGCTCGGTCTTCA TGATGCTGGGAACAGGAAGT 
TCAGAGCCACTGGGCCTGGA ATAGGTCCATGTCTGGCACG 
TGCTGCATAGAAGGACCCAG ACTGTGCAGAGGCTCCCAGT 
TCTGTGGCCATGGGCCCCAT TACAGGTGACCACCGGAGTG 
TGTAAGCAGTGCAGCTGGGA TAGGTGAAGACGAAGGAAGA 
ACAGCTGGGGAAGGAGTCAG TCATTGCTGCTGCTGCCCTT 
AGCTGAGCGAGTCAGAGGAA AGTGGCACTTGTGGGTGCCG 
TGTAATGCACCAGCTCGGGC GAAGATGTGTTTCTCCTCTC 
GTCTACAGGAACCCTCTAGG ACAGATAAGGTCCTCCCTAG 
ACAGCCTGGTGTGTTTCACG CTTTCAAGTCCTTGAGGCCC 
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CTTGAGTCCACACATGGATG ATCTCCGGAAGAGGTAAGGA 
CACTCCATGCGTTTTGCTAC GTGTCACTGGGAACAATACA 
CTAACTACCAGCTCTCTGAA AGGCCTGGCTCAACATGCTA 
AGAGAAAAGAGACACAGACC TATGAGAAGACTAAGGAGAA 
CCCAATAGATTAGTTAATGC CCAGGTTAATTCCAATAATG 
CAATTTGAAAATATCCAGCA GTTAAAATCAGCTGCACTAG 
CCAGGAACACAGTAGTTATT CTAATCAGAACACACTATTG 
CTTAGTATAATATTGGTCAT CCAGAAAATAAAGTCGTATC 
 

3. Collagenase 
TGCAAGGTAAGTGATGGCTT TGGCCTTTGTCTTCTTTCTC 
TTGTGTTTCTAGAGTCGCTG TGGACTAAGTCCACATCTTG 
CCCATCATTCTTCAGGTTGT TTCTCCGCTTTTCAACTTGC 
ATTTTTCAACCACTGGGCCA GCCCAAAGAATTCCTGCATT 
TCTGGTTTCCCAGTCACTTT TCATCACCTTCAGGGTTTCA 
TAGGTCAGATGTGTTTGCTC GGCAAATCTGGCGTGTAATT 
TTTCTCAATGGCATGGTCCA CATTACTCCAGAGTTGGAAG 
TTGGTGAATGTCAGAGGTGT ATCATGATGTCTGCTTGACC 
ATGATCTCCCCTGACAAAAG CATCAAAAGGAGAGTTGTCC 
ATGAGCAAGATTTCCTCCAG AATGAGCATCCCCTCCAATA 
GTCCACCTTTCATCTTCATC CTGCAACACGATGTAAGTTG 
AAGAGAATGGCCGAGTTCAT CGATATCAGTAGAATGGGAG 
TAGCTAGGGTACATCAAAGC AGCTGAACATCACCACTGAA 
TGCCATCAATGTCATCCTGA GAACGTCCATATATGGCTTG 
TTACTGTCACACGCTTTTGG CCCGAATCGTAGTTATAGCA 
GCGCATGTAGAATCTGTCTT AAATTGAGCTCAACTTCCGG 
GTTGTGGCCAGAAAACAGAA AAGCAGCTTCAAGCCCATTT 
TCATCTCTGTCGGCAAATTC CCCAGTACTTATTCCCTTTG 
TAGCACATTCTGTCCCTGAA TGTAGATGTCCTTGGGGTAT 
ACAGTTCTAGGGAAGCCAAA AAGAGCAGCATCGATATGCT 
CCTGGATCCATAGATCGTTT CAGGAAAGTCATGTGCTATC 
GCATCAACTTTGTGGCCAAT GCTATTAGCTTTCTGGAGAG 
CTCACACCATGTGTTTTCCA CAGTTCTTCAGGAAAACACC 
GTATCAGTGACTCTAGAGGT CCCACCATTTGTGGAACTAA 
 

