# **Copyright Warning & Restrictions**

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen



The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

### ABSTRACT

### THERMOCHEMICAL PROPERTIES, BOND ENERGIES AND INTERNAL ROTOR POTENTIALS IN METHYL ETHYL SULFIDE AND OXYGENATED SULFUR HYDROCARBON INTERMEDIATES FOR MODELING COMBUSTION AND ATMOSPHERIC CHEMISTRY

### by Guanghui Song

Small (1 to 4 carbon) hydrocarbon sulfides and thiols are formed in the biosphere by microorganisms and subsequently emitted into the lithosphere, hydrosphere and atmosphere. In the atmosphere they are oxidized by photochemical and radical reactions to intermediate hydrocarbon and to sulfur oxides. The oxides of these sulfur compounds and the intermediates from the oxidation process are known to form aerosols that can counteract the global warming green house effect. Recent studies also suggest that some aerosols can also contribute to global warming. Sulfur oxides are also major contributors to acid rain as the results of the atmospheric chemistry oxidation reactions on sulfur hydrocarbons and H<sub>2</sub>S involve SO<sub>2</sub> formation. It is of great value to understand the thermochemistry and the elementary reaction processes of these sulfur compounds in order to better model atmospheric chemistry and global warming. The oxidation chemistry is also of value in model development for improvement of combustion processes and pollutant reduction. This study determines the structures, internal rotor potentials, bond energies and thermochemical properties ( $\Delta_f H^o$ , S<sup>o</sup> and Cp(T)) of methyl ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>), a widely used sulfuric hydrocarbon, and its main partial oxidation products in the atmosphere (CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and  $CH_3SC(=O)CH_3$ ). At the same time their radicals after losing one H atom, and some of the main partial reaction intermediate molecules and their main radicals after loss of an H

atom have also been studied. The molecular structure and H-molecule bond energy are determined using Density Functional B3LYP/6-31G (d,p) and B3LYP/6-31+G(2d,p) together with the higher level composite CBS-QB3. Enthalpies of formation (Hf) for stable species are calculated in the levels of B3LYP/6-31G (d,p), B3LYP/6-31+G(2d,p) and CBS-QB3 using work reactions that are presumed isodesmic. Internal rotation barriers have also been determined with some other DFT methods. Then, thermochemical parameters (S<sup>o</sup> and Cp(T)) are determined with the help of the Hf values and the data of moments of inertia and frequencies from the CBS-QB3 output files.

### THERMOCHEMICAL PROPERTIES, BOND ENERGIES AND INTERNAL ROTOR POTENTIALS IN METHYL ETHYL SULFIDE AND OXYGENATED SULFUR HYDROCARBONS INTERMEDIATES FOR MODELING ITS COMBUSTION AND ATMOSPHERIC CHEMISTRY

by Guanghui Song

A Thesis Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering

Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering

May 2011

 $\bigcirc$  $\langle$ 

### **APPROVAL PAGE**

### THERMOCHEMICAL PROPERTIES, BOND ENERGIES AND INTERNAL ROTOR POTENTIALS IN METHYL ETHYL SULFIDE AND OXYGENATED SULFUR HYDROCARBONS INTERMEDIATES FOR MODELING ITS COMBUSTION AND ATMOSPHERIC CHEMISTRY

**Guanghui Song** 

| Dr. Joseph W Bozzelli, Dissertation Advisor Date                                                                                                                                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Distinguished Professor of Chemistry and Environmental Science, NJIT                                                                                                                                                                               |  |
| Adjunct Professor of Chemical, Biological & Pharmaceutical Engineering, NJIT                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
| Dr. Reginald P Tomkins, Committee Member Date                                                                                                                                                                                                      |  |
| Professor of Chemical, Biological & Pharmaceutical Engineering, NJIT                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
| Dr. Tamara Gund, Committee Member Date                                                                                                                                                                                                             |  |
| Professor of Chemistry and Environmental Science, NJIT                                                                                                                                                                                             |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _, |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                    |  |
| Dr. Rubik Asatryan Committee Member Date                                                                                                                                                                                                           |  |
| Research Professor of Chemistry and Environmental Science NIIT                                                                                                                                                                                     |  |

### **BIOGRAPHICAL SKETCH**

Author:Guanghui SongDegree:Master of Science

Date: May 2011

### **Undergraduate and Graduate Education:**

- Master of Science in Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 2011
- Bachelor of Science in Chemical Engineering, Xiamen University, Xiamen, P. R. China, 2008

Major:

Chemical Engineering

Work like you don't need money, Love like you've never been hurt, Sing as if no one can hear you, And dance like no one's watching. *Anonymous* 

Other men live to eat, while I eat to live. *Socrates* 

We soon believe what we desire. *Chaucer* 

The darkest hour is that before the dawn. *Fuller* 

Living without an aim is like sailing without a compass. J. Ruskin

#### ACKNOWLEDGMENT

The author acknowledges partial funding for this research from Army Research Office Grant W911NF0410120.

Then, the author wants to thank primarily for the informative and helpful guide from Prof. Joseph Bozzelli, together with the financial support from him.

At the same time, the author wants to thank Prof. Tamara Gund, Prof. Rubik Asatryran and Prof. Reginald P. Tomkins for serving on the Master Thesis Committee.

Among the committee members, the author wants to thank Prof. T. Gund for teaching the course of Advanced Organic Chemistry, which is about advanced organic structural chemistry and applications of computational chemistry and molecular orbits. Then there are great thanks to Prof. R. Tomkins for serving as the graduate study advisor of Chemical Engineering programme in the Otto H. York Department, and great thanks to Prof. Rubik A. for his technical and analytical support.

At last the author wants to thank a lot to help from all the other members in the same research group, they're Ms. Itsaso Auzmendi, Mr. Sumit Charaya, Ms. Yui Suarwee and Ms. Anjani Gunturu. Together with thanks to Dr. Larisa Krishtopa, the director of Material Characterization Lab in NJIT, for teaching all the required analytical ideas and skills while being in the lab course of Instrumental Analysis. The author also strongly wants to thank all spiritual energizing from the parents, and many of the friends.

# **TABLE OF CONTENTS**

| C | hapter                                                                                                                                                                              | Page |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 | INTRODUCTION                                                                                                                                                                        | 1    |
|   | 1.1 Introduction                                                                                                                                                                    | 1    |
|   | 1.2 Objective                                                                                                                                                                       | 3    |
| 2 | STRUCTURES, THERMOCHEMISTRY, INTERNAL ROTOR POTENTIALS<br>AND CARBON-HYDROGEN BOND ENERGIES IN SULFIDE<br>ALDEHYDES AND KETONES AS PRODUCTS OF ATMOSPHERIC<br>PARTIAL OXIDATION     | 6    |
|   |                                                                                                                                                                                     | 0    |
|   | Overview                                                                                                                                                                            | 6    |
|   | 2.1 Calculation Methods                                                                                                                                                             | 6    |
|   | 2.2 Results and Discussion                                                                                                                                                          | 7    |
|   | 2.2.1 Structure                                                                                                                                                                     | 7    |
|   | 2.2.2 Heats of Formation and Enthalpies of Reaction                                                                                                                                 | 12   |
|   | 2.2.3 C—H Bond Energies                                                                                                                                                             | 19   |
|   | 2.2.4 Frequencies and Moment of Inertia                                                                                                                                             | 21   |
|   | 2.2.5 Internal Rotational Potentials                                                                                                                                                | 21   |
|   | 2.2.6 S°298 and Cp°(T)                                                                                                                                                              | 27   |
|   | 2.3 Summary                                                                                                                                                                         | 28   |
| 3 | STRUCTURES, THERMOCHEMISTRY, INTERNAL ROTOR POTENTIALS<br>AND CARBON – HYDROGEN BOND ENERGIES IN METHYL ETHYL<br>SULFIDE AND INTERMEDIATES OF RADICAL REACTIONS WITH O <sub>2</sub> | 29   |
|   | Overview                                                                                                                                                                            | 29   |
|   | 3.1 Calculation Methods                                                                                                                                                             | 29   |

## TABLE OF CONTENTS (Continued)

| Chapter Pag                                                                                           | ge |
|-------------------------------------------------------------------------------------------------------|----|
| 3.2 Results and Discussion                                                                            | 30 |
| 3.2.1 Structure                                                                                       | 30 |
| 3.2.2 Heats of Formation and Enthalpies of Reaction                                                   | 38 |
| 3.2.3 X—H (X=C, O) Bond Energies                                                                      | 42 |
| 3.2.4 Frequencies and Moments of Inertia                                                              | 45 |
| 3.2.5 Internal Rotational Potentials                                                                  | 45 |
| 3.2.6 S°298 and Cp°(T)                                                                                | 58 |
| 3.3 Summary                                                                                           | 59 |
| APPENDIX A FREQUENCIES AND MOMENTS OF INERTIA FROM CBS-QB3<br>OUTPUT FILES                            | 60 |
| APPENDIX B IDEAL GAS-PHASE THERMODYNAMIC PROPERTY VS.<br>TEMPERATURE DIRECTLY FROM SMCPS OUTPUT FILES | 65 |
| REFERENCES                                                                                            | 82 |

# LIST OF TABLES

| Tab | le                                                                                                                                                                                                                                                                                                                                 | Page |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1 | Standard Enthalpies of Formation of Reference Species at 298.15K                                                                                                                                                                                                                                                                   | 16   |
| 2.2 | Enthalpies of Reaction at 298 K and Calculated Enthalpies of Formation $(\Delta H^{o}_{f298})$ of CH <sub>3</sub> SCH <sub>2</sub> CHO, CH <sub>3</sub> CH <sub>2</sub> SCHO, CH <sub>3</sub> SC(=O)CH <sub>3</sub> and Their Radicals                                                                                             | . 17 |
| 2.3 | C—H Bond Energies                                                                                                                                                                                                                                                                                                                  | 20   |
| 2.4 | 298K Entropy and Data of Heat Capacity vs. Temperature                                                                                                                                                                                                                                                                             | 33   |
| 3.1 | Standard Enthalpies of Formation of Reference Species at 298.15 K                                                                                                                                                                                                                                                                  | 39   |
| 3.2 | Enthalpies of Reaction at 298 K and Calculated Enthalpies of Formation $(\Delta H^{o}_{f298})$ of the Parents and the Radicals                                                                                                                                                                                                     | . 40 |
| 3.3 | C—H bond Energies of CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> Calculated in kcal/mol                                                                                                                                                                                                                                       | 42   |
| 3.4 | X—H (X=C, O) Bond Energies of HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> , CH <sub>3</sub> SCH(OOH)CH <sub>3</sub><br>and CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH Calculated in kcal/mol                                                                                                                     | 44   |
| 3.5 | 298K Entropy and Data of Heat Capacity vs. Temperature                                                                                                                                                                                                                                                                             | 58   |
| A.1 | Frequencies and Moments of Inertia From CBS-QB3 Output Files of Stable CH <sub>3</sub> SCH <sub>2</sub> CHO, CH <sub>3</sub> CH <sub>2</sub> SCHO and CH <sub>3</sub> SC(=O)CH <sub>3</sub> and Their Radicals Formed After Losing One H Atom                                                                                      | 61   |
| A.2 | Frequencies and Moments of Inertia From CBS-QB3 Output Files of Stable CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> , HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> , CH <sub>3</sub> SCH(OOH)CH <sub>3</sub> and CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH and Their Radicals Formed After Losing One H Atom | 62   |
| A.3 | Frequencies and Moments of Inertia From CBS-QB3 Output Files of Stable CH <sub>3</sub> SCH <sub>2</sub> OH, CH <sub>3</sub> CH <sub>2</sub> SCHO and CH <sub>3</sub> SC(=O)CH <sub>3</sub>                                                                                                                                         | . 64 |
| B.1 | Ideal Gas-Phase Thermodynamic Property vs. Temperature of CH <sub>3</sub> SCH <sub>2</sub> CHO and Its Radicals                                                                                                                                                                                                                    | 66   |
| B.2 | Ideal Gas-Phase Thermodynamic Property vs. Temperature of Radicals of CH <sub>3</sub> CH <sub>2</sub> SCHO and its Radicals                                                                                                                                                                                                        | 68   |
| B.3 | Ideal Gas-Phase Thermodynamic Property vs. Temperature of Radicals of CH <sub>3</sub> SC(=O)CH <sub>3</sub> and Its Radicals                                                                                                                                                                                                       | 70   |

# LIST OF TABLES (Continued)

| Tabl | le                                                                                                                                                                                                                                         | Page |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| B.4  | Ideal Gas-Phase Thermodynamic Property vs. Temperature of CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> and Its Radicals                                                                                                                | 72   |
| B.5  | Ideal Gas-phase Thermodynamic Property vs. Temperature of HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> and Its Radicals                                                                                                             | 74   |
| B.6  | Ideal Gas-Phase Thermodynamic Property vs. Temperature of CH <sub>3</sub> SCH(OOH)CH <sub>3</sub> and Its Radicals                                                                                                                         | 76   |
| B.7  | Ideal Gas-Phase Thermodynamic Property vs. Temperature of CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH and Its Radicals                                                                                                            | 78   |
| B.8  | Ideal Gas-Phase Thermodynamic Property vs. Temperature of CH <sub>3</sub> SCH <sub>2</sub> OH, CH <sub>3</sub> CH <sub>2</sub> SCH <sub>2</sub> OH, CH <sub>3</sub> S(=O)CH <sub>2</sub> OH and CH <sub>3</sub> S(=O)CH(OH)CH <sub>3</sub> | 80   |

