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ABSTRACT 

DEVELOPMENT OF X-RAY HOLOGRAPHY METHODS FOR STRUCTURE 

DETERMINATION:  APPLICATION OF HIGH SPEED DETECTORS AND 

NOVEL NUMERICAL METHODS 

by 

Yuhao Wang 

Holographic methods show much promise to enable direct determination of atomic 

structure with minimal assumptions and approximations.  The approach can, in principle, 

provide three dimensional information on atomic positions.  However, significant 

developments in experimental techniques, instrumentation and in data collection and 

analysis are needed.   A review of the holography method is given with a focus on X-ray 

fluorescence holography. Methods for analysis of X-ray holographic data are also 

reviewed.  An overview of the detectors relevant to X-ray measurements is also 

presented. An experimental apparatus for rapid acquisition of X-ray holographs using 

novel X-ray detectors has been developed.  The integration of high speed detectors and 

the utilization of rapid sampling methods to produce high quality holograms form the 

core of this work.  A new method for direct extraction of the electron charge density 

based on expansion of the hologram with respect to a spherical harmonic basis is 

developed.  This approach attacks the problem of obtaining the electron density from the 

hologram by the introduction of periodic constraints (fixed unit cells) while maintaining 

flexibility by making no assumptions about the positions of atoms within the unit cells.  

Problems with local or long range distortions can be solved by utilizing cells of the 

appropriate size.   The method makes no other assumptions.  Model charge densities 

derived from this approach are shown to match quite well with the input model crystal 

structures with no need for heavy filtering typical of the Barton Transform.  The 



 

algorithm can be fully automated and hence falls into the class of “Direct Methods”.  This 

new approach may move the method of X-ray holography from the developmental stage 

to a powerful and routine tool for the solution of single crystal structures relevant to 

inorganic materials and organic systems. 
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  CHAPTER 1

REVIEW ON X-RAY FLUORESCENCE HOLOGRAPHY 

1.1    Early History of Holography  

Holography is a two-step method involving first recording a diffraction pattern from an 

object with photons or electrons, and second reconstructing the object image with the 

diffraction pattern.  The first hologram was produced in 1947 by Physicist Dennis Gabor 

(Figure 1.1) as an unexpected result of research into improving electron microscopy [1].  

Gabor received the Nobel Prize in Physics for this work in 1971.  The technique is now 

known as electron holography and is still used in electron microscopy [1].   

 

 
Figure 1.1  Photograph of Dennis Gabor. 
 

Source: [2] 
 

Figure 1.2 is the illustration of Gabor’s original technique for electron 

holography, where he put the sample under a coherent electron beam to record the 

Fresnel diffraction pattern directly.  A detailed discussion of electron holography is 

presented later in this review. 
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Figure 1.2  Technique of electron holography Gabor proposed in his original work. 
 

Source: [1] 
 
 

Early holography based on optical light was advanced in 1960’s when lasers 

became available.  The first optical holography that recorded 3D images was made in 

1962 by Denisyuk [3] and also by Leith and Upatnieks [4]. 

 

Figure 1.3  Optical holography setup. 
 

Source: [4] 
 
 

Figure 1.3 is the setup of optical holography from Reference [4].  The hologram 

plane records the Fresnel diffraction pattern from the object plane where no lens is 

required.  Light transmitted from the holograph plane is then reconstructed with ordinary 

lenses to from the real image. 

The theory of holography is explained in detail in Reference [4].  When coherent 

light from the laser shines upon the object plane, the light amplitude at the object plane 

is: 

                                                    (   )  [     (   )]    (   )                                (   ) 
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Where s is the overall amplitude, sb is the background amplitude of the laser, sr is 

the scattered wave from the object plane. 

 
At the hologram plane, a Fresnel pattern is formed from the object plane due to 

signal in sr. 

 

 (   )      (  )  ∬  (   )   [       √   (   )  (   ) ]       

                                                                                                                                      (   )
 

  
 

where z is the position of the hologram plane.  The * operation denote 

convolution, as shown in Equation 1.3: 

                                             (   )  ∫  ( ) (   )  
 

  

                                                 (   ) 

where f is given by    [       √   (   )  (   ) ]. 

The wave amplitude is recorded on the hologram plane by photographic methods, 

while phase information is lost in the recording process.  The recorded amplitude 

represents the function:  

                                       
    [       ][       ]                               

 |  |
    

 (    )    (    )  |    | 
                    (   ) 

Reconstruction of the hologram in [4] was done by coherent light illuminating the 

hologram, producing   
 (    ) and   (    )  wave front on the hologram plane.  The 

wave front is a reconstruction of the light wave in the original optics and can be focused 

by lenses to form a real image on the image plane. 

The method as shown in Figure 1.3 is also called in-line holography [4].  For that, 

all optical components are arranged on a single optical axial.  In-line holography suffers a 

twin image problem that both   
 (    ) and   (    )   terms in reconstructed image 
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overlap each other and result in blurred image.  Leith et al. had also discussed an off axis 

holography method [4], where   
 (    )  and   (    )  are separated in space to 

avoid blurring. 

 
Figure 1.4 is an illustration of off line holography.  Back ground wave sb and 

object wave 

 

Figure 1.4  Method of recording holograms from an object (left) and reconstructing 

holographic image (right). 
 

Source: [5] 

  

     are placed on different optical axes and interference at holography plate.  

When reconstructed,   
 (    ) and   (    )  do not overlap.  The background wave 

   is also controlled to have comparable magnitude with the object wave sr.  So that 

  
 (    )  and   (    )  are comparable to |  |

  term.  The hologram has better 

contrast than in-line holography.  For more detailed review of many setups for off-line 

holography, see References  [6-8]. 
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Figure 1.5  Method for recording hologram in reflection holography (left) and 

reconstructing holographic image in reflection holography (right). 
 

Source: [9] 
 

Figure 1.5 shows the method of recording and reconstructing hologram in 

reflection hologram scheme, proposed by Denisyuk in 1963 [10].  While recording, 

object wave    is placed on the opposite direction of the reference wave    and the two 

waves produce maximum contrast in interference pattern, allowing easier recording of 

holograph pattern [10].  If the hologram is made of reflective material, the hologram can 

also be reconstructed by reflected light, using white light as illumination.  This type of 

holography is often mentioned as ’colored holography’ for multi-colored image are made 

possible with this scheme.  For more detailed introduction of colored holography and its 

application, refer to [7]. 

Figure 1.6 is a sample reconstructed high quality holograph image taken in 1976 

when high quality photographic films became available [11]. 
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Figure 1.6  A sample holograph image. 
 

Source: [11] 

1.2    Electron Holography in TEM 

Although electron holography was presented as early as in Gabor’s 1947 paper [1], its 

development was much slower than optical holograph.  Theory of electron holography is 

described with the same equations as of the optical holography except that the hologram 

was formed with an electron beam. 

Gabor’s original proposal of electron holography was aimed at improving 

resolution by using no optics other than the electron gun and the object, as shown in 

Figure 1.2, thus avoiding distortion from the imperfect electron optics at that time.  The 

lack of strong coherent electron source made this method impractical.  In 1950, Haine and 

Dyson proposed a transmission method of electron holography [12], which inserted electron 

optics in between the object and photographic plate, which is optically equivalent to the setup 

in Figure 1.3, but 12 years earlier.  This set up is more easily achievable and requires less 

intensity from the coherent electron source.  The twin image problem of the in-line setup of 

transmission mode is minimized by recording the hologram in the Fraunhofer condition, 

where z >> d/
2
, z is distance from the object to photographic plate, and d is distance from 

object to electron source, as proposed by Thompson et al. in 1966 [13], The first examples of 

successful application of 3D reconstructions using TEM were published in 1968 [14-16]. 
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Figure 1.7  An illustration of the image-plane off-axis holography setup in modern TEM. 
  

Source: [17] 

 

For the period before the late 1980’s, research with electron holography was 

limited to a handful of groups who were very experienced with coherent electron sources, 

until the emergence of the field emission gun.  Development of electron holography 

method was slow but steady, namely about 20 different holographic scheme have been 

proposed, and reviewed by Cowley at 1992 [18].  While most of the holography schemes 

were less intensively studied, the most popular setup used for contemporary electron 

holography by far is image-plane off-axis holography.  Figure 1.7 is an illustration of this 

setup as used in Midgley et al.’s paper in 2009 [17]. 

The arrival of the commercial TEMs with field emission guns in early 1990’s 

greatly enabled research with electron holography into research group worldwide.  Field 

emission guns provided coherent electron beams with enough brightness sufficient for 
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many holographic studies to be performed in ordinary TEMs.  In Figure 1.7, the coherent 

electron beam is emitted from the field emission gun and split into a reference wave and 

specimen wave.  The spacemen wave component transmits through the spacemen and 

then both beams are focused by Lorentz lens and brought together with a Mollensted-

Duker biprism.  These two waves form an interference pattern at photographic plate. 

 

Figure 1.8  Role of biprism in hologram. 
 

Source: [19] 

 

Figure 1.8 is an illustration of the role that the biprism plays in holography, the 

picture is taken from Midgley’s review paper of electron holography in 2001 [19].  The 

biprism is a thin glass fiber coated with metal, and mounted on a biprism mounter in 

TEM optics.  The mounter allows charging in the biprism with positive and negative bias, 

and allows adjustment of the biprism position both translational and rotational.  The bias 

voltage in the biprism bends the electron beams for both reference wave and spacemen 

wave thus is the equivalent of an optical biprism.  The position of the electron source is 

displaced to position S1 and S2, and their beam interference under the biprism.  

Adjustment of bias voltage and position of the biprism affect the deflection angle. 
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Figure 1.9  Bright field image (left) and interference micrograph (right) showing the 

magnetic flux linkage from a barium ferrite particle in a single domain state. 
 

Source: [20] 
 
 

Electron holography is especially suitable for observing phase contrast in 

spacemens, i.e. electric and magnetic fields that could not be detected easily by 

conventional electron microscopy.  Figure 1.9 is a comparison of bright field image and 

interference in electron holography showing magnetization in a barium ferrite particle. 

Figure 1.10 is the result of direct observation of Aharonov-Bohm (AB) effect with 

electron holography as reported by Tonomura in 2005 [21].  The shift of interference 

fringes in the center space shows a phase difference as compared with the outer-space.  

The phase contrast comes from pure quantum effects but not electric or magnetic fields. 

 

Figure 1.10  Direct observation of Aharonov-Bohm (AB) effect with electron 

holography. 
 

Source: [21] 

 



10 

 

 

 

For more example applications and observations with electron holography, see 

Midgley’s review [19]. 

1.3    Photoelectron Holography, Holographic LEED and Holographic 

Interpretation of Other Diffraction Patterns 

While the field emission gun has provided expanded availability of the electron 

holography in late 1980’s, several common interference patterns, which do not involve 

the use of coherent electron source, have also gained interest and have been interpreted as 

holographic interference.  Soceke [22] first suggested electron microscopy by 

photoelectrons or Auger decay electrons.  Then, Barton [23] suggested in theoretical 

analysis that intensity distributions of photoelectrons from a single crystal surface can be 

considered to be a hologram. 

 
The method of photoelectron holography makes use of the coherent property of 

photo-electrons, when photo emitted electrons find more than one way of arriving at a 

photographic plate, an interference pattern called photoelectron diffraction arise.  The 

theory and experimental method was suggested early in 1974 by Liebsch [24] as shown 

in Figure 1.11.  When photoelectrons are emitted from single crystal surface, strong 

diffraction occurs at Bragg like condition, i.e. 2a · sinf = n .  The diffraction occurs not 

because photoemission from different atoms is coherent, but because the photoelectron is 

scattered by local environment of the emitter and strong interference between scattered 

wave and the direct photoelectron wave occurs. 
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Figure 1.11  Method to record angular resolved photoelectron diffraction. 
 

Source: [24] 

 

Barton explained the phenomena as a hologram, where the photoelectron wave is 

a coherent reference wave and the electron scattered by the emitter’s local environment is 

the object wave: 

                                                                  ∑    

 

                                                         (   ) 

where b is photoelectron wave as background reference wave.  s,j is the 

scattered wave from j
th
 atom. Rewrite      in detail, one has: 

                                              ∑[     (              )]

 

                                (   ) 

Consider  is proportional to the background wave, where Fj and φj are the 

amplitude and phase part of scattering factor of the j
th

 atom respectively.  Thus one has: 

                                  [  ∑[     (              )]

 

]                                    (   ) 

        (     
 )                                                                                               

       

   ∑[     (              )]

 

 ∑[     (               )]

 

 ∑[     (              )       (               )]

  

     (   ) 
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where, I is the intensity of photoelectron diffraction pattern.  The equation is 

virtually a Fourier transform of the local atomic structure.  The last term is neglected in 

the weak scattering limit. A numerical inversion of I1 could reveal the position of local 

scatters. 

                                                 ( )  ∬(   )   (    )   

 

 

                                         (   ) 

 
This numerical method of reconstructing the hologram is commonly referred as 

Barton’s algorithm.  Soon after Barton’s statement of holography with photoelectrons, 

other common interference phenomena were also studied as holograms.  Saldin proposed 

interference from LEED as a holograph [25], traditional electron holography with a field 

emission gun placed very close to spacemen is also proposed at 1990 [26], the method of 

tradition electron holography was very similar to photoelectron holograph. 

The first successful experimental reconstruction of photoelectron holography was 

presented in 1989 by Hong Li and Tonner [27]; Harp et al. gave the first Auger-electron 

diffraction holography at 1990.  Figure 1.12 is auger-electron holography and 

reconstructed image of Cu (100) surface in Harp et al.’s report [15, 28]. 

The method of photoelectron holography is an in-line holographic method that 

suffers from the problem of twin images.  In the recorded holograph, the second two 

terms in Equation 1.8, ∑ [     (              )]  ∑ [     (             

   )] add on top of each other.  The numerically reconstructed image will contain both 

images from the ∑ [     (              )]  term and the ∑ [     (          

      )] term. 
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Figure 1.12  Auger electron holography measured on Cu (100) surface (left) and 

reconstructed image of the hologram with atomic resolution (right). 
 

Source: [28] 

 

In 1991, Barton [23] suggested the twin image problem can be solved by using 

multiple energy photoelectrons.  The reconstructed image for single energy photoelectron 

holography is given by: 

 ( )  
 

    
∬(   )   (    )   

 

 

                                                                                          

 
 

    
∑∬  [    (   )   (           )      (    )   (          )]   

 

  

  

 
 

    
∑  [   (   ) (    )      (    ) (    )]

 

                                            (    ) 

 

 Where the (r  rj) term is the reconstructed image and (r + rj) is the twin image.  

Barton suggested that holograms with multiple electron energies should be taken and 

combined to rebuild the  real space image:  

 ( )  
 

    
∑    (    )∬(   )   (    )   

 

  

                                                                        

 
 

    
∑∬ ∑  [   (           )      (     )   (          )]

 

            
 

  

       

 
 

    
∑  [ (    )  ∑    (     )

 

 (    )]

 

                                                 (    )         
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For a large number of different energies, the ∑     (    ) (    )  twin image 

term will tend to cancel each other and result in much lower intensity than the real image.  

The introduction of multiple energy holographs have greatly improved the quality of 

reconstructed image in photoelectron holography.  Tong et al. first realized a high quality 

reconstructed image of multiple energy holography [29].  Figure 1.13 is the image of Co 

monolayer of atoms on Cu (111) surface from Tong’s report. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13  Image of Co monolayer as reconstructed by multiple energy holographs. 
 

Source: [29] 

 

Despite the success of multiple energy holographs, photoelectron holography has 

many limitations.  Electron have strong interaction with matter, and the single scattering 

or weak scattering assumption is too crude to fit experimental data.  Strong interaction 

also results in very anisotropic scattering, resulting in forward-peaked scattering factor.  

Many efforts have been devoted to study these limitations after photoelectron holography 

was born.  Thevuthasan et al. [30] have reported both multiple scattering and forward 

peaked scattering could result in 0.5-1.0 Å distortion of reconstructed real space image.  

An algorithm to compensate the anisotropic scattering factor before reconstruction is 

shown to improve image quality and reduce distortion [30, 31].  Tong et al. also reported 

distortions caused because of phase-shifts when electron is scattered [32], and different 
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methods to correct the phase-shift distortions are also reported [32-34].  Special 

algorithms to correct the distortion from multiple scattering are also reported [35]. 

The many corrections required in photoelectron holography have made it hard to 

determine the accuracy and noise level in reconstructed real space images.  Since many 

problems have arisen from strong interaction between the electrons and atoms, 

consideration of using X-ray photons to replace electrons as interference media became 

more attractive. 

In 1991, Tegze et al. [36] first studied from a theoretical perspective the 

possibility of holography using X-ray fluorescence photons.  Len et al. [37] have a 

comparative study about the strength and weakness of X-ray fluorescence holography 

and electron-emission holography.  The weak interaction of photons with materials 

makes it ideal for holographic structure study, but the experimental requirements are 

much more stringent. 

1.4    The Development of X-ray Fluorescence Holography 

X-ray Florescence Holography is a relatively new technique for structural studies with 

sub-atomic resolution.  In 1988, Barton [23] suggested using photoelectron diffraction as 

atomic scale holography and gave the Fourier transformation’s algorithm for real space 

reconstruction.  Holographic techniques with electrons as the imaging wave was first 

studied and realized in early 1990s [25, 28].  Compared to electron, X-ray has weaker 

interaction with matter.  Thus X-ray holography suffers from less distortion from wave-

material interaction, but the diffraction pattern is less intense and more difficult to 

measure.  As powerful synchrotron X-ray sources became available in recent years, X-ray 

fluorescence holography is becoming practical and efficient.  In 1996, Tegze et al. [38] 
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first realized a X-ray holography using the inside source scheme and Gog et al. [39] 

realized a multiple energy X-ray holography with the inside detector scheme.  As 

synchrotron X-ray sources were rapidly developed from 1990’s.  X-ray holography soon 

attracted attention from many research groups.  Figure 1.14 is an example reconstructed 

image of a NiO sample with image of oxygen observable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.14  An example reconstructed image of NiO. 
 

Source: [40] 

 

1.4.1 Inside Source and Insider Detector 

Figure 1.15 illustrates experimental setup schemes for inside source and inside detector 

methods.  The pictures are taken from Gog’s paper [39] 

 
Figure 1.15  Illustration of the inside source scheme (left) and inside detector scheme 

(right). 
 

Source: [39] 
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In the inside source scheme, the incident radiation beam passes through at fixed 

position relative to sample.  The detector is scanned across all available solid angle for 

the fluorescence energy.  The measured signal from this setup will be interference pattern 

from unscatterd florescence X-rays and florescence X-rays scattered by atoms in the 

neighborhood of the absorbers. 

In the inside detector scheme, the measuring X-ray detector is placed in fixed 

direction relative to the sample, while the incident beam is scanned across all available 

solid angle.  Since the X-ray field intensity on the fluorescent center depends on 

interference of incident beam and scattered beam from sample structure, the emitted 

florescence will be an indication of the interference pattern.  Thus the florescent center is 

used as a detector of X-ray field intensity in the interference.  The benefit of using the 

inside detector scheme is that it allows for using multiple energy X-rays as the 

interference wave, rather than only the florescent wavelength of the exited atom for the 

inside source scheme.  Another notable difference is that inside source scheme is 

interference of unpolarized X-ray while inside detector scheme usually uses polarized X-

ray from synchrotron. 

For either case and with reasonable approximation, the interference pattern for X-

ray can be written as: 

                                   ∭ ( )        ( ̂  ̂)
    [  (   ̂   ̂)]

 
                       (    ) 

 Where (r) is the electron density of the local structure inside the sample, re is 

electron scattering cross section.        ( ̂  ̂) is the Lorentz factor for X-ray scattering 

depend on polarization of the incident beam.  The detail of the above equation is 

explained in the following sections  
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For polarized X-ray radiation: 

                                                        ( ̂  ̂)    (    ̂)                                               (    ) 

Where    is unit vector for electric field in X-ray polarization. 

1.4.2 Reconstruction 

Numerical reconstruction algorithms were given as early as Barton’s paper in 1988 [23].  

The algorithm is essentially a Fourier transform and has been widely mentioned as 

Barton’s algorithm.  For the reconstruction of single energy holograph: 

                                                        ( )  ∬ ( ̂)     (    )                                     (    ) 

Gog proposed reconstruction algorithm for the multiple energy X-ray holography 

in his 1996 paper [39], given by: 

                                 ( )  ∑   (    )∬ ( ̂)     (    )    

 

                            (    ) 

1.5    Theoretical Considerations and Simulations 

X-ray signals measured in the detector are a sum of three terms: the florescence wave 

squared, the scattered wave squared, and the interference term from the florescence wave 

and scattered wave.  The reason that X-rays have been preferred over electron holography 

is that X-ray has small interaction with mater and thus the scattered wave is very small 

compared to fluorescence wave itself.  For small crystalline sample, the florescence wave 

square is uniform and much larger than the other term.  The scattered wave squared term 

is negligible when compared to the interference term.  Thus any pattern in the detected 

signal can be approximately considered to be the interference pattern itself. 
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For very large crystalline samples however, multi scattered X-ray waves became 

dominant and dynamic diffraction theory is the method need to describe the behavior of 

the scattering.  In this case, the square of scattered wave can be larger than the 

interference pattern.  Patterns from X-ray detectors may not be a close approximation of 

the interference pattern 

1.5.1 Absorption 

In a real X-ray experiment, the X-ray signal is damped when it travels in a material.  The 

damping is caused by atomic absorption of the photons.  Figure 1.16 is the absorption 

spectra of X-rays in CuAu [41].  As a result, the further a scattering center is located from 

the emitter, the lower the intensity of diffraction pattern the scatter contributes to the 

holograph. 

 

Figure 1.16  Absorption spectra of X-ray in CuAu. 

 

Thus the hologram can be rewritten as. 

                       ∭ ( )        ( ̂  ̂)
   [  (   ̂   ̂)]

 
    (   )                (    ) 
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Where   is the damping factor as the X-rays travel from emitter to scatter.  When 

multiple energy X-ray holography schemes are employed, different wave lengths have 

different damping factors.  If only the emitter’s local environment is concerned, the 

difference caused by damming is negligible.  If the far field environment is considered, 

the difference of damping can be used to distinguish the far field holographic signal from 

the local field.  In 2001 Omori et al. used the difference in absorption power at different 

wavelength to selectively image Fe and Ne atoms in XFH experiment [42].  They have 

named this the Resonant X-ray Fluorescence Holography (RXFH) method. 

Figure 1.17 is the Figure from Omori’s report [42] showing the structure of the 

FeNi specimen, as compared to image from multiple energy X-ray holograph, and image 

from the RXFH method.  While MEXH is showing only electron density in the emitter’s 

environment, RXFH distinguishes Fe and Ni atoms by their different X-ray absorption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.17  Structure of FeNi specimen (a), image from MEXF (b) and image from 

RXFH (c). 
 