4. Cyclooxygenase-2 
GAACAGCAAGGATTTGCTGT CTCATACATACACCTCGGTT 
GTGTTGAGCAGTTTTCTCCA GTTTGGAGTGGGTTTCAGAA 
ATCCCTTGAAGTGGGTAAGT TTGCATTTCGAAGGAAGGGA 
GTGATCTGGATGTCAACACA TGTAAGTTGGTGGACTGTCA 
GAGGAAGGGCTCTAGTATAA CAGGAAGCTGCTTTTTACCT 
GCCAGAGTTTCACCGTAAAT ATCCTTGAAAAGGCGCAGTT 
GAGGATACATCTCTCCATCA TCATCTCTGCCTGAGTATCT 
TCCTGTTTAAGCACATCGCA CCACTCAAGTGTTGCACATA 
GGGTGTTAAATTCAGCAGCA GGTAATTCCATGTTCCAGCA 
GCCTGGTGAATGATTCAACA CAATGGAAGCCTGTGATACT 
GCGTTTGCGGTACTCATTAA CAACTCTGCAGACATTTCCT 
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CTTCTACCATGGTTTCACCA CAGTAGGCAGGAGAACATAT 
AAAACCCACTTCTCCACCAA CTTGCATTGATGGTGACTGT 
CAGTTCAGTCGAACGTTCTT ATCGCACTTATACTGGTCAA 
CTTCCCAGCTTTTGTAGCCA TCAGGGATGAACTTTCTTCT 
AGTGCTGGGCAAAGAATGCA CGCTTATGATCTGTCTTGAA 
AACAACTGCTCATCACCCCA GTTCTGGGTCAAATTTCAGT 
TTTCTACCAGAAGGGCAGGA CATAAGTCCTTTCAAGGAGA 
ATTGCAGATGAGAGACTGAA CTGGAACACTGAATGAAGTA 
GCAATTTTTCCACAATCTCA ATAGTCTCTCCTATCAGTAT 
GTACTGGAATTGTTTGTTGA GTTGTATTTCTGGTCATGAA 
CCTGTAAGTTCTTCAAATGA CCACAGCATCGATGTCACCA 
TCAGACCAGGCACCAGACCA GTTGTGTTCCCGCAGCCAGA 
ATGGCCCAGCCCGTTGGTGA GCAGCAGGGCGCGGGCGAGC 
 

5. Green fluorescent protein 
TCGCCCTTGCTCACCAT ACCCCGGTGAACAGCTC 
TCGACCAGGATGGGCAC TTACGTCGCCGTCCAGC 
GCTGAACTTGTGGCCGT TCGCCCTCGCCGGACAC 
CGTAGGTGGCATCGCCC CTTCAGGGTCAGCTTGC 
CCGGTGGTGCAGATGAA AGGGCACGGGCAGCTTG 
AGGGTGGTCACGAGGGT ACTGCACGCCGTAGGTC 
TCGGGGTAGCGGCTGAA CGTGCTGCTTCATGTGG 
GGCGGACTTGAAGAAGT ACGTAGCCTTCGGGCAT 
AGATGGTGCGCTCCTGG GCCGTCGTCCTTGAAGA 
GCGCGGGTCTTGTAGTT CCTCGAACTTCACCTCG 
GTTCACCAGGGTGTCGC CCCTTCAGCTCGATGCG 
CCTCCTTGAAGTCGATG CCCCAGGATGTTGCCGT 
TTGTACTCCAGCTTGTG CGTTGTGGCTGTTGTAG 
GTCGGCCATGATATAGA ATGCCGTTCTTCTGCTT 
TCTTGAAGTTCACCTTG CTCGATGTTGTGGCGGA 
AGCTGCACGCTGCCGTC TGCTGGTAGTGGTCGGC 
TCGCCGATGGGGGTGTT TTGTCGGGCAGCAGCAC 
GGGTGCTCAGGTAGTGG TTTGCTCAGGGCGGACT 
CGCTTCTCGTTGGGGTC GCAGGACCATGTGATCG 
GGCGGTCACGAACTCCA ATGCCGAGAGTGATCCC 
TCTTGTACAGCTCGTCC GAAGCCATGGCTAAGCT 
TCCTGCTCCTCCACCTC TGGGCAGCGTGCCATCA 
CTCCTGGGCACAAGACA TGACGGTCCATCCCGCT 
AGAAGCACAGGCTGCAG TACACATTGATCCTAGC 
 

