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 ABSTRACT 

 

CEREBRAL SPASTICITY MODELED AS DISORDED EQUILIBRIUM 

POINT CONTROL 

 

by 

Darnell Simon 

 

Spasticity is a highly complex phenomenon, which has not been defined in precise and 

quantifiable terms. Although the muscle stretch reflex is thought to play an important role 

in spasticity generation, the pathophysiologic basis of spasticity is not completely 

understood. A valid measure of spasticity is one that is chosen within the context of a 

theory describing the physiological mechanisms underlying the control of posture and 

movement in healthy individuals and possible impairments of these mechanisms leading 

to motor disorders. This research’s goal was to determine the role of stretch reflex 

threshold in the regulation of impaired motor control through the exploration of the 

following research questions: 

1. Can experimental measures be produced leading to the development of a model of 

spasticity that can be interpreted within the framework of a general theory of 

motor control? 

2. Can the underlying motor control framework provide unique parameters capable 

of describing both normal and altered/abnormal movement? 

3. Can the model be robust enough to explain active as well as passive movement? 

 

The research method outlined in this dissertation takes the novel approach of 

incorporating the equilibrium point hypothesis into a trajectory-based analysis of 

pendulum knee motion. The Equilibrium Point Hypothesis (EPH) of motor control 

theorizes that the central nervous system (CNS) provides a virtual trajectory of joint 

motion, representing space and time. A forward dynamic model has been developed that 

can reproduce kinematic data through the using optimized model parameters. The 



 

incorporation of the equilibrium point hypothesis in forward model was not only 

recognition that examination of the entire trajectory of the limb, rather than just the first 

amplitude of swing, was necessary, but also, that movement can be characterized by the 

simple extraction of three parameters: a relative damping coefficient, relative stiffness 

coefficient and mathematical function which can act as an approximation CNS the 

virtual trajectory described in the EPH.  

This research produced a model of passive motion with the ability to produce 

parameter values that not only differentiate subjects with spasticity from subjects with 

no clinical signs of spasticity but that can separate subjects based on severity of spastic 

condition. Research which began as an endeavor to model the passive motion of the 

pendulum knee test, led to the development of a unifying model of motor control that is 

robust enough to describe both active and passive movements.  
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CHAPTER 1  

INTRODUCTION 

1.1 Objective 

The objective of this dissertation is to present a novel model and identification 

methodology to describe the motion dynamics of knee joints affected and unaffected by 

spasticity utilizing multiple pendulum tests. The development of new modalities of 

treatment of spasticity necessitates a better understanding of the neural contributions to 

the clinically observed features of spasticity.  This level of understanding begins with our 

ability to conceptualize the role that the central nervous system plays in altering stretch 

reflex threshold activation in cerebral lesion disorders. Our initial attempt to determine 

the role of stretch reflex threshold regulation in impaired motor control begins with 

defining foundational research questions: 

1. Can we create experimental measures to develop a model of spasticity that can be 

interpreted within the framework of a general theory of motor control? 

2. Can the underlying motor control framework provide unique parameters capable 

of describing both normal and altered/abnormal movement? 

3. Can the model be robust enough to explain active as well as passive movement? 

 

It is the belief of this research that the increased resistance during passive motion 

that characterizes spasticity, as well as many other aspects of disordered motor control 

that accompany cerebral lesion disorders can be explained by an equilibrium point model 

as impairment in the ability to regulate muscle force in all parts of the physiological 

range.  
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1.2 Background Information 

1.2.1 Cerebral Palsy 

Cerebral palsy (CP) is a disorder of movement and posture that results from a static 

injury to the brain before, during or shortly after childbirth. As the most common form of 

childhood physical disability, conceptually cerebral palsy describes a variety of motor 

disorders that arise from “developmental deficits or non progressive lesions of the 

immature brain” (Cheney, 1997). Variability in clinical expressions of CP results from 

dependence on the magnitude, extent, and location of the insult that causes permanent 

damage to the brain, brainstem, or spinal cord (Koman, 2004).  The clinical hallmark of 

cerebral palsy is abnormal motor control ranging from subtle motor impairment to 

involvement of the whole body.  In developed countries children are affected by cerebral 

palsy at rate of 2.0 to 2.5 incidences per 1000 live births (Graham, 2003). Spasticity, 

which is commonly seen in children with cerebral palsy, may interfere with functional 

performance and ease of caregiving which ultimately has a negative impact on the health-

related quality of life of the CP child. 

1.2.2 Spasticity 

Spasticity is a sensorimotor phenomenon related to the integration of the nervous system 

motor responses to sensory input (Ivanhoe, 2004). It is a condition which results from 

excess motor neuron excitation, leading to involuntary muscle contraction in response to 

increased velocity of movement. The most commonly accepted definition of spasticity is 

the one offered by Lance describing spasticity as „a motor disorder characterized by a 

velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated 
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tendon jerks, resulting from hyper excitability of the stretch reflexes, as one component 

of the upper motor neuron syndrome (Lance, 1980). 

Often forgotten in the various descriptions of spasticity is that it represents only 

one of the positive symptoms of the upper motor neuron (UMN) syndrome. Upper motor 

neurons are neurons that originate in the higher regions of the brain, such as the motor 

cortex, and synapse on the lower motor neurons to convey descending commands for 

movement (Kandel, 2000). Upper motor neurons include supraspinal inhibitory and 

excitatory fibers, which descend to the spinal cord, exerting a balanced control on spinal 

reflex activity (Sheean, 2002). Upper motor neuron (UMN) syndrome is a series of 

symptoms that result from lesions to the descending motor pathways anywhere along this 

trajectory. UMN syndrome has two classical distinctions in terms of its signs or 

symptoms. The negative symptoms, which include weakness or paralysis, unusual 

fatigability, and lack of dexterity are commonly referred to as paresis. The positive 

features of UMN syndrome are characterized by muscle overactivity, either excessive 

muscle contraction or some sort of inappropriate muscle activity (Sheean, 2002). 

Although only one of the positive features of UMN syndrome, „spasticity‟ is commonly 

used as a generic term for some of the other positive features of UMN syndrome such as 

hyperactive tendon reflexes, clonus and flexor spasms. 

Lance‟s characterization of spasticity has led the clinical view of spasticity as a 

form of hypertonia due to a velocity-dependent increase in tonic stretch reflexes, which 

results from abnormal spinal processing of proprioceptive input.  Hypertonia associated 

with spasticity can have one or both of the following features: 1) resistance to externally 

imposed movement increases with increasing speed of stretch and varies with the 
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direction of joint movement, and/or 2) resistance to externally imposed movement rises 

rapidly above a threshold speed or joint angle (Sanger, 2003). This resistance is in both 

stretch and lengthening, clinically described as a „spastic catch‟ (Barnes, 2001). As a 

result, the muscle tends to remain in a shortened position for prolonged periods of time 

yielding changes in soft tissue, which yields restricted attempted movements. Excessive 

and uncontrolled spasticity limits functional recovery, causes pain and is associated with 

contractures. 

1.2.3 Pathophysiology of Spasticity 

The pathologic basis of spasticity is a complex subject that is not completely understood 

by clinicians due to the classification of spasticity as being one of many features of the 

upper motor neuron syndrome, as well as the lack of a very good animal model (Sheean, 

2001). Lesions to the cortical motor system in cerebral palsy are a common cause of the 

upper motor neuron syndrome (UMN) in childhood. Injury to upper motor neurons 

decreases cortical input to the reticulospinal and corticospinal tracts, which in turn affects 

motor control, decreases the number of effective motor units, and produces abnormal 

muscle control and weakness (Koman et al., 2004). Simultaneously, the loss of 

descending inhibitory input through the reticulospinal tract and other systems increases 

the excitability of gamma and alpha neurons, producing spasticity. 

It is generally understood that the stretch reflex arc, which normally causes a 

muscle to contract in order to resist the force that is stretching it, is the most basic neural 

circuit contributing to spasticity. It contains contractile muscle fibers and sensory and 

motor neurons. Alpha motor neurons and the muscles that it innervates comprise the final 

common pathway in the expression of motor function. There are numerous excitatory and 
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inhibitory modulatory synaptic influences on this pathway. For normal movement to 

occur, the brain must be able to selectively turn this reflex off, usually via inhibitory 

signals relayed to the spinal cord via the corticospinal tract (McClelland et al., 2007). 

However, damage to this circuit results in disinhibition of the stretch reflex; over time, 

this reduces the triggering threshold until excessive and complete muscle contraction can 

occur even at rest, making the limb virtually immovable  (McClelland et al., 2007). 

Some specific causes of spasticity that have been proposed (a) alpha motor neuron 

hyperexcitability resulting from an imbalance in excitatory vs. inhibitory alpha motor 

neurons (Figure 1.1), and (b) gamma motor neuron hyperactivity manifesting as 

increased sensitivity of muscle spindle to stretch (Satkunam, 2003). Additional causes 

involve damage to descending tracts that control interneurons responsible for (a) 

mediating presynaptic inhibition of the Ia terminals on the alpha motor neuron, (b) 

mediating type II afferents, and (c) reciprocal Ia inhibition (McClelland et al., 2007). 

Outcomes of this damage include increased afferent stimulus to the alpha motor neuron 

as a result of stretch, decreased inhibition from type II afferents, and loss of normal 

inhibition of antagonist muscle during muscle stretch. Although each of the proposed 

individual causes contributes to the clinical picture observed in spasticity, a single 

unilateral hypothesis to explain the mechanisms of spasticity has yet to emerge. 
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Figure 1.1 Spinal mechanisms of suppression of hyperactivity in final common pathway. 

Source (Satkunam,  2003) 

  

1.3 Barriers to Meaningful Spasticity Measurement 

Spasticity is generally defined as velocity-dependent increased resistance during passive 

movement of peripheral joints owing to increased involuntary muscle activity (Good, 

2002). It is difficult for clinicians, however to correlate this definition of spasticity with 

the symptoms that they observe in patients. The clinically observed components of 

spasticity include increased resistance to passive movement, increased phasic-stretch 

reflexes, clonus, and flexor or extensor spasms (Good, 2002). These observations are 
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borne out of the inevitable consequence of clinicians viewing the whole UMN syndrome 

and regarding all the positive features of the syndrome as spasticity. Spasticity is seen in 

neurological conditions affecting the UMN anywhere from the cerebral cortex to the 

spinal cord. Depending on the location of the neurological lesion, spasticity may 

accompany hemiparesis, paraparesis, or tetraparesis (Good, 2002). 

Spasticity, impaired mechanisms of movement production, muscle stiffness, and 

contracture all contribute to a net imbalance of forces affecting joint position statically 

and limb movement dynamically. Since observed spasticity is not a single 

pathophysiological entity, but a collection of motor program disturbances (Grimm, 1983), 

other components of UMN syndrome must be considered besides the enhanced stretch 

reflexes. Because spasticity can be associated with so many clinical conditions, has 

different components, and may vary in severity among individual patients, it is difficult 

to define in a comprehensive fashion. 

The apparent mismatch between the reflex hyperexcitability definition of 

spasticity offered by Lance and the clinical observation of symptoms by physicians is 

rooted in a lack of differentiation between the neural and rheologic components of 

muscle tone. Spastic muscle hypertonia is normally attributed to hyperexcitability of 

stretch reflexes. As shown in Figure 1.2, increased resistance to passive movement, may 

also result from alterations in the passive mechanical characteristics of muscle, the most 

common being muscle contracture (O‟Dwyer, 1996). Changes in the rheologic properties 

of muscle, tendons, and joints can be caused by pathologic states that alter the normal 

control of limb position and movement. These rheologic changes can, in turn, exacerbate 

these pathologies (Mayer, 1997).  
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Figure 1.2 Two possible mechanism of hypertonia following an UMN lesion. 

Source (Johnson, 2002) 

 

The major challenge in spasticity treatment is the development of measurement 

techniques that are broadly consistent with the clinical definition and perception of the 

impairment, yet at the same time sensitive enough to separate the neural from the 

rheologic components of muscle tone. Lance‟s (1980) characterization of spasticity as 

“velocity dependent increase in tonic stretch reflex activity” establishes a paradigm that 

hyper-excited stretch reflexes are responsible for the increased resistance to passive 

movement and, with this in mind; different techniques to quantify spasticity in UMN 

syndrome patients have been developed. These techniques of spasticity measurement are 

grounded in the rationale that sustained overactivity in some way limits limb 

performance. Implicit in spasticity measurement is the concept that there exists a direct 

relationship between the velocity of stretch and the degree of hypertonia measured in a 

limb. 
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However, Burne et al. (2005) showed that spastic subjects exhibited a smaller 

range of reflex modulation, in comparison to non-spastic subjects, while also displaying 

decreased maximal contraction levels (weakness) and significant increases of resting 

contraction levels.  The significance of this research is that it shows that even when limbs 

are at rest there exists increased tone in spastic limbs. As a consequence of this raised 

background contraction, when perturbations with amplitudes and frequencies comparable 

to those used clinically were imposed on the resting limb, the stretch reflex and the 

passive joint resistance were increased in the spastic subjects. The existence of increased 

tone in spasticity has generated a shift in the definition of spasticity from a velocity 

dependent increased in tone, to an increase that is both velocity and position dependent. 

This naturally poses a conundrum in spasticity research because Burne‟s results give us 

the opportunity to examine whether spasticity is a velocity–dependent phenomenon 

spasticity or disorder of resting limbs? 

1.4 Outcome Measures of Spasticity 

Lance‟s (1980) velocity dependent definition of spasticity forms the foundation of the 

majority of the techniques developed to quantify spasticity. The significance of these 

measurements, however, lies in the ability to match the biomechanical aspects measured 

to the clinical observations of spasticity. Traditionally clinicians describe spasticity as “a 

disorder of spinal proprioceptive reflexes manifested as profound changes in reflexes to 

muscle stretch with a strong velocity-dependent component, emergence of pathological 

reflexes and uncontrolled spasms, an increase in muscle tone, and impairment of 

voluntary motor function” (Latash, 1998). This reliance on descriptive features of 

spasticity in terms of signs and symptoms instead of underlying mechanisms, highlight 
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some of the areas of mismatch between clinical and biomechanical measure of spasticity. 

While there are many approaches to measurement, outcome measures of spasticity can be 

broadly grouped into 1 of 3 categories: Clinical scales, biomechanical measures, and 

physiological measurements. 

1.4.1 Clinical Scales 

In this category, outcome measures are assessed through passive movement, applied by 

the clinician, or researcher. Examples of passive activity quantification include clinically 

measuring the increases of distensibility and elasticity of connective tissue in the spastic 

patients, measuring muscle tone, and assessing passive range of motion (ROM) (Elovic, 

2004).  Scales are the most common approach to the routine measurement of levels of 

spasticity. In the clinical setting, the most commonly used assessment of spasticity is the 

Ashworth scale. The Ashworth test is based upon the assessment of resistance to passive 

stretch by the clinician who applies the movement (Johnson, 2002). The scale was first 

developed in 1964 as a tool to assess the effectiveness of a drug to treat spasticity 

associated with multiple sclerosis (Good, 2002). 

The Ashworth scale is an ordinal scale that assesses muscle tone from 0 (no 

increase in tone) to 4 (affected part rigid in flexion and extension).  A score of 1 is 

assigned to a slight increase in tone noted at the end of the ROM while a score of 4 is 

assigned when a limb is rigid (Elovic, 2004). In an attempt to strengthen the scale as an 

assessment tool, Bohannon and Smith created and published the modified Ashworth scale 

(MAS), which contains an additional level of measurement (1+) and contains a revised 

definition at the lower end of the Ashworth scale (Figure 1.3). Although the MAS is very 

subjective and divides the description of spasticity into rather broad categories of  
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Figure 1.3 Ashworth and Modified Ashworth Scales. 

Source (Pandyan et al., 1999) 

 

increased tone, it has become the “gold standard” for semi-quantitative clinical 

assessment of spasticity (Good, 2002). Bohannon and Smith reported that there was good 

interrater reliability in its use in the assessment of elbow flexor spasticity secondary to 

intracranial pathology (Bohannon and Smith, 1987). However, the MAS reliability for 

use in lower extremities after traumatic brain injury has been questioned. Allison et al. 

stated that the MAS was only “minimally adequate” for plantar flexor tone for TBI 

patients, based on intrarater and interrater reliability (Allison et al., 1996). Blackburn et 

al. found questionable interrater reliability when looking at similar parameters in 

attempting to assess lower extremity spasticity in stroke patients (Blackburn, 2002). 

Intrinsic limitations exist in the assessment of spasticity using the Ashworth or 

MAS scales. In performing the test the clinician is required to extend the joint rapidly, 

usually the elbow or the knee, and make a subjective judgment of the level of resistance 

to motion (Johnson, 2002). That makes the test very dependent on the examiner, which 

makes the results difficult to duplicate between raters. Also, the resistance to and range of 
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passive movement can result from changes in the level of voluntary and reflex activity in 

the alpha motor neuron of agonist and antagonist motor groups or from changes in the 

viscoelastic properties of soft tissues and joints (Pandyan, 1999). Using either the 

Ashworth or MAS, it is not possible to distinguish between these two components of 

resistance. The significance in this lack of differentiation is that different causes of 

increase resistance to movement may require different treatment paradigms. The 

Ashworth scale does not measure low tone and has doubtful reliability. Studies have 

either used correlation coefficients rather than reliability coefficients (Bohannon and 

Smith, 1987) or have reported unacceptable coefficients of reliability such as 0.397 

(Allison et al., 1996) and 0.20-0.62 (Haas et al., 1996). 