Source: [42]  
 

Takahashi et al. [43] also proposed a method, in simulations, to utilize the RXFH 

method with three energies around the scatter’s absorption edge.  The method provides an 

alternative method to solve the twin image problem other than the multiple energy 

method. 
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1.5.2 Standing Waves 

Multiple scattering for X-ray is much smaller than electrons in materials.  Yet careful 

discussion of its influence has been presented by many research groups.  Korecki et al. 

[44] have given a focused discussion on extinction effect in XFH imaging in 2004.  

Several papers discussed the possibility of removing the effect of standing wave by 

applying a low pass filter to hologram before reconstruction [45-48]. 

 
In 2002 Kopecky et al. reported X-ray holography measured by transmission 

mode [49, 50].  However the measured signal can be dominated by standing waves with 

this method [50].  Figure 1.18 is the illustration of Kopecky’s X-ray absorption 

holograph. 

In any case, standing wave or extinction effect is an unwanted part of the 

holographic signal and should be minimized in a careful experimental setup. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.18  Transmission mode X-ray absorption holography. 
 

Source: [49] 

 

1.5.3 Atomic Scattering Factor and Near Field Effect 

The expression of the X-ray hologram as a function of electron density  ( ) can also be 

considered as function of each atom.  Thus the following equation is found: 
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                      ∭ ( )        ( ̂  ̂)
   [  (   ̂   ̂)]

 
    (   )                (    )  

Equation 1.17 can be written in the form: 

                     ∑    (   ̂)      ( ̂  ̂)
   [  (   ̂   ̂)]

 
    (   )              (    ) 

Where     (   ̂) is the atomic scattering factor for atom at position r.  The sum 

is over all scatter atoms.  Here the atomic scattering factor represent scattering for 

electron density associated with an atom.  Since X-rays propagate from an emitting center 

and form a spherical wave before scattering, the atomic scattering factor here is slightly 

different from the standard atomic scattering factor in XRD experiment.  The difference 

can be simulated accurately in detail.  In Bai’s report on 2003 [51], the atomic scattering 

factors from spherical wave are compared with atomic scattering factor in XRD and around 

10% to 20% reduction of the scattering power is found to result from the spherical correction 

to the wave front. 

1.5.4 Lorentz Factor, Consideration of Vectorial Nature 

Lorentz factor could be a poor approximation when considering spherical wave front of 

the scattering and the vectorial nature of X-ray. The poor approximation causes about 1% 

deviation in amplitude from simple models [51-54]. 

1.6    Special Experimental Methods and Results 

Even with powerful synchrotron beams, XFH data acquisition is slow and easily takes up 

to 10 hours per single energy per sample.  An efficient data collecting method is essential 

to acquire holograms with reasonable quality and resolution.  The requirement is more 

stringent when studying dilute sample or small spacemen.  Special experimental 
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techniques have been employed in XFH experiment.  These methods include special 

monochromatic crystal [55], fast X-ray detector with energy resolution [56], and using 

filters to replace crystals analyzer [57]. 

 
Using special reconstruction methods to reduce required number of multiple 

energy holography has also been studied.  Examples of these method include matrix 

solving technique [52, 58, 59], and choosing the energy cleverly in MEXH for maximum 

efficiency in twin image cancelation [60]. 

1.6.1 Special Monochromatic Crystal 

One way of improving data acquisition speed is increasing the acceptance angle which is 

the solid angle a detector can detect fluorescence photon.  Marchesini et al. [61] in 2000, 

Kouichi et al. [62] in 2005 and Kusano et al. [55] in 2006 all reported using very large 

monochromatic analyzing crystal that collected fluorescence photons from all possible 

directions. 

 

 

 

 

 

 

Figure 1.19  Experimental setup with circular monochromatic analyzing crystal in XFH 

experiment. 
 

Source: [55] 
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Figure 1.19 is the experimental setup with cylindrical monochromatic analyzing 

crystal in Kusano et al.’s report [55].  The crystals form a ring and focus fluorescence 

photons into an avalanche photodiode detector. 

1.6.2 Fast X-ray Detector with Energy Resolution 

Using a crystal analyzer on the detector side will usually require 1m’s distance between 

sample and detector and thus notably reduces the efficiency for detecting fluorescence 

photons.  One alternative method is using energy dispersive silicon drift detectors [63] at 

close location to the sample.  In 1998, Adams et al. reported measurement of XFH on 

Cu3Au sample with energy dispersive silicon drift detectors [56].  The reconstructed real 

space results from Adams et al. shows copper and gold atoms with great quality.  Their 

hologram may have suffered from elastic scattering signals as noise on top of holographic 

signal.  The Bragg peaks in hologram are low enough, thus do not distort the 

reconstructed real space image.  Figure 1.20 is the hologram and reconstructed image 

from Adams et al.’s report  [56]. 

 
 
 
 
 
 
 
 
 
 

Figure 1.20  Hologram measured from energy dispersive silicon drift detector (left) by 

Adams et al. and real space image (right) reconstructed from multiple energy holographs.  

 
Source: [56] 
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1.6.3 XFH with Laboratory X-ray Source 

Modern development of laboratory X-ray equipment has resulted in powerful X-ray 

source that are strong enough to allow for limited XFH measurement without using 

synchrotron source.  Takahashi et al. have successfully demonstrated a XFH 

measurement on an Au single crystal sample with X-ray source from a 21 kW rotating-

anode X-ray generator and A cylindrically bent graphite crystal [64].  A solid state 

detector with 200 eV energy resolution is used to collect photon counts from sample 

fluorescence.  Mo Kαradiation (17.44 keV) from X-ray generator and Au Lα, Lβ, Lγ 

fluorescence are used to make a multi-energy XFH reconstruction. 

 

Figure 1.21  Schematic for measuring XFH with laboratory X-ray.   
 

Source: [64] 

 

The demonstration experiment took 10 days to measure 4 holograms on the Au 

sample.  Figure 1.21 is the schematic for measuring XFH with a laboratory X-ray source 

by Takahashi [64]. 

1.6.4 Other Special Setups and Summary 

Many other special approaches/configurations are being studied in order to improve 

efficiency and preference in XFH experiment equipment and setup.  Table 1.1 is a 

summary of these special methods.  



26 

 

 

 

Table 1.1  Special Techniques used in XFH Experiment 

Author Year Special Method 

Admas et al. 1998 Fast silicon detector with energy resolution [56] 

Busetto et al. 2000 Use zinc foil filter to separate Fluorescence from background [57] 

Marchesini et al. 2000 Cylindrical crystal analyzer for large acceptance angle[65] 

Omori et al. 2001 Resonant XFH selectively image different element [42] 

Kouichi et al. 2001 Using multi-element solid state detector (SSD) [66] 

Kopecky et al. 2002 Transmission mode X-ray Holography for enhanced contrast [49] 

Nishino et al. 2002 Two-energy twin image removal by selected XFH energies [40, 60] 

Takahashi et al. 2003 Complex X-ray holography that uses three selected energy to 

  provide resonant XFH with twin image removal [43] 

Takahashi et al. 2004 XFH with laboratory X-ray using large bent crystal monochromator 

[64] 
 

1.7    Advanced Reconstruction Method with Steepest Descent Algorithm  

Although the straightforward Fourier transformation method, also known as Barton’s 

algorithm, was accepted as the most popular reconstruction method in many research 

papers [23, 40, 67], several advanced reconstruction methods attempt to provide better 

accuracy than the Barton’s algorithm. 

1.7.1 Modification to Barton’s Algorithm 

Chukhovshii et al. [52] considered vectorial property in X-ray interference and derived a 

reconstruction method from Maxwell’s equation, taking into account for correction of  

the Lorentz factor and also polarization effects.  The result is an expression of electron 

density directly formulated from XFH holography [52]. 

The inverse scheme multi-energy holography with Lorentz factor       ( ̂  ̂)  

(   ̂   ̂) is given by: 
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The exact solution is obtained, in [52], as: 

  
 ( )

 
 ∫ [   (      ) (   ̂   ̂)  

   (      )
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                                                                                                                                                      (    )

 

As compared to Barton’s method, the exact solution is free from the influence of 

the Lorentz factor and thus gives more accurate intensity in the electron density. 

1.7.2 Scattering Pattern Matrix Method 

The Scattering Pattern Matrix method was proposed by Matsushita at 2004 [68].  The 

method is an alternative method to the simple Fourier transform method.  The method 

uses matrix solving techniques to solve the structure that generates the measured 

holograph.  The benefit is that one can directly apply non-negative constraints in matrix 

solving so that the resulting electron density does not have negative regions.  The non-

negative constraint makes it possible to solve the real space image beyond the accuracy 

limit of the Fourier transform.  Several groups have proposed similar matrix solving 

technique in XFH experiment [52, 69]. 

 
The hologram generated from XFH measurements can be expressed 

mathematically as a matrix transformation of real space electric density function 

 (       ) into a reciprocal space holograph  (   ). 

                                                     (   )     (       )                                                    (    ) 

 
where    (           ) is the transformation matrix, which is known from 

the physics of XFH experiment:  
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For a given hologram  (   ) it is possible to find a solution real space electron 

density  (       )  which satisfies Equation 1.21 by the Steepest Descent Algorithm 

[70].  This method is referred as the Scattering Pattern Matrix Method [68]. 

The Steepest Descent Algorithm is a method commonly used in least square 

fittings.  It solves the matrix Equation 1.21 by first starting from a guess solution or zero.  

Then it finds a direction which could reduce the square of difference and goes from the 

last guess toward that direction.  Iteration is performed to find the minimum the 

difference in the two sides of Equation 1.21. 

The steepest descent algorithm offers theoretically better preference than the 

Fourier transform method since a non-negative constraint can be added to the solution of 

the electron density [70].  While Fourier transformation method results in electron 

density function with negative value in certain region, non-negative solution will be 

closer to real electron distribution inside the experimental sample [69]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.22  Structure of experimental FePt sample (left) , reconstruction by steepest 

descent algorithm (middle) and by reconstruction fourier transformation algorithm. 
 

Source: [69] 
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Figure 1.22 is the result presented in report of Yukio et al. [69].  Contrast of the 

real space image is greatly improved with the steepest descent algorithm.  Note the 

elimination of negative electron density also resulted in elimination of positive ripple 

peaks in real space image. 

1.8    Application of XFH Method in Structural Studies 

XFH methods are relatively immature in many aspects for applications.  Data acquisition 

usually is performed only on the most powerful synchrotron radiation source, and yet 

takes hours or days for data collection.  The structural information is easily available 

through other techniques.  Nevertheless, many research groups have found the XFH 

method’s unique usefulness in special circumstance. 

Possibly, Marchesini et al. first successfully applied the method in local atomic 

structure study [65], which differs from the XRD method by the capability of the method 

to separate local structure around Mn atom from overall averaged crystal structure.  

Similar studies were later performed to study local structure around dopant atoms [55, 66, 

71, 72]. 

Although most studies with XFH experiments were performed to improve the 

method itself, the advent of powerful synchrotron X-ray source and fast detectors with 

very high dynamic range have made the technique more accessible to experiments that 

come with more structural interests. 

The ability of XFH method to distinguish trace or dopant elements from solid 

solution opened the possibility for monitoring local structure around a certain type of 

dopant, including distortions [55, 71] and formation of dopant clusters [72]. 
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Figure 1.23  Local structure for germanium doped in silicon in the plane of dopant (left) 

and layer above germanium dopant (right).   
 

Source: [55] 

 

Figure 1.23 is an example of application of XFH method to study distortion of 

silicon structure around a germanium dopant.  Distortion of the atomic position of silicon 

atom in dopant atomic plane and above the dopant shows a clear mismatch.  The 

mismatch is explained as a result of dopant caused distortion. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.24  Local structure for germanium doped in silicon in Si0.8Ge0.2 (left) and 

structure in germanium crystal as contrast (right). 
 

Source: [72] 
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Figure 1.24 is an example of direct measurement of germanium cluster formation 

in Si0.8Ge0.2 sample.  The intensity of the nearby electron density from the germanium 

fluorescence center is compared with pure germanium sample.  The intensity is found to 

be stronger than what the silicon atom could produce.  The deviation is explained as the 

formation of Ge clusters.  Table 1.2 is a summary of applications of XFH on practical 

problems. 

Table 1.2  Some Applications using XFH Method 

Author Year System Studied with XFH 

Tegze et al. 2000 Oxygen in Nickel Oxide is observed [40] 

Marchesini et al. 2000 Local atomic structure study of Al70.4Pd21Mn8.6 [65] 

Hayashi et al. 2001 Local structure around Zn dopant in GaAs crystal [66] 

Hayashi et al. 2003 Cluster formation of Ge in Si0.8Ge0.2 [72] 

Hayashi et al. 2005 Local structure around Cu in silicon steel [73] 

Kusano et al. 2006 High resolution local structure around Ge in Si crystal [55] 

Hosokawa et al. 2007 Tetrahedral symmetry around Ge in fcc Ge2S b2Te5  [71] 

Hosokawa et al. 2009 Local structure around Ga in In0.995Ga0.005Sb [74] 

Hu et al. 2009 Dopant cluster phase transition in Ti0.50Ni0.44Fe0.06 [75] 

Hosokawa et al. 2009 Structure around Zn in Zn0.4Mn0.6Te mixed crystal [76] 

Happo et al. 2009 Local structure around Mn in Cd0.6Mn0.4Te [77] 

Happo et al. 2010 Local structure around Zn in Cd0.96Zn0.04Te [78] 

Happo et al. 2011 Local structure around Mn in Ge0.6Mn0.4Te [79] 

Hayashi et al. 2011 Local structure around Mn in ZnSnAs2:Mn [80] 

 

XFH is now used as a tool to study crystal structures in very specialized problems 

in crystrallography.  Much application research was conducted with XFH since 2009.  

Hosokawa et al. [76] studied local structure around dopant Ga fluorescent atoms in 

In0.995Ga0.005Sb and also studied the structure around Zn in Zn0.4Mn0.6Te mixed crystal 

[74].  Hu et al. [75] observed a phase transition in clusters formed by Fe dopants in 

Ti0.50Ni0.44Fe0.06.   
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Happo et al. used XFH to study fluorescent atom local structure in various samples 

including Mn in Cd0.6Mn0.4Te [77], Zn in Cd0.96Zn0.04Te [78] and Mn in Ge0.6Mn0.4Te 

[79].  Hayashi et al. [80] studied the local structure around Mn dopant atoms in ZnSnAs2 

crystal.  These studies are all similar in that they observe distortions and structure directly 

with the XFH method and measure bond-length and atom position shifts with the same 

method as shown in Figure 1.23.   
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  CHAPTER 2

REVIEW ON SEMICONDUCTOR DETECTORS FOR X-RAY DETECTION 

2.1    The Advent of Semiconductor Detectors 

When X-rays were discovered in 1895, methods of detecting X-rays as well as other high 

energy particles were based on photographic plate or photo-fluorescent plates.  Figure 2.1 

is an example Wilhelm Roentgen’s first “medical” X-ray image, taken with a 

photographic plate. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 2.1  Wilhelm Roentgen’s first “medical” X-ray, of his wife’s hand, taken on 22 

December 1895. 
 

Source: [81] 

 

Photographic material is still used today in medical diagnosis, while studies with 

ionization radiation switched to gas or liquid based detectors in the 1910s and 1920s.  

These detectors work by observing interaction of ionizing radiation with gas or liquid 

filled in a container.  The gas filled radiation detector was invented by Hans Geiger while 
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working with Ernest Rutherford in 1908 [82].  Figure 2.2 is original design of Geiger’s 

gas based counter in 1908 paper. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2  The original design of Geiger counter. 
 

Source: [82] 

 

A similar device was later redesigned by Geiger and Mueller in the 1920s and 

resulted in a portable and compact radiation detector known as the Geiger counter or a G-

M counter.  Figure 2.3 is a photograph of a commercial Geiger counter. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3  Photograph of a commercial Geiger counter. 
 

Source: [83] 

 

When ionizing radiation interacts with a working gas inside the Geiger counter, 

the gas is ionized and produces charged particles.  A pair of charged electrodes around 

the working gas collects charged particle and generates a detectable electric current 

signal.  The signal is then read out by a read out circuit.  A Geiger counter uses gas as a 
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partial stopping medium and charged electrodes to collect ionization signal.  The 

structure is essentially identical to the state of the art semiconductor detectors. 

Silicon and other semiconductor detectors were first demonstrated to be able to 

work with low-amplitude signals and a noisy environment by the Joint Institute for 

Nuclear Research (JINR) in 1965 [84].  The advent of semiconductor detectors 

revolutionized the method of radiation detections soon after.  Many different types of 

silicon and other semiconductor detectors have been devised and used.  Research on 

semiconductor detectors has grown enormously.  Development of semiconductor 

detectors is described in several review papers [85-88].  Due to the large volume of 

material on the topic, this review is limited to the introduction of a few types of silicon 

detectors. 

2.2    Operation of Semiconductor Detector under Radiation  

Similar to the Geiger counter, a semiconductor detector operates by detecting ionization 

charge between two biased electrodes.  For a diode under reverse bias, the two electrodes 

are charged to form a high electric field across a high resistivity region.  When ionization 

radiation produces an electron hole pair ionized in the high field region, the electron hole 

pair can be separated by the electric field, and thus be detected by a electric read out 

circuit before they recombine.  Figure 2.4 is an illustration of photon generated electron 

hole pairs under an applied electric field in a diode detector. 
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Figure 2.4  Principle of semiconductor detector under radiation. 
 

Source: [89] 

 

When an X-ray photon is absorbed in silicon, the energy deposited in silicon is h 

where h is Plank constant, and  is frequency of the photon.  The number of electron hole 

pairs generated is, in most X-ray experiment except the limiting case of soft X-ray, 

proportional to energy of the incident photon and can be related by [90]. 

                                                                        
  

 
                                                                 (   ) 

Here Ne is number of generated electron-hole pairs, Eγ is the energy of the 

absorbed photon and w is pair creation energy required to generate electron-hole pairs by 

the photon.  w was considered a constant and verified to be independent of radiation 

energy for a long period of detector operation [86, 91-93].  The average energy used for 

the creation of electron-hole pair in silicon is WSi = 3.6 eV and in germanium is WGe = 

2.9 eV  [94]. 

When a semiconductor detector is used for detecting charged particles, the Bethe-

Bloch equation holds and gives the rate of ionization loss of a charged particle in matter 

[95]: 
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Where ρ is the density of the medium; Z is atomic number of the medium; A is the 

atomic weight of the medium; z is the charge of the particle with velocity v;  = v/c,  

=1/(1  2
)
1/2

; Wmax is the maximum energy transfer in a single collision; I is the 

effective ionization potential averaged over all electrons. 

The amount of energy that is deposited in silicon detector can be calculated with 

the Bethe-Bloch formula in Equation 2.2.  The deposited energy is proportional to the 

number of created electron-hole pairs [94]. 

Although ionization radiation can be captured in any part of the semiconductor, 

only electron hole pair generated inside an electric field will travel in opposite direction 

and form the signal to be detected by read out circuit.  So the design of a semiconductor 

detector has to provide a large volume of sensitive regions, which is accessible to 

radiation.  The following properties of materials have to be considered [96] in 

semiconductor detectors: 

 
1. High resistivity, which allow for high electric fields that give complete charge 

collection in a short interval of time.  
 

2. High carrier mobility, needed for rapid charge collection.   

 

3. Low trapping rate, to avoid recombination, leakage current etc.   

 

4. Low energy gap, which give more electron-hole pairs for same deposited energy.   

 

5. High stability chemically and structurally, for prolonged operation under radiation 

exposure.   

 

Silicon with high resistivity can be achieved with high purity silicon, or silicon 

doped with compensated donors to form near intrinsic carrier concentration, or use 

depletion region in a diode. 
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Another important parameter in semiconductor design consideration is noise 

level.  There are three major noise sources from semiconductor materials [96]: 

 
1. Thermal noise, also mentioned as ’Johnson noise’, is the thermal fluctuation of 

electrons inside detectors.  The equivalent current of this noise is given by [96]:  

 

                                                              ̅                                                                (   ) 

 

Where G is conductivity of the detector and   ∆f is the bandwidth.   

2. Current noise, also called ’shot noise’, is the statistical fluctuations in the number 

of moving charge carriers that form an electric current.  The equivalent current of 

this noise is given by [96]: 

 

                                                                 ̅                                                                  (   ) 

3. Flicker noise is not yet well understood.  The equivalent current of this noise is 

given by [96]:  

 

                                                                 ̅                                                                  (   ) 

Flicker noise’s power spectrum mostly resides at low frequency, thus for the 

design of fast semiconductor detector, Flicker noise is not an important noise for 

consideration.  A low noise detector is achieved in low conductivity material, with 

minimum leakage current and suitable bandwidth.  State of the art silicon detectors have 

resistance reaching or over 10 G in the best specimens [88].  Thus thermal noise and 

leak current are negligible.  The dominant noise source comes from current and resistance 

in the preamplifier input circuit [88]. 
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2.3    Surface Barrier Detectors and P-n Junction Detectors 

2.3.1 Structure 

Surface barrier detectors and p-n junction detectors have a depletion region as their active 

region.  Depletion regions can be formed with many technologies.  These techniques for 

building of a surface barrier detector and p-n junction detector have been intensively 

studied since the advent of semiconductor detectors in 1950s and 1960s [97-101]. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.5  Structure of surface barrier detector in 1950’s. 
 

Source: [97] 

 

Figure 2.5 is a schematic of a surface barrier detector as presented in Mayor’s 

1959 paper [97].  Surface barrier detectors use a low doped high resistivity wafer. 

 
 
 
 
 
 
 
 

 

Figure 2.6  Doping profile of Schottky diode (left) and p-n junction diode (right). 

 

Figure 2.6 is a doping profile of a Schottky diode and a p-n junction diode.  

Depletion region is formed at interface between metal and low doped silicon in a 

Schottky diode, and at interface of p-n junction in p-n junction diode.  The process of 
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depletion region formation is described by drift-diffusion model.  When charge carriers in 

semiconductor drift through a semiconductor-metal interface, or a p-type-n-type 

interface, no charge carrier is left inside the diffusion region of the semiconductor, thus a 

depletion region forms.  Although detectors based on p-type substrate can also be made 

with success [102], most semiconductor detectors are produced with n-type silicon 

substrates [88]. 

2.3.2  Principles 

 
 

Figure 2.7  Charge distributions in depletion region. 

 

When a Schottky diode detector or p-n junction diode detector are under reverse 

bias, an electric field is established across the depletion region, as is shown in Figure 2.7.  

Charge concentration in the depletion region is identical to the dopant concentration q = e 

ND and is uniformly distributed.  Thus electric filed can be written as: 

                                                                    ( )  
 

   
  

 

 
                                                       (   ) 

Where ND is dopant concentration, y is position in depletion region, d is depletion 

region thickness.  Potential difference across the depletion region is: 

                                                                          
 

   

    

 
                                                     (   ) 

Thus, one has the active region thickness, i.e. depletion region thickness: 
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Active region thickness is an important parameter that determines the detector’s over all 

capacitance C and resistance R.  Results in later sections show that the detector’s 

capacitance is a major factor to determine system signal to noise ratio.  It also determines energy 

deposition efficiency for high energy particles.  Larger active region thickness sustains higher bias 

and is achieved by lower doping level. 