6. Sex-lethal intron-1 
GTGTTGTTGTCTTTTTCGCC ATTTTCGGCCCTTCACAACT  
CACTCAGGTAAAGCGAAATC TGAAAAAGGGACACGCGATA  
TTTGCAGCGGAACTAAAGGA GCATAGTTGGTGAAACAGGA  
ATGCGCAGCAAGAAACACAT GTCGACCACCAAAAAATAGG  
ATGATAACAGCTGGCAATGC AGTGTACGCCAAAACACGTT  
AACCAGGGACACATGTGTAA GCTCTGGGAAACTCCAAAAT  
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GTGTCGCTAATGAGGATCTT TCTTCAATGGAAAAGGGAGG  
TGGAAATATCCAGGATCCCT ACGATAGAGACAACAACGGA  
AAAAAATACGGCAGCTGAGC AGCCAGCTGCAACTTGAAAA  
AATAAATGCAGCTGCCCTCT AGCGGAGATGAAGAGAAAAG  
AACAGCAAGAAGGGGAATGA TTTAAGCGAAGGGAACGATC  
CCGCCATTTCCAATATTTCC TTAAGAGTGTTGGTGGAGGT  
GACCTCAATGGAATGCAGAA TAACGTGCAATTTGCGCAAG  
AGGTTTAAAACGGGGTGCAA CCACTGTTGGGAAGCTTTTA  
CGACGCTAAGTAGTTGCATT CATTGCGGAACCGAAACATA  
CCAAATGCGCATGTATGTAC CGTCCGCTTGGATTGTTATT  
ATCCATCGAACATTCCAGCT GCATTGCCAGACACAATCAA  
CGGTCTGGAAACAAAATCAC ATGTACCCGCATGCATGAAT  
AATCGCTCAGCTGGGAAAAT CATGTACACATCTGTGCATC  
GCCCATTTAAGTACATGAGC GCTTGAGTGAATGTGTGTTC  
GCTAATTTGGAGCACAGTTG GCCAGCGAATTGTAAAGCAA  
GAGGGAAAGAGATGGAGAAA CAGACATTTTTCGGCAGTGT  
GCATATCACAATGCGTGGTA CGGACAAAACTTTTGGGGAA  
GGGTGAAAGCTAAATCACCA CCCATAGACTTTCCATATGC 
 

7. Sex lethal intron-2 
CGAAACGTGAGAACTCAAGT GGATTGTCATTCGAATGGGT 
AAGGAATGGGTGGAAAGGAA CAAAGAGGTATGGGTAGCAA 
GGTTGGTCTTTTGTTCGTTC GACTGCAACTATTTTCCAGC 
GCCGACAAGTTTTGCTAGTA CTGCACAAATACCAATGCAC 
GACTGTCAATCGACATCCTT GACATCGACAGCAAATCGAT 
GGGGAGAACATCACTCAATA CTCTGATAATATCAGAGCGC 
CTGTGGCTGTTCTTGTTGTT GCTGCGGTTATTGTTATCCA 
CACCATCTAGCACATGTAAC CTGCTTTTGGTTCGCTATCA 
CCCCTTAAAACGATTGACTG AATTTGCAATTGGGAGCGGA 
GTGGATTGCTTGGAACGAAA GGGGATTCCTATGTAATGCA 
CGTAACAACTAGATCGAACG GCGCATGAATGTATGCTATG 
TGTGCGACTGTGGGATAAAT CGATCAGCTGATTCAAAGTG 
GATTACGAAAACACGCAGAC GTTGTTTCACGTTGATCGGT 
CGTTCGGTCTTTGTAAATGC ATCAAAACGCTTCTGATGGC 
ATCAAGTTTCGATTCCCAGC CCTTGTTCTACGCGTGTATA 
CCCAGATACGGATACATGTA GGCCGTTTCTATAATCCTCT 
TTTAGGTTGCACAATCCGCA TTACCGGTACATTGTGAGAC 
GCAGTAAGTGTGGAAGAACA CGAGGCGAGAAAAGAAAAAC 
GGCAAAACTTAAGGCTTACG CTTGACCCCGCTTTTCATTT 
CCTCCATTTGTTTTATGCCC GAATGACGCTGCTTTTGCTT 
GGAAAGAAGAAGCAGCTCAT GCCATAAATTATACGACCCC 
GGCTGCTCTGTTTACATTTC ACTAAATTTGGAGAGGGTGC 
TTTTTCGCACAGCACGTGAT TAAGGCTACTGCATGTCAAG 
GGAAAAAGGACAACCATACG GTAAAATCTCCCAACACGTG 
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8. Sex-lethal intron-3 
CTTAGAGTCTTGTTACTTAC GTTTTTGCCTTTGGCTTTAG  
CATCATCATATTATTATATA ACGAGCTGCTTCCCCAATAT  
GTTGATTTTTATAGTATTTT TTTAGGTCTAAGTTAGATCT  
GCATATCATATTCGGTTCAT TCTTCCCACGTCGAATTTTG  
TTATAGTTTCGGACATCGCC ACAAAAAGGATTTGGGGACT  
TTGGCACTTTTTCATCACAT AAAATCAAAAAAATAATCAC  
CTGGAGCACATTTTCACTTT ACCCATATCGGACACTTTGT  
TAATCATGGGACTATACTAG CACCGAAAAAAAATAAAAAA  
TTTTTTTTTTGTACTTTCGA CTTAAGAAAAGCATGATGTA  
GGTTTCACTTTAAATATTGG TTGCCTTAAGGTGAAAACAA  
GTGAAATTCTGCAAAACCTC GATCCCCCAGTTATATTCAA  
AACTTAGACTGACCCTCAAA TTTGCAGTTTCTCGACGAAT  
TGAGAAATATTGATGTGACG CCATTAGTGGATTTTGAAAA  
AGGCTTAATTTAAATGAGAA TGTGCAAATTAGCTTAAGAC  
CAGAGTACAGTAAACTGTCT AATGAGTTTTGAAAACTTGC  
CTACTAACTTAAACTTATGA TGATTTAACAATACTTTTCT  
TAAGAAATGTTTTGGCGCTG TTGAAAATACTTTAAAAATG  
TTACTTATATTATTTAGCCA AATTAAATGTATAAAGCGCA  
AAATACTATTTAAAATTATC TTGTCGGTTATTGGTTAAAG  
AGATATCATAGAAATGATTG TGGGGAAGAGAAAATATGAA  
CGATGAATCGATTCCATTTC 
 

