
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

g-FACTORS FOR TERNARY CRYSTALS OF GROUPS III AND V 
by 

Liviu Mateescu 

The objective of this thesis is to present a method of calculating the g-factors of ternary 

crystals of III-V group elements. 

There is an increasing interest in knowing the magnetic behavior of different 

semiconductor materials, due to advances in the domain of spintronics. The g-factors 

were calculated for the conduction electrons, since they have the greatest contribution to 

the magnetic properties of the crystal. The thesis presented here proposes a method to 

calculate the magnetic g-factor of whole families of crystals made of three elements, of 

the form A1-xBxC, for eleven values, {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}x∈ , that 

were considered sufficient for giving an accurate behavior of the magnetic properties of 

the conduction electrons.  

The notion of g-factor is presented and then methods are shown that permit the 

calculation of the g-factor in cubic crystals. The algorithm is then applied to binary 

crystals and the results of calculations are compared to the scarce measurement data 

found in literature. 

Finally, relying on a series of papers that approximate the lattice parameters for 

ternary III-V crystals (cubic determination), the g-factor is calculated for the families of 

A1-xBxC for the x values mentioned above, and recommendations are given for an 

eventual enhancement of the precision. 

The method presented here is but a first approximation, that is considered good 

enough for applications in the spintronics of the cubic crystals. 
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Chapter 1 

INTRODUCTION 

1.1 Objective 

The objective of this study is to present a method of calculating the g-factors of ternary crystals of 

III-V group elements. A method is found that calculates the lattice parameters of A1-xBxC cubic 

crystals and then the g-factor of these crystals is calculated for x sweeping the interval [0,1] with 

a step of 0.1, which is considered sufficient. 

1.2 Defining the g-factor 

Any quantum particle, be it considered simple, like an electron, or complex, such as a nucleus, 

has an associated magnetic moment µ, which characterizes the interaction of the said particle with 

an external magnetic field B. The corresponding interaction energy between the magnetic moment 

and the external applied magnetic field is well known: W = -µ·B. Therefore, the magnetic 

moment is essential in defining the intensity of magnetic interactions. 

Magnetic moments are quantized and there is always a common factor that appears in all 

their expressions for given families of particles. For example, in all magnetic moments associated 

with electrons, no matter the physical system they are a part of, the common factor (in 

International System), is 

 
2B

e

e
m

µ =


 (1.1) 

where e is the elementary charge of the electron, ħ is the reduced Planck constant, and me is the 

rest mass of the electron. The quantity defined above is called Bohr’s magneton.  
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Similarly, where particles of a nucleus are involved, a common factor appears that is 

called nuclear magneton. 

Therefore, the need has arisen to characterize the magnetic moment of a particle by a 

dimensionless number. If one takes a free electron, which is characterized by the spin quantum 

number, then its total magnetic moment will be  

 S e B
Sgµ µ=






 (1.2) 

 

where the vector S is the spin angular momentum of the electron. The above relation is the 

definition of the (spin) g-factor of the electron, also called the gyromagnetic ratio of a particle. If 

the expression of Bohr’s magneton is plugged in (1.2), then one sees that, after a projection on the 

Oz axis is made, ge takes the value -2, since the spin number of the electron is 1
2

± . 

All electron systems can have their own characteristic g-factor. For example, there is an 

orbital g-factor µL which characterizes the magnetic momentum of an electron strictly with 

respect of its orbital movement: 

 L L B
Lgµ µ=






 (1.3) 

and since the spin momentum and the orbital momentum can be added, respecting the 

composition rules for spins, there is also a gyromagnetic factor characterizing the electron in an 

atom:  

 J B
Jgµ µ=






 (1.4) 
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where J is the total angular momentum of the electron (J=L+S). gJ is also called the Landé g-

factor, in honor of the first physicist who studied it. An intuitive presentation of the g-factor as 

studied by Landé can be found  in [1]. 

