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ABSTRACT 

USE OF FLUORESCENT MICROSPHERES TO MEASURE CORONARY 

FLOW RESERVE IN RAT ANIMAL MODEL  

 

by 

 

Riddhi Harsh Shah 

Heart attacks result from reduced or blocked blood flow through major coronary arteries, 

resulting in permanent damage to heart muscle.  Coronary blood flow (CBF) is thus 

important to measure in experimental animal models of heart disease. A standard method 

to measure CBF uses tracer microspheres (Ø = 15 µm) injected into the left ventricle that 

flow through coronary arteries but cannot pass through capillaries and so become trapped 

in heart muscle. Previously, radioactive or colored microspheres have quantified the 

number of tracers trapped in the muscle.  Fluorescent microspheres offer a more recent 

and more sensitive measurement mode. However, fluorescent microspheres have not 

often been used to measure CBF in small animals (rats, mice) that are now the most 

common animal models used in heart research. This thesis aimed to develop the 

techniques for use of fluorescent microspheres to measure CBF in rat animal models used 

by the cell biology laboratories at UMDNJ-Newark. Two non-overlapping fluorescent 

wavelengths were chosen (yellow-green; red). Using a spectrophotometer, fluorescence 

intensity was calibrated for known numbers of microspheres (set via controlled dilution).  

CBF in two rats was measured at rest and during maximal vasodilation (adenosine) using 

procedures for colored microspheres. After euthanasia, hearts were removed, and blood 

samples and left ventricular tissue were processed using a sedimentation method for full 

recovery of fluorescent microspheres, which were scanned through the spectrophotometer 



 

 

to count fluorescence intensity. Using the predetermined calibration curve, the number of 

microspheres in each sample was determined; from this CBF was calculated. CBF 

averaged 5.9 ml/min/g at rest, which was within the normal range for rats quoted in 

recent literature.  With maximal vasodilation, CBF increased to an average of 12.9 

ml/min/g, which indicated a coronary flow reserve that was 2.2 times the resting level.  

The same value for coronary flow velocity reserve (2.2) was measured in 6 rats using 

Doppler echocardiography. The consistency of these results suggests that the procedures 

developed for fluorescent microspheres lead to repeatable and reliable measurement of 

coronary blood flow in rats. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Heart Attack and Coronary Blood Flow 

Heart disease and related conditions affect 12 million Americans and cost $274 billion a 

year [5]. It is the leading cause of death in United States [5]. Unfortunately, many people 

do not realize any potential problems with their heart until they have a heart attack. The 

treatments are generally expensive. The patient has to undergo coronary bypass or 

coronary angioplasty surgery. Today’s lifestyle, eating habits and drinking habits are the 

major cause of heart attacks and stroke [5].  A heart attack occurs when blood vessels that 

supply blood to the heart are blocked, preventing enough oxygen from getting to the 

heart, resulting in death or permanent damage of heart muscle.  

In atherosclerosis, plaque builds up in the walls of coronary arteries. This plaque 

is made up of cholesterol and other cells. A heart attack can occur as a result of the 

following: 

1) The slow buildup of plaque may almost block one of the coronary arteries. A heart 
attack may occur if not enough oxygen-containing blood can flow through this blockage. 
This is more likely to happen during exercise. 
 
2) The plaque itself develops cracks (fissures) or tears. Blood platelets stick to these 
tears and form a blood clot (thrombus). A heart attack can occur if this blood clot 
completely blocks the passage of oxygen-rich blood to the heart. This is the most 
common cause of heart attack. 

 
3) Sudden, significant emotional or physical stress, including an illness, can trigger a 
heart attack, too. 
 

Slow build up of plaque and blockage of coronary arteries is the cause of heart 

attacks. Researchers say that there are two types of plaque: soft plaque, also known as 
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vulnerable plaque, and hard plaque, also known as healed plaque. Soft plaque poses more 

risk to cause a heart attack. Soft plaque produces a small bump beneath the inner lining of 

an artery, the endothelium. If the plaque cracks open or is torn up, it punctures a hole in 

endothelium and thus exposes the contents of plaque to the cells in the blood stream. A 

blood clot then develops at the site of this “injury” as part of what in other circumstances 

would be a healing process. This clot (along with a possible spasm of the affected artery) 

is what most commonly causes obstruction of blood flow, resulting in a heart attack. The 

amount of damage to the heart muscle depends on the size of the area supplied by the 

blocked artery and the time between injury and treatment [18]. 

The coronary arteries carry blood to the heart muscle. Because the heart muscle is 

continuously working (as opposed to other muscles of the body, which are often at rest), 

it has a very high requirement for oxygenated blood. The coronary arteries are vitally 

important for supplying that blood, and allowing the heart to work normally. Because a 

blockage in any of the coronary arteries produces a heart attack or myocardial infarction, 

special care must be taken to monitor coronary arteries and measure coronary blood flow. 

 

1.2 Significance of Coronary Blood Flow 

Coronary arteries are the major arteries that carry oxygenated blood to the heart muscle. 

Two major coronary arteries arise from the aorta- the right coronary artery (RCA) and the 

left main coronary artery (LM). The left main artery quickly branches into two large 

arteries – the left anterior descending artery (LAD) and the circumflex artery. All of these 

coronary arteries lie on the surface of the heart and distribute oxygenated blood to 

different regions of the heart muscle. In case of normal, non-diseased vessels, they have 
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low vascular resistance relative to their more distal and smaller branches that comprise 

the microvascular network [17]. 

 

 

                             
Figure 1.1 Coronary circulation in the heart [7] 
(Source: http://www.cvphysiology.com/Blood%20Flow/BF001.htm) 
 

http://www.cvphysiology.com/Blood%20Flow/BF001.htm
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The important features of coronary blood flow:  
 
1) Flow is tightly coupled to oxygen demand. In non-diseased coronary vessels, 
whenever cardiac activity and oxygen consumption increases, there is an increase in 
coronary blood flow that is nearly proportional to the increase in oxygen consumption. 
 
2) Good autoregulation between 60 and 200 mmHg perfusion pressure helps to maintain 
normal coronary blood flow whenever coronary perfusion pressure changes due to 
changes in aortic pressure. 
 
3) Adenosine serves as a metabolic coupler between oxygen consumption and coronary 
blood flow.  
 
4) In the presence of coronary artery disease, coronary blood flow may be reduced. This 
will increase oxygen extraction from the coronary blood and decrease the venous oxygen 
content [7]. 
 

Since oxygenated blood supplied by coronary arteries is an essential factor for 

heart muscle to function normally, it is of prime importance to check for the ability of 

coronary arteries to deliver the required blood flow.  

 

1.3 Use of Laboratory Animals in Biomedical Research 

An animal model represents some, most, or all aspects of a normal or abnormal condition 

in another animal or human being. Abnormal model conditions may be inherited, 

spontaneous, or experimentally-induced. Because of a large number of people suffering 

from heart disease, cerebral strokes, and many other such diseases, tests are being 

performed on animals. Also, death rates are declining because of advances in diagnosis, 

treatment and prevention made through animal research. Between 17 million and 22 

million animals have been estimated annually to be used in biomedical and behavioral 

research, education and testing. About 85% of these are rats and mice, and less than 2% 

are cats, dogs and non-human primates. In the past, most cardiovascular research was 
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performed using canine animal models.  For example, the use of dogs as animal models 

made open-heart surgery through the use of a heart lung machine possible today in 

human beings. Surgery to replace heart valves and large arteries has also been made 

possible only after experimenting on dogs. Although the use of dogs has proved quite 

effective in cardiovascular research, in the last two decades, the use of mice and rats has 

increased to a greater extent, so that now they are the most common animal models [30].  

The commercial availability of rats and mice, plus their small size, high 

reproductive rate, and minimal costs of purchase and maintenance, have made them the 

most studied and perhaps best understood laboratory animal species. In addition, they are 

understood and characterized anatomically, physiologically and genetically. Several 

stocks of rats and mice have withstood the process of inbreeding, allowing the 

commercial production of a large variety of inbred strains and providing the researcher 

with thousands of genetically similar individuals. A large number of mutant strains and 

stocks, with naturally occurring anatomical, physiological, or biochemical diseases, have 

been developed as animal models for similar conditions in humans and other animals. 

They are amenable to germ-free and pathogen-free production techniques, thereby greatly 

reducing attendant, unwanted disease as a variable. Large databases on rodents are 

available as a result of years of selective breeding designed to meet specific research 

requirements for models of human disease [11].  

Mice are used for a broad range of research. Their relatively short life span makes 

them useful in aging research. Mice are the primary mammal used in genetics research 

because of their high reproductive potential and short generation time. They are also used 
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widely in drug testing and cardiovascular research because they respond favorably and 

are economical to use in large numbers [12].  

Transgenic studies in mice have introduced new and valuable strains and 

mutations to biomedical research. Transgenics are produced when foreign DNA is 

integrated into animal cells by experimental means. Such foreign DNA can mimic the 

changes in DNA that cause inherited disease in humans.  In addition, changes in DNA 

produce altered proteins whose function differs from normal, which offers basic scientists 

a method to study the function of these proteins. Mice are ideal for transgenic use due to 

their pronuclei, which are suitable for manipulation [12]. 

 

1.4 Techniques Used Previously to Determine Blood Flow in Rats and Mice 

Radioactive microspheres had originally become the gold standard for measuring 

regional organ perfusion since the technique was introduced in 1967, by Rudolph and 

Heymann for examining regional blood flow in sheep fetuses in utero [35]. This 

technique became an essential tool in cardiovascular research by enabling measurements 

of regional blood flow in any organ. Regional blood flow is proportional to the number of 

microspheres trapped in that region of tissue following injection of the microspheres 

upstream – usually in the left ventricular chamber [35]. Methods for quantifying the 

number of microspheres per sample depends on the label used to track the microspheres, 

the most common being the measurement of nuclear isotope decay from radiolabeled 

microspheres. However the use of radiolabeled microspheres was becoming restricted 

because of the health risks for both the user and the animal in chronic studies, requiring 
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special precautions during the experiments and subsequently during disposal of the 

animals and tissue samples.  

A number of non-radioactive techniques have been proposed, including the use of 

colored microspheres [8][16][23][38] and X-ray fluorescent microspheres [26-27]. But 

they too were not compatible in many different aspects. Colored microspheres 

underestimated regional blood flow since they had limited resolution due to significant 

spectral overlap among different colors, while data variance was high as a result of low 

signal intensity [8][19][27]. The measurement system used for X-ray fluorescent 

microspheres was expensive and available rarely and not in common use [32].  

Consequently, techniques using optically fluorescent microspheres were 

developed to measure regional organ blood flow.  These techniques have been validated 

against traditional radioactive methods, and they provide estimation of regional blood 

flow for about half the cost of radiolabeled microspheres [31-32][38]. Optically 

fluorescent methodologies are currently being used world-wide in cardiovascular 

research.  

 

1.5 Use of Fluorescent Microspheres to Determine Coronary Blood Flow in Animals 

Microsphere methods provide information on regional perfusion between and within 

organs that is more detailed than that available from blood-flow probes, which can only 

be placed around one or two large arteries. Recently, fluorescent microspheres have 

become more commonly used in experiments as they offer numerous advantages as 

compared to radioactive and colored microspheres: 

a) Fluorescent microspheres are cost effective as compared to radioactive microspheres 
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b) Fluorescent microspheres eliminate the hazard and disposal problems caused as in use 

of radioactive microspheres 

c) Blood flow measurements in kidney, lung, pancreas, adrenal glands and teeth are 

easily feasible using fluorescent microspheres 

d) Fluorescent microspheres offer a shelf life of at least one year, so they can be retained 

in the tissue organ which is not possible in case of radioactive microspheres that have 

short lives and their retention is harmful to the tissue organ. 

e) Lastly, fluorescent microspheres offer higher sensitivity, superior color separation 

and greater ease of measurement as compared to colored and radioactive microspheres 

[2][22].  