9. Sex-lethal Exon-8+UTR 
CCTCCTCACGCTTGTTGTAC CCTCCTCACGCTTGTTGTAC 
TTGCCATGCTCCTCAGCCAA ATCTGCGACATAAAGTGGGC 
TGGTACATTTGCTGGAACCA TATGTGCTGGCGGTTGTGGT 
TGTGCATCATGTTGAATGCG GGAAGCGTTGCTGTGATTTA 
TCGAAATAGGGATGCGAGTT CATCTTGTATTCGTTTCTGG 
TTTGTGTGTGGCTTGTGTGT CAGCAGATCGCTCTTGATTA 
CACTCTCAAGATTAATTGGT GAATCAAGGGTTTCAGATGT 
GTTGTTGTTTGTGAAATACC TTTCGTAGCCTGCTGTTTTG 
GTTTGTTGTTGGTTGGATTG TGTTGTTGGTTGTTAGTGTT 
CGAATTACCGAATTAAGAGC GCACTGCGAAATTGCAACAA 
CGTGATATTTCCCTTTCTCT CAAAGTTGTGAAAGAAAAGC 
GTGTGTAGTTGTGAGTTCTG GCCTGGTTTTGTGTATGTGT 
TGAAGTGCTAGTTTACCGTT ACTAACACTTTTACGCGAAC 
CGCTTTGGAAAACACACACA GTGCTGTATCCGGGAAAAAA 
TGCAGCTTTACGTTTTGTTA CTCATTATGTGCATTTCGGT 
GTTGGTTTATCTCTTTGTTG GTTAGGTATCGATTCAGTCC 
GTGGGTTATGCATTTCTTGC GCACTCTTTAGCTTCGTTCA 
GTCTTTTGTGTAAACGGGAA AATCTTCTGTTGTCTCGCAC 
CTGATTGCTTGATTGCAATG CTCGGCAACGCTTTTGTAAT 
GGATCTAAAAGGGTTACAGG CTGAAGATGCTGAAGAGGTA 
GGCGTGATTCGATTTCAATA GAGATGGGCAAATTAAAACC 
ATTGTAGTTGTTGTCGCTGG CATGTTGTTTATCTTGCAGT 
GAATAGGTTCCATATAGTGA GCTTTTAACGCACTACAAAC 
CACACGTTCGGGATTTTGTT GTTTGTTTTGCTTTTCGCC
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APPENDIX B 

MATLAB CODE FOR IMAGE ANALYSIS 

All the image analysis in the current study was performed using following Matlab code. 

