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ABSTRACT

HIGH RATE SPACE TIME CODE WITH LINEAR DECODING
COMPLEXITY FOR MULTIPLE TRANSMITTING ANTENNAS

by
Amir Laufer

The multipath nature of the wireless channel, results in a superposition of the signals

of each path at the receiver. This can lead to either constructive or destructive

interference. Strong destructive interference is frequently referred to as deep fade

and may result in temporary failure of communication due to the severe drop in the

channel’s signal-to-noise ratio (SNR). To avoid this situation, signal diversity might be

introduced. When having more than one antenna at the transmitter and / or receiver,

forming a Multiple-Input Multiple-Output (MIMO) channel, spatial diversity can be

employed to overcome the fading problem. Space time block codes (STBC) have

been shown to be used well with the MIMO channel. Each type of STBC is designed

to optimize a different criteria such as rate and diversity, while other characteristics

of the code are its error performance and decoding computational complexity. The

Orthogonal STBC (OSTBC) family of codes is known to achieve full diversity as well

as very simple implementation of the Maximum Likelihood (ML) decoder. However,

it was proven that, with complex symbol constellation one cannot achieve a full rate

code when the number of transmitting antennas is larger than two. Quasi OSTBC are

codes with full rate but with the penalty of more complex decoding, and in general

does not achieve full diversity.

In this work, new techniques for OSTBC transmission / decoding are explored,

such that a full rate code can be transmitted and decoded with linear complexity.

The Row Elimination Method (REM) for OSTBC transmission is introduced, which

basically involves the transmission of only part of the original OSTBC codeword,

resulting in a full rate code termed Semi-Orthogonal STBC (SSTBC). Novel decoding



scheme is presented, such that the SSTBC decoding computational complexity

remains linear although the transmitted codeword is not orthogonal anymore. A

new OSTBC, that complies with the new scheme’s requirements, is presented for any

number of transmit antennas. The performance of the new scheme is studied under

various settings, such as system with limited feedback and multiple antennas at the

receiver.

The general decoding techniques presented for STBC, assume perfect channel

knowledge at the receiver. It was shown, that the performance of any STBC system

is severely degraded due to partial channel state information, results from imperfect

channel estimation. To minimize the performance loss, one may lengthen the training

sequences used for the channel estimation which, inevitably, results in some rate loss.

In addition, complex decoding schemes can be used at the receiver to jointly decode

the data while enhancing the channel estimation. It is suggested in this work to apply

adaptive techniques to mitigate the performance loss without the penalty of additional

rate loss or complex decoding. Namely, the bootstrap algorithm is used to further

refine the received signals, resulting in better effective rate and performance in the

presence of channel estimation errors. Modified implementations for the bootstrap’s

weights calculation method are also presented, to improve the convergence rate of the

algorithm, as well as to maintain a very low computational burden.
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CHAPTER 1

INTRODUCTION

Optimal design and successful deployment of high-performance wireless networks,

present a number of technical challenges. These include, regulatory limits on usable

radio frequency spectrum, and a complex time-varying propagation environment

affected by fading and multipath. In order to meet the growing demand for higher

data rates at better communication reliability, boldly innovative techniques that

improve both spectral efficiency and link reliability are called for. Use of multiple

antennas at the receiver and transmitter in a wireless network is a rapidly emerging

technology, that promises higher data rates at longer ranges without consuming

extra bandwidth or transmit power. This technology, popularly known as smart

antenna technology, offers a variety of leverages which, if exploited correctly, can

enable multiplicative gains in network performance.

1.1 Fading Channel Model

1.1.1 Multipath Propagation

In a wireless environment, the surrounding objects, such as houses, building or trees,

act as reflectors of radio waves (Figure 1.1). These obstacles produce reflected waves

with attenuated amplitudes and phases. When a signal is transmitted, multiple

reflected waves of the transmitted signal will arrive at the receiving antenna from

different directions with different propagation delays. These reflected waves are called

multipath waves [1]. Due to the different arrival angles and times, the multipath

waves at the receiver site have different phases. When they are collected by the

receiver antenna at any point in space, they may combine either in a constructive

or a destructive way, depending on the random phases. The sum of these multipath

1
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components forms a spatially varying standing wave field. The mobile unit moving

through the multipath field will receive a signal which can vary widely in amplitude

and phase. When the mobile unit is stationary, the amplitude variations in the

received signal are due to the movement of surrounding objects in the radio channel.

The amplitude fluctuation of the received signal is called signal fading. It is caused

by the time-variant multipath characteristics of the channel.

Because of the multiplicity of factors involved in propagation in a wireless

environment, it is convenient to apply statistical techniques to describe signal

variations. In a narrowband system, the transmitted signals usually occupy a

bandwidth smaller than the channels coherence bandwidth, which is defined as

the frequency range over which the channel fading process is correlated. That is,

all spectral components of the transmitted signal are subject to the same fading

attenuation. This type of fading is referred to as frequency nonselective or frequency

flat. On the other hand, if the transmitted signal bandwidth is greater than the

channel coherence bandwidth, the spectral components of the transmitted signal with

a frequency separation larger than the coherence bandwidth are faded independently.

The received signal spectrum becomes distorted, since the relationships between

various spectral components are not the same as in the transmitted signal. This

phenomenon is known as frequency selective fading.

1.1.2 Rayleigh Fading

Consider the transmission of a single tone with a constant amplitude. In a typical

land mobile radio channel, one may assume that the direct wave is obstructed and the

mobile unit receives only reflected waves. When the number of reflected waves is large,

according to the central limit theorem, two quadrature components of the received

signal are uncorrelated Gaussian random processes with a zero mean and variance

σ2 = 1. As a result, the envelope of the received signal at any time instant undergoes a
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Transmitter 

ReceiverScatterers

Scatterers

Figure 1.1 Multipath environment.

Rayleigh probability distribution and its phase obeys a uniform distribution between

−π and π. The probability density function (pdf) of the Rayleigh distribution is

given by [2]

fx(x) =


x
σ2 e
− x2

2σ2 x ≥ 0

0 x < 0
(1.1)

The probability density function for a normalized Rayleigh distribution is shown in

Figure 1.2.

In terms of the coefficients (amplitude and phase) variation speed, fast and

slow fading channels are considered. For slow fading, it is assumed that the fading

coefficients are constant during a frame and vary from one transmission frame to

another, which means that the symbol period is small compared to the channel

coherence time. The slow fading is also referred to as quasi-static fading. In a fast

fading channel, the fading coefficients are constant within each symbol period and

vary from one symbol to another.
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Figure 1.2 Normalized Rayleigh r.v. (σ = 1) probability density function.

1.2 Multiple Antenna Channel Model

Smart antenna technology provides a wide variety of options, ranging from single-

input, multiple-output (SIMO) architectures that collect more energy to improve the

signal to noise ratio (SNR) at the receiver, to multiple-input, multiple-output (MIMO)

architectures that open up multiple data pipes over a link. The number of inputs and

outputs here refers to the number of antennas used at the transmitter and receiver,

respectively. Figure 1.3 shows a typical MIMO system with Mt transmit antennas and

Mr receive antennas. The transmitter (Tx) encodes and modulates the information

bits to be conveyed to the receiver and maps the signals to be transmitted across space

(Mt transmit antennas) and time. The receiver (Rx) processes the signals received

on each of the Mr receive antennas according to the transmitters signaling strategy

and demodulates and decodes the received signal.

Different smart antenna architectures provide different benefits which can be

broadly classified as array gain, diversity gain and multiplexing gain. The signaling

strategy at the transmitter and the corresponding processing at the receiver are
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Figure 1.3 Typical Multiple-Input, Multiple-Output (MIMO) system.

designed based on link requirements (data rate, range, reliability etc.). For example,

in order to increase the point to point spectral efficiency (in bits/sec/Hz) between

a transmitter and receiver, multiplexing gain is required which is provided by the

MIMO architecture. The signaling strategy also depends on the availability of

channel information at the transmitter. For example, MIMO does not require channel

knowledge at the transmitter, although it enjoys improved performance if channel

information is available. Starting with a simple signal model, the basic smart antenna

benefits namely array gain, diversity gain and multiplexing gain will then be discussed

in greater detail.

Consider a MIMO system with Mt transmit antennas and Mr receive antennas

as shown in Figure 1.3. For simplicity only flat fading is considered, i.e., the fading is

not frequency selective. When a signal, s is launched from the ith transmit antenna,

each of the Mr receive antennas sees a complex-weighted version of the transmitted

signal. The signal received at the jth receive antenna is denoted by hjis, where hji is

the channel response between the ith transmit antenna and the jth receive antenna.

The vector [h1j h2j · · · hMrj]
T is the signature induced by the ith transmit antenna
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across the receive antenna array. It is convenient to denote the MIMO channel (H)

in matrix notation as shown below.

H =



h11 h12 · · · h1Mt

h21 h22 · · · h2Mt

...
...

. . .
...

hMr1 hMr2 · · · hMrMt


(1.2)

The channel matrix H defines the input-output relation of the MIMO system and is

also known as the channel transfer function. If a signal vector x = [x1 x2 · · · xMt ]
T

is launched from the transmit antenna array (xi is launched from the ith transmit

antenna) then the signal received at the receive antenna array, y = [y1 y2 · · · yMr ]
T

can be written as

y = Hx + n (1.3)

where n is the Mr × 1 noise vector consisting of independent complex-gaussian

distributed elements with zero mean and variance σ2
n (white noise). Note that the

above channel matrix can be interpreted as a snapshot of the wireless channel at a

particular frequency and at a specific instant of time. When there is rich multipath

with a large delay spread, H varies as a function of frequency. Likewise, when the

scatterers are mobile and there is a large doppler spread, H varies as a function of time.

With sufficient antenna separation at the transmit and receive arrays, the elements

of the channel matrix H can be assumed to be independent, zero-mean, complex

gaussian random variables (Rayleigh fading) with unit variance in sufficiently rich

multipath. This model is popularly referred to as the i.i.d Gaussian MIMO channel.

In general, if antennas are separated by more than half the carrier wavelength (λ
2
) [3],

the channel fades can be modeled as independent Gaussian random variables.
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1.2.1 Array Gain

Consider a SIMO system with one transmit antenna and two receive antennas as

shown in Figure 1.4. The two receive antennas see different versions, y1 and y2,

of the same transmitted signal, x. The signals y1 and y2 have different amplitudes

Space - Time
Encoder

Input Bits
Stream

Tx

Space - Time
Decoder

Output Bits
Stream

Rx

y2

x

y1

Figure 1.4 1 × 2 Single-Input, Multiple-Output (SIMO) system.

and phases as determined by the propagation conditions. If the channel is known to

the receiver, appropriate signal processing techniques can be applied to combine the

signals y1 and y2 coherently so that the resultant power of the signal at the receiver is

enhanced, leading to an improvement in signal quality. More specifically, the SNR at

the output is equal to the sum of the SNR on the individual links. This result can be

extended to systems with one transmit antenna and more than two receive antennas

as follows

w∗y = w∗hx+ w∗n (1.4)

where the optimal Mr × 1 linear receive filter is w = h, and the maximum SNR is

proportional to the channel norm ‖h‖2 =
∑Mr

m=1 |hm|2, where ‖h‖2 is the Frobenius

norm. The average increase in receive signal power at the receiver is equal to E{‖h‖2}

and is defined as array gain and is proportional to the number of receive antennas.

Array gain can also be exploited in systems with multiple antennas at the
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transmitter by using beamforming. Extracting the maximum possible array gain in

such systems requires channel knowledge at the transmitter, so that the signals may

be optimally processed before transmission. An example of transmit beamforming

for 1×Mt MISO systems (Figure 1.5) is shown below

y = h∗(wx) + n (1.5)

The optimal normalized Mt×1 transmit filter is w = h/‖h‖. Analogous to the SIMO

case, the array gain in MISO systems with channel knowledge at the transmitter is

equal to E{‖h‖2} and is proportional to the number of transmit antennas. The array

gain in MIMO systems depends on the number of transmit and receive antennas and

is a function of the dominant singular value of the channel.

Space - Time
Decoder

Input Bits
Stream

Tx

Space - Time
Encoder

Output Bits
Stream

Rx

y2

x1

x2

Figure 1.5 2 × 1 Multiple-Input, Single-Output (MISO) system.

1.2.2 Diversity Gain

Signal power in a wireless channel fluctuates (or fades) with time/frequency/space.

When the signal power drops dramatically, the channel is said to be in a fade.

Diversity is used in wireless systems to combat fading. The basic principle behind

diversity is to provide the receiver with several looks at the transmitted signal

over independently fading links (or diversity branches). As the number of diversity
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branches increases, the probability that at any instant of time one or more branch

is not in a fade increases. Thus diversity helps stabilize a wireless link. Diversity is

available in SISO links in the form of time or frequency diversity. The use of time

or frequency diversity in SISO systems often incurs a penalty in data rate due to

the utilization of time or bandwidth to introduce redundancy. The introduction of

multiple antennas at the transmitter and/or receiver provides spatial diversity, the

use of which does not incur a penalty in data rate while providing the array gain

advantage discussed earlier. There are two forms of spatial diversity receive and

transmit diversity.

Receive diversity applies to systems with multiple antennas only at the receiver

(SIMO systems) [4]. Figure 1.4 illustrates a system with receive diversity. Signal x is

transmitted from a single antenna at the transmitter. The two receive antennas see

independently faded versions, y1 and y2, of the transmitted signal, x. The receiver

combines these signals using appropriate signal processing techniques so that the

resultant signal exhibits much reduced amplitude variability (fading) as compared to

either y1 or y2. The amplitude variability can be further reduced by adding more

antennas to the receiver. The diversity in a system is characterized by the number

of independently fading diversity branches, also known as the diversity order. The

diversity order of the system in Figure 1.4 is two and in general is equal to the number

of receive antennas, Mr , in a SIMO system.

Transmit diversity is applicable when multiple antennas are used at the

transmitter and has become an active area for research in the past years [5],[6].

Extracting diversity in such systems does not necessarily require channel knowledge

at the transmitter. However, suitable design of the transmitted signal is required to

extract diversity. Space-time coding [7],[8] is a powerful transmit diversity technique

that relies on coding across space (transmit antennas) and time to extract diversity.

Figure 1.5 shows a generic transmit diversity scheme for a system with two transmit
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antennas and one receive antenna. At the transmitter, signals x1 and x2 are derived

from the original signal to be transmitted, x, such that the signal x can be recovered

from either of the received signals y11 or y21. The receiver combines the received

signals in such a manner that the resultant output exhibits reduced fading when

compared to y11 or y21. The diversity order of this system is two and in general is

equal to the number of transmit antennas, Mt , in a MISO system.

Utilization of diversity in MIMO systems requires a combination of receive and

transmit diversity described above. A MIMO system consists of Mt×Mr SISO links.

If the signals transmitted over each of these links experience independent fading, then

the diversity order of the system is given by Mt ×Mr. Thus the diversity order in a

MIMO system scales linearly with the product of the number of receive and transmit

antennas. Mathematically, diversity is defined to be equal to the slope of the symbol

error rate (SER) versus SNR graph. This will be shown in greater detail in the

following derivation.

The vector equation in (1.3) can be written as the following matrix equation

Y = HX + N (1.6)

where the channel input X is an Mt × T codeword spanning T sample times, the

channel output is the Mr × T matrix Y observed on Mr receive antennas over T

sample times and the receiver noise is the Mr × T matrix N.

Consider two Mt × T codewords X(i) and X(j) that are transmitted over Mt

transmit antennas across T sample times. If X(i) was transmitted, the probability

that X(j) 6= X(i) is detected for a given realization of the channel H is equal to the

following
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PEP|H = Prob
(
X(i) → X(j)

)
= Prob

(
‖Y −HX(j)‖2F ≤ ‖Y −HX(i)‖2F

)
= Q

(√
Dij

SNR
2

) (1.7)

where Q(x) =
∫∞
x

exp(− t2

2
)dt is the complementary error function, Dij =

‖H
(
X(i) −X(j)

)
‖2F is the pairwise Euclidean distance at the receiver and SNR = Es

N0

is the ratio of the total transmitted signal power to the noise power per receive

antenna.

This conditional pairwise error probability (PEP) is a function of the channel

realization. Since the transmitter does not know the channel, the best it can do is

optimize a criterion that takes channel statistics into account. One popular criterion

is the average PEP, i.e., the average of the conditional PEP over channel statistics. It

is difficult to compute the expectation of the expression in (1.7). A simpler alternative

is to compute the average of a tight upper bound, in particular the Chernoff upper

bound

PEP|H = Q

(√
Dij

SNR

2

)
≤ e−Dij

SNR
4 (1.8)

For the i.i.d. Gaussian channel, the average Chernoff bound simplifies to the following

as derived in [5],[7]

PEP ≤

 1

det
(
IMt + SNR

4
(X(i) −X(j)) (X(i) −X(j))

H
)
Mr

=

(
1∏L

l=1

(
1 + SNR

4
σ2
l

))Mr

(1.9)

where det is the determinant of a square matrix, {σl}Ll=1 are the nonzero eigenvalues

of the distance matrix ∆ij = (X(i) − X(j))(X(i) − X(j))H and L is its rank. Taking

the limit at high SNR,
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PEP ≤
(

SNR

4

)−MrL
( L∏

l=1

σ2
l

) 1
L

−MrL

(1.10)

and taking the logarithm of both sides, one obtain

log PEP ≤ −MrL

log

(
SNR

4

)
+ log

( L∏
l=1

σ2
l

) 1
L

 (1.11)

Consider the logarithm of the PEP in (1.11). The right hand side is clearly linear in

the logarithms of SNR and the product of squared singular values of the difference

matrix. In addition, the slope of the r.h.s. is a product of the number of receive

antennas and the rank of the difference matrix. The diversity gain of the space-time

codebook is defined to be the minimum value of L over all pairs of codewords. For

a given diversity gain, the coding gain is defined to be the minimum of the product(∏L
l=1 σ

2
l

) 1
L

over all pairs of codewords.

Performance of space-time codes is usually illustrated by plotting the SER versus

SNR on a logarithmic scale. Since the PEP is closely related to SER, (1.11) is a good

approximation to SER especially at high SNRs. Figure 1.6 illustrates the effect of

each code metric on the SER curve. Diversity gain affects the asymptotic slope of the

SER versus SNR graph - greater the diversity, the faster the SER drops with SNR.

Coding gain affects the horizontal shift of the graph - greater the coding gain, the

greater the shift to the left.

1.2.3 Multiplexing Gain

The key differentiating advantage of MIMO systems is practical throughput

enhancement which is not provided by SIMO or MISO systems. This leverage is

referred as multiplexing gain and it can be realized through a technique known as

spatial multiplexing [9]. Figure 1.7 shows the basic principle of spatial multiplexing
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Figure 1.6 Effect of diversity gain and coding gain on the symbol error rate curve.

for a system with two transmit and two receive antennas. The symbol stream to

be transmitted is split into two half-rate sub-streams and modulated to form the

signals x1 and x2 that are transmitted simultaneously from separate antennas. Under

favorable channel conditions, the spatial signatures of these signals (denoted by

[y11 y12]
T and [y21 y22]

T ) induced at the receive antennas are well separated (ideally

orthogonal). The receiver can then extract the two sub-streams, x1 and x2, which it

combines to give the original symbol stream, x.