 

1.3 The importance of g-factors 

First and foremost, the importance of the g-factor resides in the fact that knowing it means 

knowing the effects within a system that is submitted to an external magnetic field. One of the 

main applications is in spintronics devices design.[8] 

Spintronics is a multidisciplinary field, the main denominator of which is “the active 

manipulation of spin degrees of freedom in solid-state systems” (quoted from the above-

mentioned reference). 

Among the many uses, actual and potential, of spintronics, one can enumerate “giant 

magnetoresistive materials”, magnetic tunnel junction materials, magnetic sensors, spintronic 

couplers, and magnetic RAM (Random Access Memory). All these promise to be more efficient 

than the existing devices performing similar tasks (faster, more sensitive, tougher, more 

reliable).[9].  

 By control of the spin it is understood controlling either the population and the phase of 

the spin of an ensemble of particles, or a coherent spin manipulation of a single-spin or a few-spin 

system. The field has only very recently taken momentum, because only in 2001 a method was 

devised for spin-injecting of electrons at room temperature, according to [10]. 
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Chapter 2 

THE G-FACTOR CALCULATION,  

WITH APPLICATION TO III-V BINARY CRYSTALS. 

2.1 Band structure calculations with the k.p method g  

The k.p method is the instrument of choice for calculating band structure parameters, because it is 

the most convenient in finding band dispersion, effective masses and g-factors around the high-

symmetry points, especially Γ point. 

If a Bloch function ( )ik r
nk nke u r⋅Φ =





 is introduced in the Schrödinger one-electron 

equation, the new equation in unk will become: 

 
2 2 2

( )
2 2 nk nk nk
p k p k V u E u
m m m

⋅
+ + + =




   (2.1) 

 For k=0, equation  (2.1) simplifies significantly: 

 
2

0 0 0( )
2 n n n
p V u E u
m
+ =  (2.2) 

This equation is relatively easy to solve, since un0 are periodic. Equation (2.2) will provide 

a set of eigenvalues En0 and a complete orthogonal set of eigenfunctions un0, which will be the 

basis for perturbation calculations, where the perturbations will be 
k p
m
⋅






 and 
2 2

2
k
m



. This is the 

essence of the k.p method. 

An application of the method is calculating the effective mass of a non-degenerate band, 

which is the case for most direct-gap semiconductors at the minimum of the conduction band: 
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Let En0  be a stationary value of the energy, that is 
0

0
nE E

E
k =

∂
=

∂
, and let non degeneracy 

occur at this value. Then, the unperturbed functions and energies are known, the perturbation 

theory gives: 

 0 0
0 0

0 0

n n
nk n n

n n n n

u k p u
u u u

m E E
′

′
′≠ ′

⋅
= +

−∑




  (2.3) 

and also  

 
2

2 2 2
0 0

0 2
0 02

n n
nk n

n n n n

u k p ukE E
m m E E

′

′≠ ′

⋅
= + +

−∑




   (2.4) 

But since  
0

0
nE E

E
k =

∂
=

∂
, the term linear in k will disappear, and therefore, at least around k=0, one 

can write:  

 
2 2

0 2 *nk n
kE E

m
= +



 (2.5) 

m* is by definition the effective mass of the electron in the given band. 

By comparing (2.4) and (2.5), a general expression for m* can be deduced:  

 
2

0 0
2 2

0 0

1 1 2
*

n n

n n n n

u k p u
m m m k E E

′

′≠ ′

⋅
= +

−∑




 (2.6), 

which is further processed. But conclusions can be drawn already, the most important being that the 

contribution of another band is determined by 0 0n nE E ′− (the closer the band, the bigger its influence). 