1. Image analysis program to count individual mRNA particle from two different 
channels 

 
%This program counts individual mRNA molecules from two different 
channels 
XXX = input('give full name of image file 1    ', 's'); 
YYY = input('give full name of image file 2    ', 's'); 
 
ims = readfile(XXX); 
imsd = medianfilter(double(ims)); 
lapims = laplace(imsd); 
lapims = lapims/max(lapims(:)); 
im1 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
 
figure(1); 
imshow(im1); 
R = getrect; 
test = imcrop(im1,R); 
 
figure(2); 
surf(test); 
threshx = input('Threshold? '); 
L = sliceall(lapims/10,threshx/10); 
 
ims = readfile(YYY); 
imsd = medianfilter(double(ims)); 
lapims = laplace(imsd); 
lapims = lapims/max(lapims(:)); 
im2 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
 
figure(3); 
imshow(im2); 
R = getrect; 
test = imcrop(im2,R); 
figure(4); 
surf(test); 
threshy = input('Threshold? '); 
K = sliceall(lapims/10,threshy/10); 
clear imsd 
clear lapims 
 
[lab1,n] = bwlabeln(L); 
s = regionprops(lab1,'Area'); 
areas = [s.Area]; 
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bw1 = ismember(lab1,find(areas > 10)); 
[lab1,n] = bwlabeln(bw1); 
s1 = regionprops(lab1,'Centroid'); 
centers1 = cat(1,s1.Centroid); 
 
[lab2,n] = bwlabeln(K); 
s = regionprops(lab2,'Area'); 
areas = [s.Area]; 
 
 
bw2 = ismember(lab2,find(areas > 10)); 
[lab2,n] = bwlabeln(bw2); 
s1 = regionprops(lab2,'Centroid'); 
centers2 = cat(1,s1.Centroid); 
 
im1=imadjust(im1,[0.02 .1]); 
im2=imadjust(im2,[0.02 .1]); 
 
red = im1; 
green = im2; 
blue = zeros(size(im1)); 
RGB= cat(3,red,green,blue); 
 
figure(7); 
hold off; 
imshow(RGB) 
hold on; 
plot(centers1(:,1),centers1(:,2),'ro','markersize',10); 
plot(centers2(:,1),centers2(:,2),'go','markersize',10); 
fprintf('Choose the cell...\n'); 
 
[nuclearpoints,x,y] = selectdata('selectionmode','Lasso'); 
particles_cell1=nuclearpoints{2}; 
particles_cell2=nuclearpoints{1}; 

 

2. Image analysis program to count individual protein hetrodimers (both from nucleus 
and cytoplasm) and down stream RNA particles 

 
%This program is used to count PLA signals from nucleus and cytoplasm 
along with counting mRNAs of two genes. The in put file should 
containing z-stacks from all three channels in tiff format. The three 
channels should be in following order. Channel 1: PLA, channel 2:RNA-1, 
channel 3: RNA-2. 
  
XXX = readfile('file_name.tiff'); 
YYY = input('give full name of DIC image file 3    ', 's'); 
im4=imread(YYY); 
ZZZ = input('give full name of DAPI image file 3    ', 's'); 
im5=imread(ZZZ); 
  
[m,n,p]=size(XXX); 
j=1; 
for i=1:3:p 
ims(:,:,j)=XXX(:,:,i); 
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j=j+1; 
end 
imsd = medianfilter(double(ims)); 
clear ims 
lapims = laplace(imsd); 
clear imsd 
lapims = lapims/max(lapims(:)); 
im1 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
figure(1); 
imshow(im1); 
R = getrect; 
test = imcrop(im1,R); 
figure(2); 
surf(test); 
threshx = input('Threshold? '); 
L = sliceall(lapims/10,threshx/10); 
 
[m,n,p]=size(XXX); 
j=1; 
for i=2:3:p 
ims(:,:,j)=XXX(:,:,i); 
j=j+1; 
end 
imsd = medianfilter(double(ims)); 
clear ims 
lapims = laplace(imsd); 
clear imsd 
lapims = lapims/max(lapims(:)); 
im2 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
figure(1); 
imshow(im2); 
R = getrect; 
test = imcrop(im2,R); 
figure(2); 
surf(test); 
threshy = input('Threshold? '); 
M = sliceall(lapims/10,threshy/10); 
 
[m,n,p]=size(XXX); 
j=1; 
for i=3:3:p 
ims(:,:,j)=XXX(:,:,i); 
j=j+1; 
end 
imsd = medianfilter(double(ims)); 
lapims = laplace(imsd); 
lapims = lapims/max(lapims(:)); 
im3 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
figure(1); 
imshow(im3); 
R = getrect; 
test = imcrop(im3,R); 
figure(2); 
surf(test); 
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threshz = input('Threshold? '); 
N = sliceall(lapims/10,threshz/10); 
clear lapims 
  
[lab1,n] = bwlabeln(L); 
s = regionprops(lab1,'Area'); 
areas = [s.Area]; 
bw1 = ismember(lab1,find(areas > 10)); 
[lab1,n] = bwlabeln(bw1); 
s1 = regionprops(lab1,'Centroid'); 
centers1 = cat(1,s1.Centroid); 
 