Fluorescent microspheres have been used for the determination of blood flow in 

lung, kidney and myocardium of dog [1][13]. They have been used for the determination 

of blood flow in myocardium, brain, kidney and skeletal muscle of pig [13][19][25] and 

myocardium of rabbit [2][6]. In addition to absolute blood flow, fluorescent microspheres 

have been used for determination of relative blood flow in different tissues such as liver, 

brain, spleen of dog [38] and regional adrenal gland blood flow in fetal sheep [4]. 

Fluorescent microspheres have even been used to estimate the cardiac output in chick 

embryos [29]. Recently, fluorescent microspheres have been used for determination of 

regional and systemic hemodynamics in rats. Given the validation of fluorescent 

microspheres in rats, fluorescent microspheres have even been attempted for assessment 

of regional and systemic hemodynamics in genetically modified mice [34]. 

Fluorescent microspheres have been used for a wide range of applications 

including blood flow determination, tracing, in vivo imaging, calibration of images and 
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flow cytometry. As the fluorescent dye is incorporated throughout the bead and not just 

on the surface, they are relatively immune to photobleaching and other environmental 

factors. Fluorescent microspheres are available in many different colors: Red, Orange, 

Crimson, Blue, Yellow-green, Green, Blue-green, Scarlet. Each color exhibits a unique 

pair of optical excitation and emission wavelengths. This allows researchers to study the 

effects of multiple physiological variables in the course of a single experiment. The exact 

excitation and emission spectra depend on the solvent used to extract the fluorescent 

dyes. The principal advantage of fluorescence over radioactivity and absorption 

spectroscopy is the ability to separate compounds on the basis of either their excitation or 

emission spectra, as opposed to a single spectrum, as in colored microspheres. 

Fluorescent microspheres are now an emerging technique used in rodents for the 

measurement of regional tissue blood flow. In a few labs, they have been tested on 

myocardial infarction models and pressure overload hypertrophy models in rodents. 15-

micron diameter fluorescent microspheres have also been used to measure cerebral blood 

flow in rats [9]. Measurement of bone blood supply in mice has been recently determined 

by using fluorescent microspheres [36].  However, fluorescent microspheres have not yet 

been used in rodent animal models by the cardiovascular research laboratories at the New 

Jersey Medical School, a division of the University of Medicine and Dentistry of New 

Jersey (UMDNJ).  The work in this thesis lays the groundwork that will enable the use of 

fluorescent microspheres to determine coronary blood flow in rodent animal models in 

the cardiovascular laboratories at UMDNJ. 
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1.6 Calculation of Myocardial Blood Flow by use of Fluorescent 
Microspheres 

 
Fluorescent microspheres can be used for the measurement of regional blood flow 

without any concern of spillover of emitted fluorescence. Fluorescent microspheres are 

chemically stable and exhibit no dye leaching in aqueous environments, including strong 

acid and base solutions. The high fluorescent dye content of each individual microsphere 

allows rapid identification and accurate quantification in a liquid suspension containing 

varying levels of background cellular debris [26]. 

To measure myocardial blood flow, microspheres are injected into the left 

ventricle of an experimental animal. The microspheres mix uniformly with the arterial 

blood and flow with it. Some microspheres flow into the blood going through the 

ascending aorta and on to all other parts of the body, and some microspheres are 

distributed into the blood flowing through the coronary arteries.  In the heart tissue fed by 

the coronary arteries – as well as in all other body tissues – the microspheres become 

trapped in the microvasculature because their diameter is too large to allow them to pass 

through capillaries.  

To be able to relate the amount of blood flow in a specific tissue to the number of 

microspheres trapped in that tissue, a reference sample of blood flow must be obtained at 

the same time that the microspheres are injected and flowing throughout the entire 

systemic arterial circulation.  This reference blood flow is usually obtained via a catheter 

placed through the femoral artery into the abdominal aorta of the animal. The magnitude 

of the reference blood flow is controlled and accurately determined by using a high-

precision syringe pump to withdraw a precisely known blood flow through the aortic 

catheter. 
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After mixing well with the blood in the left ventricle, the concentration of the 

injected microspheres is the same in all the arterial blood flowing to all tissues in the 

body.  Thus, the number of microspheres trapped in a particular tissue will be 

proportional to the magnitude of the blood flow going to that tissue.  This proportion also 

holds for the blood flow going into the reference blood-flow sample.  Consequently, the 

following equation is valid:  

Blood flow to heart       =       Number of microspheres in heart sample 
               Reference blood flow             Number of microspheres in blood sample       (1.1) 

Following extraction and quantification of the number of fluorescent 

microspheres from both the heart tissue and the reference blood sample, all of the values 

in the formula are known except for the coronary blood flow.  Hence, this formula 

enables the calculation of the coronary blood flow. 

 

1.7 Use of Doppler Echocardiography to Determine Coronary Blood Flow 

Another technique to measure coronary blood flow is needed to test the validity of the 

measurements by fluorescent microspheres that are planned for the research in this thesis, 

the velocity of blood flow can also be measured by Doppler echocardiography [20], and 

data from this second technique will be used in this thesis. 

An echocardiogram is a sonogram of the heart. This method uses standard 

ultrasound techniques to image two-dimensional slices of the heart. In addition to 

creating two-dimensional pictures of the heart or other structures in the cardiovascular 

system, an echocardiogram can also measure the velocity of blood at any arbitrary point 

using the Doppler shift measured in the returning ultrasound echo. Such Doppler 

echocardiography is often used to assess cardiac valve function and to look for any 
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abnormal fluid pathways communicating between the left and right sides of the heart.  It 

is also used to measure cardiac output by measuring the velocity of blood flow in the 

aorta. The Doppler effect (or Doppler shift) is the change in frequency of a sound wave 

when the source of the wave is moving with respect to the observer. Doppler 

echocardiography is a procedure which uses ultrasound technology to examine the 

velocities of motion of blood within and around the heart and also velocities of the heart 

tissue itself [37].  Doppler measurements of coronary blood velocity have been made in 

human subjects [20]. In addition to measurements in humans, transthoracic Doppler 

echocardiography has also proved to be reliable in measurement of coronary blood flow 

and coronary flow reserve in rat and mouse animal models [14-15].  

During our comparison study, pulsed-wave Doppler echocardiography will be 

used to determine coronary blood flow in rats. Pulsed wave (PW) Doppler systems use a 

transducer that alternates transmission and reception of ultrasound in a way similar to an 

M-mode ultrasound transducer [37]. One main advantage of pulsed Doppler is its ability 

to provide Doppler shift data selectively from a small segment along the ultrasound 

beam, referred to as the "sample volume". The location of the sample volume is operator 

controlled. An ultrasound pulse is transmitted into the tissues and travels for a given time 

(time X) until it is reflected back by a moving red cell. It then returns to the transducer 

over the same time interval but at a shifted frequency. The total transit time to and from 

the area is 2X. Since the speed of ultrasound in the tissues is constant, there is a simple 

relationship between roundtrip travel time and the location of the sample volume relative 

to the transducer face (i.e., distance to sample volume equals ultrasound speed divided by 
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round trip travel time). This process is alternately repeated through many transmit-receive 

cycles each second [10]. 

This range gating is therefore dependent on a timing mechanism that only samples 

the returning Doppler shift data from a given region. It is calibrated so that as the 

operator chooses a particular location for the sample volume, the range gate circuit will 

permit only Doppler shift data from inside that area to be displayed as output. All other 

returning ultrasound information is essentially "ignored" [10].  Hence, the blood velocity 

can be determined exclusively from one small region – in our case from one of the 

coronary arteries on the heart. 

 

1.8 Specific Aims of this Thesis 

This research study had four primary aims: 

1) To develop techniques for reliably measuring the number of fluorescent microspheres 

in a sample by using a commonly available laboratory fluorescent spectrophotometer. 

2) To develop techniques for reliably recovering 100% of microspheres in a tissue or 

blood sample by using the sedimentation method  

3) To test the ability of fluorescent microspheres to reliably measure coronary blood flow 

in rats by comparing results of the coronary blood flow reserve obtained using 

fluorescent microspheres with flow reserve measurements from Doppler 

echocardiography. 

4) To test the repeatability of fluorescent microsphere measurements of coronary blood 

flow in rats.   
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CHAPTER 2 
 

DETERMINATION OF CALIBRATION CURVES 

FOR FLUORESCENT MICROSPHERES 

 

 
2.1 Principles of Fluorescence Spectrophotometry 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy which analyzes 

fluorescence from a sample. Spectrophotometers use the principle of fluorescence 

spectroscopy. Spectrophotometers use the diffraction grating monochromators to isolate 

the incident light and fluorescent light to narrow ranges of wavelengths. They use the 

following scheme: The light (often from a broadband excitation source) passes through a 

filter or monochromator, and strikes the sample. A proportion of the incident light is 

absorbed by the sample, and some of the molecules in the sample fluoresce. The 

fluorescent light is emitted in all directions. Some of this fluorescent light passes through 

a second filter or monochromator and reaches a detector, which is usually placed at 90° to 

the incident light beam to minimize the risk of transmitted or reflected incident light 

reaching the detector. 

Various light sources may be used as excitation sources, including lasers, 

photodiodes, mercury-vapor lamps, and halogen arc lamps.  A laser only emits light 

within a very narrow wavelength interval, typically less than 0.01 nm, which makes an 

excitation monochromator or filter unnecessary. The disadvantage of this method is that 

the wavelength of a laser cannot be varied easily. A mercury vapor lamp is a line lamp, 

meaning it emits light only at several specific wavelengths. By contrast, a halogen arc 

lamp has a continuous emission spectrum with nearly constant intensity in the range from 

300-800 nm 

http://en.wikipedia.org/wiki/Mercury-vapor_lamp
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Filters and/or monochromators are often used in spectrophotometers. The most 

common type of monochromator utilizes a diffraction grating; that is, collimated light 

illuminates a grating and exits with a different angle depending on the wavelength. By 

selecting the monochromator, light with an adjustable central wavelength and with an 

adjustable bandwidth can be used to excite the fluorescence in the sample and to limit the 

range of emitted light that will be detected. 

 

2.2 Biotek Instruments FL 500 Microplate Reader 

The specific spectrophotometer used in this research was contained within a microplate 

reader. They are widely used in research, drug discovery, validation, quality control and 

manufacturing processes in the pharmaceutical and biotechnological industry and 

academic research. The most common microplate format used in academic research 

laboratories or clinical diagnostic laboratories has 96-wells (arranged in an 8 by 12 

matrix) with a typical reaction volume between 100 and 200 µL per well. 

                                
 

Figure 2.1  Microplate reader used for fluorescence spectrophotometry [3].    
(Source: Manual for Bio-Tek Instruments FL500 Microplate reader, accessed on April,2011)        

 

http://en.wikipedia.org/wiki/Collimated
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Figure 2.1 shows an example of the Bio-Tek Instruments FL500 Microplate 

Reader that was used to calculate fluorescence intensity from samples containing 

microspheres. It works on the following principle: a halogen lamp provides broadband 

illumination, which is then restricted to a narrower bandwidth by passing through an 

optical filter (the excitation filter). As a result of this optical excitation, the sample emits 

light (it fluoresces) and a second optical system (emission system) collects the emitted 

light over a different narrow band of wavelengths using a second optical filter (the 

emission filter).   This system collects and filters fluorescent light that was emitted at 90° 

to the incident excitation.  A photo-multiplier tube (PMT) quantifies the intensity of the 

resulting fluorescent light.  

The fluorescence filters are arranged in filter wheels: four excitation filters and 

four emission filters were provided.  The selection of filters available in the particular 

instrument used in this research is shown in Figure 2.2.  Each filter’s central wavelength 

and bandwidth (in nm) are specified. Spectral representations are shown on the next page. 