Lower bands will contribute with a positive term, making 1/m* bigger, and therefore m* smaller than m0 

(the mass of the free electron). The contribution of upper bands is negative, and m* can even become 

negative.  
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Symmetry reasons limit the number of mixed elements for the lowest conduction band in direct 

gap semiconductors. Here the only significant interaction is with the nearest valence band Γ4v, and the 

approximate value of the effective mass is given by 

 
2

1 4
2 2

0

1 1 2
*

c vk p
m m m k E

Γ ⋅ Γ
= +





 (2.7) 

 

Here E0 is the direct band gap. Moreover, the 4vΓ  functions are denoted |X>, |Y> and |Z>, in an 

analogy with the p-type orbitals, and the only non-zero elements in (2.7) are  

 1 1 1x y zX p Y p Z p iPΓ = Γ = Γ =  (2.8) 

P is specific for each crystal of such qualities. However, for most semiconductors of group IV or 

binary III-V and II-VI crystals, P is remarkably constant.  

The value EP=2P2 /m has a value that is around 20 eV, and the expression of the effective mass 

takes the simple form of:  

 
2

0

1 2
*c

m P
m E

= +  (2.9) 

Here the subscript “c” shows that the expression is solely valid for the (lower) conduction band. 

2.2 Examples of calculations of g-factors in bulk semiconductors  

using 3- and 5- band models 

 

The theory in the precedent paragraph holds for most of the direct bandgap semiconductors. As 

stated, the formulae (2.8) and (2.9) are valid in the hypothesis that the only influence on the 

conduction band comes from the upmost valence band. That is, a three-band model of a band 

structure was used.  
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Figure 2.1. Typical 3-band model for a direct gap semiconductor. 

 Δ0 is the relativistic spin-orbit split, and E0 is the bandgap. 

 

A direct consequence of this model is the expression of g* for the first conduction band 

[14]. Applying a constant magnetic field to the crystal,  in the approximation of the effective mass, 

the Schrödinger equation will have the following form: 

 
2

1 1 10 1
1

( ) ( ) ( ) ( )
2

eAp r E E r
m c

ψ ψ+ = −



    (2.10) 

where A  is the magnetic vector potential, which will be chosen as 

Ax =Az=0, Ay= - Hx. 

 

Then, the energies and the wave functions will be the solutions of a set of coupled Schrödinger-
like equations: 
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 0[ ) ( ) (1/ *) ( )] 0j ij j ij j
j

E E r P m P rδ ψ ψ− + ⋅ ⋅ =∑
 

   (2.11) 

where   

 
2

2
, 0 0

1(1/ *) i j
ij ij

i j j

m
m m E E

µ µ

µ µ

π π
δ

≠

= +
−∑

  (2.12) 

 Here  

 
2

0 0( )[ ( )] ( )
4i iu r p V u r dr

mµ µπ σ= − ∇ ×∫


     (2.13), 

due to the choice (which doesn’t cancel its generality) of the magnetic field, and the fact that the 

general form of the Hamiltonian matrix element (in effective mass model) is 

  

 1 1(1/ *)
2 2ij ij B ijH P m P g Hδ µ σ= ⋅ ⋅ + ⋅ ⋅
  

 (2.14) 

In this 2x2 effective mass Hamiltonian, Bµ is Bohr’s magneton, the quantity 1
2 B ij gµ σ ⋅

represents the magnetic moment of the electron, and g is a tensor supposed not to be influenced 

by the intensity H of the applied magnetic field.  

All one needs to do is identify the terms linear in H. For the general case, this will have 

the form  

 
2

2
0

24( ) in ni
ij

n n

g s ij
m E

π πσ ×
⋅ = + ∑  (2.15) 

In the case of the spherical orbitals, the g tensor becomes a diagonal one, and the second 

term, after approximating P with p, the known expression is drawn: 

besides 

2
2

0
2

0 0 0

1 1
2 * 2

x
n

n n

p
m m m E E≠

= +
−∑

 (2.16), 
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one will have the expression of the magnetic moment of the electron:  