[lab2,n] = bwlabeln(M); 
s = regionprops(lab2,'Area'); 
areas = [s.Area]; 
bw2 = ismember(lab2,find(areas > 10)); 
[lab2,n] = bwlabeln(bw2); 
s2 = regionprops(lab2,'Centroid'); 
centers2 = cat(1,s2.Centroid); 
 
[lab3,n] = bwlabeln(N); 
s = regionprops(lab3,'Area'); 
areas = [s.Area]; 
bw3 = ismember(lab3,find(areas > 10)); 
[lab3,n] = bwlabeln(bw3); 
s3 = regionprops(lab3,'Centroid'); 
centers3 = cat(1,s3.Centroid); 
 
im1=imadjust(im1,[0.02 .1]); 
im2=imadjust(im2,[0.02 .1]); 
im3=imadjust(im3,[0.02 .1]); 
  
red = im1; 
green = im2; 
blue = im3; 
RGB= cat(3,red,green,blue); 
  
figure(7); 
hold off; 
imshow(im4) 
hold on; 
plot(centers1(:,1),centers1(:,2),'ro','markersize',8); 
plot(centers2(:,1),centers2(:,2),'go','markersize',8); 
plot(centers3(:,1),centers3(:,2),'bo','markersize',8); 
  
fprintf('Choose the cell...\n'); 
[nuclearpoints,x,y] = selectdata('selectionmode','Lasso'); 
PLA=nuclearpoints{3};RNA2=nuclearpoints{2};RNA1=nuclearpoints{1}; 
  
for n=1:3 
    a=size(nuclearpoints{n}); 
    list(n)=a(1); 
end 
list=cat(2,list,threshx,threshy); 
  
figure(8); 
hold off; 
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imshow(im5) 
hold on; 
plot(centers1(:,1),centers1(:,2),'ro','markersize',8); 
fprintf('Choose the nucleus...\n'); 
[cellpoints] = selectdata; 
particles_nucleus=cellpoints{1}; 
particles_cytoplasm=size(PLA,1)-size(particles_nucleus,1); 

  

3. Image analysis program to find co-localized and non-colocalized particles between 
three individual mRNAs 
XXX = input('give full name of image file 1    ', 's'); 
YYY = input('give full name of image file 2    ', 's'); 
ZZZ = input('give full name of image file 3    ', 's'); 
  
ims = readfile(XXX); 
imsd = medianfilter(double(ims)); 
lapims = laplace(imsd); 
lapims = lapims/max(lapims(:)); 
im1 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
figure(1); 
imshow(im1); 
R = getrect; 
test = imcrop(im1,R); 
figure(2); 
surf(test); 
threshx = input('Threshold? '); 
L = sliceall(lapims/10,threshx/10); 
  
ims = readfile(YYY); 
imsd = medianfilter(double(ims)); 
lapims = laplace(imsd); 
lapims = lapims/max(lapims(:)); 
im2 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
figure(3); 
imshow(im2); 
R = getrect; 
test = imcrop(im2,R); 
figure(4); 
surf(test); 
threshy = input('Threshold? '); 
K = sliceall(lapims/10,threshx/10); 
  
ims = readfile(ZZZ); 
imsd = medianfilter(double(ims)); 
lapims = laplace(imsd); 
lapims = lapims/max(lapims(:)); 
im3 = max(lapims,[],3); 
fprintf('Draw rectangle with mouse for thresholding             %g\n'); 
figure(5); 
imshow(im3); 
R = getrect; 
test = imcrop(im3,R); 
figure(6); 
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surf(test); 
threshz = input('Threshold? '); 
M = sliceall(lapims/10,threshz/10); 
clear ims 
clear imsd 
  
[lab1,n] = bwlabeln(L); 
s = regionprops(lab1,'Area'); 
areas = [s.Area]; 
bw1 = ismember(lab1,find(areas > 10)); 
[lab1,n] = bwlabeln(bw1); 
s1 = regionprops(lab1,'Centroid'); 
centers1 = cat(1,s1.Centroid); 
  
[lab2,n] = bwlabeln(K); 
s = regionprops(lab2,'Area'); 
areas = [s.Area]; 
bw2 = ismember(lab2,find(areas > 10)); 
[lab2,n] = bwlabeln(bw2); 
s1 = regionprops(lab2,'Centroid'); 
centers2 = cat(1,s1.Centroid); 
  