 
Figure 2.2   Selection of excitation and emission filters in BioTek FL500 [3].  
(Source: Manual for using Bio-Tek Instruments FL500 Microplate reader, accessed on April, 2011) 
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  Figure 2.3  Spectra of emission filters available in the Bio Tek FL500. 
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Figure 2.4  Spectra of excitation filters available in the Bio Tek FL500. 
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2.3  Fluorescence Spectra of Commercial Microbeads 

As mentioned in Chapter 1, two suppliers (Molecular Probes and Triton Technology) 

provide microbeads that contain a range of fluorescent dyes.  The set of emission 

wavelengths for microbeads available from the supplier chosen for this research (Triton 

Technology) are shown in Figure 2.5. This figure was generated by fitting each emission 

spectrum to a skew-normal distribution.  Only by having such a variety of emission 

spectra – and limited bandwidth detectors – can multiple measurements of coronary 

blood flow be performed in the same experimental animal, since all injected beads 

become lodged together in the same tissue sample and could fluorescence.    
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 Figure 2.5   Spectra of emitted fluorescence from a suite of commercial microbeads. 
                      Data for the peak frequency and bandwidth is obtained from [21]. 



19 
 

 Additional separation between the fluorescent signals from multiple varieties of 

beads embedded in a tissue sample can be obtained by taking advantage of the different 

excitation spectra for the fluorescent dyes in the beads.  Fluorescence is excited by 

photons of higher energy than the photons that are released during fluorescence.  By 

Planck’s law, these higher energy photons have higher frequency and thus shorter 

wavelength.  Some photon energies are better able to excite the fluorescent response of 

the dye, and this “efficiency” of excitation is expressed as the excitation spectrum for the 

fluorescent response.  For example, the excitation spectrum and the emission spectrum 

for yellow-green fluorescent microbeads is shown in Figure 2.6  The excitation spectrum 

–in blue – peaks at a lower wavelength (higher frequency and energy); in this case, the 

difference is 10 nm.  For the greatest excitation of fluorescence, the excitation should  

 
Figure 2.6 Excitation (blue) and emission (red) spectra for yellow-green dye [33].   
(Source: http://probes.invitrogen.com/media/spectra/8811h2o.jpg)  

http://probes.invitrogen.com/media/spectra/8811h2o.jpg
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occur at wavelengths near this peak.  Note that the excitation efficiency falls off quickly 

for slightly longer wavelengths, while there is a greater extent of efficient excitation for 

wavelengths somewhat shorter than the best wavelength.  If the excitation of fluorescence 

is to be minimized when assaying for another variety of bead in a tissue sample, then the 

exciting wavelengths could be limited by a filter to wavelengths well away from the peak 

excitation “efficiency”. 

 Note that the spectrum of emitted fluorescent light is the same no matter what 

wavelength is used to excite the fluorescence [24]. This occurs because the variety of 

molecular vibrational modes excited when the dye molecule absorbs photons from a 

variety of wavelengths all die out quickly (within 10-14 to 10-10 sec).  Thus, the dye 

molecule quickly reduces its vibrational energy to a common minimal state before the 

fluorescent photon emission event occurs, an event which happens on a much slower time 

scale (10-9 to 10-7 sec) [24]. 

 

2.4 Choice of Fluorescent Dyes used in Microbeads 

The goal of this thesis was to measure coronary flow reserve. Thus, two successive 

measurements of coronary flow were required: (1) with the rat at a baseline resting state, 

when coronary flow will be minimal, and (2) during infusion of a vasodilator, when the 

coronary flow will be maximal.  Consequently, microbeads with two different dyes must 

be infused, and both varieties will remain simultaneously embedded in the tissue samples 

to be assayed by fluorescent spectrophotometry.  The particular pair of microbead dyes to 

use must be chosen so that their fluorescent signals can be essentially completely 
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separated by a judicious choice of the emission spectra of the dyes themselves and by the 

excitation and emission filters available in the spectrophotometer. 

Several experimental factors affected the choice of the two microbead dyes.  

Firstly, two of the chemical components used in processing the tissue and beads (the 

solvent 2-ethoxy-ethyl-acetate and the detergent Tween 80) both possess intrinsic 

fluorescent properties themselves, and their fluorescence is emitted in the blue part of the 

spectrum.  Consequently, microbeads with blue and blue-green dyes were not chosen for 

this project.  Secondly, photomultiplier tubes are generally less sensitive to longer 

wavelengths, so the dye having the longest emission wavelength (crimson) was not 

chosen so that the detection system would maintain the best possible sensitivity. The 

remaining three dyes were:  yellow-green, orange, and red.  As Figure 2.5 showed, the 

emission spectrum of the orange dye overlapped significantly with both of the other two.  

Hence, the orange dye was not chosen. 

The two selected microbead dyes were thus (1) yellow-green, and (2) red.  Their 

emission spectra did not overlap significantly.  Moreover, as the next section shows, the 

choice of excitation and emission filters made it possible that there was essentially 

complete separation between the fluorescent signals that would be measured from the two 

beads in the spectrophotometer – even when they both co-existed in the same tissue 

sample. 

 



22 
 

2.4 Choice of Excitation and Emission Filters 

Table 2.1 (below) reports the filter set chosen to be used when the fluorescence signal 

from either of the two chosen microbeads was to be measured.  The emission filter best 

matched to the yellow-green emission spectrum (Figure 2.5) is the second one from the 

left shown in Figure 2.3, which has maximum transmittance at 530 nm.  Similarly, the 

emission filter best matched to the red emission spectrum is the right-most one shown in 

Figure 2.3, which has maximum transmittance at 645 nm. The transmittance spectra from 

these two filters do not overlap, which enhances the separation of the fluorescent signals 

when both dyes coexist. 

The excitation spectrum for yellow-green dyed microbeads was shown in Figure 

2.6; 505 nm was the wavelength that most efficiently excited their fluorescence.  The 

excitation filter that best matched this excitation spectrum was the left-most one shown in 

Figure 2.4, which has maximum transmittance at 485 nm.  The excitation spectrum for 

red dye peaked at 580 nm, so the right-most filter shown there (peak = 590 nm) was 

chosen for this case.  Note that the spectra from the two excitation filters do not overlap, 

which – just as in the case for the emission filters – further enhances the separation of 

fluorescent signals.    

Table 2.1 Filters providing best match to excitation and emission spectra 
 

Fluorescent 
Color 

Wavelength at 
Peak Emission 

 
(nm) 

Emission Filter 
Center of 

Transmittance 
(nm) 

Wavelength for 
Best Excitation 

 
(nm) 

Excitation Filter 
Center of 

Transmittance 
(nm) 

Yellow - Green 515 530 505 485 

Red 605 645 580 590 
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2.6 Determination of Calibration Curve 

As explained in Chapter 1, the number of microbeads trapped in a tissue sample is the 

key measure used in the tracer method to determine coronary blood flow.   The 

fluorescent intensity of a tissue sample containing embedded microbeads provides a 

measure proportional to the number of microbeads contained in that sample.  However, 

both the proportionality constant and any offset must be determined by a calibration 

procedure before the fluorescent signal can be related quantitatively to the number of 

microbeads. 

Calibration requires measuring the fluorescence of solutions containing known 

numbers of microbeads. The most difficult part here is developing a reliable procedure 

that will accurately set the number of microbeads in a solution.  The starting point for this 

procedure is the known concentration of microbeads in the stock solution of microbeads 

provided by the supplier. The microbeads we used were packaged in a solution 

containing 1 million microspheres per milliliter. By accurately diluting this stock 

solution, and by accurately measuring out known volumes of these dilute solutions, a 

variety of samples containing known numbers of microbeads were prepared. 

The number of microbeads in the calibration samples should span the range 

anticipated to occur in the tissue samples. A large number of microbeads would be on the 

order of 10,000 to 20,000. The minimum number of microbeads that provides a reliable 

statistical estimate is on the order of 400.  Calibration standards spanning this range were 

prepared. 

Appendix I provides the detailed steps in the procedure used to prepare the 

calibration standards. Briefly, the first step was to prepare a 10:1 diluted solution of 
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microbeads.  This solution would thus have 100,000 microbeads per milliliter.  Since the 

sample size used in the wells of the 96-well plate is 100 µl, a sample drawn from this 

solution would contain 10,000 microbeads.  This is the maximum number that was used 

in a calibration standard. Subsequent 2:1 dilutions then produced standards containing: 

5000, 2500, 1250,  625,  and 312 microbeads.  These standards spanned the range over 

which calibration was performed. 

 During the dilution and sample loading procedure, extreme care was taken to 

maintain the microspheres in solution and to prevent clumping and aggregation of 

microspheres. A small amount of detergent (Tween 80) was used in the diluting solutions 

to minimize clumping and aggregation, and solutions were often agitated vigorously in a 

vortex mixer. 

 Accurate measurement of solution volumes was also required. This was 

accomplished using well-calibrated mechanical pipettes, which are common in 

biochemical laboratories.  Following the proper pipetting procedure was also important. 

 

2.7 Results of Calibration Curves 

Five replicate determinations of a calibration curve were performed for each of 

the two varieties of microbeads used in this study.  Table 2.2 and Figure 2.7 provide 

typical results for one such calibration curve, which was performed on solutions 

containing yellow-green microspheres. Appendix II provides similar detailed results for 

all of the 10 calibration curves. Each calibration curve maintained a tight linear relation 

between microbead number and fluorescence intensity. The R2 values for linear 

regression were all above 0.9936, and most were above 0.9990. 
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Table 2.2 Typical calibration measurements for yellow – green microspheres 
Number 

Of 
Microspheres 

Fluorescent 
Intensity 

(arbitrary units) 

10,000 8683 

5,000 4288 

2,500 2100 

1,250 1001 

625 528 

312 300 

 
 

 

 
            Figure 2.7  Typical calibration regression line for yellow-green microspheres 
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However, the replications of the calibration curves did not all produce slopes of 

the regression lines that were in close agreement with one another (see Figures 2.8 and  

2.9).  Since each individual regression line was rather linear without much scatter, it 

seemed likely that the major contribution to the disagreement among regression lines 

arose due to experimental uncertainty in the first step of the calibration procedure.  The 

stock solution may not have been sufficiently well-mixed when the sample was 

withdrawn, or there may have been some error in withdrawing a 1 ml volume into a 

plastic syringe, since a calibrated pipette could not perform this step.  

 

2.8 Averaging calibration curves 

To overcome the uncertainty in the regression coefficient, the results from the 5 replicate 

calibration curves were averaged together for each variety of microbead. Averaging was 

thought to reduce the uncertainty introduced during the initial microbead withdrawal 

from the stock solution.  Tables 2.3 and 2.4 on the next pages report the averaging 

process.  Each averaged relationship then became the standard calibration curve for that 

color microsphere, which was used to convert the fluorescence from a tissue sample into 

the number of microspheres contained within that sample. 

The final calibration curves were: 

For yellow green microspheres: If = 0.9256 Ns   - 4.9102 
 

For red microspheres:   If = 1.0954 Ns   + 0.8414 
 

where If is the fluorescent intensity and Ns is the number of microspheres.   

Note that red microspheres produced slightly more fluorescence intensity per sphere.  

The offset values were not statistically different from zero. 
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Calibration of Yellow-Green Microspheres 

   Table 2.3 Summary of calibration for yellow – green microspheres 

Trial Number Slope of 

Regression 

Intercept of 

Regression 

R-squared 

1 1.1455 + 4.4194 0.9992 

2 0.9229 -92.562 0.9992 

3 0.8696 -36.541 0.9998 

4 0.9188 -30.379 0.9976 

5 0.774 +130.56 0.9974 

AVERAGE 0.9256 -4.9102  
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Figure 2.8 Linear regression calibration curves for yellow – green microspheres 



28 
 

Calibration of Red Microspheres 

Table 2.4 Summary of calibration for red microspheres 

Trial Number  Slope of Regression Intercept of 

Regression 

R-squared 

1          1.1084          -104.79       0.9993 

2          0.9083          -137.87       0.9966 

3          1.1498           181.72       0.9990 

4          1.0897           49.578       0.9936 

5          1.2234            12.204       0.9996 

AVERAGE          1.0954           0.8414  
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 Figure 2.9 Linear regression calibration curves for red microspheres 
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CHAPTER 3 
 

EXPERIMENTAL TECHNIQUES TO DETERMINE CORONARY BLOOD 

FLOW IN RAT ANIMAL MODEL 

 
 
When appropriately sized microspheres are used, regional blood flow is proportional to 

the number of microspheres trapped in the organ of interest. 