2.3.3 Technology 

Techniques for building a Schottky diode or a p-n junction diode are simple, since they 

have simple structure and doping profiles.  Schottky diode detector starts from low level 

doped silicon.  A rectifying Schottky junction is formed by evaporating a thin layer of 

metal on the surface of silicon.  P-n junction detectors are typically formed by 

phosphorus diffusion or implantation.   

2.3.4 Performance 

Industrial silicon based surface barrier detectors are also called Silicon Surface Barrier 

(SSB) detectors.  P-n junction detectors made of diffusion technology are called 

Diffusing Junction (DJ) detectors.  Both techniques were heavily employed and studied 

in the 1960’s and 1970’s [96].  For application of X-ray detection in synchrotron 

radiation researches, these detectors are now mainly replaced by planar technology [88].  

SSB detectors has gained applications in heavy ion detection [103, 104].  An example 

detector of this type is reported by Cywiak et al.. These detectors are fabricated on 0.27 ~ 

0.28 mm thick N-type ultra-pure silicon with a diameter of 5 mm.  The detector is 

operated to detect particles at 4.2 MeV with resolution a of 35 keV [105]. 
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For that SSB and DJ detectors are made form a whole silicon wafer, their active 

region and junction area are exposed at the surface.  Careful surface treatment has to be 

performed to reduce influence from surface states [105]. 

2.4    Detectors Based On Planar Technology 

Today’s most semiconductor detectors are produced with p-n junction structure with 

planar technology [94]. 

2.4.1 Structure and Technology 

Figure 2.8 is an illustration of the process to produce a p-n junction detector. 

Modern planar technology uses n-type silicon with impurity amounts down to 10
12 

cm
-3

 

[88].  The purity is high enough to form a thick near intrinsic silicon region in the 

detector.  Planar technology adapted to modern integrated circuit manufacture facility.  In 

the planar technology, boron is doped from one side of ultra-pure silicon to form p-type 

region.  Arsenic is doped from the other side to form n-type region.  A PIN junction is 

formed directly and has p-type and n-type regions on each side, and a near intrinsic 

silicon region in between.  Planar technology is capable of producing multiple detectors 

on a single substrate. 
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Figure 2.8  Planar technology for making p-n junction detector. 
 

Source: [88]
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2.4.2 Performance 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9  Planar technology silicon detector of Canberra Industries, Inc. 
 

Source: [106] 

 

Figure 2.9 is a silicon detector manufactured with planar technology.  The X-

series detector from Canberra Industries, Inc. has 5 mm
2
 active areas and 0.5 mm 

thickness.  It has resolution better than 190 eV in its working energy range from 1 to 30 

keV [106]. 

2.5    Electronics for Read-Out Function 

The read out circuit is a charge sensitive amplifier.  A detector is capacitive and its 

charge is generated from ionization radiation which is proportional to energy of the 

ionization particle.   

                                                                     ∫   ( )                                                     (   ) 
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Figure 2.10 is the model of the charge sensitive front amplifier connected to 

detector, which is capacitive in nature. 

The input capacitance of the frontend amplifier is connected in parallel with the 

detector, thus the voltage on the input side Vi of the amplifier is determined by ionization 

charge and total capacitance. 

 

 

 

 

   

  

 

 

Figure 2.10  Detector and amplifier. 
 

Source: [107] 
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Where Cd is capacitance of the detector and Ci is the capacitance of the frontend 

amplifier.  Assuming that noise generated from the detector and amplifier is a constant 

only depending on temperature.  The signal to noise ratio is then given by: 

                                                                
  

  
 

 

     
                                                   (    ) 

Noise can be suppressed by reducing input capacitor as shown in the above 

equation.  However, the overall noise potential after the frontend amplifier is still large 

compared to the signal.  To further improve signal to noise ratio, band filters are applied 

after the frontend amplifier.  The idea is that noise has a wide spectrum, while the signal 
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from the detector can be processed with a reduced sensitivity spectrum.  By reducing the 

sensitive band, noise at outside of the band pass filter can be removed and give an 

improved signal to noise ratio. 

Figure 2.11 is a illustration of the band pass filter, usually called a shaper in 

detector read out circuit.  The RC differentiator and RC integrator form a high pass and 

low pass filters respectively and together form a band pass filter.  A real shaper in 

detector read out circuits may contain multi-stage filters and may use different filter 

design strategies, like gyrators, to form more ideal filter property.  The result of the 

shaper is reduced noise at the cost of maximum speed of detector operation.  For a 

detector designed with a fast count rate, it is necessarily to have an amplifier channel with 

sufficient band pass, which inevitably result in higher noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.11  A shaper with high-pass filter  and low-pass filter. 
 

Source: [107] 

 

The output signal of the shaper is a well-defined pulse whose height represents 

the energy deposited in the detector.  This signal is usually used as an output of the 

frontend read out circuit and is guided to a MCA or other type of counter.  This signal 

can also be further processed on a read out circuit chip with either digital circuit or analog 

circuit.  The BNL HERMES based ASIC readout circuit uses an on-chip 14 bit analog to 
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digital convertor (ADC) to process and store the output signal.  The fast ADC is achieved 

by flash ADCs which have 2
14

 comparators connected to analog input and directly 

produce digital correspondence to the analog signals.  The digital data can be later read 

out from the digitized circuit.  The BNL Maia based ASIC uses VLSI Analog circuit with 

Switch-current technology or Switch-capacitor technology to process the output analog 

signal and store the signal.  The stored analog signal can be read out later with a timed 

analog circuit. 

Figure 2.12 is a very simple illustration of analog memory cell realized in the 

switch current technique.  The current through the MOSFET is only dependent on the 

gate charge, when the gate is put into high resistivity state as to other circuit, current 

through MOSFET is recorded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2.12  A very simple illustration of analog memory cell realized in switch current 

technique. 
 

Source: [108]  

 

For a more detailed reference of the switch current technique, as well as analog 

VLSI mixed signal processing technique, refer to Reference [108].  
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Figure 2.13  Operational principle of a peak detector (left)  [109] and a practical two 

phase peak detector with switch current technology (right) [110]. 
 

Source: [109, 110] 
 
 

Figure 2.13 is electric schematic of the peak detector used in fast signal processor 

for the detectors.  The peak detector captures and holds the maxim pulse height of the 

incoming pulse to provide sufficient time for digitization.  A practical two phase peak 

detector separates current in write phase and read phase [110]. 

2.6    Lithium Drifted Silicon Detectors 

A special type of p-n junction diode is the lithium-drifted silicon detector. 

2.6.1 Structure and Technology 

Figure 2.14 is a simplified process for making lithium-drifted silicon detectors.  A 

lithium-drifted silicon detector has the same structure as diffusion junction detector but 

use lithium as a p type dopant in silicon with n type impurity.  The detector starts with 

high purity n-type silicon.  Lithium is coated on one side and diffuses into the silicon 

wafer at elevated temperature and applied voltage.  Figure 2.15 is an illustration of 

lithium doping profile in diffusion profile and drift process.  The doping profile of 

lithium in the drift process is controlled by electric fields, thus drifted lithium will 

http://www.answers.com/topic/lithium-drifted-silicon-detector
http://www.answers.com/topic/lithium-drifted-silicon-detector
http://www.answers.com/topic/lithium-drifted-silicon-detector
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compensate the doping profile of the n type silicon and form uniform and near intrinsic 

region in the drift region.  Thus a thick PIN junction structure can be achieved with the 

technology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.14  Process to build lithium-drifted silicon detector. 

 
 
 
 
 
 
 
 
 
 
 
  
 

 

Figure 2.15  Sketch of lithium doping profile in diffusion (right) and drift (left) process. 

 

http://www.answers.com/topic/lithium-drifted-silicon-detector
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2.6.2 Performance 

Lithium drift detectors are widely employed in X-ray spectroscopy application for it good 

energy resolution.  Figure 2.16 is an example CANBERRA Si(Li) detector system, 

cooled with liquid nitrogen used as a coolant.   

  

Figure 2.16  CANBERRA Si(Li) detector. 
 

Source: [106] 

 

The CANBERRA Si(Li) detector can achieve 120 eV energy resolution at Mn K 

line (6.5 keV) at low count rates.   

2.7    Avalanche Photodiodes 

2.7.1 Structure and Technology 

An avalanche photodiode (APD) is a reversely biased diode with electric field in its 

depletion layer strong enough to cause multiplication of signal charges.  Figure 2.17 

illustrate the typical structure of an APD. 
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Typical APDs consist of a thin highly doped n-type layer on top of a moderately 

doped p layer.  The extra p layer as compared to normal PIN structure is for electric field 

control.  When this structure is reversely biased, a strong electric field present on the n+ 

top layer junction, together with the lower field across the intrinsic region.  The strong 

electric field gives an amplification of the signal charge as multiplication occur in this 

region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17  Structure of a typical avalanche photodiode. 
 

Source: [111] 

 

2.7.2 Performance 

Different operational modes are available for APDs.  At low voltages, APD can be used 

as ordinary PIN diode detectors with no intrinsic amplification of charge signals.  For 

higher supplied voltage, electrons become sufficiently accelerated to produce 

multiplication pairs.  The amplified signal is proportional to the ionization signal, with 

some noise is added by the multiplication process.  APDs operated in this mode have 
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linear response to photo energy and thus can be used as energy resolving detectors.  The 

extra noise is called excess noise and is purely caused by statistical randomness.  At even 

higher applied voltage, holes and secondary electron-hole pairs begin to produce 

multiplication.  A highly nonlinear response could appear in this condition.  APDs could 

be used for single photon detection at this mode. 

 
Although APDs are demonstrated capable to directly detect X-rays from 1 to 30 

keV energy range with energy resolution [112], general APDs only operate on visible 

light and infrared with acceptable noise [112].  APD have gain popularity in laser 

rangefinders and long range fiber optic telecommunication.  Because of APD’s internal 

amplification alleviates the requirement of amplifier circuits, APD can provide high speed 

and high sensitivity unmatched by PIN detectors [112], visible light and infrared radiation.  

PerkinElmer Inc. demonstrated APD with > 70% photon detection efficiency at 633nm 

photon wavelength with pulse width of only 20 ns.  When an APD is used to detect X-rays 

without energy resolution, or coupled to scintillator crystals to detect X-ray, the narrow pulse 

width of only 20 ns give APD power to detector photon at 50 MHz speed, while amplifier 

circuit for PIN detectors usually operate a 1 MHz. 

2.8    The Charge Coupled Devices 

2.8.1 Structure and Operational Principle 

Charge-coupled devices (CCDs) were first proposed by Boyle et al. as detectors of 

optical images in 1970 [113].  When used in the detection of X-ray, CCDs performed as 

well as in digital camera. 
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Figure 2.18  Operational principle of charge-couple devices (CCDs) as proposed in 

Boyle’s 1970 paper.  
 

Source: [113] 

 

Figure 2.18 is the illustration of the CCDs’ working principle as stated in Boyle’s 

1970 original report [113].  The CCDs store a charge signal in its capacitive detector 

arrays, the charge signal can be transferred from one pixel to another by controlling 

potential difference between neighboring pixels.  All pixels are partitioned into three 

groups and the voltage applied on the three groups change alternatively.  Thus the whole 

array of charge signal can be read out one by one as the charge is migrated to one side of 

the read out circuit. 

In order to avoid noise current between neighboring pixels while migrating, 

modern CCD devices have pixels partitioned into more than three groups and charges 

move with more complex patterns, the principle is however identical to the original 

report. 
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2.8.2 Performance 

CCD devices do not have energy resolution and are designed to work with visible light.  

When CCDs are used to detect X-ray, a scintillator crystal is required to convert X-ray 

photons into visible light.   

 
 
 
 
 
 
 
 
 

 

Figure 2.19  CCD with scintillator crystals and fiber optic demagnifier. 
 

Source: [114] 

 

Figure 2.19 is an illustration of a CCD working with a scintillator crystals and 

fiber optic demagnifier.  CCD systems are implemented in X-ray detection for its very 

high spatial resolution.  State of the art CCD detector has active areas up to 0.4m
2
.  An 

Example Q315 model CCD detector produced by Area Detector Systems Corporation has 

with active area of 315 mm diameter and 200,000 pixels [114].   

2.9    Drift Detectors 

2.9.1 Structure and Operational Principle 

The operating principle of drift detectors was proposed by Gatti and Rehak in 1984 [115]. 
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Figure 2.20  Working principle of drift detector. 
 

Source: [88] 
 
 

Figure 2.20 is an illustration of working principle of drift detector as proposed by 

Gatti and Rehak in 1984 paper.  A Silicon Drift Detector (SDD) is built on a ultra-pure 

silicon wafer with planar technology.  A small anode is formed on one side in the center 

of the detector.  A concentric ring shaped cathode is formed on both sides.  The potential 

of the whole detector is carefully controlled by strip electrodes on both side of the 

detector to from a depletion region extend from the small anode to entire detector.  When 

ionization radiation creates electron hole pairs in the depletion region, holes are collected 

at the nearby cathode, and electrons will drift in the depletion region of the detector to 

anode. 

By this special configuration, anodes can be small while maintaining a large 

volume of depletion region.  Unlike PIN detectors, the anode area is not proportional to 

depletion area.  Therefore SDD detector can achieve much smaller detector capacitance 

than PIN detectors, and thus provide better resolution, detector speed and lower noise. 

Modern SDD detectors integrate first stage readout MOS amplifier inside the 

detector to further reduce input capacitance of the readout circuit.  The center part in 

Figure 2.21 is the MOS transistor that is integrated into the sensor. 
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Drift detector provide high spatial resolution; the position of ionization can be 

determined by the drift time and can provide sub-millimeter spatial resolution [88]. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.21  A ring drift detector. 
 

Source: [116] 

 

Figure 2.21 is an example of a ring shaped drift detector [117].  Detectors of this 

type offer integrated amplification for the anode and nearby electrode from a FET in the 

detector. 

2.9.2 Performance 

As an example state of the art SDD detector, Oxford Instrumentation offers the X-Max 

SDD detector system with up to 80 mm
2
 active area.  The SDD detector works with a 

count rate of 500 kcps with resolution better than 124 eV for Mn K X-ray (6.5 keV) 

[118].  Figure 2.22 is a photograph of the Oxford Instrumentation X-Max SDD detector 

system. 
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Figure 2.22  Oxford instrumentation X-Max silicon drift detector system. 
 

Source: [118] 

2.10    Strip Detector and Pixel Detector 

With the application of planar technology, large detectors can be divided into strips or 

even pixels [119].  Strip detectors and pixel detectors are arrays of PIN detectors, each 

with its own read out circuit.  An array of detectors can provide spatial resolution, 

together with parallel processing capability.  These detectors can be as small as a single 

detector as shown in Figure 2.24, it can also be a huge detectors used in high energy 

particle experiment.  In early 1980’s, large size multi-layered onion-type silicon detectors 

were produced for experiments on high energy particle accelerators, especially colliders 

[88].  These large detectors are designed to provide spatial resolutions.  Signal from the 

strips are read out by circuits placed on one or both side of the strip detector. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.23  An example onion-type strip detector designed for collider applications. 
 

Source: [88] 
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Figure 2.23 is an example of the 1980’s onion like large scale silicon detector. 

Figure 2.24 is a pixel detector connected with side read out circuit produced in 

Brookhaven National Laboratory (BNL).  The large detector is divided into 32 pixels and 

connects to independent read out circuits.  Detectors of this structure provide parallel 

processing power of 32 channels. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.24  A pixel strip detector with side read out circuit. 

 

Table 2.1 gives some example large strip detector projects for high energy particle 

experiments. 

Table 2.1  Example Large Strip Detector Projects for High Energy Particle Experiments 

Detector Silicon area [m
2
] No. of strip readout channels  (10

6
) 

CMS 210 9.6 

ATLAS 61 6.3 

CDF II 5.8-8.7 0.722-1.083 

D0 2 4.7-8.3 0.793-0.952 

ZEUS  0.207 

LHCb VELO 0.32 0.205 

AMS 2 6.5 0.196 

Delphi 1.8 0.175 

Babar 0.95 0.14 

Phobos  0.137 

Aleph 0.49 0.095 

L3 0.23 0.086 

Belle SVD  0.082 
Source: [120] 
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2.11    The HERMES Based 384 Element Detector 

Three types of detectors are being developed and utilized: a HERMES 384 element 

detector, a 96 element Maia detector and a 64 elements silicon drift detector for use in 

high count rate high energy resolution applications of X-ray holography.  HERMES is the 

name of ASICs used in the NSLS energy resolving detector with multiple elements.  The 

HERMES 384 element detector is composed of 384 independent detector elements and 

read out circuits.  The HERMES readout ASIC contain frontend amplifier, shaper, fast 

ADC and digital processing components in each channel.  The detector is cooled with a 

Peltier unit and provides ~200 eV energy resolution at low count rates.  When energy 

resolution is not critical, each element can be operated at 1,000,000 cps count rate and 

together 384 channels can provide a very high dynamic range.  In this mode the energy 

resolution approaches 400 eV.  Figure 2.25 is a photograph of the HERMES 384 element 

detector. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.25  A photograph of the HERMES 384 element detector. 

 

Figure 2.26 compares spectra measured from each element in the detector before 

and after compensating photon energies with trim parameters in the detector.  Since the 

384 channels are independent to each other, trimming is necessary for aligning spectra in the 384 

channels. 



60 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.26  Spectra of Germanium Kα and Kβ peaks plotted as a function of element 

number in detector  measured before the peak energy is compensated with trim parameter 

(left) and measured after the peak energy is compensated with trim parameter (right). 

 
 

When properly trimmed, the whole 384 channel can be used as a very fast 

detector with energy resolution.  This allows XFH experiments to be performed without 

an analyzer crystal, and thus reduce the requirement of high beam intensity.  This enables 

the possibility that XFH scans can be performed within hours rather than days with the 

detector. 

2.12    The Maia Based Detector 

Maia is a second generation multi-channel detector technology developed in NSLS.  It 

has read out circuits made up from the HERMES ASIC and SCEPTER ASIC 

combination.  Here HERMES ANSI is only used as preamp/shaper.  SCEPTER is a 

analog processing ASIC designed for Peak Detector/Derandomizer (PDD). 

 
 
 
 
 
 
 
 
 

 

 

Figure 2.27  A block diagram for PDD ASIC. 
 

Source: [121] 
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Figure 2.27 is a block diagram for the PDD ASIC [121].  The circuit contains a 

set of eight peak detectors and associated time-to-amplitude converters (PD/TACs) which 

are shared and routed to 32 input channels.  A 32 to 8 routing logic array derandomize the 

incoming signal and finds an available PD/TACs for an incoming pulse.  The multiple 

PD/TACs, together with the derandomizer, effective sparsify and buffer the data resulting 

in exceptionally low dead time. 

The processing results is buffered in PD/TACs and read later, governed by the 

control logic.  The upgrade to the Maia detector provides a method for distinguishing 

pileup events, by checking the ratio between peak amplitude and time over threshold, and 

thus provides better read out preference than HERMES. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28  A photograph of the Maia detector under development. 

 

Figure 2.28 is a photograph of the Maia detector under development.  The 

detector has now undergone several tests but is not yet ready for XFH experiments.  

When the detector is ready, it is expected to have better stability and thus less noise in 

XFH experiment.  New generations of detectors (384 element, Maia and drift detectors) 

are being developed under a collaboration involving NJIT and BNL. 
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DEVELOPING AN EXPERIMENTAL SETUP FOR X-RAY FLUORESCENCE 

HOLOGRAPHY (XFH) MEASUREMENTS AT NSLS BEAMLINE X14A 

3.1    Introduction 

The development of Multi-element detectors with high energy resolution has made fast 

and low noise XFH measurement possible.  A large amount of effort has been spent to 

setup and configure beamline X-14A so that low noise combined with fast scan speed for 

XFH is achieved.  In this chapter, a detailed description of the setup of this National 

Synchrotron Light Source (NSLS) beamline at Brookhaven National Laboratory (BNL) is 

given. 

3.2    Goniometer in Beamline X14A at NSLS 

The NSLS X14A beamline uses a large bent crystal monochromator to intercept 10 mrad 

of X-ray beam and focuses it to a 1x3 mm
2 

beam spot.  The beamline provides photon 

flux of 10
12

 cps at its best condition.  Sample and detector are mounted on a goniometer.  

Accurate alignment and scanning can be performed with the goniometer.   

Figure 3.1 is a photograph of the goniometer at the NSLS beamline X14A.  An 

avalanche photodiode (APD) detector and a crystal analyzer are attached to the 

goniometer.  The X-ray beam from synchrotron is guided from behind the goniometer on 

the far left of the picture to the center of goniometer.   
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Figure 3.1  Photograph of goniometer in beamline X14A. 

3.3    Modification of the Beamline Control System for the Piezoelectric Actuator for 

Improved Beamline Stabilization 

 

It was noticed that the beamline system was not stable enough to keep the optics fully 

tuned during a full scan of X-ray holography.  Drifting of the incoming beam position at 

the monochromator is observed during measurements.  For a XFH measurement that 

takes hours to complete, focusing and tuning the optics during experiments is required to 

compensate for instability and drift of the beam position.  Manual adjustment that tunes 

the monochromator is time consuming and impractical if a XFH measurement is 

continuously performed for many days.  An automatic beamline tuning and control 

algorithm was devised to help perform XFH experiments under the best optical 

conditions.   
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Figure 3.2  Controller for piezoelectric actuator on monochromator at beamline X14A. 

 

A piezoelectric actuator is attached to the first monocrhomator crystal in the 

X14A beamline.  This actuator can tilt the crystal slightly if the incoming beam position 

has drifted.  Beamline optics tune-up can be realized by manually adjusting the tilt of the 

first monocrhomator crystal.  Figure 3.2 shows the controller of the piezoelectric actuator.  

The controller can be remotely controlled by the beamline computer. 

A program that automatically tunes the beamline optics was developed.  The 

script monitors the beam intensity and automatically compensates to fix the small drift in 

incoming beam position, using the piezoelectric actuator.  This program reduces the 

beamline instability due to the position of incoming beam.   
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Figure 3.3  A plot of beam intensity during a holograph scan showing recovery of the 

loss of intensity by the feedback system.  The x-axis time is in minutes.  The y axis is the 

intensity in arbitrary units. 

 

Figure 3.3 is a plot of beamline intensity during a holograph scan and the 

highlighted point is where the program has altered the piezoelectric actuator and 

compensation has taken effect.  The piezoelectric actuator is configured as a pseudo-

motor [122] in the X-14A beamline’s software interface [122].  The detailed program for 

automatically tuning the beamline optics is described in Appendix A.   

3.4    Fast Scanner Controlled by DC-motor and Position Encoder 

Fast and high resolution XFH scans requires a fast scanner with smooth rotation speed.  

A DC motor is ideal to provide fast and smooth rotation speed and its position can be 

read out by an encoder.  Figure 3.4 is a fast scanner with encoder developed for XFH 

experiments at beamline X14A.  The scanner is capable of providing 0.2 ~ 1.0 rev/s 

rotation speeds.   
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Figure 3.4  A photograph of the fast scanner. 