[lab3,n] = bwlabeln(M); 
s = regionprops(lab3,'Area'); 
areas = [s.Area]; 
bw3 = ismember(lab3,find(areas > 10)); 
[lab3,n] = bwlabeln(bw3); 
s1 = regionprops(lab3,'Centroid'); 
centers3 = cat(1,s1.Centroid); 
  
biggest=max(cat(2,size(centers1),size(centers2),size(centers3))); 
centers=zeros(biggest,3); 
colocab_b=zeros(biggest,3); 
colocab_a=zeros(biggest,3); 
colocac_c=zeros(biggest,3); 
colocac_a=zeros(biggest,3); 
colocbc_c=zeros(biggest,3); 
colocbc_b=zeros(biggest,3); 
colocabc_c=zeros(biggest,3); 
colocabc_a=zeros(biggest,3); 
colocabc_b=zeros(biggest,3); 
colocabc_aba=zeros(biggest,3); 
colocabc_abb=zeros(biggest,3); 
colocabc=zeros(biggest,3); 
  
[t r]=size(centers); 
[q w]=size(centers1); 
centersx=zeros((t-q),3); 
centers1=cat(1,centers1,centersx); 
  
[t r]=size(centers); 
[q w]=size(centers2); 
centersx=zeros((t-q),3); 
centers2=cat(1,centers2,centersx); 
  
[t r]=size(centers); 
[q w]=size(centers3); 
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centersx=zeros((t-q),3); 
centers3=cat(1,centers3,centersx); 
  
%Between a and b 
i=1; 
j=1; 
for i=1:size(centers1,1); 
for j=1:size(centers2,1); 
    dist(i,j)=sqrt(((centers2(j,1)-
centers1(i,1))*.065)^2+((centers2(j,2)-
centers1(i,2))*.065)^2+((centers2(j,3)-centers1(i,3))*.2)^2); 
if     dist(i,j) <0.5; 
    colocab_b(j,:)=centers2(j,:);colocab_a(i,:)=centers1(i,:); 
end 
end 
end 
 
%Between a and c 
i=1; 
j=1; 
for i=1:size(centers1,1); 
for j=1:size(centers3,1); 
    dist(i,j)=sqrt(((centers3(j,1)-
centers1(i,1))*.065)^2+((centers3(j,2)-
centers1(i,2))*.065)^2+((centers3(j,3)-centers1(i,3))*.2)^2); 
if     dist(i,j) <0.5; 
    colocac_c(j,:)=centers3(j,:);colocac_a(i,:)=centers1(i,:); 
end 
end 
end 
  
%Between b and c 
i=1; 
j=1; 
for i=1:size(centers2,1); 
for j=1:size(centers3,1); 
    dist(i,j)=sqrt(((centers3(j,1)-
centers2(i,1))*.065)^2+((centers3(j,2)-
centers2(i,2))*.065)^2+((centers3(j,3)-centers2(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocbc_c(j,:)=centers3(j,:);colocbc_b(i,:)=centers2(i,:); 
end 
end 
end 
  
%Between a,b and c with respect to c and ab_a 
i=1; 
j=1; 
for i=1:size(colocab_a,1); 
for j=1:size(centers3,1); 
    dist(i,j)=sqrt(((centers3(j,1)-
colocab_a(i,1))*.065)^2+((centers3(j,2)-
colocab_a(i,2))*.065)^2+((centers3(j,3)-colocab_a(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocabc_aba(j,:)=centers3(j,:);%colocabc_a(i,:)=centers1(i,:); 
end 
end 
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end 
  
%Between a,b and c with respect to c and ab_b 
i=1; 
j=1; 
for i=1:size(colocab_b,1); 
for j=1:size(centers3,1); 
    dist(i,j)=sqrt(((centers3(j,1)-
colocab_b(i,1))*.065)^2+((centers3(j,2)-
colocab_b(i,2))*.065)^2+((centers3(j,3)-colocab_b(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocabc_abb(j,:)=centers3(j,:);%colocabc_b(i,:)=centers2(i,:); 
end 
end 
end 
  