With the modified Ashworth scale there are limitations in the statistical 

interpretation of the data. The distinguishing feature of the MAS is the introduction of an 

additional level of measurement (1+). The scale represents a grading of the assessment of 

spasticity and there is no clear evidence that the 1+ score represents a greater level of 

spasticity, other than the presence of the catch (Pandyan, 1999). It can be concluded that 

if 1 and 1+ are not hierarchical, then the scale can no longer be regarded as ordinal, but it 

becomes categorical (Johnson, 2002). In addition, there is no unique definition of zero on 

this scale, or on the original Ashworth Scale, making it difficult to ascertain whether the 

distances between 1 and 1+, and between 1+ and 2, are equal. Without a certainty in the 

quantifiable differences between resistance grades, there exists a lack of statistical 

relevance to the MAS data, making it impossible to use data analysis techniques such as 

parametric analysis. 
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The Tardieu Scale is another measure of spasticity that addresses resistance to 

stretch. First published in 1954, the Tardieu scale addresses the effects of velocity in the 

assessment of muscle tone. The outcomes that the Tardieu scale quantifies include (a) 

intensity of the resistance of muscle to stretch, (b) the angle at which the catch is first 

appreciated, and (c) the differences noted when a muscle is stretch at different velocities 

(Elovic, 2004). It is believed that moving the limb at different velocities, since the stretch 

reflex responds differentially to velocity, can more easily assess the response of the 

muscle to stretch. The ability to objectify the velocity dependent nature of spasticity 

distinguishes the Tardieu scale from the Ashworth scales.  

Gracies et al. (2000) examined the reliability of the Tardieu as a measure of 

spasticity and its ability to demonstrate intervention efficacy. Their worked observed that 

the angle where the clonus was first observed was increased due the prolonged stretch of 

the muscle due the Lycra splints utilized. The original Tardieu scale has been modified 

by Boyd & Graham in order to assess specified muscles in the lower limb by 

standardizing conditions for limb placement and alignment. Boyd defines the angle, „R1‟ 

as the angle at which a “catch” or resistance is felt by the examiner in the muscle while 

moving the limb through its full range of movement at the fast velocity stretch, V3 

(Boyd, 1999).  The fast velocity stretch is defined in the Tardieu scale as a speed “as fast 

as possible, faster than the rate of the natural drop of the limb segment under gravity.” It 

is theorized that the overactive stretch reflex in spastic muscles, which is velocity 

dependent, is represented by the „catch‟ felt following the fast velocity stretch (Wallen, 

2004). Angle „R2‟ is defined as the passive range of movement following a slow velocity 

stretch, V1. A slow velocity stretch is characterized as movement as slow as possible,  



14 

 

  

 
Figure 1.4 Tardieu scale. 

Source (Boyd and Graham, 1999) 

 

theoretically slower than the speed of a limb falling freely only under the influence of 

gravity. The importance of angle, „R2‟ is that this range of movement represents the 

muscle stretch resistance that is solely due to the rheologic properties of the muscle. The 

difference between the catch angle, R1 and full passive range of motion of the joint, R2, 

reflects the potential range of motion available if spasticity could be eliminated (Wallen, 

2004). A large difference between the two measures characterizes a large reflexive 

component of spasticity, whereas a small difference between R2 and R1 means that there 

is predominantly fixed contractures present (Boyd et al., 1998). 

The principal shortcoming of the Tardieu and modified Tardieu scales is their 

reliance on the same level of examiner subjectivity of the Ashworth scales. The 

determination on when a „catch‟ is felt is highly dependent on the experience of the 
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clinician. Additionally, the subjectivity of the Tardieu scale extends to the velocity 

characterizations, V1 and V3. Lack of a standardized protocol to facilitate exactness in 

movement velocity allows for the limb movement velocities to be dependent on the 

„skill‟ of the clinician. In comparison to the Ashworth scales the modified Tardieu scale 

provides move quantifiable variables but the same level of subjectivity with the variables, 

thus further reducing both intrarater and interrater reliability. 

1.4.2 Neurophysiological Evaluations 

Neurophysiological techniques utilize the paradigm that hyper-excited stretch reflexes are 

responsible for the increased resistance to passive movement. These techniques seek to 

provide better information about the state of the reflex pathways. Electromyography 

(EMG) is considered to be the most direct technique of spasticity measurement during 

passive stretch because the presence of stretch-evoked muscle activity is the only way of 

distinguishing a neural component of stretch (Boyd, 2001). In general raw EMG signals 

are usually averaged and rectified for analysis. EMG measurement can be utilized to trace 

the onset and duration of muscle contraction in response to many self-induced and 

initiated movements. Technology has allowed researchers to apply repeatable inputs, 

perturbations, and well defined stretches to tendons and muscles during daily activities to 

better understand stretch reflex and joint mechanics (Elovic, 2004). The characterization 

of spasticity as being caused by abnormal processing of proprioceptive input along reflex 

pathways has led to numerous attempts to quantify spasticity through the analysis of 

abnormalities in reflex pathways. These abnormalities include altered presynaptic 

inhibition, excitability in the Ia afferent pathway and increased alpha motor neuron 

excitability (Johnson, 2001). There have several types of EMG patterns that have been 
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used to describe the level of spasticity in a patient. These patterns include inefficient 

muscle activation with abnormal EMG-force relationships, disturbances of spatial 

selection of muscles, and alterations in the time-course of EMG activation in agonist and 

antagonist muscles (Good, 2002). The most common neurophysiological measures of 

spasticity are tendon jerks, H-reflex studies and F-wave studies. 

1.4.2.1 Tendon Jerk Method. Tendon jerk methods are designed utilizing the 

principle that muscle contractions can be elicited as a result of percussions of a tendon. A 

tendon jerk is elicited by a rapid, small stretch of a muscle. It is believed that the response 

to this stretch primarily involves the monosynaptic pathway, although it has also been 

suggested that this action could be influenced by oligosynaptic pathways (Rothwell, 

1994). The theory of tendon jerk response quantification is that tendon jerks are more 

readily elicited in people with spasticity – i.e., they can be elicited with smaller levels of 

stimuli than normal yielding a response that has higher amplitude and more dispersed. 

The amplitude of tendon jerk response could therefore be used as quantifiable measure of 

spasticity. The tendon reflexes that are normally measured in the clinical setting are not 

quantified scrupulously due to the variability that exists in the tapping protocol. 

Variability exists in the force exerted by the tap and the position on which the tendon is 

hit. Experimental approaches to address these two limitations have included systems, 

such as an automated hammer to measure the force in addition to ensuring the same tap 

position is maintained (Fryer, 1972). This technique has been furthered improved by the 

use of motor controlled tendon tap that provide increase precision in position, direction, 

and force of application. 
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Parameters that can be quantified from tendon jerk techniques include the muscle 

contraction force in response to tendon stretch, contraction and relaxation times, as well 

as muscle EMG recordings (Good, 2002). Additionally, a comparison can be made 

between the amplitude of the EMG response to tendon stimulation and the amplitude of 

the M-wave obtained in response to supramaximal motor-nerve stimulation, as an 

indication of the number of motor units activated by the stretch reflex (Dimitrijevic, 

1995). In comparison to mechanical stretching methods, tendon jerk methods are able to 

measure the neural component of muscle response directly. Thus tendon jerk methods 

avoid the issue of distinguishing between neurogenic and mechanical factors of stretch 

response. Despite this apparent advantage, the method of tendon jerks fails to determine 

whether the increase in the tendon jerk response is related to increase gain, decrease 

threshold or a combination of both factors (Johnson, 2001). 

1.4.2.2 Hoffman Reflex. The Hoffman or H-reflex is a long latency reflex that is 

obtained by stimulating a peripheral nerve, eliciting a spinal monosynaptic reflex, and 

recording the resultant reflex compound muscle-action potential from a target distal 

muscle using an EMG electrode (Good, 2002). The muscle response, which results from 

stimulation from conduction via the Ia afferent pathways, is independent of the muscle 

spindle activity (Johnson, 2001). The H-reflex measurement concept is based on the 

assumption that in spastic patients, a larger percentage of the lower motor neuron pool 

can be activated in reflex response through the stimulation of peripheral nerves (Good, 

2002). The H-reflex reflects the summation of excitatory and inhibitory influences on 

motor neurons. An increase in H-reflexes is typically associated with relative excitability 
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or depolarization of the motor neuron pool, and a decrease in H-reflexes reflects 

inhibition or hyperpolarization of the pool (Leonard, 1998). 

  H-reflex measurements typically suffer from variability due to stimulus 

intensity, the resting posture of the limb, the ability of a subject to relax, or the neck and 

vestibular reflexes (Johnson, 2001).  As a result of this variability, the H-reflex is 

generally compared with a maximum muscle response obtained by direct supramaximal 

stimulation of the same nerve recording over the same distal target muscle (Good, 2002). 

This maximum response, known as the M wave or M response represents the total pool of 

motor neurons that can be excited by stimulation in contrast to the H-reflex response, 

which represents just the motor neurons that can be excited by antidromic stimulation 

mediated through Ia fibers (Elovic, 2004). The H/M ratio is obtained by dividing the 

amplitudes the H-reflex & M responses respectively. The function of the H/M ratio as a 

measurement of spasticity lies in the role that the excitability of Ia fibers plays in the 

spastic response. It has been reported that the H/M is higher in spastic patients with 

hyperactive tendon jerks (Little, 1993). 

Higashi et al. (2001) compared the excitability of the motorneuron pools of both 

the spastic and unimpaired sides of hemiplegic patients by using a method of comparing 

H-reflexes and M responses. This technique of analysis determines the ratio of the 

developmental slope of the H-reflexes (Hslp) to the slope of the M response (Mslp). The 

Hslp is defined as the ratio of the increase number of recruited motorneurons to the 

increase in intensity of the electric stimulation of Ia afferents to evoke H-reflexes 

(Higashi, 2001). The Mslp however is defined as the ratio of the increased alpha motor 

nerves recruited in the nerve trunk at the site of the stimulus to the increase in stimulus 
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intensity applied to Ia afferent nerves. The results of the research showed that the motor 

neuron pool excitability of the spastic side, assessed via Hslp/Mslp was appreciably 

higher than that of the unimpaired side of the hemiplegic patients (Higashi, 2001). 

1.4.2.3 F-Waves. The F-wave response is another electrophysiological measure used 

to provide an outcome assessment of spasticity by measuring alpha motor neuron 

excitability. The F-wave is formed due to antidromic stimulation of motor neurons and 

has been observed as being elevated in spasticity and hyperexcitability of the 

motorneuron pool (Elovic, 2004). Although the signal produced by F-wave acquisition is 

less influenced by resting posture and the ability of subjects to relax, intrarater variability 

still exist in terms of latency and amplitude making it necessary for repeated test 

(Johnson, 2001). 

The major shortcoming of all neurophysiological measures continues to be the 

inability to correlate these measures with the present clinical techniques used.  In 

addition, the equipment required to analyze electrophysiological data makes the 

techniques impractical for measuring spasticity in a clinical environment. While 

quantifiable and objective, the value of neurophysiological measures in predicting a high-

level functional outcome is still limited (Elovic, 2004). 

1.4.3 Biomechanical Measures 

The velocity dependent characterization of spasticity in the literature has led to the 

development of many different biomechanical approaches in an attempt to describe 

spasticity in more quantifiable measures. Methods range from the relatively simple, to 

more sophisticated approaches that measure torque-angle relationships during passive 

and active movements (Good, 2002). 
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1.4.3.1 Sinusoidal Waveforms and Powered Systems. In attempting to identify the 

most useful quantitative measure of spasticity, many researchers cite the torque versus 

angle relationship at a joint to be the most applicable because it closely epitomizes the 

definition of spasticity as well shows correlation with the gold standard of the MAS 

(Elovic, 2004).  This has lead to research into other forms of biomechanical measures of 

spasticity that involve the recordings of muscle torque and angular stiffness. This 

technology utilizes sinusoidal analysis and Nyquist plots to characterize stiffness and 

viscosity in response to force applied across spastic joints (Good, 2002). In the sinusoidal 

waveform method, the amplitude is generally fixed and the frequency of oscillation is 

varied. Movement occurs about a determine position, usually referring to the joint in a 

neutral position. It is argued that a sinusoidal movement, in addition to being 

reproducible and controllable, is similar to many functional movements such as walking 

(Becher, 1998). The major disadvantage of this method however lies in its predictability. 

Hunter and Kearney (1982) argue that predictability in assessment allows for the 

occurrence of voluntary, pre-programmed modulation of muscular contractions instead of 

eliciting involuntary responses. 

Walsh (1996) developed an alternative approach to the measurement of spasticity 

involving the use of a powered system in which an electric motor is used to provide 

oscillation at the wrist. This technique utilize two approaches – a displacement can be 

applied and the resulting muscle stiffness measured, or the force can be applied and the 

natural frequency or resonance can be measured (Johnson, 2002). In Walsh‟s experiment 

the patient held a simple handle attached to an electric motor. The motor produced 

flexion and extension of the joint and the apparatus also measures EMG. Using this 
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system Walsh showed that the ability to measure different amplitude and natural 

frequency of oscillation depends on the joint stiffness. Additional he demonstrated that 

after the application of a number of cycles of movement, the resistance to motion would 

be reduce and larger amplitude of oscillation could be sustained (Johnson, 2001).  

Corry et al. (1997) used the technique to study the use of botulinum (Botox) toxin 

in patients with cerebral palsy to measure the change in natural frequency before and 

after the injection. In a 14 year old patient the experimenters recorded the resonant 

frequency at the wrist. Before administration of Botox, the natural frequency of the wrist 

was high, indicating a very stiff joint. After the injection, the natural frequency decreased 

which was indicative of a reduction in stiffness. Although promising, the technology 

required in this type of analysis is not practical for the clinical setting and has thus been 

relegated to the laboratory research setting. 

1.4.3.2 Pendulum Knee Test. The pendulum test is a biomechanical method of 

evaluating muscle tone by using gravity to provoke muscle stretch reflexes during passive 

swinging of the lower limb (Fowler, 200). First introduced by Wartenberg (1951), the 

method involves lifting the limb under investigation against gravity to full extension and 

when relaxed, releasing it, causing it to fall and swing freely as shown in Figure 1.5. Test 

subjects are instructed to relax and not to intervene when the limb is released. The 

emphasis is on the limb being relaxed in order to achieve the aim of measuring the 

muscle‟s response to passive stretch. 
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Figure 1.5 Positioning of subject in pendulum test. 

Source (Fowler, 2000) 

  

The test requires angular joint movement to be measured over time until the limb 

comes to rest. From the resulting angle-time plot, parameters defining characteristics of 

the swings can be calculated. In a normal healthy subject the leg will swing about six 

times, but in the presence of spasticity the number of swings is reduced in accordance 

with the velocity dependence (Johnson, 2002). 

In unaffected individuals, the observed pattern of the swinging limb, typically 

quantified using an electrogoniometer, has been described as smooth, regular, and like 

that of a damped pendulum (Fowler, 2000). The limb movements appear to oscillate 

about the gravitational resting position (Fee and Foulds, 2004). In contrast, the spastic 

limb has a characteristic trajectory that appears to ratchet toward the gravitational 

orientation as shown in Figure 1.6. Wartenberg (1951) described spastic limb motion as 
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having decreased number of oscillations and an irregular characteristic motion. Simons 

and Mense (1998) observed that the overreactive reflex stretch responses of spastic 

muscles reduce the number and smoothness of oscillations of an affected limb and may 

interrupt the first swing before it can complete its initial downward phase. The spastic 

limb moves initially moves in flexion due to the torque exerted on the knee joint by 

gravity. This motion is accompanied by muscle activity producing movements which 

oppose movement in the gravitational direction (Fee and Foulds, 2004). This 

characteristic pattern of movement in the spastic limb of initial gravitational falling with 

arrest in gravitational motion has been characterized in the literature describing spasticity 

in stroke, cerebral palsy and multiple sclerosis (Vodovnik et al., 1984; He, 1998; Lin and 

Rymer, 1991).  

 

 

Figure 1.6 Trajectory of normal subject and subject with spasticity. 

Source (Krause et al., 2004) 
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1.5 Trajectory Analysis of Pendulum Knee Data 

Wartenberg‟s initial characterizations of limb motion from the pendulum test were 

mainly descriptive in nature, focusing the number of oscillations as a primary descriptor 

of spastic trajectory. Bajd & Vodovnik (1984) who attached a goniometer to the knee and 

recorded the movements at the joint after release further examined the test technique. 

They developed the Relaxation Index, based on the postulation that when the extended 

spastic limb is dropped, it behaves like a linear damped pendulum (Bajd & Vodovnik, 

1984). The Relaxation Index, R2 (Figure 1.7) measures the angular excursion of the 

pendulum swing of the dropped limb as a fraction of the initial angle made by the 

suspended limb with the vertical (Kaeser, 1998). If the leg overshoots the vertical, R2 is 

greater than 1. If the swing is interrupted before the limb reaches the vertical, R2 is less 

than 1, indicating spasticity.  

Leslie et al. (1992) investigated the use of the Relaxation Index and its 

relationship to the original Ashworth scale. They found a good correlation and showed 

that the pendulum test appeared to be a more sensitive measure than the Ashworth scale. 

Fowler et al.. (2000) used the same test with cerebral palsy patients. They looked at a 

range of outcome measures of spasticity, including the modified Ashworth score 

performed at the knee, in 30 subjects with cerebral palsy and compared them with 10 

controls. Their conclusions were that the modified Ashworth Score, EMG measurements, 

and the number of oscillations, differed significantly between test subjects and controls 

(Johnson, 2002). They also found that the first swing excursion was the best predictor of 

spasticity and that the number and duration of swings differentiated between patients and  
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Figure 1.7 Calculation of index R2, from the pendulum data of a spastic and normal leg. 

Source (Good, 2002) 

 

controls, but not between the patient groups. However, the Relaxation Index was 

considered not a good measure of spasticity (Johnson, 2002). The importance if this 

entire body of research is that it began to introduce the concept that the trajectories, 

originally described by Wartenberg, can be used to differentiate between non spastic and 

spastic individuals. Further, the work of Leslie and Fowler illustrates that the Relaxation 

Index may provide a measure that can correspond with clinical measures of spasticity 

such as the MAS.  

In moving from a descriptive to more quantitative analysis of pendulum knee 

trajectory, there was still a need to understand to what degree the trajectory was based on 

the passive mechanical properties of muscle versus active inappropriate muscle activity? 

This quandary moved spasticity research in the direction of analyzing EMG activity 

occurring during the pendulum knee test. Measuring the timing of EMG activity relative 

to the measured increase in torque during passive muscle stretch provides an estimate of 
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Figure 1.8 Subject with CP and severe spasticity measured on the Ashworth Scale. 