# LIST OF FIGURES

| Figu | re                                                                                                                                                                                     | Page |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1  | Sulfur cycle in the nature                                                                                                                                                             | 2    |
| 2.1  | Optimized structures of CH <sub>3</sub> SCH <sub>2</sub> CHO, CH <sub>2</sub> jSCH <sub>2</sub> CHO, CH <sub>3</sub> SCHjCHO and CH <sub>3</sub> SCH <sub>2</sub> CjO at CBS-QB3 level | 8    |
| 2.2  | Optimized structures of CH <sub>3</sub> CH <sub>2</sub> SCHO, CH <sub>2</sub> jCH <sub>2</sub> SCHO, CH <sub>3</sub> CHjSCHO and CH <sub>3</sub> CH <sub>2</sub> SCjO at CBS-QB3 level | 9    |
| 2.3  | Optimized structures of CH <sub>3</sub> SC(=O)CH <sub>3</sub> , CH <sub>2</sub> jSC(=O)CH <sub>3</sub> , and CH <sub>3</sub> SC(=O)CH <sub>2</sub> j at CBS-QB3 level                  | 11   |
| 2.4  | Potential energy barriers for internal rotations in CH <sub>3</sub> SCH <sub>2</sub> CHO at UB3LY/3-21G level                                                                          | 22   |
| 2.5  | Potential energy barriers for internal rotations in CH <sub>2</sub> jSCH <sub>2</sub> CHO at UB3LY/3-21G level                                                                         | 22   |
| 2.6  | Potential energy barriers for internal rotations in CH <sub>3</sub> SCHjCHO at UB3LY/3-21G level                                                                                       | 23   |
| 2.7  | Potential energy barriers for internal rotations in CH <sub>3</sub> SCH <sub>2</sub> Cj=O at UB3LY/3-21G level                                                                         | 23   |
| 2.8  | Potential energy barriers for internal rotations in CH <sub>3</sub> CH <sub>2</sub> SCHO at UB3LY/3-21G level                                                                          | 24   |
| 2.9  | Potential energy barriers for internal rotations in CH <sub>2</sub> jCH <sub>2</sub> SCHO at UB3LY/3-21G level                                                                         | 24   |
| 2.10 | Potential energy barriers for internal rotations in CH <sub>3</sub> CHjSCHO at UB3LY/3-21G level                                                                                       | 24   |
| 2.11 | Potential energy barriers for internal rotations in CH <sub>3</sub> CH <sub>2</sub> SCj=O at UB3LY/3-21G level                                                                         | 25   |
| 2.12 | Potential energy barriers for internal rotations in CH <sub>3</sub> SC(=O)CH <sub>3</sub> at UB3LY/3-21G level                                                                         | 25   |
| 2.13 | Potential energy barriers for internal rotations in CH <sub>2</sub> jSC(=O)CH <sub>3</sub> at UB3LY/3-21G level                                                                        | 26   |

# LIST OF FIGURES (Continued)

| Figu | res                                                                                                                                                                                                                                                                                                                                                                                                                           | Page |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.14 | Potential energy barriers for internal rotations in CH <sub>3</sub> SC(=O)CH <sub>2</sub> j at UB3LY/3-21G level                                                                                                                                                                                                                                                                                                              | 26   |
| 3.1  | Optimized structures of CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> , CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>3</sub> , CH <sub>3</sub> SCHjCH <sub>3</sub> and CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> j at CBS-QB3 level                                                                                                                                                                                    | 31   |
| 3.2  | Optimized structures of HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> , jOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> , HOOCH <sub>2</sub> SCHjCH <sub>3</sub> and HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> j at CBS-QB3 level                                                                                                                                                                         | 33   |
| 3.3  | Optimized structures of CH <sub>3</sub> SCH(OOH)CH <sub>3</sub> , CH <sub>2</sub> jSCH(OOH)CH <sub>3</sub> , CH <sub>3</sub> SCH(OOj)CH <sub>3</sub> and CH <sub>3</sub> SCH(OOH)CH <sub>2</sub> j at CBS-QB3 level                                                                                                                                                                                                           | 34   |
| 3.4  | Optimized structures of CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH, CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>2</sub> OOH, CH <sub>3</sub> SCHjCH <sub>2</sub> OOH and CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOj at CBS-QB3 level                                                                                                                                                                        | 35   |
| 3.5  | Optimized structure of CH <sub>3</sub> SCH <sub>2</sub> OH at CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                   | 36   |
| 3.6  | Optimized structure of CH <sub>3</sub> CH <sub>2</sub> SCH <sub>2</sub> OH at CBS-QB3 level                                                                                                                                                                                                                                                                                                                                   | 37   |
| 3.7  | Optimized structure of CH <sub>3</sub> S(=O)CH <sub>2</sub> OH at CBS-QB3 level                                                                                                                                                                                                                                                                                                                                               | 37   |
| 3.8  | Optimized structure of CH <sub>3</sub> S(=O)CH(OH)CH <sub>3</sub> at CBS-QB3 level                                                                                                                                                                                                                                                                                                                                            | 37   |
| 3.9  | Potential energy barriers for internal rotations of the CS—CC bond in CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> , CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>3</sub> , CH <sub>3</sub> SCHjCH <sub>3</sub> and CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> j at B3LYP/6-31G(d, p), B3LYP/6-31+G (2d, p) and CBS-QB3 leve                                                                                           | 46   |
| 3.10 | Potential energy barriers for internal rotations of the QCS—CC (HOOCH <sub>2</sub> S—CH <sub>2</sub> CH <sub>3</sub> ) bonds in QCS—CC (HOOCH <sub>2</sub> S—CH <sub>2</sub> CH <sub>3</sub> ), jQCS—CC (jOOCH <sub>2</sub> S—CH <sub>2</sub> CH <sub>3</sub> ), QCS—CjC (HOOCH <sub>2</sub> S—CH <sub>j</sub> CH <sub>3</sub> ) and QCS—CCj (HOOCH <sub>2</sub> S—CH <sub>2</sub> CH <sub>2</sub> j) at B3LYP/6-31G(d) level | 48   |
| 3.11 | Potential energy barriers for internal rotations of the CS—C(Q)C (CH <sub>3</sub> S—<br>CH(OOH)CH <sub>3</sub> ) bonds in CS—C(Q)C (CH <sub>3</sub> S—CH(OOH)CH <sub>3</sub> ), CjS—C(Q)C (CH <sub>2</sub> jS—CH(OOH)CH <sub>3</sub> ), CS—C(Qj)C (CH <sub>3</sub> S—CH(OOj)CH <sub>3</sub> ) and CS—<br>C(Q)Ci (CH <sub>3</sub> S—CH(OOH)CH <sub>4</sub> ) at P2L VP/6 21C(d) level                                          | 40   |
|      | $C(Q)CJ(CH_3S)$ — $CH(OOH)CH_2J)$ at BSL YP/0-51G(a) level                                                                                                                                                                                                                                                                                                                                                                    | 49   |

# LIST OF FIGURES (Continued)

# Figures

| 3.12 | Potential energy barriers for internal rotations of the CS—CCQ (CH <sub>3</sub> S—<br>CH <sub>2</sub> CH <sub>2</sub> OOH) bonds in CS—CCQ (CH <sub>3</sub> S—CH <sub>2</sub> CH <sub>2</sub> OOH), CjS—CCQ<br>(CH <sub>2</sub> jS—CH <sub>2</sub> CH <sub>2</sub> OOH), CS—CjCQ (CH <sub>3</sub> S—CH <sub>2</sub> jCH <sub>2</sub> OOH) and CS—<br>CCQj (CH <sub>3</sub> S—CH <sub>2</sub> CH <sub>2</sub> OOj) at B3LYP/6-31G(d) level | 50 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.13 | Potential energy barriers for internal rotations of the CQ bonds in Q—<br>CSCC (HOO—CH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> ), jQ—CSCC (jOO—CH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> ), Q—<br>CSCjC (HOO—CH <sub>2</sub> SCHjCH <sub>3</sub> ) and Q—CSCCj (HOO—CH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> j) at<br>B3LYP/6-31G(d) level                                                                           | 51 |
| 3.14 | Potential energy barriers for internal rotations of the CQ bonds in CSC(Q)C (CH <sub>3</sub> SCH(—OOH)CH <sub>3</sub> ), CjSC(—Q)C (CH <sub>2</sub> jSCH(—OOH)CH <sub>3</sub> ), CSC(—Qj)C (CH <sub>3</sub> SCH(—OOj)CH <sub>3</sub> ) and CSC(—Q)Cj (CH <sub>3</sub> SCH(—OOH)CH <sub>2</sub> j) at B3LYP/6-31G(d) level                                                                                                                 | 52 |
| 3.15 | Potential energy barriers for internal rotations of the CQ bonds in CSCC—<br>Q (CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> —OOH), CjSCC—Q (CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>2</sub> —OOH), CSCjC—Q<br>(CH <sub>3</sub> SCHjCH <sub>2</sub> —OOH) and CSCC—Qj (CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> —OOj) at B3LYP/6-<br>31G(d) level.                                                                          | 53 |
| 3.16 | Potential energy barriers for internal rotations of the COOH bonds in HO<br>OCSCC (HO—OCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> ), HO—OCSCjC (HO—OCH <sub>2</sub> SCHjCH <sub>3</sub> ) and<br>HOOCSCCj (HO—OCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> j) at B3LYP/6-31G(d) level                                                                                                                                          | 54 |
| 3.17 | Potential energy barriers for internal rotations of the COOH bonds in CSC(OOH)C (CH <sub>3</sub> SCH(O—OH)CH <sub>3</sub> ), CjSC(O—OH)C (CH <sub>2</sub> jSCH(O—OH)CH <sub>3</sub> ) and CSC(OOH)Cj (CH <sub>3</sub> SCH(O—OH)CH <sub>2</sub> j) at B3LYP/6-31G(d) level.                                                                                                                                                                | 55 |
| 3.18 | Potential energy barriers for internal rotations of the COOH bonds in CSCCO—OH (CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> O—OH), CjSCCO—OH (CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>2</sub> O—OH) and CSCjCO—OH (CH <sub>3</sub> SCHjCH <sub>2</sub> O—OH) at B3LYP/6-31G(d) level                                                                                                                                               | 56 |
| 3.19 | Potential energy barriers for internal rotation of the CS(=O)COH bond in $CH_3S(=O)CH_2OH$ at B3LYP/6-31G(2d,2p) level                                                                                                                                                                                                                                                                                                                    | 57 |
| 3.20 | Potential energy barriers for internal rotation of the $CS(=O)C$ OH bond in $CH_3S(=O)CH_2OH$ at B3LYP/6-31G(2d,2p) level                                                                                                                                                                                                                                                                                                                 | 57 |

# LIST OF FIGURES (Continued)

| Figures                                                                                                                                    | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3.21 Potential energy barriers for internal rotation of the CS(=O)C(OH)C bond in CH3S(=O)CH(OH)CH <sub>3</sub> at B3LYP/6-31G(2d,2p) level | 57   |
| 3.22 Potential energy barriers for internal rotation of the CS(=O)C(OH)C bond in CH3S(=O)CH(OH)CH <sub>3</sub> at B3LYP/6-31G(2d,2p) level | 57   |

### **CHAPTER 1**

### **INTRODUCTION**

### **1.1 Introduction**

Atmospheric sulfur chemistry is important in climate change because both natural and anthropogenic emission of sulfur compounds result in formation of particulate in the atmosphere (aerosols) that reflect solar and absorb IR radiation; they also affect production of atmospheric haze, acid rain, and ozone depletion. [8, 12] These sulfur oxide particles may also act as condensation nuclei for water vapor and enhance global cloudiness. It is generally considered that sulfur particulate reflection of incoming light to the earth benefits (reduces) global warming [21]. The primary natural sources of sulfur are volcanic emissions for oxides and production by biological processes in environmental waters and by phytoplankton for the reduced sulfur species: sulfides disulfides and thiols.

Anthropogenic impact on the sulfur cycle is primarily through the production of sulfur dioxide  $(SO_2)$  from industry, such as burning coal and the internal combustion engine emissions. Sulfur dioxide can adsorb onto surfaces where it can be oxidized to sulfate in the soil, harm plants, undergo biological reactions involving reduction to sulfide, or oxidization to sulfate. [8] In the atmosphere it can be oxidized to sulfuric acid, a principal component of acid rain or adsorb on particulate. In the absence of major breakthrough in the combustion technology and coal conversion, atmospheric pollution and acid rains are likely to worsen. Acid rain is presently considered one of the ten more serious problems in the world environment [20].





#### Figure 1.1 Sulfur cycle in the nature. [21]

These sulfur oxygen species in soils and environmental waters can serve as sources of oxygen to biological species, where the conversion to the more thermodynamically stable CO<sub>2</sub>, provides an energy source for the biological species (micro organisms). This biological component of the sulfur cycle is further evidenced by the hydrogen, carbon and hydrocarbon sulfides, and corresponding thiols that are present at significant levels in natural gas wells. These sulfur species are not desirable for emission to the atmosphere and are treated (collected) by adsorption in amine solutions and either oxidized or combusted to form  $H_2SO_4$  and SOx, or reacted to form solid sulfur, which is stored or land filled [17, 21].