%between colocabc_aba and colocabc_abb-real triple localized 
i=1; 
j=1; 
for i=1:size(colocabc_abb,1); 
    for j=1:size(colocabc_aba,1); 
        dist(i,j)=sqrt(((colocabc_aba(j,1)-
colocabc_abb(i,1))*.065)^2+((colocabc_aba(j,2)-
colocabc_abb(i,2))*.065)^2+((colocabc_aba(j,3)-
colocabc_abb(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocabc(j,:)=colocabc_aba(j,:);%colocabc_b(i,:)=centers2(i,:); 
end 
end 
end 
 
a_all=centers1-colocab_a-colocac_a; 
[a b]=size(a_all); 
for i=1:a 
for j=1:b 
    if a_all(i,j)<0 
        a_all(i,j)=0; 
    end 
end 
end 
  
b_all=centers2-colocab_b-colocbc_b; 
[a b]=size(b_all); 
for i=1:a 
for j=1:b 
    if b_all(i,j)<0 
        b_all(i,j)=0; 
    end 
end 
end 
  
c_all=centers3-colocac_c-colocbc_c; 
[a b]=size(c_all); 
for i=1:a 
for j=1:b 
    if c_all(i,j)<0 
        c_all(i,j)=0; 
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    end 
end 
end 
  
im1=imadjust(im1,[.02 .50]); 
im2=imadjust(im2,[.03,.36]); 
im3=imadjust(im3, [.01 .59]); 
  
red = im1; 
blue = im2; 
green = im3; 
RGB= cat(3,red,green,blue); 
 
%colocab only 
colocab_only=colocab_b; 
i=1; 
j=1; 
for i=1:size(colocabc,1); 
for j=1:size(colocab_b,1); 
    dist(i,j)=sqrt(((colocab_b(j,1)-
colocabc(i,1))*.065)^2+((colocab_b(j,2)-
colocabc(i,2))*.065)^2+((colocab_b(j,3)-colocabc(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocab_only(j,:)=0;%colocabc_b(i,:)=centers2(i,:); 
end 
end 
end 
   
%colocac only 
colocc_only=colocac_c; 
i=1; 
j=1; 
for i=1:size(colocabc,1); 
for j=1:size(colocac_c,1); 
    dist(i,j)=sqrt(((colocac_c(j,1)-
colocabc(i,1))*.065)^2+((colocac_c(j,2)-
colocabc(i,2))*.065)^2+((colocac_c(j,3)-colocabc(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocac_only(j,:)=0; 
end 
end 
end 
  
%colocbc only 
colocbc_only=colocbc_c; 
i=1; 
j=1; 
for i=1:size(colocabc,1); 
for j=1:size(colocbc_c,1); 
    dist(i,j)=sqrt(((colocbc_c(j,1)-
colocabc(i,1))*.065)^2+((colocbc_c(j,2)-
colocabc(i,2))*.065)^2+((colocbc_c(j,3)-colocabc(i,3))*.2)^2); 
if     dist(i,j) < 0.5; 
    colocbc_only(j,:)=0; 
end 
end 
end 
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figure(10); 
imshow(RGB) 
hold on; 
plot(colocab_only(:,1),colocab_only(:,2),'mo','markersize',5,'markerfac
ecolor','m'); 
plot(colocac_only(:,1),colocac_only(:,2),'yo','markersize',5,'markerfac
ecolor','y'); 
plot(colocbc_only(:,1),colocbc_only(:,2),'co','markersize',5,'markerfac
ecolor','c'); 
plot(colocabc(:,1),colocabc(:,2),'wo','markersize',5,'markerfacecolor',
'w'); 
plot(a_all(:,1),a_all(:,2),'ro','markersize',5); 
plot(b_all(:,1),b_all(:,2),'bo','markersize',5); 
plot(c_all(:,1),c_all(:,2),'go','markersize',5); 
print('-depsc', cat(2,ZZZ,'all','.eps')); 
fprintf('Choose the nucleus...\n'); 
[nuclearpoints,x,y] = selectdata('selectionmode','Lasso'); 
  
for n=1:7 
    a=size(nuclearpoints(56)); 
    list(n)=a(1); 
end 
%list appears in reverse order of plotting commands, ie, c, b, a, all, 
bc, ac, ba. 
  

 

4. To run above programs, following functions are required to be present in your Matlab 
directory  

function theimages = readfile(filename) 
  i = 1; 
reading = 1; 
 while reading == 1 
  try 
    %theimages(:,:,i) = imread(filename,i); 
    trialim = imread(filename,i); 
  catch 
    i; 
    reading = 0; 
  end; 
  if ndims(trialim) == 2 & reading == 1 
    theimages(:,:,i) = trialim; 
  end; 
   
  i = i+1; 
end; 
 
function outims = medianfilter(images) 
  
sz = size(images); 
outims = zeros(sz); 
  
for i = 1:sz(3) 
  outims(:,:,i) = medfilt2(images(:,:,i),[3 3]); 
end; 
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