Source (Fowler, 2000) 

 

stretch reflex threshold (Powers et al., 1989) or angular threshold (Allison and Abraham, 

2001). The pendulum trajectories of subjects without spasticity show EMG recordings 

indicating a lack of active muscle contraction during swing, in contrast to the 

observations in spastic limbs (Fee and Foulds, 2004).  

Vodovnik et al. (1984) observed quadriceps muscle activity after initial release of 

the spastic limb which produced a “dent in the damped sinusoid”. In their analysis of the 

limb trajectory, the more spastic the limb, more „dents‟ in the trajectory. The burst of 

EMG activity indicates a contractile force of the quadriceps which tends to extend the leg 

during the falling phase (Vodovnik et al., 1984). Fowler (2000) observed EMG bursts 

(Figure 1.8) in both the quadriceps and hamstrings in cerebral palsy subjects with 
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spasticity, in response to stretch due to limb the oscillations of the pendulum test. These 

EMG bursts produce a reversal in direction of leg motion in the opposite direction of 

gravity. Other authors have also shown that in spastic trajectory during the pendulum 

knee test there are EMG burst occurring in both extensor and flexors during the phase of 

the movement in which they are stretched (Lin and Rymer, 1991; He, 1998; Fee and 

Foulds, 2004). The EMG burst corresponds to the stretch reflex which introduces 

additional torque, causing the limb trajectory to deviate from a pendular appearance (Fee 

and Foulds 2004). 

In order to reproduce the additional torque necessary to produce the spastic limb 

trajectories by mathematical modeling, Vodovnik et al. (1984) utilized a step function to 

approximate the force of the quadriceps. Fee and Foulds (2004) created an active element 

neuromuscular model of spasticity that utilizes two-step torques to each of the passive 

extensor and flexor plants of the model. Rather than relying on the timing of EMG like 

the model used by Vodovnik et al., the model proposed by Fee and Foulds implements an 

optimization algorithm to specify the timing and amplitude of torques that can be 

introduced to improve the performance of the best fitting passive model (Fee and Foulds, 

2004).  

With the beginnings of a neural contribution to spasticity being investigated, Fee 

and Samworth (1995) investigated the degree to which the differences in the neural 

contribution to spasticity can be captured in response to neurological interventions. They 

developed a model of spasticity of three triplets two of which had spasticity. Each child 

went through 15 min of vertical up and down acceleration on a specially constructed 

platform. They demonstrated that leg swings of the two siblings with spasticity appeared 
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considerably more pendular and look more in appearance like the swing of the non-

spastic sibling. The reduction in spastic muscle firing evidenced through EMG recordings 

served as confirmation of this result. Fee and Miller (2004) show the elimination of 

spasticity by general anesthesia. Under anesthesia, results of a pendulum leg drop test are 

significantly different from those seen in limbs with spasticity. They demonstrated that 

for all of the spastic subjects, the removal of spasticity by general anesthesia produced a 

nearly normal leg drop as shown in Figures 1.9 and 1.10. 

 

 
Figure 1.9 Leg drop pendulum test position tracing from (a) patient without disabilities 

and tracings from two patients with spasticity, (b) patient 3 (c) and patient 5. 

Source (Fee and Miller, 2004) 
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Figure 1.10 Pendulum Test under general anesthetic for same subjects in Figure 1.9. 

Source (Fee and Miller, 2004) 

 

Fee‟s work in vertical accelerations and general anesthesia in conjunction with 

previous modeling of spastic limb trajectory with the addition of burst of torque 

(Vodovnik et al., 1984; Fee and Foulds, 2004) confirms that the cause of the 

characteristic trajectory in pendulum knee test is active muscle behavior under neural 

control. 
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1.6 Research Direction 

In the literature it has been shown that the pendulum knee drop test can be used to extract 

measures of spasticity. Quantification of the spastic trajectory can be utilized to provide a 

measure of spasticity. The fact that this limb trajectory is influenced by neurally 

controlled muscle activation that can be perturbed and that a different limb trajectory 

results from this perturbation, suggest that there is a need for a model of spastic limb 

motion which goes beyond just describing the appearance of the pendulum knee drop 

trajectory. It also indicates that it may be possible to construct a forward dynamic model 

that is guided by features which typically characterize spasticity. Rather than research 

which seeks separate explanations for spasticity, weakness, co-contraction, and other 

outcomes of disordered motor control, the effort of this research is focused ultimately 

expanding the definition of spasticity to by taking into account the negative impact 

spasticity has on the achievement of motor control. 

It is this research‟s belief that the equilibrium point hypothesis of motor control 

which theorizes that muscle force and active movements develop as a result of shifts in 

the equilibrium state of the motor system, structures the basis of understanding the nature 

of reflex and motor deficits such as spasticity (Levin, 2000). This remainder dissertation 

will focus on the development of a forward dynamic model incorporating the concept of 

the equilibrium point hypothesis. The scope of the proposed study focuses on two 

features which typically characterize spasticity, an increase in passive stiffness of muscle 

and the hyperactive behavior of the stretch reflexes. Passive joint stiffness, which is to be 

quantified in this research, refers to the resistance to movement or force that occurs even 

when motor neurons are quiescent and their myofibers are not actively contracting. 
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Research assessing the change in passive joint stiffness after neurological 

interventions such as general anesthesia (Krabak et al., 2001; Fee 2004), after the use of 

intrathecal baclofen (Remy-Neris et al., 2003; Francisco et al., 2005) and vertical 

accelerations (Fee and Samworth 1995; Kuczynski and Slonka 1999; Fee and Foulds 

2004) support the intended goals of this research to: 

 Apply the Equilibrium Point Hypothesis to characterize the ability of a lower limb 

to follow a virtual trajectory of joint motion. 

 Assesses the model‟s robustness in characterizing the differences in motion 

between non-spastic and spastic subjects. 

 Investigate the ability to define passive stiffness of the knee joint in terms its 

neutral body position 

 

Understanding the neuromuscular influences on muscle tone (flexibility) will 

assist in the development of new rehabilitative techniques in cerebral palsy. This not only 

provides the clinician with a better understanding of the pathophysiology of spasticity but 

permits a better understanding of the clinical tools that are utilized to measure these 

abnormalities and better comprehension of the therapeutic and pharmacologic 

interventions that can modulate this abnormal tone. 
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CHAPTER 2  

CNS MODELING OF STRETCH REFLEX THRESHOLD REGULATION 

 

The complex nature of spasticity, as demonstrated in the previous chapter, demonstrates 

that the search for viable treatment methods for spasticity is rooted in the clinicians 

search to understand what exactly is disordered. This research illustrates that the 

understanding of spasticity is be rooted in our ability to conceptualize the role that the 

central nervous system plays in altering stretch reflex threshold activation. 

Neuromuscular control is typically viewed from a top-down perspective. 

Commands are generated at the highest control center, the motor cortex, programmed 

into a movement program and sent to the motoneuron pool. The motoneuron pool 

activates the muscle, the muscle generates force and finally this results in a movement. 

The maintenance of appropriate levels of muscle tone facilitates the muscle‟s ability of 

make optimal response to voluntary or reflexive commands. Comprehension of the 

mechanisms utilized to alter muscle tone requires an ability to conceptualize the role of 

the central nervous system in the regulation of motor control. This research demonstrates 

that the abnormal motor behavior which characterizes spasticity can be modeled as 

response to a change in the equilibrium state of the motor system. The equilibrium point 

hypothesis of motor control, with its ability to it model the positional and velocity gains 

of the stretch reflex relative to a static or moving state of dynamic equilibrium at a joint, 

has important implications for disordered motor control flowing a CNS lesion. 
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2.1 Equilibrium Point Hypothesis  

The equilibrium point hypothesis (EPH) or λ model of motor control suggests that 

descending commands from the CNS utilize muscle reflex mechanisms to facilitate 

changes in the activity of muscle reflexes, while also specifying the  parameters of the 

reflexes (Latash, 1998).  Muscle reflexes specify a relationship between muscle force and 

length – an invariant characteristic, IC (Figure 2.1). For a set descending command, 

constant external load and certain muscle length, there exists a point, the equilibrium 

point, where the muscle-load system is at equilibrium. Perturbations or changes in the 

external load yield changes in muscle length inducing changes in muscle activation levels 

via the tonic stretch reflex arc (Latash, 1998). Reciprocally, the resultant changes in 

muscle activation levels stimulate parallel changes in muscle force and length until a new 

equilibrium point is reached. According to the equilibrium point hypothesis, voluntary 

motor control or the control actions of muscles is not explicitly computed, but rather 

arises as a consequence of the interactions among moving equilibrium position, current 

muscle kinematics, and stiffness of the joint (Suzuki and Yamazaki, 2005). 

The EPH is based on the principle that changes in descending signals to the spinal 

segmental apparatus may be described as setting threshold values of muscle length for the 

tonic stretch reflex (Latash, 2008). When the length of a muscle is below this threshold, 

the muscle is silent. In contrast, if the length of the muscle is over the threshold, the 

muscle is activated and the level of activation grows with the difference between the 

actual muscle length and the threshold value (Latash, 2008). The resulting muscle 

activation produces muscle contraction or shortening, bringing its length closer to the 

threshold value. Thus, muscle activation of motoneurons and the muscle fibers they 
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Figure 2.1 Relationship between muscle force and muscle length in EPH. 

Source (Latash, 1998) 

 

 

 
Figure 2.2 Balance of combination of descending signals to all groups of spinal neurons 

Source (Latash, 1998) 
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innervate are controlled by the difference between the threshold position, defined by 

descending signals and actual muscle position, sensed by proprioceptors (Latash, 2008). 

The equilibrium point hypothesis presupposes that the central command represents a 

“balanced combination of descending signals to all groups of spinal neurons including α-

motoneurons, γ-motoneurons, and interneurons”, as shown in Figure 2.2 (Latash, 1998). 

The interaction between neural elements (descending command), muscle elements 

(muscle length) and environment (load) through mechanics & neural loops reduce the 

activity of motoneurons and minimize the difference between the actual position and the 

threshold position (Latash, 2008). The rationale of the EPH is that muscles try to achieve 

minimal activation compatible with external forces including those produced by other 

muscles.  

2.2 Single‐Muscle Control Within the EP‐Hypothesis 

For a single muscle, its steady-state is defined by two variables, length and force. The 

descending or “central command” is characterized by the variable λ, which represents 

threshold of tonic stretch reflex. This command defines the dependence between active 

muscle force and length by setting threshold for the tonic stretch reflex. Actual muscle 

force and length depend on  and external load. For a specific  and external load L, 

there exists a specific equilibrium point (EP1 in Figure 2.3A). If a muscle is at an 

equilibrium point (EP1) acting against the load L, its force magnitude equals L. Any 

deviation of the muscle from that point would result in a change in its activation such that 

the active muscle force will be higher than L, if the muscle is stretched, or lower than L, 

if the muscle is shortened (Latash, 2008). 
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Figure 2.3 An illustration of single‐muscle control within the EP‐hypothesis. 

Source (Feldman, 2008) 

 

Once the muscle is released its length changes and the muscle will go back to EP1 

because no other equilibrium state has been defined. The equilibrium point hypothesis 

proposes that the threshold of the tonic stretch reflex, λ, is the only centrally supplied 

control parameter descending to the α and γ motor neurons (Bellomo, 1997). Central 

shifts in activation thresholds are the mechanisms utilized by the nervous system to 

produce movement. Within the framework of the equilibrium point hypothesis, 

movements can result from two causes. Passive or involuntary movement (Figure 2.3C) 

occurs as a result of a change in external load while keeping the voluntary command, , 

constant. This results in a change along the same force length curve due to a new 

combination of muscle force and length. Movements can also be produced by changing 
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threshold of tonic stretch reflex (Figure 2.2B), meaning change in λ. This is regarded as 

active or voluntary movement because λ is under CNS control (Latash, 2008). 

2.3 EPH Applied to a Single Joint 

Within the framework of the equilibrium point hypothesis single-joint movements can be 

simplistically controlled by at least a couple of muscles that develop force in opposing 

different directions. As opposed to the single muscle case, because muscle about joint 

causes rotation, mechanical variables of torque and angle are used to describe the state of 

joint control. Each muscle in the pair comprising the single joint is controlled with its 

own command variable, flx for the flexor and ext for the extensor. The { flx; ext} pair 

defines the overall joint compliant characteristic, JCC (Figure 2.4), which represents the 

algebraic sum of the corresponding muscle characteristics (Latash, 2008). 

 

 
Figure 2.4 The joint compliant characteristic (JCC) curve. 

                        Source (Bellomo and Inbar, 1997) 
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In the EPH control of this agonist/antagonist muscle pair is accomplished using 

two centrally descending commands which define the local behavior of the λs in each 

muscle, the reciprocal command, R and the coactivation command, C. The R command 

specifies the joint threshold angle R, at which the transition between agonist to antagonist 

activity or vice versa, occurs. It specifies a referent angle at which the active component 

of the net joint torque is zero, i.e., the point at which the joint is in equilibrium. The R 

command combines facilitation of agonist motorneurons with inhibition of antagonist 

motorneurons (Levin and Dismov, 1997). The coactivation or C command, specifies an 

angular range in which agonist and antagonist muscles may be simultaneously active 

(coactivation zone) if C>0 or silent (silent zone) if C<0 as shown in Figure 2.5. The 

„„coactivation‟‟ command, C, simultaneously facilitates motoneurons of both muscle 

groups. Thus, the EPH can be scaled to represent a more realistic joint about which a 

number of muscles are active.  

The value of the R and C commands defines a force-length relationship of the pair 

of antagonist muscles acting around the joint, the joint compliant characteristic (JCC), 

which is the algebraic sum of IC curves for the antagonist muscles. The JCC illustrates 

the dependence between the joint angle and torque (Figure 2.4). To control joint position, 

central commands can either define a pair of IC curves by specifying the flexor and 

extensor threshold angles (λflx, λext), respectively, or by directly defining the JCC curve 

by specifying R & C (Bellomo and Inbar, 1997). 
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Figure 2.5 Spatial determinants (R and C) commands for the reciprocal and simultaneous 

activation of flexor and extensor muscles around a joint in the λ model. 

Source (Levin and Dimov, 1997) 

 

At the level of joint control the R command represents the equilibrium position of 

the joint in absence of external loads whereas the C command represents the stiffness 

level of the joint at the position, R (Bellomo and Inbar, 1997).  As the JCC is the 

approximately linear sum non-linear IC curves its slope can be approximated as a 

constant, C, supporting the observation of McMahon (1985) that the combination of 

muscle spindle and golgi tendon organ signals produce a ratio of change in force over 

change in length, „which appears to be fixed at a nearly constant value by the stretch 

reflex. McMahon explains that in this way, a joint presents a constant stiffness coefficient 

in spite of large non-linear variations in individual muscle characteristics. Voluntary joint 

motion and/or torque production result from shifts of λf and λe (Figure 2.5), which 

correspond to λflx and λext in Figure 2.4. If λf and λe shift in the same direction along  
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Figure 2.6 The regulation of joint angle (horizontal axis) and muscle torque (vertical 

axis) based on the control of the SR threshold in the framework of the λ model. 

Source (Levin et al., 2000) 

 

angle axis, the mechanical characteristic of the joint shifts parallel along the axis without 

changing shape (Latash, 2008). The R command produces shifts in the λ's of flexor and 

extensor muscles in the same direction, allowing the CNS to facilitate shifts in the net 

joint torque/angle characteristic from one position R1 to another R2 (Figure 2.6B). This 

form of control suggests that one muscle is being activated and while relaxing the other. 

If λf and λe shift in the opposite direction along angle axis there is almost no change in 

location of the joint characteristic but a significant change in its slope. The C command 

causes the λ's to move in opposite directions (Figure 2.6 C) allowing for the modulation 

of the stiffness of the net joint characteristic curve (Levin, 2000). The greater the 
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command, the wider the λ separation and the higher the amount of agonist/antagonist 

coactivation. In essence the joint stiffens rather than moves. Thus, changing the C 

command does not affect the existing EP of the system nor does it affect shifts in the EP 

elicited by the R command (Levin, 2000). Since change in joint stiffness facilitates a 

reduction in limb movement about the joint for example, the C command influence shifts 

in the EP elicited by modulations in the external load. Therefore the λ model establishes a 

control system that distinguish between voluntary (R command mediated shifts in the EP) 

and involuntary (load perturbations) reactions (Levin, 2000). In order to account for the 

dynamics of voluntary movements, Levin and Feldman (1994) introduced the concept of 

a dynamic tonic stretch reflex (TSR) threshold defined as: 

 

λ * = λ – µV          2.1  

 

where μ is a constant and V is the speed of muscle stretching (Latash and Gutman, 1994). 

The parameter μ, was introduced to represent the contribution of the group Ia afferents 

that are sensitive to the rate of change of muscle length (Bellomo and Inbar, 1997). This 

relation is theorized to reflect the dynamic sensitivity of muscle spindles. The dynamic 

threshold, λ* represents the joint angle at which recruitment of the α-motor neurons 

begins due to phasic responses in muscle resulting from fast changes in the muscle 

length. When the muscle length is greater than λ*, its instantaneous activity (EMG) is 

proportional to the difference between its length and the value of λ*. The activation 

threshold, λ*, has a component (λ) that is determined by central control influences that 

are independent of proprioceptive feedback as well as components that are dependent on 

it (Feldman and Latash, 2005). 
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2.4 Trajectory Formation Within the EPH  

The previous section describes how within the framework of the EPH voluntary joint 

position can be controlled by directly setting the joint compliant characteristic, JCC, by 

setting the commands R and C. The R command represents the equilibrium point of the 

joint when no external forces are acting on it, and “C” represents the stiffness level of the 

joint at the position indicated by R (Latash et al., 1991). For a given R & C the joint 

behaves like a non-linear spring with an equilibrium state and mechanical behavior 

dependent on the external load (Latash, 1992). Neville Hogan (1985) and Tamar Flash 

(1987) expanded the original concept of joint position control within the EPH to describe 

multi-joint arm motion as occurring by shifts in the equilibrium position defined by 

neuromuscular activity. A centrally induced change in position, R, or slope, C leads to a 

difference between actual joint position and equilibrium position. This difference creates 

muscle activation and generates joint torque designed to move the joint to a new 

equilibrium point (Latash, 1992).  