 
3.1 Source of Fluorescent Microspheres 

 
Triton Technology (San Diego, CA) and Molecular Probes (Eugene, OR) are the two 

major companies manufacturing fluorescent microspheres used in biomedical research 

and various other applications. For our procedures we have used fluorescent 

microspheres sold by Triton Technology. Triton Technology sells two types of 

fluorescent microspheres: Triton Technology Dye-Trak 'F' fluorescent microspheres and 

the FluoSpheres® manufactured by Molecular Probes. We have used Molecular Probes 

Fluospheres (with Triton Technology packaging) for our experiments. Fluospheres are 

non-radioactive fluorescent microspheres for high sensitivity measurement of regional 

blood flow quantified by spectrofluorometry. Each 20 ml bottle contains 20 million 

spheres, 15 µm in diameter, in a saline solution, with 0.05% Tween 20 as a detergent to 

help maintain the microspheres dispersed in solution and 0.02% Thimerosal as a 

bacteriostat. 
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3.2 Calculation of Number of Microspheres for Injection 
 
A minimum of 400 – 500 microspheres are needed per tissue piece to be 95 % confident 

that flow measurement is within 10% of the true value [39]. For regional blood flow 

measurements, the total number of microspheres to be injected into the whole animal 

must be calculated to assure that a sufficient number reach the particular organ of 

interest.  

The following equation estimates the minimum total number of microspheres 

needed per injection [39]: 

                                               Nmin = 400 (n) * [ Qtotal  / Qorgan ]                                      (3.1) 

Where, Nmin = minimum total number of microspheres needed for injection 

             n = total number of organ pieces in the organ with the smallest blood flow 

             Qorgan = total blood flow through an organ of interest with the smallest blood flow 

            Qtotal   = cardiac output 

Applying this equation to our procedure, we first must estimate the cardiac output 

expected in the experimental animals we used.  The cardiac index observed in Sprague 

Dawley rats of the same age and weight as we used is approximately 350 ml/min/kg [22]. 

Considering the approximate weight of the rats we used to be 400g,  

Cardiac Output = Cardiac Index * Mass of an animal 

                                                     = (350 * 400) / 1000 

                                                     = 140 ml/min 

Since our organ of interest is the heart, which has a relatively large blood flow, the 

“organ” with the smallest blood flow will actually be the “virtual organ” created by the 

reference withdrawal of blood.  Since we will withdraw the reference blood flow at a rate 
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of 0.5 ml/min, the estimate of the minimum total number of microspheres needed per 

injection is: 

Nmin = 400 (n) * [Qtotal  / Qorgan ] 

                                                     = 400 (1) * [140 / 0.5]  

                                                     = 112,000  

Where, n = number of organ pieces = reference blood flow sample = 1 

    Qorgan  = reference blood flow = 0.5 ml/min 

     Qtotal   = Cardiac output = 140 ml/min 

Thus, a minimum of 112,000 microspheres per injection was needed for our 

procedure. We have injected 0.5 ml volume of microsphere solution, which contains 

500,000 microspheres. Thus, the volume used for our procedure was quite enough to trap 

a sufficient number of microspheres in the tissue and blood samples. Usually double the 

minimum number of microspheres are injected to make sure that low flow organ pieces 

have an adequate number of microspheres [39].  Our procedure met this guideline as 

well.  

 
3.3 Preparation of fluorescent microspheres for injection 

 
Aggregation is a major problem associated with fluorescent microspheres. This might 

clog a blood vessel, resulting in damage which might result in the death of an animal. 

Aggregation of the particles is prevented by the use of small amounts of detergent in the 

injectate, or by suspending them in a solution containing macromolecules. A detergent 

named Tween 80 is normally added to the solution to prevent aggregation and clumping 

together of microspheres. However, the concentration of the detergent cannot be too high, 

otherwise it could damage the lipids in the cell membranes of endothelial cells or blood 
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cells. Therefore, we used a concentration of 250 µl. During the microsphere injection 

procedure, special care is taken of in order to avoid aggregation of microspheres.  

 
Method: 
 
1) Remove the bottle from the refrigerator and check supernatant solution. Ideally, the 
solution should stay clear due to the presence of thimerosal in it. Thimerosal is a 
bacteriostat which prevents the growth of any bacteria or fungi thus preventing cloudy 
fluid and contamination.  
 
2) Vortex the bottle vigorously for 5 – 15 seconds using a vortex mixer. Vortexing 
ensures proper mixing of the solution thus preventing aggregation of microspheres. 
 
3) Place the bottle in an ultrasonic water bath for at least 30 minutes to allow dispersion 
of microspheres. This allows proper mixing of microspheres with the liquid solution. Be 
careful with the sonication time as the heat generated might melt the microspheres. 
 
4) Continue to sonicate the microspheres until the sample is used for the procedure. 
 
5) Just prior to injection, vortex the vial of microspheres again and withdraw the desired 
volume of 0.5 ml immediately. The injected volume drawn into syringe should then be 
injected immediately into the body of animal. If injection time is delayed, vortex the 
microspheres thoroughly again. 
 
6) Injection time varies for each procedure and should be determined prior to injection. 
Injection to left heart takes a short time (normally 5 – 15 seconds). In our procedure, 
injection time is 5 seconds. 
 
7) Slow and steady injections allow for proper mixing of microspheres with the blood in 
the left ventricle. 
 
8) After injection, flush the dead space of the catheter thoroughly with saline and change 
the stopcock to avoid contamination of subsequent injections. 

 
 

3.4 Reference blood flow sampling 
 

A reference blood flow sample allows calculation of regional flow in ml / min. The 

catheter used for the withdrawal of sample should be accurately positioned so that a 

blood sample containing well mixed microspheres can be obtained. Blood samples should 
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be obtained as close to the organ of interest as possible without interfering too much with 

the normal blood flow. The reference withdrawal pump must be accurately calibrated at 

0.5 (ml/min) so that reference blood is withdrawn at a uniform preset rate for a period of 

2 minutes. Although glass syringes and containers would have been preferred as they 

decrease microsphere loss by avoiding adhesion to walls, which could occur in case of 

plastic syringes or containers, we found that use of plastic syringes was adequate and did 

not result in loss of microspheres. 

  Researchers say that 15% of blood volume is the maximum that can be taken out 

at a stretch from the body, say during donation of blood. More than 15% results in a 

significant loss of arterial pressure and might result in some heart problems.  

  Since the animals used in our procedure weigh 350-450g, withdrawal of minimum 

reference blood should be calculated.  For a rat weighing 350g, blood mass = 8% of body 

mass = (0.08)(350g) = 28 g.  This equates to approximately 28 ml of blood since the 

density of blood is only slightly greater than that of water. 

If 2 ml is withdrawn as reference blood during microsphere procedure, then it 

accounts for 7% loss of blood from the body which is quite tolerable and should not 

create a bad impact on the condition of the animal. 

Similarly, for a rat weighing 450g, its blood volume is estimated to be 36 ml.  If 2 

ml is withdrawn as reference blood during microsphere procedure, then it accounts for 

5% loss of blood from the body of animal which is tolerable and does not affect the 

condition of animal. 
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Therefore, withdrawal of 0.5 (ml/ min) for a period of 2 minutes results in 5% - 

7% of blood loss which is preferred for our procedure to avoid excessive loss of blood in 

an animal. 

 
3.5 Animals 

 

Male Sprague Dawley rats, body weight 350 – 450 g, age 8 - 12 weeks, were housed in 

separate cages and maintained in a temperature regulated environment. The animals were 

used as described in a protocol approved by IACUC committee (Institutional Animal 

Care and Use Committee) of UMDNJ – Newark. This institution is accreditated by 

AAALAC (Association for Assessment and Accreditation of Laboratory Animal Care) 

International program. Two animals were used. Both were subjected to injections of 

Triton Technology 15 µm diameter fluorescent microspheres of two different colors: 

yellow-green microspheres used for baseline measurements and red microspheres used 

for measurements after infusion with adenosine.  

 
3.6 Surgery 

 
 Surgery was performed by an experienced doctoral student, Xin Zhao, in the department 

of Cell Biology and Molecular Medicine at UMDNJ – Newark, trained to perform 

cardiovascular surgery on rats.  An anesthetic technique that has minimal effect on the 

heart rate is essential. The following anesthetic regime resulted in heart rates that were 

close or slightly below the rate for an alert, resting rat and allowed excellent animal 

recovery. Anesthesia was induced with a mixture of ketamine (70mg/ kg) and xylazine 

(7mg/ kg) administered intramuscularly. Since the experimental procedure was not for a 
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long duration, no supplemental anesthesia was needed. While anesthetized, the rats 

underwent several cannulation procedures. 

 
Figure 3.1 Rat model showing cannulation in left ventricle and femoral artery 
 

The left ventricle was cannulated via the right carotid artery by a polyethylene 

catheter (RPT040 -- .040 OD” x .025 ID) to observe left ventricular pressure and to 

subsequently inject microspheres and adenosine into the left ventricle. By observing 

changes in the pressure waveform from an arterial pattern to a ventricular pattern, it could 

be determined when the cannula tip was in the ventricular lumen. The right femoral 

artery was cannulated by a similar catheter (RPT040  .040 OD” x .025 ID) and was 

advanced into the abdominal aorta to monitor arterial pressure  and also obtain a sample 

of blood flow. During blood flow sampling, this catheter was connected to a Harvard 

Apparatus syringe pump for the withdrawal of reference blood sample containing 
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microspheres that are adequately mixed. Right jugular vein was cannulated by MRE 040 

.40OD" X .025 ID catheter for the injection of saline to restore blood volume after each 

microsphere injection and sampling procedure.  

  The entire procedure takes about 1.5 – 2 hours. The animals were then allowed 

to recover for 2-3 hours after the completion of cannulation surgery. After the normal 

hemodynamic condition of the animal was recovered, a subsequent microsphere injection 

procedure could be performed. 

 
3.7 Procedure for Injection of Microspheres 

 
Systemic hemodynamic and regional blood flow was determined using 15 micrometer 

diameter fluorescent microspheres (FluoSpheres® Triton Technology, San Diego, CA, 

USA (20 million 15 micron spheres per 20 ml vial)). Briefly, two different colors of 

fluorescent microspheres were used. The colors of microspheres were selected as 

previously described to avoid spillover between the colors. Yellow-green and red colors 

have been selected for our experiment. Yellow-green microspheres are used for baseline 

measurement and red microspheres are used for measurements after infusion with 

adenosine. 

The procedure is as follows:  
 
1) Shake well the bottle containing microspheres of desired color and place it in an 
ultrasonicator. This allows proper mixing of microspheres and prevents aggregation of 
microspheres. 
 
2) The bottle containing microspheres are sonicated until the desired amount is removed 
and without wasting any time, the microspheres are injected directly into the body of 
animal. 
 
3) Two Harvard apparatus infusion pumps were used for procedure: One pump is used 
for the injection of adenosine at the rate of 0.15 (mg/kg/min), second pump is used for the 

http://www.physiology.com/webspher.htm#FluoSpheres
http://www.physiology.com/webspher.htm#FluoSpheres
http://www.physiology.com/webspher.htm#FluoSpheres
http://www.physiology.com/webspher.htm#FluoSpheres
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withdrawal of reference blood sample at the rate of 0.5 (ml/min) for a period of 2 
minutes. 

 
4) Four 1cc plastic syringes were used in infusion pumps: two syringes were used for 
collecting blood and the remaining two were used for injection of microspheres. Heparin 
coated syringes were used for the collection of blood samples to avoid the clot of blood 
once it is collected in a syringe. Also, once collected in heparin coated syringe, it then 
becomes easy to transfer in any other container without any clot observed.  
 
5) The diameter for the syringe was set to 4.78 mm. 
 
6) The withdrawal pump was calibrated at the predetermined withdrawal rate, including 
the catheters, extension tubing and syringes that would be used for the reference 
withdrawal.  
 
7) The syringes would be connected to the withdrawal pump to the catheters and the 
extension tubing so that everything is set up for withdrawing the reference blood sample. 
The stopcock is turned off to avoid clotting of blood into the catheter dead space until 
injection.  
 