 

 

The fast scanner system was designed and assembled at NSLS.  A geared DC 

motor is attached to a E4P OEM optical kit encoder [123] (Figure 3.5).  The encoder 

provides an encoded pulse that represents the angular position of the motor. 

 
Figure 3.5  The E4P OEM encoder that provides an indication of the location of the DC 

motor. 
 

Source: [123] 

 

The gear-encoder combination provides 115700 electric pulses per revolution.  

Pulses from the encoder are fed into a custom developed counter circuit (Figure 3.6).  
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The counter circuit provides format translation from encoded pulse to digital output 

which can be easily read by the computer.   

 

Figure 3.6  Custom developed counter circuit that monitors DC motor position.   

 

The detailed program that reads the position of the DC motor from the counter 

circuit is described in Appendix B. 

3.5    XFH Measurement with Simple APD Detector and Crystal Analyzer 

3.5.1 Measurement on Pb(Zr1/3Nb2/3)O3(95%) -PbTi(5%) (PZN-PT) Samples 

The XFH experimental setup using an APD detector and crystal analyzer shown in Figure 

3.1, is widely employed in the traditional XFH measurement method [38, 39].  With this 

setup, XFH measurements on single crystal Pb(Zr1/3Nb2/3)O3(95%)-PbTi(5%) (PZN-PT) 

samples were performed.  Sample together with the DC scanner are loaded in the center 

of the goniometer, APD detector and a graphite crystal analyzer are mounted on the θ and 

2θ scan arm.  The APD detector provides a maximum count rate of 1Mcps.  Pb Lα line 

fluorescence at 10.5 keV is used for holography measurements.   

The sample crystal is a solid solution of 95 percent Pb(Zr1/3Nb2/3)O3 (PZN) and 5 

percent PbTiO3 (PT).  The solid solution sample has an average grain size of 5μm [124]. 
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Figure 3.7 is a photograph of the crystal.  The size of the crystal is about 10x10x1 

mm
3
. 

 

Figure 3.7  A photograph of the PZN-PT crystal. 

 

The holograph is measured with a resolution of 1
o
 in azimuthal angle and 0.72

o
 in 

longitudinal angle.  Scans in longitudinal direction are controlled by the DC motor.  The 

scan speed is around 0.2 rev/s.  120 full longitudinal (phi) scans are averaged for each 

azimuthal angle.  It takes about 10 minutes scan time to complete scan of 1
o
 in azimuthal 

angle and 10 hours to complete the entire holography scan.  This setting gives 60,000 

counts on each hologram data point.   

A direct scheme XFH measurement is performed at a X-ray incident energy of 

14.5 keV.  Three indirect scheme measurements are performed at incident X-ray energies 

of 13.5 keV, 14.0 keV and 14.5 keV.  Measurements are repeated several times at each 

energy to improve statistics. 
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Figure 3.8  Averaged hologram data using symmetrical expansion technique [125] for 

direct scheme (top left) and indirect scheme at 13.5 keV (top right) 14.0 keV (bottom 

left) and 14.5 keV (bottom right) X-ray energy. 

 

The raw data are averaged and expanded to 4π solid angle using sample 

crystalline symmetry.  The technique [125] of expanding and averaging raw data requires 

manually aligning raw data from all measurements to the sample’s axis of symmetry.  

Simple cubic symmetry is used for the PZN-PT sample.  Figure 3.8 represents the 

averaged and expanded holograms from the measurement results.  From top to bottom, 

they are holograms for direct scheme measurement and indirect scheme at 13.5 keV, 14.0 

keV and 14.5 keV X-ray energy, respectively.   

Data with quality in Figure 3.8 are good enough for the reconstruction via 

Barton’s  method [23] with isotropic resolution.  The four measured holograms are 
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reconstructed at multiple energy XFH configuration.  The results clearly show the image 

of each atom.  Figure 3.9 shows the real space reconstruction with holograms from Figure 

3.8. 

 

Figure 3.9  Real space reconstructions of PZN-PT holograms (units are in 0.1 Å).  Signal 

is filtered to show only signals larger than 80% (left) of maximum signal intensity and 

50% (right) of maximum signal intensity. 

 

 

The left image in Figure 3.9 shows the plot of signals after noise suppression.  So, 

only the peak signals are displayed.  Although the lattice structure is clearly seen when 

noise is not displayed, actual noise level is more that 50% of maximum signal in the 

reconstructed image, as shown in the right side image in Figure 3.9. 

3.5.2 Measurement on CuAu Sample 

XFH measurements on a single crystal CuAu sample are performed together with the 

experiment on PZN-PT samples, using the same set up and same experimental 

conditions.  A single energy inverse scheme holograph is measured at energy of 14.5 

keV.  The Cu Kα emission line at 8.0 keV is used in the XFH measurements.   
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Figure 3.10  Averaged holographic data with symmetrical expansion for AuCu hologram. 

 

Figure 3.10 shows the holographic data expanded and averaged using the 

symmetrical expansion technique.  The hologram is reconstructed with Barton’s method 

in single energy configuration.  The reconstructed real space image is shown in Figure 

3.11.  The contribution due to noise is suppressed in the plot to reveal the structural 

image.   

  

Figure 3.11  Reconstructed image for hologram measured for AuCu sample, units of 

axes are in Å.  Signal is filtered to show only signals larger than 80% (left) of maximum 

signal intensity and 50% (right) of maximum signal intensity. 

 

3.6    XFH measurement without Crystal Analyzer 

Traditional XFH measurement requires a crystal analyzer for providing energy resolution.  

Use of a crystal analyzer is not desirable in XFH experiments because it increases the 
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distance between the fluorescent sample and the detector, thus in turn reducing the 

efficiency of the photon collection.  XFH measurement setup using detectors with energy 

resolutions without crystal analyzer is thus a promising direction for XFH 

instrumentation development.   

 In order to verify the concept of XFH measurement without a crystal analyzer, 

XFH measurements with a commercially available single channel  silicon drift detector 

(SSD) [126] were performed.  This allowed the detector to be placed close to the sample 

without a crystal analyzer and offered a very large acceptance angle and thus fast 

counting rate.  The challenge is how to distinguish fluorescence from elastic photons that 

enter into the detector.  The setup for this measurement is shown in Figure 3.12.  In order 

to suppress influence from elastic photons, the detector is placed parallel to the direction 

of polarization to minimize elastic scattering.  The X14A beamline X-ray has a horizontal 

polarization since it is a synchrotron bending magnet beamline.   

 
 

Figure 3.12  Set up of detector without crystal analyzer. 

 

Electric pulses from the detector that represent detected photons are then 

processed by a pair of Single-Channel Analyzer (Tennelec Tc450 SCA).  Fluorescent 

photons and elastic photons are counted in respective channels.  Since the detector is 
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working near the saturation region at high count rate for XFH measurements, any elastic 

photons entering the detector will bring in extra dead time to the detector.  Thus, for 

every bright spot (high count rate) in the elastic photon channel, there is a dark spot (low 

count rate) in the fluorescence channel, as is shown in Figure 3.13.  This influence can be 

removed numerically by correlating the two channels.  Dead time correction is performed 

on elastic channel count rate using count rate from inelastic channel.  Using detectors 

with larger dynamic range will provide a big improvement in linearity at high count rate.    

 

Figure 3.13  Signal from fluorescense channel (red) and elastic channel (blue). 

 

A Ge doped Si single crystal Si-Ge10% sample is used as the fluorescent sample 

for this XFH measurement.  Fluorescence from germanium Kα line (9.8 keV) is used in 

XFH measurement.  Figure 3.14 is the measured hologram after the influence of elastic 

photon has been removed Kossel lines can be seen clearly in the image.   
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Figure 3.14  The measured hologram of Si-Ge10%  sample after the influence of elastic 

photons has been removed. 

 

Noise in the resulting XFH hologram is relatively high partially due to statistical 

noise from low photon counts and partially due to incomplete removal of dead time 

caused by elastic scattering photons.   

 

Figure 3.15  Reconstruction image representing electron density in the Si-Ge10%  sample, 

unit of axes are in Å. 

 

Figure 3.15 is a 3D reconstruction image from the measured hologram of the Si-

Ge10% sample.  The result shows a BCC structure rather than a diamond structure for the 

silicon lattice.  It is worth mentioning that the symmetry applied to the data during 

symmetrical expansion is not the reason for this discrepancy.  The difference between the 
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real electron density and the image is due to the nature of XFH measurement that all 

possible scattering signals are averaged.  Thus, the diamond structure in silicon lattice is 

seen as a BCC structure in XFH measurements.   

3.7    Design and Development of a Novel HERMES ASIC Based 384 Element 

Detector and its Cooling System 

3.7.1 The 384 Element HERMES Detector Circuit 

Novel detectors have been developed in this research based on National Synchrotron 

Light Source (NSLS) High Energy Resolution Multiple Element Silicon (HERMES) 

detector ASIC circuit [127].  The HERMES ASIC is a 32 channel signal processing unit 

that provides read out circuitry and energy resolution power for silicon detectors.   

Figure 3.16 is a picture of the HERMES ASIC.  This ASIC is composed of 32 

identical signal processing channels.  Each channel is segmented into 4 components, as 

shown in the photograph and shown in Figure 3.17.   
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Figure 3.16  A photograph of HERMES ASIC channels. 

 

Figure 3.17  HERMES ASIC channel components overview. 

 

Figure 3.17 is a block diagram that shows the components in the signal processing 

channel.  The input stage amplifier is a charge sensitive p-MOSFET amplifier with 

continuous reset circuit [109].  Amplified signal is then passed into a high-order shaper 



77 

 

 

  

and a baseline stabilizer [110].  Signals at this stage can be read out with a Multi-Channel 

Analyzer (MCA) for spectral analysis as the setup in Section 3.6.  Instead of supplying 32 

independent MCAs for the 32 signal processing channels, 32 discriminators are built into 

the ASIC to provide energy discrimination.  The discriminators are controlled by 6 bit 

DACs and digital logic and provide three energy analyzer channels within each signal 

processing channel.  A 24 bit counter is provided to record counting rates in each energy 

analyzer channel in each detector signal processing channel.   

Figure 3.18 and Figure 3.19 show schematic and printed circuit board (PCB) 

layout diagram for the HERMES based 384 element detector.  The components in the 

schematic and PCB of the 384 element detector contain HERMES ASIC and several 

power supply units.  Digital and analog data and control signals are directly connected 

from the HERMES ASIC to outside connectors on the 384 element detector PCB. 

The digital and analog signals from the 384 element detector PCB can be 

collected and processed by general equipment such as a computer or oscilloscope.   
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 Figure 3.18  Schematic design of the HERMES based 384 element silicon detector. 
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Figure 3.19  Printed Circuit Board layout of the HERMES based 384 element silicon 

detector. 

3.7.2 Cooling System Developed for the HERMES 384 Element Detector 

The HERMES based silicon detector requires a cooling system to work at ~-40
o
C.  A 

novel cooling system design is assembled and tested.  The cooling system (Figure 3.20) 

employs an Aluminum Nitride (AlN) block as a heat sink and supporting device.  

Aluminum Nitride has no major X-ray fluorescence at hard X-ray energies and has 

thermal conductivity of 285 W/(m·K) (70% of copper) and thermal expansion coefficient 

(4.5x10
-6

/K) comparable to silicon (2.6x10
-6

/K).  Since copper (Cu) has much higher 

thermal expansion coefficient (17x10
-6

/K) than AlN, and copper works at a temperature 
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different from the aluminum nitride block, stress could build up during operation due to 

thermal expansion and contraction.  A flexible design at the components to accommodate 

changes in size caused by thermal expansion and contraction is used.  The copper and 

aluminum nitride parts are connected by Peltier cooling units at the 4 corners of the AlN 

block, as shown in Figure 3.21.  The aluminum nitride unit is displayed in yellow and the 

copper part is displayed in gray.  The blue color in Figure 3.20 represents the passage of 

cooling water.   

 

Figure 3.20  Design concept of Cu-AlN cooling system. 

 

Figure 3.21 is a bottom view photograph of the cooling system.  The water cooled 

copper frame is used as a 5
o
C heat sink.  Four custom ordered 2-stage Peltier cooling 

devices with 1x1 cm
2
 working area are used to cool the AlN block to -50

o
C and provide 

mechanical connection from the copper frame to the aluminum nitride block.  The 

connection is made by thermal conductive resin.  A small rotational motion can reduce 

stress while thermal expansion causes stress between copper and aluminum nitride block.  
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A silicon wafer is used to simulate the detector sensor.  A thermistor is glued on the 

aluminum nitride block to monitor temperature.   

 

Figure 3.21  Bottom view photograph of the cooling system. 

 

Figure 3.22 is a top view of the cooling system; a resistor is glued on the silicon 

wafer to simulate actual heat load on the detector system.   

 

Figure 3.22  Top view photograph of the cooling system. 
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Figure 3.23  Photograph of the vacuum tight box for the HERMES 384 element detector. 

 

The cooling system is tested in a detector vacuum box at a vacuum condition of 

10
-6 

mbar.  Figure 3.23 is a photograph of the vacuum chamber for the HERMES 384 

element detector in the actual testing setup. 

Testing of the power of the cooling system and its stability over repeated heat 

cycles is of our interest.  The cooling system was put through 1150 heat cycles during 14 

days of continuous operation.  No power was supplied to the heat load resistor on the 

silicon wafer during the stability test.  The power supplies for the Peltier coolers were 

turned on and off every 10 minutes and temperature was monitored. 
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Figure 3.24  Temperature versus time in heat cycles. 

 

Figure 3.24 shows temperature variation as a function of time during the 1150 

heat cycles.  Figure 3.25 shows maximum and minimum temperature in heat cycles.  It is 

assumed that any failure caused by fatigue or any other defect should cause reduction in 

the cooling power.  Since Figure 3.25 shows no reduction in the cooling power, it is 

concluded that the test system is stable, showing no mechanical fatigue for 1150 heat 

cycles.   

Figure 3.26 is a plot of temperature versus load heat power curve measured after 

stability test.  The cooling system keeps the temperature at -46
o
C at a load of 500 mW.  

The actual heat load in the detector is estimated to be around 400 mW. 
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Figure 3.25  Maximum and minimum temperature in heat cycles. 

 

 

Figure 3.26  Temperature versus heat load. 

 

Figures 3.27 and 3.28 are dimensions and design of the AlN and Cu parts of the 

cooling system.   
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Figure 3.27  Dimensions (in inch) of the aluminum nitride frame in cooling system. 
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Figure 3.28  Dimensions (in inch) of the copper part in cooling system. 
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3.8    Observing X-ray Fluorescence with Multi-element 

Detector with Energy Resolution 

 

A 384 element X-ray detector is developed based on BNL designed HERMES (High 

Energy Resolution Multi-Element Silicon) ASIC [128].  The detector is configured into a 

square shape with an active area of 0.85 inch
2
.  384 PIN diode elements are arranged in 

this area.  The detector provides energy resolution up to 200 eV for low count rates but 

resolution decreases as count rate increases [127].  384 independent channels of read out 

ASIC are connected directly to the diodes by wire bonding to provide spatial resolution.  

Figure 3.29 is a photograph of the detector. 

 

Figure 3.29  The HERMES based multi-element silicon detector. 

 

 

The new detector was installed at NSLS X14A beamline.  Figure 3.30 is a 

photograph of the XFH setup.  The detector is placed at a distance of 1.3 inch from the 

sample.  This setup allows 3.7% of the total fluorescence radiation to be detected.   
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Figure 3.30  XFH setup in beamline X14A at NSLS. 

 

The above setup is configured for inverse XFH experiment only.  Sample and 

detector will scan an azimuthal angle (theta) together, and sample will scan 

independently on a longitudinal angle.  The signal from the 384 element detector will 

give a holograph pattern which is a mixture of inverse scheme holograph and direct 

scheme signal in the longitudinal direction.  Inverse scheme holograph can be extracted 

using standard methods [125].   

The acquired signal can be considered to be 384 individual holographs or a single 

holograph if the total counts are inregraded.   

3.8.1 Noise Level 

Fluorescence data are taken in 384 channels simultaneously and added up directly to give 

a total count number from the detector.  A static stability test using the Si-Ge10% sample 

was conducted at 14.5 keV.  The stability test measures fluorescence without moving the 

orientation of the sample or detector. 
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Figure 3.31  Noise level and stability measurement on Si-Ge10% sample for count rate of 

100,000 cps per channel (left) and  35,000 cps per channel (right). 

 

Figure 3.31 gives the relationship between noise level and accumulated photon 

counts.  The minimum noise value in the stability test is 3x10
-4

 relative to the signal 

intensity.  This noise value is sufficiently low to give a clean XFH measurement for 

samples containing heavy elements and thus signals stronger than 1x10
-3

.  The noise is 

attributed to electrical interference, synchronization and noises other than statistical 

noise.   

Figure 3.32 is the spectrum of Si-Ge10%  measured by a MCA analyzer connected 

to the analog output signal from the HERMES detector.  Ge Kα  (9.8 keV) and Kβ (10.9 

keV) lines are visible in the spectrum. 
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Figure 3.32  Fluorescence in Si-Ge10% sample. 

 

3.8.2 Measurement of Holograph on Pb(Zr1/3Nb2/3)O3(95%) -PbTi(5%) Sample 

A single crystal Pb(Zr1/3Nb2/3)O3(95%) –PbTiO3(5%) (PZN-PT) sample is studied with 

the above XFH setup.  Pb is selected as the fluorescent element in the sample. 

Figure 3.33 gives spectra of sample fluorescence detected with the multi-element 

detector.  The two major peaks are Pb Lα line at 10.5 keV and Pb Lβ line at 12.6 keV.  

Only signal from these two peaks are used in the holograph measurement.  The elastic X-

ray energy is at 16.2 keV and is strong only in individual pixels whose orientation 

satisfies Bragg’s condition.  The resolution at 50,000 Cps and 100,000 Cps is about 500 

eV.  The detector suffers resolution degradation when the count rate is large.   
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Figure 3.33  Fluorescent spectra of PZN-PT sample measured by HERMES based 384 

element detector with MCA analyzer. 

 

3.8.3 XFH Measurement Results 

The 384 element detector is used is a configuration similar to a single element detector 

described in section 3.6.  Photons from both fluorescence X-ray and elastic scattering 

would be picked up by the detector.  The total photon count is thus a summation of the 

XFH holograph and the elastic scattering (Figure 3.34). 

          

Figure 3.34  Total count signal of PZN-PT sample XFH measurements for the whole 

spectrum, containing both fluorescence signals and elastic signals. 
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Elastic scattering signals have to be separated from the hologram signal.  One can 

use the same method as shown in Section 3.6.  Using the energy resolution in HERMES 

detector, one can extract fluorescence photons from the whole photon spectrum and count 

signals for fluorescence X-rays.   

           

Figure 3.35  PZN-PT sample holograph processed from sum of two energy windows of 

HERMES based 384 channel detectors.  The two energy windows are set to Pb Lα line 

(10.5 keV) and Pb Lβ line (12.6 keV).   

 

Figure 3.35 is a measured holograph using energy resolution to remove elastic 

scattering.  The result has a spike like noise pattern with peak noise level at 10
-2

.  The 

high noise is due to poor energy resolution in the detector.  This noise has made the result 

worse than results from a single energy detector.   

Strong elastic scattering of single crystal sample happens only at diffraction angle 

close to Bragg’s condition.  For the large active area of the HERMES 384 element 

detector, at each orientation of XFH scan, only a few detector elements suffer influence 

of elastic scattering while the majority of elements are not influenced.  This can be used 

to provide a method to remove elastic scattering signals even without using energy 

resolution in multi-element detectors.   
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Figure 3.36  XFH total signals of all photon energy with elastic scattering signal shown 

as spikes (left) and after the spike shaped elastic signals are identified and removed 

(right).   

 

In Figure 3.36, XFH measurement signal from a single element of the multi-

element detector is displayed.  Elastic signal in the Figure 3.36 are spike shaped and can 

be easily identified.  The elastic photon influenced region for each element can be 

removed by putting a weight factor of 0 when averaging signals over all detector 

elements.  Because different detector elements have different orientations that affect the 

elastic scattering count rate, the total average over 384 elements will eliminate elastic 

photon signals.  Thus fluorescence photon signals can be extracted without using energy 

resolution in the HERMES detector.   

Figure 3.37 is the extracted hologram from PZN-PT sample without using energy 

resolution.  Elastic photons are removed from the signal.  The measurement gives a 

holograph with noise level of 10
-3

, which corresponds to data of the best quality that have 

been achieved.  Noise in the picture does not show any obvious pattern. 
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Figure 3.37  Hologram of PZN-PT sample processed from weighted average of 384 

element detector signals with elastic photons removed. 

 

The hologram in Figure 3.37 is reconstructed with Barton’s algorithm.  The 

resulting real space structural image for PZN-PT sample is shown in Figure 3.38.  Noises 

is suppressed in the display of the image on the left.   

 

Figure 3.38  Real space image reconstructed from single energy PZN-PT hologram, unit 

of axes are in Å.  Noise is supressed to show only signals larger than 80% (left) of 

maximum signal intensity and 50% (right) of maximum signal intensity. 

 

3.9    Conclusions 

In this study, fast and low noise XFH measurements are setup in beamline X14A at 

NSLS.  A beamline stability issue is solved with automatic algorithm that tunes optics in 
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the monochromator to the best condition.  A custom developed DC motor with encoder is 

used to provide continuous scan capability which is not available on the step motor based 

goniometer.   

Multi-element PIN diodes dedicated to the XFH experiment has been built.  The 

detectors show reasonable energy resolution and have a very large dynamic range.  XFH 

measurements on Pb(Zn1/3Nb2/3)O3(95%) -PbTiO3(5%) sample were performed to verify 

the feasibility of XFH experiment with multi-element detector.  The mixed direct scheme 

holograph signals, as well as elastic bright peak were successfully separated from the 

holographic signal in acquired data.  The holograph has acceptable quality.  A 

reconstruction of the holograph is consistent with sample structure. 

The resulting holograph has noise higher than statistics but sufficient for 

holograph measurement and reconstruction.  The extra noise is due to detector noise, 

beamline fluctuation, difficulty in removing mixed elastic scattering signals and dead 

time correction. 

The noise level of holograph can be readily improved as the system is further 

developed.  The detector needs to be improved to reduce noise level and enhance the 

energy resolution. 

The XFH method with multi-element PIN diodes is a promising technology and 

will be developed further in the future. 
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  CHAPTER 4

DIRECT EXTRACTION OF QUANTITATIVE STRUCTURAL INFORMATION 

FROM X-RAY FLUORESCENCE HOLOGRAMS USING SPHERICAL 

HARMONIC ANALYSIS  

4.1    Introduction 

X-ray Fluorescence Holography (XFH) is a promising technique for model-independent 

structure determination from single crystals.  Unlike standard X-ray diffraction (XRD) 

methods that measure only the magnitude of the structure factors and require significant 

priori knowledge of the crystal structure for generating a solution, XFH provides both the 

amplitude and phase of the structure factor.  However, even though the first experimental 

XFH measurement was realized  fifteen years ago [38, 39], and data collection 

procedures have greatly improved  with the advent of high flux third generation 

synchrotron sources, there still are  no effective methods for retrieving quantitative 

structural information from X-ray holograms. 