Methyl Ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>) is a widely used sulfuric compound. It's mainly used as an additive in the flavor agents. It tastes excellent. However, it's to some

extent dangerous to the human body when overdosed, and it's harmful to the nature when released to the atmosphere. It's a volatile liquid at the standard state (T=298K and P=1atm). When released into the atmosphere, it mainly undergoes photochemical radical reaction with O<sub>2</sub>, which is a partial oxidation reaction. A study to its partial radical oxidation in the atmosphere is required, to make sure it's able to be oxidized naturally and without generating SO<sub>2</sub>. Fei Jin and Bozzelli, and Zhong, Fisher, Zhu and Bozzelli have developed the thermochemistry and kinetics for the oxidation reactions of Dimethyl Sulfide and Diethyl Sulfide, respectively [8, 11, 12]. Learning from their work, the partial oxidation of methyl ethyl sulfide in the atmosphere is proposed to generate the intermediate products of CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub>, and the proposed intermediates of partial oxidation are HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH, sometimes also CH<sub>3</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>S(=O)CH<sub>2</sub>OH and CH<sub>3</sub>S(=O)CH(OH)CH<sub>3</sub>. These products and intermediates in the atmosphere are also probable intermediates of the combustion reaction of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>. As a result, the thermochemistry of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, and its proposed partial particle oxidation products and intermediates and products is of value.

#### 1.2 Objective

Density functional theory based calculations along with higher level ab initio methods are performed on a series of sulfuric hydrocarbon compounds containing one sulfur atom and one or two oxygen atoms in each molecule. The B3LYP/6-31G(d,p) and B3LYP/6-31+G(2d,p) calculation levels have been applied in Gaussian 98, and composite CBS-QB3 level has been performed in Gaussian 03 [13]. The geometric structures, enthalpies of formation, H—X(X=C,O) bond energies, frequencies and moments of inertia, internal rotational potentials and the entropy and heat capacity values at 298K and 1atm have been studied on the targeted stable molecules. The carbon or oxygen centered radicals, resulting from loss of H atoms are also studied in order to determine bond energies. These reliable and accessible thermochemical data are universally accepted as needed for understanding the reactions and stability of chemical species [18, 19].

In Chapter 2, the targets are the proposed atmospheric partial oxidation products: sulfide aldehydes and ketones. The target molecules and their radicals are:  $CH_3SCH_2CHO$  with the radicals of  $CH_2jSCH_2CHO$ ,  $CH_3SCHjCHO$  and  $CH_3SCH_2Cj=O$ ;  $CH_3CH_2SCHO$  with the radicals of  $CH_2jCH_2SCHO$ ,  $CH_3CH_jSCHO$  and  $CH_3CH_2SCj=O$ ; and  $CH_3SC(=O)CH_3$  with the radicals of  $CH_2jSC(=O)CH_3$  and  $CH_3SC(=O)CH_2j$ .

Then in Chapter 3, at first the targets to study are methyl ethyl sulfide (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>) and its radicals after one H atom is abstracted from the different carbon atoms: CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCHjCH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>j. Then the targets are the proposed intermediates during reactions of oxygen molecule O<sub>2</sub> with each of the three of methyl ethyl sulfide's carbon radicals. The main intermediates from the radical reactions with  $O_2$ , together with their new intermediate radicals are formed in some isomerization reactions, and each of them contains a hydrogen peroxide group attached to a carbon atom. These include:  $HOOCH_2SCH_2CH_3$  (with the radicals of  $jOOCH_2SCH_2CH_3$ , HOOCH<sub>2</sub>SCH<sub>1</sub>CH<sub>3</sub> and HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>2</sub>i), CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> (with the radicals of CH<sub>2</sub>jSCH(OOH)CH<sub>3</sub>,  $CH_3SCH(OO_i)CH_3$ and  $CH_3SCH(OOH)CH_2i$ and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH (with the radicals of CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>2</sub>OOH, CH<sub>3</sub>SCHjCH<sub>2</sub>OOH and  $CH_3SCH_2CH_2OOj$ ).

In Chapter 3 the stable molecules of  $CH_3SCH_2OH$ ,  $CH_3CH_2SCH_2OH$ ,  $CH_3S(=O)CH_2OH$  and  $CH_3S(=O)CH(OH)CH_3$  have also been studied, as they're also some common intermediates of methyl ethyl sulfide's radical reaction with  $O_2$ .

### **CHAPTER 2**

### STRUCTURES, THERMOCHEMISTRY, INTERNAL ROTOR POTENTIALS AND CARBON – HYDROGEN BOND ENERGIES IN SULFIDE ALDEHYDES AND KETONES AS PRODUCTS OF ATMOSPHERIC PARTIAL OXIDATION

#### Overview

The structure and thermochemical parameters ( $\Delta_f H^o(298)$ , S<sup>o</sup> and Cp(T)), internal rotor potentials and carbon--hydrogen bond energies for some ethyl methyl sulfide partial oxidation were studied to prepare for kinetic studies on the oxidation of ethyl methyl sulfide under atmospheric and combustion conditions. The thermochemical and structural properties were determined using computational chemistry.

#### **2.1 Calculation Methods**

The structural and thermochemical parameters of CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub> and their radicals are based on the Density Functional Theory (DFT) and composite ab initio levels using Gaussian 98. Computation levels include B3LYP/6-31G(d,p) and B3LYP/6-31+G(2d,p) DFT methods along with the higher level, composite CBS-QB3 method from the Gaussian 03 code [10]. Enthalpies of formation for stable species are calculated using the total energies (298 K) at each level with work reactions that are close to isodesmic in most cases. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. The use of a work reaction with similar bond environments on both sides of the equation results in a cancellation of calculation error and improves the accuracy for energy analysis. Three to six work reactions are utilized and results are presented for each calculation level and each reaction. Average values over the three calculation methods for each work reaction, and separately the average values over the work reactions for each calculation method are presented. The average value over the work reactions at the CBS-QB3 level are recommended  $\Delta_f H^o(298)$ , as this method has the highest accuracy.  $\Delta_f H^o(298)$  data are reported for each species [8, 18, 19].

The Entropy S°(T=298K) and Cp°(T, T=298-1500K) were calculated using the "SMCPS" [24] (Statistical Mechanics for Heat Capacity and Entropy Cp and S) program. Information in the CBS-QB3 output file are to be used to the inertias and frequencies to input in the SMCPS input files, and to get the most stable structures of the species [16, 18]. And torsion frequencies are used for internal rotor contribution.

### 2.2 Results and Discussion

### **2.2.1 Structures**

Scans of internal rotor energy versus dihedral angle have been performed at the B3LYP/6-31G(d,p) level for each molecule and radical to identify the lowest energy conformer. The lowest energy for each scan is obtained and that energy used as the structure for the start of the next internal rotor. When a lower energy conformer is found in a subsequent scan then that is selected and all previous scans are repeated until the lowest energy conformer is found. The optimized low energy structures are illustrated in Figure 2.4-2.14.

Figure 2.1 shows the lowest energy configurations of the stable CH<sub>3</sub>SCH<sub>2</sub>CHO molecule and its three radicals: CjH<sub>2</sub>SCH<sub>2</sub>CH\*O, CH<sub>3</sub>SCjHCH\*O and CH<sub>3</sub>SCH<sub>2</sub>Cj\*O with the bond distances and the angles illustrated. The dihedral angles for C-S-C-C and S-C-C=O, are described directly below the Figure.



**Figure 2.1** Optimized structures of CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>2</sub>jSCH<sub>2</sub>CHO, CH<sub>3</sub>SCHjCHO and CH<sub>3</sub>SCH<sub>2</sub>CjO at CBS-QB3 level (Bond distances in Å; Bond Angles in °).

First, in the stable CH<sub>3</sub>SCH<sub>2</sub>CHO molecule, all the C--H bonds are about  $1.1A^{\circ}$ , both bonds of C—SCC\*O and CS—CC\*O are about  $1.8A^{\circ}$ , CSC—C\*O is  $1.51A^{\circ}$  and CSCC(==)O is  $1.21A^{\circ}$ . And the C—S—CC\*O angle is  $100.1^{\circ}$ , the CS—C—C\*O angle is  $107.6^{\circ}$ , the CSC—C==O angle is  $123.7^{\circ}$ . Then, for the radicals, when compared to the parent: 1) in CH<sub>2</sub>jSCH<sub>2</sub>CHO, C—SCC\*O has shortened evidently to  $1.72A^{\circ}$ ; 2)in CH<sub>3</sub>SCHjCHO, C—S—CC\*O has increased to  $106.7^{\circ}$ , CS—C—C\*O has increased to

129.5°, and CS—CC\*O has shortened evidently to  $1.71A^\circ$ , CSC—C\*O has decreased to  $1.43A^\circ$ ; 3)in CH<sub>3</sub>SCH<sub>2</sub>CjO, CS—C—C\*O has increased evidently to  $117.7^\circ$  and CSC—C==O has increased to  $130.7^\circ$ , but there is no evident change to each bond compared to the parent molecule.



(d)  $CH_3CH_2SCj^*O$  C-C-S-C =77.3° C-S-C=O =0.1°

**Figure 2.2** Optimized structures of CH<sub>3</sub>CH<sub>2</sub>SCHO, CH<sub>2</sub>jCH<sub>2</sub>SCHO, CH<sub>3</sub>CHjSCHO and CH<sub>3</sub>CH<sub>2</sub>SCjO at CBS-QB3 level (Bond distances in Å; Bond Angles in °).

Figure 2.2 shows the four lowest energy configurations of the stable  $CH_3CH_2SCHO$  molecule and its three radicals  $CjH_2CH_2SCH^*O$   $CH_3CjHSCH^*O$ ,  $CH_3CH_2SCj^*O$  with bond distances and angles in the figure. The dihedral angles are below the figure of each molecule and radical in the figure.

The stable CH<sub>3</sub>CH<sub>2</sub>SCHO molecule has all C--H bond lengths also about 1.1A°, C—CSC\*O is 1.53A°, CC—SC\*O is 1.83A°, CCS—C\*O is 1.78A° and CCSC==O is 1.20A°. And the angle of C—C—SC\*O is 113.5°, CC--S--C\*O is 99.9° and CCS— C==O is 125.8°. Then, for the radicals, when compared to the parent: 1) in CH<sub>2</sub>jCH<sub>2</sub>SCHO, CC—SC\*O has increased evidently to 1.89A°, C—C—SC\*O has decreased to 112.0°; 2) in CH<sub>3</sub>CHjSCHO, CC—SC\*O has shortened to 1.72A°, C—C— SC\*O has increased to 121.0° and CC—S—C\*O has increased to 101.9°; 3) in CH<sub>3</sub>CH<sub>2</sub>SCjO, CC--SC\*O has increased to 1.85A°, CC—S—C\*O has increased to 102.7° and CCS—C==O has increased to 130.2°.



(c)  $CH_3SC(=O)CH_2j$  C-S-C=O =0° C-S-C-C =180.0° **Figure 2.3** Optimized structures of  $CH_3SC(=O)CH_3$ ,  $CH_2jSC(=O)CH_3$ , and  $CH_3SC(=O)CH_2j$  at CBS-QB3 level (Bond distances in Å; Bond Angles in °).

Figure 2.3 shows the three lowest energy configurations of the stable  $CH_3SC(=O)CH_3$  molecule and its two radicals with bond distances and angles. The dihedral angles are listed directly below each figure.

In the stable CH<sub>3</sub>SC(=O)CH<sub>3</sub>, all the C—H bonds of are still about 1.1A°, both C—SC(\*O)C and CS—C(\*O)C are also about 1.8A°, CSC(==O)C is also about 1.2A°, CSC(\*O)—C is 1.51A°. And the angle of C—S—C(\*O)C is 99.1°, CS—C(==O)C is 122.4° and CSC(==O)—C is 123.8°. Then, for the radicals: 1) in CH<sub>2</sub>jSC(=O)CH<sub>3</sub>, C—SC(\*O)C has shortened to 1.71A°, and C—S—C(\*O)C has increased to 101.3°; 2) in CH<sub>3</sub>SC(=O)CH<sub>2</sub>j, CSC(==O)—C has decreased to 1.44A°, but there is no evident change in each bond angle.

After a hydrogen atom (H) is removed from a carbon atom, the positive charge on the carbon atom is less neutralized by loss of the shared H atom electron. Also, there has an unpaired electron on the carbon that interacts with neighboring atoms. Therefore, the electrostatic interaction between this carbon and its neighbor atoms increases. In the case of the C—S bonds and C—H bonds, the bond lengths are reduced, this is true especially as the unpaired electron on the carbon interacts with the unbonded electrons on the neighboring sulfur atom.

Departure of the H atom from the carbon atoms neighboring to the sulfur atom, like CSC(—H)C\*O and H—CSC(\*O)C, leads to formation of a partial double bond ( $\pi$  bond) between the sulfur atom and the carbon atom: CS-.CC=O and C-.SC(=O)C. This also effects the double bond between the oxygen and carbon atom in the carbonyl group C(=O), where this bond is often lengthened slightly. This is also brought about by the interaction between the unpaired electron on the radical site carbon and the unbounded electrons on the neighboring sulfur atom.