This can be mathematically expressed as the theoretical channel capacity as

derived in [10],[11]. Channel capacity of the memoryless MIMO channel in (1.3) is

defined to be the instantaneous mutual information which is a function of the channel

realization as follows

C|H = log det (IMr + SNRHKXH∗) (1.12)
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When the channel is square and orthogonal (HH∗ = I), then with an i.i.d. input

distribution (KX = 1
Mt

IMt), (1.12) reduces to

C⊥ = Mt log

(
1 +

1

Mt

SNR

)
(1.13)

Hence, M = Mt = Mr parallel channels are created within the same frequency

bandwidth for no additional transmit power. Capacity scales linearly with number

of antennas for increasing SNR, i.e., capacity increases by M b/s/Hz for every 3

dB increase in SNR. In general, it can be shown that an orthogonal channel of the

form described above maximizes the Shannon capacity of a MIMO system. For the

i.i.d fading MIMO channel model described earlier, the channel realizations become

approximately orthogonal when the number of antennas used is very large. When

the number of transmit and receive antennas is not equal, Mt 6= Mr , the increase in

capacity is limited by the minimum of Mt and Mr. This increase in channel capacity

is called multiplexing gain.

Having discussed the key advantages of smart antenna technology, it should

be noted that it may not be possible to exploit all the leverages simultaneously in

a smart antenna system. This is because the spatial degrees of freedom are limited

and engineering tradeoffs must be made between each of the desired benefits. The

optimal signaling strategy is a function of the wireless channel properties and network

requirements.

1.3 Fundamentals of Space Time Codes

In the previous section, it was shown that the information capacity of wireless

communication systems can be increased considerably by employing multiple transmit

and receive antennas. For a system with a large number of transmit and receive

antennas and an independent flat fading channel known at the receivers, the capacity
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Figure 1.7 2 × 2 MIMO with spatial multiplexing.

grows linearly with the minimum number of antennas.

An effective and practical way to approaching the capacity of multiple-input

multiple-output (MIMO) wireless channels is to employ space-time coding (STC)

[7]. Space-time coding is a coding technique designed for use with multiple transmit

antennas. Coding is performed in both spatial and temporal domains to introduce

correlation between signals transmitted from various antennas at various time periods.

The spatial-temporal correlation is used to exploit the MIMO channel fading and

minimize transmission errors at the receiver. Space-time coding can achieve transmit

diversity and power gain over spatially uncoded systems without sacrificing the

bandwidth. There are various approaches in coding structures, including space-time

block codes (STBC), space-time trellis codes (STTC), space-time turbo trellis codes

and layered space-time (LST) codes. A central issue in all these schemes is the

exploitation of multipath effects in order to achieve high spectral efficiencies and

performance gains.

1.3.1 General Structure

Consider a baseband space-time coded communication system with Mt transmit

antennas and Mr receive antennas, as shown in Figure 1.3. The transmitted data
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are encoded by a space-time encoder. At each time instant t, a block of b binary

information symbols, denoted by

ct =
(
c1t , c

2
t , . . . , c

b
t

)
(1.14)

is fed into the space-time encoder. The space-time encoder initially maps the block

of b binary input data into k symbols, (s1, s2, . . . , sk), drawn from some signal

constellation. The k data symbols are then encoded into Mt symbols xit , 1 ≤ i ≤Mt,

where

xit =
k∑
l=1

αlisl + βlis
∗
l ; αli, βli ∈ Z (1.15)

Any STC is totaly defined by the αli, βli’s, which maps the k data symbols to

the transmitted symbols. The encoded data is applied to a serial-to-parallel (S/P)

converter producing a sequence of Mt parallel symbols, arranged into an Mt × 1

column vector

xt =
[
x1
t , x

2
t , . . . , x

Mt
t

]T
(1.16)

The Mt parallel outputs are simultaneously transmitted by Mt different antennas,

whereby symbol xit , 1 ≤ i ≤ Mt, is transmitted by antenna i and all transmitted

symbols have the same duration of Ts seconds. The vector of coded modulation

symbols from different antennas, as shown in (1.16), is called a space-time symbol.

At the receiver, the signal at each of the Mr receive antennas is a noisy

superposition of the Mt transmitted signals degraded by channel fading (see (1.3)).

At time t , the received signal at antenna j, j = 1, 2, ...,Mr, denoted by yjt ,is given by

yjt =
Mt∑
i=1

hjix
i
t + njt (1.17)
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where njt is the noise component of receive antenna j at time t , which is an

independent sample of the zero-mean complex Gaussian random variable with the

one sided power spectral density of N0.

1.3.2 Design Criteria

To define the space time code design criteria, the performance analysis derived in

Section 1.2.2 should be recalled. To that end, it is assumed that the transmitted data

frame length is T symbols for each antenna. Defining a T ×Mt space-time codeword

matrix , obtained by arranging the transmitted sequence in an array, as

X =


x11 · · · x1Mt

...
. . .

...

xT1 · · · xTMt

 (1.18)

where

xmi =
k∑
l=1

αlmisl + βlmis
∗
l ; αlmi, βlmi ∈ Z (1.19)

is the symbol transmitted from the ith transmit antenna at the mth time slot.

Recalling the error probability expression from (1.10)

PEP ≤
(

SNR

4

)−MrL
( L∏

l=1

σ2
l

) 1
L

−MrL

(1.20)

it is clear that the error probability is a strong function of the codeword matrix

structure. Namely, the performance is a function of L and sigma2
l which are the

minimum rank and the nonzero eigenvalues respectively of the distance matrix ∆ij =

(X(i)−X(j))(X(i)−X(j))H of the closest two codeword. This leads us to the following

design criteria;

• Maximize the minimum rank L of matrix ∆ij over all pairs of distinct codewords.
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• Maximize the minimum product,
∏L

l=1 σ
2
l , of the matrix ∆ij along the pairs of

distinct codewords with the minimum rank.

Note that
∏L

l=1 σ
2
l is the absolute value of the sum of determinants of all the principal

L × L cofactors of matrix ∆ij [7]. This criteria set is referred to as rank and

determinant criteria. The minimum rank L of matrix ∆ij over all pairs of distinct

codewords is called the minimum rank of the space-time code. To maximize the

minimum rank L, means to find a space-time code with the full rank of matrix ∆ij,

e.g., L = Mt. However, the full rank is not always achievable due to the restriction

of the code structure.

1.4 Space Time Block Codes

After discussing the basics of space-time codes in general, the space-time block codes

(STBC) are presented, which are in the main focus of this work. The general structure

of STBC will be presented followed by the introduction of the the Alamouti code,

which is a simple two-branch transmit diversity scheme. The key feature of the scheme

is that it achieves a full diversity gain with a simple maximum-likelihood decoding

algorithm.

1.4.1 General Structure

Figure 1.8 shows an encoder structure for space-time block codes. In general, a

space-time block code is defined by an T × Mt transmission matrix X. Here Mt

represents the number of transmit antennas and T represents the number of time

periods for transmission of one block of coded symbols.

Assuming that the signal constellation consists of 2b points. At each encoding

operation, a block of kb information bits are mapped into the signal constellation

to select k modulated signals s1, s2, . . . , sk, where each group of b bits selects a

constellation signal. The k modulated signals are encoded by a space-time block
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encoder to generate Mt parallel signal sequences of length T according to the

transmission matrix X. These sequences are transmitted through Mt transmit

antennas simultaneously in T time periods. In the space-time block code, the number

of symbols the encoder takes as its input in each encoding operation is k. The number

of transmission periods required to transmit the space-time coded symbols through

the multiple transmit antennas is T . In other words, there are T space-time symbols

transmitted from each antennas for each block of k input symbols. The rate of a

space-time block code is defined as the ratio between the number of symbols the

encoder takes as its input and the number of space-time coded symbols transmitted

from each antenna. It is given by

R = k/T (1.21)

The entries of the transmission matrix X are linear combinations of the k modulated

symbols s1 , s2, . . . , sk and their conjugates s∗1 , s
∗
2, . . . , s

∗
k. The ith row of X

represents the symbols transmitted simultaneously through Mt transmit antennas at

time i, while the jth column of X represents the symbols transmitted from the jth

transmit antenna consecutively in T transmission periods. The jth column of X is

regarded as a space-time symbol transmitted at time j. The element of X in the ith

row and jth column, xij , i = 1, 2, . . . ,Mt , j = 1, 2, . . . , T , represents the signal

transmitted from the ith antenna at time j. The structure and properties of X define

the STBC as will be in explained in the following sections.

1.4.2 The Alamouti 2× 2 Code

The Alamouti scheme is historically the first space-time block code to provide full

transmit diversity for systems with two transmit antennas [12]. It is worthwhile to

mention that delay diversity schemes [13] can also achieve a full diversity, but they

introduce interference between symbols and complex detectors are required at the
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Figure 1.8 General structure of space time block coding encoder.

receiver. In this section, the Alamoutis transmit diversity technique is introduced,

including encoding and decoding algorithms and its performance.

Figure 1.9 shows the block diagram of the Alamouti space-time encoder.

Assuming that an M-ary modulation scheme is used. In the Alamouti space-time

encoder, each group of b information bits is first modulated, where b = log2M . Then,

the encoder takes a block of two modulated symbols s1 and s2 in each encoding

operation and maps them to the transmit antennas according to a code matrix given

by

X =

 s1 s2

−s∗2 s∗1

 (1.22)

The encoder outputs are transmitted in two consecutive transmission periods from

two transmit antennas. During the first transmission period, two signals s1 and s2

are transmitted simultaneously from antenna one and antenna two, respectively. In

the second transmission period, signal −s∗2 is transmitted from transmit antenna one

and signal s∗1 from transmit antenna two, where s∗1 is the complex conjugate of s1. It

is clear that the encoding is done in both the space and time domains. Let us denote
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the transmit sequence from antennas one and two by x1 and x2, respectively,

x1 = [s1 − s∗2]

x2 = [s2 s∗1]
(1.23)

The key feature of the Alamouti scheme is that the transmit sequences from the two
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Figure 1.9 Alamouti’s 2 × 2 space time block code encoder.

transmit antennas are orthogonal, since the inner product of the sequences x1 and x2

is zero, i.e.,

〈x1,x2〉 = x1(x2)H = s1s
∗
2 − s∗2s1 = 0 (1.24)

The code matrix has the following property

XH ·X =

 |s1|2 + |s2|2 0

0 |s1|2 + |s2|2

 = |s1|2 + |s2|2I2 (1.25)

where I2 is the 2× 2 identity matrix.

Assuming that one receive antenna is used at the receiver. The fading channel

coefficients from the first and second transmit antennas to the receive antenna at time

t are denoted by h1(t) and h2(t), respectively. Assuming that the fading coefficients

are constant across two consecutive symbol transmission periods, the received signals
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over two consecutive symbol periods, can be expressed as

y1 = h1s1 + h2s2 + n1

y2 = h1s
∗
2 + h2s

∗
1 + n2

(1.26)

where n1 and n2 are independent complex variables with zero mean and power spectral

density N0/2 per dimension, representing the additive white Gaussian noise samples.

If the channel fading coefficients, h1 and h2, can be perfectly recovered at the

receiver, the decoder will use them as the channel state information (CSI). Assuming

that all the signals in the modulation constellation are equiprobable, a maximum

likelihood decoder chooses a pair of signals (ŝ1, ŝ2) from the signal modulation

constellation to minimize the distance metric

d2(y1, h1ŝ1 + h2ŝ2) + d2(y2,−h1ŝ
∗
2 + h2ŝ

∗
1)

= |y1 − h1ŝ1 − h2ŝ2|2 + |y2 + h1ŝ
∗
2 − h2ŝ

∗
1|2

(1.27)

over all possible values of ŝ1 and ŝ2. Substituting (1.26) into (1.27), the maximum

likelihood decoding can be represented as

(ŝ1, ŝ2) = arg min
(ŝ1,ŝ2)∈C

(|h1|2 + |h2|2 − 1)(|ŝ1|2 + |ŝ2|2) + d2(r1, ŝ1) + d2(r2, ŝ2) (1.28)

where C is the set of all possible modulated symbol pairs (ŝ1, ŝ2), r1 and r2 are two

decision statistics constructed by combining the received signals with channel state

information. The decision statistics are given by

r1 = h∗1y1 + h2y
∗
2

r2 = h∗2y1 − h1y
∗
2

(1.29)

Substituting y1 and y2 from (1.26), into (1.29), the decision statistics can be written

as,
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r1 = (|h1|2 + |h2|2)s1 + h∗1n1 + h2n
∗
2

r2 = (|h1|2 + |h2|2)s2 + h∗2n1 − h1n
∗
2

(1.30)

For a given channel realization h1 and h2, the decision statistics r1 , i = 1, 2, is only

a function of si , i = 1, 2. Thus, the maximum likelihood decoding rule (1.28) can be

separated into two independent decoding rules for s1 and s2, given by

ŝ1 = arg min
ŝ1∈S

(|h1|2 + |h2|2 − 1)|s1|2 + d2(r1, ŝ1) (1.31)

and

ŝ2 = arg min
ŝ2∈S

(|h1|2 + |h2|2 − 1)|s2|2 + d2(r2, ŝ2) (1.32)

respectively. This important attribute will be referred later as symbol by symbol

decoding. Decoding in a symbol by symbol fashion greatly reduces the complexity of

the de-mapping at the decoder since it allows a linear computational complexity in

the size of the signal constellation.

It will now be shown that due to the orthogonality between the sequences coming

from the two transmit antennas, the Alamouti scheme can achieve the full transmit

diversity of Mt = 2. Consider any two distinct codewords X and X̂ generated by

the inputs (s1, s2) and (ŝ1, ŝ2), respectively, where (s1, s2) 6= (ŝ1, ŝ2). The codeword

difference matrix is given by

X− X̂ =

 s1 − ŝ1 s2 − ŝ2

−s∗2 − (−ŝ∗2) s∗1 − ŝ∗1

 (1.33)
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Since the rows of the code matrix are orthogonal, the rows of the codeword difference

matrix are orthogonal as well. The codeword distance matrix is given by

∆ = (X− X̂)(X− X̂)H =

 |s1 − ŝ1|2 + |s2 − ŝ2|2 0

0 |s1 − ŝ1|2 + |s2 − ŝ2|2

 (1.34)

Since (s1, s2) 6= (ŝ1, ŝ2), it is clear that the distance matrices of any two distinct

codewords have a full rank of two. In other words, the Alamouti scheme can achieve

a full transmit diversity of Mt = 2. The determinant of the distance matrix ∆ is

given by

det(∆) =
(
|s1 − ŝ1|2 + |s2 − ŝ2|2

)2
(1.35)

It is obvious from (1.34) that for the Alamouti scheme, the codeword distance matrix

has two identical eigenvalues. The minimum eigenvalue is equal to the minimum

squared Euclidean distance in the signal constellation. This means that for the

Alamouti scheme, the minimum distance between any two transmitted code sequences

remains the same as in the uncoded system. Therefore, the Alamouti scheme does

not provide any coding gain relative to the uncoded modulation scheme.

1.4.3 Orthogonal STBC

The Alamouti scheme achieves the full diversity with a very simple maximum-

likelihood decoding algorithm. The key feature of the scheme is orthogonality

between the sequences generated by the two transmit antennas. This scheme was

generalized to an arbitrary number of transmit antennas by applying the theory of

orthogonal designs. The generalized schemes are referred to as orthogonal space-time

block codes (OSTBC) [8]. The OSTBC can achieve the full transmit diversity

specified by the number of the transmit antennas Mt, while allowing a very simple

maximum-likelihood decoding algorithm, based only on linear processing of the

received signals.
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In order to achieve the full transmit diversity of Mt , the transmission matrix

X is constructed based on orthogonal designs such that

XHX = c(|s1|2 + |s2|2 + · · ·+ |sk|2)IMt (1.36)

where c is a constant, XH is the Hermitian of X and IMt is an Mt × Mt identity

matrix. A more general definition of OSTBC is that the product XHX satisfies

XHX = D (1.37)

where D is a diagonal matrix. The diagonal entries may not be identical, resulting in

different error rates for different symbols. The codeword X may be square or none-

square, based on the number of transmitting antennas (i.e., the codeword number of

columns).

Note that when orthogonal designs are applied to construct space-time block

codes, the rows of the transmission matrix X are orthogonal to each other. This

means that in each block, the signal sequences from any two transmit antennas are

orthogonal. For example, assuming that xi = (xi1, xi2, . . . , xiT ) is the transmitted

sequence from the ith antenna, i = 1, 2, . . . ,MT , one have

〈xi,xj〉 = xix
H
j =

T∑
t=1

xitx
∗
jt = 0 , i 6= j , i, j ∈ {1, 2, . . . ,Mt} (1.38)

where 〈·〉 denotes the inner product. The orthogonality enables to achieve the full

transmit diversity for a given number of transmit antennas. In addition, it allows the

receiver to decouple the signals transmitted from different antennas and consequently,

a simple maximum likelihood decoding, based only on linear processing of the received

signals.

The decoding algorithm for OSTBC is similar to the decoding scheme of the

Alamouti’s code. For simplicity, consider a system with only one receiving antenna
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and Mt transmitting antennas such that the output vector is given by

yT×1 = XT×MthMt×1 + nT×1 (1.39)

Initially, a linear combination of the received signals is being performed to produce a

set of k samples. Each Sample ri , 1 ≤ i ≤ k is a linear combination of the received

signals yj , 1 ≤ j ≤ T and the channel coefficients hl , 1 ≤ l ≤ Mt. This step is

to reverse the space-time encoding. While in the encoding the k data symbols are

mapped into the transmitted codeword X, here this mapping rule is used in reverse

to extract k samples out of the received vector y. Each of the k samples ri is a

noisy version of its corresponded data symbol si. It is important to note that due to

the orthogonality of the codeword, the noise terms of the combined samples ri are

uncorrelated. Thus, enables an efficient implementation of the ML decoder to recover

the data.

The symbol transmission rate is given by the ratio of the number of transmitted

data symbols k and the number of time slots needed for the transmission T or the

codeword rows dimension. The maximal rate that can be achieved by OSTBC with

complex data is given by the following theorem [14]

Theorem 1.4.1 For any given of transmit antenna Mt = 2m− 1 and Mt = 2m with

m ∈ N and m 6= 0, the rate of complex OSTBC is given by

R ≤ m+ 1

2m
(1.40)

In [15], the authors provided a closed form design method for complex OSTBC with

rate R = m+1
2m

for 2m − 1 or 2m antennas. Table 1.1 gives the achievable rates for

the square orthogonal STC, for any number of transmit antennas. These designs

are referred to as rectangular designs as they impose large delay on the system. For

example, for 8 transmit antennas, rate 5
8

code was proposed with delay of 56 time

slots. The rate converges to 1
2

as the number of transmitting antennas Mt increases.
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Table 1.1 Symbols per Channel Use of Complex Orthogonal Designs

N (number of transmit antennas) code rate symbols
channeluse

2 1

3,4 3/4

5,6 2/3

7,8 5/8

9,10 3/5

11,12 7/12

13,14 4/7

15,16 9/16

(2k−1 + 1), 2k (k + 1)/2k

This is the main drawback of OSTBC which led to the design of other STC schemes

who enjoy full rate transmission even for large number of transmit antennas.