Gomi and Kawato (1996) expand on this concept of moving between equilibrium 

points by describing how in reaching task, the brain sends an "equilibrium point 

trajectory," which is similar to the desired trajectory, to the periphery as a motor 

command. They describe the equilibrium-point trajectory as “a time series of equilibrium 

points, each of which would be realized because of the mechanically stable elastic 

properties of the muscles and reflexes, if the motor command at some instant were 

maintained indefinitely”. Latash (1992) expands this concept of the equilibrium-point 

trajectory by describing it as a “virtual trajectory”. In the context of single joint 

movement, the virtual trajectory is trajectory that would be followed by a massless limb 
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without damping and changes in the external load (Latash and Gottlieb 1991). According 

to this definition, any central shift in the equilibrium point would lead to the development 

of a non-zero joint torque that would, in turn, lead to infinite acceleration of the limb 

immediately bringing it to the new equilibrium position (Latash, 1992). Thus descending 

commands control voluntary movement by specifying a time pattern of the control 

parameters (Bellomo and Inbar, 1997). A time pattern of R represents the virtual 

trajectory, “a pre-planned quasi-static movement trajectory defined by the descending 

commands” (Bellomo and Inbar, 1997). These simple trajectories can be planned without 

complex computation. 

During central shifts in R there is a lag between the equilibrium position and the 

actual instantaneous position of the joint (Latash, 1992). This lag is due to several factors 

including the dynamic properties of the limb and changes in the external force field 

(Latash, 1998). Therefore, the virtual trajectory is the centrally desired trajectory that 

becomes altered in order to produce an actual trajectory by the processing of neural 

signals, activity of the muscles, and load.  

2.5 Spasticity and the λ-Model 

Reflex and motor deficits such as spasticity, limitations in force regulation, inappropriate 

agonist/antagonist coactivation and movement segmentation are common outcomes of 

central nervous system lesions (Levin, 2000). The regulation of thresholds as well as 

positional and velocity gains of the stretch reflex are essential results of supraspinal 

action and may have important implications for disordered motor control following CNS 

lesions. The λ model provides an explanation of the motor deficits, which characterize 

spasticity, in terms of the CNS‟ ability to regulate the stretch reflex (SR) threshold. 
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According to the λ model, the range in which muscle force and joint position are 

controlled is a consequence of the specification of SR thresholds at the muscle level and 

their coordinated regulation at the joint level (Levin et al., 2000). In the absence of 

external force slow active flexor movements against gravity can be produced by a 

decrease in the flexor SR thresholds. Prevention of extensor muscle activation due to 

stretching would require parallel diminution of extensor SR thresholds. 

Within healthy populations, the SR threshold can be specified at any point within 

the physiological range of the joint. The λ model postulates that normally, the threshold 

range of λ (λ-to λ+; Fig. 2.7) should extend beyond the physiological limits of the joint 

for healthy individuals. Levin et al., (2000) suggest that this SR control mechanism in 

healthy individuals allows for complete relaxation when muscles are fully stretched 

(flexor λ+ > θ+) and complete activation of the muscle when it is in the fully shortened 

position (flexor λ- < θ-). Levin tested this concept by stretching muscles of the elbow in 

pediatric and adult hemiplegic patients at different velocities. Stretches were applied to 

the forearm immobilized in a manipulandum coupled to a torque motor, in either the 

flexion or extension direction to determine the SR thresholds of flexor and extensor 

muscle groups. The dynamic thresholds, λ*, at each velocity were determined from the 

responses in patients, as the angle at which stretch reflex activity first appeared in the 

stretched muscles. In healthy subjects at rest, since even rapid stretches evoked no reflex 

activity in either elbow flexors or extensors, no static SR thresholds lay within the 

physiological joint range. 
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Figure 2.7 Regulation of joint angle (horizontal axis) and muscle torque (vertical axis) 

based on the control of the SR threshold in the framework of the λ model. 

Source from (Levin et al., 2000) 

 

 

Studies have suggested that spasticity may be related to problems in regulating 

stretch reflex (SR) thresholds in specific muscles. In the same study by Levin (2000), 

data from a spastic hemiparetic child in whom the upper border of the stretch reflex, λ+, 

for flexors was found to lie within the physiological range (i.e., θ- < λ+ <θ+, ) of the joint 

(Fig. 2.8A). The data from elbow flexor muscles in almost all the pediatric and adult 

hemiparetic subjects tested, the threshold fell within the joint range. The implication of 

these results suggests that the threshold cannot be shifted further to the right of value λ+. 

When the arm is placed or stretched to the right of λ+, the flexor muscles cannot relax 

immediately, which can be interpreted as the presence of muscular hypertonicity (Levin, 

2000). Levin‟s work reinforced earlier research by Levin and Feldman (1994), which 

tested the hypothesis that in spastic hemiparetic subjects, there is a change in the  
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Figure 2.8 Velocity/angle phase diagrams for two children (A and B) with CP. 

Source (Levin, 2000) 

 

 

parameters of static and dynamic stretch reflex threshold regulation. Stretch reflex 

threshold regulation was compared in eleven spastic hemiparetic and six normal subjects. 

Subjects sat with their arms fully supported in a forearm and hand mold attached to a 

manipulandum mounted on and controlled by a torque motor. Displacement and velocity 

of the forearm were measured as well as EMG signals from two elbow flexors and two 

elbow extensors, when the elbow flexors were stretched at each of seven velocities 

(Levin and Feldman, 1994). 

The main findings of their study were that static and dynamic stretch reflex 

thresholds were decreased in spastic hemiparetic compared to normal subjects and that 

the thresholds depended on velocity. Utilizing the lambda model as the foundation of the 

rationalization of their results Levin and Feldman (1994) theorized that healthy subjects 

were able to relax at the initial elbow position due to an “increase in the threshold which 

precluded muscle activation in the whole physiological range of arm displacement”. In 

contrast spastic patients were unable to increase the stretch reflex threshold to prevent 

muscle activation during even slow velocity stretching. 
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Comparison of the stretch reflex responses between healthy and spastic 

populations led to the conclusion that the regulation of the stretch reflex threshold is an 

essential mechanism of motor control which may be impaired in spastic patients.  

According to the λ model, when descending influences to motoneurons and spinal 

interneurons are held constant, motoneuronal recruitment begins when muscle length 

reaches the threshold length and increases with further muscle stretch leading to an 

increase in active torque (Levin and Feldman, 1994). Hence in patients with CNS lesions, 

abnormally increased tone is present and muscles cannot relax with in the short time 

frame characteristic of healthy subjects. 

The equilibrium point hypothesis is a theory of active motor control which 

provides a framework to describe the control of a joint by three physical parameters:  

1. Stiffness, C 

2. Rate of change in muscle length, µ 

3. Trajectory, R 

 

These three parameters allow for differentiation in the trajectories of motion of 

individuals with and without spasticity. The sequent chapters will outline how a forward 

model of passive movement can be built using these three parameters that has strong 

physiological justifications. 
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CHAPTER 3  

PASSIVE PENDULUM MODEL OF KNEE MOTION 

3.1 Origin of Original Pendulum Model 

The pendulum test was first modeled by Badj and Bowman (1982) and Vodovnik et al. 

(1984) using the linear elements of a stiffness, damper, and inertia combined to make an 

underdamped second order system. The motion of the passive normal knee can be 

described by the following differential equation: 

 

 (3.1) 

  

where I is the moment of inertia,  is angular acceleration, B is the damping coefficient, 

 is angular velocity, K is the stiffness coefficient,  is trajectory of the knee joint, m is 

segment mass (defined as the mass of the shank+foot), g is gravitational acceleration, and  

lc is the length to the segment‟s center of mass. The advantage of the Badj and Vodovnik 

model is that the stiffness and damping, K and B, of the model accounts for the lumped 

mechanical properties of both agonist and antagonist muscle groups as well as all of the 

passive structures in the knee (Lin and Rymer, 1991). 

While this model represented the non-spastic knee trajectory reasonably well, it 

failed to sufficiently represent the spastic knee trajectory. As a potential solution, 

Vodovnik et al. (1984) proposed the use of additional torques with the model to fully 

represent the spastic trajectory. As the anti-gravity reversals in the trajectory were 

accompanied by EMG bursts, signifying active muscle–generated torques, this new 
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model was augmented by carefully chosen pattern of torque pulses that were timed to 

coincide with the measured EMG signals.  Using this time varying pattern of torque, 

Vodovnik et al., propose a new model equation to describe both spastic and non-spastic 

limb motion during the pendulum knee drop: 

 

 

  

Where Th(t) represents a step function of limited duration introduced as an approximation 

of the quadriceps force indicated by the burst of EMG present during the falling of 

spastic limbs. To allow the model the robustness to describe the pendular swings of non 

spastic limbs as well, Th(t) = 0. 

Lin and Rymer (1991) developed a model of pendular motion using the same 

framework established by Vodovnik et al.. In their preliminary analysis of passive limb 

motion Lin and Rymer proposed determining the parameters, K and B of Equation 3.1 for 

each half-cycle of motion. This was believed to be a better reflection of the asymmetry of 

limb motion (Lin and Rymer, 1991). Whereas the Vodovnik et al., model, expressed in 

Equation 3.1, predicted constant relationships between stiffness coefficient K, damping 

coefficient, B and angular displacement and velocity respectively, Lin and Rymer found 

that the stiffness and damping parameters were not constant throughout the motion, 

indicating significant nonlinear behavior (Lin and Rymer 1991). The varying values of K 

and B suggest that the parameters could depend upon motion amplitude, velocity, or 

direction of swing (Lin and Rymer, 1991). On the surface, Lin and Rymer‟s observations 

suggest that changes in either motion amplitude, velocity of swing or direction of swing 

 (3.2) 
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can bring about physiological changes in both stiffness and damping. It can be reasonably 

hypothesized  that Lin and Rymer‟s model, as presently constructed, may be missing an 

additional parameter and that the changes in stiffness and damping are simply 

compensation for that missing model parameter.  

To expand the model to describe the trajectory of spastic limbs Lin and Rymer 

proposed a piecewise change in the model parameters, K and B driven by an EMG signal 

used as an input to determine how the systems Equation (3.1) should change as result of 

muscle activation. Rather than explicitly defining a stepwise torque to correspond with 

the timing of the observed EMG as in Equation 3.2, this technique modulates the gain of 

K and B separately at three time periods. For each trial, the values of K and B which 

produced the least squared error were found for the interval before EMG activity. Then 

the values for the gains were found for the interval after EMG onset and the end of the 

first half-cycle (Lin and Rymer, 1991). Each successive half-cycle was analyzed similarly 

with the computed gains for K and B from the previous half-cycle used as initial inputs 

for the next half-cycle. Lin and Rymer found that this piecewise change in K & B alone 

was insufficient in reproducing the motion of the spastic leg mainly due to the leg‟s 

inability to cross the vertical plane (0
o
) during the first downward swing. The deviation 

from pendulum-like motion shown by the spastic suggested that additional active torque 

inputs must be influencing joint motion (Lin and Rymer, 1991). Their solution was to 

incorporate Feldman‟s lambda model to reproduce a spastic trajectory with a step-wise 

adjustment of the zero length of the spring represented by the stiffness term. Under this 

model, Lin and Rymer proposed that the angle at which EMG activity is initiated, which 
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is where the stretch reflex threshold is reached, approximates the new rest length, of the 

model spring, transforming Equation 3.2 to: 

 

 (3.3) 

  

where  is the new zero-length of the muscle modeled as a spring (Lin and Rymer, 

1991). The zero-length,  was held constant once EMG stated and the timing of the step 

changes in K and B utilized the same sequenced described previously. 

In a different approach to modeling the spastic pendulum knee motion, He et al. 

(1997) proposed a more complex model that included explicit representations of the 

muscles acting on the knee along with their muscle spindles. By varying the thresholds 

and the gains of the feedback loops, they were successful in modeling the trajectory of 

the spastic pendulum knee drop. Fee and Foulds (2004) developed two active models 

utilizing external torques to reproduce angular motion trajectories closely matching the 

experimental knee trajectories of subjects with spasticity due to cerebral palsy. The first 

model allows for the direct application of toques to the passive model, similar to the 

representation of Equation 3.2. The second model provides additional torque to the 

passive model through velocity feedback. The velocity feedback model of active torque 

reflects the physiological characterization of spasticity as velocity dependent and the 

knowledge that muscle spindle Ia afferent signals provide velocity-related information to 

the alpha motor neuron (Fee and Foulds, 2004).  In contrast to previous models which 

depended on EMG timing to set the active step gain for stiffness, K and damping B, the 

velocity feedback model relies upon an optimization algorithm to specify the timing and 



52 

 

 

 

amplitude of torques that can be introduced to improve the performance of the best fitting 

passive model (Fee and Foulds, 2004). 

3.2 Trajectory-Based Pendulum Model 

Simon and Foulds in 2004 first introduce the idea that in the spastic pendulum knee drop 

data the limb appears to be oscillating about an exponential trajectory that passes through 

the points of max velocity in the oscillations, both positive and negative; corresponding 

to the location of the inflection points of the curve (Figure 3.1). The significance of the 

observation is that it proposes that in addition to the model stiffness parameter, K, and 

damping parameter, B a third parameter, the trajectory about which the limb oscillates, 

can be used in the differentiation of limb motion between non-spastic and spastic 

subjects. It was proposed that an exponential equation, Ae
-st

 where “A”, represents the 

initial angle of release and “s” represents the decay constant, can modeled as a trajectory 

fitting through inflection points of the PKD trajectory.  It was theorized that the decay 

constant represents the steepness of exponential decay and therefore could be used as a 

measure distinguishing non-spastic limb trajectory motion from spastic limb motion. This 

represented a step forward from the analysis of spasticity using the relaxation index 

which focused on the initial drop amplitude and final rest angle. 
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Figure 3.1 Pendulum knee data of spastic subject with exponential VT through inflection 

points. 

 

 

Swift et al. (2006) expands on the idea of the trajectory analysis of the spastic 

pendular motion by creating an inverse dynamic model of pendulum knee drop motion. 

Utilizing the equilibrium point hypothesis she redefines the original by Badj and 

Bowman equation to incorporate a relative stiffness term: 

 

 (3.4) 

 
 

where Θo  is the trajectory about which the leg oscillates. This suggests that the dynamic 

stiffness, modeled from the pendulum knee drop data, is a function of the difference 

between the actual trajectory of the limb and the trajectory specified by the CNS Using 

an inverse dynamic model, this paper showed that the curve through the inflection points 

closely matched a sequence of local equilibrium points of the spastic trajectory. 
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Motion along a sequence of equilibrium points has long been used to define 

voluntary or active movements. In the previous chapter, the idea of virtual trajectory 

control of motion was introduced. With the framework of virtual trajectory control, the 

system dynamics are not computed explicitly in the CNS, but the planned trajectory is fed 

directly to the muscle as desired equilibrium lengths (Schweighofer et al., 1998). Hogan 

(1984) presented a mathematical model, incorporating a virtual trajectory control strategy 

to predict qualitative and quantitative features of a class of voluntary movements in the 

upper limb.  The model was based on observations of both unperturbed and perturbed 

large amplitude voluntary single plane elbow movements performed at intermediate 

speeds by intact and deafferented monkeys. Hogan‟s research laid the foundation for the 

application of virtual trajectory control to human subjects performing unconstrained 

voluntary arm movements in the horizontal plane. Flash (1987) tested the virtual 

trajectory hypothesis within the context of reaching movements. Using joint stiffness 

parameters derived from experimentally determined static stiffness values, Flash 

successfully developed a mathematical simulation of actual arm movements based on 

hypothetical equilibrium trajectories. Empirical studies in support of view suggest that 

the equilibrium shift is gradual (Bizzi et al.. 1984), that it is similar in form to the actual 

movement (Won and Hogan 1995), and that it ends substantially before the end of the 

movement (Feldman et al.. 1995). 

While there have been several studies illustrating the application of the virtual 

trajectory hypothesis in active movements, the outstanding question still remaining is 

whether there is a framework within the EPH to describe passive motion along a 

trajectory of equilibrium points? Recall from chapter two, the equilibrium point 
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hypothesis describes passive movement occurring as a result of a change in load along a 

constant  (Figure 2.3 C). Such change in load results in the previous equilibrium point, 

(EP1), becoming non-equilibrium and movement occurs to a new equilibrium point (EP2) 

where the active force of the muscle equilibrates the external load (Latash, 2008). A 

timed sequence of these transitions between equilibrium points is consistent with the 

concept of a control or virtual trajectory (Latash, 2008).  

This chapter outlines the evolution in development of models analyzing pendulum 

knee data. Originally, forward models were developed that needed additional burst of 

torque to match spastic data. Trajectory-based modeling of pendulum knee trajectory 

began observe that the spastic trajectory oscillates about an exponential-like curve. Swift 

2006) showed that such a curve approximates the equilibrium points of the spastic 

trajectory. Previous research incorporating virtual trajectory control in driving active 

movements provides a framework for the development of a forward model capable of 

describing the passive spastic trajectory in terms the stiffness parameter K, damping 

parameter B, and a virtual trajectory. 
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CHAPTER 4  

METHODOLOGY 

4.1 Theoretical Framework 

The objective of this dissertation is to develop a model of passive knee motion that can 

merge Lance‟s (1980) original characterization of spasticity as a “velocity dependent 

increase in tonic stretch reflex activity” with Burne‟s (2005) observation of increased 

passive resistance in spastic limbs even at rest. The framework of this research is outlined 

in the overarching research questions proposed in Chapter 1:  

1. Can we create experimental measures to develop a model of spasticity that can be 

interpreted within the framework of a general theory of motor control? 

2. Can the underlying motor control framework provide a unique parameter capable 

of describing both normal and altered/abnormal movement? 