Since X-ray scattering methods, such as XFH and XRD, are sensitive mainly to 

electrons, the complete structural information of a crystal obtained with these methods 

can be represented by a 3-dimensional density distribution of electron charge, or its 

Fourier transformation in the reciprocal space, viz., the complex structure factors. 

Previous work widely used Barton’s method [23], an atomic image reconstruction 

algorithm based on the Helmholtz-Kirchhoff integral theorem, for analyzing XFH data.  

The 3D image calculated with Barton’s method is the wave field amplitude around the 

fluorescence emitting atoms formed by a fictitious converging spherical wave through the 

recorded hologram.  This image assumes maxima at atomic positions, but is distorted 

because of interference between the scattered waves.  The interference artifacts can be 
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suppressed by summing multiple energy XFH data [39].  However, the resulting image 

differs significantly from the true charge density of a material.  Typically, it is extremely 

difficult, if not impossible, to solve unknown structures or to do any quantitative 

structural analysis with XFH data using Barton’s method.   

Much effort has been invested in developing methods to extract the electron 

density directly from an XFH measurement.  Chukhovskii et al. [52] proposed a Fourier  

transform type algorithm to  derive  the  distribution of electron charge density from XFH 

data.  Their results using a single wavelength hologram are similar to, but have better 

spatial resolution than those obtained with Barton’s method.  Seemingly, the algorithm 

can restore the true electron charge density from data taken with a suitably large energy 

range; however, this is impractical with current experimental approaches.  Marchesini et 

al. [129] proposed an iterative image deconvolution method to construct the electron 

charge density from XFH data.  They demonstrated the method by approximating the 

atoms in the crystal as point charges.  However, there is no proof that their iterative 

procedure will converge to the true electron charge density.  Matsushita el al. [68, 69] 

developed a ‘scattering pattern matrix’ method to derive a 3D atomic distribution 

function defined in real space from the 2D hologram taken in k space with the  iterative-

scaling algorithm of maximum-entropy.  By using the non-negative constraint, and 

imposing translational symmetry of the atomic distribution function, they successfully 

reconstructed atomic images from measured XFH holograms without significant artifacts.  

However, this atomic distribution function is not related to the electron charge density 

and cannot be used to solve unknown structures without pre-assigning atomic species on 

individual atomic sites.  Chukhovskii et al. [130, 131] defined a scattering function 
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connecting the XFH hologram function to the structure factors.  Using standard least 

square methods, they retrieved a set of structure factors from a XFH hologram simulated 

with the same set of structure factors.  This formalism needs to be tested with more 

realistic model holograms based on real space atomic configurations.  As indicated later, 

each XFH hologram can be expressed by a complete set of structure factors with a finite 

number limited by the energy of the scattered waves.  The complete set of structure 

factors is needed to avoid truncation errors in the XFH structure analysis. 

In this chapter, a formalism connecting the structure factors to the spherical 

harmonic components of XFH holograms via a set of linear equations is present.  The 

electron density is then obtained by Fourier expansion, using the structure factors 

resolved by directly solving the linear equations.  The advantage of using a spherical 

harmonic expansion lies in the fact that each spherical harmonic component represents a 

weighted integration of the hologram on the surface of a sphere in k-space, analogous to 

the integrated intensity of the Bragg peaks in X-ray diffraction.  As  Warren [132] noted,  

intensity as a function of the diffraction angle, usually is not an observable quantity; 

rather the integrated intensity is more useful since it  can be both calculated and 

measured.  In XFH, each spherical harmonic component of the hologram is a well-

defined quantity, expressible as a linear expansion of structure factors with a well 

behaved scattering matrix.  Using the spherical harmonic method allows us to retrieve the 

structure factors from holograms modeled with real space atomic configurations, and 

with these structure factors, the electron charge density can be reconstructed with high 

fidelity.   
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4.2    Theoretical Considerations 

The X-ray fluorescence  hologram for a polarized probing wave can be expressed as [56, 

133]: 

               ( ⃗ )  ∭
 (  ) (     (      ⃗    ))

 
[ ( )   ( )(   ̂) ]               (   ) 

where,  ( ⃗ )  represents holograph   in k-space,   (  )  is electron density 

distribution in real space,    is the classical electron radius, [ ( )   ( )(   ̂) ] is a 

generalized expression for the scattering factor between the polarized photon and 

electron,    represents the position of the scattering electron relative to the fluorescent 

center at     ,   is the unit vector for direction of the electric field, and  ̂ is the direction 

of   .  Considering  near field effect (the deviations from plane wave behavior of the 

probing waves),  ( )  
  

 
 

 

      and  ( )   
   

 
 

 

     [56, 133]. Most complex 

crystal structures encompass multiple fluorescent atomic sites with unique atomic 

surroundings in a unit cell.  The experimentally measured hologram  ( ⃗ ) from these 

structures then is a superposition of fluorescence patterns from different fluorescent 

atomic sites, and  (  ) in Equation 4.1 will be the averaged electron charge distribution 

with respect to all unique fluorescent atomic sites of the same chemical species.  Hence, 

the term “electron density” refers to its averaged value when multiple fluorescent atomic 

sites are involved.   

The hologram  ( ⃗ )  is usually represented as  (     )  for a fixed wave 

number  , where (     ) is the direction of  ⃗ , as represented in a spherical coordinate 

system of measurement. 
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Figure 4.1  Definition of vectors and angles in spherical analysis. 

  

Figure 4.1 illustrates the definition of vectors and angles in spherical analysis.  In 

a transverse wave like X-ray, the polarization vector    is always in a plane perpendicular 

to the wave vector k.  In direct scheme XFH, the unpolarized fluorescence wave is the 

probing wave and    in (  1) is averaged in the plane.  Equation   1 can be simplified as: 

         ( ⃗ )  ∭ (  )
     (      ⃗    )

 
[ ( )  

 ( )

 
(  ( ̂   ̂)

 
)]           (   ) 

For the indirect scheme XFH, the probing wave is the polarized, elastically 

scattered X-ray wave.  The indirect XFH can be depolarized by summing the holograms 

measured with two perpendicular polarization directions,     and   .  With (    ̂)  

(    ̂)  ( ̂   ̂)
 

  , the depolarized indirect XFH also can be represented by 

Equation 4.2.  The following discussions apply to both direct XFH and depolarized 

indirect XFH, as described by Equation 4.2. 
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To extract the electron density from XFH, the hologram was expanded with 

spherical harmonics, and a relation between the spherical harmonic coefficients and the 

electron density function was derived. 

Using the expansion for plane waves in terms of spherical wave: 

                                              (   ⃗    )  ∑(  ) (    )  (  )  ( ̂   ̂)

 

   

                        (   ) 

where,    is the spherical Bessel function, and   , the Legendre function, the 

hologram   can then be expanded to give: 

                                               ∑∭ (  )
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                            (   ) 

Here,   (  )  is a spherical representation of the scattering factor between 

electrons and photons.   Considering near field effects,   (  ) is written as: 
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Also considering   ( ̂   ̂)  
  

    
∑    (     )   

 (     )
 
    , the spherical 

harmonic expansion of hologram is given by: 

                                                         ∑ ∑    (     )   

 

    

 

   

                                     (   ) 

where,     is  calculated as: 
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The integral in Equation 4.7 extends over the entire volume of a single crystal.  

Electron density  (  )  in a crystal with finite size can be represented by a periodical 

electron density in infinite 3D space multiplied with an envelope size distribution 

function  ( ).  By using the translation symmetry of the crystal, the electron density can 

be written as    (  )  ∑ ( ⃗ )   (  ⃗    )  ( ) , where,   ( ⃗ )  is  related to the atomic 

structure factor   ( ⃗ ) by  ( ⃗ )   ( ⃗ )   (V = unit cell volume) ,   A simple form of   ( ) 

is a unit step function:    (    ) , where    is the average crystal size. 

Then, Equation 4.7 can be rewritten as 

                  
    

    
∑[∭   (  ⃗    )

    

 
  (  )   

 (     ) ( )   ]  ( ⃗ )

 

            (   ) 

Again, replacing the expression for the plane wave with the spherical wave 

expansion in (  8): 

                                              (   ⃗    )  ∑(  ) (    )  (  )  ( ̂   ̂)

 

   

                        (   ) 

and considering   ( ̂   ̂)  
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    , Equation 4.8 can 

be rewritten as: 
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The integration in Equation 4.10 can be simplified using the orthogonal property 

of spherical harmonics on the surface of a sphere∯   
 (     )     (     )   

 (    ) (    ), so one have: 

                   
(  )   

    
( ) ∑[   

 (     )∫   (  )     ( )  (  )   ]  ( ⃗ )

 

         (    ) 

Now, consider the complex conjugate of (  6), and add it to the expression of 

hologram as a real function: 

                                         

  ∑ ∑    (     )(    (  )     
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The       are the coefficients of spherical harmonics that can be calculated 

directly from the experimental hologram data.  Since the hologram χ is a real function, 

there are only l+1 independent spherical harmonic coefficient for each l.  The       

provide a series of linear equations related to the structure factors: 

               

    ∑[
       

    
   

 (     )∫   (  )      (  ) ( )   ]  ( ⃗ )

 

             

 ∑[
       

    
   

 (     )∫   (  )       
 (  ) ( )   ]  (  ⃗⃗ ⃗⃗  ⃗)

 

 

   

     (    ) 

Neglecting the anomalous scattering factors by assuming   ( ⃗ )   (  ⃗⃗⃗⃗  ⃗)
 

(or 

equivalently, assuming a real electron density function in Equation 4.7, the spherical 

harmonic expansion coefficient of the hologram can be given as: 

                   ∑[
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The structure factors  ( ⃗ ) can be extracted from the coefficients of the spherical 

harmonics by solving linear Equations   13 or   14.  To calculate the matrix elements, 

one need to know the values of             .  These are constants related to the lattice 

parameters, and can be obtained with routine X-ray diffraction measurements or Kossel 

line measurements on single crystals [134].  The crystal size is estimated from the line 

broadening of the X-ray diffraction to construct the size distribution function  ( ). 

The integral function in Equation 4.14: 

                                          (   )  ∫   (  )  (      (  )) ( )                                    (    ) 

is a structure-independent function of h, with given wave vector k and the size 

distribution function  ( ).  For odd l’s and large even l’s,     (   ) abruptly approaches 

zero at h = 2k.  This is the consequence of the diffraction limit imposed by the equation: 

 ̂   ̂      . 

Figure 4.2 shows an example of the numerical calculation of      (   )   for   

(    ).  Integration is performed with    (       ).  For low even l’s, the function 

extends beyond     , but quickly decays to negligible values.  This is attributed to the 

tails of the Kossel lines with h-values nearest to 2k from above. 
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Figure 4.2 Matrix calculation as a function of h for k = 5.55 Å
-1

. 

 

Even though the diffraction limit reduces the number of structure factors that can 

be derived from the XFH data, it helps in defining a finite set of unknowns to be solved 

in the linear Equations   13-   14.  All structure factors with h < 2k must be included to 

resolve the   ( ⃗ )’s with high accuracy, while it is safe to ignore the structure factors with 

h > 2k using selected spherical harmonics. 

The fine structure of the experimental XFH data depend on crystal size, the 

angular resolution of the X-ray beam, and other factors that cause the loss of high 

frequency signals in the hologram.  For a structure to be reliably solved from the 

hologram, signals more susceptible to experimental condition must be separated from 

those strongly determined by the structure factors.  The method of spherical harmonic 

expansion separates hologram signals according to their spatial frequency, thus allowing 

unreliable high frequency signals to be discarded.  In practice, low and mid frequency 

signals are weakly influenced by the crystal size and the angular resolution of the X-ray 

beam. 
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4.3    Spherical Harmonic Analysis on Simulated Holograms from a 

Tetragonal CuAu Structure 

 

Holograms from a tetragonal CuAu structure (Space group P4/mmm, a=2.800 Å, c= 

3.670 Å) [135] is simulated with various crystal sizes and approximations using the 

following equation: 

                              ( ⃗⃗  ⃗)  ∑   ( 
⃗⃗  ⃗   

⃗⃗⃗⃗ )
     (       ⃗⃗  ⃗    

⃗⃗⃗⃗ )

  
 (  )

 

                          (    ) 

where,     ( ⃗    ) is the generalized atomic scattering factor for XFH [51] which 

simulates effects including spherical wave scattering and polarization as well as the 

distribution of electron density in scattering atoms.  The sum is over atoms in a sufficient 

large crystal lattice, where  ( ) is not negligible.   

The holograms are simulated with a resolution of   0.25
o
 by 0.25

o
, making 1440 

points in   direction and 721 points in   direction.  This resolution is selected to 

guarantee a reliable spherical harmonic expansion of the holograph up to      , since it 

roughly gives 14 points of mesh grid in each oscillation period of    (     ) with   

  .  Using lower resolution in the holograph could cause increased noise during the 

spherical expansion.   

  The copper atom is taken as the fluorescent center in the inverse scheme XFH 

holograph simulation.  Holograms are simulated with X-ray energy at 10.95 keV.  This 

energy gives 1356 independent structure factors that satisfy the       condition, where 

           (                   ) .  There are a total of 1356 complex  ( ⃗ ) 

values to be solved from the spherical harmonic analysis.  For this simple structure, there 

is only one fluorescence atom (Cu) in each unit cell; so the electron density derived from 

the XFH is the true electron density. 
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4740     spherical harmonic coefficients  for    (     )  and   (   )  are 

extracted from the simulated holograph using the codes adapted from SPHEREPACK 3 

[136].  Using Equation 4.14, the 1356 structure factor  ( ⃗ ) are solved from the 4740     

using MATLAB matrix division.  For the overdetermined matrix equation, the solution is 

given by MATLAB in a least square sense with the QR iteration algorithm [137, 138].  

This method decomposes a rectangular matrix into a product of an orthogonal matrix and 

an upper triangular matrix.  An iteration algorithm based on the decomposed matrix is 

used to minimize the difference between the two sides of the matrix equation.   

The matrix is chosen to be overdetermined to improve stability and accuracy 

when solving the matrix.  Stability of the matrix equation can be measured by the 

condition number.  For matrix equation x = A
-1

b , the condition number is defined as the 

maximum ratio of the change in solution to the change in input condition[139]: 

                               ( )     
   

[    
‖  ‖  

‖ (    )   ( )‖ ‖ ( )‖

‖  ‖ ‖ ‖
]                           (    ) 

where ‖ ‖ represents the norm of a vector.  The condition number represents the 

upper limit of the matrix solution’s sensitivity to error from the input matrix conditions.  

However, the maximum instability is only present at certain critical point of input 

condition b=bc.  In a practical matrix with 4740x678 elements, the chance of 

encountering the maximum instability is small.  The error in matrix solution is expected 

to be much lower than the maximum error predicted by the condition number.   

MATLAB also provides a ‘cond’ function for condition number calculation on 

overdetermined matrix equations.  Condition number for rectangular matrix is calculated 

as  ( )  ‖ ‖  ‖  ‖, where    represents Moore-Penrose pseudo-inverse of the matrix 

  [138].  The condition number for the 4740x678 element matrix of CuAu model is 15.6.  
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This indicates an upper boundary of instability where the error in solution of the structure 

factors is 15.6 times larger than the error in measured spherical harmonic coefficients 

from the hologram.   

 

 

Figure 4.3  Solution structure factor (upper panel) of tetragonal CuAu single energy 

hologram with theoretical value (lower panel).  Only half of the 1356 structure factors are 

displayed due to crystal symmetry. 
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The Matrix equation 4.14 does have some limitation.  Low frequency        for 

     and high frequency        for       can cause inaccuracies.  At     , 

integration in Equation 4.12 converges relatively slower to zero when     .  This in 

turn makes the matrix Equation 4.14 inaccurate.  At     , accurate spherical harmonic 

decomposition is limited by the hologram’s resolution.   

The above Figure 4.3 is  ( ⃗ ) solved from the matrix equation, as compared with 

the theoretical value of  ( ⃗ ) model.  The holograph is simulated with cluster profile of 

      ( (       ) ).  The matrix is calculated with the same profile.  In Equation 

4.15, a finite integration over r between 0.01 Å~190 Å is used to approximate the infinite 

integration.  The RMS difference between this result and the theoretical value is 3.0% of 

the average  ( ⃗ ). 

Table 4.1 summarizes the solution achieved from the above spherical harmonic 

analysis condition as compared to theoretical values.  A step function    (    )  is 

used to describe the cluster size in holograph simulation and matrix calculation.  Four 

different cluster size of    are simulated.   

Table 4.1  Spherical Harmonic Analysis Results for Simulation with Different Cluster 

Size 
(hkl) (100) (001) (110) (111) (135) (352) error 

Theoretical (0,0) (-93.9,0) (-89.1,0) (176.0,0) (90.0,0) (-52.1,0) -- 

        (7.6,0) (-86.1,0) (-92.5,0) (176.2,0) (88.3,0) (-53.4,0) 6.0% 

        (0.2,0) (-94.7,0) (-89.9,0) (177.1,0) (92.9,0) (-53.3,0) 3.2% 

         (0.0,0) (-95.0,0) (-89.7,0) (178.3,0) (90.5,0) (-54.2,0) 3.0% 

         (-0.4,0) (-94.2,0) (-89.2,0) (177.4,0) (83.9,0) (-49.9,0) 5.8% 
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 The theoretical structure factor is calculated from the atomic scattering factor by  

 ( ⃗ )  ∑   ( ⃗    ) 
  ⃗⃗   ⃗   where summation is over the atoms in the unit cell.   

4.3.1 Simulation of Large Cluster with 580   Radius 

The result of the solved structure factors in Table 4.1, for a 580 Å sample cluster radius, 

is simulated in a way different from the other cluster size.  The simulation on other 

cluster size is conducted using a hologram resolution of 1440x721.  This resolution is 

sufficient when the signal is spatially smooth and the mesh grid of the holograph can 

accurately represent all details in hologram signal.   

For the simulation of the 580 Å sample size, resonant Kossel line became very 

sharp.  In this case, the 1440x721 holograph resolution cannot accurately represent all the 

signals in the holograph.  A holograph simulation with 4320x2161 resolution was used to 

accurately simulate the hologram of 580 Å cluster size.  To be consistent with resolution 

in other simulations, the simulated 4320x2161 resolution holograph is then averaged to 

become a 1440x721 resolution holograph.  Each neighboring nine pixels in the high 

resolution holograph is averaged to become a single pixel in the lower resolution 

holograph.  This averaging method simulates a real XFH experiment because the detector 

has a finite acceptance angle which averages all hologram signals in the solid angle into a 

single pixel.  
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Figure 4.4  Solved structure factor from averaged hologram (upper panel) and not 

averaged low resolution hologram (lower panel).  

 



112 

 

 

  

 If the averaging process is not used, the directly simulated low resolution 

holograph will contain too much noise and the structure factor would contain significant 

errors.  Figure 4.4 is the result of structure factor solved from the simulated holograph 

with averaged hologram and not averaged low resolution holograph. 

4.3.2 Effect of Inaccurate Cluster Size Profile  ( ) 

A cluster size profile factor  ( ) has to be estimated when calculating matrix elements in 

Equation 4.13-14.  The factor  ( ) represents the statistical distribution of sample cluster 

sizes in the measured sample.  In practice, inaccurately estimated  ( ) might be used to 

solve structure factor in spherical harmonic analysis.  As shown in this Table 4.2, 

inaccuracy in estimated  ( ) has only a weak influence on reconstruction results.  In this 

simulation, different cluster size profile functions  ( ) were used in the simulation of 

CuAu hologram and calculation of matrix elements in Equation 4.14.  Anomalous 

scattering is neglected.   

 

Table 4.2  Effect of Inaccurate Estimation of Cluster Profile  ( ) on the Solutions of  

Matrix (part 1) 
(hkl) (100) (001) (110) (111) (135) (352) error 

Theoretical (0,0) (-93.9,0) (-89.1,0) (176.0,0) (90.0,0) (-52.1,0) -- 

      ⁄  (-0.4,0) (-94.7,0) (-90.6,0) (177.6,0) (92.7,0) (-54.0,0) 2.1% 

      ⁄  (0.1,0) (-94.9,0) (-90.0,0) (178.0,0) (88.1,0) (-52.4,0) 2.0% 

      ⁄  (-0.2,0) (-94.8,0) (-90.5,0) (177.4,0) (92.5,0) (-53.0,0) 2.4% 

      ⁄  (-0.4,0) (-94.7,0) (-90.7,0) (177.5,0) (91.8,0) (-52.4,0) 2.2% 

      ⁄  (-0.7,0) (-94.9,0) (-89.9,0) (178.2,0) (89.6,0) (-54.1,0) 2.4% 

      ⁄  (-1.0,0) (-95.1,0) (-89.8,0) (177.8,0) (93.6,0) (-55.5,0) 5.0% 

      ⁄  (0.3,0) (-94.2,0) (-91.1,0) (177.0,0) (91.4,0) (-51.6,0) 5.1% 
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For a simulation of relatively small inaccuracy in cluster profile, cluster size 

profiles      (       ),        (        ) and     (       ) were used. 

Three holograms and matrices are simulated from these cluster size profiles.  The matrix 

solution results are compared in Table 4.2.  Errors induced by the difference in these 

cluster size profiles are less than 5.1%. 

 Larger inaccuracy is also simulated using        (        ) for hologram 

simulation, and a significantly different unit step function     (       )  to 

calculate matrix elements.  The matrix solution results are compared in Table 4.3. 

    (  )⁄  represents a hologram solved with accurate cluster size profile in matrix 

calculation.      (  )⁄  represents hologram solved with inaccurate cluster size profile 

in matrix calculation.   

Table 4.3  Effect of Inaccurate Estimation of Cluster Profile   on the Solutions of Matrix 

(part 2) 
(hkl) (100) (001) (110) (111) (135) (352) 

Theoretical (0,0) (-93.9,0) (-89.1,0) (176.0,0) (90.0,0) (-52.1,0) 

    (  )⁄  (-0.2,0) (-94.2,0) (-89.9,0) (177.5,0) (89.4,0) (-52.3,0) 

    (  )⁄  (-0.5,0) (-85.3,0) (-83.1,0) (167.1,0) (89.4,0) (-49.5,0) 

     (  ) -- 0.3% 0.9% 0.9% 0.7% 0.4% 

     (  ) -- 9.5% 6.7% 5.0% 0.7% 3.1% 

 

From Table 4.3, a very inaccurate estimation of   results in some error in the 

solved structure factor; however, the matrix Equation 4.11 is stable. 
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Figure 4.5  Solved structure factor of tetragonal CuAu single energy holograph. 

 

The additional data in Table 4.3 are plotted as a function of the (hkl) index of the 

structure factor, as shown in the above Figure 4.5.  Accurate estimation of  ( ) in 

Equation 4.14 gives solution     (  )⁄ , which is undistinguishable from theoretical 

value in Figure 4.5.  Inaccurate estimation results in reasonable level of error. 