In Chapter 2, where this work’s main contribution of semi-orthogonal STBC is

introduces, several examples of OSTC for various number of transmitting antennas

will be presented. To summarize the properties of OSTBC -

• Full diversity.

• Simple, symbol by symbol, linear ML decoder implementation.

• Can’t achieve full rate for Mt > 2.

1.4.4 Quasi Orthogonal STC

In [16],[17],[18],[19] so called Quasi Orthogonal Space-Time Block Codes (QSTBC)

have been introduced as a new family of STBCs. These codes achieve full data

rate at the expense of a slightly reduced diversity. In the proposed quasi-orthogonal
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code designs, the columns of the transmission matrix are divided into groups. While

the columns within each group are not orthogonal to each other, different groups

are orthogonal to each other. Using quasi-orthogonal design, pairs of transmitted

symbols can be decoded independently and the loss of diversity in QSTBC is due to

some coupling term between the estimated symbols.

In general, there is no formal definition for the QSTBC family, but its main

property can be written as

XHX = c(|s1|2 + |s2|2 + · · ·+ |sk|2)IMt +Q (1.41)

where the first term on the left hand side is similar to the one in OSTBC and the

second term, Q, is a sparse matrix with only off-diagonal elements. In addition, these

elements are assume to be much smaller than the elements on the diagonal.

Since the transmitted symbols are coupled in pairs, the ML decoding scheme is

more computationally demanding because it involves minimization on a vector space.

Symbol by symbol decoding scheme can be implemented by using the zero forcing (ZF)

decoder. This decoder decoupled the symbols by forcing zero interference between

symbols. Inevitably, this comes with the penalty of noise enhancement hence, it is

suboptimal decoding scheme. In addition, the calculation of the ZF filter usually

involves a matrix inversion which adds substantial amount of calculations to the

decoding process. Sphere decoding [20] was also proposed as a way to reduce the

decoding complexity of the ML decoder. Although its attractive theoretical benefits,

there still exists the issues of the choice of the appropriate covering radius of the

lattice and the determination of the incremental/decremental radius values, and the

complexity can be still quite high if the number of transmit antennas is large. It

is widely known that the sphere decoding has intrinsically variable complexity and

throughput [21] and this makes it not very suitable for hardware implementations.

In chapter 3, where the effect of imperfect channel estimation on the
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performance of STBC is discussed, a detailed example of QSTBC for 4 transmission

antennas will be presented. To summarize the properties of QSTBC -

• Full Rate.

• Complex pairwise ML decoding or suboptimal, symbol by symbol, ZF decoding.

• Doesn’t achieve full diversity.

1.4.5 Equivalent Virtual Channel

The channel output of an STBC system is given by

y = Xh + n (1.42)

Since this is not a linear system model (in the transmitted data signals sis), it is

of interest to transform the representation of the channel output to comply with

the regular linear system. To that end, the equivalent virtual channel (EVC) is

introduced. Any STBC can be written as follows

ỹ = Hs + ñ (1.43)

where s is the data symbols vector and H is the equivalent virtual channel matrix. In

this form, the MISO channel output of Equation (1.42 is represented as the output of

a virtual MIMO channel, given by H. The vectors ỹ and ñ are equal to the vectors

y and n respectively, up to the conjugation of some of the vector’s entries.

To illustrate the EVC model, consider the 2times2 Alamouti code described in

Section 1.4.2. The channel output for this code is given in Equation (1.26),

y1 = h1s1 + h2s2 + n1

y2 = h1s
∗
2 + h2s

∗
1 + n2

(1.44)



30

Taking the conjugate for the second vector entry, y2, one obtain

y1 = h1s1 + h2s2 + n1

y∗2 = h∗1s2 + h∗2s1 + n∗2

(1.45)

or after rearrangement in a vector form y1

y∗2

 =

 h1 h2

h∗2 −h∗1


 s1

s2

+

 n1

n∗2

 (1.46)

which comply with the structure given in Equation (1.43). The matrix H, given by

H =

 h1 h2

h∗2 −h∗1

 (1.47)

is the EVC matrix for the Alamouti code.

It is obvious that, the matrix H depends on the structure of the code and the

channel coefficients. The concept of the EVC simplifies the analysis of the STBC

transmission scheme, and will be used extensively throughout this work.

1.5 Other STCs

Space-time block codes can achieve a maximum possible diversity advantage with a

simple decoding algorithm. It is very attractive because of its simplicity. However,

no coding gain can be provided by space-time block codes. In addition, the STBC

is not aiming on providing multiplexing gain as there is no rate increase beyond 1.

There are many more types of STC designed to maximize different attribute (rate,

diversity, decoding complexity, etc.) In this section, two additional STC families are

presented, namely, the space time trellis codes and the layered STC.
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1.5.1 Space Time Trellis Codes

Space time trellis codes (STTC) developed as a joint design of error control coding,

modulation, transmit and receive diversity, which is able to combat the effects of

fading. STTC was first introduced in [7]. It was widely discussed and explored in

the literature as STTC can simultaneously offer a substantial coding gain, spectral

efficiency, and diversity improvement on flat fading channels. For space-time trellis

codes, the encoder maps binary data to modulation symbols, where the mapping

function is described by a trellis (or convolutional) diagram. The redundancy over

space and time induced by the trellis code is used at the receiver end to reconstruct

the transmitted data.

STTC are able to provide both coding gain and diversity gain and have a better

bit-error rate performance. However, being based on trellis codes, they are more

complex to encode and decode, where the decoding scheme relies on a Viterbi decoder

as the implementation of the ML decoder. Space-time trellis codes have a potential

drawback that the maximum likelihood decoder complexity grows exponentially with

the number of bits per symbol, thus limiting achievable data rates.

1.5.2 Layered Space Time Codes

The layered space-time (LST) architecture, proposed in [9], can attain a tight lower

bound on the MIMO channel capacity. The distinguishing feature of this architecture

is that it allows processing of multidimensional signals in the space domain by

1-D processing steps, where 1-D refers to one dimension in space. The method

relies on powerful signal processing techniques at the receiver and conventional 1-D

channel codes. In the originally proposed architecture, Mt information streams are

transmitted simultaneously, in the same frequency band, using Mt transmit antennas.

The receiver uses Mr = Mt antennas to separate and detect the Mt transmitted

signals. The separation process involves a combination of interference suppression
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and interference cancelation. The separated signals are then decoded by using

conventional decoding algorithms developed for (1-D)-component codes, leading to

much lower complexity compared to maximum likelihood decoding. Though in the

original proposal the number of receive antennas, denoted by Mr, is required to be

equal or greater than the number of transmit antennas, the use of more advanced

detection/decoding techniques enables this requirement to be relaxed to Mr ≥ 1.

The original LSTC receiver [22] is based on a combination of interference

suppression and cancelation. Conceptually, each transmitted sub-stream is considered

in turn to be the desired symbol and the remainder are treated as interferers.

These interferers are suppressed by a zero forcing (ZF) approach. This detection

algorithm produces a ZF based decision statistics for a desired sub-stream from the

received signal vector r, which contains a residual interference from other transmitted

sub-streams. Subsequently, a decision on the desired sub-stream is made from the

decision statistics and its interference contribution is regenerated and subtracted out

from the received vector r. Thus r contains a lower level of interference and this will

increase the probability of correct detection of other sub-streams. The ZF strategy

is only possible if the number of receive antennas is at least as large as the number

of transmit antennas. Other decoding techniques for the LST codes are use the

concept of QR matrix decomposition. This process transforms the channel matrix

to an equivalent upper triangular matrix, which in turn used for the interference

suppression and cancelation process. The complexity of the LSTC receivers grows

linearly with the data rate.

1.6 Outline of the Dissertation

In this dissertation two aspect of STBC are considered. The first is an enhance

method for transmitting OSTBC based STBC that achieves higher rate. This topic is

covered in Chapter 2 and consist of a method for transforming an OSTBC codeword
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to a Semi-Orthogonal STBC (SSTBC) by removing a portion of the codeword. A

decoding scheme that preserve the simple, linear computational complexity is also

introduced and analyzed. Further improvements for the proposed decoding scheme

are also presented which make the SSTBC a powerful coding technique that achieves

full rate, maintains the highly desired linear computational complexity decoding while

enjoying a very good performance (error rate).

The results of this chapter are contained in

• A. Laufer and Y. Bar-Ness, “Improved transmission scheme for orthogonal space

time codes,” Conference on Information Science and Systems CISS 2008.

• A. Jain, A. Laufer and Y. Bar-Ness, “On Converting OSTC scheme from Non-

null rate to Full-rate with better error performance,” Wireless Communication

and Sensor Networks WCSN 2008.

• A. Laufer and Y. Bar-Ness, “Full Rate Space Time Codes for Large

Number of Transmitting Antennas with Linear Complexity Decoding and High

Performance,” IEEE Information Theory Workshop ITW 2009.

• A. Laufer and Y. Bar-Ness, “Linear Computational Complexity Decoding

for Semi Orthogonal Full Rate Space Time Codes,” IEEE Wireless

Communications and Networking Conference WCNC 2011.

• A. Laufer and Y. Bar-Ness, “Full Rate Space Time Codes for Large Number of

Transmitting Antennas with Linear Complexity Decoding,” Wireless Personal

Communications, Springer, Vol. 57, pp. 465-480, Apr. 2011.

In the second part of this work, the problem of imperfect channel estimation is

addressed. This topic is covered in Chapter 3 and include an analysis of the effect

of STBC decoding using a mismatched filter due to the use of erroneous channel

coefficients. It is shown that this type of decoding results in the introduction of
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coupling or symbols interference at the output of the decoding filter. The bootstrap

algorithm is adopted as an adaptive method for suppressing the interference levels.

This method is thoroughly analyzed using the Alamouti 2 × 2 codeword as a case

study. An alternate method for the bootstrap’s weights calculation is emerged from

this analysis, which employs the use of orthogonal sequences. The concept of weights

calculation via orthogonal sequences is further expanded to general STBC to overcome

some major practical issues regarding the implementation of the bootstrap decoding.

To mitigate the rate loss due to the use of orthogonal data sequences, a novel method

for extracting orthogonal segments out of the data is introduced. The results of this

chapter have been extended from

• A. Laufer and Y. Bar-Ness, “Adaptive Decoding for Space Time Codes

with Imperfect Channel Estimation, Using the Bootstrap Algorithm,” IEEE

Broadband Wireless Access (BWA) Workshop, GLOBECOM 2010.

• A. Laufer and Y. Bar-Ness, “Improved Bootstrap Decoding Scheme for Space

Time Codes with Imperfect Channel Estimation,” Conference on Information

Science and Systems CISS 2011.

• A. Laufer and Y. Bar-Ness, “Bootstrap Decoding for the Alamouti Space-

Time Scheme with Imperfect Channel Estimation,” Wireless and Optical

Communication Conference WOCC 2011.

Finally, the contributions and results of this work are summarized in Chapter 4.



Part I

High Rate Space Time Block Codes with Linear Decoding Complexity
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Preface

STC designs that can achieve full/high transmit diversity and high rate, but

requiring only moderate fixed decoding complexity are highly desirable for practical

applications. The term fixed decoding complexity is viewed as linear complexity in the

scope of this work. The goal is to have a linear decoding complexity in both number of

transmit antennas and the constellation size. There are three factors that contribute

to the total decoding complexity, the filter calculations, filtering the received samples

and de-mapping the filtered vector back to the constellation points. The linearity in

the number of constellation size (i.e., the cardinality of the modulation) of the last

factor is guaranteed by having a symbol by symbol de-mapping. This ensures that

finding the nearest constellation point can be found with a search size equal to the

constellation size for each transmitted symbol. The filtering linearity is defined as

processing each data symbol with a linear combination of the received samples. In

addition, it is much desired that the overhead for calculating the filter used in the

decoding process will also be of linear order, i.e., doesn’t require matrix inversion,

etc.

In this part of the work, a new approaches is considered that achieve full

rate along with the constraint for linear complexity decoding. This approach is a

modification of the OSTBC, which involves a method for transmitting a full rate

STBC generated from an OSTBC combined with a novel decoding scheme which

comply with the linear complexity decoding restriction.



CHAPTER 2

SEMI ORTHOGONAL SPACE TIME CODES

In this chapter, OSTBC are used as the basis of a new transmission and decoding

schemes, which will be shown to achieve the desired code properties. Since OSTBC

come with inherent simple, symbol by symbol decoding, the modifications which are

needed include the rate increase while maintaining the simple decoding. In a nutshell,

the idea is to take advantage of the OSTBC extra redundancy, and transmit only part

of the codeword. Obviously, by doing that, the regular OSTBC decoding scheme

cannot be used directly due to the missing, non-transmitted, part of the codeword.

To that end, a modified decoding scheme is proposed. The proposed decoding scheme

comprises of two steps. At the first step, the missing part of the codeword is estimated

from the transmitted part. At the second step, the received vector, which corresponds

to the transmitted part of the codeword, combined with the estimated part are jointly

processed through a regular OSTBC decoder. Given that the estimation at the first

step of the decoder can be performed in linear computational complexity, the overall

complexity order of the decoder is linear. Thus, a rate one code with linear decoding

complexity is achieved.

2.1 Transmission Method

The core idea for achieving higher transmission rate, is to have a smaller transmitted

codeword [23]. That is, by omitting row/s from the codeword, the total number of

channel uses is reduced. The new overall transmission time is smaller Tnew < T ,

hance, the achieved rate is higher,

Rnew =
k

Tnew
>
k

T
= R (2.1)

37
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This technique is referred as the Row Elimination Method (REM).

2.1.1 Row Elimination Method

The row elimination method, that is used to increase the rate of any OSTBC, can

simply be explained with an example. Consider the following 4 Tx OSTBC codeword

[24],

X4,3/4 =



s1 s2 s3 0

−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

0 −s∗3 s∗2 s1


(2.2)

where the first index of X represents the number of transmitting antennas, and the

second stands for the code’s rate. Since there are three different data symbols (k = 3)

transmitted over four time slot (the codeword rows dimension), the rate of this code

is 3/4. Note that the three data symbols appear in each row of the codeword. If

one of the rows will be omitted, there will still be three channel outputs, and the

three data symbols could be recovered from the received vector. In other word, from

mathematic point of view, when using the original codeword given in Equation (2.2),

the decoding process is equivalent to solving an equations system with three variables

that need to be found using four equations. An equation system like this can be

generally solved using only three equations, which leads to the possibility of omitting

one of the rows in the codeword.

Assuming, without lost of generality, that the the last row is deleted. This

results in the following rate one code

X̃4,1 =


s1 s2 s3 0

−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

 (2.3)



39

This type of codeword will be referred as Semi-Orthogonal STBC (SSTBC), to reflect

the fact that they were generated from an OSTBC. Obviously, this codes cannot be

categorized as orthogonal since

X̃H
4,1X̃4,1 6= D (2.4)

with D being diagonal matrix. Hence, the decoding of this code should be performed

in a different way than the decoding of an OSTBC. It will be shown that, by a proper

choice of the original OSTBC that is used in the REM, as well as the appropriate

selection of the row/s to eliminate, the decoding complexity of the new, rate one,

code remains linear.

2.2 Decoding Scheme

The new code is of full rate but obviously not orthogonal. As a result, it requires

different decoding scheme than that for the regular OSTBC. Given a SSTBC

codeword, one can rearrange the rows of the original OSTBC codeword and write

X =

 Xr

Xd

 (2.5)

Where Xr stands for the remaining codeword (the new truncated codeword), and Xd

contains the deleted rows. Using the same notations the EVC matrix is now

H =

 Hr

Hd

 (2.6)

The received vector can be written as

ỹr = Hrs + z̃r (2.7)
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The simple ML decoder of the OSTBC cannot be used here since HH
r Hr is not

diagonal, and as a result the symbol by symbol decoding cannot be maintained.

In order to force a symbol by symbol decoding, the sub-optimal Zero Forcing (ZF)

decoder can be used, results in

r = (HH
r Hr)

−1HH
r ỹr (2.8)

or

r = H−1
r ỹr (2.9)

if Hr is invertible.

The main problem with the suggested ZF decoder is its high computational

complexity. An order of N3 operations should be performed to calculate the

corresponding filter, which is severely inefficient in comparison to the linear

complexity of the OSTBC decoder. To tackle this problem, a different way to handle

the decoding is presented. Taking advantage of the fact that the transmitted codeword

was generated from an OSTBC, the proposed decoding scheme comprises of two

steps. At the first step, the missing part of the codeword is estimated to reconstruct

the original codeword. At the second step, the regular OSTBC decoder is applied.

Following the same notations as before, the received vector of the original OSTC can

be written as

ỹ =

 ỹr

ỹd

 (2.10)

The first step is to estimate the non-transmitted part ỹd. Using Equation (1.43),

while disregarding the noise term, one have

ỹ = Hs (2.11)
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Since

HHH = (|h1|2 + |h2|2 + · · ·+ |hN |2)Ik , αIk (2.12)

hence, one can write s as

s =
1

α
HH ỹ (2.13)

and ỹd can be written as

ỹd = Hds (2.14)

Substituting (2.13) in (2.14) results in

ỹd =
1

α
HdH

H ỹ (2.15)

or after some basic algebraic manipulations

ỹd = (αI−HdH
H
d )−1HdH

H
r ỹr (2.16)

which gives an expression of estimating ỹd out of ỹr. Reconstructing ỹ from ỹr and

ỹd, one can continue to the second step of the decoder and decode the data symbols

vector s out of ỹ using the regular OSTBC decoder given in (2.13).

A fundamental relationship between the proposed decoding method and the ZF

decoder is summarized in the following claim;

Claim 2.2.1 If Hr is nonsingular, the proposed two steps decoder is identical to the

ZF decoder.

Proof The filtered vector at the output of the second decoding step is given by

r =
1

α
HH ỹ =

1

α

(
HH
r HH

d

) ỹr

ỹd

 (2.17)
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Substituting ỹd from (2.16), one obtain

r = 1
α

(
HH
r HH

d

) ỹr

(αI−HdH
H
d )−1HdH

H
r ỹr



= 1
α

(
HH
r HH

d

) I

(αI−HdH
H
d )−1HdH

H
r

 ỹr

(2.18)

which results in

r =
1

α

(
HH
r + HH

d (αI−HdH
H
d )−1HdH

H
r

)
ỹr (2.19)

For nonsingular Hr the ZF decoder has the form

rZF = H−1
r ỹr (2.20)

Hence, one need to show that the following holds

H−1
r =

1

α

(
HH
r + HH

d (αI−HdH
H
d )−1HdH

H
r

)
(2.21)

Or equivalently, that

H−1
r

(
HH
r

)−1
=

1

α

(
I + HH

d (αI−HdH
H
d )−1Hd

)
(2.22)

is satisfied. Since HHH = αI one can write

HHH =
(
HH
r HH

d

) Hr

Hd

 = HH
r Hr + HH

d Hd = αI

→ HH
r Hr = αI−HH

d Hd

(2.23)
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But
(
HH
r Hr

)−1
= H−1

r

(
HH
r

)−1
, hence, combining (2.22) and (2.23) the following

equation holds

(
αI−HH

d Hd

)−1
=

1

α

(
I + HH

d (αI−HdH
H
d )−1Hd

)
(2.24)

Multiplying by α and applying some algebra on the left hand side of the equation

results in (
I− 1

α
HH
d Hd

)−1

= I + HH
d (αI−HdH

H
d )−1Hd (2.25)

The last equation is the well known Woodbury matrix identity [25]

(A + UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1 (2.26)

with A = I , U = −HH
d , V = Hd and C = 1

α
I. Hence, (2.22) holds, which concludes

the proof. ut

Note that the demand on Hr to be invertible is crucial for the correctness of the claim.