#### 2.2.2 Heats of Formation and Enthalpies of Reaction

There are several methods that are used for estimating the enthalpy of formation of a molecule when T=298K ( $\Delta H^{o}_{f298}$ ):

i) Enthalpy of Atomization [22]. It's mainly used on gaseous molecules. Each work reaction follows the atom balance rule, using CH<sub>3</sub>SCH<sub>2</sub>CHO as an example:

$$CH_3SCH_2CHO = 3C + 6H + S + O$$

It's based completely on the enthalpy change before and after separating all the atoms decomposing a chemical substance into single atoms. It equals the sum of the dissociation

energy of all bonds within the molecule. Standard atomization enthalpy equals the enthalpy change when 1 mol of atoms in the gas phase is formed from its element in its defined physical state under T=298.15K and P=1atm [22]. As all bonds in the compound molecule are broken into atoms and none are formed, the atomization value is always positive.

ii) Enthalpy of formation [23]. It's the change of enthalpy that accompanied the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (T=298.15K and P=1atm) [23]. Also, use a work reaction for CH<sub>3</sub>SCH<sub>2</sub>CHO as an example:

 $CH_3SCH_2CHO = 3C(s) + 3H_2 + S(s) + 1/2O_2$ 

All elements in their standard states (such as oxygen gas, hydrogen gas, and solid carbon in the form of graphite and solid sulfur) have a standard enthalpy of formation of zero, and there is no change involved in their formation.

iii) This is the use of work reactions with bond and hybridization balance. Example work reactions are shown as follow:

CH<sub>3</sub>SCH<sub>2</sub>CHO + CH<sub>3</sub>CH<sub>3</sub>  $\rightarrow$  CH<sub>3</sub>SCH<sub>3</sub> + CH<sub>3</sub>CH<sub>2</sub>CHO CH<sub>3</sub>SCH<sub>2</sub>CHO + CH<sub>4</sub>  $\rightarrow$  CH<sub>3</sub>SCH<sub>3</sub> + CH<sub>3</sub>CHO

For each work reaction, similar bond environments are required in the bonds of the reactants and products. The following example shows how each work reaction works:

 $CH_3SCH_2CHO + CH_4 \rightarrow CH_3SCH_3 + CH_3CHO$ 

Unknown -17.8 -9.0 -40.9  $\Delta H_{f 298}^{o}$  kcal mol<sup>-1</sup>

(Reference Species values from Literature)

 $\Delta H^{\circ} rxn_{,298} = \Delta H_{\rm f}^{\circ}{}_{298} \left[ \rm CH_3 SCH_3 \right] + \Delta H_{\rm f}^{\circ}{}_{298} \left[ \rm CH_3 CHO \right]$ 

$$-\Delta H_{\rm f}^{\circ}_{298}$$
 [CH<sub>4</sub>]  $-\Delta H_{\rm f}^{\circ}_{298}$  [CH<sub>3</sub>SCH<sub>2</sub>CHO]

 $\Delta H^{\circ} rxn_{,298} [CH_3 SCH_2 CHO] = 3.6 \text{ kcal mol}^{-1} (This calculation)$ 

(This is calculated with DFT method)

using  $\Delta$ Hrxn =  $\Sigma \Delta_{\rm f}$ H<sup>o</sup>(298) products -  $\Sigma \Delta_{\rm f}$ H<sup>o</sup>(298) reactants

 $3.6 = -9.0 + (-40.9) - (-17.8) - (CH_3SCH_2CHO)$  kcal mol<sup>-1</sup>

Find  $\Delta H_{\rm f}^{\circ}_{298}$  of CH<sub>3</sub>SCH<sub>2</sub>CHO = -35.6kcal/mol

In order to improve precision, several different work reactions were applied for each targeted species, this provides statistics and validation for the  $\Delta_f H^o(298)$  obtained.

In determining enthalpy of formation of a molecule, methods i), ii) and iii) only calculate one species each time, but error cancellation in method iii) results in higher accuracy. Although for method iii) it initially requires accurate Hf values of all the reference species beyond the target molecule, methods i) and ii) suffer from low accuracy due to lack of effective error cancellation method. As a result method iii) is applied to calculate enthalpies of formation for all the targeted species.

Enthalpies of formation  $\Delta_f H^o(298)$  of the target parent and radical intermediates have been determined using calculated  $\Delta_f H^o(298)$  values for each species, then calculating the  $\Delta$ Hreaction at 298 K, and then using the known literature values for the three reference molecules in the work reaction and the calculated  $\Delta$ Hrxn find  $\Delta_f H^o(298)$ of the target. The standard enthalpies of formation of the reference species at 298K used in the work reactions are summarized in Table 2.1. For radical species, the work reactions included the parent molecule and used the enthalpy value of the parent determined in this study as a reference.

 $\Delta H_{rxn(298)} = \sum H_f$  products -  $\sum H_f$  reactants

The work reactions in Table 2.2 are used to calculate the heat of reaction and enthalpies of formation for  $CH_3SCH_2CHO$ ,  $CH_3CH_2SCHO$ ,  $CH_3SC(=O)CH_3$  parent molecules and their radicals formed after removal of one H atom. The enthalpy calculations and the reported values are based on the lowest energy conformer.

Table 2.2 lists the calculated enthalpies of reaction from the five corresponding work reactions for each molecule, and their radicals formed after loss of one H atom from a carbon atom. There are five different work reactions utilized in each species, and results are presented for each calculation level and each reaction. Average values over the three calculation methods for each work reaction, and separately the average values over the work reactions for each calculation method are presented. The average value over the work reactions at the CBS-QB3 level are recommended  $\Delta_f H^o$ (298), as this method has the highest accuracy.  $\Delta_f H^o$ (298) data are reported for each species.

The resultant CBS-QB3 Hf values from the work reactions in Table 2.2 are applied when studying the C—H bond energies. These are also the values used in reporting the thermochemical properties in the following sections.

Information in the CBS-QB3 output files are used to get the inertias and frequencies to input in the SMCPS input files, and the most stable structures of the species.

It's evident that the enthalpies of formation for each radical are much higher than those of their parent molecules. Their enthalpy values, relative to each other, demonstrate the relative ease of formation, and their relative stability. The higher the enthalpy, the less stable the radical and usually the more difficult to form.

| Species                                          | ΔH <sup>°</sup> <sub>298</sub> (kcal mol <sup>-1</sup> ) | References |
|--------------------------------------------------|----------------------------------------------------------|------------|
| CH <sub>4</sub>                                  | -17.83                                                   | [14]       |
| CH <sub>3</sub> CH <sub>3</sub>                  | -20.04                                                   | [14]       |
| CH <sub>3</sub> SCH <sub>3</sub>                 | -8.96                                                    | [11]       |
| CH <sub>3</sub> CHO                              | -40.9                                                    | [14]       |
| CH₃OH                                            | -48.02                                                   | [14]       |
| CH <sub>3</sub> C(=O)OH                          | -103.5                                                   | [14]       |
| CH <sub>3</sub> OCH <sub>3</sub>                 | -43.99                                                   | [16]       |
| CH <sub>3</sub> C(=O)OCH <sub>3</sub>            | -98                                                      | [16]       |
| CH <sub>3</sub> C(=O)CH <sub>3</sub>             | -51.56                                                   | [17]       |
| CH₃SH                                            | -5.47                                                    | [16]       |
| CH <sub>2</sub> jSH                              | 37.7                                                     | [16]       |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>  | -24.82                                                   | [14]       |
| CH <sub>2</sub> jCH <sub>2</sub> CH <sub>3</sub> | 23.67                                                    | [16]       |
| CH <sub>2</sub> jCH <sub>3</sub>                 | 28.4                                                     | [12]       |
| CH <sub>2</sub> jSCH <sub>3</sub>                | 32.66                                                    | [12]       |
| CH <sub>3</sub> CH <sub>2</sub> OH               | -56.23                                                   | [14]       |
| CH <sub>2</sub> jCH <sub>2</sub> OH              | -7.2                                                     | [19]       |
| CH <sub>3</sub> CH <sub>2</sub> CHO              | -45.18                                                   | [19]       |
| CH <sub>3</sub> CH <sub>2</sub> Cj=O             | -7.45                                                    | [19]       |
| CH <sub>3</sub> CHjCHO                           | -7.1                                                     | [19]       |
| CH <sub>2</sub> jCH2CHO                          | 5.1                                                      | [19]       |
| CH <sub>2</sub> jCHO                             | 3.6                                                      | [19]       |
| CH₃Cj=O                                          | -3                                                       | [19]       |

**Table 2.1** Standard Enthalpies of Formation of Reference Species at 298.15 K.

**Table 2.2** Enthalpies of Reaction at 298 K and Calculated Enthalpies of Formation  $(\Delta H^{\circ}_{f298})$  of CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO, CH<sub>3</sub>SC(=O)CH<sub>3</sub> and Their Radicals (Units: kcal/mol).

| $\Delta H_{1,298}^{o}(\text{kcal mol}^{-1})$ B3LYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | CBS-         | Average |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|---------|------------|
| Work Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-31G(d,p) | 6-31+G(2d,p) | QB3     | 8          |
| CH <sub>3</sub> SCH <sub>2</sub> CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              |         |            |
| $CH_3SCH_2CHO+CH_3CH_3 \rightarrow CH_3SCH_3+CH_3CH_2CHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -35.1      | -35.0        | -35.6   | -35.3      |
| $CH_3SCH_2CHO+CH_4 \rightarrow CH_3SCH_3+CH_3CHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -33.9      | -33.8        | -35.6   | -34.4      |
| $CH_3SCH_2CHO+CH_3OH \rightarrow CH_3SCH_3+CH_3CO2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -31.2      | -33.9        | -34.9   | -33.4      |
| $CH_{2}SCH_{2}CHO+CH_{2}OCH_{2} \rightarrow CH_{2}SCH_{2}+CH_{2}CO2CH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -32.1      | -33.9        | -34.2   | -33.4      |
| $CH_2SCH_2CHO_+CH_2CH_2 \rightarrow CH_2SCH_2+CH_2C(=O)CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -33.7      | -33.6        | -34.2   | -33.8      |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -33.2      | -34.1        | -34.9   | -34.1      |
| Hf = -34.9 use the average value of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00.2       | 0.111        | 0115    | 0.111      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |         |            |
| CH <sub>2</sub> jSCH <sub>2</sub> CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              |         |            |
| $CH_2jSCH_2CHO+CH_3SH \rightarrow CH_3SCH_2CHO+CH_2jSH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.9        | 9.1          | 9.8     | 9.3        |
| $CH_2jSCH_2CHO+CH_3CH_2CH_3 \rightarrow CH_3SCH_2CHO+CH_2jCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.9        | 8.4          | 7.7     | 8.3        |
| $CH_2iSCH_2CHO+CH_3CH_3 \rightarrow CH_3SCH_2CHO+CH_2iCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1        | 8.5          | 8.3     | 8.6        |
| $CH_2iSCH_2CHO + CH_3SCH3 \rightarrow CH_3SCH_2CHO + CH_2iSCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.6        | 9.1          | 8.9     | 8.9        |
| $CH_2iSCH_2CHO+CH_3CH_2OH \rightarrow CH_3SCH_2CHO+CH_2iCH_2OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1        | 7.7          | 7.4     | 7.7        |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.7        | 8.6          | 8.4     | 8.6        |
| Hf=8.4, use the average value of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              |         |            |
| CH <sub>3</sub> SCHjCHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |         |            |
| $CH_3SCH_1CHO+CH_3CH_2CHO\rightarrow CH_3SCH_2CHO+CH_3CH_2C_1O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.1       | -3.8         | -2.6    | -3.5       |
| $CH_3SCH_1CHO+CH_3CH_2CHO\rightarrow CH_3SCH_2CHO+CH_3CH_1CHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.2       | -3.3         | -3.2    | -3.2       |
| CH <sub>3</sub> SCHiCHO+CH <sub>3</sub> CH <sub>2</sub> CHO→CH <sub>3</sub> SCH <sub>2</sub> CHO+CH <sub>2</sub> iCH <sub>2</sub> CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5.6       | -5.3         | -2.6    | -4.5       |
| $CH_3SCHiCHO+CH_3CHO \rightarrow CH_3SCH_2CHO+CH_2iCHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.8       | -4.9         | -3.4    | -4.4       |
| $CH_{2}SCHiCHO+CH_{2}CHO \rightarrow CH_{2}SCH_{2}CHO+CH_{2}CiO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -6.3       | -5.7         | -4.5    | -5.5       |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.8       | -4.6         | -3.3    | -4.2       |
| Hf= -3.3, use the average value of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              | 0.0     |            |
| CH-SCH-CiO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |              | 1       |            |
| $CH_3CH_2CJO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48         | 5.5          | 54      | 5.2        |
| $CH_SCH_CiO_+CH_CH_CHO_+CH_SCH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CH_CHO_+CHO_+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57         | 60           | 1.8     | 5.5        |
| $CH_SCH_CGO_+CH_CH_CHO_+CH_SCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_CHO_+CH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CH_GCH_CHO_+CHO_+CH_GCH_CHO_+CHO_+CHO_+CHO_+CHO_+CHO_+CHO_+CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33         | 4.0          | 5.5     | 13         |
| $CH_3CH_2CJO+CH_3CH_2CHO - 2CH_3CH_2CHO+CH_2CHO+CH_2CHO - CH_2CHO+CH_2CHO - CH_2CHO+CH_2CHO+CH_2CHO - CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CH_2CHO+CHO+CHO+CHO+CHO+CHO+CHO+CHO+CHO+CHO+$                                                                                    | 3.5        | 4.0          | 5.5     | 4.5        |
| $CH_3CH_2CJO+CH_3CHO \rightarrow CH_3CH_2CHO+CH_2JCHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1        | 4.4          | 4.0     | 4.4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0        | 3.0          | 3.5     | 3.5        |
| Hf=4.8 use the average value of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1        | 4.7          | 4.0     | 4.5        |
| CH <sub>2</sub> CH <sub>2</sub> SCHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              |         |            |
| $CH_2CH_2SCHO+CH_2CH_2 \rightarrow CH_2SCH_2+CH_2CH_2CHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -44 5      | -44 1        | -43 7   | -44 1      |
| $CH_2CH_2SCHO_+CH_4 \rightarrow CH_2SCH_2+CH_2CHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -43.3      | -42.9        | -43.7   | -43.3      |
| $CH_2CH_2SCHO_+CH_4$ $\rightarrow CH_3SCH_3+CH_3CO2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -40.6      | -43.0        | -43.0   | -42.2      |
| $CH_{2}CH_{2}SCHO_{+}CH_{3}OCH_{2} \rightarrow CH_{2}SCH_{2}+CH_{2}CO2CH_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -41.5      | -43.0        | -42.3   | -42.2      |
| $CH_CH_SCHO_+CH_CH_CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -43.1      | -42.7        | -42.3   | -42.2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -42.6      | -42.7        | -42.5   | -42.7      |
| Hf-43.0 use the average value of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -42.0      | -+3.2        | -45.0   | -42.9      |
| CH.;CH.SCHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              |         |            |
| $CH_{2}CH_{2}SCHO + CH_{2}SCHO + CH_{2}SCHO$ | 12         | 5.0          | 69      | 5.4        |
| $CH_{2}CH_{2}CHO_{+}CH_{2}CH_{-}CH_{-}CH_{2}CHO_{+}CH_{2}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH_{-}CH$ | 4.1        | 13           | 4.7     | J.4<br>4.4 |
| $CH_2 CH_2 CHO_1 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1        | 4.5          | 5.2     | 4.4        |
| $CH_2 CH_2 SCHO+CH_3 CH_3 \rightarrow CH_3 CH_2 SCHO+CH_2 SCHOCH_3 CH_5 CHO+CH_5 CH_2 CH_2 CH_3 CH_2 SCHO+CH_3 SCHO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5        | 4.4          | 5.0     | 4.7        |
| $CH_2$ $CH_2$ $SCHO+CH_3$ $SCH_3 \rightarrow CH_3$ $CH_2$ $SCHO+CH_2$ $SCHO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9        | 2.6          | 3.9     | 4.9        |
| $CH_2 JCH_2 SCHO+CH_3 CH_2 OH \rightarrow CH_3 CH_2 SCHO+CH_2 JCH_2 OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3        | 5.0          | 4.4     | 5.8        |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.9        | 4.5          | 5.4     | 4.0        |
| CH_CHiSCHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>   |              |         |            |
| $CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CH_{CH}CHCH_{CH}CHCH_{CH}CHCH_{CH}CHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCHCH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5        | 1.4          | 1.5     | 1.9        |
| $CH_{3}CH_{3}CH_{0} + CH_{3}CH_{2}CH_{0} \rightarrow CH_{3}CH_{2}SCH_{0} + CH_{3}CH_{2}CH_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3        | 2.0          | 1.5     | 1.0        |
| $CH_3CH_3CHO + CH_3CH_2CHO - CH_3CH_2SCHO + CH_3CH_2CHO = CH_3CH_2CHO + CH_3CH_2CHO = CH_3CH_2CHO =$ | 5.4        | 2.0          | 1.0     | 2.1        |
| $CH_3CH_3CHO + CH_3CH_2CHO - CH_3CH_2SCHO + CH_2]CH_2CHO = CH_3CH_2SCHO = CH_3CH$ | 1.0        | 0.0          | 1.0     | 0.9        |
| $CH_3CH_3CHO + CH_3CHO - CH_3CH_2SCHO + CH_2JCHO = CH_3CH_2SCHO + CH_2JCHO = CH_2CHO + CH_2CHO = CH_2CHO $ | 1.8        | 0.4          | 0.7     | 1.0        |
| $CH_3CHJSCHU + CH_3CHU \rightarrow CH_3CH_2SCHU + CH_3CJU$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5        | -0.4         | -0.3    | -0.2       |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8        | 0.7          | 0.9     | 1.1        |
| HI=0.9, use the average value of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1          | 1            | 1       | 1          |