Figure 4.6 is a plot of the reconstructed real space electron density (along the 011 

direction in unit cell) from solved structure factors.  The results from     (  )⁄  and 

    (  )⁄  are overlapped.  No shift in atom position is observed.  The resulting peak 

intensity for Au atom from     (  )⁄  has 1.7% error.  The error in results from 

    (  )⁄  is less than 0.1%. 

Although     (  )⁄  gives as much as 9.5% error in structure factors for the (001) 

index, real space electron density  (  )  is calculated from all structure factors within 

condition of     .  In this case of simulation, for 1356 structure factors, all contribute 
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to reconstruction of  (  ).  Error in individual  ( ⃗ ) are statistically averaged and results in 

good electron density  (  ) even using poor estimations of  ( ). 

 

Figure 4.6  Real space electron density (in arbitrary unit) of CuAu simulated model on 

(011) unit cell direction. 

 

Reconstruction results from Barton’s method are also simulated and compared in 

Figure 4.6.  MXFH simulation were performed on ten X-ray energies equally space 

between 10.97 keV and 11.83 keV and reconstructed using standard MXFH (multiple 

energy) algorithm [39].  Single energy XFH simulation is reconstructed with standard 

single energy XFH algorithm [38] at 10.97 keV.  Note the significant shifts in the atomic 

positions obtained by use of the Barton 2D Fourier Transform approach makes use of 

XFH as a qualitative tool difficult. 

Specifically, the cluster size profile,  ( ) , has only a small influence on 

reconstructed real space electron density.  The reconstructed image suffers from much 
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lower background ripple as compared to Barton’s method.  The shift in Cu peak position 

is measured to be zero compared to 2.8% in the lattice constant peak position shift in the 

reconstruction from single energy Barton’s method.   

4.3.3 Effect of Near Field Spherical Wave Front Scattering 

Since X-ray holograph is a scattering process between spherical waves and electrons, the 

effect of the near field spherical wave front will make the scattering behave slightly 

different from scattering described with plane wave equations [51, 133].  This difference 

is a second order effect and can be observed in simulations.  The 
 

 
 term and 

 

   term in 

 ( ) and  ( ) in Equation 4.5 are used to simulate this near field effect.  When this effect 

is neglected, it causes a discernable error when reconstructing small clusters.  In the 

following result, holograms are simulated assuming spherical cluster of 19 Å radius, i.e., 

   (      ) , and with near field effect considered.  Anomalous scattering is 

neglected. 

 M ear
hkl  is the matrix in Equation 4.14 calculated with consideration of near field 

effects.  MFar
hkl is the matrix calculated neglecting near field effects.  Results in Table 4.4 

show theoretical structure factor values for selected (hkl) indices; solutions that neglect 

near field effects in matrix calculation as in    MFar
hkl⁄ , and solutions that do not neglect 

near field effects as in    M ear
hkl⁄ .  The method takes full consideration of near field 

effects and theoretically gives smaller errors when compared to theoretical values.  

However, the influence is small.  When simulating larger clusters as shown in Table 4.4, 

the effect of the near field correction is negligible.   
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Table 4.4  Effect of Near Field Spherical Wave Front on Matrix Solving 
(hkl) (100) (001) (110) (111) (135) (352) 

Theoretical (0,0) (-93.9,0) (-89.1,0) (176.0,0) (90.0,0) (-52.1,0) 

   MFar
hkl⁄  (7.9,0) (-86.3,0) (-95.6,0) (171.4,0) (81.0,0) (-60.0,0) 

   M ear
hkl⁄  (6.6,0) (-87.5,0) (-95.3,0) (172.4,0) (81.0,0) (-59.3,0) 

        
     -- 8.1% 7.3% 2.6% 10.0% 15.2% 

         
     -- 6.8% 7.0% 2.0% 10.0% 13.8% 

 

4.3.4 Considering Anomalous Scattering 

A real atom has a complex atomic scattering factor when the X-ray energy is close to an 

absorption edge of the scattering element.  Electron density could show an imaginary part 

in this condition.  Holograms simulated with consideration of anomalous scattering need 

to be solved with Equation 4.13 rather than Equation 4.14.  In the following result, 

complex atomic scattering factors are used in hologram simulation to study the effect of 

anomalous scattering.  An error function  ( )      (      ) cluster size profile is 

assumed in holograph simulation and used to calculate the matrix elements.  Solution of 

 ( ⃗ ) from Equation 4.13 is compared with solution from Equation 4.14 in Table 4.5. 

Table 4.5  Solved Structure factor with Consideration of Anomalous Scattering 
(hkl) (100) (001) (110) (111) (135) (352) 

Theor(4.13) (0,0) (-79.1,3.3) (-74.3,-3.3) (158.7,14.5) (72.6,14.5) (-37.3,-3.3) 

   M⁄ (4.13) (0.1,0.0) (-79.5,-2.8) (-75.1,-3.0) (159.5,14.2) (72.6,14.7) (-37.5,-3.3) 

Theor(4.14) (0,0) (-93.9,0) (-89.1,0) (176.0,0) (90.0,0) (-52.1,0) 

   M⁄ (4.14) (0.0,0) (-97.2,0) (-88.4,0) (179.2,0) (99.5,0) (-53.0,0) 

     (    ) -- 0.8% 1.1% 0.5% 0.3% 0.5% 

     (    ) -- 3.5% 0.8% 1.8% 10.5% 1.7% 
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In Table 4.5, the ‘Theor(4.13)’ parameter is theoretical structure factor 

considering anomalous scattering effect and calculated from complex atomic scattering 

factors.  Theoretical14 is theoretical structure factor neglecting anomalous scattering 

effect and calculated from real atomic scattering factors.  Although the holograms are 

simulated from complex atomic scattering factors, the result is close to the ‘Theor(4.14)’  

parameter where matrix is solved with a simplifying assumption that neglects anomalous 

scattering.   

4.4    Spherical Harmonic Analysis on Simulated HoMnO3 Hologram 

To demonstrate the structure-resolving power of the spherical harmonic analysis method 

on XFH data, the method is applied to a hexagonal HoMnO3 structure (space group 

P63cm, a = 6.1413 Å, c = 11.4122 Å ) [135].  HoMnO3 is an important multi-ferroic 

structure [140].  This system is chosen as an example because this non-centrosymmetric 

system has a complex structure factor and the presence of the heavy holmium atoms in 

the unit cell.  It is difficult to accurately determine the oxygen positions using regular 

XRD methods.  Calculating the spontaneous polarization of the system based on its 

structure requires accurate determination of the positions of the oxygen in the unit cell.  

The manganese in the structure is the fluorescence emitter with 8 keV X-rays used as the 

probing wave. 
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Figure 4.7  (A) Reconstructed electron density in (100) plane from the solved structure 

factors of HoMnO3, (B) structure image from Barton’s method with five energies, (C) 

from Barton’s method with  one energy. 

 

The hologram is simulated with the same algorithm for the CuAu holograph.  

Only one of the six Mn atoms is assigned in the HoMnO3 unit cell as the fluorescence 

emitter in the simulation so that one could compare the reconstructed electron density 

map directly to that of the model structure.  With an X-ray energy of 8.0 keV, there are 

3334 structure factors satisfying      .  The hologram was simulated with 0.5° 
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resolution in both    and   , resulting in 361x720 data points.  FORTRAN codes 

adapted from SPHEREPACK 3.0 were employed to calculate the coefficients    of 

spherical harmonic expansion from these data points.  A complementary error function 

      [(       )     ] was used to define the crystalline size in the hologram 

simulation and in the matrix calculation.  The       with   (     ) and   (   ) were 

used to construct 4740 complex linear Equations (4.14).  The matrix division function of 

MATLAB was used to solve this over-determined linear system.  The condition number 

of the matrix is 434.5.  This indicates the matrix is sufficiently good for both simulation 

and experiment.  This condition number can be further improved by selecting more 

spherical harmonic coefficients to make the matrix equation further overdetermined.   

The 3344 structure factors had a standard deviation of approximately 1.8% with 

respect to the model values.  An electron density map in the (100) plane of HoMnO3 with 

these structure factors (Figure 4.7A) is then constructed.  In Figure 4.7B and 4.7C, real 

space images obtained using the Barton transform is also depicted, from the five 

holograms acquired  with equally spaced energies from 8.0 keV to 9.6 keV (Figure 4.7B), 

and a single energy hologram at 8.0 keV (Figure 4.7C), on the same contrast scale.  

Comparing them clearly reveals that the new method greatly improved the structure-

resolving capability of the XFH method.  It also demonstrates that the essential structural 

information is already contained in a single energy hologram.  The electron density map 

displays precise atomic positions and proper intensity ratios between the Ho, Mn, and O 

atoms, thus providing adequate information to resolve the structure without an a priori 

knowledge of the atomic constituents of the unit cell.  Importantly, the position and shape 

of oxygen atoms are shown clearly, despite the presence of the heavy holmium atoms in 
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the unit cell.  Hence, XFH, undoubtedly, is an effective tool to probe systems with high 

variations in electron density.  Further, the spherical harmonic analysis on XFH data 

affords us a novel method to study the non-spherical distribution of density without 

resorting to model building or phase refinement. 

The distance between image atoms can be measured by peak to peak distance in 

Figure 4.7.  Table 4.6 compares the listed distance for atoms in reconstructed image to 

theoretical value.  Note that the measured distance is the distance between the maximum 

at the electron density positions of the atom images.  It is not the center of the image 

atoms.   

Table 4.6  Comparison of the Bound Distance in Solved Structure to Theoretical Values 

Bound    Ho1/Ho2 Mn1/Ho1 Mn2/O3 O1/O6 

Theoretical 5.7061 Å 3.5959 Å 1.8838 Å 3.9614 Å 

Simulation 5.7061 Å 3.5498 Å 2.0482 Å 4.1505 Å 

Error 0.0000 Å 0.0461 Å 0.1644 Å 0.1889 Å 

 

The strongest peaks for Ho atoms give accurate results.  The atomic distances 

between weaker atoms suffer larger error due to the fact that weaker peaks are influenced 

by background noise and ripples form stronger peaks.  For better accuracy in measuring 

distance between atomic positions, three dimensional non-linear fitting with a well-

designed fitting model that correctly represent shape, ripple and tail of atomic peaks can 

be developed to fit the center position of each atomic image.   

The result indicates that spherical harmonic analysis is capable of extracting 

quantitive structural information with good accuracy.   

The ambiguity caused by the multiple fluorescence centers is an intrinsic limit of 

the XFH method and can be resolved by making use of space group symmetry and bond 
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length constraints.  Spherical harmonic analysis, as well as Barton’s method, requires a 

hologram data set in full 4π solid angle.  Currently, most XFH measurements are taken 

from a flat surface of large single crystals, and hence, it is difficult to directly measure the 

hologram in a full 4π solid angle in this geometry.  Therefore, the point group symmetry 

of the crystal is employed to extend the data set to its full range.   With advancements in 

synchrotron radiation technologies, XFH can be measured from small crystals in the 

transmission mode using a highly focused beam.  XFH in transmission mode will make it 

possible to directly measure the full range hologram, to measure the holograms in two 

polarization geometries with same diffractometer setup (to depolarize the direct XFH 

data), and to extend the application of XFH to other fields of crystallography, such as 

structural biology.       

4.5    Reconstruction of Experimental PZN-PT Hologram  

A single energy indirect scheme PZN-PT XFH hologram was measured at NSLS at 

beamline X14A (Figure 3.8D).  The energy of the incident X-ray beam is 14.5 keV. 

The hologram is measured between 0
o
 and 70

o
 theta angles and expanded to 4π 

solid angle with symmetry.  Cubic symmetry is assumed in the expansion.   
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Figure 4.8  Solved ρ(h) (upper panel) for experimental holograph as compared to 

theoretical ρ(h) (lower panel). 

 

Even with the low quality and resolution of the experimental hologram, spherical 

harmonic expansion of the holograph can be accurately performed to the maximum 

resolution at l = 40.  This resolution is not sufficient to solve all structure factors in 

Equation 4.14.  In order to get stable solution, all structure factors with        are 

assumed negligible.  This assumption is not accurate but is necessary to acquire stable 

solution from Equation 4.14.   ( ⃗ ) is solved for all        structure factors; this gives 
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63 structure factors solved as shown in Figure 4.8.  The result is noisy.  Only rough 

features in  ( ⃗ )  can be distinguished. 

  

Figure 4.9  Reconstructed electron density on (100) (left) and (110) (right) plane of PZN-

PT unit cell from solved ρ(h) picture. 

 

Figure 4.9 is the reconstructed electron density  (  ) from the solved structure 

factor  ( ⃗ ) in Figure 4.8. 

The atom at corners are Pb and the atom at center for (110) plane is 2/3 Zr mixed 

with 1/3 Nb.  The atoms at center of (100) plane and at center edges of (110) plane are 

oxygen.  The intensity of the oxygen atom is stronger than estimated.  This could be due 

to errors that are caused by truncating the matrix Equation 4.14 by assuming all structure 

factor with        are negligible.   

4.6    Conclusions 

The new reconstruction algorithm based on spherical harmonic analysis provides an 

efficient method that is readily automated to directly extract structure information from 

single energy X-ray fluorescence holograms.  This new method makes XFH a 

quantitative method that is highly applicable to materials characterization.   
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  CHAPTER 5

OTHER TECHNIQUES AND CONSIDERATIONS  

5.1    Introduction 

X-Ray Holography is a promising technique which yields the three dimensional structure 

of materials.  With the advent of high flux sources and fast X-ray detectors, this method 

is under serious consideration as a mainstream measurement technique [68, 78-80].  The 

method is still in rapid development and has not achieved a routine utility.  One of the 

major problems in the traditional reconstruction technique (Barton’s method) is the 

difficulty to achieve high signal to noise ratio, especially for atoms far away from the 

central atom.  A relatively comprehensive analysis on the source and nature of the errors 

in X-ray holograms and reconstructed images is thus worth the effort. 

5.2    Study of Forward Scattering Suppression 

The normalized hologram function, as defined in Barton’s paper [23], can be written as 

[51]: 

                             ( )    ∑
   (    )

  
 

   (          )                                    (   ) 

where, re is the classical electron radius and    is the center of the i
th

 scattering 

atom and c.c.  represent complex conjugation,    (    )  is a generalized atomic 

scattering factor for the i
th

 scattering atom. 

The reconstructed image of a single energy hologram, which is the Fourier 

transformation of the normalized hologram function, has the form:
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   (    )                                                (   ) 

Where,  ( ) is the reconstructed real space image, and the integration is over 4π 

solid angle.   

5.2.1 Effect of Atomic Scattering Factor 

Plugging the normalized holograph function  ( ) into the reconstruct image Equation 5.2, 

one has: 
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           (   ) 

Since the integration is over the full 4π solid angle, one can choose (   ) so that 

       is oriented at the direction of (    ) for the first term in Equation 5.3 and in 

the direction of (    ) for the second term in Equation 5.3.  Hence the first and second 

terms are treated separately and use different coordinate systems.  Figure 5.1 is a graph 

for the coordinate systems used here. 

 

Figure 5.1  Coordinates used in the discussion. 
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Using coordinates shown as Figure 5.1, Equation 5.3 can be rewritten as: 

                    

 ( )    ∑{
      

  
∫ [∫    (    )   

  

 

]     (    )     
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              ∑{
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              (   ) 

One can define the integration of atomic scattering factor over   as IASF and the 

Fourier transform of IASF as      : 

                                                       ( )  [∫    (    )   
  

 

]                                          (   ) 

                  

     ( |    |)  ∫ [∫    (    )   
  

 

]     (    )     
   

    

                     ∫     ( )   (    )         
   

    

                   (   ) 

Thus, the reconstructed image in Equation 5.2 can is given by: 

               ( )    ∑[
     

  
     ( |    |)  

      

  
     ( |    |)]

 

              (   ) 

Equation 5.7 indicates that the image of a single atom scatter in the reconstructed 

image is proportional to the       function, which in turn is solely determined by 

Fourier transformation between   (        ) of the atomic scattering factor.  The 

more high frequency component exists in the atomic scattering factor, the more ripples in 

the reconstructed real space image.   
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Figure 5.2  Atomic scattering factor      versus scattering angle   plot (red) and       

function versus  |    |  plot (black) for example atomic scattering factors    (   ) 

where   (   )    (left) and   (   )      ( ) (right). 

 

 Figure 5.2 is an example of the reconstructed image for atomic scattering factor 

for   (   )    and   (   )      ( ).  Since integration is limited to   (        ), 

the abrupt cut off of the    (   )    atomic scattering factor gives more high frequency 

component, and thus has more ripples in the reconstructed image.   

5.2.2 Suppressing Forward Scattering 

Atomic scattering factor of real atoms could have strong high frequency components 

(anisotropic scattering component) for high energy X-rays, as shown in Figure 5.3.  This 

is also referred as forward scattering [33].  The Fourier transform of a strongly 

anisotropic forward scattering atomic scattering factor causes large ripples in the 

reconstructed real space image.  
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Figure 5.3  Atomic scattering factor    versus scattering angle   plot for Fe atom for 5 

keV energy (left) and 25 keV (right) X-ray energy.   

 

 The effect of anisotropic scattering caused ripple noise can be alleviated by 

multiplying the holograph by a profile function of  ( )  to reduce ripple in the 

reconstructed real space image.  The reconstruction equation is shown in Equation 5.8. 
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∫ [∫    (    )   
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         (   ) 

The  ( ) factor in Equation 5.8 can be chosen to reduce the weight of sharp 

forward scattering in Figure 5.3 and thus reduce ripples in the reconstructed image. 

A 5x5x5 atom Fe lattice is used to simulate a XFH hologram at 25 keV X-ray 

energy with Equation 5.1.  The hologram a reconstructed with both Equation 5.2 and 

Equation 5.8 with  ( )       .  Results are shown in Figure 5.4. 
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Figure 5.4  Reconstructed real space image for 5x5x5 unit cell Fe lattice without forward 

scattering suppression (left) and with  ( )         as forward scattering suppression 

factor (right).   

 

Results in Figure 5.4 show a reduction in ripple noise in the result of 

reconstruction using forward scattering suppression. 

5.2.3 Conclusions 

Using forward scattering suppression in XFH holograph reconstruction can reduce the 

amount of ripple noise.  The extent to which noise is reduced depends on a careful choice 

of the suppression function  ( ).  Since the ripple noise will add to atomic image peaks 

in the reconstructed image, accurate extraction of atomic positions from the 

reconstruction image is difficult.  With reduced ripple noise in background of 

reconstructed image, the position of atomic image peak can be extracted with better 

accuracy.   

5.3    Statistical Considerations of Signal Intensity in XFH Measurements 

The signal intensity of a XFH hologram can be estimated by numerical simulations.  

However, numerical simulation of large sample clusters is very time consuming.  A 

simulation of 580 Å sample size would take 40 days on the NJIT Kong cluster using 19 
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CPU cores.  In order to estimate the holograph signal intensity for large sample size 

before a real experiment is conducted, the method for estimating holographic signal 

intensity was studied.   

 The holograph in Equation 5.1 can be rewritten as: 

                             ( )  ∫
  
  

   (          ) (  ) (    ) (  )                    (   ) 

 where,  (    ) is the Lorenz factor that represents the effect of polarization in 

the scattering.   (  ) is a profile factor that represents sample cluster size, shape and 

attenuation effect when X-ray travels inside the sample material.   (  ) is the electron 

density function of the sample.   

 Since the hologram  ( ) is extracted from the isotropic fluorescence background, 

the average signal intensity  ( ) of hologram is zero.  Thus, the root mean square (RMS) 

intensity of the holograph is given by:  
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 (  )   ∯   (          )
 (  )
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                                                                                                                                                       (    )    

 where,  ̅ is averaged electron density of  (  ).  Angular integration in Equation 

5.9 is separated from radical integration in Equation 5.10. 

 One can define the integrand as variable rand as: 

                                            (          )
 (  )

 ̅
 (    )                               (    ) 
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 Rand is a complex function that depends on many variables but its value only 

changes in a limited range.  Here assumption is made that the rand variable can be treated 

as a random function. The assumption is verified numerically.   

 For random function rand one has: 

                                              (∯       ̂ )
 

 (∯        ̂ )                                    (    ) 

 In order to verify the validity of the assumption,  (∯       ̂ )
  and 

 (∯        ̂ ) values were calculated on CuAu model on 32 different    values.  The 

integration is performed on a 6 Å thick spherical layer of atoms in the model simulation.  

The numerical result is shown in Figure 5.5. 

 

Figure 5.5  The plot of   (∯       ̂ )
  ∯        ̂ . 

 

 The result in Figure 5.5 has an averaged ratio ~1.14 and fluctuates between 1.05 

and 1.25.  Although the value is not exactly 1, the approximation is good enough for an 

estimation of signal intensity; the error of estimation should be around 14%.   

 With the assumption that    (          )
 (  )

 ̅
 (    )  can be treated as a 

random number, the RMS value of the holograph is easily formulated as: 
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 The    (    )  √
 

     factor is a constant value.  The RMS value of a 

holograph only depends on the average electron density and cluster size profile.  An 

estimation of holograph signal intensity can be performed with integration in Equation 

5.13. 

   

Figure 5.6  Plot of experimental RMS signal intensity of holograph for  (  )    (left) 

and  (  )      (         ) (right) with theoretical estimation given by Equation 5.13.  

A    (    ) value is fitted from experimental results and used in the estimation of the 

signal intensity. 

 

 The CuAu holograms were simulated based on two different profile 

functions   (  )     and  (  )      (         )   and various sample cluster sizes 

from a radius of 6 Å to a radius of 192 Å.  A universal    (    ) number is fitted from 

the simulation results and used to calculate the estimated signal intensity for all situations.  

Figure 5.6 are the results that compare numerical simulation results of RMS signal 

intensity with estimation given by Equation 5.13. 
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 The results indicate that the assumption of random number treatment on signal 

intensity estimation is valid and is useful to give estimation on XFH holograph signal 

intensity level based on sample electron density and cluster profile.   

5.4    Extracting Kossel Line Signals from a Noisy Holograph with 

Non-linear Fitting Method 

 

Experimentally measured holograms are often too noisy to be directly reconstructed.  It is 

possible to separate signals in holograms from noise based on the fact that noise in 

holograph is not inter-correlated while signals in a hologram have certain symmetry.  A 

non-linear fitting method was developed to extract Kossel line signals from a noisy 

holograph.   