3. Can the model be robust enough to explain active as well as passive movement? 

 

The previous chapter illustrates the evolution of models describing the passive 

motion of the knee joint. Badj et al. (1984) established a model that can reasonably 

characterize the motion of the knee joint by lumping the stiffness and damping of all the 

knee joint structures into two single model parameters of K and B. The inability of the 

model to account for the nonlinear property of muscle provided limits to the overall 

accuracy of the model for non-spastic subjects and these limits were exacerbated in the 

modeling of spastic knee joint motion. Rather than using models requiring piece-wise 

approximation for stiffness, K and damping, B or additional burst of torque to model 

spastic knee trajectories, the equilibrium point hypothesis can provide the basis of a 

forward model that incorporates parameters of K and B, from earlier second order 

models, while introducing the concept of a virtual trajectory parameter, VT. 
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Simon and Foulds (2004) and Swift et al. (2007) introduce a virtual trajectory-

based pendulum model of knee motion. These models offered a unique way to 

incorporate the nonlinear nature of knee joint motion through the incorporation of the 

equilibrium point hypothesis. The models focused on an exponential curve, se
-at

, that 

passes through the equilibrium points of the pendulum knee angular trajectory. The 

equilibrium points correspond to the places where the sum of the torques about the knee 

joint equals the moment of inertia multiplied by angular acceleration or T = I = 0.  

The EPH defines a single-joint system as being in static equilibrium when the 

torque produced by the flexor is equal and opposite to the torque produced by the 

extensor, in the absence of external torque (Flanagan et al., 1993). The R command 

governs the equilibrium point, EP, of the joint through its ability to shift flx and ext in 

the same direction. Thus R represents the equilibrium joint angle, is specified by the 

combined actions of both muscles and corresponds to the angle at which the net joint 

torque is zero (Flanagan et al., 1993). R only represents the actual angle when there is no 

load. This is not the condition that defines the analysis of the dynamics present during the 

pendulum knee drop. Referring back to Equation 3.4, the sum of the moments about the 

knee joint does not equal zero but rather equals the torque resulting from gravity, 

mglsin . This suggest that rather than a virtual trajectory, as defined by the equilibrium 

point hypothesis, the trajectory molded by Simon and Foulds (2004) and Swift et al. 

(2007) is the system equilibrium trajectory, as the trajectory actually passes through the 

system's equilibrium points defined by load=mglsin . Figure 4.1 illustrates the difference 

between a hypothetical virtual trajectory which is defined centrally, and the system 
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Figure 4.1 Spastic pendulum drop about system equilibrium trajectory (SET) and virtual 

trajectory. 

 

equilibrium trajectory (SET) which incorporates the role that external forces and internal 

forces, such as muscle activation, has on movement. The framework of this dissertation is 

the utilization of the pendulum knee test to define knee joint motion based on the 

extraction of three broad parameters: damping coefficient, B, stiffness coefficient, K and 

the virtual trajectory VT. Rather than specifying an exponential curve through the points 

of inflection defining the system‟s equilibrium trajectory, a forward model is initially 

created with an optimized exponential curve to represent the centrally driven virtual 

trajectory. Thus, the virtual trajectory represents the centrally defined objective. The 

presence of both external and loading causes the limb to follow a system equilibrium 

trajectory.  
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The link between a model capable of describing spastic limb motion and the 

equilibrium point hypothesis lies in the EPH‟s interpretation of the role of the CNS in 

muscle activation. In previous spasticity research utilizing the pendulum knee drop, 

electromyorgraphic, EMG, data has shown that muscle activity appearing as torque burst 

in the form of a reflex is present which subsequently alters limb motion.  The EPH 

specifies however, that the CNS does not specify the torque bursts, but they are the result 

of the interaction between K and B and a third important parameter of motor control, the 

VT. Thus, the remainder of this dissertation will show that timed bursts of torque need 

not be explicitly specified, but are the direct result of changes in the VT that are can be 

linked to spasticity. 

4.2 Exponential Forward Model 

Originating from the equation of motion of the leg-foot segment about the knee joint, 

developed by Badj, Vodovnik, and Bowman, the equation; I  + B  + K  = mglsin , is 

rewritten as model formula: 

 

 (4.1) 

 

The moment of inertia, I, shank mass, m, center of mass shank length, lc were calculated 

from anthropometric data. The virtual trajectory o is calculated from the following 

exponential equation: 

 

 (4.2) 
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where “A” is the angle trajectory start position, start and “s” represents the decay 

constant. This model distinguishes itself by extending the equilibrium point hypothesis by 

to include calculation of relative damping  (de Lussanet et al., 2002). Relative 

damping proposes replacing the damping relative to the environment (absolute damping) 

with damping with respect to the velocity of the equilibrium point (de Lussanet et al., 

2002). This model builds on the non-linear spring concept of muscle dynamics by 

incorporating analysis of the equilibrium states within muscle force-movement 

relationship. Model implements the EPH to explain spastic torque behavior, hypothesized 

to be the active reflexes in spasticity. The incorporation of relative damping with the EPH 

has been shown to be important in modeling of active joint movements (Chen and 

Foulds, 2010; Chen et al., 2009). 

4.2.1 Simulink Representation of Model 

A feedback model of Equation 4.1 and incorporating Equation 4.2 was developed using 

Simulink (Mathworks, Inc., Natick, MA) which supports linear and nonlinear dynamic 

modeling. The model adheres to Newton‟s second law of motion, with respect to rotation 

where the sum of the moments equals the moment of inertia multiplied by angular 

acceleration. The model isolates three moments affecting the total rotation about the knee 

being gravitational, stiffness, and damping moments. As shown in Figure 4.1, the model 

represents the moments acting on the knee as follows: 

 Gravitational – mglcsin  term in Equation 4.1, Gravitational Torque orange 

function box in Figure 4.2 

 Damping –  term in Equation 4.1, Brel group of yellow icons in Figure 

4.2.  

 Stiffness -   term in Equation 4.1, Krel group of green icons in Figure 

4.2 
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The virtual trajectory, o is represented in the model by a function block, 

„Decaying exponential model of VT‟ (Figure 4.2), which utilizes Equation 4.2. The 

derivative of this function is used to calculate the damping moment shown above. 

Anthropometric tables are used to calculate moment of inertia, segment mass, and 

segment length. The calculations used to produce the moment of inertia, I, in Equation 

4.1 are represented in the subsystem box „1/Inertia‟, in red shown in Figure 4.2. The 

content of this subsystem is shown in Figure 4.3. The Simulink model takes this 

subsystem output and incorporates its value into the main model. 

 

 

 
Figure 4.2 Simulink pendulum knee forward model. 
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Figure 4.3 Simulink subsystem model for moment of inertia, I and its inverse, 1/I. 

 

4.2.2 Operation of Simulink Model 

A Levenberg-Marquardt method based gradient-descent optimization program was 

developed in MATLAB, which recursively uses Simulink to optimize the model 

parameters of Equation (4.1). This program passes initial parameters to the Simulink 

models, records the output of the models, and performed an optimization of the parameter 

variables (Grace, 1990). The output from the „1/Inertia‟ subsystem is multiplied by the 

sum of the moments acting on the knee discussed in the previous section. This product 

generates the angular acceleration of the leg as it is falling during the pendulum knee test. 

The acceleration is differentiated once to produce velocity and then again to produce the 

position of the limb. The output of the model is limb position in space, measured in 

radians.  
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Four parameters are optimized in the model: stiffness and damping coefficients, 

Brel and Krel respectively, from Equation 4.1 and start angle and decay slope, variables 

“A” and “s” respectively from, Equation 4.2. In order to determine a reasonable value to 

serve as an initial guess for variables, “A” and “s”, used in the optimization program, the 

calculated inflection points in the angle data were fit with an exponential parametric 

model in MATLAB. Using the inflection point times as the input and the inflection point 

angle values as the output, a non-linear model in the form of y=Ae
-bx

 was created where 

“A” and “b” are coefficients. The value of these coefficients, “A” and “b” in the Matlab 

fit model were then assigned as values to variables “A” and “s” from Equation 4.2 and 

used as the initial guess for these variables in the optimization routine.  

The model variables, “Krel”, “Brel”, “A” and “s” are the parameters of the 

proportional integral derivative (pid) controller (Grace, 1990), which is the Simulink 

model shown in Figure 4.2. The variables are optimized based on a user-defined order 

scheme. The program selects the first parameter to be optimized, assigned the controller 

variable, pid(1), changes that parameter, evaluates the level of either increase or decrease 

in the cost function, and finally decides whether to keep or reject the new value (Fee and 

Foulds, 2004). The cost function is based on the sum-squared error, SSE, of a sample-by-

sample comparison of the model output with experimental data (Winter, 2005). Once the 

SSE resulting from the variation in a parameter reaches a minimum value, determined by 

user-defined criteria, another the next variable, which has been assigned the controller 

variable, pid(2) is chosen and the process is repeated. The program iteratively cycled 

through the set of variables until the SSE reached a minimum value and would go no 
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lower. This final SSE is taken as a measure of the goodness of fit of that model‟s output 

to the experimental data (Grace, 1990).  

4.2.3 Validation of Exponential VT Model 

The output of the developed forward model is the simulated pendular trajectory of motion 

occurring from the pendulum knee drop. The goal of model validation is to demonstrate 

that by using an exponential virtual trajectory, VT, plus optimized values of damping, B 

and stiffness, K, the model can produce a trajectory of motion which accurately reflects 

the actual experimental data. The data analyzed consists of the time course of the knee‟s 

angular displacement collected from the pendulum knee drop test of six subjects; three 

with cerebral palsy and three subjects without clinical signs of cerebral palsy or 

spasticity.   

Three of the subjects are identical male triplets of whom two (BX and CX) have 

cerebral palsy with mild spasticity and one (AX) shows no clinical signs of cerebral palsy 

or spasticity. Their pendulum knee data was provided by James Fee from the A. I. duPont 

Hospital for Children. The pendulum tests of the triplets were originally conducted at the 

A.I. duPont Hospital for Children, Wilmington, DE, with the cooperation of the 

Department of Orthopedics (Fee and Foulds, 2004). The triplet data was obtained with 

the approval of the Hospital‟s Institutional Research Review Committee. The remaining 

three subjects consisted of a thirty-two year old male with cerebral palsy and two young 

adults with no history of cerebral palsy or spasticity. Pendulum knee tests were 

performed for these subjects at the Neuromuscular Engineering Laboratory at NJIT. 

Subjects provided informed consent approved by the NJIT Institution Review Board.  
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4.2.4 Experimental Procedure 

Anthropometric analysis (Winter, 1990) was used to calculate the shank mass, moment of 

inertia, and shank center of mass for all of the subjects. These calculations later served as 

input into the forward model. For the test regime, the subjects sat on a specially designed 

seat which allowed the lower limb to swing freely. The rotation of the shank about the 

knee during the pendulum knee test of the male identical triplets was measured using 

an electromagnetic sensing device, the 3SPACE Isotrak by Polhemus, Inc. The angular 

rotation data of the triplets was collected at a 50Hz sampling rate. 

 The limb position data for the three subjects test at the Neuromuscular 

Engineering Laboratory at NJIT was recorded at a sampling rate of 100Hz using a 

different magnetic sensing device, the 3DGuidance trakSTAR by Ascension Technology 

Corporation (Figure 4.4). The trakSTAR is an electromagnetic tracker that uses pulsed 

DC technology to determine the position and orientation of a sensor relative to a source. 

The transmitter sequentially generates magnetic fields and the sensor instantly measures 

the transmitted field vectors at a point in space. The source was placed on a fixed stand 

beside the subject, as shown in Figure 4.5. The trakSTAR determines six degrees-of-

freedom (6DOF) position and orientation (X, Y, Z, Azimuth, Elevation, and Roll) of one 

or more sensors referenced to a fixed transmitter. The transmitter sequentially generates 

magnetic fields and the sensor instantly measures the transmitted field vectors at a point 

in space. From theoretical knowledge of the transmitted field, the tracker accurately 

deduces the real-time location of the sensor(s) relative to the transmitter (Ascension 

Manual, 2009). The data acquisition method employed with the trakSTAR replicates as 

closely as possible the method utilized by the 3Space Isotrak by Polhemus. 
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Figure 4.4 trakSTAR device introduction from Ascension Technology. 
Source: Ascension Technology Corporation Official Website.  

http:// www.ascension-tech.com/medical/pdf/TrakStarSpecSheet.pdf, accessed August 21, 2011 

 

 

 
Figure 4.5 Subject in Test Position. 

Source (Fee and Samworth, 1995)
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For each test, the upper leg was held fixed and a sensor was placed along the long 

axis of the shank above the malleolus.  In order to measure the amount of force necessary 

to slowly raise the limb and  hold the limb before  release, a force transducer, the mini 40 

by ATI Industrial Automation was also secured on the shank by a light strap attached to a 

specially designed mounting. The transducer converts force and torque into analog strain 

gage signals. EMG was monitored with surface electrodes located over the quadriceps 

and hamstrings. EMG signals were amplified (×1000) using a multi-channel 

electromyography card (PCI-6024E made by National Instruments®), band-pass filtered 

at 55-600 Hz by a 4th-order zero-lag Butterworth filter. Angular and EMG data were 

synchronized for later analysis.  

To perform the test, the lower leg was gradually extended by a string attached to 

the mounting of the force transducer, to a point of maximal tolerated resistance, that is, as 

far as the subject would allow without expressing discomfort. The movement was 

performed in a manner where the string was pulled in a direction perpendicular to the 

limb segment. The subject was then told to relax, and the limb was then allowed to fall to 

its resting position. A lab written MATLAB program, integrated the trakSTAR, force 

transducer, and EMG; recording both angle and force data at rate of 100 Hz and EMG at 

1000Hz. The entire testing regimen consisted of 5 pendulum knee drops per subject with 

an average of two minutes between each successive knee drop. 

The pendulum model defined by Equation 4.1, used in the previous analysis, 

arises from the rotational analog of Newton‟s second law of motion. The net torque 

acting on an object has a moment of inertia, I, causes an angular acceleration α. The 

introduction of a force transducer to measure the force involved in lifting and holding the 



68 
 

 

 

limb before release gives us the ability to calculate the holding moment, Mh. The holding 

moment is the product of the force, in Newtons, measured by the transducer, and the 

distance along the shank from the bony prominence of the knee to the place of attachment 

of the transducer. This creates a modification of Equation 4.1 to incorporate into the 

model the contribution of the holding moment, as shown previously in Figure 4.2: 

 

 (4.3) 

 

The novelty of this method is that all of the forces and moments acting upon the 

limb during the entire phase of motion, including the initial lift are accounted for in this 

model. It is recognition of the coupling between the person performing the test and the 

test subject. This serves as the only model that breaks down the mechanics of the 

pendulum test and examines the impact that this coupling between examiner and subject 

has on the outcome of the test. 

4.3 Transition Towards New Trajectory Model 

The distinguishing feature of the previous model is the incorporation of an exponential 

curve to represent the virtual trajectory in a trajectory-based pendulum model of knee 

motion. A main appeal of the EPH is that the control signals that underlie the point-to-

point movements are simple and monotonic in form (Feldman et al., 1995; Adamovich et 

al., 1997). In applying the EPH to a single joint model central commands have been 

assumed to vary over time in a simple fashion. The equilibrium point, specified by the R-

command, has been shifted at a constant rate from the start position to the final position; 

the C-command has been increased at the start of movement and then gradually 
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decreased after the movement (Flanagan et al., 1993). This would seem to suggest that 

the virtual trajectory, described by Feldman and others, is comprised of a series of 

straight line transitions from equilibrium point to equilibrium point. Rather than 

specifying a complex trajectory such as an exponential curve, it is likely that the CNS, in 

the context of the equilibrium point hypothesis, specifies a simple VT, but neural signal 

transmission and system dynamics result in an exponential-like appearance in the 

trajectory.  

Lin and Rymer (1991) discuss an anomaly at the start of the pendulum knee drop 

where they indicate an unexplained hesitation. They noticed that instead of the leg 

immediately accelerating to a finite negative value, due to the influence of gravity, there 

was a delay in the leg obtaining maximum acceleration. This delay was measured as 

more than 60ms from the time the angle position starts to change (Lin and Rymer, 1991). 

In their analysis of this delay Lin and Rymer offers two possible explanations. They offer 

a brief discussion on the research of Brown et al. (1988) investigating the impact of 

thixotropic properties in muscle on limb acceleration. Thixotropic properties of muscle 

refer to the history-dependent change in the short-range elastic component of muscle 

(Kellermayer et al., 2008). Brown‟s research theorized that during the pendulum knee 

test, when the leg is held in a relaxed position for a few seconds before release, muscle 

thixotropic properties develop causing nonlinear behavior in limb acceleration, period 

and damping during the first cycle of swing.  

Lin and Rymer extend this analysis by rationalizing that the thixotropic properties 

not only create abnormal mechanical changes while the leg is held but the effects of these 

changes are evident during the rest of the leg swings. The implication of this idea is that 
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the varying values of stiffness, K and damping, B during each half cycle, obtained from 

modeling the angular data from the pendulum knee test, can be attributed to muscle 

thixotropic changes (Lin and Rymer, 1991). 

An alternate explanation offered by Lin and Rymer for the delay in leg 

acceleration is that the load on the leg may not have been applied instantaneously. This 

rationale suggests that the leg may not have been released cleanly, causing abnormalities 

in the acceleration of the limb (Lin & Rymer, 1991). Though offered as a source of 

potential error, Lin and Rymer concluded that the magnitude of this method of error was 

small due to the relative quick release of the limb, 10ms in most cases. They also 

observed that the difference between actual acceleration of the limb and the theoretical 

calculation of limb acceleration is significantly greater than limb acceleration that could 

be attributed solely to the noninstantaneous release of the limb. 

Lin and Rymer‟s observation combined with the reaffirmation of Feldman‟s 

characterization of a virtual trajectory created by moving  along a straight line simple 

curve suggest that a new model to analyze pendulum knee data was needed. In order to 

merge the concepts of a trajectory consisting of simple straight line transitions between 

equilibrium points and the natural delays that occur during processing of movement 

signals, an ideal model virtual trajectory model for pendulum knee data would have three 

components: a constant position segment representing a time delay, a straight line sloping 

virtual trajectory followed by a second constant position segment representing the settling 

of the limb position at the limb resting angle. Figure 4.6 illustrates this new theoretical 

conception of the ideal virtual trajectory that the CNS would try to create within the 

frame work of the equilibrium point hypothesis. 
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Figure 4.6 Idealized representation of the CNS equilibrium point hypothesis based-VT. 