8) Four paper pins were placed, one at each corner of surgical board, that hold each limb 
of the animal. 
Horizontal distance between the pins is 15cm. 
Vertical distance between the pins is 12cm. 
 
9) Core temperature of the animal was monitored with a rectal probe and maintained at 
36.5 degree Celsius with an automatic heating lamp.  
 
10)  The hemodynamics of the rat is checked for its normal condition before the injection 
of microspheres. 
 
11)  Yellow-green microspheres are injected first into the body of animal to determine 
baseline measurements and then red microspheres are injected to determine 
measurements after infusion of adenosine. 
 
12)  Once the microspheres had been drawn into the injection syringe, the withdrawal 
pump was started and made sure that the flow was smooth without any clot. 
 
13)  Now, a volume of 0.5 ml of yellow green fluorescent microspheres was injected over 
a period of 5 seconds followed by the flush of saline.  
 
14)  Simultaneously, the reference blood sample was withdrawn for a total interval of 2 
minutes, 1 minute each for both the color of microspheres. At the end of the withdrawal, 
the pump was turned off, the stopcocks were opened and the blood remaining in the 
extension tubing was drawn into the syringe.  
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15)  The reference blood was then transferred from heparinized syringe into 
polypropylene tubes for further processing. Also, the syringes and the extension tubing 
were washed with 2% Tween 80 and this solution was then added to the blood samples to 
avoid any loss.  
 
16)  Adenosine which works as a potent dilator of arterioles was then infused into the left 
ventricle via the catheter in the left ventricle.  
 
17) After the rat’s hemodynamic state had stabilized under the adenosine infusion, 0.5 ml 
volume of red microspheres was injected over a period of 5 seconds followed by the flush 
of saline.  
 
18)  The reference blood sample was collected in heparinized syringe which is then 
transferred to polypropylene tubes for further processing. 

 
 

This injection procedure produced two sets of microspheres in each rat. At the end 

of the procedure, the rats were euthanized with an overdose of anesthetic. The heart was 

removed, weighed and placed in a polypropylene tube. The reference blood sample and 

heart tissue were then digested by 2.3 M ethanolic KOH and 0.25 % Tween 80 for a 

period of 48 hours. At the end of digestion, microspheres were recovered by the 

sedimentation method and the microsphere dye was extracted by using 3 ml of 2- 

ethoxyethyl acetate, that dissolved the plastic spheres and so released the fluorescent dye 

into solution.  
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CHAPTER 4 

EXPERIMENTAL TECHNIQUES TO RECOVER MICROSPHERES 

FROM TISSUE AND BLOOD 

 

4.1 Three Alternative Methods to Separate Microspheres From Tissues 

Microspheres must be physically separated from the tissue or blood in order to quantify 

the number of microspheres in each sample. 

There are three practical methods to recover microspheres from digested tissues 

[39]: 

1) Negative pressure filtration 

2) Polyamide woven filtration devices (manufactured by Perkin Elmer) 

3) Sedimentation 

All three methods will be described below, along with the disadvantages of both 

the filtration methods. Ultimately, the sedimentation method was the one chosen for use 

in this research. The details of the sedimentation method will be presented in other 

sections in this chapter. The initial key step in all three procedures is digestion of tissue 

or blood sample. All methods use ethanolic KOH, a very powerful digesting solution.  

 

4.2 Negative Pressure Filtration 

In the case of the negative pressure filtration technique, the volumes and concentrations 

of solutions are not critical. Negative pressure filtration works on digested heparinized 

blood samples and solid tissue. After the samples have been digested with KOH, the 

microspheres are physically separated by negative pressure filtration.  Filtration is usually 
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performed with a combination of a Poretics filtration device using Poretics polycarbonate 

filters [39].  

Disadvantages:  

1) Digested tissue samples should not stand unfiltered for a long period of time since the 
fat in them may solidify and this may result in damage to the sample. 
 
2) The method is labor intensive. 
 
3) There may be microsphere loss when the tissue sample is transferred from one vessel 
to another or if the filter fails to trap all microspheres. 
 
4) The filters must be changed every time for each new sample. This may increase the 
expense.  
 
5) The filtration process may proceed slowly as the filter might become clogged with 
microspheres or tissue debris. 

 

4.3 Polyamide Woven Filtration Devices 

These devices are specifically made to isolate fluorescent microspheres from CPD  

(citrate phosphate dextrose) anticoagulated blood or digested tissues [39]. Each tissue 

sample is digested, filtered and the fluorescent dyes are extracted in a single container. 

The devices are polypropylene and consist of three stages. Digestion is done with 

ethanolic KOH.  

Disadvantages: 

1) These devices offer limitations with heparin containing blood samples.  
 
2) There may be microsphere loss when the tissue sample is transferred from one vessel 
to another or if the filter fails to trap all microspheres. 
 
3) Digestive tissue samples should not stand unfiltered for a long period of time since 
the fat in them may solidify and may result in damage to the sample. 
 
4) Filters need to be changed after every microsphere procedure.  
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4.4 Sedimentation 

Sedimentation is the tendency for particles in suspension to settle out of the fluid in 

which they are entrained, and come to rest against a barrier. This is due to their motion 

through the fluid in response to the forces (gravitational force or centrifugal force or 

electromagnetic force) acting on them.  

Sedimentation of microspheres based on centrifugal force (as in a centrifuge) is 

possible if the specific gravity of the solution is less than that of microspheres. 

Microspheres have a density of 1.05 g / ml, which is close to the density of red blood 

cells and myocardial tissue.  Ethanolic KOH has a density on the order of 0.8 g / ml, 

which is much smaller compared to that of microspheres.  

Sedimentation is a 7 day procedure. It is the most effective procedure and also it 

is cost effective. The chemical solutions can be easily prepared in the laboratory, and the 

polypropylene tubes used for the procedure are inexpensive and available in bulk. The 

steps in the procedure are summarized in Figure 4.1 After digesting the tissue with 

ethanolic KOH, the procedure consists of 3 successive stages of centrifugation 

interspersed by washes with specific solutions or buffers.  As a final step, a chemical is 

added (2-ethoxy-ethyl-acetate) that dissolves the plastic microspheres and thus releases 

the fluorescent dye into solution.  A final centrifugation (not shown in Figure 4.1) 

separates this solution from the remnants of the plastic microspheres.  A sample of this 

final supernatant is then subjected to fluorometry to determine the number of 

microspheres. 
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Figure 4.1 Sedimentation procedure for fluorescent microspheres [39]   
(Source: Manual for using fluorescent microspheres to measure regional organ perfusion, accessed on 
March, 2011)  

                                  
 

4.5 Importance of Accurate Fluid Volumes 

The ratio of the number of microspheres contained in the heart tissue versus the blood 

sample (N heart  / N blood ) is very important for accurate determination of coronary blood  

flow. As per the procedure, 3ml of 2-ethoxy-ethyl-acetate is added to each heart and 

blood sample and then the samples are placed in the dark for 5 days. 2-Ethoxy-ethyl- 

acetate dissolves the microspheres, releasing the fluorescent dye from the microspheres. 

On the last day of the procedure, the samples are centrifuged and 100 microliters of the 

supernatant is then used for fluorometry.  

 

 

 

 



43 
 

The equation for the ratio is as follows:  

( )
spheresheartdissolve

heartfromsampled
heart V

V
N  

-------------------------------   = 
blood

heart

N
N

 

                                      ( )
spheresblooddissolve

bloodfromsampled
blood V

V
N                                   (4.1) 

 

Calculating the values,  

( )
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V
N  

                                                       -------------------------------          = ( )
ml
ml

Nheart 3
1.0

 

                                                                                                                   -----------                     

                                                        ( )
spheresblooddissolve
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N              ( )

ml
ml

Nblood 3
1.0

 

 
 

Measurement of coronary blood flow depends on the ratio of (Nheart / Nblood ).  The 

more accurate the ratio, the more accurate is the value of blood flow. Heart and reference 

blood samples from each rat were analyzed for fluorescence intensity measurement. In 

the sedimentation procedure, 3 ml of 2-ethoxy-ethyl-acetate were used for each sample. 

2-ethoxy-ethyl-acetate releases fluorescent dye by dissolving the microspheres. Carefully 

pipetting out the 3 ml amount of  2-ethoxy-ethyl-acetate from the stock bottle is essential 

for accurate measurement. In our procedure, 3 ml was accurately removed from the bottle 

using an automated pipette.  In addition, carefully extracting precisely 100 microliters of 

the supernatant containing the fluorescent dye is also essential. This amount was 

carefully pipetted out using a 200 microliter pipette. If the volume of 2-ethoxy-ethyl- 

acetate is not accurate, the concentration of fluorescent dye in the resulting supernatant 
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could vary, which would vary the number of microspheres obtained when 100 microliters 

of the supernatant is extracted for measurement. Similarly, the volume of supernatant 

must be reproducibly pipetted out, so that the ratio of the number of microspheres is the 

same as the ratio of dye concentrations in the supernatant fluids form tissue and blood 

samples.  

 

4.6 Solutions Used in the Sedimentation Method 

The six different solutions used throughout the sedimentation procedure are as follows:  

1) 2.3 M Ethanolic KOH with 0.5 % Tween 80  

 100 ml of ethanol is added to the glass beaker containing a mixture of 3 gm KOH 

and 0.5 gm Tween 80. The solution is stirred continuously for approximately 20 minutes 

until a clear solution is obtained. Tween 80, a viscous and water soluble yellow fluid, is 

used as an emulsifier. KOH, since it is obtained in pellet form, needs to be stirred 

properly to ensure proper mixing. Freshly made KOH solution, warm due to the 

exothermic reaction, aids in tissue digestion. 

2) Internal standard ( This is optional ) 

The microspheres are vortexed and sonicated for 30 seconds and then 1ml of solution is  

immediately withdrawn using a sterile syringe. This 1ml of solution is added to 100 ml of 

0.25% Tween 80. A magnetic stirrer is used to stir the solution continuously until its use. 

3) 1% Triton X-100 

10 grams of Triton X-100 is added to 1 liter of distilled water and stirred until in solution. 
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4) Distilled water phosphate buffer  

5.88 grams of monobasic KH2PO4 is added to 200 ml distilled water. 22.9 grams of 

dibasic KH2PO4 is added to 800 ml distilled water. The two solutions are then mixed 

together. 28.6 ml of this combined solution is added to 1000 ml of distilled water and 

stirred until they mix really well. This produces a distilled water phosphate buffer, which 

is a solution used for rinsing.  

5) 0.25 % Tween 80 

2.5 grams of Tween 80 is added to 1 liter of distilled water and stirred continuously with 

a magnetic stirrer until in use. 

6) 2 – Ethoxy-ethyl-acetate ( also known as Cellosolve acetate ) 

This is a solution used to dissolve microspheres and release dye. 2–ethoxy-ethyl-acetate 

should not be confused with ethyl cellosolve, since that doesn’t dissolve the 

microspheres.  

 

4.7 Calculation of Centrifuge Rotation Rate 

During the sedimentation method, a centrifugal acceleration equivalent to 2000 times the 

acceleration of gravity (i.e., 2000Gs) had to be achieved. The faster the centrifuge rotates, 

and the longer the radial distance to the sample being centrifuged, the stronger the 

centrifugal acceleration. The calculations below were performed to determine the rotation 

rate required to achieve 2000Gs for the specific centrifuge and sample tubes that were 

used in this research.  
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A centrifuge is a laboratory instrument driven by electric motor that puts an object 

in rotation around a fixed axis and thus induceses a centrifugal force perpendicular to the 

axis. The centrifugal acceleration generated by the instrument is such that it causes more 

dense substances to separate out along the radial direction at the bottom of the tube. The 

centrifuge consists of rotating units, called the rotor, which has its own specifications. 

We used a Beckman Coulter 366802 – Allegra 6 Benchtop Centrifuge for our 

procedure. The centrifuge consists of GH–3.8 / GH–3.8A rotors which have the 

following specifications:  1) minimum radius = 86mm;  2) maximum radius = 204mm; 

3) maximum allowable rotation rate = 3750 rpm. 