 0 0 0 0
2

0 0 0

1
2 2

x y y x
n n n n

n n

p p p pe e
m m i E E

µ
≠

−
= +

−∑   (2.17) 

 After the Bohr magneton is factorized and expressing the matrix elements in the usual 

atomic orbitals X, Y, Z, the classical expressions appear: 

 

 20
2

0

3 21 1 1
2 * 2 3 ( )

g
x

g g

E
S p X

m m m E E
+ ∆

= +
+ ∆

 (2.18) 

and 

 
20

0

2(1 )
3 ( ) x

g g

g S p X
E E

∆
= −

+ ∆
 (2.19) 

 or 

 2 0

0 0 0

2* 2
3 ( )

g P
E E

∆
= −

+ ∆
 (2.20) 

In the above-quoted paper, the relationship between the g-factor and the effective mass 

was first rigorously mentioned: 

 

 0 0

0 0 0

* 1 ( 1)
3 2 *

mg
g E m

∆
= − −

+ ∆
 (2.21) 

This formula offers a good approximation of the g-factor for certain semiconductors, 

generally within 10% to the measured values, but for others the difference is very substantial; 

even the sign might be different between 3-band model and the measured value. In [15] the 

conclusion was taken that in formulae (2.3) and (2.6) supplementary terms must be taken into 

consideration, because the upper conduction bands Γ8 and Γ7 influence the lower conduction band 

at Γ1 point. Thus a 5-band model was used. 
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Figure 2.2 The 5-band model, used in [16] 

A correction term was introduced, implying the existence of a parameter λ2, besides the 

band parameters visible in the figure above, and the P2 interband term. 

 
'

2 20 0
' ' '

0 0 0 0 0 0 0 0

2* 2 ( )
3 ( ) ( )( )

g P
E E E E E E

λ∆ ∆
= − +

+ ∆ − − −∆
 (2.22) 

The term λ2 can be found indirectly, since it is also present in the effective mass calculated 

by the 5-band model: 
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' '2

20 0 0 0 0
' ' '

0 0 0 0 0 0 0 0

3 2 3( ) 2/ * 1 ( )
3 ( ) ( )( )

E E EPm m
E E E E E E

λ+ ∆ − − ∆
= + −

+ ∆ − − −∆
 (2.23) 

The equation (2.23), which is an enhanced form of (2.21), is solved for λ2 and the result is 

plugged in (2.22). Since the energies and the spin-orbit splits are generally known, and m* is also 

known, the only imponderable is P2, the value of which is universally considered between 20 and 

30, and very seldom bigger than 23. 

The next table contains calculations of g* using the 3-band and the 5-band model, 

compared with the measured values of g-factor for the first conduction band. 

Table 2.1 Values of g-factor, calculated and measured, for binary crystals 

 
m*/m0 Eg Δ0 

'
0E  '

0∆  P2 
Calculated g* Measured g-

factor 3-band 5-band 
GaAs 0.066 1.519 0.341 4.659 0.171 29 -0.333 -0.48 -0.44 
GaSb 0.045 0.81 0.8 3.69 0.25 23.93 -7.79 -8.4 -9.3 
InP 0.08 1.42 0.11 5.66 0.41 19.50 +1.34 +1.21 +1.26 
InAs 0.024 0.42 0.38 4.58 0.42 21.36 -14.104 -14.26 -14.7 
InSb 0.0137 0.237 0.81 3.78 0.41 23.89 -49.99 -50.22 -51.4 
AlP 0.272 5.12 0.05 5.18 0.03 22 1.972 -79b f 
AlAs 0.22 3.06 0.28 4.66 0.18 22 1.598 1.133  f 
AlSb 0.18 2.3 0.75 4.73 0.48 22 0.43 -0.16c f 
GaP 0.17 2.87 0.08 5.33 0.5 22 +1.86 +1.25d f 
GaN  0.625 3.62 -0.01 9.12 ? 22 2.004 2.011 1.95g 