In wider sense, it relates to the REM process. If at the REM stage of generating

the SSTBC out of an OSTBC codeword, the deleted rows were chosen such that

the corresponding Hr is non-invertible, the SSTBC is poorly constructed, and the

transmitted data cannot be recovered.

The performance of the new decoder is identical to the performance of the ZF

decoder since their mathematical representation is the same. The incentive to use the

two steps decoding scheme comes from its reduces computational complexity. The

second step of the decoding is done in linear complexity as it is the regular OSTBC

decoder. It is yet to be shown that the first step of estimating the missing part of

the codeword can also be executed with linear complexity. A linear estimation of the

missing part of the codeword, using the received vector can generally be written as

ỹd = Bỹr (2.27)
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using Equation (2.16), the expression for the matrix B is given by

B = (αI−HdH
H
d )−1HdH

H
r (2.28)

To force the required linear computational complexity, the calculation of the matrix

B should also be restricted to be linear in its dimensions. For general OSTBC the

calculation of the left hand side in Equation (2.28) does require more than linear

order of operations. This is due to the matrices product and the matrix inversion.

Hence, it is requires to hand pick the OSTBC from which the SSTBC is generated

such that the left hand side expression in Equation (2.28) will converges to a more

simple expression that can be calculate with a linear number of operations. In the next

section, a systematic method for generating OSTBC which comply with this condition

is presented. This method can generate OSTBC for any number of transmitting

antennas. An REM rule, tailored for this new OSTBC family, is also provided such

that the invertibility of Hr is guaranteed, and the expression of B becomes very

simple to calculate.

2.3 New OSTBC

Applying the new transmission and decoding schemes to any OSTBC results in a full

rate code which can be decoded by first, using (2.16), to estimate the missing part of

the original code’s received vector, followed by the regular OSTBC decoder. In order

to benefit the most out of the two steps decoder, one should find an OSTBC as well as

a rule for the REM such that the calculation of the matrix expression in (2.28) will be

of low complexity. Although many of the known in the literature OSTBCs do comply

with the codeword conditions of the proposed transmission / decoding schemes, it is

desirable to come with a systematic way for generating such codes. This leads to a

new OSTBC that addresses this requirement [26].

The new OSTBC can be used with any number of transmit antennas, and is
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generated in a recursive way, i.e., Xn+1 depends upon Xn, where the subscript index

represents both the number of Tx antennas and the number of the different data

symbols. The algorithm for the code generation is summarized below.

Algorithm 1 Generate codeword Xn+1 from Xn

Given Xn, then

Xn+1 =

 Xn b

C −d


Where [t, n] = size(Xn)

bt×1 = (sn+1 01×(t−1))
T

Cn×n = s∗n+1 · In

dn×1 = (s∗1 s∗2 ... s∗n)T

The starting point of the algorithm is simply the ”codeword” for 1 Tx antenna

X1 = s1. Applying the algorithm on X1 results in

X2 =

 s1 s2

s∗2 −s∗1

 (2.29)
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which is the famous Alamouti code. Making another recursive step produces X3,

X3 =


X2

 s3

0

 s∗3 0

0 s∗3

 −

 s∗1

s∗2





=



s1 s2 s3

s∗2 −s∗1 0

s∗3 0 −s∗1
0 s∗3 −s∗2



(2.30)

The X3 code as well as its successor X4 can be found in [27].

The code’s orthogonality property follows directly from the code generation

method (the full proof is given in Appendix A.). The rate of this code is the ratio

between the number of rows and the number of columns of the code matrix and is

given by

Rn =
2n

n2 − n+ 2
(2.31)

Obviously this rate is very bad since it decreases fast with the number of Tx antennas.

In order to transform this code to a rate 1 code through the row elimination method

one need to delete n2−3n+2
2

rows. This number is exactly the number of null entries

in each column, which leads to the following REM rule. One needs to choose a

column of the codeword and delete the rows that correspond to the null entries of the

selected column. Recall that the codeword columns represent the different antennas

(channels), hence this row elimination rule corresponds to the selection of the channel

that will be utilized the most.

Applying the aforementioned REM rule, it can be shown that the resulted Hr
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is indeed invertible and that the expression for the matrix B can be simplified to

(derived in details in Appendix B.1)

(αI−HdH
H
d )−1HdH

H
r =

1

|hi|2
HdH

H
r (2.32)

where i is the index of the ’selected’ column. Furthermore, it can be shown that

(Appendix B.2)

1

|hi|2
HdH

H
r =

1

h∗i
H̃d,i (2.33)

where H̃d,i is equal to Hd up to a possibly columns position exchange and sign inverse,

hence, can be derived with no computational overhead. Combining Equations (2.32)

and (2.33) results in

(αI−HdH
H
d )−1HdH

H
r ==

1

h∗i
H̃d,i (2.34)

This property greatly reduces the computational complexity of the decoding process,

since the first step of the decoding process, given in (2.16), reduces to

ỹd =
1

h∗i
H̃d,iỹr (2.35)

which has linear computational complexity. The second decoding step is the regular

OSTBC decoder which is known to have linear complexity. Thus, the complexity

order of the two steps decoder, applied on the new OSTBC with the proposed REM

rule, is linear.

2.4 4 Tx Example

To better illustrates the new transmission/decoding schemes and the REM rule,

consider the 4 Tx codeword generated using the new algorithm for OSTBC
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construction [28]. The new code for in this case is given by

X4,4/7 =



s1 s2 s3 s4

s∗2 −s∗1 0 0

s∗3 0 −s∗1 0

0 s∗3 −s∗2 0

s∗4 0 0 −s∗1
0 s∗4 0 −s∗2
0 0 s∗4 −s∗3



(2.36)

its rate is 4
7

and one need to delete 3 rows to get a full rate code.

Following the proposed rule for the rows elimination, assuming without loss of

generality, that the first column is chosen as the ’selected’ one. Since the first column

contains zeros in the 4th, 6th and 7th entries, these rows will be deleted from the

code word, resulting in

X̃4,1 =



s1 s2 s3 s4

s∗2 −s∗1 0 0

s∗3 0 −s∗1 0

s∗4 0 0 −s∗1


(2.37)

To ease the presentation, the ’rate’ index will be removed in the sequel. The equivalent

virtual channel (EVC) form for the full OSTC code (X4) is

y1

y∗2

y∗3

y∗4

y∗5

y∗6

y∗7



=



h1 h2 h3 h4

−h∗2 h∗1 0 0

−h∗3 0 h∗1 0

0 −h∗3 h∗2 0

−h∗4 0 0 h∗1

0 −h∗4 0 h∗2

0 0 −h∗4 h∗3





s1

s2

s3

s4


(2.38)
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Rearranging the rows in the matrix results in the following EVC terms

ỹr =



y1

y∗2

y∗3

y∗5


; Hr =



h1 h2 h3 h4

−h∗2 h∗1 0 0

−h∗3 0 h∗1 0

−h∗4 0 0 h∗1



ỹd =


y∗4

y∗6

y∗7

 ; Hd =


0 −h∗3 h∗2 0

0 −h∗4 0 h∗2

0 0 −h∗4 h∗3



(2.39)

In this case H̃d,1 is equal to Hd and the estimation of ỹd is simply given by


ŷ4
∗

ŷ6
∗

ŷ7
∗

 =
1

h∗1


0 −h∗3 h∗2 0

0 −h∗4 0 h∗2

0 0 −h∗4 h∗3





y1

y∗2

y∗3

y∗5


(2.40)

Once ỹd is estimated, ỹ is reconstructed and plugged in to the regular OSTBC decoder

r =
1

α
HH ỹ (2.41)

If different than the first column was chosen, H̃d,i will not be equal to Hd but could

be derived in a very simple way. Consider the case were the second column is selected

(i = 2). The second column contains zeros in its 3rd, 5th and 7th entries, these rows

will be deleted from the X4, resulting in

X̃4 =



s1 s2 s3 s4

s∗2 −s∗1 0 0

0 s∗3 −s∗2 0

0 s∗4 0 −s∗2


(2.42)
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Rearranging the rows in the H matrix results in the following EVC terms

ỹr =



y1

y∗2

y∗4

y∗6


; Hr =



h1 h2 h3 h4

−h∗2 h∗1 0 0

0 −h∗3 h∗2 0

0 −h∗4 0 h∗2



ỹd =


y∗3

y∗5

y∗7

 ; Hd =


−h∗3 0 h∗1 0

−h∗4 0 0 h∗1

0 0 −h∗4 h∗3



(2.43)

In this case H̃d,2 is given by

H̃d,2 =


0 h∗3 h∗1 0

0 h∗4 0 h∗1

0 0 −h∗4 h∗3

 (2.44)

which can be simply derived from Hd by inverting the sign of the first column and

flipping the position of the first and second columns. The estimation of ỹd is given

in this case by 
ŷ3
∗

ŷ5
∗

ŷ7
∗

 =
1

h∗2


0 h∗3 h∗1 0

0 h∗4 0 h∗1

0 0 −h∗4 h∗3





y1

y∗2

y∗4

y∗6


(2.45)

2.5 5 Tx Example

The proposed transmission (using REM) and decoding schemes work well with any

number of transmit antennas. In this section, an 5 Tx OSTBC is presented with its

REM and decoding schemes. For a system with five transmitting antennas, one can
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use the following OSTBC codeword1 [29],

X5,2/3 =



s1 s∗2 s∗3 s∗4 0

s2 −s∗1 0 0 s∗5

s3 0 −s∗1 0 −s∗6
0 s3 −s2 0 s7

s4 0 0 −s∗1 s∗8

0 −s4 0 s2 −s9

0 0 −s4 s3 s10

s5 0 −s∗7 −s∗9 −s∗2
0 s5 −s6 s8 s1

s6 −s∗7 0 −s∗10 s∗3

s7 s∗6 s∗5 0 0

s8 s∗9 −s∗10 0 −s∗4
s9 −s∗8 0 s∗5 0

s10 0 s∗8 s∗6 0

0 −s10 −s9 s7 0



(2.46)

which is orthogonal (i.e., XHX = (|s1|2 + |s2|2 + · · · + |s10|2)I5) with rate 2/3 since

10 data symbols are transmitted over 15 time slots. To get a full rate code, one

need to delete five rows from the original codeword. As in the OSTBC proposed in

Section 2.3, the number of null entries in each column of the codeword matrix is equal

to number or rows that need to be eliminated from the codeword. This leads to a

similar REM rule. After a column is chosen (in an arbitrary fashion or with some side

information as will be explained later) the rows that coresponds to the null entries

of this column are deleted from the codeword. Table 2.1 summarize the REM rule

1This code is not from the new OSTBC family presented earlier, but rather, off the shelf
code. It was chosen as an example for the new transmission and decoding schemes to
emphasis the fact that most of the OSTBC known in literature can be handle with the
proposed schemes to result in rate one code with linear decoding complexity.
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Table 2.1 REM Rule for 5 Tx OSTBC

Chosen Column Rows to Delete

1 {4,6,7,9,15}

2 {3,5,7,8,14}

3 {2,5,6,10,13}

4 {2,3,4,11,12}

5 {1,11,13,14,15}

for the 5 Tx codeword given by (2.46). Choosing the non-transmitted rows according

to Table 2.1, results in Hr and Hd which satisfies Equation (2.34), i.e., the following

equation holds

(αI−HdH
H
d )−1HdH

H
r =

1

h∗i
H̃d,i (2.47)

where the index i corresponds to the chosen column. The matrix H̃d,i is equal to Hd

up to a column sign inversion and position change. This means that the calculation

of the filter (matrix B) for the first step of the decoding have no calculation overhead,

hence, the total decoding complexity remains linear.

2.6 Improved Transmission / Decoding

The new transmission / decoding schemes combined with the new code and REM

rule enable having a full rate code with linear complexity implementation of the ZF

decoder. The performance of the proposed decoding method is highly depend on

the quality of the estimation in the first decoding step. If the estimated missing

part of the codeword will be severely non-accurate the resulted error rate will be

high and intolerable. Having a closer look at the expression for the estimation of

the missing part, given by Equation (2.34), reveals that the estimation is inverse

proportional to hi which is the channel coefficient that corresponds to the selected
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column i at the REM stage. Since hi can be relatively small, the estimated part

can suffer a substantial noise enhancement, which in turn, effects the recovering of

the data symbols. This problem can be shown by calculating the power of the noise

terms at the output of the filter. After proving that the proposed decoding scheme

is equivalent to the ZF decoding scheme one can simply analyze the performance of

the ZF decoder. Revisiting the 4 Tx codeword given in Section 2.4, where the first

column was chosen for the REM, the filtered vector is given by

r = H−1
r ỹr = H−1

r (Hrs + z̃) = s + H−1
r z̃ = s + v (2.48)

where z̃ ∼ CN (0, σ2I). The covariance matrix of v is given by

Kv = H−1
r σ2I(H−1

r )H = σ2(HH
r Hr)

−1 (2.49)

Evaluating this matrix for the four antennas example results in a diagonal (the filtered

noise variances) of the form (derived in Appendix C.)

diag(Kv) =
σ2

α



1

1 +
(
|h3|
|h1|

)2

+
(
|h4|
|h1|

)2

1 +
(
|h2|
|h1|

)2

+
(
|h4|
|h1|

)2

1 +
(
|h2|
|h1|

)2

+
(
|h3|
|h1|

)2


(2.50)

It is clear from these expressions that given a channel realization where |h1| is very

small, the noise term can be very large. This may happen if |h1| goes to zero or

even for a moderate value of |h1| but accompanied with large |hi| terms (i 6= 1).

In the general case, where are rows are deleted from the original OSTBC codeword

(following a different selected column), the term in the denominators of Equation

(2.50) will be |hi|2 where i corresponds to the index of the selected column. Never

the less, the problem of having small hi remains the same and can result in severe

performance loss.
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To tackle this problem, modified transmission and decoding schemes are

presented [30]. In the following, the more compact 4 Tx OSTBC (given in Equation

(2.2)) will be thoroughly analyzed and modified under various different setups.

Recalling the rate 3
4
, 4 Tx codeword

X4,3/4 =



s1 s2 s3 0

−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

0 −s∗3 s∗2 s1


(2.51)

Eliminating (without loss of generality) the last row, results in a new semi-orthogonal,

rate 1 codeword

X4,1 =


s1 s2 s3 0

−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

 (2.52)

The two steps decoding scheme is demonstrated for this code. Having one receiving

antenna, the received vector y entries are given by

y1 = h1s1 + h2s2 + h3s3 + n1

y2 = −h1s
∗
2 + h2s

∗
1 + h4s3 + n2

y3 = −h1s
∗
3 + h3s

∗
1 − h4s2 + n3

(2.53)

In order to recover the missing last row of the codeword X4,1 from y, one need to find

a linear combination of y entries which will results in the desired y4 given by ([31]),

y4 = h4s1 + h3s
∗
2 − h2s

∗
3 (2.54)

It is simple to show that the following combination results in (2.54) up to the noise

term

ŷ4 =
h4

h1

y1 −
h3

h1

y2 +
h2

h1

y3 (2.55)
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Substituting (2.53) in the above equation one get

ŷ4 = h4s1 + h3s
∗
2 − h2s

∗
3 + ñ4 (2.56)

where ñ4, the noise term of the estimated channel output (or the estimation error) is

given by

ñ4 =
h4

h1

n1 −
h3

h1

n2 +
h3

h1

n3 (2.57)

With the recovered y4, the regular OSTBC decoder is applied. The ”matched”

filtering is given by the following combining equations

r1 = 1
α

(h∗1y1 + h2y
∗
2 + h3y

∗
3 + h∗4ŷ4) = s1 + ξ1

r2 = 1
α

(h∗2y1 − h1y
∗
2 − h∗4y3 + h3ŷ

∗
4) = s2 + ξ2

r3 = 1
α

(h∗3y1 + h∗4y2 − h1y
∗
3 − h2ŷ

∗
4) = s3 + ξ3

(2.58)

where α = |h1|2 + |h2|2 + |h3|2 + |h4|2 and the filtered noise terms are a linear

combination of the channel noise terms ni, i = 1, 2, 3, given by

ξ1 = 1
α

(h∗1n1 + h2n
∗
2 + h3n

∗
3 + h∗4ñ4)

ξ2 = 1
α

(h∗2n1 − h1n
∗
2 − h∗4n3 + h3ñ

∗
4)

ξ3 = 1
α

(h∗3n1 + h∗4n2 − h1n
∗
3 − h2ñ

∗
4)

(2.59)
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The filtered noise powers are given by

E(ξ1ξ
∗
1) = σ2

α

(
1 + |h4|2

|h1|2

)

E(ξ2ξ
∗
2) = σ2

α

(
1 + |h3|2

|h1|2

)

E(ξ3ξ
∗
3) = σ2

α

(
1 + |h2|2

|h1|2

)
(2.60)

or in general by

E(ξiξ
∗
i ) =

σ2

α

(
1 +
|hj|2
|h1|2

)
, i ∈ {1, 2, 3}, j ∈ {2, 3, 4} (2.61)

where i is the symbol index and j is the channel or the transmit antenna index.

Once again, it is clear from the expression in Equation (2.61) that the noise terms

are inverse proportional to the channel coefficient that corresponds to the selected

column at the REM stage. This may results in a poor performance in the case where

this channel coefficient is very small.

2.6.1 Sequential Decoding

A simple improvement, yet performance boosting, can be made to this decoding

scheme if considering sequential decoding. The motivation for the sequential decoding

is the understanding that with high probability the largest term among the filtered

noise powers can be very large which results in poor decoding performance for that

symbol. In order to prevent this, one can first decode the two symbols which

associated with the lesser two noise powers using (2.58). The next step is to subtract

the decoded symbols from the received signals (2.53) and using the modified signals

for the decoding of the last symbol without the use of the estimated ŷ4. This method

can be illustrated using the 4 Tx example. Consider, without loss of generality, that

|h2| > |h3| > |h4|. In this case s1 and s2 enjoys better SNR and will be decoded first
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(i.e., the noise terms associated with r1 and r2 have less power than the one associated

with r3). Subtracting them from (2.53) one gets

ỹ1 = y1 − (h1ŝ1 + h2ŝ2) = h3s3 + n1 + e1

ỹ2 = y2 − (−h1ŝ
∗
2 + h2ŝ

∗
1) = h4s3 + n2 + e2

ỹ3 = y3 − (h3ŝ
∗
1 − h4ŝ2) = −h1s

∗
3 + n3 + e3

(2.62)

where ei are terms which correspond to the estimation errors of s1 and s2. The regular

combining results in

r̃3 =
1

αs
(h∗3ỹ1 + h∗4ỹ2 − h1ỹ

∗
3) = s3 + ψ3 (2.63)

where αs = |h1|2 + |h3|2 + |h4|2. Assuming low error rate for the first two decoded

symbols, this scheme greatly decrease the filtered noise power of the last symbol.