During circular motion, the centrifugal acceleration is the product of the radius 

and the square of the angular velocity. The acceleration is generally measured in terms of 

“G”, which is also called the relative centrifugal force. One “G” is equal to the 

acceleration due to gravity at the earth’s surface, which equals  9.8  m/s2 .   

In the Beckman centrifuge that we used, the radius to the bottom of the centrifuge 

tube (where the denser sample will collect) was measured.  We set the rotor to the 

minimum distance from the axis of the centrifuge.  The radius to the edge of rotor thus 

was 8.6 cm.  The polypropylene 15 ml centrifuge tubes that we used extended 10 cm 

beyond the rotor.  Thus, the total radial length to the sample ( r ) = 18.6 cm.  

In our procedure, we desired to create an acceleration of 2000 G’s. The angular 

velocity ( ω ) required to produce this acceleration ( A ) was calculated as follows: 

A = ω2 r 

2000 (9.8 m/s2) = ω2 (0.186 m) 

ω = 324.6 rad / sec 
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Angular velocity converts to rotational frequency according to the following formula: 

ω = 2πf 

Thus, the required rotational frequency f = 51.7 rotations/sec, which is 3100 rpm.  This 

rotation rate is within the range of rotation rates allowed by the manufacturer’s 

specifications. 

 

4.8 Details of Sedimentation Procedure 

The procedure takes a total of 8 days. The animal was euthanized on the same day soon 

after the microsphere injection procedure. The heart was removed, and the left ventricle 

was separated from the rest of the heart for recovery of fluorescent microspheres. 

Polypropylene 15 ml centrifuge tubes with tightly fitting caps were used.  

Day 1  

1) The tubes fitted with their caps and the tissue and blood samples were weighed. Each 
cap should be paired with its tube so that the weight of the capped tube is reliable.  
 
2) 8 ml of ethanolic KOH was then added. Ethanolic KOH should be carefully poured 
into the tubes since outside spillage can remove writing on the tubes. Also, ethanolic 
KOH is extremely caustic in nature and can cause burns on skin. 
 
3) The solution was vortexed for a period of 20 seconds. 
 
4) The tubes were then incubated for a period of 48 hours at 50 degrees centigrade at a 
speed of 150 revolutions per minute. 
 
Day 2  

Each sample was removed from the incubator and vortexed for 20 seconds per tube. The 

samples were then placed back into the incubator to continue for another 24 hours.  
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Day 3  

1) Each sample was removed from the incubator and vortexed for about 30 seconds until 
the particles were re-suspended. Just before the next step, each sample was vortexed 
again for 5 more seconds. 
 
2) The samples were centrifuged at 3100 rpm for about 20 minutes. 
 
3) All but 1.5 ml of supernatant fluid was removed using a Pasteur pipette attached to 
suction with a trap.  This supernatant was discarded. 
 
4) Approximately 8 ml of 1% Triton X-100 solution was added to each sample, and then 
each sample was vortexed for about 30 seconds. 
 
5) The samples were centrifuged at 3100 rpm for about 20 minutes. 
 
6) All but 1.5 ml of supernatant fluid was removed using a Pasteur pipette attached to 
suction with a trap, and the supernatant was discarded. Suction was done carefully to 
avoid loss of microspheres. 
 
7) 7 ml of distilled of distilled water phosphate buffer was added to each tube, and each 
tube was vortexed for about 30 seconds until all particles were suspended in the solution. 
8) The samples were centrifuged at 3100 rpm for about 20 minutes.  
 
9) All but 1.5 ml of supernatant fluid was removed using a Pasteur pipette attached to 
suction with a trap, and the supernatant was discarded. 
 
10) Exactly 3 ml of 2-ethoxy-ethyl-acetate was then added to each sample, and each was 
vortexed for about 30 seconds until the particles were well suspended in the solution. 
 
11) The samples were then placed in a dark room away from light for 5 days. 
 

Day 5  

The samples were taken out from the dark room and vortexed for about 20 seconds each 

until the pellet broke up. 

Day 8   

1) The samples were removed from the dark room and vortexed vigorously for about 30 
seconds each until the pellet broke up. 
 
2) The samples were centrifuged at 3100 rpm for about 20 minutes. 
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3) Exactly 100 µL of supernatant fluid containing the dye released from the 
microspheres was then used for fluorometry. 
 
4) The blood and tissue samples were then measured for fluorescence on the same day.  
 

4.9 Advantages of the Sedimentation Method 

1) Polypropylene 15 ml centrifuge tubes are used, which are available in bulk in a 
routine chemistry lab. 
 
2) The tubes are inexpensive as compared to the filters. 
 
3) The procedure although time consuming, is not labor intensive. 
 
4) There is minimal loss of fluorescent microspheres, since they do not have to be 
transferred from one vessel to another.  
 
5) The sedimentation procedure starts on the same day soon after the microsphere 
injection procedure. Consequently, there are no issues of digested tissues being left 
untreated. 
 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

CHAPTER 5 

INITIAL MEASUREMENTS 

OF CORONARY BLOOD FLOW AND CORONARY RESERVE IN RATS 

USING FLUORESCENT MICROSPHERES 

 
5.1 Summary of Experimental Protocol 

Two male Sprague-Dawley rats, body weight 414 and 395 g, both age 12 weeks, were 

used for the microsphere injection procedure, as described in detail in Chapter 3. Briefly, 

each rat was cannulated with multiple catheters under a mixture of ketamine and xylazine 

anesthesia administered intramuscularly. One catheter was introduced through the right 

carotid artery into the left ventricle for injection of fluorescent microspheres and 

adenosine. The second catheter was introduced through the right femoral artery and 

advanced into the abdominal aorta for collection of the reference blood sample during 

injection of fluorescent microspheres into the circulation of the rat. The third catheter was 

introduced into the right jugular vein for infusion of saline following the withdrawal of 

each reference blood sample. After the 1.5 – 2 hour cannulation procedure, the rat was 

allowed to recover back to its normal hemodynamic condition.  

Soon after the recovery, the rat was subjected to the microsphere injection 

procedure. Normal hemodynamic conditions were mandatory before proceeding with the 

microsphere procedure. Microspheres which fluoresced at two different colors were used 

for the procedure:  (1) yellow-green microspheres were used for baseline measurements, 

and (2) red microspheres were used for measurements of coronary reserve made during 

infusion of a vasodilator (adenosine). During both microsphere injections, reference 

blood containing a sample of the injected microspheres was collected at a preset rate of 
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0.5 ml/min for duration of 2 min. Table 5.1 presents the timeline of the experimental 

procedures applied during a typical microsphere injection procedure (Rat 2 in this case).  

Table 5.1 Timeline of a typical experiment 
      

ELAPSED 
TIME 

 
      

(min:sec) 

     
PAGE 

 
    (from  

   
datafile) 

 

 
EVENT 

      00:00   1       Start data recording after finish instrumenting the 
rat 

      05:19      72       Baseline data before injection of yellow-green 
microspheres 

      05:29      74          Begin arterial blood withdrawal for reference blood 
flow                 

      05:48      78     Start injection of yellow-green microspheres into LV 

    07:29      ---     End arterial blood withdrawal for reference flow 
           10 minute recovery period following first    

microsphere injection 
      16:06      153        End recovery period;  Begin adenosine infusion 

      16:26      157        Adenosine begins to affect global hemodynamic 
measurements 

      24:38      268       Steady-state data recorded under effect of 
adenosine 

      24:59      272       Begin arterial blood withdrawal for reference flow 
with adenosine 

      25:30      279      Start injection of red microspheres into LV 

      26:59 -    ---       End arterial blood withdrawal for reference flow 
        5 minute recovery period following microsphere 

injection 
      31:40      287       Last data recorded after recovery from second 

microspheres 

 
NOTES:    
(1)  Elapsed time began at 09:55:26 am on May 25, 2011.  This was experiment #2. 
(2)  Page numbers shown in bold are included as figures in this chapter. 



52 
 

Hemodynamic parameters were recorded throughout the entire procedure. Heart 

rate, arterial and left ventricular pressures, and the rate of rise of left ventricular pressure 

(dp/dt) were monitored during baseline conditions and following vasodilation during 

adenosine infusion. 

Figure 5.1 presents the strip chart record of left ventricular pressure (LVP), 

abdominal aortic pressure (MAP) and the derivative of LVP (dP/dt) during the baseline 

state before injection of any microspheres. In Figure 5.2, data was recorded when the 

arterial catheter was disconnected from the pressure transducer and switched to the pump 

that withdraws the reference blood flow, leaving the arterial pressure transducer open to 

atmosphere (MAP = 0). During the time period shown in Figure 5.3, the left ventricular 

catheter was disconnected from its pressure transducer and switched to the infusion 

syringe, so that the infusion of microspheres into the left ventricle began.  Note that the 

withdrawal of the reference flow continued (MAP = 0).  

After allowing 10 minutes for the cardiovascular system to re-stabilize following 

the initial microsphere injection, Figure 5.4 shows a strip chart record of the 

hemodynamic conditions just before the adenosine infusion began. The steady adenosine 

infusion continued at a rate of 0.15 mg/min per kilogram of animal mass. Because 

adenosine exerts a vasodilator influence throughout the systemic vasculature, arterial and 

ventricular systolic pressures were lower when a steady state was eventually achieved 

after 8 minutes, as shown in Figure 5.5. 
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Figure 5.1 Hemodynamic parameters at baseline in Rat 2. 
 
The x-axis shows time in min: sec.  Each division = 0.1 sec. 
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Figure 5.2 Hemodynamic parameters during the beginning of reference blood flow 
withdrawal under baseline conditions. 
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Figure 5.3 Hemodynamic parameters at beginning of injection of yellow-green  
microspheres into left ventricle. 
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Figure 5.4 Hemodynamic parameters after re-stabilization before infusion of adenosine 
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    Figure 5.5 Hemodynamic parameters after attaining steady state under adenosine 
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Tables 5.2 and 5.3 summarize the hemodynamic conditions observed during 

microsphere injections in Rats 1 and 2.  The baseline conditions were both within the 

normal range for rats, although Rat 1 was slightly hypotensive, while Rat 2 was slightly 

hypertensive.  As expected, infusion of the vasodilator adenosine reduced vascular 

peripheral resistance, so that mean arterial pressures fell by ~25% in both cases.  This 

percentage decline in arterial pressure is within the range typically seen during adenosine 

infusion in rats [22].  The decline in left ventricular dp/dt in Rat 1 was somewhat atypical 

compared to what is commonly reported during adenosine infusion in rats [22].  The fall 

in heart rate in Rat 2 was also somewhat atypical. 

 
Table  5.2   Hemodynamic conditions during microsphere injections in rat 1 

   Rat 1 Heart 
Rate 

 
  

 (bpm) 

Peak Left 
Ventricular 

Pressure 
(LVP) 

(mmHg) 

Maximum 
Rate of 
Rise of 
LVP 

(mmHg/s) 

Arterial 
Systolic 
Pressure  

 
(mmHg) 

Arterial 
Diastolic 
Pressure  

 
(mmHg) 

Arterial 
Mean 

Pressure 
 

(mmHg) 
Baseline  

Condition 
    279     107      7254       109       74     86 

During 
Adenosine  
Infusion 

    283     81      4731       85       54      64 

 

Table  5.3   Hemodynamic conditions during microsphere injections in rat 2 
   Rat 2 Heart 

Rate 
 
 

 (bpm) 

Peak Left 
Ventricular 

Pressure 
(LVP) 

(mmHg) 

Maximum 
Rate of 
Rise of 
LVP 

(mmHg/s) 

Arterial 
Systolic 
Pressure  

 
(mmHg) 

Arterial 
Diastolic 
Pressure  

 
(mmHg) 

Arterial 
Mean 

Pressure 
 

(mmHg) 
Baseline  

Condition 
    275     131      5330       131       92     105 

During 
Adenosine  
Infusion 

    203     101      5623       100       63     79 
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After the microsphere injection procedures, the rats were euthanized with an 

overdose of anesthetic.  The chest was opened and the heart was removed.  The atria, 

great vessels, and right ventricular free wall were all trimmed away, so that only the left 

ventricle (including septum) remained. This heart tissue and the 2 blood samples were 

then further processed by the procedure explained in Chapter 4 to recover the fluorescent 

microspheres from the samples.  Briefly, the samples were digested in 2.3 M ethanolic 

KOH and 0.25 % Tween 80 for a period of 48 hours. At the end of digestion, 

microspheres were recovered by the sedimentation method and the fluorescent dye was 

extracted from them by using 3 ml of 2-ethoxy-ethyl-acetate. 