BN 0.752 5.9 0.021 13i 0.008 23 1.991 1.990 f 
BP f 2.1 0.041 12i 0.08 23 1.860 1.734 f 
BAsh f 1.25 0.216 1.75i 0.086 23 +0.19 -2.37 f 
BSb f 0.527 0.366 f 0.146 23 -9.92 -12.46j  
ZnSe* 0.16 2.79 0.45 8.62 0.45 23 1.236 1.195 1.06-1.22 
ZnTe* 0.12 2.39 0.93 5.85 0.45 23 +0.2 -0.06 -0.4 
CdTe* 0.09 1.6 0.927 6.01 0.4 18.5 -0.827 -0.939 -1.65k 

 

*II-VI crystals in the zinc-blende system. 

f The value is not listed in Landold-Bornstein database or other sources. 

g Value listed in Landold-Bornstein database. 

h Very indirect bandgap. The approximations in the algorithm  probably don’t hold. 

i Extrapolated from the band structure in LB database. 
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j Incomplete, since E0’ is missing. Very scarce data for this substance. 

k The values of gc in LB database are between -2.2 and -0.75. In paper [17] the -1.12 value is 

given.   

b  The case of AlP is known in literature, and the algorithm is considered imprecise in this 

particular case, because E0 and E0’ have very close values, as it is visible in the band structure of 

AlP (Source, LB database): 

 

Figure 2.3 Band structure of AlP (calculated with an orthogonalized LCAO method). 
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As an observation, for positive g-factors, the 3-band and the 5-band methods give very 

similar results, and where there are data available, both values are in good agreement with the 

measured values. However, for negative g*, a great discrepancy may appear between the two 

methods (but not necessarily). The 5-band model prevails in this case, with the notable exception 

of AlP. 
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Chapter 3  

THE g-FACTORS of TERNARY III-V CRYSTALS 

3.1 Results 

The previous chapters’ aim was to find and justify the validity of formulae (2.22) and (2.23).  

The compounds of the type A1-xBxC are in theory of an infinite variety, and all their band 

parameters cannot be found in databases. However, correlations exist between the x parameter 

and the band parameters of the compound, which can be calculated. Subsequently, the g-factor 

can be calculated as for the bulk materials. A similar method can be used for quaternary 

compounds of the type A1-xBxC1-yDy, though in this case there is no universal valid method to 

calculate the band parameters from x and the band parameters of the components.  

In treating the g-factor for ternary and compounds, we will rely heavily on [25] and on the 

Landolt-Börnstein database, and also on the interpolation methods found in [17]. 

The real difficulty consists of interpolating the values of the parameters used in the 

formulae giving g*. Where no method of finding the parameters as a function of x exists, a linear 

increase was postulated. A justification, at least for the dimensional parameters, can be seen in the 

observation that follows: 

Families of binary crystals were analyzed from the point of view of the dependency of the 

lattice constant. 

  



15 
 

Crystal Z1 Z2 Z1 + Z2 a0 (Angstrom) III B  5 

GaAs 31 33 64 5.65  Al 13 

GaSb 31 51 82 6.095  Ga 31 

InP 49 15 64 5.86  In 49 

InAs 49 33 82 6.05    

InSb 49 51 100 6.479 V N 7 

AlP 13 15 28 5.467  P 15 

AlAs 13 33 46 5.66  As 33 

AlSb 13 51 64 5.35  Sb 51 

GaP 31 15 46 5.45    

GaN 31 7 38 4.52 

BAs 5 33 38 4.77 

BN 5 7 12 3.61 

BP 5 15 20 4.538 

BSb 5 51 56 5.12 

InN 49 7 56 4.98 

 

 a0 

       

0

1

2

3

4

5

6

7

0 50 100 150

Figure 3.1 

Dependency between 
the atomic number and 
the lattice parameter 

 

 

Z 

Table 3.1 The lattice parameter 
dependence of the atomic number 
in binary crystals. 