**Table 2.2** Enthalpies of Reaction at 298 K and Calculated Enthalpies of Formation  $(\Delta H^{\circ}_{f298})$  of CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO, CH<sub>3</sub>SC(=O)CH<sub>3</sub> and Their Radicals (Units: kcal/mol). (Continued)

| $\Delta H_{f 298}^{o}(\text{kcal mol}^{-1})$                                         | B3LYP      |              | CBS-  | Average |
|--------------------------------------------------------------------------------------|------------|--------------|-------|---------|
| Work Reactions                                                                       | 6-31G(d,p) | 6-31+G(2d,p) | QB3   | _       |
| CH <sub>3</sub> CH <sub>2</sub> SCjO                                                 |            |              |       |         |
| $CH_3CH_2SC_jO + CH_3CH_2CHO \rightarrow CH_3CH_2SCHO + CH_3CH_2C_jO$                | -4.1       | -4.4         | -4.4  | -4.3    |
| $CH_3CH_2SC_jO + CH_3CH_2CHO \rightarrow CH_3CH_2SCHO + CH_3CH_jCHO$                 | -3.2       | -3.9         | -5.0  | -4.0    |
| $CH_3CH_2SC_jO + CH_3CH_2CHO \rightarrow CH_3CH_2SCHO + CH_2jCH_2CHO$                | -5.6       | -5.8         | -4.4  | -5.3    |
| $CH_3CH_2SCjO+CH_3CHO \rightarrow CH_3CH_2SCHO+CH_2jCHO$                             | -4.8       | -5.4         | -5.3  | -5.2    |
| $CH_3CH_2SCjO+CH_3CHO \rightarrow CH_3CH_2SCHO+CH_3CjO$                              | -6.3       | -6.2         | -6.3  | -6.3    |
| Average                                                                              | -4.8       | -5.1         | -5.1  | -5.0    |
| Hf=-5.1, use the average value of the CBS-QB3 level                                  |            |              |       |         |
| CH <sub>3</sub> SC(=O)CH <sub>3</sub>                                                |            |              |       |         |
| $CH_3SC(=O)CH_3+CH_3CH_3 \rightarrow CH_3SCH_3+CH_3CH_2CHO$                          | -51.1      | -50.8        | -50.8 | -50.9   |
| $CH_3SC(=O)CH_3+CH_4 \rightarrow CH_3SCH_3+CH_3CHO$                                  | -49.8      | -49.5        | -50.8 | -50.0   |
| $CH_3SC(=O)CH_3+CH_3OH \rightarrow CH_3SCH_3+CH_3CO2H$                               | -47.2      | -49.6        | -50.1 | -49.0   |
| $CH_3SC(=O)CH_3+CH_3OCH_3\rightarrow CH_3SCH_3+CH_3CO2CH_3$                          | -48.1      | -49.6        | -49.4 | -49.0   |
| $CH_3SC(=O)CH_3+CH_3CH_3 \rightarrow CH_3SCH_3+CH_3C(=O)CH_3$                        | -49.6      | -49.3        | -49.4 | -49.5   |
| Average                                                                              | -49.1      | -49.8        | -50.1 | -49.7   |
| Hf=-50.1, use the average value of the CBS-QB3 level                                 |            |              |       |         |
| $CH_2 jSC(=O)CH_3$                                                                   |            |              |       |         |
| $CH_2jSC(=O)CH_3+CH_3SH \rightarrow CH_3SC(=O)CH_3+CH_2jSH$                          | -6.3       | -6.0         | -4.3  | -5.5    |
| $CH_2jSC(=O)CH_3+CH_3CH_2CH_3 \rightarrow CH_3SC(=O)CH_3+CH_2jCH_2CH_3$              | -6.3       | -6.8         | -6.4  | -6.5    |
| $CH_2jSC(=O)CH_3+CH_3CH_3 \rightarrow CH_3SC(=O)CH_3+CH_2jCH_3$                      | -6.2       | -6.7         | -5.8  | -6.2    |
| $CH_2jSC(=O)CH_3+CH_3SCH_3 \rightarrow CH_3SC(=O)CH_3+CH_2jSCH_3$                    | -6.6       | -6.1         | -5.2  | -6.0    |
| $CH_2jSC(=O)CH_3+CH_3CH_2OH \rightarrow CH_3SC(=O)CH_3+CH_2jCH_2OH$                  | -7.1       | -7.5         | -6.7  | -7.1    |
| Average                                                                              | -6.5       | -6.6         | -5.7  | -6.3    |
| Hf=-5.7, use the average value of the CBS-QB3 level                                  |            |              |       |         |
| $CH_3SC(=O)CH_2j$                                                                    |            |              |       |         |
| $CH_{3}SC(=O)CH_{2}j+CH_{3}CH_{2}CHO \rightarrow CH_{3}SC(=O)CH_{3}+CH_{3}CH_{2}CjO$ | -3.3       | -3.4         | -2.9  | -3.2    |
| $CH_3SC(=O)CH_2j+CH_3CH_2CHO\rightarrow CH_3SC(=O)CH_3+CH_3CHjCHO$                   | -2.4       | -2.9         | -3.5  | -2.9    |
| $CH_3SC(=O)CH_2j+CH_3CH_2CHO\rightarrow CH_3SC(=O)CH_3+CH_2jCH_2CHO$                 | -4.8       | -4.8         | -2.9  | -4.2    |
| $CH_3SC(=O)CH_2j+CH_3CHO \rightarrow CH_3SC(=O)CH_3+CH_2jCHO$                        | -4.0       | -4.4         | -3.7  | -4.1    |
| $CH_3SC(=O)CH_2j+CH_3CHO \rightarrow CH_3SC(=O)CH_3+CH_3CjO$                         | -5.5       | -5.2         | -4.8  | -5.2    |
| Average                                                                              | -4.0       | -4.1         | -3.5  | -3.9    |
| Hf=-3.5, use the average value of the CBS-QB3 level                                  |            |              |       |         |
## 2.2.3 C—H Bond Energies

Bond energies corresponding to the loss of an H atom from each of the three carbon atoms on the three parent molecules are reported at 298 K and 1 atm. The calculation are illustrated in Table 2.2 above where the radical  $\Delta_{f}H^{0}(298)$  value is obtained from five work reactions. Bond energies for the formation of radicals reported at 298 K are calculated from the absolute  $\Delta H^{0}_{f298}$  values of the parent molecules and radicals are from the average CBS-QB3 level calculations. The work reactions here use the corresponding  $\Delta_{f}H^{0}(298)$  of the radical and the parent and that of the hydrogen atom, 52.1 kcal mol<sup>-1</sup>. The C—H bond energies of the parent molecules are summarized in Table 2.3. The  $\Delta$ Hrxn of the reaction below is used to define the bond energy:

 $\Delta_{\rm f} {\rm H}^{\rm o}(298)$  Parent =  $\Delta_{\rm f} {\rm H}^{\rm o}(298)$  Radical + H atom (52.1)

The bond energies of H—CH<sub>2</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>SCH(--H)CHO and CH<sub>3</sub>SCH<sub>2</sub>C(=O)--H are calculated using the reactions below:

 $CH_3SCH_2CHO \rightarrow H \bullet + CH_2jSCH_2CHO$ ,

 $CH_3SCH_2CHO \rightarrow H \bullet + CH_3SCHjCHO$  and

 $CH_3SCH_2CHO \rightarrow H \bullet + CH_3SCH_2CjO$ , respectively.