  

The goal is to this dissertation is to create mathematical representation which can 

approximate the virtual trajectory illustrated in Figure 4.6. In addition to maintaining 

theoretical consistency with Feldman‟s (1995) characterization of a monotonic shift 

between equilibrium points, the mathematical equation must also encompass the idea of 

CNS signal changes that naturally occur during neural transmission, well as system 

dynamic induced changes in the CNS signal. The trajectory represented in Figure 4.6 

provides the appearance that shifts between components of the trajectory happen 

instantaneously. The delays naturally occurring in neural transmission and overall system 

dynamics would ultimately tend to modify the initial CNS signal to a modified form 

represented in Figure 4.7. This modified representation of the CNS signal demonstrates 

how the delays neural transmissions and system dynamics would give the signal a more 

curve-like appearance. Implementing the CNS signal into a virtual trajectory model 

requires the development of a mathematical equation that is theoretically consistent with  
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Figure 4.7 CNS signal with signal modified curve representation. 

 

the three segment monotonic VT shown in Figure 4.6 yet also acknowledges the change 

that would occur in the CNS signal due to system dynamics demonstrated in Figure 4.7. 

The mathematical equation of a sigmoid function can act as representation of the CNS 

virtual trajectory first shown in Figure 4.6 with the curves as shown in Figure 4.7, 

incorporating the signal changes due to system dynamics.  

4.3.1 Sigmoid Model Components of the Virtual Trajectory 

The sigmoid equation is an easy to use mathematical function that produces a smooth 

virtual trajectory, without sharp discontinuities, that has the desired characteristics of a 

flat top, during the signal feedback delay, a quasi-linear slope and a flat bottom. The 

virtual trajectory equation,  originally defined in Equation 4.2 becomes: 

 

 (4.4) 
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where Bottom and Top are the bottom and top of the sigmoid curve respectively, k is the 

inflection point time of , and n is the slope of the sigmoid curve. Using the equation of 

a sigmoid curve as an approximation demonstrates the ability of the equilibrium point 

hypothesis to provide a comprehensive explanation of the observations of Lin and 

Rymer. During the pendulum knee test, when the leg is held at a constant angle, , the 

virtual trajectory angle, o moves to the holding angle. When the leg is released, o will 

be held at the holding angle until the spindle feedback tells the spinal cord/CNS that the 

leg is falling. Then after that feedback delay time, o is allowed to follow , forming a 

passive VT. The simplicity of this technique lies in its ability to differentiate the knee 

joint motions based mainly on three overriding parameters: The virtual trajectory, o, 

relative damping coefficient, B, and stiffness coefficient, K. The sigmoid-based trajectory 

eliminates the need for the complex equilibrium-point trajectories used in standard 

models in order to reproduce simple motions such as Latash‟s N-shaped trajectory 

(Latash,1998) or the exponential trajectory suggested by Simon and Foulds (2004).  

Having established a mathematical equation capable of representing the VT, 

incorporation of this equation into the forward model shown in Figure 4.2 is 

accomplished by replacing the equation defined in the „Decaying Exponential‟ box in 

Figure 4.2, with the variables representing Equation 4.4. Though four variables are 

defined within Equation 4.4, only three variables are optimized. The variable, “Top” in 

Equation 4.4 is assigned in the forward model as the variable, Tp. The variables “k” and 

“n” from Equation 4.4 remain unchanged in the equation defined for the VT in the 

forward model. The variable “Bottom” from Equation 4.4 is assigned the variable, “Bt” 

in the forward model. However as a simplification of the forward model, when the leg 



74 
 

 

 

finally comes to rest after several oscillations, the virtual trajectory, o equals the actual 

trajectory, . Thus the variable, “Bt” used in the forward model equals the angular 

position, rest, when the leg comes to rest, which is given by the position data collected 

from the trakSTAR.  

The virtual trajectory shown in Figure 4.8 essentially consists of a time delay, a 

straight line slope and then a plateau. The representation of these sigmoid function 

features as curves is physiologically reasonable as the nature of muscle-force feedback 

systems include system dynamics which prevent the instantaneous change in position or 

velocity.  

 

 
Figure 4.8 Pendulum knee data of spastic subject with sigmoid hypothetical VT. 
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4.3.2 Assessment of Sigmoid Virtual Trajectory Model 

The effectiveness of this new definition of virtual trajectory was assessed using the same 

validation methods describe previously in section 4.2.3.  The objective of the assessment 

is to establish the model‟s ability to accurately represent the experimental pendulum knee 

test data through the optimization of the parameters representing the sigmoid VT, plus B 

and K. Additionally, it is expected that the model implementing the simpler, constant 

slope, sigmoid trajectory, which aligns conceptually with the concept of the virtual 

trajectory described in the EPH, will provide a SSE that is as low as the model output of 

the exponential VT. 

4.3.3 Cluster Analysis of Parameters 

Cluster analysis is a technique used for classification of data in which data elements are 

partitioned into groups called clusters that represent collections of data elements that are 

proximate based on a distance or dissimilarity function. It is a discovery tool that reveals 

associations, patterns, relationships, and structures in masses of data. Cluster analysis 

aims to sort objects into groups such that there is a maximum degree of similarity 

between objects belonging to the same group and minimum association to objects in 

other groups (Donnelly, 2006). In cluster analysis there is no a priori information about 

the group or cluster membership for any of the objects. Groups or clusters are suggested 

by the data, not defined a priori.  

Cluster analysis was applied in order to understand the relationship among the 

variables optimized by the model. The goal in this research was to detect interrelations 

among the optimized parameters: B, K, and the sigmoid VT parameters: Tp, n, and k. The 

goal of clustering variables in this research was to reduce the number of variables 
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required to describe the output of the model. In this way, the dynamics of the pendulum 

knee model could be defined by a smaller grouping of variables. Minitab was used to 

perform an agglomerative hierarchical method that begins with all variables separate, 

each forming its own cluster. In the first step, the two variables closest together are 

joined. In the next step, either a third variable joins the first two, or two other variables 

join together into a different cluster. This process will continue until all clusters are 

joined into one. Clusters were formed utilizing the linkage criteria of minimization of 

within cluster variance. Based on this criterion, Ward‟s method was chosen for the 

analysis. For each cluster, the means for all the variables are computed.  Then, for each 

object, the squared Euclidean distance to the cluster means is calculated: 

 

 (4.5) 

 

 These distances are summed for all the objects.  At each stage, the two clusters 

with the smallest increase in the overall sum of squares within cluster distances are 

combined. In Ward‟s method, the proximity between two clusters is defined as the 

increase in the squared error that results when two clusters are merged. 
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4.4 Summary 

This chapter outlined the development of forward model that incorporates parameters 

from previous models, K and B, and a virtual trajectory parameter, o which incorporates 

the equilibrium point hypothesis. As an initial approximation, the virtual trajectory was 

modeled as an exponential curve for validation with pendulum knee data from six 

subjects. However, the virtual trajectory, as discussed by Feldman and others, is a simple 

curve resulting from point to point monotonic shifts and thus suggest that the CNS is not 

likely to specify a complex curve like an exponential. This fact combined with Lin and 

Rymer‟s observation of a delay in falling of the leg upon initial release necessitated a 

new definition for the virtual trajectory to be used in the model. A sigmoid function was 

chosen because it represented a combination of a time delay, straight line VT, with the 

ability to adjust its starting and ending angles. This new model was tested with the 

pendulum knee test data from previous six subjects. 
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CHAPTER 5  

RESULTS AND DISCUSSION 

 

The pendulum knee drop test was performed on six subjects, as described previously. 

Figure 5.1 shows the movement trajectories for the three triplet subjects of whom two 

(BX and CX) have cerebral palsy with mild spasticity and one (AX) shows no clinical 

signs of cerebral palsy or spasticity. The trajectory for the non-spastic sibling, AX, shows 

the expected smooth swinging, damped pendular movement (Figure 5.1A). The two 

subjects with spasticity (BX and CX Figure 5.1B and C) show the characteristic spastic 

trajectory characterized by a downward trends due to gravity with upward movements 

due to muscle activity (Fee and Foulds, 2004).  

 

 
 Figure 5.1 Representative movement trajectories for triplet subjects. 
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Figure 5.2 Representative movement trajectories for subjects tested at Neuromuscular 

Engineering Lab at NJIT. 

 

 

Figure 5.2 displays the pendulum knee test angular trajectories of the three 

subjects tested at the Neuromuscular Engineering Lab at NJIT. Subject DX, is a thirty-

two year old male with cerebral palsy. The angular trajectory data of subject DX (Figure 

5.2 D) is similar in appearance to the two cerebral palsy children, subjects BX and CX, 

tested at the A.I. duPont Hospital for Children, shown in Figures 5.1B and C respectively. 

The angular trajectory of subjects EX and FX, (Figures 5.2E and F) is of two young adult 

subjects with no history of spasticity. Their angular data looks similar to the non-spastic 

sibling, subject AX, shown in Figure 5.1A.  
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5.1 Exponential VT Model 

The forward model described previously, was designed to be utilized in a gradient-

descent based optimization program, which recursively uses Simulink to optimize the 

model parameters of Equations 4.1 and 4.2. This program passed initial parameters to the 

Simulink model, recorded the output of the models, and performed a non-linear least-

squares optimization of the parameter variables. Figures 5.3 and 5.4 show the model 

output superimposed on the experimental angular trajectories of a subject with and 

without spasticity respectively. In addition each figure shows the resulting optimized 

exponential virtual trajectory, o developed from the optimized parameters, A and s from 

Equation 4.2. The figures show the goodness of fit of the model, R
2
, and the sum of 

squares due to error, SSE, of the model. 

 

 
Figure 5.3 Exponential VT model of spastic subject, DX. 
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Figure 5.4 Exponential VT model of non-spastic subject EX. 

  

Four parameters were optimized by the model; stiffness and damping, Krel & Brel, 

corresponding to K and B from Equation 4.1, and o variables, “A” and “s” from 

Equation 4.2. Tables 5.1 and 5.2 show the average optimized parameters for the subjects 

with spasticity and without spasticity respectively. The results of optimizations of the 

model present an assessment of the model‟s ability to reproduce the experimental data 

from the six subjects. Figures 5.3 and 5.4 demonstrate the model‟s accuracy. The 

measure of goodness of fit for the model with its best set of parameters was determined 

by an SSE computation of the models‟ output compared on a sample by sample basis 

with experimental data. In Figure 5.4, which represents the modeling of the pendulum 

knee data for non-spastic subject, EX, even with a high R
2
 value, the model output data 
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Table 5.1 Spastic Subjects Model Parameters for Exponential VT Model.  

Subject Brel Krel 
o Variables 

R
2
 SSE 

A b 

BX 0.2514 7.6013 1.2561 2.2421 0.9834 0.2928 

CX 0.2643 8.1727 1.2855 2.6573 0.9898 0.1504 

DX 0.7167 64.0190 0.5271 1.4249 0.9866 0.0965 

Note: Units for Brel: N-m-sec/rad, Krel: N-m/rad 

 

Table 5.2 Non-Spastic Subjects Model Parameters for Exponential VT Model. 

Subject Brel Krel 
o Variables 

R
2
 SSE 

A b 

AX 0.0525 2.3565 0.8015 1.5989 0.9946 0.2192 

EX 0.2981 6.3082 0.8781 3.8698 0.9863 0.7374 

FX 0.1659 1.9727 0.8035 4.2887 0.9754 0.9814 

Note: Units for Brel: N-m-sec/rad, Krel: N-m/rad 

 

slightly undershoots of the experimental data. Qualitatively, pendulum knee test data of 

subjects with spasticity produce trajectories that are characterized as being more damped, 

having higher stiffness and exhibiting the appearance of an exponentially shaped system 

equilibrium trajectory compared to the trajectories of non spastic subjects. The optimized 

parameters of the damping coefficient, Brel and stiffness coefficient, Krel shown in the 

previous tables provide quantitative support of this qualitative analysis by producing 

higher values of Brel & Krel in the spastic data compared to the non-spastic subjects. 
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5.2 Sigmoid VT Model 

The sigmoid VT model was optimized in a similar manner as the exponential VT model. 

The rationale of sigmoid function is its ability to combine a time delay, straight line 

virtual trajectory, with an ability to adjust its starting and ending angles. In addition to the 

parameters of stiffness and damping, Krel & Brel, corresponding to K and B from Equation 

4.3, the parameters which define the sigmoid curve, o, are optimized by the forward 

model: Top (Tp), slope (n) and inflection point time (k). Figures 5.5 and 5.6 demonstrate 

the model‟s ability to accurately reproduce the experimental data through the gradient 

descent optimization techniques described previously. 

 

 
Figure 5.5 Sigmoid VT model of spastic subject DX.  
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Figure 5.6 Sigmoid VT model of non-spastic subject EX. 

 

 

Figure 5.5 shows a virtual trajectory for a spastic subject that is below the actual 

angle trajectory at the point of limb release. The significance of this outcome is that it 

supports the theory described in Levin‟s (2000) research that the equilibrium point 

hypothesis can describe spasticity as the inability to regulate the stretch reflex threshold 

throughout the entire physiological range. This outcome also supports the concept of the 

virtual trajectory lagging the actual trajectory as described in Latash‟s (1992) research. 

As the limb is raised to near max extension, held and then release, the virtual trajectory 

initiated by the CNS lags the actual trajectory of the limb. Figure 5.5 shows that in 

subjects with spasticity, at the point of release of the limb, the model predicts a VT that 

has not reached the actual trajectory angle. 



85 
 

 

 

In contrast Figure 5.6, which shows the model output for a subject without 

spasticity, the VT is equal to the actual trajectory at the point of limb release. This 

outcome is consistent with Levin‟s view that individuals without spasticity have the 

ability to regulate the stretch reflex threshold throughout the entire physiological range.  

In the context of Latash‟s (1992) theory that everyone exhibits a VT which lags the actual 

trajectory, Figure 5.6 demonstrates that at the time the limb was released following being 

held momentarily, the modeled VT has in essence, caught up to the actual trajectory. By 

extension, the result suggests that there is a greater lag the VT relative to the actual 

movement trajectory in subjects with spasticity. The model output for the non-spastic 

subjects closely match the experimental pkd as evidenced by the lack of overshoot in the 

model data, shown in Figure 5.6 and low SSE value. 

  Previous research in passive limb oscillations (Vodovnik et al., 1984; Lin and 

Rymer, 1991; He et al., 1997 and Fowler et al., 2000) modeled data from pendulum knee 

drop test of non-spastic subjects with an equation of motion, Equation 3.1, only using the 

parameters of stiffness, K and damping, B, with respect to gravitational 0. Viewing this 

previous research within the context of the equilibrium point hypothesis, Figure 5.6 

allows for the rationale that the results of the earlier models achieved a good level of 

accuracy because the VT drops toward gravitational zero quickly. Figure 5.7 

demonstrates what the output of a model of the same subject (EX shown in Figure 5.6) 

without adding a VT parameter and using the parameters of K and B. While the level of 

accuracy is high as shown by the coefficient of determination, R
2
 value of 0.95, the 

accuracy is still lower than the levels produced by the exponential and sigmoid VT 

models used in this research, R
2
 = 0.98 and 0.99 respectively.  
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Figure 5.7 Comparison of model output data with experimental pkd data for subject, EX 

using a non-VT based model. 

 

The SSE for the subject EX when modeled with a VT parameter is also higher, 

2.5665, compared to 0.7373 and 0.2359 in the exponential and sigmoid VT models 

respectively. The increased SSE displayed in Figure 5.7, represents a model that can 

effectively reproduces first few seconds of the experimental data but has increasing 

difficulty matching experimental data beyond the first few seconds. Previous models of 

spasticity utilized measures such as the Relaxation Index which was calculated analyzing 

only data from the first drop and the final resting angle, which minimized the need to 

analyze the entire trajectory of the pkd. 
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  The comparison between the output of models with and without a VT, (Figures 

5.5, 5.6 and 5.7) make the case that in the limb motion data of non-spastic subjects can be 

modeled without a VT parameter but the model can be markedly improved with the 

inclusion of a parameter representing a virtual trajectory. While the VT can be ignored in 

the non-spastic case, it is much more important in the spastic case. A model 

implementing a VT parameter not only improves the data fit for non-spastics but is robust 

enough to accurately model the motion data of spastic subjects as well. 

The distinguishing feature of the sigmoid-based VT model compared to the 

exponential VT model is the ability to segment the virtual trajectory into three unique 

phases, as illustrated in Figure 5.8. The top (Tp) or plateau region of the modeled sigmoid 

curve represents the time delay portion of the sigmoid function. This is consistent with 

the delay observed by Lin & Rymer (1991) in which they described an “unexplained 

hesitation” immediately after the release of the leg during the pendulum knee test. The 

rounding between the top section of the sigmoid and the second region, the slope, 

incorporates the physiological neural delays that exist in signals initiating movement and 

the beginning of movement. The bottom of the sigmoid trajectory curve settles with the 

actual position of the limb, demonstrating the ability of the virtual trajectory to follow the 

actual trajectory of motion, as described within the previous analysis of the equilibrium 

point hypothesis. 
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Figure 5.8 Components of sigmoid VT produced by model of spastic data. 

 

Tables 5.3 and 5.4 summarize the average values of the model parameters for 

both populations of subjects in the study. The values optimized for the damping 

parameter, Brel and stiffness, Krel in the sigmoid VT model compare very favorably with 

the values for these same parameters optimized in the exponential VT model. The 

comparative agreement in stiffness & damping parameter calculations was seen in both 

the spastic and non-spastic data.  

Closer examination of the data shows that the average optimized values for the 

parameters Brel and Krel for non-spastic subject, EX are close in value to the optimized 

values for the same parameters in the data from spastic subjects, BX and CX. This result 

was also shown in the optimized data utilizing the exponential VT model (Tables 5.1 and 

5.2). It is know from previous research in pendulum knee models that the impedance 

values of K and B are generally higher in spastic subjects than subjects without spasticity 

(Vodovnik et al., 1984; Lin and Rymer, 1991; He et al., 1997 and Fowler et al., 2000).  
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Table 5.3 Spastic Subjects Model Parameters for Sigmoid VT Model. 