16 
 

A linear dependency is evident between the total atomic number and the lattice constant. 

Where it was possible, interpolation parameters found in [25] were used. Where such 

interpolations do not exist in literature, a linear interpolation was performed. 

Parameters were interpolated and the formulae for the g-factor of a cubic crystal were 

applied. The results are synthesized for families of A1-xBxC ternary crystals. 

Table 3.2 Band parameters  of AlGaAs 
 

x Crystal E0 Δ0 P2 E0p Δ0p λ2 g (3band) 
g( 5 

band) 

0 GaAs 1.519 0.341 29 4.569 0.171 0.4 -0.3334 -0.484 
0.1   1.67274 0.3349 28.3 4.5781 0.1719 0.4 0.118535 -0.04481 
0.2   1.8056 0.3288 27.6 4.5872 0.1728 0.4 0.430171 0.25491 
0.3   1.92544 0.3227 26.9 4.5963 0.1737 0.4 0.663076 0.476256 
0.4   2.04012 0.3166 26.2 4.6054 0.1746 0.4 0.849843 0.650932 
0.5   2.1575 0.3105 25.5 4.6145 0.1755 0.4 1.008678 0.795786 
0.6   2.28544 0.3044 24.8 4.6236 0.1764 0.4 1.149719 0.918919 
0.7   2.4318 0.2983 24.1 4.6327 0.1773 0.4 1.278107 1.022267 
0.8   2.60444 0.2922 23.4 4.6418 0.1782 0.4 1.395779 1.102211 
0.9   2.81122 0.2861 22.7 4.6509 0.1791 0.4 1.502754 1.147868 

1 AlAs 3.06 0.28 22 4.66 0.18 0.4 1.59819 1.1334 
 

   

         Figure 3.2 AlGaAs g-factor dependency on x  
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Figure 3.3 Variation of bandgap with x in GaPN alloys, apud [25] 

 

                                 Table 3.3 Band parameters of GaPN 

x Crystal E0 Δ0 P2 E0p Δ0p λ2 g (3band) g( 5 band) 

0 GaP 2.87 0.08 22 5.33 0.5 0.4 1.861415 1.253041 

0.1   3.296 0.071 22 5.709 0.45 0.4 1.906166 1.348818 

0.2   3.644 0.062 22 6.088 0.4 0.4 1.932665 1.462913 

0.3   3.914 0.053 22 6.467 0.35 0.4 1.949936 1.584851 

0.4   4.106 0.044 22 6.846 0.3 0.4 1.962128 1.698876 

0.5   4.22 0.035 22 7.225 0.25 0.4 1.971412 1.794252 

0.6   4.256 0.026 22 7.604 0.2 0.4 1.979075 1.867748 

0.7   4.214 0.017 22 7.983 0.15 0.4 1.986016 1.9215 

0.8   4.094 0.008 22 8.362 0.1 0.4 1.993013 1.960034 

0.9   3.896 -0.001 22 8.741 0.05 0.4 2.000967 1.98834 

1 GaN 3.62 -0.01 22 9.12 0 0.4 2.011223 2.011223 
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                                                   Figure 3.4 GaPN g-factor dependency on x   
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Figure 3.5 GaAsN g-factor and bandgap dependency on x (to the right) 

 

                                                  Table 3.4 Band parameters of GaAsN 

x Crystal E0 Δ0 P2 E0p Δ0p λ2 g (3band) g( 5 band) 