Similarly, the bond energies of H--CH<sub>2</sub>CH<sub>2</sub>SCHO, CH<sub>3</sub>CH(--H)SCHO, and CH<sub>3</sub>CH<sub>2</sub>SC(=O)--H in CH<sub>3</sub>CH<sub>2</sub>SCHO, and the bond energies of H—-CH<sub>2</sub>SC(=O)CH<sub>3</sub> and CH<sub>3</sub>SC(=O)C(--H)H<sub>2</sub> in CH<sub>3</sub>SC(=O)CH<sub>3</sub> are calculated using the respective reactions shown in Table 2.3, in which the enthalpy of the parents and radicals are from the Hf data from Table 2.2.

| Table 2.3 | С— | -H Bond Energies | (kcal/mol). |
|-----------|----|------------------|-------------|

| Parent                                |      | Radical                               |                      |                        | В                                       | ond Energy                               |  |
|---------------------------------------|------|---------------------------------------|----------------------|------------------------|-----------------------------------------|------------------------------------------|--|
| CH <sub>3</sub> SCH <sub>2</sub> CHO  | =    | C•H <sub>2</sub> SCH <sub>2</sub> CHO | +                    | H∙                     |                                         | CH <sub>2</sub> (H)SCH <sub>2</sub> CHO  |  |
| -34.9                                 |      | 8.4                                   |                      | 52.1                   | 8.4                                     | 4+52.1-(-34.9) = 95.4                    |  |
| CH <sub>3</sub> SCH <sub>2</sub> CHO  | =    | CH₃SC•HCHO                            | +                    | H∙                     |                                         | CH₃SCH(H)CHO                             |  |
| -34.9                                 |      | -3.3                                  |                      | 52.1                   | -3.                                     | 3+52.1-(-34.9) = 83.7                    |  |
| CH <sub>3</sub> SCH <sub>2</sub> CHO  | =    | $CH_3SCH_2C \bullet = 0$              | +                    | H∙                     |                                         | CH <sub>3</sub> SCH <sub>2</sub> C(H)=O  |  |
| -34.9                                 |      | 4.8                                   |                      | 52.1                   | 4.8                                     | 3+52.1-(-34.9) = 91.8                    |  |
| CH <sub>3</sub> CH <sub>2</sub> SCHO  | =    | C•H <sub>2</sub> CH <sub>2</sub> SCHO | +                    | H∙                     |                                         | CH <sub>2</sub> (H)CH <sub>2</sub> SCHO  |  |
| -43.0                                 |      | 5.4                                   |                      | 52.1                   | 5.4                                     | +52.1-(-43.0) = 100.5                    |  |
| CH <sub>3</sub> CH <sub>2</sub> SCHO  | =    | CH <sub>3</sub> C•HSCHO               | +                    | H∙                     |                                         | СН₃СН(Н)SCHO                             |  |
| -43.0                                 |      | 0.9                                   |                      | 52.1                   | 0.9                                     | 9+52.1-(-43.1) = 96.0                    |  |
| CH <sub>3</sub> CH <sub>2</sub> SCHO  | =    | $CH_3CH_2SC \bullet = 0$              | +                    | H∙                     | CH <sub>3</sub> CH <sub>2</sub> SC(H)=( |                                          |  |
| -43.0                                 |      | -5.1                                  |                      | 52.1                   | -5.1+52.1-(-43.1) = 9                   |                                          |  |
| CH <sub>3</sub> SC(=O)CH <sub>3</sub> | =    | $C \bullet H_2SC = OCH_3$             | +                    | H∙                     | CH <sub>2</sub> (H)SC(=O)Cl             |                                          |  |
| -50.1                                 |      | -5.7                                  |                      | 52.1                   | -5.                                     | 7+52.1-(-50.1) = 96.5                    |  |
| CH <sub>3</sub> SC(=0)CH <sub>3</sub> | =    | $CH_3SC=OC \bullet H_2$               | +                    | H∙                     | C                                       | H <sub>3</sub> SC(=0)CH <sub>2</sub> (H) |  |
| -50.1                                 |      | -3.5                                  |                      | 52.1                   | -3.                                     | 5+52.1-(-50.1) = 98.7                    |  |
| Bond Energies :                       | Н—С  | H <sub>2</sub> SCH <sub>2</sub> CHO   | CH <sub>3</sub> SCH  | (—H)CHO                | CH <sub>3</sub> SCH <sub>2</sub>        | с(—Н)=О                                  |  |
|                                       |      | 95.4,                                 | 8.                   | 3.7                    | 91.8                                    | kcal/mol.                                |  |
| Bond Energies: 1                      | H—CH | I <sub>2</sub> CH <sub>2</sub> SCHO   | CH <sub>3</sub> CH(- | –H)SCHO                | CH <sub>3</sub> CH <sub>2</sub> S       | SC(—H)O                                  |  |
|                                       |      | 100.5                                 | 90                   | 6.0                    | 90.0                                    | kcal/mol.                                |  |
| Bond Energies :                       | H    | H—CH <sub>2</sub> SC(=O)              | CH <sub>3</sub>      | CH <sub>3</sub> SC(=O) | CH2—H                                   |                                          |  |
|                                       |      | 96.5                                  |                      | 98.7 kc                | al/mol.                                 |                                          |  |

## 2.2.4 Frequencies and Moment of Inertia

The frequencies and the moments of inertia of the parent molecules and the corresponding radicals are listed in Table A.1 in Appendix A. These parameters are needed for SMCPS calculation of the thermo chemical properties at different temperatures, and they're used as frequencies and rotational spectroscopic constants as in FTIR and microwave analysis. They're from the highest CQS-QB3 output files of the corresponding species.

# **2.2.5 Internal Rotational Potentials**

Internal rotor potentials analysis are of value to chemists working in molecular mechanics and in force field determinations in order to calibrate their force field models for energy versus dihedral angle, and it's a useful method of determining the lowest energy structure. As noted above they are also required to determine the lowest energy configuration of each molecule. The internal rotation potentials also indicate the relative energies and barriers to conversion between the conformers. They are also to be used to determine the entropy and heat capacity contributors from the internal rotors in the following work. The energy as a function of rotation about the dihedral angle was computed by scanning the angle from 0° to 360° in steps of 15°, and the remaining coordinates were optimized at UB3LY/3-21G level of theory. Figure 2.4-2.14 illustrates the internal rotor potentials of the parent molecule and their corresponding radicals, as mentioned in section 2.2.6.



**Figure 2.4** Potential energy barriers for internal rotations in CH<sub>3</sub>SCH<sub>2</sub>CHO at UB3LY/3-21G level.



**Figure 2.5** Potential energy barriers for internal rotations in CH<sub>2</sub>jSCH<sub>2</sub>CHO at UB3LY/3-21G level.



**Figure 2.6** Potential energy barriers for internal rotations in CH<sub>3</sub>SCHjCHO at UB3LY/3-21G level.



**Figure 2.7** Potential energy barriers for internal rotations in CH<sub>3</sub>SCH<sub>2</sub>Cj=O at UB3LY/3-21G level.

CH<sub>3</sub>SCH<sub>2</sub>CHO has the internal rotors of C—SCC(=O), CS—CC(=O) and CSC— C(=O), as demonstrated in Figure 2.4 (a), (b) and (c) respectively, their barriers are respectively 2, 5.5 and 5.4 kcal/mol. The first radical, CH<sub>2</sub>jSCH<sub>2</sub>CHO, has the rotators of Cj—SCC(=O), CjS—CC(=O) and CjSC—C(=O), and their barriers are 5, 5.3 and 4.4, respectively, as shown in Figure 2.5 (a), (b) and (c). The second radical, CH<sub>3</sub>SCHjCHO, the barriers of its following rotators: CS—CjC(=O) and CSCj—C(=O) are 12 and 22 kcal/mol, as in Figure 2.6 (a) and (b). Then the third radical, CH<sub>3</sub>SCH<sub>2</sub>CjO, the barriers of its rotators of CS—CC(=O)j and CSC—C(=O)j are 3.7 and 5.4 kcal/mol, it's shown in Figure 2.7 (a) and (b).



**Figure 2.8** Potential energy barriers for internal rotations in CH<sub>3</sub>CH<sub>2</sub>SCHO at UB3LY/3-21G level.



**Figure 2.9** Potential energy barriers for internal rotations in CH<sub>2</sub>jCH<sub>2</sub>SCHO at UB3LY/3-21G level.



**Figure 2.10** Potential energy barriers for internal rotations in CH<sub>3</sub>CHjSCHO at UB3LY/3-21G level.



**Figure 2.11** Potential energy barriers for internal rotations in CH<sub>3</sub>CH<sub>2</sub>SCj=O at UB3LY/3-21G level.

For the parent molecule of CH<sub>3</sub>CH<sub>2</sub>SCHO in Figure 2.8, its rotor of CC—SC(=O) and CCS—C(=O) are 5.3 and 13.3 kcal/mol, as seen respectively in Figure 2.8 (a) and (b). The first radical in Figure 2.9, CH<sub>2</sub>jCH<sub>2</sub>SCHO, its rotor of Cj—CSC(=O) is 4.5kcal/mol. The second radical, CH<sub>3</sub>CHjSCHO, its rotors are C—CjSC(=O), CCj—SC(=O) and CCjS—C(=O), their barriers are respectively 0.22, 4 and 11.8kcal/mol, as demonstrated in Figure 2.10 (a), (b) and (c). The third radical, CH<sub>3</sub>CH<sub>2</sub>SCjO, the barriers of its rotors of CC—SC(=O)j and CCS—C(=O)j are 3 and 14kcal/mol, as in Figure 2.11 (a) and (b).



**Figure 2.12** Potential energy barriers for internal rotations in CH<sub>3</sub>SC(=O)CH<sub>3</sub> at UB3LY/3-21G level.



**Figure 2.13** Potential energy barriers for internal rotations in  $CH_2jSC(=O)CH_3$  at UB3LY/3-21G level.



**Figure 2.14** Potential energy barriers for internal rotations in CH<sub>3</sub>SC(=O)CH<sub>2</sub>j at UB3LY/3-21G level.

Then, for CH<sub>3</sub>SC(=O)CH<sub>3</sub>, its rotors of CS—C(=O)C and CSC(=O)—C are 12 and 0.18kcal/mol as in Figure 2.12 (a) and (b). Its first radical, CH<sub>2</sub>jSC(=O)CH<sub>3</sub>, the rotors of Cj—SC(=O)C and CjS—C(=O)C, their barriers are 5.8 and 9.9kcal/mol, as in Figure 2.13 (a) and (b). Then its second radical, CH<sub>3</sub>SC(=O)CH<sub>2</sub>j, its rotors of CS— C(=O)Cj and CSC(=O)—Cj, the barriers are 10.8 and 10.6kcal/mol, as in Figure 2.14 (a) and (b).

# **2.2.6 S°298 and Cp°(T)**

Entropy and heat capacity values from vibration, translation and rotation contributions are calculated using SMCPS and the Rotor programs. The scaled vibrations and the moment of inertia are from the optimized geometries under CBS-QB3, (scaled by the factor of 0.9613). Table 2.4 lists the data about 298K entropy and heat capacity vs. temperature of parent CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub> accompanied by those of their radicals after one H atom departure, and the ideal gas-phase thermodynamic property vs. temperature data of each species are listed in Table B.1-B.3 in Appendix B, with a temperature range of 1-5000K. All these data are ideal gas thermodynamic properties at standard state (P=1atm and T=298K). To note, torsion frequencies are used for internal rotor contribution, with the ROTOR in the SMCPS input files being 0.

| Species                                 | S <sup>•</sup> 298K | Cp300 | Cp400 | Cp500 | Cp600 | Cp800 | Cp1000 | Cp1500 |
|-----------------------------------------|---------------------|-------|-------|-------|-------|-------|--------|--------|
| CH <sub>3</sub> SCH <sub>2</sub> CHO    | 80.3                | 23.2  | 28.1  | 32.4  | 36.1  | 41.9  | 46.1   | 52.6   |
| CH <sub>2</sub> jSCH <sub>2</sub> CHO   | 79.6                | 24.0  | 28.3  | 32.0  | 35.0  | 39.6  | 43.0   | 48.2   |
| CH <sub>3</sub> SCHjCHO                 | 78.6                | 22.3  | 26.9  | 30.8  | 34.0  | 39.0  | 42.6   | 48.0   |
| CH <sub>3</sub> SCH <sub>2</sub> Cj=O   | 80.1                | 23.0  | 27.4  | 31.1  | 34.2  | 39.0  | 42.5   | 48.0   |
| CH <sub>3</sub> CH <sub>2</sub> SCHO    | 79.0                | 22.8  | 27.8  | 32.1  | 35.8  | 41.7  | 45.9   | 52.5   |
| CH <sub>2</sub> jCH <sub>2</sub> SCHO   | 77.9                | 23.6  | 28.1  | 31.8  | 34.8  | 39.5  | 42.9   | 48.2   |
| CH <sub>3</sub> CHjSCHO                 | 81.3                | 23.4  | 27.6  | 31.3  | 34.4  | 39.2  | 42.7   | 48.2   |
| CH <sub>3</sub> CH <sub>2</sub> SCjO    | 79.4                | 22.8  | 27.0  | 30.6  | 33.8  | 38.7  | 42.3   | 47.9   |
| CH <sub>3</sub> SC(=O)CH <sub>3</sub>   | 81.1                | 24.0  | 28.7  | 32.8  | 36.4  | 42.0  | 46.1   | 52.5   |
| CH <sub>2</sub> jSC(=O)CH <sub>3</sub>  | 80.1                | 24.6  | 28.8  | 32.3  | 35.2  | 39.7  | 43.0   | 48.2   |
| CH <sub>3</sub> SC(=O)CH <sub>2</sub> j | 78.9                | 23.8  | 28.2  | 31.9  | 34.9  | 39.5  | 42.9   | 48.1   |

**Table 2.4** 298K Entropy and Data of Heat Capacity vs. Temperature

#### 2.3 Summary

Thermochemical parameters  $\Delta_f H^{\circ}(298)$ , standard entropy at 298.15 K and entropy and heat capacities form 1 to 5000K are presented for the lowest energy conformers of three proposed main products of atmospheric methyl ethyl partial oxidation: CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub>, and their radicals corresponding to loss of an H atom from the different C atom sites in the molecule. Bond energies, Internal Rotational Barrier plots, vibrational qualities and stable molecular structures have also been calculated and listed out. They were optimized using density functional theory and composite method CBS-QB3 methods in computational chemistry. Enthalpies from all the work reactions and at each of the calculation levels are in reasonably good agreement, however the CBS-QB3 results are the highest calculation level and these values are recommended for use. The use of the B3LYP density functional method with the 6-31G(d,p) and 6-31+G(2d,p) basis sets and work reactions with bond balance work well for these sulfur carbonyl species. The recommended Enthalpies of formation for CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub> are -34.9, -43.0 and -50.1 kcal/mol respectively. C-H bond energies adjacent to sulfur atoms are weakened as a result of the electron resonance with the Sulfur. Internal Rotor potentials are also reported for use in molecular mechanics.