This will be further elaborated in the performance analysis section. Note that this

addition for the decoding scheme doesn’t change its complexity order which remains

optimal, i.e., linear in the number of antennas and in the constellation size.

The main problem of this scheme, as can be viewed from (2.61), is that it

depends greatly on the value of h1 (note that the channel index is due to the choice

of the last row as the one be eliminated, given a deletion of another row, the channel

index in the denominator of (2.61) would have been different). If h1 is close to zero,

or more generally, if |h1| << |hj| , j ∈ {2, 3, 4}, the filtered noise power is very large

resulting in poorly decoded symbols even for the two symbols that associated with

the lesser noise power terms. To overcome this, some modifications for the proposed

transmission and decoding schemes are presented under different system settings.
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Table 2.2 Dependency of the Channel Coefficient at the Denominator of the Noise
Power on the Deleted Row

Deleted Row Denominator Channel Index

1 4

2 3

3 2

4 1

2.6.2 Limited Feedback

The simplest way to avoid a weak channel at the denominator of (2.61), is to have

some feedback to the transmitter. A very limited feedback of 1 and 2 bits is considered

and the modification of the transmission scheme is explained. The feedback is used

at the transmitter for the choice of the row to delete which corresponds to the term

in the noise power denominator. Table 2.2 summarizes this dependency which can be

simply demonstrated.

2.6.2.1 2 Bits Feedback. With 2 feedback bits, or more generally, dlog2(Mt)e

feedback bits (where Mt is the number of transmit antennas), the receiver can inform

the transmitter which channel is the strongest. With this information, the transmitter

can choose the row to delete from the codeword matrix (2.51) such that the strongest

channel will appear in the denominator of (2.61) so that

E(ξiξ
∗
i ) ≤ 2

σ2

α
(2.64)

This is a simple and robust way to prevent the noise power from divergence.

2.6.2.2 1 Bit Feedback. With only 1 feedback bit, it can be pre-agreed on only

two optional rows (instead of four), from which one row will be chosen as the deleted
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row. For example, the transmitter deletes either the third or the last row. This

corresponds to having either h2 or h1 at the denominator of (2.61) respectively (see

Table 2.2). The feedback bit is determined according to the following rule

0 if |h1| > |h2|

1 otherwise
(2.65)

The transmitter chooses the row to delete (among the pre-agreed two rows) according

to the feedback bit value. By this method the probability of having very small

denominator decreases due to the smaller probability of having both values of |h1|

and |h2| close to zero at the same time.

2.6.3 Multiple Receiving Antennas

While the transmission scheme is modified when having a limited feedback, it

remains the same for multiple receive antennas. Rather, the decoding scheme is

modified to exploit the benefits of the additional antennas used to mitigate the ”small

denominator” problem presented. Consider the case of 2 Rx, the filtered noise powers

of the combined signals (2.58) at each receive antenna are given now by

E(ξi,kξ
∗
i,k) = σ2

αk

(
1 +

|hj,k|2
|h1,k|2

)

i ∈ {1, 2, 3}, j ∈ {2, 3, 4}, k ∈ {1, 2}

(2.66)

where k is the receive antenna index. At the receiver, a maximum ratio combining

(MRC) approach can be used to maximize the output SNR by properly weighting the

combined signals at each antenna output and combine them accordingly. Thus, the

inputs to the de-mapper will be of the form

zi =
bi

ai + bi
ri,1 +

ai
ai + bi

ri,2 (2.67)
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where ri,k are the combined outputs (2.58) associated with each receiver antenna.

The weights ai and bi are given by

ai = E(ξi,1ξ
∗
i,1)

bi = E(ξi,2ξ
∗
i,2)

(2.68)

It is easy to see from (2.67) and (2.68) that in the case of very small h1,k at one of the

receiving antennas the MRC will weight out this antenna output enabling a better

decoding performance.

All three schemes (1 bit feedback, 2 bits feedback and multiple receiving

antennas), can be further improved when combined with the proposed sequential

decoding. This is done by following the proposed modified decoding schemes only for

the two symbols having the two small noise power terms. The third symbol is decoded

after the previous symbols are subtracted from the received signals. It is important

to note that all the modification for the basic transmission/decoding schemes of the

SSTBC do not change the complexity order which remains linear in the number of

antennas and the constellation size of the modulation used.

2.7 Performance Analysis

In order to evaluate the performance gain of the different decoding schemes the

foundation for the probability of error calculations is established. With the different

SSTBC transmission and decoding scheme the instantaneous SNR is usually given by

SNR =
P

σ2
x = γx (2.69)

where P is the antenna transmission power (per time slot), σ2 is the channel additive

noise power and x, which is a function of channel coefficients h, is an r.v. which

varies according to the applied transmission and decoding schemes. γ can be viewed



61

as SNR0 or the SNR in the case of single input single output channel. The general

expression for the instantaneous error probability is proportional to

Pe,inst(SNR) ∝ Q(
√
SNR) (2.70)

To evaluate the probability of error one need to average (2.70) over the r.v. x, namely

Pe =

∫ ∞
0

Q(
√
SNR)fx(x)dx =

∫ ∞
0

Q(
√
γx)fx(x)dx (2.71)

To solve this integral, two approximation are used. The first is the famous upper

bound of the Q function

Q(x) ≤ 1

2
e−

x2

2 (2.72)

The p.d.f of x should be found or approximated such that this integral can be

evaluated. For simple cases, such as the regular OSTBC, the p.d.f of x can be found

analytically and it is said to follow the Chi Square distribution, χ2, with 2 ·Mt degrees

of freedom. It can be simply shown that for this type of distribution, the achieved

diversity order is equal to half of the degrees of freedom. Hence, the OSTBC achieves

diversity order of Mt which is full diversity in the simple case of MISO with Mt

transmitting antennas and 1 receiving antenna.

The problem starts with more involved transmission / decoding schemes which

involve feedback or multiple receiving antennas. It is much harder to derive an

analytical expression for x in these cases. The common practice to tackle this problem

is to approximate its empirical distribution with a known p.d.f function. To that end,

the use of the Gamma distribution is suggested. Initially, the achieved diversity

order for a general system where x’s p.d.f is approximated to a Gamma distributed

is derived. The p.d.f of the Gamma distributed r.v. is given by

fx(x) =
θk

Γ(k)
xk−1e−θx , x ≥ 0 (2.73)
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where k and θ are the distribution parameters. Rewriting (2.71) one have

Pe ≤
∫ ∞

0

1

2
e−

γx
2
θk

Γ(k)
xk−1e−θxdx =

θk

2Γ(k)

∫ ∞
0

xk−1e−
x
2
(γ+2θ)dx (2.74)

Using the following identity ∫ ∞
0

xae−bxdx =
Γ(a+ 1)

ba+1
(2.75)

results in

Pe ≤
θk

2Γ(k)

Γ(k)(
1
2
(γ + 2θ)

)k = 2k−1θk
1

(γ + 2θ)k
(2.76)

For high SNR (i.e., γ >> 2θ) one can approximate and write

Pe ≤ 2k−1θk
1

γk
(2.77)

which indicates that a diversity order of k is achieved. Hence, the behavior of the

probability of error in the high SNR region is a function of the distribution parameters.

A diversity order of k is achieved, while θ determines how large γ should be to

achieve this diversity order. These two parameters will be the basis for comparison

of the various transmission / decoding schemes that were presented. Note that the

χ2 distribution is a private case of the Gamma distribution with θ = 1
2
.

This approximation is preferred due to the fact that it is more general than

the traditionally used Chi-square distribution, i.e., the additional parameter θ allows

better fitting to the given empirical distribution while the χ2 distribution consist of

only one parameter n which corresponds to the number of degrees of freedom and is

equivalent to k of the Gamma distribution. In addition, the Gamma distribution has

an important scaling property, namely, if

x ∼ Gamma(k, θ) (2.78)
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then for any a > 0

ax ∼ Gamma(k,
θ

a
) (2.79)

This implies the following; any scaling change of x will not result in a different achieved

diversity order but rather will change only the value of γ for which this diversity

order is achieved. This result is expected, yet since the χ2 p.d.f function have no

similar property, i.e., scaling a χ2 distributed r.v. results in a non χ2 distribution.

This property is important when comparing the performance of different transmission

/ decoding methods which, in many cases, results in different effective transmission

power. This difference in γ can be embedded into x resulting in a scaling of the random

variable. Using the Gamma p.d.f as the approximation for the various distributions

enables an easier comparison since the p.d.f function remains the same (up to a scaling

parameter) and there is no need to compare different p.d.f functions. In addition, x

can be written as the product of two terms α(h) · f(h), where α(h) is a sum of |hi|2

terms and f(h) is usually some rational function involving |hi|2 terms. This eases the

performance comparison of different schemes with common α(h) since the comparison

is done only on the f(h) part of x.

2.7.1 Basic SSTBC

From Equations (2.61) and (2.69) one can write the resulted SNR of the basic SSTBC

as

SNRi = P
α

σ2

( |h1|2
|hj|2 + |h1|2

)
= P

α

σ2
ν (2.80)

where it can be shown (Appendix D.1) that the r.v. ν has uniform distribution

between 0 and 1. This degrades the performance significantly since the probability

of having low SNR at the receiver is substantial.

When ordering the decoded symbols by their filtered noise powers their
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associated ν(i) (i.e., the r.v. that corresponds to their instantaneous SNR) are given

by

νi =
|h1|2

h(i) + |h1|2
(2.81)

where h(i) are the ordered statistics of {|h2|2 |h3|2 |h4|2}. Their p.d.fs calculated in

Appendix D.2 and are given by

fν(1)(ν(1)) = 3
(3−2ν(1))

2 , 0 ≤ ν(1) ≤ 1

fν(2)(ν(2)) = 3
2

[
1

(1− 1
2
ν(2))

2 − 1
( 3
2
−ν(2))2

]
, 0 ≤ ν(2) ≤ 1

fν(3)(ν(3)) = 3
4

[
4− 2

(1− 1
2
ν(3))

2 + 1
( 3
2
−ν(3))2

]
, 0 ≤ ν(3) ≤ 1

(2.82)

Figure 2.1 shows the p.d.fs of ν(i) and it can easily viewed that for the symbol with

the smallest SNR (associated with ν(3)) the probability for having close to zero SNR is

substantial resulting in very poor performance. To that end, the sequential decoding

was suggested.

2.7.2 Sequential Decoding

By sequential decoding, the symbol with the largest noise term is handled differently

than the basic decoding. After having two decoded symbols they subtracted from

the received signals and then simply combined to form the third symbol input to the

de-mapper. Since there is no use of the noisy estimation of ŷ4 the total noise power

via this method is reduced. The calculation of the resulted noise power is done by

revisiting (2.63). The noise term ψ3 is given by

ψ3 =
1

αs
(h∗3(n1 + e1) + h∗4(n2 + e2)− h1(n

∗
3 + e3)) (2.83)
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Figure 2.1 Probability density function of ν and ν(i).

Assuming perfect estimation of the first two symbols (i.e., ei = 0) the power of the

filtered noise is given by

E(ψ3ψ
∗
3) =

σ2

(|h1|2 + |h3|2 + |h4|2)
(2.84)

It can be simply shown that this noise power is always smaller than the power of ξ3,

hence, the total performance is better than decoding with the basic decoding scheme.

In general the noise power can be written as

E(ψ3ψ
∗
3) =

σ2

(α− h(3))
=
σ2

υ
(2.85)

where h(3) is the maximum between {|h2|2, |h3|2, |h4|2}. The p.d.f of υ is derived in

Appendix D.3 and given by

fυ(υ) = 3
(
e−υ + e−

1
2
υ − 2e−

3
4
υ
)

(2.86)
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Figure 2.2 illustrates the instantaneous SNR p.d.fs of the decoding of the last symbol

and compares between the regular (α ·ν(3)) and the sequential decoding (υ). It is clear

how dramatic is the SNR improvement when using the sequential decoding scheme

with no substantial addition to the computational complexity of the decoder.
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p.d.f. of the instantaneous SNR for the last decoded symbol

 

 

Basic Decoding

Sequential Decoding

Figure 2.2 Probability density function of the instantaneous SNR of the last
decoded symbol for the basic and sequential decoding.

2.7.3 Modified SSTBC

The p.d.fs of the instantaneous SNR terms of the modified SSTBC for systems

with limited feedback or multiple receiving antennas is more involved to calculate

analytically. The histograms of these terms are presented and compared in Figure

2.3 to illustrate how these modifications can boost the performance and mitigate

the problem presented with the regular scheme. As mentioned before, the sequential

decoding can be incorporated with the decoding of the modified SSTBC for further

performance enhancement.
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Figure 2.3 Histograms of the instantaneous SNR of the modified SSTBC.

Figure 2.4 shows the performance curves for an extensive simulations that have

been performed to compare a 4 Tx system using SSTBC and QSTBC under various

settings2. The black curve is the regular SSTBC decoding, with poor performance.

The sequential decoding scheme is performed on top of the other modified schemes

(based on the system settings). It is clear that the performance is similar to the one

achieved by the QSTBC for these setting, but with lower decoding complexity.

2For the QSTBC encoding with limited feedback and 2 receiving antennas the decoding
schemes that been used in the simulation were adopted from [32],[33] and [34]
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Preface

In every communication system that requires some channel state information at the

receiver, a portion of the transmission is dedicated to training sequences. The quality

of the channel estimation is a function of the total energy / length of the training

sequence. It was shown that in space time codes (STC) systems it is crucial to have

a very accurate channel estimation in order to have low error rate [35]. This implies

that a substantial portion of the transmission will be ”wasted” on training to obtain

the required accurate channel estimation, resulting in significant effective rate loss.

This problem is even more acute in high data rate systems where large constellation

size is used and the error probability increase dramatically for inaccurate channel

coefficient at the receiver.

Substantial work has been done in this area, covering many aspects relating to

imperfect channel estimation (ICE). Zheng and Tse [36] addressed the capacity of the

MIMO channel with imperfect side information caused by ICE from an information-

theoretic point of view . The design criteria of STC in the presence of ICE is discussed

in [7]. A performance analysis of various decoders for STC with ICE can be found in

[37], where the maximum likelihood (ML) decoding scheme is used. The problem with

this approach is its computational complexity overload, which becomes non-tractable

for large constellation size and / or for large number of transmit antennas.

This part of the dissertation focuses on a method for handling the ICE scenario

while maintaining low decoding complexity. This can be achieved by forcing the

regular symbol by symbol decoding followed by a reduction of the estimation errors

effect. The effect of using the mismatch decoder, i.e., decoding regularly with an

erroneous filter, is the introduction of signals interference at the receiver. Hence, it

is suggested to use an adaptive method , namely the bootstrap algorithm [38], for

signals separation on the output of the mismatched filter.



CHAPTER 3

SPACE TIME BLOCK CODES WITH IMPERFECT CHANNEL

ESTIMATION

The presence of channel estimation errors degraded the performance of STBC

dramatically. One approach to mitigate the affect of imperfect channel estimation

(ICE) is to enhance the estimation quality. This, inevitably, comes with the penalty

of the resources that are dedicated for the estimation process, namely, the time and

power of the training sequence. To get better estimation, one need to increase the

length of the training sequence and / or to invest more power to its transmission. Both

harm the transmission of the data itself since, for achieving the same data bit rate,

one need to use larger constellation size to compensate for the shorter transmission

time. In addition, less power is available per data block due to the excess power that

was invested in the training portion of the transmitted block. Another approach is a

complex ML decoding that involves both the channel coefficients estimation and the

data symbols.

This approach was analyzed in [37] and shown to be very effective in combating

the ICE effect on STBC decoding. Nether the less, the computational complexity of

the implementation of such ML decoding scheme is very high. For system with large

number of transmit antennas and high constellation size, this scheme is practically

non-tractable. Hence, it is highly desirable to have a method for minimize the

ICE effect on the performance of STBC while maintaining the low complexity of

the decoding process. Moreover, the dedicated portion of the transmitted block for

estimating the channel coefficients, should remain untouched in terms of its length

and total power, in order to maintain the system data rate and performance.

With these restrictions in mind, this chapter addresses the ICE problem in a

71
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different way. It is suggested to start with the regular STBC decoding, where simple

decoding is guaranteed, which resulting in inter symbol interference due to the use of

erroneous channel coefficients. The next decoding phase is dedicated for interference

reduction where a simple, adaptive scheme, is proposed as a mean for refining the

output of the regular decoder by lowering the interference levels.

3.1 System Model

The effect of ICE on the decoding of a STBC system is demonstrated for both the

OSTBC and QSTBC families. Consider the received signal of a MISO channel with

Mt transmitting antennas 1

y = Xh + n (3.1)

where h = [h1 . . . hMt ]
T are the channel coefficients.

3.1.1 OSTBC

To present the ICE effect on the decoding, the basics properties of the OSTBC

decoding scheme are reviewed. The OSTBC codeword X satisfies

XHX = γI (3.2)

where γ = 1
k
||X||2, where k is the number of different data symbols and || · || is the

Forbenius norm.

y can be rewritten as the output of a MIMO channel (in the EVC form)

ỹ = Hs + ñ (3.3)

1While this work can be applied to a general STBC system operating over a MIMO channel
with Mt transmitting antennas and Mr receiving antennas, the emphasis will be on the
multiple input single output (MISO) channel. This is due to the more intuitive aspects of
the decoding process for system with only one receive antenna.
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where s is the data symbols vector. ỹ and ñ are equal to y and n respectively, up to

the conjugation of some of the vectors entries. The equivalent channel matrix H has

similar properties as X and it also satisfies

HHH = αI (3.4)

where α = 1
Mt
||H||2. This attribute enables the simple maximum likelihood (ML)

decoding of the OSTBC given by

r =
1

α
HH ỹ = s +

1

α
HHñ (3.5)

In the presence of ICE, an erroneous version of the channel coefficients vector ĥ =

h+he is available at the receiver. This transforms to an erroneous equivalent channel

matrix Ĥ, written as

Ĥ = H + He (3.6)

This results in the mismatch decoder

r̂ =
1

α̂
ĤH ỹ =

1

α̂

(
αI + HH

e H
)

s +
1

α̂
ĤHñ (3.7)

where α̂ = 1
Mt
||Ĥ||2. Assuming small estimation errors one can approximate α̂ ' α

and write

r̂ =

(
I +

1

α̂
HH
e H

)
s +

1

α̂
ĤHñ (3.8)

r̂ can be viewed as the output of a system with signals cross interference, where the

off diagonal elements of the matrix
(
I + 1

α̂
HH
e H
)

create the coupling between the

different signals.