Subject Brel Krel 
o Variables 

R
2
 SSE 

Tp n k 

BX 0.1733 6.9582 1.1575 2.6823 0.4108 0.9869 0.2449 

CX 0.1849 8.3314 1.0947 2.3389 0.3512 0.9858 0.2254 

DX 0.6277 63.4455 0.5095 1.5502 0.5544 0.9871 0.0951 

 

 

 

Table 5.4 Non-Spastic Subjects Model Parameters for Sigmoid VT Model. 

Subject Brel Krel 
o Variables 

R
2
 SSE 

Tp n k 

AX 0.0514 2.3529 0.7179 1.7571 0.4754 0.9951 0.2008 

EX 0.3414 6.8828 0.8771 5.8820 0.2313 0.9956 0.2359 

FX 0.1890 2.1802 0.8039 6.3654 0.2327 0.9862 0.5773 

 

The differences in ages of the subject populations necessitated an examination of the 

impedance parameters, Krel and Brel relative to the moment of inertia of each subject. 

Table 5.5 shows a comparison of parameters Krel and Brel normalized to the moment of 

inertia of each of the subjects. The normalized values of Brel/I and Krel/I show a more 

defined separation between the group of subjects with spasticity and the group of subjects 

without spasticity. When viewed in this manner, it can be concluded that there is indeed 

increased impedance in subjects with spasticity compared to subjects without. The 

normalization of Brel and Krel also shows that within the spastic subject data set, Subject 

DX, an adult, has virtually the same Brel/I value compared to the children with cp, BX 

and CX but much higher Krel/I, attributable to an increased level of spasticity.
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Table 5.5 Normalized Calculations of Impedance Values From Sigmoid VT Model. 

 Subject 
Moment of 

Inertia, I 
Brel Brel / I Krel Krel / I 

Non- 

Spastic 

AX 0.1130 0.0514 0.4549 2.3529 20.8255 

EX 0.6329 0.3414 0.5395 6.8828 10.8747 

FX 0.2078 0.1890 0.9094 2.1802 10.4900 

Spastic 

BX 0.1130 0.1733 1.5334 6.9582 61.5865 

CX 0.1130 0.1849 1.6365 8.3314 73.7407 

DX 0.4063 0.6277 1.5448 63.4455 156.1383 

 

The o parameters optimized in the sigmoid VT model were, Tp, n and k. Tp 

represents the top or maximum plateau of the sigmoid curve, whereas, n and k represent 

the slope of the curve and time at the curve inflection point respectively. The parameters 

that define  establish the ability of the virtual trajectory to follow the actual trajectory. 

The results of the model demonstrate higher values of the slope, n, and lower values time 

at inflection point, k in the non-spastic subject data compared to the calculated values in 

the spastic subject data. A larger or steeper slope in the virtual trajectory with a shorter 

inflection point time, represents a virtual trajectory that more quickly tries to follow the 

actual trajectory. Since the motion of the leg during the pendulum knee test is toward the 

vertical gravitational zero, the virtual trajectory in non-spastic subjects follows a steep 

descent toward zero degrees. In contrast, the limb trajectory of subjects with spasticity is 

a slower, more gradual descent toward vertical zero degrees, as represented by the 

smaller value of the virtual trajectory slope, n and the higher value of the parameter k. 
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In the previous chapter it was postulated that in addition to aligning conceptually 

with the concept of the virtual trajectory described by the EPH (Latash, 1992), a model 

based on a sigmoid VT would provide an output of angular trajectory with comparable 

SSE, relative to the experimental data, to the SSE produced by the exponential VT 

model.  Table 5.6 compares the SSE of both models for both the spastic and non-spastic 

populations. The results demonstrate that the SSE produced by the sigmoid VT model is 

comparable to the SSE produced by the exponential VT model.  

 

Table 5.6 Model Accuracy Comparison. 

Model 

Subject 

Spastic Non-Spastic 

BX CX DX AX EX FX 

SSE SSE SSE SSE SSE SSE 

Exponential 

VT 
0.2928 0.1504 0.0965 0.2192 0.7374 0.9814 

Sigmoid 

VT 
0.2449 0.2254 0.0951 0.2008 0.2359 0.5773 
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5.3 Cluster Analysis of Sigmoid VT Model Parameters 

The goal of the cluster analysis algorithm described in the previous chapter was to 

determine if the output pendulum knee trajectory predicted by the forward model could 

be described by a smaller grouping of the five variables optimized by the gradient descent 

optimization routine: Brel, Krel, Tp , n, and k. It was hypothesized that the pendular 

trajectory could be described with just three variable classes: relative damping parameter, 

Brel, relative stiffness parameter Krel, and a virtual trajectory parameter, o , which would 

be a grouping of the variables describing the sigmoid VT function. Figure 5.8 shows the 

statistical clustering of parameters within the non-spastic data. 

 

 
Figure 5.9 Dendrogram of optimized variables for non spastic subject data 
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The cluster of variables is shown on a tree diagram known as a dendrogram. A 

dendrogram is a visual representation of the variable correlation data. The individual 

variables are arranged along the bottom of the dendrogram and referred to as leaf nodes. 

Variable clusters are formed by joining individual variables or existing variable clusters 

with the join point referred to as a node (Nonlinear Dynamic, 2011). Since the goal of 

clustering is the reduction of variables by combing variables with similar characteristics, 

the dendrogram represents a visual representation of the similarity in the variances of the 

variables. The higher the similarity, shown on the y-axis, the greater the correlation. In 

the non-spastic data two distinct clusters appear to be formed.  

The first cluster is a clustering all three variables which define the sigmoid VT, 

Tp, n and k. This first cluster combines the cluster of Tp-n, which has a similarity level of 

94.45 out of 100, with a cluster of Tp-n-k, which has a similarity level of 87.66. The 

second cluster is formed between variables Brel and Krel respectively. Lin and Rymer 

(1991) theorize in their research that the impedance values of stiffness, K and damping, 

B, both increase with increasing muscle activity and that these increase are likely 

interrelated. This interrelation between stiffness and damping was also modeled by Flash 

(1987).  The results of the cluster analysis suggest that it is possible to describe the 

dynamics of limb motion of non-spastic subjects during the pendulum knee test in terms 

of a grouped variable, o, encompassing the sigmoid VT parameters, and either Brel and 

Krel separately or another grouped variable combining the two. The importance of this 

conclusion is that it establishes that the VT along with the impedance values, B and K are 

capable of completely describing the limb motion dynamics. 
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Figure 5.10 Dendrogram of optimized variables for spastic subject data. 

 

 

Figure 5.8 illustrates the dendrogram for the same variables based on the spastic 

subject data. Examination of the dendrogram suggests that it might be possible to group 

variable Tp with variable n, with a similarity level of 68.14. Just as was seen in the 

cluster analysis of non-spastic data, there is a strong level of similarity in the variances of 

the variables Brel and Krel resulting in a cluster with a similarity level of 84.04. Overall, in 

the spastic data, while some correlations appear to exist, the level of similarity between 

the suggested clusters is not as high as the clusters formed from the analysis of the non-

spastic data. Comparison of the cluster analysis in the spastic and non-spastic subject data 

reveals that in both data sets, clusters with high similarity are formed between two sets of 

parameters: Tp clustered with k and Brel clustered with Krel. The clustering of Brel and Krel 

reinforces the relationship between the impedance values of B and K found in previous 
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pendulum knee test models (Lin and Rymer, 1991; Flash, 1997). The results in both cases 

demonstrate that the limb dynamics in pendulum knee motion can be modeled with not 

just the impedance parameters but with the 

5.4 Further Evidence of a Virtual Trajectory in the Relaxed Condition 

The results presented in earlier sections have extended the concept of a virtual trajectory 

to the situation in which the subject is ideally relaxed. In active movements, the VT is 

described as a CNS produced template of a sequence of desired equilibrium points that 

represent the desired joint trajectory. In a subject-initiated movement, this virtual 

trajectory precedes the actual joint movement in time.  The instantaneous VT angle is 

compared with the current actual angle to produce a net moment that attempts to reduce 

the error between the desired and actual angle, resulting in joint movement. In the 

simplest case, the net moments can be described as:  

 

Mnet = K(  - o) (5.1) 

 

Or more as shown in recent research describing active movements (de Lussanet et al., 

2002; Chen et al., 2009): 

 

Mnet = K(  - o) +     (5.2) 

 

 

An essential element of the PKD is that subjects are asked to relax and not to 

consciously intervene when the knee angle is changed from one position to the next. In 

the case in which the subject is ideally relaxed, theoretically one would presume that 
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there is no desired trajectory, and thus there is no VT.  However, in that situation there is 

no muscle-generated net moment and Equations 5.1 and 5.2 only remain valid with Mnet = 

0, if o = .  Thus, the ideally relaxed case can be described as one in which the VT is 

released by the CNS to follow the actual trajectory with no lag in time, maintaining a 

constant o =  over time.  As such, the relaxed situation constitutes a special case of the 

EPH. As a consequence if would be expected that if relaxation were achieved, Mnet would 

equal zero throughout the pendular movements.   

As described earlier, it is well known that the classic ratcheting trajectory of the 

spastic PKD trajectory is the result of bursts of net knee moment that oppose the 

gravitational moment.  This non-zero Mnet is seen in the results of inverse dynamic 

computation of net moment in the spastic PKD as seen in Figure 5.11 where Mnet has 

significant non-zero values. A similar inverse dynamic computation of the net moment of 

a subject without spasticity is shown in Figure 5.12. While the subject is supposedly 

relaxed, and is unimpaired by spasticity, the values of Mnet also show large deviation 

from zero. In both the spastic and non-spastic cases, it is clear that neither subject is 

ideally relaxed.  The results of the earlier modeling show that the inclusion of a virtual 

trajectory that does not ideally track the actual trajectory produces superior results.  These 

results suggest that in the partially relaxed state, the joint has an initial actual angle, and 

initial virtual angle, and that once released and allowed to fall under the external 

influence of gravity, the CNS cannot perfectly allow the VT to track the actual angle, but 

produces a VT that cannot keep up with the changing joint angle.  This produces a time 

varying error that results in non-zero Mnet. Thus, in addition to differences in stiffness and 

damping between spastic and non-spastic PKD data, spasticity also modifies the VT.
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Figure 5.11 Inverse dynamic model output of spastic pkd moments. 

 

 
Figure 5.12 Inverse dynamic model output of non-spastic pkd moments. 
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Furthermore, in addition to altering the shape of the VT (see Figure 5.5 and 5.6), 

the modeling shows that the optimized starting angle of the VT of the non-disabled 

subjects is found to be equal to the starting angle of the actual trajectory while the 

optimized angle of the VT of the subjects with spasticity is found to be lower than the 

starting angle of the actual trajectory.  This would indicate that when the knee raised to 

extension, the VT of the non-spastic subject may follow actual trajectory with a lag, but 

that given sufficient time, it will eventually achieve the same angle as the knee.  When 

the leg is released, the VT may lag the actual trajectory, and eventually achieve the final 

resting angle as simulated in Figure 5.13.  The VT optimized from the spastic data lags 

the actual angle, but also fails to achieve the angle from which the leg is released. This is 

represented in a stylized representation shown in Figure 5.14. 

 

 

 
Figure 5.13 Stylized model of VT achieving actual angle. 
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Figure 5.14 Stylized model of VT not achieving actual angle. 

 

This outcome supports the research of Levin (2000) who argued that the ability to 

regulate the stretch reflex threshold, i.e. control the VT, throughout the entire 

physiological range of the joint is what separates the movements of subjects without 

clinical signs of spasticity from those of subjects with spasticity. Levin and Feldman 

(1994) had previously shown in their research that healthy subjects were able to relax at 

the initial elbow position due to an “increase in the threshold which precluded muscle 

activation in the whole physiological range of arm displacement”. In contrast spastic 

patients were unable to increase the stretch reflex threshold to prevent muscle activation 

during even slow velocity stretching.  Subjects with spasticity were shown to be unable to 

move the VT throughout the entire physiological range. 
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While the model output of the virtual trajectory suggests that there exist a lag 

between the actual trajectory of limb motion and the virtual trajectory, the virtual 

trajectory is calculated by a mathematical optimization of variables defined in Equation, 

4.4. As such, the virtual trajectory formed is more theoretical in nature and it became 

important to determine if there was more physical evidence available to support this 

concept. Data were collected from the force transducer during the three phases of the 

pendulum knee drop. The force transducer was attached to the leg with a mounting that 

allowed the leg to be raised by a string, held at extension by the string, and then released 

by cutting the string. The force output from the transducer is positive when the leg is 

pulled in extension and negative when the leg is pushed in flexion. The force transducer 

output multiplied by the distance along the long axis from the lateral epicondyle to the 

attached position of the force transducer, allows for calculation of the moment exerted on 

the leg throughout the movement of the leg. This moment is called the holding moment, 

Mh. 

Figure 5.15 shows the calculation of the holding moment for a spastic subject 

during the three phases of the pendulum knee drop. The three phases of the pendulum 

knee drop are clearly indentified in the figure. During the second phase of the leg motion, 

while the leg is being held, there is a steady decline in holding moment. The moment or 

torque applied to the leg can only change if the force applied to the leg changes. This 

would suggest that as the leg is being held in a stationary position (i.e.  =  = 0), the 

measured force and by definition, the moment applied to the leg is decreasing. 



101 

 

 

 

 
Figure 5.15 Holding moment of spastic subject 

 

 

 
Figure 5.16 Comparison of holding moment, Mh and gravitational moment, Mg for 

spastic subject 
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A comparison of the holding moment during the phases of leg movement to the 

moment due to gravity, the gravitational moment, Mg, is shown in Figure 5.16.  Looking 

at the green-highlighted holding phase of the PKD, as the holding moment decreases, the 

gravitational moment remains constant. The gravitational moment, Mg, was defined 

previously in Equation 4.1 as mglcsin . In order for Mg to remain constant, the angle,  

must remain constant. Figure 5.16 illustrates that although there no change in angle 

position of the leg during the holding phase of the test, the exits a decrease in the force 

applied. The value of the holding moment, Mh at the beginning of the constant angle 

reading in Figure 5.16 is 11.60 N-m and 11.02 N-m at the end of the region. This result 

was demonstrated consistently within the spastic data. If this result is interpreted within 

the context of the previous research in stretch reflex threshold, , regulation (Levin, 

2000; Levin and Feldman, 1994) then it may be concluded that the slow decline of the 

force on the leg, when the leg is in essence at rest represents the virtual trajectory attempt 

to overcome its lag behind the actual trajectory. In light of these results and their potential 

implication a few additional research questions were formed: 

1. Can the change in holding moment, in the absence of movement, be shown in 

subjects without spasticity?  

2. Does the movement of o contribute to a form of active, neurally controlled 

stiffness that can be modeled? 

3. Is it possible to separate this active stiffness from stiffness due solely to intrinsic 

muscle properties? 

 

In order to facilitate answers to these questions, new experimental protocols was 

developed and examined with the analysis techniques described previously. These 

techniques are described in detail in Appendix A. 
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Consistent with the desire to show that one theory of motor control can explain 

both the non-spastic and spastic conditions, data from a similar use of the force 

transducer with non-spastic subjects shows that during period of constant angle after the 

leg has been pulled to a new angle, Mg remains constant and Mh gradually declines to the 

value of Mg.  As in the spastic case, this change in Mh is attributed to a graduate change 

of VT to achieve the holding or actual angle. 

 

 

 
Figure 5.17 Isolated profile view of Mh during period of constant angle position. 
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CHAPTER 6  

CONCLUSIONS 

 

In the introduction of this dissertation a succinct objective was laid forth; to present a 

novel model and identification methodology of spastic and intrinsic properties of spastic 

knee joints using multiple pendulum tests for the intuitive assessment of spasticity. 

Pursuant to that goal three foundation research questions were posed: 

1. Can we create experimental measures to develop a model of spasticity that can be 

interpreted within the framework of a general theory of motor control? 

2. Can the underlying motor control framework provide a unique parameter capable 

of describing both normal and altered/abnormal movement? 

3. Can the model be robust enough to explain active as well as passive movement? 

 

The research method outlined in this dissertation takes the novel approach of 

incorporating the equilibrium point hypothesis into a trajectory-based analysis of 

pendulum knee motion. The novelty of this approach lies in the utilization of a 

mathematical sigmoid function in the representation of the virtual trajectory. The choice 

of a sigmoid function, though seeming to be a more complex curve, actually is composed 

of simple features which are more in line with the EPH: a delay, straight line VT, with 

the ability to adjust the starting and ending angles of the sigmoid. The incorporation of 

the equilibrium point hypothesis in forward model was not only recognition that 

examination of the entire trajectory of the limb, rather than just the first amplitude of 

swing, was necessary, but also by doing so, motion of the leg could be described by the 

simple extraction of three parameters: the relative damping coefficient Brel, relative 

stiffness coefficient, Krel and the virtual trajectory, Θo. The results demonstrate model‟s 
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ability to produces parameter values that not only differentiate subjects with spasticity 

from subjects with no clinical signs of spasticity but that can separate subjects based on 

severity of spastic condition.  

6.1 Research Contributions 

The major contribution of this research is the development of an unifying model of motor 

control that is robust enough to describe both active and passive movements. Previous 

research efforts utilizing the equilibrium point hypothesis focused on subject-initiated 

movement, in which the virtual trajectory, defined by the CNS precedes the actual joint 

movement in time. This research illustrates that in passive movements, the VT lags the 

actual angle and the degree of this lag is exacerbated in individuals with spasticity.  

The novelty of this research is that the pendulum knee test was analyzed a three 

stage movement pattern of initial slow rise of limb, constant hold at near max extension 

and finally, release of the limb. While previous research efforts involving pendulum knee 

drop tests has described these sets of movements in a continuous context, there exist a 

dearth of research focused on  measuring and analyzing the forces and torques acting on 

the limb through each stage of the test. Incorporation of a force transducer to measure the 

forces acting on the leg through each phase of movement was recognition of the coupling 

between the person performing the test, the test subject and its impact of this coupling on 

the motion of the limb. There exist little discussion of this interaction and its impact on 

the limb motion, in the literature. 