0 GaAs 1.519 0.341 29 4.659 0.171 0.4 -0.33341 -0.47525 

0.1   0.3791 0.3059 28.3 5.1051 0.1539 0.4 -20.2244 -20.2782 

0.2   -0.4608 0.2708 27.6 5.5512 0.1368 0.4 -54.9115 -54.9401 

0.3   -1.0007 0.2357 26.9 5.9973 0.1197 0.4 -3.52148 -3.53932 

0.4   -1.2406 0.2006 26.2 6.4434 0.1026 0.4 -0.71566 -0.72797 

0.5   -1.1805 0.1655 25.5 6.8895 0.0855 0.4 -0.34809 -0.35711 

0.6   -0.8204 0.1304 24.8 7.3356 0.0684 0.4 -1.80858 -1.81544 

0.7   -0.1603 0.0953 24.1 7.7817 0.0513 0.4 -144.951 -144.956 

0.8   0.7998 0.0602 23.4 8.2278 0.0342 0.4 0.634659 0.630773 

0.9   2.0599 0.0251 22.7 8.6739 0.0171 0.4 1.911558 1.909186 
1 GaN 3.62 -0.01 22 9.12 0 0.4 2.011223 2.011223 
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Table 3.5 Band parameters of InPSb 

x Crystal E0 Δ0 P2 E0p Δ0p λ2 g (3band) g( 5 band) 
0 InSb 0.237 0.81 23.89 3.78 0.41 0.4 -49.9894 -50.2247 

0.1   0.5263 0.8075 23.451 3.968 0.1959 0.4 -15.9841 -16.0938 
0.2   0.7776 0.79 23.012 4.156 0.2208 0.4 -7.94257 -8.06959 
0.3   0.9909 0.7575 22.573 4.344 0.2457 0.4 -4.57976 -4.7217 
0.4   1.1662 0.71 22.134 4.532 0.2706 0.4 -2.78823 -2.94154 
0.5   1.3035 0.6475 21.695 4.72 0.2955 0.4 -1.68248 -1.8428 
0.6   1.4028 0.57 21.256 4.908 0.3204 0.4 -0.91868 -1.08136 
0.7   1.4641 0.4775 20.817 5.096 0.3453 0.4 -0.33115 -0.49173 
0.8   1.4874 0.37 20.378 5.284 0.3702 0.4 0.180556 0.025911 
0.9   1.4727 0.2475 19.939 5.472 0.3951 0.4 0.701344 0.555602 
1 InP 1.42 0.11 19.5 5.66 0.41 0.4 1.341802 1.210515 

  

  

                       Figure 3.6 InPSb g-factor dependency on x   
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                                                Table 3.6 Band parameters of GaPSb 

x Crystal E0 Δ0 P2 E0p Δ0p λ2 g (3band) g( 5 band) 
0 GaSb 0.81 0.8 23.93 3.69 0.25 0.4 -7.78657 -7.99719 

0.1   0.773 0.728 23.737 3.854 0.1959 0.4 -7.92901 -8.06851 
0.2   0.79 0.656 23.544 4.6432 0.2208 0.4 -7.01358 -7.11263 
0.3   0.861 0.584 23.351 4.6353 0.2457 0.4 -5.30729 -5.42216 
0.4   0.986 0.512 23.158 4.6274 0.2706 0.4 -3.35169 -3.48783 
0.5   1.165 0.44 22.965 4.6195 0.2955 0.4 -1.60269 -1.76852 
0.6   1.398 0.368 22.772 4.6116 0.3204 0.4 -0.26287 -0.47213 
0.7   1.685 0.296 22.579 4.6037 0.3453 0.4 0.665186 0.388381 
0.8   2.026 0.224 22.386 4.5958 0.3702 0.4 1.26665 0.875684 
0.9   2.421 0.152 22.193 4.5879 0.3951 0.4 1.638978 1.029949 
1 GaP 2.87 0.08 22 5.33 0.5 0.4 1.861415 1.253041 

 

 

 

 

                           Figure 3.7 GaPSb g-factor dependency on x 
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                                                Table 3.7 Band parameters of GaInAs 

x Crystal E0 Δ0 P2 E0p Δ0p λ2 g (3band) g( 5 band) 