74

3.1.2 QSTBC

Quasi OSTBC codes have, in general, higher rate than the OSTBC codes. This rate

increase comes with a penalty of an inherent coupling among the data symbols which

create interference. The presence of ICE at the receiver adds further interference in

the decoding process. To illustrate this fact, consider the 4 Tx Extended Alamouti

(EA) QSTBC which is presented [19], and whose codeword is given by

XEA =



s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s∗3 s∗4 −s∗1 −s∗2
s4 −s3 −s2 s1


(3.9)

The received vector can be written as

y = XEAh + n (3.10)

Applying the EVC model, this can, equivalently, be written as an output of a MIMO

channel

ỹ = Hs + ñ (3.11)

where ỹ = [y1 y
∗
2 y
∗
3 y4]

T , ñ = [n1 n
∗
2 n
∗
3 n4]

T and

H =



h1 h2 h3 h4

−h∗2 h∗1 −h∗4 h∗3

−h∗3 −h∗4 h∗1 h∗2

h4 −h3 −h2 h1


(3.12)

In order to enable simple symbol by symbol decoding the ZF decoder is used. It is

basically computes the following

rZF = H−1ỹ = s + H−1ñ (3.13)
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Having ICE, the equivalent channel matrix available at the receiver is Ĥ as in (3.6).

Applying the regular ZF decoding with Ĥ results in

r̂ZF = Ĥ−1ỹ = Ĥ−1Hs + Ĥ−1ñ (3.14)

After some matrix algebra manipulations this can be written as

r̂ZF =
(
I− (H + He)

−1 He

)
s + Ĥ−1ñ (3.15)

As in the OSTBC case, the term (H + He)
−1 He is the symbols coupling term which

results in the inter symbol interference caused due to the ICE.

3.2 Adaptive Decoding

The output of the STBC decoder, when using the mismatched filter, can be viewed

as the output of a system with symbol cross interference ((3.8) and (3.15)). Since the

coupling matrix is not known to the receiver, a blind method is required to handle the

interference. An adaptive scheme is in favor due to its simple implementation which

usually requires minimal hardware and small number of computations per iteration.

For the proposed ICE mitigation scheme, the bootstrap algorithm is adapted as a

powerful, blind, adaptive method which can reduce the interference level caused by

ICE [39].

3.2.1 The Bootstrap Algorithm

The bootstrap algorithm, first presented in [38], is an adaptive method for signals

separation. Consider a multi signal system with coupling matrix P, where the noise

is currently neglected for the presentation clarity,

x = Ps (3.16)
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where x is the system’s output, s is the signals vector both of dimension K × 1 and

P is given by

P =



1 ρ12 · · · ρ1K

ρ21
. . . ρ2K

...
. . .

...

ρK1 ρK2 · · · 1


(3.17)

where ρij is the coupling coefficient between the symbols i and j.

Different from zero forcing, which applies P−1, the bootstrap algorithm

calculates

z = Vx = VPs (3.18)

where V is chosen such that VP is a diagonal matrix but not necessarily V = P−1.

The suggestion is to take V = I−W where W is given by

W =



0 w12 · · · w1K

w21
. . . w2K

...
. . .

...

wK1 wK2 · · · 0


(3.19)

The weights wij are chosen so that

E[zksgn{zk}] = 0 (3.20)

where zk is the vector z without zk, its kth element. The recursion for calculating

the weights is given by

wk(n+ 1) = wk(n)− µzk(n)sgn{zk(n)} (3.21)

where wk is the kth column of W without the kth element (i.e., the kkth element of

W).
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The bootstrap algorithm was first implemented for real signals with real

coupling matrix P (i.e., the coupling coefficients ρij are also real). In [40], a complex

implementation of the bootstrap algorithm was presented, where the signals, the

coupling coefficients and the weights, can be complex. In this more general case, the

complex weights are chosen such that

E[z∗ksgnc{zk}] = 0 (3.22)

and the recursion for calculating the weights is given by

wk(n+ 1) = wk(n)− µz∗k(n)sgnc{zk(n)} (3.23)

The signum function for complex numbers, sgnc, is defined by

sgnc(·) = sgn (<(·)) + j sgn (=(·)) (3.24)

At the steady state of the algorithm (3.22) holds, i.e., the correlation between the

elements of z goes to zero which implies that symbols separation is achieved. Figure

3.1 depicts the general structure of a 2 rails complex bootstrap algorithm.

Σ
-

+

x1

x2

z1

z2

*

21w

-
+

Σ

*

csgn()

*

*

12w

csgn()

Figure 3.1 Schematics of a two users, complex implementation of the bootstrap
algorithm.
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3.2.2 Reduced Complexity QSTBC Decoder

Before getting into the details of the bootstrap algorithm implementation, a beneficial

by product of the use of the bootstrap is presented. In Section 3.1.2, the effect of ICE

on a QSTBC system which utilizes a mismatched ZF decoding scheme is derived. The

reason for using the ZF decoding is to avoid the QSTBC inherent intefrence, thus,

enabling a symbol by symbol decoding. Nether the less, due to ICE, inter symbol

interference does appear at the output of the ZF decoder as shown in Equation

(3.15). Since the bootstrap algorithm is used to reduce the interference levels, one

might suggested to apply the simpler OSTBC filter. Using the OSTBC filter, HH ,

will inevitably result in the introduction of more symbol interference at its output,

but since the bootstrap decoder is already applied, it will reduce this interference

also. Using HH instead of H−1 results in reduced decoding complexity as the need

for matrix inversion is avoided.

The QSTBC got its name from the following basic property of the QSTBC [34],

which contains extra off diagonal terms

G = HHH = α



1 0 0 β
α

0 1 −β
α

0

0 −β
α

1 0

β
α

0 0 1


(3.25)

where α =
∑4

i=1 |hi|2 and β = 2<{h1h
∗
4 − h2h

∗
3}. The off diagonal elements in the

matrix G define the code as quasi orthogonal and represents the inherent symbols

coupling of the QSTBC codes. Having in mind that ICE adds interference at the

decoder it is clear that any adaptive interference cancelation scheme might be able to

handle simultaneously both types of interference in the system. Hence, the following

decoding scheme is suggested.

Initially, the output vector is multiplied by 1
α̂
ĤH , the normalized hermitian
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conjugate of the erroneous channel matrix (instead of its inverse)

r̃ = 1
α̂
ĤH ỹ = 1

α̂
(H + He)

H Hs + 1
α̂
ĤHñ

= 1
α̂

(
G + HH

e H
)

s + 1
α̂
ĤHñ

(3.26)

G can be rewritten as

G = α

(
I +

β

α
J

)
(3.27)

where

J =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


(3.28)

Hence, one have

r̃ =
1

α̂

(
α

(
I +

β

α
J

)
+ HH

e H

)
s +

1

α̂
ĤHñ (3.29)

Under the assumption of small estimation errors, α can be approximated by α̂,

resulting in

r̃ =

(
I +

β

α̂
J +

1

α̂
HH
e H

)
s +

1

α̂
ĤHñ (3.30)

The term β
α̂
J + 1

α̂
HH
e H can be viewed as the coupling matrix which induced the

interference from the other symbols. The first term in the coupling matrix is generated

by the codeword itself while the second term caused by ICE. Once again this form

is similar to the one in (3.16) and the bootstrap decoder can be used to iteratively

decrease both types of interference simultaneously. The fact that the bootstrap can

handle the regular decoding (even without ICE) of QSTBC is very appealing. It

basically implies that ones the ICE effect is dealt by applying the bootstrap decoding

technique, the regular ZF decoder (Ĥ−1) can be replaced with the less computational
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demanding filter, ĤH , and the bootstrap will overcome the inherent inference induced

by this filter. As a result, applying the bootstrap algorithm in this case reduces the

decoding complexity by omitting the need for the matrix inversion of the QSTBC

decoder.

3.2.3 Implementation

Various implementation modes of the bootstrap algorithm as cross coupling reduction

method for STBC with ICE, are detailed in this section. A real versus complex

implementation will be discussed as well as the type of limiter used at the weights

updating formula. Two examples will be given to highlight the different considerations

that lead to the different implementations of the algorithm.

A. 4 Tx OSTBC Consider the following 4 Tx OSTBC given in Equation (2.51),

X4 =



s1 s2 s3 0

−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

0 −s∗3 s∗2 s1


(3.31)

Due to the fact that the rows of the codeword contains both conjugate and

non-conjugate versions of the data symbols, the EVC model for this codeword

is a different than the regular EVC model presented in Section 1.4.5. To be able

to express the channel output y, given by

y = X4h + n (3.32)

as the output of a linear system of the form

ỹ = Hs + ñ (3.33)
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one must convert the data symbols vector s to a real one, i.e., considering each

complex data symbol as two real symbols,

s =


s1

s2

s3

⇒ s̃ =



Re(s1)

Im(s1)

Re(s2)

Im(s2)

Re(s3)

Im(s3)


(3.34)

Now one can rewrite (3.32) as

ỹ = Hs̃ + ñ (3.35)

where the EVC matrix H have only real entries and given by

H =



Re(h1) −Im(h1) Re(h2) −Im(h2) Re(h3) −Im(h3)

Im(h1) Re(h1) Im(h2) Re(h2) Im(h3) Re(h3)

Re(h2) Im(h2) −Re(h1) −Im(h1) Re(h4) −Im(h4)

Im(h2) −Re(h2) −Im(h1) Re(h1) Im(h4) Re(h4)

Re(h3) Im(h3) −Re(h4) Im(h4) −Re(h1) −Im(h1)

Im(h3) −Re(h3) −Im(h4) −Re(h4) −Im(h1) Re(h1)


(3.36)

ỹ and ñ are also real and have similar structure as s̃.

B. 4 Tx QSTBC For the second example of STBC, consider the 4 Tx QSTBC given

in Equation (3.9). The H matrix for this code is complex and given by

H =



h1 h2 h3 h4

−h∗2 h∗1 −h∗4 h∗3

−h∗3 −h∗4 h∗1 h∗2

h4 −h3 −h2 h1


(3.37)
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Using the regular OSTBC decoding for this code (as suggested in Section 3.2.2)

results in the following coupling matrix

β

α̂
J +

1

α̂
HH
e H (3.38)

Since β, which given by β = 2<{h1h
∗
4−h2h

∗
3} can be close to±1, the interference

levels at the output of this decoder can be very high in comparison to the

interference caused by the ICE.

The different implementations modes are now presented in light of the above

examples.

3.2.3.1 Real / Complex. Originally the bootstrap algorithm was presented for

real signals [38],[41]. Later on it was modified to handle complex signal as well

[40]. The benefit of implementing the complex mode is mainly from hardware saving

perspective. For STBCs, the decision on whether to implement the real or the complex

version of the algorithm is mainly based on the EVC model. If the codeword structure

enforce a real EVC model, it will be more natural to implement the real bootstrap

algorithm. Such codeword is the 4 Tx OSTBC given in example A above. If the

codeword allows complex EVC channel matrix one may choose if to remain in the

complex space and implement the ’complex bootstrap’ or to implement the ’real

bootstrap’ and double the size of the system due to the conversion from complex to

real.

3.2.3.2 Hard / Soft Limiter. In the bootstrap algorithm, the ’limiter’ is referred

as the function used in the weight calculation process. More specifically, the limiter is

the function that applied on each signal of the bootstrap’s output before calculating

the correlation between that signal and the rest of the signals. Consider the weights
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calculation formula given in Equation (3.23) in more general form

wk(n+ 1) = wk(n)− µz∗k(n)f (zk(n)) (3.39)

The simplest implementation is the ’hard’ limiter where the function f is simply

the signum function. This works well for low level of interference and for small

constellation size where a symbol can be approximated by its sign. For the system

where the interference level maybe in the the same order as the signal itself (as the 4

Tx QSTBC in example B.), the simple hard limiter may not work and the algorithm

will not converge in a fast and accurate manner. This is due to the fact that having

high interference levels means that the coupling matrix may be close to singular.

Instead, a ’soft’ limiter was presented in [42]. The soft limiter is given by

f(x) =


−1 , x ≤ −λ

x , −λ < x < λ

1 , x ≥ λ

(3.40)

Although the implementation of this limiter is more involved than the simple hard

limiter, it ensure robust convergence of the bootstrap algorithm even when for high

interference levels.

3.3 Analytical Analysis

Due to its non-linear nature, it is not trivial to analytically analyze to performance of

the bootstrap algorithm in terms of its converges rate and error performance. Nether

the less, for small systems, some size analysis can be made, namely, one can calculate

the optimal weights of the diagonalize matrix V , which sets an upper bound on the

performance of the bootstrap algorithm for that case. To that end, the simple 2× 2

Alamouti codeword is analyzed thoroughly.
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3.3.1 Alamouti’s Code with ICE

The use of the bootstrap algorithm to reduce the interference level caused by the use

of the mismatched filter in the presence of ICE is demonstrated and analyzed in the

section for the 2× 2 Alamouti code (which was introduced in details in Section 1.4.2)

[43]. The Almaouti’s codeword is given by

X =

 s1 s2

−s∗2 s∗1

 (3.41)

where si are the data symbols drawn from arbitrary complex modulation. The channel

output is then given by

y = Xh + n (3.42)

where h and n are 2× 1 vectors whose entries hi and ni are the channel coefficients

and the additive noise respectively. Both hi and ni are zero mean complex Gaussian

random variables, i.e., the channel is modeled as Rayleigh fading channel. The channel

output can be written as the the output of a linear system (EVC model)

ỹ = Hs + ñ (3.43)

where

H =

 h1 h2

h∗2 −h∗1

 , s =

 s1

s2

 (3.44)

and the relation between ỹ and y is the following ỹ1 = y1, ỹ2 = y∗2. Similar relations

hold for ñ and n.

The regular decoding scheme for the Alamouti code is the use of 1
α
HH as the

filter at the receiver, resulting in

r =
1

α
HH ỹ =

1

α
HHHs + ñ = s +

1

α
HHñ (3.45)
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where α = |h1|2 + |h2|2. In the presence of ICE, an erroneous version of the channel

coefficients is used at the receiver, resulting in the mismatched filter

rmf =
1

αe
HH
e y (3.46)

where

He =

 h1 + h1,e h2 + h2,e

(h2 + h2,e)
∗ −(h1 + h1,e)

∗

 (3.47)

and αe = |h1 + h1,e|2 + |h2 + h2,e|2. hi,e are the errors associate with each channel

coefficient estimation. The output of the mismatched filter (3.46) can be written as

rmf = 1
αe

 (h1 + h1,e)
∗ h2 + h2,e

(h2 + h2,e)
∗ −(h1 + h1,e)

 ·
 h1 h2

h∗2 −h∗1

 s + 1
αe
HH
e n

= 1
αe

αI +

 h∗1,e h2,e

h∗2,e −h1,e


 h1 h2

h∗2 −h∗1


 s + 1

αe
HH
e n

= 1
αe

αI +

 γ δ

−δ∗ γ∗


 s + 1

αe
HH
e n

= 1
αe

 α + γ δ

−δ∗ α + γ∗

 s +
1

αe
HH
e n︸ ︷︷ ︸

ψ

(3.48)

where the following definition were used

γ = h1h
∗
1,e + h∗2h2,e

δ = −h∗1h2,e + h2h
∗
1,e

(3.49)
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The filtered noise variance is given by

cov{ψ} = E{ 1

α2
e

HH
e nnHHe} =

1

αe
σ2I (3.50)

and the resulted SINR is given by

SINR =
|α + γ|2
|δ|2 + αe

σ2

Es

(3.51)

Applying the bootstrap algorithm on the output of the mismatched filter (as in Figure

3.1), results in the addition of the following to the decoding scheme

z = Vrmf = (I−W)rmf (3.52)

In the 2× 2 case this is simply

z = 1
αe

 1 −w12

−w21 1


 α + γ δ

−δ∗ α + γ∗

 s + 1
αe

(I −W )HH
e n

= 1
αe

 α + γ + w12δ
∗ δ − w12(α + γ∗)

−δ∗ − w21(α + γ) α + γ∗ − w21δ

 s +
1

αe
(I −W )HH

e n︸ ︷︷ ︸
ψbs

(3.53)

The filtered noise variance at the output of the bootstrap decoder is given by

cov{ψbs} = E{ 1
α2
e
(I−W)HH

e nnHHe(I−W)H}

= 1
αe
σ2I(I−W)(I−W)H

= 1
αe
σ2

 1 + |w12|2 −w12 − w∗21

−w21 − w∗12 1 + |w21|2


(3.54)
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and the SINRs are given by

SINR1
bs = |α+γ+w12δ∗|2

|δ−w12(α+γ∗)|2+αe
σ2

Es
(1+|w12|2)

SINR2
bs = |α+γ∗−w21δ|2

|−δ∗−w21(α+γ)|2+αe
σ2

Es
(1+|w21|2)

(3.55)

3.3.2 Weights Calculation

The bootstrap algorithm iteratively calculates the weights w12 and w21 resulting in a

maximization of the SINR terms in Equation (3.55). In the 2 × 2 case, the optimal

weights can be calculated analytically. The optimal weights can be used as an upper

bound on the performance of the bootstrap decoder. In this particular example

of the Alamouti code, it will also be shown that the bootstrap’s iterative weights

calculation method cannot converge to the optimal weights. This invokes the use of

different method for the bootstrap’s weights calculation.

3.3.2.1 Optimal Weights. The optimal weights can be defined as the weights

that will maximize the achieved SINR. Consider SINR1
bs, its derivative in

accordance to w12 is given by

d
dw12

SINR1
bs = d

dw12

{
(α+γ)(α+γ∗)+w∗12δ(α+γ)+w12δ∗(α+γ∗)+w12w∗12δδ

∗

δδ∗−w∗12δ(α+γ)−w12δ∗(α+γ∗)+w12w∗12(α+γ)(α+γ∗)+αe
σ2

Es
(1+w12w∗12)

}
(3.56)

Equating (3.56) to zero results in the following quadratic equation (in w∗12)

a1(w
∗
12)

2 + b1w
∗
12 + c1 = 0 (3.57)

where

a1 = −δ(α + γ)

b1 = δ∗δ − (α + γ)(α + γ∗)

c1 = δ∗(α + γ∗)

(3.58)
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The two roots of this equation are given by

w1
12 = −α+γ

δ∗

w2
12 = δ

α+γ∗

(3.59)

It is easy to verify that the first root takes SINR1
bs to its minimum (namely zero) since

it zeros the nominator while the second root is the maximum where the interference

term is nulled out. Hence, the optimal w12 is given by

wopt12 =
δ

α + γ∗
(3.60)

Similar handling for w21 results in the value that maximizes SINR2
bs, which is given

by

wopt21 = − δ∗

α + γ
(3.61)

It is worth noting that the optimal weights values are not influence by the nominal

SNR value σ2

Es
. In addition, since

wopt12 = −(wopt21 )∗ (3.62)

holds, the filtered noise at the output of the bootstrap block remains white due to the

fact that the off diagonal elements in (3.54) are zeros. Moreover, in the next section it

will be shown that forcing (3.62) on the bootstrap’s iterative weights control algorithm

results in a process deadlock which basically makes it non applicable to this system.