## **CHAPTER 3**

# STRUCTURES, THERMOCHEMISTRY, INTERNAL ROTOR POTENTIALS AND CARBON – HYDROGEN BOND ENERGIES IN METHYL ETHYL SULFIDE AND INTERMEDIATES OF RADICAL REACTIONS WITH O<sub>2</sub>

#### **Overview**

The structure and thermochemical parameters ( $\Delta_f H^o(298)$ , S<sup>o</sup> and Cp(T)), internal rotor potentials and carbon--hydrogen bond energies for ethyl methyl sulfide, and its radicals corresponding to loss of hydrogen atom were studied. The corresponding ethyl methyl sulfide alkyl hydroperoxides, peroxy radicals and hydroperoxide alkyl radicals were also studied in preparation for kinetic studies on the oxidation of ethyl methyl sulfide under atmospheric and combustion conditions. The thermochemical and structural properties were determined using computational chemistry.

#### **3.1 Calculation Methods**

Calculations are based on Density Functional Theory (DFT) and composite ab initio levels using Gaussian 98 and Gaussian 03. Computation levels include B3LYP/6-31G(d,p), and B3LYP/6-31+G(2d,p), and the higher level composite CBS-QB3 method. CBS-QB3 [1] is a complete basis set method that uses geometries and frequencies from the B3LYP/6-311G(2d,d,p) level followed by single point energy calculations at the MP2, MP4SDQ, and CCSD(T) levels. The final energies are determined with a CBS extrapolation. All calculations were performed using the Gaussian 03 program suite. Enthalpies of formation for stable species are calculated using the calculated total energies (298K) from each of the calculation levels with work reactions that are isodesmic in most cases. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. The use of a work reaction with similar bonding on both sides of an equation results in a cancellation of calculation error and improves the accuracy for energy analysis. The reported enthalpy values can be compared with the known enthalpies of several molecules in the system to serve as a calibration on the thermochemistry and the Potential Energy (PE) diagram for reaction of the ethyl methyl sulfide radicals with molecular oxygen. The entropy and heat capacity (S°(T) and Cp°(T)) are calculated using the "SMCPS" (Statistical Mechanics for Heat Capacity and Entropy <u>Cp</u> and <u>S</u>) program which incorporates data on the frequencies, moments of inertia, molecular mass, symmetry and number of optical isomers from the B3LYP/6-31G(2d,2p) calculation in the CBS-QB3 method. Torsion frequencies are used for internal rotor contribution.

#### **3.2 Results and Discussion**

## 3.2.1 Structure

The lowest energy structure for each molecule and radical has been confirmed by comparing the lowest energy dihedral from the internal rotation potential curve with the structural parameter obtained from CBS-QB3 output file, the highest applied calculation level with the highest precision. Their detailed structural information for all the species to study are shown in Figure 3.1-3.8, in which the dihedrals to study in the stable molecules and radicals are noted below each species image.



**Figure 3.1** Optimized structures of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCHjCH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>j at CBS-QB3 level (Bond distances in Å; Bond Angles in °).

In CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, as shown in Figure 3.1 (a), all the H—C bonds are also  $1.1\pm0.02$ A°, both the C—SCC bond and CS—CC bond are 1.82 and 1.83A°, CSC—C is 1.53A°. The C—S—CC angle is 101.0°, the CS—C—C angle is 115.1°.

Then, for the radicals: 1) in CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>3</sub>, as shown in Figure 3.1 (b), there is no evident change in the lengths of all the C—H bonds and each internal bond angle, but the bond of C—SCC has shortened to 1.72A°; 2)in CH<sub>3</sub>SCHjCH<sub>3</sub>, as shown in Figure 3.1 (c), the angle of C—S—CC has increased to 103.8°, CS—C—C has evidently increased to 125.0°, and CS—CC has shortened to 1.73A°, but there is also no evident change in

each C--H bond; 3) in  $CH_3SCH_2CH_2j$ , as shown in Figure 3.1 (d),  $CS\_C\_C$  has undergone minor decrease to 113.0° and  $CS\_CC$  has increased to 1.88A°.

Similar to the structures in Chapter 2, after one H atom is abstracted from carbon atom there is an unpaired electron on it, and this unpaired electron can interact with neighboring atoms. A bond shortening is observed and suggests that the electronic interaction is enhanced between the C—S bonds and C—H bonds. Removal of an H atom on the methyl side of a sulfur atom will lead to formation a partial double bond: C<u>•</u>SCC, which is participated by another pair of unpaired electrons on both sulfur and carbon atoms.

The partial oxidation intermediates ethyl-methylsulfide radicals are peroxy radicals. To study the peroxy radicals, this section starts with the stable hydroperoxides the on the different carbon sites of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>: HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH. The structures of these hydroperoxides are demonstrated in Figure 3.2, 3.3 and 3.4 respectively. In their radicals formed after one H atom removed from stable molecules, compared to their stable molecules, there is also no evident change on each C-H bond length, and the other changes are similar to the formation of radicals from CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>. The bond between two O atoms decreases significantly from about 1.5A° to near 1.3A° after the H atom departure from the –OOH group. This is brought about by the interaction between the unpaired electron on the outer oxygen atom with the electrons on the inner oxygen atom next to the carbon: this effectively results in an RO=O• double bond.



(a)  $HOOCH_2SCH_2CH_3$  O-O-C-S = -173.5° O-C-S-C = 72.6° C-S-C-C = -176.4°



(b)  $jOOCH_2SCH_2CH_3$  O-O-C-S = 162.2° O-C-S-C = -73.0° C-S-C-C = 178.7°



(c) HOOCH<sub>2</sub>SCHjCH<sub>3</sub> O-O-C-S =-178.8° O-C-S-C =77.1° C-S-C-C =-172.1°



(d) HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>2</sub>j O-O-C-S =-72.4° O-C-S-C =104.7° C-S-C-C =-79.8°

**Figure 3.2** Optimized structures of HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, jOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, HOOCH<sub>2</sub>SCHjCH<sub>3</sub> and HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>2</sub>j at CBS-QB3 level (Bond distances in Å; Bond Angles in °).



**(b)**  $CH_2jSCH(OOH)CH_3$  C-S-C-C =-171.5° C-S-C-O =67.0° S-C-O-O =-166.1°

(a)  $CH_3SCH(OOH)CH_3$  C-S-C-C =170.7° C-S-C-O =-67.9° S-C-O-O =165.6°

H 0.97

1.09

1.47

106.8

C

C .52

106

1105

110.8

10

1.8

C



101.6

1.83

(c)  $CH_3SCH(OOj)CH_3$  C-S-C-C =-172.2° C-S-C-O =68.2° S-C-O-O =-158.2°



(d)  $CH_3SCH(OOH)CH_2j$  C-S-C-C =-168.4° C-S-C-O =69.7° S-C-O-O =-164.5°

Figure 3.3 Optimized structures of CH<sub>3</sub>SCH(OOH)CH<sub>3</sub>, CH<sub>2</sub>jSCH(OOH)CH<sub>3</sub>, CH<sub>3</sub>SCH(OOj)CH<sub>3</sub> and CH<sub>3</sub>SCH(OOH)CH<sub>2</sub>j at CBS-QB3 level (Bond distances in Å; Bond Angles in °).



**Figure 3.4** Optimized structures of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH, CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>2</sub>OOH, CH<sub>3</sub>SCHjCH<sub>2</sub>OOH and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOj at CBS-QB3 level (Bond distances in Å; Bond Angles in °).

In addition to the peroxy radicals, the alcohols and the alkoxy radicals were also calculated. The peroxy radicals are formed in combustion and in atmospheric chemistry by reaction of the ethyl-methyl sulfide radicals with O2. Then, in the atmosphere, the peroxy radicals react with nitric oxide (NO) to form NO2 and alkoxy radicals.

 $CH_3SCH_2CH_2 + O2 = CH_3SCH_2CH_2OO$  and

 $CH_3SCH_2CH_2OO \bullet + NO = CH_3SCH_2CH_2O \bullet + NO2 \quad \Delta HRxn = -13 \text{ kcal mol}^{-1}$ 

Sulfoxides are formed in atmospheric and combustion chemistry via reactions with OH radical and  $O_2$ .

 $CH_3SCH_2CH_3 + OH = CH_3S \bullet (-OH)CH_2CH_3$  and

 $CH_{3}S\bullet(-OH)CH_{2}CH_{3} + O_{2} = [CH_{3}S\bullet(OO\bullet(-OH)CH_{2}CH_{3}] = CH_{3}S(=O)CH_{2}CH_{3} + HO_{2}$ 

The  $[CH_3S \bullet (-OH)CH_2CH_3]$  and  $[CH_3S \bullet (OO \bullet (-OH)CH_2CH_3]$  are both loosely bound adducts and exist is a quasi equilibria under atmospheric conditions. Under combustion conditions the adducts dissociate back to reactants very quickly.

The optimized structures for several of these intermediates  $CH_3SCH_2OH$ ,  $CH_3CH_2SCH_2OH$ ,  $CH_3S(=O)CH_2OH$  and  $CH_3S(=O)CH(OH)CH_3$  are determined, and reported in Figure 3.5-3.8.



C-S-C-O =180 °

**Figure 3.5** Optimized structure of CH<sub>3</sub>SCH<sub>2</sub>OH at CBS-QB3 level (Bond distances in Å; Bond Angles in °).





**Figure 3.6** Optimized structure of CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>OH at CBS-QB3 level (Bond distances in Å; Bond Angles in °).



O-C-S=O =176.5 °, O-C-S-C =66.2 °

**Figure 3.7** Optimized structure of  $CH_3S(=O)CH_2OH$  at CBS-QB3 level (Bond distances in Å; Bond Angles in °).



C-C-S-C =-164.2 °, C-C-S=O =88.2 °, C-S-C-O =74.0 ° **Figure 3.8** Optimized structure of  $CH_3S(=O)CH(OH)CH_3$  at CBS-QB3 level (Bond distances in Å; Bond Angles in °).

In Figure 3.8, it can be seen that at the lowest energy point of  $CH_3S(=O)CH(OH)CH_3$ , a hydrogen bond has been formed between the O atom on the sulfur and the H atom on the hydroxyl group.

#### **3.2.2 Heats of Formation and Enthalpies of Reaction**

Similar to the calculations in Chapter 2, enthalpies of formation  $\Delta_f H^o(298)$  of the target parent and radical intermediates have been determined using calculated  $\Delta_f H^o(298)$  values for each species, then calculating the  $\Delta$ Hreaction at 298 K, and then using the known literature values for the three reference molecules in the work reaction and the calculated  $\Delta$ Hrxn find  $\Delta_f H^o(298)$  of the target. The standard enthalpies of formation of the reference species at 298K used in the work reactions are summarized in Table 3.1. For radical species, the work reactions included the parent molecule and applied the enthalpy value of the parent determined in this study as a reference.

 $\Delta$ Hrxn =  $\Sigma \Delta_{f} H^{o}$  (298) products -  $\Sigma \Delta_{f} H^{o}$  (298) reactants

The work reactions in Table 3.2 are used to calculate the heat of reaction and enthalpies of formation for the stable molecules of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>, HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH, and their radicals after removal of one H atom from the carbon atom and peroxy oxygen sites. The work reactions for the following molecules are also included in Table 3.2: CH<sub>3</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>S(=O)CH<sub>2</sub>OH and CH<sub>3</sub>S(=O)CH(OH)CH<sub>3</sub>. Also, all the enthalpy calculations and the reported values are based on the lowest energy conformer.

Energies are calculated at the composite CBS-QB3, B3LYP/6-31+g(2d,p) and B3LYP/6-31g(d,p) levels. CBS-QB3 is the highest level among all applied calculations. Average values over the three calculation methods for each work reaction, and separately the average values over the work reactions for each calculation method are presented. The average value over the work reactions at the CBS-QB3 level are recommended

 $\Delta_{f}$ H<sup>o</sup>(298), as this method has the highest accuracy.  $\Delta_{f}$ H<sup>o</sup>(298) data are reported for each species.

The resultant CBS-QB3 Hf values from the work reactions in Table 3.2 are recommended when studying the C—H bond energies in section 3.2.3. These are also the values used in reporting the thermochemical properties in the tables below.

Information in the CBS-QB3 output file are used for the inertias and frequencies to input in the SMCPS input files, and to get the most stable structures of the species.