5.4.1 Kossel Line of Holograph Signals 

The holograph in Equation 5.1 can be rewritten as an integration of electron density: 

                              ( )  ∫
  
  

   (          ) (  ) (    ) (  )                   (    ) 

where,  (    ) represents the Lorenz factor of an electron at    point, i.e, the 

polarization factor for X-ray scattering on electron.   (  ) is the cluster profile factor and 

it represents attenuation of X-ray traveling in sample material: 

                                                                (  )      (    )                                                  (    ) 

Electron density  (  ) can be expressed in terms of structure factors: 

                                                      (  )  ∑ ( )   (     )

 

                                        (    ) 
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If one consider direct scheme un-polarized (or depolarized) Lorenz factor and 

neglect near field effects,  (    )  would be given by (as shown in Chapter 4)   

(    )
  .  Thus: 

                               

 ( )  ∑∫
  
  

[  (    )
 ]                        

 

   ∑ (   ) ( )

 

                                           
                 (    ) 

where,  (   )=∫
 

  
[  (    )

 ]                         is the resonant Kossel 

line of the  th
 structure factor index.  The integration can be easily carried out and gives 

the following results: 
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                                                                                                                                                      (    ) 

5.4.2 Extracting Kossel Lines  (   ) from Noisy Hologram 

Equations 5.15 and 5.16 give us a method to calculate Kossel line signals from a few 

parameters including  ( )   and   .  If one assumes that the signals in the hologram are 

composed of a finite number of Kossel lines, one has a non-linear equation: 

                                       ( )   (       (  )  (  )      )                            (    ) 

 For any given hologram   ( ), it is possible to perform the non-linear fitting 

method of Equation 5.18 to solve for parameters  ( )   and   . 
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 The CuAu hologram at           is measured with polarized X-rays on NSLS 

beamline X14A and the non-linear fitting is performed with a steepest descent algorithm 

[141, 142].  Figure 5.7 is the nonlinear fitting result plotted together with the original 

holograph.  The fitted result hologram is built from fitting parameters in Equation 5.19. 

 

Figure 5.7  Nonlinear fitting results (right) plotted together with original holograph (left). 

  

Table 5.1 summarizes the non-linear fitting results of the CuAu holograph.  The 

CuAu holograph contain more than 700 Kossel line but only seven Kossel lines are 

considered in the non-linear fitting.  The number of Kossel lines is limited by complexity 

and stability of the non-linear fitting algorithm.  The result suffers from errors partially 

due to the limited number of Kossel line parameters and partially due to the fact that 

polarization is not properly suppressed.  However, meaningful results were successfully 

extracted from the noisy original holograph as clearer Kossel lines are displayed in 

Figure 5.7.   

 

 

 



137 

 

 

  

Table 5.1  Non-linear Fitting Results of the CuAu Hologram 

(hkl)  ( ) | |   

(100) 1.067046E-05 3.357004 -3.754705E-01 

(010) 9.931009E-06 3.421202 -3.811271E-01 

(001) 9.132409E-06 3.593153 -6.981951E-01 

(111) 6.925094E-06 2.594162 -1.992746E-01 

(-111) 1.018289E-05 2.681190 -3.657472E-01 

(1-11) 5.723137E-06 2.598517 -2.132494E-01 

(11-1) 6.666318E-06 2.733280 -4.327589E-01 

 

5.4.3 Conclusions 

For a holograph with a limited number of Kossel lines and measured from un-

polarized or de-polarized X-rays, it is possible to extract Kossel line signals from a noisy 

hologram with a non-linear fitting method.   

5.5    Numerical Simulation of Multiple Energy XFH in Barton’s Algorithm 

As already stated in Chapter 1, the multiple energy XFH (MXFH) Barton’s 

reconstruction algorithm is given by: 

                                  ( )  ∑   (   )∬ ( )   (    )   

 

  

                                  (    ) 

The reconstructed image  ( ) for any real space region will be affected from 

signals from other real space regions and will cause noise.  Roughly speaking, using more 

energies in MFXH reconstructions results in lower noise in the reconstructed image.  In 

order to quantitatively estimate the number of multi-energy holographs required to give 

reasonably low noise real space reconstructions, a study on a CuAu sample was 

conducted.   
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Figure 5.8  Sample simulated holograph for k = 10.8 keV from a 31x31x31 unit cell 

model (left) and 5x5x5 unit cell model (right). 

 

64 holograms (Figure 5.8) from equally separated X-ray energies between 11 keV 

and 17 keV for a 31x31x31 unit cell model are calculated.  As a reference, 64 holographs 

of corresponding X-ray energy for 5x5x5 unit cell model are simulated.  The absorption 

coefficient for X-rays traveling in the CuAu sample in the simulation is given in Figure 

5.9 [41]. 

   

Figure 5.9  Absorption coefficients μm as a function of wave number        using 

CuAu in holograph simulation. 
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The simulated holograph is then reconstructed to show the real space image on 

the 5x5x5 unit cell region.  Reconstruction of holographs simulated from the 5x5x5 

model are used as the ‘ideal real space image’ for that there is no noise due to longer 

distance atoms.  Reconstruction results from holographs simulated with the 31x31x31 

model real experiments and difference between the reconstructed image and the ‘ideal 

real space image’ are considered as noise. 

Figure 5.10 is reconstructed real space image for holograph simulated at wave 

number k equal to          ,           and          .  The results for larger cluster size 

show significantly different image from the ideal image for small cluster.  The difference 

is noise due to ripple signals from atoms is not located in the reconstructed real space 

region. 

 
Figure 5.10  Three energy reconstructed real space image for 31x31x31 unit cell model 

(left) and for 5x5x5 unit cell model (right) as ‘ideal image’. 

 

The relationship between noise levels and number of energies used in 

reconstruction is shown in Figure 5.10.  The noise level is calculated by the ratio of RMS 

intensity of noise to RMS intensity of ‘ideal image’. 
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Figure 5.11  Relationship between noise level and number of distinct energy holographs 

included in MXFH reconstruction. 

 

Results in Figure 5.11 show a fast decrease in noise level for the first ten energies 

used in MXFH reconstruction.  The effect of noise reduction is reduced when extra 

energies are added into the MXFH reconstruction.  This suggests that MXFH 

measurement should try to include at least ten energies, which gives a noise level of 30%.   

5.6    Study of the Scattering Pattern Matrix (SPM) Method 

5.6.1 Introduction 

The scattering Pattern Matrix (SPM) method is an algorithm used to generate a real space 

electron density function that has an X-ray Holograph pattern that is the best fit to a 

measured holograph.   

The operation that calculates the hologram function   ( ) from the real space 

electron density function is numerically a matrix operation given by:  

                                                                    ( )     
   (  )                                                (    ) 
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where,  ( ) is the hologram,  (  ) is electron density in real space and    
  is the 

transformation matrix.  The elements in the transformation matrix are given by:  

                                
    [

  
  

   (          )      (    )]                                (    ) 

 

To solve large matrix equations like Equation 5.22, a least square fitting solution 

can be attained by the steepest descent method [141].   

The steepest descent method is an iteration beginning from a trial real space 

electron density function   , and iterates the following equations to approach the real 

solution:  

                                              
  |     

     |   |   |

               (       )
                                              (    ) 

 

where,   is the residual error,   and    are interaction parameters which control 

convergence of the iteration.  The final converged result of iteration gives the electron 

density which is the approximate solution of the input hologram.   

5.6.2 Simulation Results on Single Atomic Model 

In order to study the resolution power of the SPM method, nine holograms with deferent 

X-ray energies between 10 keV and 18 keV are simulated for a simple model of a delta-

function electron density placed 4 Å from a fluorescent center.   
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Figure 5.12  Reconstructed image of the holograph with least square fitting method 

without non-negative constraint (upper) and with non-negative constraint (lower).   

 

 

Non-negative constraint is studied in the process of integration.  Figure 5.11 is a 

comparison of the reconstructed image of the holograph with the SPM method without 

non-negative constraint and with non-negative constraint.  The non-negative constraint 

forces  (  ) is considered to be non-negative during iteration.   

Ripples in the upper image of Figure 5.12 result from the fact that simulated 

holograms have limited information in k-space in a way similar to a numerical aperture in 

microscopes.  The result in the lower image of Figure 5.12 shows that, with the help the 

help of non-negative constraints, the least square fitting algorithm is able to suppress the 
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partially negative ripples in the reconstructed image and results in resolution that is better 

than the limit of the numerical aperture.   

In Figure 5.13, holograms of nine deferent energies between 10 keV and 18 keV 

are simulated on a model with single iron atom placed 4 Å from fluorescent center. 

The atomic scattering factor contains information on the electron density 

distribution inside the iron atom.  The hologram was simulated with the atomic scattering 

factor of the iron atom.  It is seen that, for this ideal situation, least square fitting method 

is capable of discerning the distribution of the electron density inside the iron atom.  The 

solution for the delta-function atomic model gives resolution that is better than the size of 

the iron atom.  Electron distribution inside the image of iron atom can be distinguished 

from the simulation.   
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Figure 5.13  The reconstructed electron density function of an iron atom (upper) and the 

result in Figure 5.11 as a reference (lower) of available resolution.  The distance from the 

atom to the center is 4.0 Å.   

 

5.6.3 Simulation on Mixed Mode XFH Geometry 

A special advantage of the SPM method is its ability to handle special XFH geometry.  

Figure 5.14 is a special XFH measurement geometry that has both detector and incident 

beam fixed in their position and only the sample is rotated and scanned.  Simple set up 

like this are desirable in experiments but is neither a direct scheme nor inverse scheme.  

Thus, the hologram from this setup cannot be reconstructed by any Fourier 

transformation based method.  This condition can be easily handled with the least square 

fitting method. 



145 

 

 

  

 
Figure 5.14  A special XFH measurement scheme that results in a mixed holograph.  

Schematic is modified from [39].   

 

The hologram generated from Figure 5.14 still has the form  ( )     
   (  ) 

except that, here: 

   
    [

  
  

   (          ) (    )  
  
  

   (            ) (     )]   (    ) 

where,   is the wave vector of incident X-ray and    is wave vector of the 

fluorescence X-ray.   

Nine holograms with different X-ray energies between 10 keV and 18 keV are 

simulated with four iron atoms each placed 4 Å from the fluorescent center.  The 

holograms are reconstructed with both Barton’s Fourier transform method and the SPM 

method.  Figure 5.15 is a comparison of the reconstructed real space electron density 

using Barton’s Fourier transform method and least square fitting method.  The 

reconstruction with the Barton’s method results in images at wrong locations while the 

SPM method has the image correctly placed.   
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Figure 5.15  Reconstructed real space image with Barton’s method (left) and SPM 

method (right).   

 

5.6.4 Stability and Limitation 

The method is stable when noise exists in holograms.   

Nine holograms with different X-ray energies between 10 keV and 18 keV are 

simulated on a iron lattice with different cluster size.  Noise was added to hologram.   

Figure 5.16 includes holograms and reconstructions with noise added to 

holograms for simulations on a 5x5x5 unit cell iron cluster simulation.  The result for 

noisy holograms has atomic image with noises added.  This result shows that noises in 

holograms induce noises in the reconstructed image.  The more noise present in the 

holograms, the more noise appears in there constructed image.  However, the SPM 

method is stable to noises in holograms.   
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Figure 5.16  Simulated hologram (upper left) and hologram with noise (upper right) and 

reconstruction result (lower left) with noise added on holograph (lower right). 

 

A limitation of the method is that least square fitting requires a large amount of 

computation power and always has limited mesh grid to represent real space electron 

density.  The reconstructed electron density function is thus confined to a limited space of 

around 10 Å.  If the holograph one is trying to fit contains signal from atom out of this 

range, these extra signals not covered by simulation mesh grid will become noise and 

results in noise in the reconstructed image.  Figure 5.17 shows reconstruction results of  

holograms containing 3x3x3 atom (left), 13x13x13 atom (middle) and 61x61x61 atoms 

(right).  The range of real space mesh grid is 10 Å, corresponding to 2.5 times lattice 

constant.   
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The simulation on large cluster size with limited mesh grid leads to more noise 

than simulation with smaller clusters.   

  

Figure 5.17  Reconstruction result of holograms containing  3x3x3 atoms (left), 

13x13x13 atoms (middle) and 61x61x61 atoms (right). 

 

5.6.5 Conclusions 

The SPM method is more flexible than a simple Fourier transform method and is capable 

of handling special XFH measurement schemes.  Non-negative constraints can be 

handled in the SPM method and results in improved real space resolution.  The method is 

stable when noise is imposed on the signal of the holograms.  However this method has 

difficulty handling holograms from large clusters. 
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  CHAPTER 6

PROPOSED FUTURE WORK 

6.1    XFH Measurements on Micron-sized Samples 

6.1.1 Sample Setup 

The HERMES based 384 element detector enables large solid angle acquisition of 

photons with a large dynamic range (high counting rates).  Measuring micron-size 

samples with reasonable counting rates might be possible with this detector.  In order to 

test the possibility, XFH experiments was performed on a micron-size sample.  The PZN-

PT sample was chosen for its strong florescence and strong Kossel line intensity. 

A micron-size PZN-PT sample was cut from the bulk PZN-PT single crystal and 

selected under a microscope.  The sample size was roughly 50x30x5 μm
3
.  The single 

crystal micron-size sample was mounted on a glass fiber with epoxy. 

Figure 6.1 is an illustration of the sample location in the X-ray beam spot.  The 

beam is focused to 3.5x1 mm
2
 at the X14A beamline.  

 

Figure 6.1  The beam spot and size of micron-size sample in the experiment. 
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6.1.2 Stability Test and Problems 

The major difficulty for the XFH experiment on micron-size sample is that the sample is 

smaller than the beam spot.  Unlike standard XFH experiments on bulk samples, the total 

photon flux incident on the micron-size sample cannot be directly monitored by an 

ionization chamber. 

Figure 6.2 compares the result of a stability measurement on bulk sample Si-

Ge10% and micron sized PZN-PT sample.  A noise level of 0.001 is typical for bulk 

samples when the count rate is around 20,000 cps per element.  For micron-size PZN-PT 

sample, however, noise level is about 0.005 at 8,000 cps per element. 

  

Figure 6.2  Noise level of stability verses time measurement on bulk Si-Ge10% with 20k 

cps per element (left) and noise level for stability measurement on micron-size PZN-PT 

sample where count number is 8k per second per element (right).   

 

Although the low count rate (at 8,000 cps per element) in micron size sample 

increases statistical noise, the noise level should be less than 0.0015 as postulated from 

the noise level measured with bulk samples (at 20,000 cps per element).  The 

unexpectedly poor stability for micron-size samples is actually influenced also by the 

change in total photon flux illuminating the sample.  The instability in illumination 

cannot be removed by normalization with ionization chamber reading. 
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The 0.005 noise level, however, is low enough to allow for XFH measurements 

on samples with strong Kossel lines like the PZN-PT sample.   

6.1.3 XFH Scan on Micron-sized PZN-PT Samples 

Currently, no method of normalization has been successfully performed on micron-size 

samples.  For the time, normalization is not used but it is assumed that the illuminating 

beam is a stable beam pure random noise only.  By taking XFH scans over a long time, 

and averaging, the influence for all random noise from the illumination, theoretically, the 

influence can be averaged out and noise level can be reduced. 

Eight independent scans have been performed with the same condition with an 

average count rate of 5,000 cps per element.  Note that the scan condition here is not the 

same scan condition as for the stability test.  Slits have been reduced in the eight scans 

with the hope to reduce the difference between ionization chamber reading and real 

incident flux.  Roughly each pixel in the scan has 0.6 second accumulation time. 

Figure 6.3 shows the average for the eight scans that are used to produce the XFH 

holograms on the micron-size PZN-PT sample.  The shape factor in the holograph 

measurement is considered and removed to the best of our capability.  Even after careful 

shape factor correction, the noise level of the averaged holograph is still 0.01.  This noise 

level is too large for observing Kossel lines.  The noise comes from irregular geometry of 

the micron-size sample which results in random fluctuation of the XFH signal.  This 

clearly suggests that a micron-size sample with very regular shape is required for clean 

XFH measurement and for removal of shape factor from measured XFH signals.   This 

can be done by careful selection of single crystal grains under a microscope.  The grain 
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can be modified by cleaving them, also under a microscope. Small beams on 3
rd

 

generation light sources (~1 μm diameter) may resolve these problems. 

      

Figure 6.3  The averaged eight XFH scan hologram on micron-size PZN-PT sample with 

same conditions. 

 

6.2    Suggestions for Future Work 

Work in this thesis indicates that the XFH method is a promising experimental method 

that is capable of investigating sample structural information without prior knowledge.  

As the XFH method involves multiple technologies under development, some important 

components are needed for the method to be fully utilized: 

A high count rate silicon drift detector (SDD) based multi-element detector 

should be built.  The SDD detector should have ~150 eV resolution to provide cleaner 

fluorescence-elastic photon separation.  The author proposes a 96 element SDD detector 

array with a total 16 cm
2
 detector active area.   

The XFH measurement setup should be improved.  Better beamline stability is 

absolutely essential to provide smaller flux fluctuation in the incident beam, I0, thus 

reducing noise in measurements.  Flux should be monitored with same type of detectors 
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that monitors the fluorescence rather than ionization chamber.  This provides better 

match in detector response and yields higher level of normalization. 

The possibility to measure XFH holograms on micron-size sample should be 

investigated.  A more uniform distribution of flux intensity in the beam spot of XFH 

measurement is desired because it reduces difficulty in I0 normalization.  Better stability 

of beamline flux also reduces noise due to I0 normalization.  Vibration isolation is 

required to provide better beamline optical stability.  Using very small crystals at 1μm 

size should possibly reduce effect of shape factor, however, it also increases the 

requirement for high beamline photon flux.  The author proposes a micron-size sample 

measurement with 10
15 

cps photon flux that is focused on a uniformly distributed 100μm 

diameter beam spot in a sample with 5μm diameter crystal size.  The shape of the sample 

should be made close to a sphere.   

A theoretical investigation of non-isotropic atomic scattering should be 

performed.  The simulations in this thesis are based on a structure factors that assumes 

isotropic symmetry of the electron distribution in individual atoms.  This is not valid for 

highly covalent systems such as carbon networks (graphene) and many organic systems.  

Thus atomic scattering factor,      is independent of orientation but is only a function of 

scattering angle.   

                                                                       (    )                                                      (   ) 

Here, the atomic scattering factor is determined by the relative angle between   

and   .  In the general case, the scattering factor can depend on   and    vectors and not 

just on the relative angle.   

                                                                       (     )                                                       (   ) 



154 

 

 

  

The general case will be used to model highly anisotropic charge distributions 

such as covalent organic frameworks. 

This     can be realized numerically in simulations and can be used to simulate a 

holograph with non-isotropic electron density in atoms to represent inter-atomic 

interaction.  Structure factors can be solved with the same method as in the simulation on 

isotropic atomic scattering factors and a real space image with inter -atomic interaction 

can be reconstructed. 
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APPENDIX A 

ALGORITHM FOR BEAMLINE TUNING AND PIEZOELECTRIC ACTUATOR 

PSEUDO MOTOR CONTROL 

The NSLS X14A beamline is configured to automatically tune beamline optics for 

maximum photon flux. The detailed algorithm for this control is given in this section.  

A.1  The Piezoelectric Actuator Pseudo Motor 

The piezo-system JENA piezoelectric actuator  is remotely controlled by the X14A 

beamline FOURC [122] pseudo motor utility.  The pseudo motor for the piezoelectric 

actuator is named ‘pzo’ in the FOURC software interface. 

The ‘pzon’ script, shown in the following Table A.1, is used to turn on remote 

control of the piezoelectric controller and setup the communication protocol between 

FOURC and the piezoelectric controller.   

Table A.1  ‘pzon’ Script 

ser_put (0 , ”i1\r” ) ; 

cdef ( ”usergetangles” , ”serpar ( 0, \”flush\” ) ; ” , ”pzo” ,0x1 ) ; 

cdef ( ”userpostmove” , ”serpar ( 0 , \” flush\” , 1 ) ;  

ser_put ( 0 ,sprintf ( \” wr ,%5.2 f \\ r \” ,A[ pzo]+0.2 ) ) ; ” , ” pzo” ,0x1 ) ; 

p  ”piezosystem jena is now online ! ” ; 

 

Once remote control of the piezo-system JENA piezoelectric actuator is setup, the 

‘pzo’ pseudo motor in FOURC software will be connected to the real actuator.  The 

operator can move the piezoelectric actuator as  any other motors in the X14A beamline.   
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The ‘pzoff’ script, shown in the following box Table A.2, is used to disable 

 remote control access of the piezoelectric controller and clean up the communication 

protocol setup between FOURC and the piezoelectric controller. 

Table A.2  ‘pzoff’ Script 

cdef ( ”usergetangles” , ”” , ”pzo” ,0x1 ) ; 

cdef ( ”userpostmove” , ”” , ” pzo” ,0x1 ) ; 

ser_put ( 0 , ”i0\r ” ) ; 

p ” piezosystem jena is now offline ! ” ; 

 

 

When the connection is turned off, the operator on FOURC system can still 

execute command on the ‘pzo’ pseudo motor, but the command will have no effect. 

The ‘pzhelp’ script, shown in the following box Table A.3, displays help 

messages for user’s convenience. 

Table A.3  ‘pzhelp’ Script 

p ” pzon / pzoff / pzhelp : the piezosystem jena remote control 

      script and help file .  \n  

      writen by WANG YUHAO in june 2008 .  email: wy8@njit.edu .  \n \n 

      usage in fourc: \n 

FOURC> do pzon   :   turn on piezosystem jena remote control.  \n 

FOURC> do pzoff   :  turn off piezosystem jena remote control.  \n ” ; 

A.2 The Automatic Monochromator Tuning Script 

The macro ‘monotune.mac’ (Table A.4) is the macro performing automatic adjustments 

to align beam optics.  This macro scans the piezoelectric actuator to locate the best 

monochromator crystal position, which gives maximum photon flux.  The content of this 

macro is shown below. 
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Table A.4  ‘monotune’ Script 

def monotune ’ 

chk_beam_off 

# cscan_off 

plotselect I00 

umvr pzo -10 

dscan pzo 0.2 20 40 .2 

usleep 2.0 

p ser_par ( 0 , ” flush” , 2 ) 

umv pzo pl_xMAX 

chk_beam_on 10000 

# cscan_on 

plotselect det 
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APPENDIX B 

ALGORITHM FOR MONITORING LOCATION OF THE SIMPLE DC MOTOR 

Similar to the piezoelectric actuator controller, some codes to communicate between the 

FOURC main beamline control software and the pulse counter circuit are developed. 

The ‘dcon’ script, shown in the following Table B.1, is used to setup 

communication protocol between FOURC and the counter circuit. 

Table B.1  ‘dcon’ Script 

do DCphiscan.mac ; 

cdef ( ”user_scan_loop” , ” DCphiscan ” , ” DCmotor ” ) ; 

p ” DC motor is now online ! ” ; 

 

 

The ‘dcon’ register predefined functions ‘DCphiscan’ to FOURC system’s 

‘user_scan_loop’ interface, and then registers the print line to indicate the dc motor is 

online. 

The ‘dcoff’ script, shown in the following box Table B.2, is used to clean up the 

communication protocol setup by ‘dcon’ script. 