3.3.2.2 Bootstrap’s Weights Calculation. The bootstrap’s weights control

block adjusts the weights such that in the steady state the following holds

E {z∗1csgn{z2}} = 0 (3.63)
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where the function csgn{·} is defined as

csgn{x} = sgn{<(x)}+ i · sgn{=(x)} (3.64)

In practice, the weights are calculated iteratively using

w
(n+1)
ij = w

(n)
ij + µ (z∗i csgn{zj}) (3.65)

The problem with this method, when applied to the 2 × 2 Alamouti code, is that

due to the code’s symmetry, the correlation between z1 and z2 is always zero for any

set of weights wij (this is true when forcing w21 = −w∗12 which holds for the optimal

weights),

E {z∗1z2} =

= E {([(α + γ) + w12δ
∗]s1 + [δ − w12(α + γ∗)]s2)

∗

·([−δ∗ − w21(α + γ)]s1 + [(α + γ∗)− w21δ]s2)}

= E {([(α + γ∗) + w∗12δ]s
∗
1 + [δ∗ − w∗12(α + γ)]s∗2)

·([−δ∗ − w21(α + γ)]s1 + [(α + γ∗)− w21δ]s2)}

= [(α + γ∗) + w∗12δ][−δ∗ − w21(α + γ)]E{s∗1s1}

+[δ∗ − w∗12(α + γ)][(α + γ∗)− w21δ]E{s∗2s2}

= Es (−δ∗(α + γ∗)− w∗12δ
∗δ − w21(α + γ)(α + γ∗)

−w∗12w21δ(α + γ) + δ∗(α + γ∗)− w∗12(α + γ)(α + γ∗)

−w21δ
∗ + w∗12w21δ(α + γ))

= Es(−w21 − w∗12) [δ∗δ + (α + γ)(α + γ∗)] = 0

(3.66)
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where in the derivation E{s∗1s2} = E{s∗2s1} = 0 and w21 = −w∗12 were used.

This imposes a significant problem over the implementation of the bootstrap’s

iterative weights calculation method since theoretically the algorithm will stop after

the first iteration because the update element (z∗i csgn{zj}) is zero for any initial

weights values. In order to be able to implement the bootstrap algorithm for this

case one need to find an alternative method for the weights calculation, that will be

more robust in converging to the optimal weights shown above. Such a method is

presented in the next section.

3.3.3 Orthogonal Training Sequences

The core idea beyond this method is to use the training sequences for the weights

calculation. Usually an orthogonal block is used for the channel coefficients

estimation. Consider, for example the use of the Alamouti codeword itself as the

training block

Xt =

 s1 s2

−s∗2 s∗1

 (3.67)

where si are the training symbols drawn from a given complex modulation with

symbol power P . The receiver gets

yt = Xth + n (3.68)

The matrix Xt is known to the receiver which in turn calculates

rt =
1

2P
XH
t yt = h +

1

2P
XH
t n (3.69)

Thus one have ĥ = rt where  h1,e

h2,e

 =
1

2P
XH
t n (3.70)
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are the errors terms of the estimated channel coefficients. Now consider that sis are

vectors of length L and are chosen such that they are orthogonal to each other, i.e.,

their inner product is zero

〈s1, s2〉 = 0 (3.71)

After the first use of the training sequences to estimate ĥ, one can build He and try

to ”decode” these sequences

r0 = 1
αe

HH
e ỹt = 1

αe

 α + γ δ

−δ∗ α + γ∗

 s +
1

αe
HH
e ñ︸ ︷︷ ︸

ϕ

(3.72)

where ỹt and ñ are given by

ỹt =

 yt,1

y∗t,2

 ; ñ =

 n1

n∗2

 (3.73)

The transformation from yt to ỹt enables the channel output to be viewed as the

output of a linear system and to be handled accordingly. The noise term ϕ can be

written as

ϕ =

 ϕ1

ϕ2

 = 1
αe

HH
e ñ

= 1
αe

 h1 + h1,e h2 + h2,e

(h2 + h2,e)
∗ −(h1 + h1,e)

∗


H n1

n∗2


(3.74)

Consider r0,1;

r0,1 =
1

αe
((α + γ)s1 + δs2) + ϕ1 (3.75)
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The optimal weights can be derived by calculating the following inner products

〈s1, r0,1〉 = 1
αe

((α + γ)〈s1, s1〉+ δ〈s1, s2〉) + 〈s1, ϕ1〉

= 1
αe

(α + γ)LP

〈s2, r0,1〉 = 1
αe

((α + γ)〈s2, s1〉+ δ〈s2, s2〉) + 〈s2, ϕ1〉

= 1
αe
δLP

(3.76)

where the following identities were used

〈si, sj〉 = 0

〈si, si〉 = LP

〈si, ϕi〉 = 0

(3.77)

Similarly, using r0,2;

r0,2 =
1

αe
(−δ∗s1 + (α + γ∗)s2) + ϕ2 (3.78)

The inner products will yield

〈s1, r0,2〉 = 1
αe

((α + γ∗)〈s1, s2〉 − δ∗〈s1, s1〉) + 〈s1, ϕ2〉

= − 1
αe
δ∗LP

〈s2, r0,2〉 = 1
αe

((α + γ∗)〈s2, s2〉 − δ∗〈s2, s1〉) + 〈s2, ϕ1〉

= 1
αe

(α + γ∗)LP

(3.79)
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Hence, one can estimate α + γ and δ with

α̂ + γ = αe
2LP

(〈s1, r0,1〉+ 〈s2, r0,2〉∗)

δ̂ = αe
2LP

(〈s2, r0,1〉 − 〈s1, r0,2〉∗)

(3.80)

The optimal weights can be simply constructed with α̂ + γ and δ̂ according to (3.60)

and (3.61),

w̃opt12 = δ̂

α̂+γ
∗

w̃opt21 = − δ̂∗

α̂+γ

(3.81)

Figure 3.2 shows the promising performance when using the new weights calculation

method. In the simulation, the Alamouti code was used with 16-QAM modulation.

The total transmission length is 512 Alamouti blocks while 16 blocks were used as

pilots. The solid black curve represents the performance of a system with perfect

knowledge of the channel coefficients at the receiver and is given as a reference. The

broken black curve represents the performance of system using only the mismatched

filter without any additional processing. The red curve is the best theoretical

performance of the bootstrap decoding using the analytically calculated optimal

weights. The blue curve is the achieved performance of the bootstrap algorithm with

the new weights calculation method. It can be clearly shown how the bootstrap

algorithm improves the performance of a system with ICE as well as how the

performance of the new method is close to the analytical optimal weights performance.

3.4 Advanced Bootstrap Implementation

Even though the bootstrap decoding method was shown to improve the error rate

of system with ICE, it has one major drawback. For proper operation, the decoding
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Figure 3.2 SER Vs. SNR for the Alamouti code, 16-QAM with length of 512 blocks
and pilot length of 16 blocks.

algorithm assumes that the data sequences are statistically independent. In practice,

to have an empirical correlation (as in (3.23)) resembles the theoretical correlation

(3.22), one needs to use a very long vectors. The requirement for large data vectors

cannot be satisfied given a short coherence time of the channel. Since the underlying

assumption for any STBC system is that the channel coefficients do not change

faster than the transmission time of a code block, having fast changing channel put

limits on the block length. Moreover, even if the channel allows transmission of

lengthy data sequence, the computation load required to handle these long vectors

becomes significant. In this section, an improve scheme for better use of the bootstrap

algorithm is presented. Inspired by the use of orthogonal training sequences with the

Alamouti scheme (Section 3.3.3) it is suggested to transmit orthogonal data sequences

[44]. These sequences can be used for the bootstrap’s weights calculation, which in
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turn enables the use of the bootstrap algorithm even for very short data sequences.

This also results in a substantial computational burden reduction.

3.4.1 Orthogonal Data Vectors

In order to ensure fast and accurate converges of the bootstrap algorithm one may

suggest the use of orthogonal data vectors. Forcing the transmitted data vectors to

be orthogonal to each other, eases the requirement of long vector which become

orthogonal due to statistic properties. Due to the obvious rate loss by using

orthogonal vectors, it is suggested not to force the whole transmitted vector to be

orthogonal. Rather, only short section of each data vector satisfies the orthogonality

requirement hence, the rate penalty is minimized.

The improved bootstrap decoding scheme is modified in both the transmitter

and receiver ends. The transmitted block is adjusted to include a short portion of

orthogonal data sequence (Figure (3.3)). The decoding comprise of the mismatched

filter followed by the bootstrap algorithm where the iterative weights calculation is

performed only with the short orthogonal sequence. The calculated weights are then

applied to the rest (the non-orthogonal part) of the output vector.

3.4.1.1 Transmission. Consider a data vector s to be transmitted using a STBC

in a system with N transmit antennas. The data is split to k vectors si, where

k = R · N and R is the code’s rate (for example with 4 Tx and Orthogonal STBC

with rate 3/4, k = 3). In general, there is no requirement on the relation between the

different sis and they are assumed independent of each other. The main idea is to

require that a small portion of each vector si will be orthogonal to the corresponding

portion in the other vectors. Defining

si = [soi sdi ] (3.82)



96

where soi is the orthogonal portion and s̄i is the rest of the data vector. The

requirement is that

(soi )
∗ · soj = 0 , i 6= j (3.83)

Note that this is not a statistic attribute but rather a deterministic uncorrelated

sequences.

Pilot 

Sequence
Data Sequence -

i
s

Transmission Block

o

i
s

d

i
s

(a)

(b)
Pilot 

Sequence

Orthgonal Data Regular Data

Figure 3.3 Transmission block, (a) old structure, (b) proposed new structure
containing a portion of orthogonal sequence.

3.4.1.2 Decoding. With the orthogonal vectors the bootstrap decoder is

implemented as follows. The weights control part (3.23) of the bootstrap algorithm

is applied only to the orthogonal portion of the data vectors. This enables fast and

robust convergence due to the enforced orthogonality of the inputs. In addition the

computational load of the algorithm is significantly reduced since the orthogonal

portions of the data vectors are much shorter relative to the total data vector length.

The algorithm produces V , the diagonalize matrix which in turn applied to the rest

of the data vector for the interference reduction.

This works well since V is the matrix that diagonalize the matrix
(
I + 1

α̂
HH
e H

)
which entries are function of the channel coefficients. Even though the calculation

of the weights wij is done on the orthogonal portions, the channel coefficients aren’t
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changing throughout the whole block transmission hence it they can be applied later

to the rest of the data vector. It will be shown later that for data vectors with no

orthogonal requirement, the bootstrap algorithm performs bad since the assumption

of orthogonality doesn’t hold. The concept of computing the matrix V using only the

orthogonal portion can be viewed as if ’pilot’ sequences are transmitted and dedicated

for the calculation of V . Even though the receiver doesn’t know the the transmitted

symbols of the orthogonal sequences, it takes advantage of their orthogonal property

to compute the matrix V .

3.4.1.3 Rate loss. Forcing a portion of the data vectors to be orthogonal

inevitably results in some rate loss. Plainly speaking, the rate is dropping by a factor

of k since instead of having k independent sequences, one have only one independent

sequence and k−1 sequences that are dependent. With more sophisticated encoding,

one might save some of lost rate. This can be done, for example, by assigning date

values to the different orthogonal sequences. Let Lo be the length of the orthogonal

sequences. Defining U to be the cardinality of the group of distinguish orthogonal

vector of length Lo that one can generate with symbols over some given constellation.

By assigning a value for each vector of the orthogonal vector group, one can ’save’

an additional log2(U) bits. In addition, if there are several groups, one use the group

selection as another method for data delivery. Yet, even with these techniques, the

rate loss cannot be ignored and it is desirable to minimize the length of the orthogonal

portion of the data vector such that the rate loss is also minimized.

3.4.1.4 Simulations. While involving with iterative algorithms can be sometimes

hard to analyze rigorously, simulations show the potential of the presented method.

The settings are 4 Tx, 1 Rx system with a rate 3/4 OSTBC and 16-QAM modulation.

Each data vector (si) is of length 264. The black and blue lines in Figure (3.4)

represent the performance of a system without ICE, i.e., system with perfect channel
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state information at the receiver, and of the mismatched decoding respectively. The

performance of the regular bootstrap decoder (broken red line) clearly implies that

even a vector length of 264 is not long enough for the independent data sequences

assumption to hold. Hence, not only the decoder has a computational load involving

a vector of length 264, it also not converging fast (i.e., large number of iterations that

adds to the computation burden) and not to the right weights even for large SNR

values.

With the new method, an orthogonal portion only occupies a length of 8

symbols. The performance of the new decoder (solid red line) shows that even this

short sequence is enough for the weights calculation algorithm to converge such that

signals separation is achieved. Thus, not only enabling the use of the bootstrap

algorithm in a scenario of short data vector in term of acceptable performance, a

significant computation load reduction is also achieved.

The total rate loss for this settings is limited to about 2% of the total symbol

rate. While for the old method the symbol rate transmission is 3
4
·264 = 198, the new

transmission rate is 3
4
(1

3
· 8 + 256) = 194. The rate loss 4/198 = 0.202 is acceptable in

light of the gains achieved both in the error rate and the computational load of the

decoder.

3.4.2 Zero Rate-loss Implementation

The main draw back of the use of orthogonal data sequences for the bootstrap’s

weights calculation is the rate loss. This is due to the inherent data redundancy of

the orthogonal structure. In this section, a innovative approach is presented, wherein,

no rate loss is incurred in the system while the weights calculation is still performed

using orthogonal sequences. The idea is to extract orthogonal sequences out of the

data itself and use it for calculate the bootstrap’s weights. since no measure is taken at
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Figure 3.4 SER Vs. SNR for 4 Tx system with OSTBC encoding, 16-QAM
modulation. The data vector size is 264 comprises of an orthogonal portion (8)
and regular data (256).

the transmitter end to ensure data orthogonality, there is no rate loss. The proposed

decoding scheme comprise of the following steps -

1. Mismatched filter.

2. Orthogonal sequences extraction.

3. Weight’s calculation.

4. Bootstrap algorithm.

At the first decoding phase, the mismatched filter is used to get an initial data

recovery. Out of the recovered data, orthogonal data is extracted to form a set

of orthogonal sequences which are then used for the bootstrap’s weights calculation.

Once the weights are calculated, the bootstrap diagonalize matrix is applied to the

output of mismatched filter to improve the performance by reducing the interference
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Table 3.1 Example for Orthogonal Data Extraction

Time Index 1 2 3 4 5 6 7 8

Data Stream 1 -1 1 1 -1 -1 1 -1 1

Data Stream 2 1 -1 1 -1 1 1 1 -1

levels.

In order to understand the concept of orthogonal data extraction, consider to

following example. Consider two data streams with BPSK symbols shown in Table

3.1, For orthogonal sequences of length four, one may simply choose the symbols with

time indices 2,3,6 and 8 resulting in the two orthogonal sequences

so1 = [1 1 1 1]

so2 = [−1 1 1 −1]
(3.84)

This can be simply expand to larger constellation size and to more than two data

streams. Obviously, as the number of data sequences increase, it is harder to find a

set of indices that will form an orthogonal set for all the different sequences. The

strength of this method is that it suffices to find orthogonal sequences only in a

pairwise fashion and calculate the weights. In other words, the weights calculation

based on orthogonal sequences can work well even if the data sets which apply to

it is only pairwise orthogonal and not orthogonal to all other sequences. This may

cause slower converges, but enables the implementation of the bootstrap algorithm

with any rate loss.

3.4.2.1 Simulations. The same setup as in Section 3.4.1 was used for simulating

the new, zero rate loss scheme. A data block size of 512 symbols was used and an

orthogonal sequences of length eight were extracted from it. The difference from the

last simulation shown in Figure 3.4 is that in this simulation the new method for
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extracting orthogonal sequences from the data is added. This shown in Figure 3.5

by the red curve with star marks. Although the new method performs worse than

the one which contains transmitted orthogonal sequences (solid red curve), it still

performs much better than the old bootstrap implementation with less computational

complexity and with no rate loss compared to the method that transmits orthogonal

data. The new method enhances the performance of the mismatched filter by an

order of magnitude in the high SNR region. It is worth noting that the new method

for extracting orthogonal sequences out the decoded data performs poorly in the low

SNR region. This is due to the fact that in this region the initial decoded data has

high error rate resulting in erroneous orthogonal sequences, i.e., data that is not really

orthogonal, which in turn results in erroneous weights.
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Figure 3.5 SER Vs. SNR for different bootstrap implementations, 4 Tx system
with OSTBC encoding, 16-QAM modulation. The data vector size is 512 with an
orthogonal portion length of 8.



CHAPTER 4

CONCLUSIONS

In this work the semi-orthogonal space time codes (SSTBC) was presented and

showed to enjoy full rate along with linear computational decoding complexity.

The transmission and decoding schemes was presented and analyzed and further

improvements were suggested involving sequential decoding as well as modified

schemes for system with limited feedback or multiple transmit antennas. An iterative

method for generating OSTBC that complies with the requirement of the new

decoding / transmission schemes was also presented. This new OSTBC is suitable for

any number of transmit antennas and can be used easily as the basis for the SSTBC.

Comparing the performance to a system with full rate but with non-linear decoding

complexity, namely the QSTBC with ZF decoding, it was shown that the achieved

error rate matched and even exceeds the QTSBC’s error rate performance for most of

the setting that were simulated. Thus, making the proposed SSTBC very appealing

as it enjoys full rate transmission, linear computational decoding complexity and high

performance as well.

In addition, the bootstrap algorithm was adopted as an adaptive method for

suppressing the interference levels caused by the use of mismatched filter due to

imperfect channel estimation. This method was thoroughly analyzed using the

Alamouti 2× 2 codeword as a case study. It was shown that for the Alamouti code,

the bootstrap’s weight calculation scheme will not converges to the optimal solution,

hence, an alternate method for the bootstrap’s weights was presented which employs

the use of orthogonal sequences. Inspired by the use of orthogonal sequences as a mean

for the weights calculation, this concept was further expanded to general STBC to

overcome two major practical issues regarding the implementation of the bootstrap

102
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decoding. Both issues emerge from the need of relatively long data sequences for

the bootstrap algorithm to converges. For channels with short coherence time long

data blocks cannot be transmitted. Even, when long data blocks are available, the

computational burden of the weights calculation using the regular bootstrap’s scheme

over long data vectors is too high. To that end, using very short orthogonal data

segments for the weights calculation was proposed which dramatically reduces the

computational burden and even more importantly, enables to apply the bootstrap

algorithm for short data block. To further mitigate the rate loss due to the use

of orthogonal data sequences, a novel method for extracting orthogonal segments

out of the transmitted data was introduced, thus, eliminating the need of dedicated

orthogonal data segments which reduces the rate loss to zero.

To conclude, the field of STC in general and STBC in particular have been

widely and thoroughly studied. Although the general framework and the theoretical

boundaries have been defined, there is always room for improvement and new ideas

that enables both improved STBC systems and better understanding towards the

implementation of such systems. This work introduces these type of new ideas

which not only were shown to enhance existing STBC system but are also simple

to implement and can be incorporated into current STBC systems with no major

adjustments.