 

5.2 Measurement of Microsphere Number in Tissue and Blood Samples 

5.2.1 Measurement of fluorescence intensity 

On the last day of the sedimentation procedure, the samples were read for 

fluorescence intensity. Since microspheres of two different colors were used in the 

procedure, samples were read at two different (excitation / emission) wavelengths. By 

selecting filters in the spectrophotometer instrument, samples containing yellow-green 

microspheres were read at (485 nm / 530 nm) (excitation / emission) wavelengths, and 

samples containing red microspheres were read at (590 nm/ 645 nm) (excitation / 

emission) wavelengths. After setting the filters, the samples were placed in a 96 well 

plate reader and then scanned to measure fluorescence intensity (If).  The intensities 

measured are reported in Tables 5.4 and 5.5. 
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5.2.2 Calculation of number of fluorescent microspheres from calibration curves 

The standard curves for fluorescent microspheres as obtained in Chapter 2 were 

expressed by the following linear relationships: 

For yellow-green microspheres:  If = 0.9256 (Ns) – 4.9102 

For red microspheres:   If = 1.0954 (Ns) + 0.8414 

where,  If = fluorescence intensity obtained from spectrophotometer 

                               Ns = number of fluorescent microspheres 

Using these equations for the standard curves and knowing the values of 

fluorescence intensity from the spectrophotometer, the number of fluorescent 

microspheres can be determined. 

To determine the number of yellow green microspheres in both blood and tissue samples:  

Ns = (If + 4.9102) / 0.9256  

To determine the number of red microspheres in both blood and tissue samples:  

Ns = (If – 0.8414) / 1.0954 

 
These inverse expressions of the standard curves were used to infer the number of 

microspheres in each sample (Ns) from the measured value of fluorescence intensity (If).  

The results for all samples from Rats 1 and 2 are shown in Tables 5.4 and 5.5. 
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Table 5.4 Number of fluorescent microspheres in blood and tissue samples in rat 1 
        Rat 1         Sample              If                 Ns 

Baseline : yellow- 

green microspheres 

        Tissue            16782           18136 

Baseline : yellow- 

green microspheres 

        Blood             2007             2174 

Adenosine : red 

microspheres 

       Tissue            50438            46045 

Adenosine : red 

microspheres 

       Blood           2748             2508 

 

Table 5.5 Number of fluorescent microspheres in blood and tissue samples in rat 2 
        Rat 2         Sample              If                 Ns 

Baseline : yellow- 

green microspheres 

        Tissue            18943           20471 

Baseline : yellow- 

green microspheres 

        Blood             2128             2304 

Adenosine : red 

microspheres 

       Tissue            56700            51761 

Adenosine : red 

microspheres 

       Blood           2969             2710 

 

5.3 Calculation of Coronary Blood Flow and Coronary Flow Reserve 

Coronary blood flow delivers oxygen rich blood to heart muscle.  The amount of blood 

flow increases in proportion to the amount of heart muscle.  For this reason, coronary 

blood flow is expressed as flow per gram of tissue (ml/min/g).  Microspheres serve as a 

tracer of blood flow, so that the relative amounts of blood flow in two tissue samples are 

proportional to the relative numbers of microspheres in each tissue.  Thus, 
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Blood flow to heart Number of microspheres in heart sample
Reference blood flow Number of microspheres in blood sample

=  

 
Given that the reference blood flow was withdrawn at 0.5 ml/min, the following formula 

was used to calculate the coronary blood flow: 

 
s

s

Blood flow to heart N  in heart sample 0.5 ml/min
Coronary Blood Flow

Mass of heart N  in blood sample mass of heart sample
= = •

 

where Ns is the measured number of microspheres.  The mass of the left ventricle sample 

was 0.734 g for rat 1 and 0.718 g for rat 2. 

Applying this formula to the data from each rat: 

For Rat 1: 

Baseline coronary flow:   (18136 / 2174) * (0.5 / 0.734) = 5.68 ml/min/g 

Adenosine coronary flow:  (46045 / 2508) * (0.5/ 0.734) = 12.5 ml/min/g 

For Rat 2:  

Baseline coronary flow:  (20471/2304) * (0.5 / 0.718) =   6.19 ml/min/g 

Adenosine coronary flow:  (51761/2710) * (0.5 / 0.718) =    13.3 ml/min/g 

Coronary flow reserve (CFR) is the ratio of the maximum blood flow through the 

coronary arteries (when they are maximally vasodilated) compared to the normal 

coronary blood flow when the animal is resting. Coronary flow reserve is used in 

diagnostics and treatment of patients suffering from conditions such as coronary artery 

disease. In the treatment of these conditions, vasodilators such as nitroglycerine are used 

to increase the rate of blood flow through the coronary arteries, and the measurement of 

CFR enables the efficacy of such interventions to be measured. When coronary flow 

reserve is used in medicine, it is usually expressed as a dimensionless number, which is 
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formed by dividing the maximal coronary blood flow by resting blood flow. This allows 

for an objective view, which can aid diagnosis and treatment. 

In the microsphere studies, coronary flow reserve was calculated as: 

Coronary flow reserve = (Coronary blood flow)adenosine / (Coronary blood flow)basal 

 For rat 1:  

Coronary flow reserve = (Coronary blood flow)adenosine / (Coronary blood flow)basal 

= 12.5 / 5.68 

= 2.20 

For rat 2:  

Coronary flow reserve = (Coronary blood flow)adenosine / (Coronary blood flow)basal 

= 13.3 / 6.19 

= 2.15 

5.4 Comparison with Coronary Flow Reserve 
Measured using Doppler Echocardiography 

Coronary flow reserve was also measured using Doppler echocardiography in a set of 6 

male Sprague-Dawley rats of the same age and range of body weights as the two rats 

used in the microsphere study.  These rats were also anesthetized using the same method 

as in the microsphere study.  Since the rats in both studies were of the same strain, age, 

gender,body mass, and anesthetic state, it was reasonable to assume that they should have 

similar coronary flow reserves. 

 However, there is one essential difference between the microsphere flow 

measurement and the ultrasound measurement:   Doppler echocardiography measures the 

velocity of blood movement (in mm/s), not the bulk flow of blood volume (in ml/s).  

However, if the cross-sectional area of the blood vessel being imaged does not change 
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significantly between the normal and vasodilated state, then the ratio of blood flow 

between vasodilated and normal states must be the same as the ratio of the velocity of 

blood movement.  Thus, if vessel area remains constant, the non-dimensional value for 

coronary flow reserve should be the same when measured by the ratio of velocities or by 

the ratio of bulk flows. 

 Since the vasodilator that we used (adenosine) primarily relaxes smooth muscle in 

the arterioles, it may not cause a significant relaxation of smooth muscle in the walls of 

the major, large coronary arteries.  If such relaxation did occur, then we would expect the 

coronary reserve measured by echo Doppler (velocity) to be less than the coronary 

reserve measured by microspheres (bulk flow), because vessel area ratio would be > 1: 

vasodilated vasodilated vasodilated

normal normal normal

Bulk Flow Vessel Area Velocity
Bulk Flow Vessel Area Velocity

= •  

Table 5.6 summarizes the results of the measurements of coronary flow reserve 

(CFR) by Doppler echocardiography.  These measurements were carried out by assistant 

professor Shumin Gao, MD/PhD, of the Department of Cell Biology and Molecular 

Medicine at UMDNJ-Newark.  The velocity of blood motion was measured in the left 

coronary artery of rats during the normal baseline state and after infusion of adenosine at 

the same rate (0.15 mg/min/kg) as used in the microsphere study. 

 As Table 5.6 shows, the average coronary flow reserve determined by Doppler 

echocardiography was 2.22 ± 0.14 (mean ± SEM).    This value was statistically 

indistinguishable from the measurement of coronary flow reserve found using fluorescent 

microspheres.  That is, the values for CFR from microspheres (2.15 and 2.2) both fell 

within the range of mean ± standard-error-of-the-mean from Doppler measurements.  

Additionally, the fact that the Doppler velocity ratio equaled or exceeded the bulk flow 
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measure was consistent with the assumption that large vessel area did not change 

significantly with adenosine, since that would have made the velocity ratio < bulk ratio. 

 

Table 5.6 Measurement of coronary flow reserve using Doppler echocardiography 

Rat ID Code 

Baseline 
Coronary Artery 

Velocity 
(mm/sec) 

Vasodilated 
Coronary 

Artery Velocity 
(mm/sec) 

Coronary 
Flow Reserve 

(dimensionless) 
SDB-7 4w-sham  251.5 435.8 1.73 
SDB-8 4w-sham  405.1 805.4 1.99 
SDB-9 4w-sham  337.3 823.6 2.44 

SDB-10 4w-sham  318.5 859.3 2.70 
SD-CR-1 311.5 680.6 2.18 
SD-CR-2 450.4 1020.3 2.27 

mean 345.7 770.8 2.22 
SD 71.2 197.2 0.34 

SEM 29.1 80.5 0.14 
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CHAPTER 6 
 

DISCUSSION AND FUTURE WORK 
 

The present study shows that fluorescent microspheres can be used to reliably determine 

coronary blood flow in rats under baseline conditions and after infusion with adenosine. 

There were no significant differences observed in coronary flow reserve measured with 

either Doppler echocardiography or fluorescent microspheres.  In addition, the absolute 

value of baseline coronary flow obtained in this study agreed well with the value 

published in a recent study on rats [22].  

               Fluorescent microspheres were used in this study. This technique has thus been 

demonstrated to be a reliable alternative to radioactive or colored microspheres for 

measuring organ blood flow in rats under normal conditions and under infusion with 

adenosine. In the present study, supernatants and pure microsphere samples were 

analyzed from each step of the tissue recovery protocol, which suggested that there was 

100% recovery of microspheres regardless of mass and blood flow capacity. The 

sedimentation method for the recovery of fluorescent microspheres was achieved by use 

of ethanolic solutions, which increased the specific gravity difference between 

microspheres and medium, aided by higher centrifugation speeds that avoided the loss of 

fluorescent microspheres.  

            The resolution of the fluorescence method is dependent on the amount of label per 

microsphere, the quantum efficiency of the fluorescent dye, and the sensitivity of the 

spectrophotometer. The latter is determined by light source intensity, transmittance of 

filters or monochromators used to select excitation and emission wavelengths, efficiency 

of photomultiplier tube, and the type of plate reader used. By using optimal excitation 
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and emission wavelengths, there was very good correlation between fluorescence 

intensity and number of microspheres across a wide range of concentrations.  

Although we had crimson fluorescent microspheres as an option along with the 

red and yellow-green microspheres that we used, we did not use crimson because of its 

low quantum efficiency and significant spillover into adjacent colors at higher 

concentrations.  

When two different colors of fluorescent microspheres were injected into the 

body of a rat under baseline conditions and under infusion of adenosine, there was a good 

relation between estimated blood flow across a wide range of tissue blood flow. 

Fluorescent microspheres produced no significant alteration in blood pressure during or 

after injection in rats. Use of red and yellow-green microspheres resulted in no spillover 

in the course of this study.    

                A dilution procedure was performed using known microsphere samples to 

obtain the calibration curve of fluorescence intensity versus microsphere number. Several 

trials of the dilution procedure were performed on each of the two microsphere colors. A 

linear regression equation was obtained for each graph plotted. These regressions were 

then averaged to obtain an standard curve for each fluorescent microsphere color that we 

used. Averaging increased the accuracy of the calibration thus resulting in a more reliable 

final value of coronary blood flow.  