Analysis of the change in force measurements on the limb as it is held in constant 

position is another novel feature of this research. The holding torque, calculated from 

measurements of force collected from the force transducer, decreased as the leg was held 
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at a constant angle. Evident in the data from both spastic and non-spastic subjects, this 

finding establishes a plausible physical representation of Latash‟s (1998) theoretical 

construct, within the equilibrium point hypothesis, of a virtual trajectory that lags the 

instantaneous actual trajectory. This finding provides validation of the use of a 

mathematical sigmoid function to represent the virtual trajectory, o. The ability the 

experiment protocol to demonstrate a slow exponential-like change in force output when 

the limb is held in constant position reinforces Levin‟s (2002) research which theorized 

that spasticity can be modeled as an inability to regulate the stretch reflex threshold, , 

throughout the entire physiological range. 

The utilization of cluster analysis to discern relationships among optimized 

variables produced from the model is another innovative feature of the research. Cluster 

analysis aims to sort objects into groups such that there is a maximum degree of 

similarity between objects belonging to the same group and minimum association to 

objects in other groups. This research indicates that there is significant potential for 

cluster analysis based statistical methods applied to model parameters of produced from 

pendulum knee data to reduce the number of parameters needed to describe movement 

dynamics. In general, modeling of data tries to strike a balance between accurately 

reproducing the experimental data while minimizing the number of parameters or 

variables need to describe the dynamics of a system. The results of the statistical cluster 

analysis method confirm the hypothesis that pendulum knee data can be characterized 

with just three parameters: B, K and the grouped parameters described by o. 
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6.2   Future Research 

This work was primarily two pilot studies. The most important consideration for future 

work is the expansion of the data sets employed in these analyses. While this research 

demonstrated the ability to produce significant results with the small sample size, it is 

hypothesized that with larger data sets, more significant results can be established. 

The greatest area for future research lies in the development of experiment 

protocols and analyses that can produce measures of limb stiffness and damping that are 

solely due to the intrinsic properties of the muscle and joint. Appendix C details a 

graphical method of determining the intrinsic or neutral stiffness of the knee based on the 

knee pull-hold cycle experiment protocol described in appendix A.  Further investigation 

is needed to determine if the intrinsic stiffness of the knee is dependent on its position 

relative to a neutral equilibrium position as described in Appendix C. The development of 

measures of intrinsic stiffness and damping allows for future research in the development 

of an expansive forward model capable of characterizing both active and passive limb 

motion. An example of this potential forward model is described in Appendix D.  

The utilization of cluster analysis in examining the relationship between the 

parameters optimized by the forward model suggest that there may be a relationship 

between the stiffness parameter Krel, damping parameter, Brel and the variables defining 

the sigmoid mathematical equation of virtual trajectory, o. Cluster analysis would make 

it possible to develop a research design which seeks to compare, in spasticity treatment 

for example, model parameter relationships pre and post intervention. Having established 

a model that can consistently extract measures indicating the level of spasticity, cluster 

analysis can provide the mechanism to not only compare the unique changes that occur in 
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individual parameters but also compare the change in the variances among groups of 

variables. Comparison of the clusters formed by the extracted parameters pre and post 

intervention can provide insight into how the intervention changes the interaction among 

the modeled parameters. 
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APPENDIX A 

STUDY TO DETERMINE NEURALLY-CONTROLLED STIFFNESS 

 

Thus far in the research, the equilibrium point hypothesis has been incorporated in the 

development of a passive model of knee joint. The model is considered passive based 

largely on the requirement of the limb being relaxed, to achieve the aim of measuring the 

response to passive stretch of the muscle. Building on this framework of the EPH in 

describing active movement this final study accomplished two succinct goals. First, the 

study introduced an experiment protocol to measure the change in measured holding 

moment at constant held angle positions. Second, this study established an analysis 

protocol that supports the concept of a lagging virtual trajectory as theorized in the EPH.  

This is a five subject pilot study on non-neurologically impaired subjects. The 

subjects range in age from 22 to 27. The setup for this study is exactly the same as the 

previous pendulum knee test studies as shown in Figure 4.5. The movement protocol for 

this test involves three stages: initial passive knee flexion and extension, passive gradual 

knee extension and hold, and finally, release into pendulum knee drop. The limb was first 

passively moved from its initial rest position to the “vertical-zero” position. Whereas the 

trakSTAR provides angle displacement relative to the transmitter, the position of the 

sensor does not necessary align with the axis for true gravitational zero. A vertical plumb 

line is used as the visual line of sight for the vertical zero position. Once the first position 

was reached and held, the knee was passively moved further into flexion incrementally 

and then incrementally back in extension until the vertical-zero position was again 

reached as shown in Figure A.1. 
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Figure A.1 Knee push-pull trajectory profile 

 

The importance of this technique is that it established a method of determining the 

rest angle, which is the angle the leg is initially raised from during the pendulum knee 

test. The fact that the leg is flexed to the vertical zero position and then held 

approximately five seconds, allowed for identification of the trakStar position output to 

be acquired at that point of initial holding. The position data can then be adjusted by the 

value at the held position to produce the vertical zero position shown in the above figure. 

At the end of the extension move and hold cycle, near the vertical zero position the leg is 

released for several seconds and allowed to return to its initial position. It would normally 

be expected that the knee would return to the exact same initial angle before the 

beginning of the movements in flexion. However as shown in Figure 5.11, the “Rest 

Angle” position is slightly lower than the initial angle at the start of the movement, which 

can be explained as simply hysteresis within the muscle. 
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From the rest angle position after a few seconds of release, the leg is slowly lifted 

then held in position at 0.2 radians increments. At each increment the string used to raise 

the leg is clamped in position to a tripod. Once near max extension position is reached 

and after being held in that position for several seconds, the string is cut allowing the leg 

to oscillate freely. Once the leg stops oscillating, the leg is raised incrementally lower 

heights and released three more times. Position and force data are again collected from 

trakSTAR & Mini40 transducer respectively. The analysis of region one was aimed at 

graphically finding the rest angle, r, shown in Figure A.1. Analysis of region two of the 

data is used to ultimately graphically extract parameters that can be later applied to a new 

equation of motion capable of not only describing the pendulum knee data in region three 

of Figure, A.2, but all of the motion in general. 

 

 

 
Figure A.2 Complete push-pull pkd angle displacement profile. 



 

 

112 
 

APPENDIX B 

MODELING OF THREE STAGE DATA 

Analysis of the data collected originates through the expansion of the equations of motion 

used previously in the pendulum knee test. The new equation becomes: 

 

 (B.1) 

 

 

Equation B.1 retains the same feature of previous equations in terms of the moment of 

inertia, I, damping coefficient, B, holding moment, Mh and the gravitational moment 

term, mglcsin . Two new concepts are introduced by this equation. Ka, represents an 

active stiffness coefficient. This was previous modeled as just K in the previous equations 

and represents the proposition that the virtual trajectory, o represents a form of active 

neurally controlled stiffness.  

Kn in Equation B.1 represents the component of stiffness that is due to intrinsic 

properties of the muscle and joint space. It is being called   “neutral stiffness” because it 

being calculated using a muscle spring-model concept where changes the stiffness gain is 

due to the difference between the actual length or angle of the muscle and the muscle 

neutral position, n. Muscle neutral position is based on the concept of neutral body 

posture which is the  been characterized in research by NASA as the body's preferred 

posture, similar to the free floating posture experienced when you totally relax in a 

swimming pool, or the posture typically associated with astronauts floating in space (G. 

Andreoni et al., 2000). In Appendix C, a graphical analysis procedure is introduced 



113 
 

 

 

describing the calculation of the neutral stiffness, Kn and neutral angle, n. Appendix D 

details the application of Equation B.1 to the pendulum knee data shown in region three 

in Figure A.2. 

Figure B.1 shows a section of zoomed image showing one cycle of pulling to and 

then holding at that angle.  While angle is not explicitly shown, we can assume that the 

angle is constant from B to C since Mg=mglcsin  is constant between B and C. Applying 

Equation B.1 to the section of the plots of Mg and Mh between points B and C in the 

figure, after point B, since is held constant,  and  = 0. Equation B.1 can then be 

rewritten to become: 

 

 (B.2) 

 

where Mg is the gravitational moment, mglcsin , Mn is the neutral stiffness moment 

defined in Equation B.1 as Kn(  - n), and Ma is active stiffness moment, Ka(  - a). 
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Figure B.1 Holding moment, Mh and gravitational moment Mg for a section of pull and 

hold. 
 

 

During the period when the leg is being held, the subject is theoretically relaxed, 

as that is the primary condition needed for execution of the pendulum knee test. If the 

subject is relaxed and there is no movement of the limb, then no active stiffness, Ka, 

should be present because o, which represents the virtual trajectory, should be equal to 

 at this point. However, if we look carefully at the Figure B.1, we can see that between 

B and C, Mh slowly changes value, with an exponential-like drift toward a constant value.  

As Mh changes in this region, Mg is constant. This pattern is repeated at every pull to an 

angle then hold cycle as shown in Figures B.2 and earlier in chapter five, Figure 5.17. 
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Figure B.2 Holding moment profile before pkd with one section profiled. 

 

 Since  is constant, Mn= (  - o) must also be constant since n is the neutral 

angle of the knee, a constant value. The only way that Mh can change is if the virtual 

trajectory o changes since all the other terms in Equation B.2 depend on a constant    

Therefore, in this state of relaxed non-movement of the leg, we have evidence that there 

is a slight lag in o as it follows . This validates the theory originally proposed in the 

analysis spastic subject data, that when the leg drops in the PKD test, in both non-spastic 

and spastic subjects, o lags  to produce an active moment.  This substantiates the use 

of the sigmoid for the trajectory of . 
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APPENDIX C 

COMPUTATION OF NEUTRAL ANGLE AND NEUTRAL STIFFNESS 

Referring back to appendix B, Figure B.1, analyzing the data between points B and C, it 

has now been established that in terms of Equation B.1,  I  = 0, B  = 0 , Mg is known, 

but Mn and Ma are combined. In the previous section, it was shown that when the leg is 

held constant, o exponentially declines towards . This demonstrates that the active 

stiffness torque Ma = Ka(  - o), declines towards zero because at point C, o = . 

Therefore at point C: 

 (C.1) 
 

Figure C.1 shows a zoomed in section of plot of the holding moment, Mh, gravity 

moment, Mg and their difference (Mh-Mg) vs. angle, . The key feature of this graph is 

the clusters of data points occurring at the holding angles. These clusters appear in Mh 

and (Mh-Mg).  Given that while the leg is held at a constant angle, o approaches , using 

Equation A.1, it can reasonably be assumed that the lowest value of these clusters in (Mh-

Mg) is equal to Mn for that holding angle. Using this, we can graphically determine 

approximate values for Kn and n. Looking at a zoomed in image of Figure C.1, 

Referring two lines can be drawn, as shown in Figure C.2.  The first line connects the 

values of Mh-Mg at points C. Having established that at point C, Mh-Mg=Mn, it can be 

concluded that this line connecting Mh-Mg interpolates Mn for all possible holding angles.  

From this, we can determine the angle at which Mn=0.  This is n. 
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Figure C.1 Moments plotted vs. angle during pull and hold cycles. 

 

 

 
Figure C.2 Graphical calculations Θn, Kn and Θr 
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The slope of line connecting Mh-Mg = Kn. Similarly, the second line passes 

through Mh at all points C. It represents the interpolated Mh for all possible holding 

angles.  The angle at which Mh=0 is r and this value should confirm the rest angle found 

in the analysis outlined in section 5.4.1. Table C.1 provides a breakdown of the values for 

neutral stiffness coefficient, Kn and neutral angle, n for the five subjects in this 

experiment protocol. Also calculated were the ratios of neutral stiffness to limb mass and 

moment of inertia, I respectively. 

The determination of the rest angle, r, the knee neutral angle, n, and the knee 

neutral stiffness coefficient, Kn, can now be utilized in Equation B.1 to analyze the 

movement trajectory of the multiple pendulum knee drops originally shown in region 

three of Figure, A.2. Using the optimization techniques outlined in the previous chapter, 

the pendulum knee data can be modeled using Equation 5.1 to extract the parameters of 

active stiffness coefficient, Ka and the damping parameter, B. 

 

 

Table C.1 Calculations of neutral stiffness, Kn and neutral angle, Θn. 

Subject 
Limb Mass, 

m (kg) 

Moment 

of Inertia,  

I 

Kn (N-m) 

 

Kn/m 

 
Kn/I n (rad) 

1 3.93 0.38 4.67 1.19 12.29 0.21 

2 2.71 0.21 2.11 0.78 10.05 0.22 

3 6.10 0. 70 1.12 0.18 1.6 0.47 

4 5.67 0.59 7.61 1.34 12.90 0.31 

5 5.11 0.49 1.62 0.31 3.33 0.48 
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APPENDIX D 

ACTIVE AND NEUTRAL STIFFNESS MODEL OF PENDULUM KNEE DATA 

A new feedback model was created in Simulink utilizing the equations of motion outlined 

in Equation B.1. As shown active stiffness Ka, shown in green, replaces the lumped 

relative stiffness, Krel from the previous model outlined in earlier chapters. The active 

damping parameter, Ba is equivalent to the relative damping parameter, Brel modeled 

previously. 

 

 
Figure D.1 Forward model to optimize parameters, Ka, Ba and virtual trajectory, Θo. 
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Utilizing the same Levenberg-Marquardt method based gradient-descent 

optimization program described in the previous chapter, the pendulum knee drop portion 

of data was modeled producing the optimized parameters, active stiffness, Ka, active 

damping, Ba and the parameters defining the virtual trajectory o as defined by Equation 

4.4, in chapter 4 previously. During the third region of data, as shown in Figure A.2 from 

chapter five, each subject underwent between three and four pendulum knee drops. Each 

pendulum drop for each subject was molded separately. Figure D.2 shows a 

representative sample of the model output for subject 5. 

 

 
Figure D.2 Subject 5 forward model data compared with experimental data. 
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Table D.1 Model average output parameters of first PKD for all five subjects. 

Subject Ba Ka 
o Variables 

R
2
 SSE 

Tp n k 

1 0.4489 0.0053 1.2547 4.0309 0.2680 0.9364 4.5498 

2 0.1843 0.0010 1.2953 4.7552 0.3517 0.8605 12.1782 

3 0.9523 5.8594 1.2762 3.1648 0.1124 0.9265 3.8922 

4 0.9915 2.6955 1.2507 2.8061 0.3197 0.8218 7.3772 

5 0.7043 7.2700 1.2143 3.4291 0.3120 0.9094 3.5821 

 

Table D.1 displays the optimized parameter values for all five subjects in their 

first pendulum knee drop. This data reflects the initial pendulum knee drop after the limb 

was held and suspended at near max extension for several seconds before being released. 

The data reveals several important results. First, there is a general consistency with 

subjects in the optimized parameters that define the sigmoid virtual trajectory, o.  

Having previously established the existence of a virtual trajectory that lags the actual 

trajectory in all movement, combined with the theory articulated by Levin (2008) that 

people without spasticity have the ability to move the stretch reflex threshold, , 

throughout the entire physiological range, this consistency in o among the subjects 

would be expected.  

The distinguishing feature that separates the model created from Equation B.1 

from the previous model created by Equation 4.3 used in the previous pendulum knee 

drop analysis is the torque due to stiffness. In Equation 4.3 the stiffness coefficient K, 

was modeled as a lumped stiffness that represented the stiffness of the system. As 
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outlined earlier this has been the standard modeling of the system that occurs during 

pendulum knee motion (Badj, Bowman and Vodovnik ,1984; Lin and Rymer, 1991). The 

accuracy of the model created from Equation 4.1 shows that all of the system stiffness is 

accounted for in this lumped K parameter. This then provides the framework for utilizing 

Equation 5.1 which sought to separate this lumped stiffness parameter into two stiffness 

parameters, active stiffness Ka and neutral stiffness Kn. The torque produced by the 

lumped stiffness parameter, K of Equation 4.1 is K(  - o).  Thus from a system 

perspective the Equation B.1 necessitates that: 

 

 (D.1) 
 

The results suggest that the calculated sum of the active stiffness torque and the 

neutral stiffness torque is larger than the torque that would be calculated for the system 

under the lumped stiffness parameter, K. Given that the torque due to active stiffness, Ka 

replicates the relative stiffness torque K(  – o) from the previous model of Equation 

4.1, the increase in overall system stiffness calculated in this new model must be 

attributed to the neutral stiffness torque, Kn(  – n). The neutral stiffness coefficient, Kn 

ranged from 1.12 N-m to 7.61 N-m. In the previous section, a method for graphically 

calculating Kn was introduced which was rooted in the application of Equation A.1 in 

each section of constant angular position. When the leg is held at a constant angle as 

shown in Figure B.1, the holding moment, Mh slowly changes value, with an exponential-

like drift toward a constant value. The impact of this is that the values of the difference 

between the holding moment and gravitational moment (Mh - Mg), at all points C, as 

shown in  Figures C.1 and C.2, may not actually be equal to the neutral stiffness moment, 
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Mn because  the clusters in (Mh-Mg) have not yet reached their lowest values. There is 

still have a non-zero (  – o) as o may not have completely settled. This would have the 

effect of producing values of (Mh-Mg) that are slightly higher than they should be, 

resulting in a slightly higher Kn. This suggest that a closer examination of the time 

constant of the decline in the holding moment toward a constant value needs to be 

examined and incorporated into the calculation of the neutral stiffness coefficient, Kn. 

The coefficient of determination, r
2
 for the five subjects ranged from an average 

value of 0.82 to 0.94, demonstrating the model‟s ability to accurately reproduce 

pendulum trajectory data relative to the experimental data, even with higher than 

expected values for the neutral stiffness coefficient. The final model put forth in the 

section demonstrates the ability to expand beyond simply describing motion 

characterizing the pendulum knee test. The graphical techniques illustrated in this chapter 

introduce an approach to model all movements. 
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