0 GaAs 1.519 0.341 29 4.659 0.171 0.4 -0.33341 -0.47525 

0.1   1.36617 0.3314 28.3692 4.6511 0.1959 0.4 -0.70256 -0.84861 

0.2   1.22288 0.3248 27.7088 4.6432 0.2208 0.4 -1.17013 -1.31922 

0.3   1.08913 0.3212 27.0188 4.6353 0.2457 0.4 -1.7666 -1.91786 

0.4   0.96492 0.3206 26.2992 4.6274 0.2706 0.4 -2.53153 -2.68429 

0.5   0.85025 0.323 25.55 4.6195 0.2955 0.4 -3.51525 -3.66901 

0.6   0.74512 0.3284 24.7712 4.6116 0.3204 0.4 -4.77989 -4.93425 

0.7   0.64953 0.3368 23.9628 4.6037 0.3453 0.4 -6.39841 -6.55303 

0.8   0.56348 0.3482 23.1248 4.5958 0.3702 0.4 -8.44948 -8.60407 

0.9   0.48697 0.3626 22.2572 4.5879 0.3951 0.4 -11.0049 -11.1592 

1 lnAs 0.42 0.38 21.36 4.58 0.42 0.4 -14.1048 -14.2585 
 

 

 

                         Figure 3.8 GaInAs g-factor dependency on x   
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3.2 Discussion 

Of the compounds analyzed here, most have the expected monotonous behavior. 

The “n” appearing in brackets in the graphs denotes the least degree of the interpolating 

polynomial that gives the acceptable value of R2. 

AlGaAs is perhaps the most studied III-V alloy, due to its wide use in devices. The 

bowing parameter dependency on the Al concentration has been taken into consideration.  

For GaPN, in spite of a very large bending coefficient for the bandgap, and in spite of 

difficulties posed by the presence of Nitrogen in other compounds, the g* values have a well 

behaved, monotonous increasing. 

A remarkable exception is the behavior of the g* values for GaAsN compounds. The 

literature proposes many a value for the bending factor of the bandgap (between 10 and 20, and 

some opinions even stretch this interval, see [25]). All bending factors bigger than 4 yield to the 

highly uncharacteristic behavior seen in the figure 3.5. No matter what the actual value of the 

bending factor is, it determines a parabola-like E0(x), which has the above-said consequences.  

Since the discussion about the causes of such behavior of the bandgap are open, and the 

interpolation of bandgap values has not yet reached a consensus, the values of g* for the intervals 

[0, 0.3] and [0.6, 0.8] of x are highly unreliable. 

There is little data in literature for us to be able to compare the results. An exception is 

presented here, for AlGaAs, the compound of choice in many devices:  

 

Figure 3.9 Comparison between measured values and the values calculated in this study 
(the full dots). [76C] represents the reference in the Landolt-Börnstein database. 
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Chapter 4 

CONCLUSIONS 

The present study offers, besides a series of values for six of the most used III-V ternary 

semiconductor alloys, also a method to follow for other families of such compounds.  

 This is perhaps the first systematic attempt to calculate the gyromagnetic factor for 

whole families of crystals, and it fits the scarce experimental data that exists. 

Since the value of g-factor in ternary and further, quaternary crystals may become 

important with the development of the spintronics, the precision of calculation of g* for families 

A1-xBxC also becomes important. Better precision can deal with enhancing the interpolating 

methods for the parameters appearing in the equations of the 5-band model. 

The results constitute themselves in a first (acceptable) approximation of the g-factors of 

the ternary crystals and may be a valid introduction in calculating the values of magnetic 

parameters of quaternary ones. 

The advantage of the method consists of the ready-made values of the g-factors: instead 

of calculating everything from the beginning, one can simply interpolate the given values in the 

table for any value of x. 

Further work should consist of a better approximation of the band parameters of 

complex crystals and the evaluation of the possibility to extend the method to quaternary crystals, 

which are more numerous and whose qualities might offer surprises with respect to their magnetic 

response and utility.  
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