APPENDIX A

ORTHOGONALITY OF THE NEW OSTBC

To show that the proposed code is orthogonal, one need to show that

XH
n Xn = αnIn ∀n (A.1)

where αn =
∑n

i=1 |si|2.

Assuming that Xn is indeed an orthogonal code it will be shown by induction that

Xn+1 is also orthogonal.

By the code formulation, the expression for Xn+1 is given by

Xn+1 =

 Xn b

C −d

 (A.2)

where bt×1 = (sn+1 01×(t−1))
T , Cn×n = s∗n+1 · In and dn×1 = (s∗1 s∗2 ... s∗n)T . To

verify that Xn+1 is also orthogonal the product XH
n+1Xn+1 is calculated

XH
n+1Xn+1 =

 Xn b

C −d


H Xn b

C −d

 =

 XH
n CH

bH −dH


 Xn b

C −d



=

 XH
n Xn + CHC XH

n b−CHd

bHXn − dHC bHb + dHd


(A.3)
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By the definition of C,b and d the elements of the above matrix are given by

(i) XH
n Xn + CHC = αnIn + |sn+1|2In = αn+1In

(ii) bHXn − dHC = (s∗n+1 0)Xn − s∗n+1d
H = s∗n+1(s1 s2 ... sn)− s∗n+1d

H = 0H

(iii) XH
n b−CHd = (bHXn − dHC)H = 0

(iv) bHb + dHd = |sn+1|2 +
∑n

i=1 |si|2 = αn+1

(A.4)

Putting it all together results in

XH
n+1Xn+1 =

 αn+1In 0

0H αn+1

 = αn+1In+1 (A.5)

Hence, given an orthogonal codeword Xn, that was generated through the proposed

algorithm, the next generated codeword Xn+1 will also be orthogonal. A starting

point for this induction can be X2 which is the famous Alamouti code and is known

to be orthogonal. This concludes the proof that for any n this algorithm generate an

orthogonal codeword Xn.



APPENDIX B

DERIVATION OF THE SIMPLIFIED B MATRIX

B.1

The derivation of (2.32) is as follows. It will be shown for the 4 Tx codeword

(presented in Eq. (2.36)) but can be simply generalized to any number of transmit

antennas. The key feature is that for the new code the following holds

αI−HdH
H
d = |h1|2I + wwH (B.1)

where w = [h4 − h3 h2]
T . This is due to the way the codeword X4 is constructed

and the similar structure of X4 and the equivalent channel matrix H (see (2.36) and

(2.38)). One can use (B.1) to calculate the inverse of αI−HdH
H
d .

(αI−HdH
H
d )−1 = (|h1|2I + wwH)−1 (B.2)

Applying the following matrix identity

(A−1 + uvH)−1 = A−AuvHA/(1 + vHAu) (B.3)

with A = 1
|h1|2 I and u = v = w results in

(|h1|2I + wwH)−1 =
1

|h1|2
I−

1
|h1|2 wwH 1

|h1|2

1 + wH 1
|h1|2 Iw

(B.4)

since wH 1
|h1|2 Iw = 1

|h1|2 wHw = |h2|2+|h3|2+|h4|2
|h1|2 = α−|h1|2

|h1|2 , one can write

(|h1|2I + wwH)−1 = 1
|h1|2 I−

1
|h1|2

wwH 1
|h1|2

α
|h1|2

= 1
|h1|2 I− 1

α|h1|2 wwH

= 1
α|h1|2

(
αI−wwH

) (B.5)
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substituting wwH with αI−HdH
H
d − |h1|2I (using (B.1)) results in

(|h1|2I + wwH)−1 =
1

α|h1|2
(
|h1|2I + HdH

H
d

)
(B.6)

Returning to (B.2), one gets

(αI−HdH
H
d )−1 =

1

α|h1|2
(
|h1|2I + HdH

H
d

)
(B.7)

Plugging (B.7) into the the left hand side of (2.32), results in

(αI−HdH
H
d )−1HdH

H
r = 1

α|h1|2
(
|h1|2I + HdH

H
d

)
HdH

H
r

= 1
α
HdH

H
r + 1

α|h1|2 HdH
H
d HdH

H
r

= 1
α
HdH

H
r + 1

α|h1|2 (α− |h1|2)HdH
H
r

(B.8)

The last expression holds since HdH
H
d Hd = (α − |h1|2)Hd. This can be verified by

substituting HdH
H
d with (α− |h1|2)I−wwH (using (B.1)) and since w is orthogonal

to Hd (i.e. wHHd = 0). simplifying the last term, results in the desired form of

(αI−HdH
H
d )−1HdH

H
r =

1

|h1|2
HdH

H
r (B.9)

which conclude the derivations of (2.32).

B.2

The last step is to verify (2.33). This can simply done by noting the following

properties of H,Hr and Hd.

1. All the rows of the matrix H are orthogonal to its first row.

2. Hr will always contain the first row of H.

3. Hd will always contain a zero column.
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The first property is due to the way Xn is generated and the similar structure of

Xn and H. The second and third properties are simply derived from the proposed

REM rule. Since the rule is to delete the rows which contain null at the entries which

corresponds to the chosen column, the resulted column in Hd will contain only zeros.

Moreover, since the first row of H doesn’t contain any null entries, this row will never

be deleted i.e. will be in Hr.

Rewriting Hr as

Hr =



h1 h2 h3 h4

−h∗2 h∗1 0 0

−h∗3 0 h∗1 0

−h∗4 0 0 h∗1


=

 h1

−k h∗1I

 (B.10)

where h1 is the first row of H and k = [h2 h3 h4]
H . One can rewrite Hd as

Hd =


0 −h∗3 h∗2 0

0 −h∗4 0 h∗2

0 0 −h∗4 h∗3

 =

(
0 H̄d

)
(B.11)
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where H̄d is the remaining part of Hd after removing the null column. Referring to

the left hand side of (2.33), one gets

1
|h1|2 HdH

H
r = 1

|h1|2 Hd

 h1

−k h∗1I


H

= 1
|h1|2 Hd

 hH1
−kH

h1I



= 1
|h1|2

Hdh
H
1 Hd

 −kH

h1I


 = 1

|h1|2

Hdh
H
1

(
0 H̄d

) −kH

h1I




= 1
|h1|2

(
Hdh

H
1 − 0 · kH + H̄dh1I

)
= 1
|h1|2

(
0 0 + h1H̄d

)

= h1

|h1|2
(
0 H̄d

)
= 1

h∗1
Hd

(B.12)

where using the fact that Hd rows were originated from H, hence, they are orthogonal

to the its first row (property 1) resulting in Hdh
H
1 = 0. This concludes the derivations

of (2.32) and (2.33) which shows how the the first step of the decoder can be

implemented with linear computational complexity. For other choices of Hr and

Hd (i.e choosing different columns for the REM rule) these derivations will remain

the same up to some columns displacement in the corresponding matrices.



APPENDIX C

FILTERED NOISE VARIANCE CALCULATION

To evaluate the diagonal of the filtered noise covariance matrix one need to calculate

the inverse of the matrix HH
r Hr. To simplify it one cab rewrite the inverse as

(HH
r Hr)

−1 = H−1
r (HH

r )−1 = H−1
r (H−1

r )H (C.1)

hence, only the calculation of the inverse of Hr is needed. To that end, one can

rewrite Hr as

Hr =



h1 h2 h3 h4

−h∗2 h∗1 0 0

−h∗3 0 h∗1 0

−h∗4 0 0 h∗1


=

 h1 hH

−h h∗1I

 (C.2)

where h = [h2 h3 h4]
H . Using a known block matrix inversion formula one gets

H−1
r =

1

α

 h∗1 −hH

h 1
h∗1

(αI− hhH)

 (C.3)

and

(H−1
r )H =

1

α

 h1 hH

−h 1
h1

(αI− hhH)

 (C.4)
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The product of these two matrices is given by

H−1
r (H−1

r )H = 1
α

 h∗1 −hH

h 1
h∗1

(αI− hhH)

 1
α

 h1 hH

−h 1
h1

(αI − hhH)



= 1
α2

 |h1|2 + hHh h∗1h
H − hH 1

h1
(αI− hhH)

hh1 − 1
h∗1

(αI− hhH)h hhH + 1
h∗1

(αI− hhH) 1
h1

(αI− hhH)


(C.5)

Focusing in the diagonal of this matrix (since only the noise powers are of interest),

the first element of the diagonal is

1

α2
(|h1|2 + hHh) =

1

α2
(|h1|2 +

4∑
i=2

|hi|2) =
α

α2
=

1

α
(C.6)

The other three element of the diagonal are the diagonal of the matrix given by

1

α2
(hhH +

1

|h1|2
(αI− hhH)2) =

1

α2
(hhH +

1

|h1|2
(α2I− 2αhhH + (hhH)2)) (C.7)

The diagonals of hhH and (hhH)2 are given by

diag(hhH) = [|h2|2 |h3|2 |h4|2]T

diag((hhH)2) = diag(h(hHh)hH) = diag(h(
∑4

i=2 |hi|2)hH) =

=
∑4

i=2 |hi|2diag(hhH) =
∑4

i=2 |hi|2[|h2|2 |h3|2 |h4|2]T

(C.8)
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which results in

diag( 1
α2 (hhH + 1

|h1|2 (αI − hhH)2)) =

= 1
α2



|h2|2

|h3|2

|h4|2

+ 1
|h1|2

α2


1

1

1

− 2α


|h2|2

|h3|2

|h4|2

+
∑4

i=2 |hi|2


|h2|2

|h3|2

|h4|2



 =

= 1
α2|h1|2

α2


1

1

1

− α

|h2|2

|h3|2

|h4|2


 = 1

α|h1|2

α


1

1

1

−

|h2|2

|h3|2

|h4|2


 =

= 1
α|h1|2


|h1|2 + |h3|2 + |h4|2

|h1|2 + |h2|2 + |h4|2

|h1|2 + |h2|2 + |h3|2

 = 1
α


1 +

(
|h3|
|h1|

)2

+
(
|h4|
|h1|

)2

1 +
(
|h2|
|h1|

)2

+
(
|h4|
|h1|

)2

1 +
(
|h2|
|h1|

)2

+
(
|h3|
|h1|

)2


(C.9)

Combining these results with the one derived in (C.6), results in the diagonal of

covariance matrix Kv

diag(Kv) = diag(σ2(HH
r Hr)

−1) =
σ2

α



1

1 +
(
|h3|
|h1|

)2

+
(
|h4|
|h1|

)2

1 +
(
|h2|
|h1|

)2

+
(
|h4|
|h1|

)2

1 +
(
|h2|
|h1|

)2

+
(
|h3|
|h1|

)2


(C.10)

which concludes the derivation of the filtered noise variances.



APPENDIX D

PROBABILITY DENSITY FUNCTIONS EVALUATION

D.1

The p.d.f of x = |hi|2 is a Chi square with two degrees of freedom which is given

by χ2
2(x) = 1

2
e−

1
2
x. The p.d.f of the ratio of two χ2

2 r.vs can be calculated as (xi =

|hi|2 , xj = |hj|2)

y =
xj
xi

fy(y) = 1
4

∫∞
0

(
xie
− 1

2
yxie−

1
2
xi

)
dxi = 1

(y+1)2
, y ≥ 0

(D.1)

The r.v. z = 1 + y is distributed

fz(z) = fy(z − 1) =
1

(z)2
, z ≥ 1 (D.2)

Finally the p.d.f of the r.v. v = z−1 is given by

fv(v) =
1

v2
fz(

1

v
) =

1

v2

1

( 1
v
)2

= 1 , 0 ≥ v ≥ 1 (D.3)

which is the uniform distribution.

D.2

Starting with the calculation of the p.d.fs of the ith orders statistic (i = 1, 2, 3) of

{|h2|2 |h3|2 |h4|2}, one have

fh(1)
(x) =

3!

0!2!
(F (x))0 (1− F (x))2 f(x) (D.4)

where F (x) = 1− e− 1
2
x and f(x) = 1

2
e−

1
2
x. This reduces to

fh(1)
(x) = 3

(
e−

1
2
x
)2 1

2
e−

1
2
x =

3

2
e−

3
2
x (D.5)

113



114

Similarly, the p.d.fs of h(2) and h(3) are

fh(2)
(x) = 3!

1!1!
(F (x))1 (1− F (x))1 f(x)

= 6
(

1− e− 1
2
x
)
e−

1
2
x 1

2
e−

1
2
x

= 3
(
e−x − e− 3

2
x
)

fh(3)
(x) = 3!

2!0!
(F (x))2 (1− F (x))0 f(x)

= 3
(

1− e− 1
2
x
)2

1
2
e−

1
2
x

= 3
2

(
e−

1
2
x − 2e−x + e−

3
2
x
)

(D.6)

The first decoded symbol is the one associated with the largest SNR which in turn is

a function of the following r.v.

ν(1) =
|h1|2

|h1|2 + h(1)

=

(
1 +

h(1)

|h1|2
)−1

(D.7)

To find its p.d.f consider the ratio z =
h(1)

|h1|2 = x
y
;

fz(z) =
∫∞

0
yfxy(yz, y)dy =

∫∞
0
yfx(yz)fy(y)dy

=
∫∞

0
3
2
ye−

3
2
yz 1

2
e−

1
2
ydy = 3

4

∫∞
0
ye−y(

3
2
z+ 1

2
)dy

=
3
4

( 3
2
z+ 1

2)
2 = 3

(3z+1)2
, z ≥ 0

(D.8)
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The r.v. w = 1 + z is distributed

fw(w) = fz(w − 1) = 3
(3(w−1)+1)2

= 3
(3w−2)2

, w ≥ 1

(D.9)

finally ν(1) = w−1 is distributed

fν(1)(ν(1)) = 1
ν2
(1)

fw( 1
ν(1)

) = 1
ν2
(1)

3(
3 1
ν(1)
−2

)2

= 3

(3−2ν(1))
2 , 0 ≥ ν(1) ≥ 1

(D.10)

Similar steps can be taken to calculate the p.d.f of the r.v. associated with the second

large SNR -

ν(2) =
|h1|2

|h1|2 + x(2)

=

(
1 +

x(2)

|h1|2
)−1

(D.11)

Once again starting with the ratio z =
x(2)

|h1|2 = x
y
;

fz(z) =
∫∞

0
yfxy(yz, y)dy =

∫∞
0
yfx(yz)fy(y)dy

=
∫∞

0
3y
(
e−yz − e− 3

2
yz
)

1
2
e−

1
2
ydy = 3

2

∫∞
0
ye−y(z+

1
2
)dy − 3

2

∫∞
0
ye−y(

3
2
z+ 1

2
)dy

= 3
2

(
1

(z+ 1
2)

2 − 1

( 3
2
z+ 1

2)
2

)
, z ≥ 0

(D.12)

The r.v. w = 1 + z is distributed

fw(w) = fz(w − 1) =
3

2

(
1(

w − 1
2

)2 − 1(
3
2
w − 1

)2
)

, w ≥ 1 (D.13)

and ν(2) = w−1 is distributed

fν(2)(ν(2)) =
1

ν2
(2)

fw(
1

ν(2)

) =
3

2

(
1(

1− 1
2
ν(2)

)2 − 1(
3
2
− ν(2)

)2
)

, 0 ≥ ν(2) ≥ 1 (D.14)
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For the last decoded symbol the p.d.f of ν(3) needs to be derived,

ν(3) = |h1|2 + |h3|2 + |h4|2 = |h1|2 + x(1) + x(2) (D.15)

To that end, the joint p.d.f of x(1) and x(2) needs to be found, where, to ease the

notation burden y and z are defined as y = x(1) and z = x(2).

Using the joint order statistic p.d.f formula given by

fn,j,k(y, z) =

 n

j − 1, 1, k − j − 1, 1, n− k

F (y)j−1f(y) (F (z)− F (y))k−j−1 f(z) (1− F (z))n−k

(D.16)

for 1 ≤ j ≤ k ≤ n , y ≤ z, one obtain

f3,1,2(y, z) =
3!

0!1!0!1!1!

1

2
e−

1
2
y 1

2
e−

1
2
ze−

1
2
z =

3

2
e−

1
2
ye−z , y ≤ z (D.17)

The p.d.f of w = y + z is given by

fw(w) =
∫ w

2

0
fy,z(y, w − y)dy = 3

2

∫ w
2

0
e−

1
2
ye−(w−y)dy

= 3
2
e−w

∫ w
2

0
e

1
2
y = 3e−w

(
e
w
4 − 1

)
= 3

(
e−

3
4
w − e−w

) (D.18)

The p.d.f of ν(3) = |h1|2 + w = x+ w can be calculated by

fν(3)(ν(3)) =
∫ ν(3)

0
fx(x)fw(ν(3) − x)dx = 3

2

∫ ν(3)
0

e−
1
2
x
(
e−

3
4
(ν(3)−x) − e−(ν(3)−x)

)
dx

= 3
2

[
e−

3
4
ν(3)
∫ ν(3)

0
e

1
4
xdx− e−ν(3)

∫ ν(3)
0

e
1
2
xdx
]

= 3
2

[
e−

3
4
ν(3)4

(
e

1
4
ν(3) − 1

)
− 2e−ν(3)

(
e

1
2
ν(3) − 1

)]

= 3
(
e−ν(3) + e−

1
2
ν(3) − 2e−

3
4
ν(3)

)
, 0 ≥ ν(3) ≥ 1

(D.19)
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D.3

υ can be written as

υ = α− h(3) = |h1|2 + h(1) + h(2) (D.20)

For the p.d.f calculation, one initially needs to find the joint p.d.f of h(1) and h(2). To

ease the notation burden y and z are defined as y = h(1) and z = h(2).

Using the joint order statistic p.d.f formula given by

fn,j,k(y, z) =

 n

j − 1, 1, k − j − 1, 1, n− k

 ·

·F (y)j−1f(y) (F (z)− F (y))k−j−1 f(z) (1− F (z))n−k

(D.21)

for 1 ≤ j ≤ k ≤ n , y ≤ z, this results in

f3,1,2(y, z) = 3!
0!1!0!1!1!

1
2
e−

1
2
y 1

2
e−

1
2
ze−

1
2
z

= 3
2
e−

1
2
ye−z , y ≤ z

(D.22)

The p.d.f of w = y + z is given by

fw(w) =
∫ w

2

0
fy,z(y, w − y)dy = 3

2

∫ w
2

0
e−

1
2
ye−(w−y)dy

= 3
2
e−w

∫ w
2

0
e

1
2
y = 3e−w

(
e
w
4 − 1

)

= 3
(
e−

3
4
w − e−w

)
(D.23)
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The p.d.f of υ = |h1|2 + w = x+ w can be calculated by

fυ(υ) =
∫ υ

0
fx(x)fw(υ − x)dx

= 3
2

∫ υ
0
e−

1
2
x
(
e−

3
4
(υ−x) − e−(υ−x)

)
dx

= 3
2

[
e−

3
4
υ
∫ υ

0
e

1
4
xdx− e−υ

∫ υ
0
e

1
2
xdx
]

= 3
2

[
e−

3
4
υ4
(
e

1
4
υ − 1

)
− 2e−υ

(
e

1
2
υ − 1

)]

= 3
(
e−υ + e−

1
2
υ − 2e−

3
4
υ
)

(D.24)
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