  Because of the small blood volume in rats, we limited our investigation to two 

successive measurements by taking two reference blood samples each of 1 ml.  We 

calculated that – compared to the weight of the animal – this volume of reference blood 

withdrawn was less than 10% of the total blood volume in each rat, which should not 
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have affected the hemodynamics of the animal. In addition, after each reference blood 

withdrawal, saline was inflused into the rat which also helped to restore blood volume.  

Our study demonstrates that the fluorescent microsphere method is able to 

accurately reflect the increase in flow that occurs in rats after infusion of a coronary 

vasodilator, adenosine. Adenosine infusion produced nearly identical increases in 

myocardial blood flow (measured by fluorescnt microspheres) and in coronary blood 

velocity (measured by Doppler echocardiography).  The mean coronary blood flow 

reserve obtained by the fluorescent microsphere method was 2.18, which was within the 

standard estimate of the value for coronary flow velocity reserve obtained by the range-

gated Doppler echocardiography method.  

As reported in a recently published article [22], the value of mean myocardial 

blood flow in Sprague Dawley rats at baseline and after infusion with adenosine, were 5.9 

+/- 2.3 (ml/min/g) and 13.1+/-2.1(ml/min/g), respectively. In our study, using the same 

species of rat and the same coronary vasodilator, the values obtained at baseline and after 

infusion with adenosine were 5.94 and 12.9 (ml/min/g), respectively.  Thus, the values 

we observed in both conditions (baseline + vasodilated) fall within the 95% confidence 

interval of this recently reported data. This suggests that the procedures developed in this 

thesis for microsphere recovery (by the sedimentation method) and fluorescence 

measurement and calibration offer a reliable method for determining coronary blood flow 

in rats. 

               Colored microspheres are currently being used to determine coronary blood 

flow in rats in the laboratories of the Cellular Biology and Molecular Medicine 

Department at UMDNJ, Newark. We were thus able to collaborate with current expertise 
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in microsphere injection procedures, and this collaboration undoubtedly improved the 

reliability of our results compared to what we would have been able to achieve 

independently.  However, the samples of tissue and blood containing colored 

microspheres are currently sent out to a commercial processor to determine the number of 

microspheres and hence coronary blood flow.  The techniques applied in this thesis are 

thus new to this laboratory and offer a reasonable alternative to commercial processing to 

measure coronary blood flow.  

One drawback of our study is that only two animals were used for the procedure. 

This was due to the busy schedule of the collaborators at UMDNJ and the limited time 

window in which this thesis had to be completed.  However, the quality of agreement 

among the two studies that were performed – and their agreement with recent data 

reported in the literature – suggests that a larger study might have even more strongly 

supported the repeatability of the results.  

In the future, it would be important to see whether the fluorescent microsphere 

method could also be applied to measure coronary blood flow in mice.  We attempted 

two experiments on mice, but we experienced failure during the cardiac cannulation 

procedure. It appeared that the catheter used was too large in diameter and thus too stiff 

to be able to be guided into the left ventricle of mice. Use of a smaller diameter catheter 

might offer easier access to the left ventricle, however one would also have to evaluate 

whether microspheres could be injected at an adequate rate through such a smaller 

diameter.   Also, due to the very small blood volume of a mouse, it will be more difficult 

to obtain two reference blood samples without affecting the hemodynamics of the mouse.   

Finally, to achieve accurate measurements [38] sufficient numbers of microspheres will 
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have to be injected so that at least 400-500 spheres will be trapped in the left ventricular 

tissue (which typically has a mass of only 80-100 micrograms) and in each reference 

blood sample. 

Note that during the dilution procedure to obtain the calibration curves we used 

whole microspheres from the stock solution (with the fluorescent dye remaining within 

the microspheres). On the other hand, during the actual procedure after microspheres 

were recovered from the body of animal, the microspheres were dissolved chemically to 

release the dye into solution. We believe this is an adequate calibration procedure 

because only the ratio of fluorescent intensities matters in the determination of blood 

flow.  Because our calibrations showed that fluorescent intensity was linearly related to 

microsphere number throughout the range of interest, the ratio of intensities will be the 

same as the ratio of numbers.   Each microsphere dye might produce more intensity when 

free in solution because of limits to excitation and absorption of emitted light imposed 

when the dye remains inside a microsphere.   However, we assumed that this effect 

would apply equally to both the tissue and reference blood samples.  Thus, the ratio of 

fluorescent intensity would not be affected by whether the dye was in solution or 

remained within the microspheres.  

In conclusion, the fluorescent microsphere technique (a) is a reliable method for 

measuring coronary blood flows in rats;  (b) works well as a substitute for radioactive or 

colored microspheres, with advantages in safety and cost; and (c) provides repeatable 

measurements allowing at least two flow measurements in the same animal.  
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APPENDIX I 
DETAILS OF CALIBRATION PROCEDURE 

 
A dilution procedure was used to plot the calibration curve, each for yellow green 
microspheres and red microspheres, operating at different (Excitation/ Emission) 
wavelengths. 
 
The procedure is as follows: 
1) Vortex the bottle containing fluorescent microspheres using vortex mixer. Vortexing 
allows uniform mixing of the solution thus preventing aggregation and clumping of 
microspheres within the solution. 
 
2) Pull out 100µl or 200µl well agitated microspheres from the original microsphere 
containing bottle using 1ml plastic syringe. 
 
3) Transfer microspheres from syringe into a small cuvette carefully at the bottom of 
chamber. 
 
4) Vortex the cuvette to prevent sticking and clumping of microspheres within the 
solution and around the walls of cuvette. 
 
5) Immediately withdraw calibrated 50µl of sample using 200µl pipette. 
 
6) Add 450µl of (1X PBS + 2% Tween 80) solution to 50µl of microspheres. This makes 
a total of 500 µl @ 100 (spheres / µl) 
 
7) Take 100 µl of above solution and put it in a 96 well container. This is the test for 
10,000 microspheres. 
 
8) After 100 µl of solution is removed, 400 µl of solution remains. 
 
9) Perform 2:1 dilution on 400 µl solution by adding 400 µl of (1X PBS + 2% Tween 80) 
solution to the above 400 µl solution. 
 
10) This make a total of 800 µl solution. Take 100 µl of above solution and put it in a 96 
well container. This is the test for 5,000 microspheres. 
 
11) Out of 700 µl solution still remaining, take 500 µl of solution in a different cuvette. 
 
12) Add 500 µl of (1X PBS + 2% Tween 80) solution in above 500 µl solution. 
 
13) Vortex sample and immediately withdraw 100 µl solution and put it in a 96 well 
plate. This is the test for 2500 microspheres. 
 
14) Out of 900 µl solution still remaining, take 500 µl of solution in a different cuvette. 
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15) Add 500 µl of (1X PBS + 2% Tween 80) solution in above 500 µl solution. 
 
16) Vortex sample and immediately withdraw 100 µl solution and put it in a 96 well 
plate. This is the test for 1250 microspheres. 
 
17) Out of 900 µl solution still remaining, withdraw 500 µl of solution in a different 
cuvette. 
 
18) Add 500 µl of (1X PBS + 2% Tween 80) solution in above 500 µl solution. 
 
19) Vortex sample and immediately withdraw 100 µl solution and put it in a 96 well 
plate. This is the test for 625 microspheres. 
 
20) Out of 900 µl solution still remaining, withdraw 500 µl of solution in a different 
cuvette 
 
21) Add 500 µl of (1X PBS + 2% Tween 80) solution in above 500 µl solution. 
 
22) Vortex sample and immediately withdraw 100 µl solution and put it in a 96 well 
plate. This is the test for 312 microspheres. 
 
23) The 96 well plate is then placed in a plate reader to determine the fluorescence 
intensity. 
 
Depending on the color of fluorescent microspheres, the (Excitation / Emission) 
wavelengths are set in the instrument and then a scan is carried out to determine the 
fluorescence intensity. 
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APPENDIX II 

CALIBRATION CURVES FOR FIVE TESTS PERFORMED ON EACH 

MICROSPHERE COLOR  

 

A dilution procedure as described in Chapter 2 was performed five times with each 

microsphere color to get an average calibration curve. With each trial, the readings were 

recorded on spectrophotometer and graphs were plotted on Microsoft Excel. The 

intercept equations for each trials were then averaged together to get a standard 

calibration curve. Yellow- green microspheres were used for getting a calibration curve 

which can be used for baseline calculations. Red microspheres were used for getting a 

calibration curve which can be used for vasodilation calculations. 

Trials done with yellow- green microspheres: 

Sample 1:  

Table 2.2  Representation of fluorescent intensities at various dilutions  

     Microsphere number      Fluorescence Intensity  

                        10000                        11363 

                          5000                         5964 

                          2500                        2808 

                          1250                           1407 

                           625                           717 

                          312                           318 
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Figure 2.4  Excel plots showing the 1st  baseline calibration curve   

Sample 2:  

Table 2.3  Representation of fluorescent intensities at various dilutions   

     Microsphere number     Fluorescence Intensity        

                        10000                     9214 

                          5000                     4400 

                          2500                      2150 

                          1250                      1000 

                           625                        550 

                          312                       300 
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Figure 2.5  Excel plots showing the 2nd baseline calibration curve   

Sample 3 :  

Table 2.4  Representation of fluorescent intensities at various dilutions 

     Microsphere number  Fluorescence Intensity 

                        10000                     8683 

                          5000                     4288 

                          2500                      2100 

                          1250                      1001 

                           625                        528 

                          312                       300 
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Figure 2.6  Excel plots showing the 3rd  baseline calibration curve   

Sample 4: 

Table 2.5  Representation of various fluorescent intensities at various dilutions 

     Microsphere number    Fluorescence Intensity 

                        10000                     9110 

                          5000                     4792 

                          2500                      2000 

                          1250                      1068 

                           625                        629 

                          312                       308 

 

 

 



77 
 

 

Figure 2.7  Excel plots showing the 4th  baseline calibration curve  

Sample 5:  

Table 2.6  Representation of various fluorescent intensities at various dilutions    

     Microsphere number     Fluorescence Intensity 

                        10000                     7752 

                          5000                     4245 

                          2500                      2039 

                          1250                      1200 

                           625                        501 

                          312                       284 
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Figure 2.8  Excel plots showing the 5th  baseline calibration curve   

Trials done with red microspheres:  

Sample 1:  

Table 2.7   Representation of various fluorescent intensities at various dilutions. 

        Microsphere Number              Fluorescence Intensity 

                      10000                     11057       

                      5000                     5237 

                      2500                     2701 

                     1250                    1389 

                      625                        604 

                     312                    204 
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Figure 2.9  Excel plots showing the 1st vasodilation calibration curve   

Sample 2:  

Table 2.8   Representation of various fluorescent intensities at various dilutions. 
        Microsphere Number                 Fluorescence Intensity 

                      10000                     8991  

                      5000                     4477 

                      2500                     1819 

                     1250                      867 

                      625                        507 

                      312                    394 
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Figure 2.10  Excel plots showing the 2nd  vasodilation calibration curve   

Sample 3: 
 
Table 2.9   Representation of various fluorescent intensities at various dilutions 

        Microsphere Number              Fluorescence Intensity 

                      10000                     11573 

                      5000                     6171 

                      2500                     3000 

                     1250                      1682 

                      625                         800 

                      312                      500 
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Figure 2.11  Excel plots showing the 3rd vasodilation calibration curve   
 
Sample 4: 
 
Table 2.10   Representation of various fluorescent intensities at various dilutions 

        Microsphere Number               Fluorescence Intensity 

                      10000                         11100 

                      5000                          6263 

                      2500                          3623 

                     1250                          1798 

                      625                             1000 

                      312                            450 
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Figure 2.12  Excel plots showing the 4th vasodilation calibration curve   

Sample 5: 
 
Table 2.11   Representation of various fluorescent intensities at various dilutions 

        Microsphere Number                 Fluorescence Intensity  

                      10000                     12306  

                      5000                     6055 

                      2500                     2930 

                     1250                      1611 

                      625                         827 

                      312                      430 

                   
 
 
 
 
 
 
 
 



83 
 

 
Figure 2.13   Excel plots showing the 5th vasodilation calibration curve   
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