Table B.2  ‘dcoff’ Script 

cdef ( ” user_scan_loop” , ”” , ” DCmotor ” ) ; 

p ” DC motor is now offline ! ” ; 

 

 

The ‘dcreset’ script, shown in the following box Table B.3, resets the counting 

number in the circuit to zero. 
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Table B.3  ‘dcreset’ Script 

port_put ( x37a , 0xf4 ) ; 

usleep 0.01 

port_put (0x37a , 0xf3 ) ; 

 

 

A predefined ‘DCphiscan function is included in ‘monotune.mac’ macro.  This 

macro is used as a library file in the ‘dcon’ script.  The content of this macro is shown 

below in Table B.4. 
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Table B.4  ‘DCphiscan’ Macro 

long array PHIARRAY[ 4 ] [ 500 ] ; 

global PHIARRAY; 

def DCphiscan ’ 

port_put (0x37a , 0xf3 ) ; 

local integer i , j ; 

local integer raw , angle , angle0 ; 

local integer S00 , S30 , S50 ; 

local integer CS3 , CS0 ; 

PHIARRAY=0; 

for ( j =0; j <60; j ++) { 

on (DATAFILE) ; offt ; 

count_em 1000; 

sleep ( 0.5 ) ; 

get_counts ; 

CS3=S [ 3 ] / 60 ; 

CS0=S [ 0 ] / 60 ; 

raw = port_get (0x378 ) ; 

angle =( ( raw-raw%16) / 16 )%5*100+raw%16*10; 

raw = port_get (0x379 ) ; 

angle = angle + ( raw - 7) / 8 ; 

angle0 =angle ; S30=S [ 3 ] ; S00=S [ 0 ] ; S50=S [ 5 ] * 1000 ; 

for ( i =0; i <1000; ){ 

get_counts ; 
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Table B.4  ‘monotune’ Macro Continued 

raw = port_get (0x378 ) ; 

angle =( ( raw- raw%16) / 1 6 )%5*100+raw%16*10; 

raw = port_get (0x379 ) ; 

angle =( ( raw-raw%16) / 16 )%5*100+raw%16*10; 

raw = port_get (0x379 ) ; 

angle = angle + ( raw -7) / 8 ; 

if ( ( angle==angle0+1 || angle==angle0-499) && S[5]*1000-S50 

<50 && S[3]-S30<CS3*2 && S[3]-S30>CS3/2 && S[0]-S00<CS0*4 

&& S[0] -S00>CS0 / 4 ) { 

PHIARRAY[ 0 ] [ angle ]=PHIARRAY[ 0 ] [ angle ] + 1.  ; 

PHIARRAY[ 2 ] [ angle ]=PHIARRAY[ 2 ] [ angle ] + ( S[3] - S30 ) ; 

S30=S [ 3 ] ; S00=S [ 0 ] ; S50=S [ 5 ] * 1 0 0 0 ; 

i ++; 

angle0 =angle ; } 

if ( angle > angle0+1|| angle < angle0 - 100) { 

S30=S [ 3 ] ; S00=S [ 0 ] ; S50=S [ 5 ] *1000 ; 

i ++; 

angle0 =angle ; } 

} 

} 

stop ( 2 ) ; 

printf ( ” \n@DET ” ) 

for ( i =0; i <500; i ++) { printf (”%i ” ,PHIARRAY[ 1 ] [ i ] ) ; } 

printf ( ” \n@I0 ” ) 

for ( i =0; i <500; i ++) { printf (”%i ” ,PHIARRAY[ 2 ] [ i ] ) ; } 

printf ( ” \n@HIT ” ) 

for ( i =0; i <500; i ++) { printf (”%i ” ,PHIARRAY[ 0 ] [ i ] ) ; } 

printf ( ” \n ” ) 

ont ; off (DATAFILE) ; 



 

 

162 

 

APPENDIX C 

ALGORITHM FOR SOLVING SPHERICAL HARMONIC ANALYSIS MATRIX 

EQUATION WITH MATLAB 

Structure factors can be solved from the spherical harmonic coefficients of the XFH 

hologram with linear algebra; the algorithm is given in the following code in Table C.1. 

The Matlab script first loads pre-calculated matrix elements into the ‘Matrix’ 

variable.  Then the script loads pre-calculated spherical harmonic coefficients in ‘Pa’ and 

‘Pb’ variables.  A division operation for matrices is performed on selected rows and 

columns of the matrix to solve structure factor.  Finally the result is plotted. 
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Table C.1  Matlab Script That Solve the Matrix Equation. 

no_h=678; 

Matrix1=load('Matrix_CuAu_rel5550far.txt'); 

Matrix2=load('Matrix_CuAu_img5550far.txt');               

Matrix=[Matrix1(:,1:no_h),Matrix2(:,1:no_h)]; 

Pa=load('CuAu_Cplx_190A_Pa.txt'); 

Pb=load('CuAu_Cplx_190A_Pb.txt'); 

no_l=99; 

no_m=20; 

Alm=0; 

Blm=0; 

for i=1:no_l 

    for j=1:i 

        Alm(i*(i-1)/2+j)=Pa((j-1)*(Pa(1,1))+i+1,3); 

        Blm(i*(i-1)/2+j)=Pb((j-1)*(Pb(1,1))+i+1,3); 

    end 

end 

fitting=[Alm(1+no_m*(no_m+1)/2:no_l*(no_l+1)/2),Blm(1+no_m*(no_m+1)/2: 

no_l*(no_l+1)/2)]/[Matrix(11+no_m*(no_m+1)/2:10+no_l*(no_l+1)/2,:); 

Matrix(5001+no_m*(no_m+1)/2:5000+no_l*(no_l+1)/2,:)]'; 

rho=fitting(1:no_h); 

iho=fitting(no_h+1:2*no_h); 

plot([rho;iho]'); 
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APPENDIX D 

ALGORITHM FOR SIMULATING XFH HOLOGRAM ON KONG CLUSTER 

Simulation of a XFH hologram requires long computation times for large crystal sizes.  

The NJIT Kong cluster is used to make parallel simulations.  The following code is the 

algorithm on Kong cluster that simulates a CuAu hologram.   

Table D.1  Simulation Configuration Code Block 

#include "mpi.h" 

#include <math.h> 

#include <stdio.h> 

#include <string.h> 

 

#define MODEL_X 83 

#define MODEL_Y 83 

#define MODEL_Z 83 

/*model_x,model_y in mpi, model_z inside matrix */ 

 

#define LconstX 3.96 

#define LconstY 3.96 

#define LconstZ 3.67 

 

#define damp -0.000 

#define RANGE_S 1. 

#define RANGE_L 300. 

 

#define HOLO_phi 1080 

#define HOLO_th  1081 

#define HOLO_K   1 
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The above code block in Table D.1 defines the simulation configuration.  

‘MODEL_X’, ‘MODEL_Y’ and ‘MODEL_Z’ parameters are the number of unit cells in 

the simulated cluster.  ‘LconstX’, ‘LconstY’ and ‘LconstZ’ are unit cell size in unit of 

angstroms.  ‘damp‘ represent the extinction effect.  ‘RA GE_S’ and ‘RA GE_L’ are 

filters that selects atoms that has distance to fluorescent center within range of 

‘RA GE_S’ and ‘RA GE_L’; atoms outside this range are not used in simulation.  

‘HOLO_phi’ and ‘HOLO_th’ are resolutions of simulated holograph.  ‘HOLO_K’ is the 

number of various energy values that are used in simulation. 

Table D.2  Global Variables 

const double K_eng[] = {5.55}; 

int NODES_COUNT; 

int PHIOVERNODE;  

int numprocs; /* Number of processors */ 

 

int MyRank; /* Processor number */ 

double Holo[2000][HOLO_th][HOLO_K]; 

 

The second code block shown in Table D.2 are the global variables in simulation.  

‘K_eng[]’ is the array of energies (wave number) of X-ray photons used in the simulation; 

multiple energy simulations can be defined.  ‘ ODES_COU T’ and ‘numprocs-1’ are 

identically the number of processor nodes allocated to the simulation in the Kong cluster.  

This determines the degree of parallelization in the numerical simulation.  ‘MyRank’ 

stores the id of the processor which runs the current simulation process.  ‘Holo’ is the 

space where the simulated holograph is stored.   
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Table D.3  MPI Interface Initialization Subroutine 

/***********************************************/ 

int init_const(int argc, char *argv[]) 

{ 

 /* Initialize MPI */ 

 MPI_Init(&argc, &argv); 

 /* Find this processor number */ 

 MPI_Comm_rank(MPI_COmm_WORLD, &MyRank); 

 /* Find the number of processors */ 

 MPI_Comm_size(MPI_COmm_WORLD, &numprocs); 

 NODES_COUNT=numprocs-1; 

 PHIOVERNODE=HOLO_phi/NODES_COUNT+1; 

 return(0); 

} 

 

/************************************************/ 

 

The ‘init_const’ subroutine initializes the MPI environment and sets global 

variables for later reference.  This subroutine is run by all processes in the MPI cluster.  

All processes get the same counts of ‘numprocs’ which is the total number of CPUs 

available to the simulation.  Each individual process of ‘init_const’ gets its own 

‘MyRank’ value which is the ID of the processes.   
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Table D.4  ‘main’ Procedure 

/***********************************************/ 

int main(int argc, char *argv[]) 

{  

 /* Initialize MPI */ 

 init_const(argc, argv); 

  

 /* setting up test holograph */ 

 Obj2Ptn(); 

 MPI_Gather(&Holo[MyRank*PHIOVERNODE][0][0],HOLO_th*HOLO_K*PH

IOVERNODE,MPI_DOUBLE,Holo,HOLO_th*HOLO_K*PHIOVERNODE,MPI_DOU

BLE,NODES_COUNT,MPI_COmm_WORLD);  

 if (MyRank == NODES_COUNT) { save_holo(); }  

 

 /* Shut down MPI */ 

 MPI_Finalize(); 

} 

 

/***********************************************/ 

 

The ‘main’ procedure (Table D.4) is the entry point of processes where simulation 

begins.  ‘main’ procedure is dispatched to each allocated processors by MPI environment.  

It first calls ‘init_const’ to initialize the MPI environment and set global variables.  Then 

the numerical simulation is started in ‘Obj2Ptn’ subroutine to generate the numerical 

result of the holograph.  The ‘MPI_Gather’ system call waits and collects simulation 

results from all processors and merges them together.  Then the merged result is stored to 

file system within one of the processes.  ‘MPI_Finalize’ shuts down the MPI 

environment. 
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Table D.5  ‘save_holo’ Subroutine 

/***********************************************/ 

int save_holo() 

{  

 int k,th,phi; 

 char filename[10]; 

 FILE * fp[HOLO_K]; 

 for(k=0;k<HOLO_K;k++) 

 {  

  sprintf(filename,"ptn%d.txt",k); 

  fp[k]=fopen(filename,"w");  

  for(phi=0;phi<HOLO_phi;phi++) 

  { 

   for(th=0;th<HOLO_th;th++) 

   { 

    fprintf(fp[k],"%e ",Holo[phi][th][k]); 

   } 

   fprintf(fp[k],"\n"); 

  } 

  fclose(fp[k]); 

 } 

 return(0); 

} 

/***********************************************/ 

 

The ‘save_holo’ subroutine saves simulated hologram to file system. 
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Table D.6  ‘Obj2Ptn’ Subroutine 

/***********************************************/ 

int Obj2Ptn() 

{ 

 int fold_i; 

 int k,th,phi,x,y,z; 

 double rx,ry,rz,r,costh,cosphi,sinth,sinphi,sindelta,AFS,lorenze;  

  

 for (fold_i=0;fold_i<PHIOVERNODE;fold_i++) 

 { 

  if (MyRank*PHIOVERNODE+fold_i<HOLO_phi) 

  { 

   phi=(MyRank*PHIOVERNODE+fold_i); 

    cosphi=cos((phi+1)*3.141592654/2./HOLO_phi); 

    sinphi=sin((phi+1)*3.141592654/2./HOLO_phi); 

   for(k=0;k<HOLO_K;k++) 

   { 

   for(th=0;th<HOLO_th;th++) 

   { 

    sinth=cos((th)*3.141592654/2./(HOLO_th-1)); 

    costh=sin((th)*3.141592654/2./(HOLO_th-1)); 

   for(x=-MODEL_X;x<=MODEL_X;x++) 

   {  

    rx=LconstX*(x+0.5); 

   for(y=-MODEL_Y;y<=MODEL_Y;y++) 

   {  

    ry=LconstY*y; 

   for(z=-MODEL_Z;z<=MODEL_Z;z++) 

   { 

    rz=LconstZ*(z+0.5); 
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Table D.6  ‘Obj2Ptn’ Subroutine Continued 

r=sqrt(rx*rx+ry*ry+rz*rz); 

if (r>RANGE_S&&r<RANGE_L) { 

sindelta=sqrt(pow(rx/r-costh*cosphi,2)+pow(ry/r- 

  costh*sinphi,2)+pow(rz/r-sinth,2))/2.; 

lorenze=(1+pow(rx/r*costh*cosphi+ry/r*costh*sinphi+rz/r*sinth,2))/2.; 

AFS=12.0658; 

AFS+=16.8819*exp(-0.4611*pow(K_eng[k]/2./3.14159265*sindelta,2)); 

AFS+=18.5913*exp(-8.6216*pow(K_eng[k]/2./3.14159265*sindelta,2)); 

AFS+=25.5582*exp(-1.4826*pow(K_eng[k]/2./3.14159265*sindelta,2)); 

AFS+=5.8600*exp(-36.3956*pow(K_eng[k]/2./3.14159265*sindelta,2)); 

 Holo[phi][th][k]-=cos(K_eng[k]*(r-rx*costh*cosphi-ry*costh*sinphi- 

   rz*sinth))/r*(AFS)*erfc(r/500000.-3)*lorenze; 

 } 

} 

} 

} 

} 

} 

} 

/***********************************************/ 

 

 Table D.6 is the numberical subroutine ‘Obj2Ptn’ that calculates the holograph.  

The algorithm calculates scatter waves for each individual atom on each holograph mesh 

grid.  Different processors are allocated different regions of phi values that are to be 

simulated.  ‘fold_i’ is the number of phi mesh grids that each processor has to simulate.  
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The more processors available, the fewer phi mesh grid points have to be simulated in 

each processor. 
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APPENDIX E 

ALGORITHM FOR FAST SPHERICAL HARMONIC EXPANSION USING 

SPHEREPACK 3.0 

The simulated holograms are expanded in spherical harmonic coefficients using 

SPHEREPACK 3.0 [136].   

Table E.1  Variable Definition Block for ‘test1’ Program 

program test1 

parameter (idp=1801) 

parameter (kdp=3600) 

parameter (lwshp=2*(idp+1)**2+kdp+20, 

1            liwshp=4*(idp+1),lwrk=1.25*(idp+1)**2+7*idp+8) 

parameter (lwrk1=idp*kdp) 

parameter (lwork = 5*idp*(idp-1), 

1   lwsha=idp*(idp+1)+3*(idp-2)*(idp-1)/2+kdp+15) 

double precision work(lwrk) 

dimension sx(idp,kdp),sy(idp,kdp), 

1   wshp(lwshp),iwshp(liwshp),wrk1(lwrk1) 

dimension g(idp,kdp,2),ga(idp,idp,2),gb(idp,idp,2), 

1            gh(idp,kdp,2),gw(idp,kdp,2), 

2            wrk2(lwork),wshaec(lwsha),wshsec(lwsha) 

 real  r,shia(idp,idp),shib(idp,idp),xua(idp,idp),xub(idp,idp)  

dimension t1(2) 

parameter (mode= 0) ! this is operation mode of spherical harmonics 

parameter (pi = 3.1415926535897932384626433832795 ) 

real  E,k0E 

integer nlat,nlon,nt 

common /EKE/ E,k0E,nlat,nlon 
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The SPHEREPACK sample ‘test1’ program is modified to perform spherical 

harmonic expansion on simulated holographs.  Table E.1 is the variable definition block 

for ‘test1’ program.  Most of the variables are defined and used in the spherical harmonic 

algorithm utility and one does not have to specify the meaning of the variables, as they 

are self-explanatory.  Exceptions are the ‘g(idp,kdp,2)’ array which stores the holograph 

to be expanded, the ‘ga(idp,idp,2)’ and ‘gb(idp,idp,2)’ arrays which store the results of 

spherical harmonic expansion.   
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Table E.2  Algorithm in ‘test1’ Program 

call load2d(idp,kdp,g(1:idp,1:kdp,nt)) 

 

write(*,*) 'Program test1, Energy=',E,k0E 

write (*,5) mode,nlat,nlon 

5 format(' mode =' ,i5,'  nlat =',i5,'  nlon =',i5) 

pause 

 

call shaeci(nlat,nlon,wshaec,lwsha,work,lwrk,ierror) 

if(ierror .ne.  0) write(*,70) ierror 

70 format('   ierror0' ,i5) 

 

call shaec(nlat,nlon,mode,nt,g,idimg,jdimg,ga,gb,idimg,idimg, 

1   wshaec,lwsha,wrk2,lwork,ierror) 

if(ierror .ne.  0) write(*,72) ierror 

72 format('   ierror2' ,i5) 

 

call save2d(200,200,Real(ga(1:200,1:200,nt))) 

call save2d(200,200,Real(gb(1:200,1:200,nt)))  

pause 

 

The algorithm block is shown in Table E.2.  First the holograph is loaded into 

‘g(idp,kdp,2)’ array, then the ‘shaeci’ function is called to prepare spherical 

decomposition.  The ‘shaec’ function does the work of spherical decomposition; and, 

finally, the result in ‘ga(idp,idp,2)’ and ‘gb(idp,idp,2)’ arrays are stored in the file system. 

Table E.3 and Table E.4 are subroutines that save and load a 2D array.  Note that 

the data file format for holograph in ‘load2d’ function is different from the data file 
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format in the holograph simulation.  A file format conversion is necessary before putting 

the holograph into the ‘load2d’ subroutine. 

Table E.3  ‘save2d’ Subroutine 

subroutine save2d(nlat,nlon,g)  ! 2D data save 

integer nlat,nlon 

real g(nlat,nlon),E,k0E 

common /EKE/ E,k0E 

open(2,file='') 

write(2,*) nlat, nlon,E 

k0E =   0.5067738826929*E 

do i = 1,nlat 

do j = 1,nlon 

write(2,*) i,j,g(i,j) 

end do 

end do 

CLOSE(2) 

end subroutine save2d 
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Table E.4  ‘load2d’ Subroutine 

subroutine load2d(idp,kdp,g)  ! 2D data load 

integer i,j,nlat,nlon,idp,kdp 

real g(idp,kdp),E,k0E,nlat_,nlon_ 

common /EKE/ E,k0E,nlat,nlon 

open(2,file='') 

read(2,*) nlat_,nlon_,E 

k0E =   0.5067738826929*E 

nlat=INT(nlat_) 

nlon=INT(nlon_) 

if(nlat.gt.idp.or.nlon.gt.kdp) then 

write (*,*) 'Oops! Holograph size too large!' 

pause 

endif 

do i = 1,nlat 

do j = 1,nlon 

 read(2,*) nlat_,nlon_,g(nlat_,nlon_) 

end do 

end do 

CLOSE(2) 

end subroutine load2d 
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APPENDIX F 

ALGORITHM FOR MATRIX CALCULATION FOR SPHERICAL HARMONIC 

ANALYSIS 

The matrix of spherical harmonic analysis is given by: 

      ∑[
        

    
   

 (     )∫   (  )  (      (  ))  ( )   ]  ( ⃗ )

 

 

The algorithm that calculates matrix element 
        

    
    

 (     ) 

 ∫   (  )  (      (  ))  ( )     is modified from the same ‘test1’ program.  The 

modified program uses the same variable definition block and ‘save2D’ and ‘load2d’ 

blocks as shown in Table E.1, Table E.3 and Table E.4. 

The numerical calculation part of the algorithm is shown in Table F.1.  First it 

loads in the sample k-space structure file with ‘load2d’ function (Table E.4).  Then 

Simpson integration of each individual l and structure factor is performed.  The integrand 

of the integration is stored in the ‘J_S_rExp’ subroutine that is shown in Table F.2.   

The calculated integration is then saved to the file system with the ‘save2d’ 

function (Table E.3) 
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Table F.1  Algorithm that Calculates Matrix Element in Spherical Harmonic Analysis 

! Load structure file for structure simulation  

 call load2d(Nhspace,Hspace(:,1:5)) 

  

 write(*,*) 'Program test1, Energy=',E 

write (*,5) mode,nlat,nlon 

5 format(' mode =' ,i5,'  nlat =',i5,'  nlon =',i5) 

 pause 

!simulate Matrix by integration 

!***************************************************************** 

 do n=1, NHspace 

 do l =1,99   

 if(Hspace(n,4).ne.Hspace(n-1,4).or.n==1) then 

 write(*,*) n,l 

 call simpsn(J_S_rExp,l-1,Hspace(n,4),k0E 

1   ,0.05*l,50.0,0.01,1500,g(1,l,2)) 

 end if 

 do m = 1, 1   

 g(2,l,2)=g(1,l,2)*(4*pi)**2/(2*l-1)  

1      *plgndr(l-1,m-1,Hspace(n,3)/Hspace(n,4)) 

 ga(m,l,2)=g(2,l,2)*cos((pi-Hspace(n,5))*(m-1)) 

 gb(m,l,2)=g(2,l,2)*sin((pi-Hspace(n,5))*(m-1)) 

 Hspace(n,10+l*(l-1)/2+m)  = ga(m,l,2) 

 Hspace(n,5000+l*(l-1)/2+m) = gb(m,l,2) 

 end do 

 end do 

 enddo 

  

call save2d(Nhspace,10000,Hspace(1:Nhspace,1:10000)) 
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Table F.2  ‘J_S_rExp’ Subroutine that Represents Integrand 

real function J_S_rExp(l,h,k,ri) 

 real h,k,ri 

 integer l 

 REAL, AUTOMATIC :: J0,Y0,J1,Y1,J2,Y2,J3,Y3,J4,Y4 

  call sphbes(l,k*ri,J1,Y1) 

  J1=(2*l+1)*J1 

  Y1=J1*(-k/ri)        !near field 

  J1=J1*(1./ri**2+k**2)      !near field 

  call sphbes(l,k*ri,J2,Y2) 

  J2=((l+1)**2/(2*l+3)+l**2/(2*l-1))*J2 

  Y2=J2*(3*k/ri)       !near field 

  J2=J2*(-3./ri**2+k**2)      !near field 

  call sphbes(abs(l-2),k*ri,J3,Y3) 

  J3=-l*(l-1)/((2*l-1))*J3  

  Y3=J3*(3*k/ri)       !near field 

  J3=J3*(-3./ri**2+k**2)      !near field 

  call sphbes(l+2,k*ri,J4,Y4) 

  J4=-(l+1)*(l+2)/(2*l+3)*J4 

  Y4=J4*(3*k/ri)       !near field 

  J4=J4*(-3./ri**2+k**2)      !near field 

  call sphbes(l,h*ri,J0,Y0) 

 J_S_rExp=J0*ri*exp(-0.0001*ri**2)*CMPLX(cos(k*ri),sin(k*ri))) 

1     *real(CMPLX(J1+J2+J3+J4,Y1+Y2+Y3+Y4) 

 return 

 end function J_S_rExp  
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APPENDIX G 

PROCEDURE FOR A COMPLETE SPHERICAL HARMONIC SIMULATION 

A complete spherical harmonic simulation takes many steps in many different 

environments.  A summary of the procedure is given here:  

 Run MPI program on Kong cluster to simulate hologram. 

 Run spherical harmonic expansion program to transform the simulated holograph 

into its spherical harmonic coefficents.   

 

 Run matrix calculation program to produce the matrix file. 

 Run the Matlab script that sovle the matrix equation. 
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