On a relative scale for sites on the same molecule, the higher the enthalpy, the less stable the radical and usually the more difficult to form.

| Species                                                          | ΔH <sub>f<sup>o</sup>298</sub> (kcal mol <sup>-1</sup> ) | Reference |
|------------------------------------------------------------------|----------------------------------------------------------|-----------|
| CH <sub>3</sub> CH <sub>3</sub>                                  | -20.04                                                   | [14]      |
| CH <sub>3</sub> SCH <sub>3</sub>                                 | -8.96                                                    | [8]       |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                  | -24.82                                                   | [14]      |
| CH <sub>3</sub> CH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> | -20                                                      | [12]      |
| CH <sub>2</sub> jCH <sub>3</sub>                                 | 29.1                                                     | [18]      |
| CH <sub>2</sub> jCH <sub>2</sub> CH <sub>3</sub>                 | 23.67                                                    | [8]       |
| CH <sub>3</sub> CHjCH <sub>3</sub>                               | 21.02                                                    | [8]       |
| $CH_3S(=O)CH_3$                                                  | -35.97                                                   | [16]      |
| $CH_3CH_2S(=O)CH_3$                                              | -41.77                                                   | [16]      |
| CH <sub>3</sub> CH <sub>2</sub> SH                               | -11.03                                                   | [12]      |
| CH <sub>3</sub> CH(OOH)CH <sub>3</sub>                           | -49.93                                                   | [17]      |
| CH <sub>3</sub> CH(OOH)SH                                        | -36.29                                                   | [11]      |
| CH <sub>3</sub> CH <sub>2</sub> OOH                              | -40.1                                                    | [17]      |
| CH <sub>3</sub> CH(OOj)CH <sub>3</sub>                           | -15.2                                                    | [17]      |
| CH <sub>3</sub> CH <sub>2</sub> OOj                              | -6.72                                                    | [5]       |
| CH <sub>2</sub> jCH <sub>2</sub> OOH                             | 10.9                                                     | [5]       |
| CH <sub>2</sub> jCH(OOH)CH <sub>3</sub>                          | 1.6                                                      | [5]       |
| CH <sub>2</sub> jSCH <sub>3</sub>                                | 32.66                                                    | [11]      |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OOH              | -46.56                                                   | [11]      |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OOj              | -12.62                                                   | [11]      |
| CH <sub>3</sub> CH <sub>2</sub> OH                               | -56.23                                                   | [8]       |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH               | -61.13                                                   | [8]       |
| CH <sub>3</sub> SCH <sub>2</sub> OH                              | -41.6                                                    | This work |
| CH3CH2SCH2OH                                                     | -52.8                                                    | This work |

**Table 3.1** Standard Enthalpies of Formation of Reference Species at 298.15 K.

| Table 3.2                 | Enthalpies of  | f Reaction | at 298 K               | and Calcu  | ulated E              | nthalpies of | of Formati | on |
|---------------------------|----------------|------------|------------------------|------------|-----------------------|--------------|------------|----|
| $(\Delta H^{o}_{f298})$ o | of the Parents | and the Ra | dicals <sup>a</sup> (I | Units: kca | l/mol) <sup>a</sup> . |              |            |    |

| Work Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔH <sup>o</sup> <sub>298</sub> (kcal | CBS-                   | Average      |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|--------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b3lyp/6-<br>31G(d,p)                 | b3lyp/6-<br>31+G(2d,p) | QB3          | 0     |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                        |              |       |
| $CH_{3}SCH_{2}CH_{3} + CH_{3}CH_{2}CH_{3} \rightarrow CH_{3}CH_{2}SCH_{2}CH_{3} + CH_{3}CH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -15.0                                | -15.0                  | -14.7        | -14.9 |
| $CH_3SCH_2CH_3 + CH_3CH_3 \rightarrow CH_3SCH_3 + CH_3CH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -14.0                                | -14.0                  | -14.4        | -14.1 |
| $CH_3SCH_2CH_3 + CH_3SCH_2CH_3 \rightarrow CH_3SCH_3 + CH_3CH_2SCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -14.5                                | -14.5                  | -14.5        | -14.5 |
| Average of all the work reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -14.5                                | -14.5                  | -14.5        | -14.5 |
| HI=-14.5, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                        |              |       |
| $CH_2$ jSCH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.1                                 | 244                    | 260          | 260   |
| $CH_{2}JSCH_{2}CH_{3} + CH_{3}CH_{2}CH_{3} \rightarrow CH_{3}CH_{2}SCH_{2}CH_{3} + CH_{2}JCH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.1                                 | 26.4                   | 26.8         | 26.8  |
| $CH_2$ $CH_2CH_3 + CH_3CH_3 \rightarrow CH_3CH_3 + CH_2$ $CH_2CH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.3                                 | 20.0                   | 25.1         | 20.5  |
| $CH_2 JSCH_2 CH_3 + CH_3 CH_2 CH_3 - CH_3 CH_1 CH_3 + CH_3 SCH_2 CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.5                                 | 27.5                   | 20.5         | 27.4  |
| $\Delta x_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.7                                 | 20.1                   | 25.0         | 20.2  |
| Hf=26.2, the average of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.5                                 | 20.0                   | 20.2         | 20.7  |
| CH <sub>2</sub> SCHiCH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                        |              |       |
| $CH_3SCH_1CH_3 + CH_3CH_2CH_3 \rightarrow CH_3CH_2SCH_2CH_3 + CH_2iCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.5                                 | 25.3                   | 26.5         | 25.8  |
| $CH_3SCH_1CH_3 + CH_3CH_3 \rightarrow CH_3SCH_3 + CH_2iCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.7                                 | 25.5                   | 25.5         | 25.5  |
| $CH_3SCH_1CH_3 + CH_3CH_2CH_3 \rightarrow CH_3CH_1CH_3 + CH_3SCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.7                                 | 26.2                   | 26.2         | 26.4  |
| $CH_3SCH_3CH_3 + CH_3CH_2CH_3 \rightarrow CH_2jCH_2CH_3 + CH_3SCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.2                                 | 24.9                   | 25.4         | 25.2  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.8                                 | 25.5                   | 25.9         | 25.7  |
| Hf=25.9, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                        |              |       |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                        |              |       |
| $CH_{3}SCH_{2}CH_{2}j + CH_{3}CH_{2}CH_{3} \rightarrow CH_{3}CH_{2}SCH_{2}CH_{3} + CH_{2}jCH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.5                                 | 32.6                   | 33.9         | 33.0  |
| $CH_3SCH_2CH_2j + CH_3CH_3 \rightarrow CH_3SCH_3 + CH_2jCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.7                                 | 32.8                   | 32.8         | 32.8  |
| $CH_3SCH_2CH_2j + CH_3CH_2CH_3 \rightarrow CH_3CH_jCH_3 + CH_3SCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.8                                 | 33.5                   | 33.5         | 33.6  |
| $CH_3SCH_2CH_2j + CH_3CH_2CH_3 \rightarrow CH_2jCH_2CH_3 + CH_3SCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.2                                 | 32.3                   | 32.7         | 32.4  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.8                                 | 32.8                   | 33.2         | 33.0  |
| HI=33.2, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                        |              |       |
| $HOOCH_2OCH_2OH_3$ $HOOCH_SCH_CH_CH_CH_CH_CH_OOH)SH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.1                                 | 37.0                   | 36.4         | 37.1  |
| HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> + CH <sub>2</sub> CH <sub>2</sub> SH $\rightarrow$ CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> + CH <sub>3</sub> CH(OOH)SH<br>HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> + CH <sub>2</sub> CH <sub>2</sub> $\rightarrow$ CH <sub>3</sub> SCH <sub>2</sub> + CH <sub>2</sub> CH(OOH)CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -35.4                                | -36.1                  | -35.3        | -35.6 |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -36.2                                | -37.0                  | -35.8        | -36.4 |
| Hf=-35.8, the average of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00.2                                 | 2710                   | 0010         | 2011  |
| jOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                        |              |       |
| $jOOCH_2SCH_2CH_3 + CH_3CH_2OOH \rightarrow HOOCH_2SCH_2CH_3 + CH_3CH_2OOj$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3                                  | 3.4                    | -2.0         | 1.6   |
| jOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> +CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OOH→HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> +CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OOj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.9                                  | 4.0                    | -1.7         | 2.1   |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6                                  | 3.7                    | -1.8         | 1.8   |
| Hf=-1.8, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                        |              |       |
| HOOCH <sub>2</sub> SCHjCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                        |              |       |
| $HOOCH2SCHjCH3 + CH_3SCH_2CH_3 \rightarrow HOOCH_2SCH_2CH_3 + CH_3SCHjCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6                                  | 5.1                    | 5.0          | 4.9   |
| $HOOCH2SCHjCH3 + CH_3SCH_2CH_3 \rightarrow HOOCH_2SCH_2CH_3 + CH_3SCH_2CH_2j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.8                                  | 4.9                    | 4.8          | 4.9   |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.7                                  | 5.0                    | 4.9          | 4.9   |
| Hf=4.9, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                        |              |       |
| HOUCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> ]<br>HOOCH SCH CH : CH SCH CH $\rightarrow$ HOOCH SCH CH $\downarrow$ CH SCH CH :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2                                  | 10.2                   | 10.5         | 10.0  |
| $HOOCH_{2}SCH_{2}CH_{2}J + CH_{3}SCH_{2}CH_{3} \rightarrow HOOCH_{2}SCH_{2}CH_{3} + CH_{3}SCH_{2}CH_{2}J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5                                  | 10.2                   | 10.5         | 10.0  |
| Avarage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.1                                  | 10.3                   | 10.0         | 10.0  |
| Hf=10.5. the average of the CBS-OB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ).2                                  | 10.2                   | 10.5         | 10.0  |
| CH <sub>2</sub> SCH(OOH)CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                        |              |       |
| $CH_3SCH(OOH)CH_3 + CH_3CH_2SH \rightarrow CH_3CH(OOH)SH + CH_3SCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -40.5                                | -40.4                  | -40.5        | -40.5 |
| $CH_3SCH(OOH)CH_3 + CH_3CH_3 \rightarrow CH_3CH(OOH)CH_3 + CH_3SCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -38.8                                | -38.6                  | -39.4        | -38.9 |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -39.7                                | -39.5                  | -39.9        | -39.7 |
| Hf=-39.9, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                        |              |       |
| CH <sub>2</sub> jSCH(OOH)CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                        |              |       |
| $CH_2jSCH(OOH)CH_3 + CH_3SCH_2CH_3 \rightarrow CH_2jSCH_2CH_3 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5                                  | 3.8                    | 3.9          | 3.7   |
| CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                  | 3.6                    | 3.7          | 3.4   |
| $CH_2 jSCH(OOH)CH_3 + CH_3SCH_3 \rightarrow CH_2 jSCH_3 + CH_3SCH(OOH)CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.2                                  | 3.7                    | 3.8          | 3.6   |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                        |              |       |
| HI=3.8, the average of the UBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                        |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8                                  | 4.0                    | 12           | 4.0   |
| $H_{1} = \frac{1}{3} + \frac{1}{3$ | -3.0<br>-5.3                         | -4.0                   | -4.2<br>-6.0 | -4.0  |
| $CH_{2}SCH(OOi)CH_{2} + CH_{2}CH_{2}OOH_{} \rightarrow CH_{2}SCH(OOH)CH_{2} + CH_{2}CH_{2}OOi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.6                                 | -3.5                   | -0.0         | -4.8  |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                  |                        | -0.1         | 1.0   |
| Hf=-5.1, the average of the CBS-QB3 level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                        |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                        |              |       |

**Table 3.2** Enthalpies of Reaction at 298 K and Calculated Enthalpies of Formation

| $(\Delta H^{o}_{f298})$ of the Parents and the Radicals <sup>a</sup> ( | Units: kcal/mol) <sup>a</sup> . (Continued)        |      |
|------------------------------------------------------------------------|----------------------------------------------------|------|
| Work Reactions                                                         | $\Delta H_{f}^{o}_{298}$ (kcal mol <sup>-1</sup> ) | CBS- |
|                                                                        | h3lyn/6- h3lyn/6-31+G(2d.n)                        | OB3  |

| Work Reactions                                                                                    | $\Delta H_{f}^{\circ}_{298}(kc)$ | al mol <sup>-1</sup> ) | CBS-  | Average |
|---------------------------------------------------------------------------------------------------|----------------------------------|------------------------|-------|---------|
|                                                                                                   | b3lyp/6-<br>31G(d.p)             | b3lyp/6-31+G(2d,p)     | QB3   |         |
| CH <sub>3</sub> SCH(OOH)CH <sub>2</sub> j                                                         |                                  |                        |       |         |
| $CH_3SCH(OOH)CH_2i + CH_3CH_3 \rightarrow CH_2iCH_2OOH + CH_3SCH_2CH_3$                           | 12.1                             | 12.9                   | 11.8  | 12.3    |
| $CH_3SCH(OOH)CH_2i + CH_3CH_3 \rightarrow CH_2iCH(OOH)CH_3 + CH_3SCH_3$                           | 11.8                             | 12.0                   | 11.6  | 11.8    |
| Average                                                                                           | 11.9                             | 12.5                   | 11.7  | 12.0    |
| Hf=11.7, the average of the CBS-OB3 level                                                         |                                  |                        |       |         |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH                                              |                                  |                        |       |         |
| $CH_3SCH_2CH_2OOH + CH_3CH_2SH \rightarrow CH_3CH(OOH)SH + CH_3SCH_2CH_3$                         | -35.0                            | -35.7                  | -34.7 | -35.1   |
| $CH_3SCH_2CH_2OOH + CH_3CH_3 \rightarrow CH_3CH(OOH)CH_3 + CH_3SCH_3$                             | -33.3                            | -33.9                  | -33.6 | -33.6   |
| Average                                                                                           | -34.2                            | -34.8                  | -34.2 | -34.4   |
| Hf=-34.2, the average of the CBS-QB3 level                                                        |                                  |                        |       |         |
| CH <sub>2</sub> iSCH <sub>2</sub> CH <sub>2</sub> OOH                                             |                                  |                        |       |         |
| $CH_2iSCH_2CH_2OOH + CH_3CH_3 \rightarrow CH_2iSCH_2CH_3 + CH_3CH_2OOH$                           | 9.7                              | 9.7                    | 9.2   | 9.6     |
| $CH_2iSCH_2CH_2OOH + CH_3CH_3 \rightarrow CH_2iSCH_3 + CH_3CH_2CH_2OOH$                           | 7.8                              | 8.0                    | 7.5   | 7.8     |
| Average                                                                                           | 8.8                              | 8.9                    | 8.3   | 8.7     |
| Hf=8.3, the average of the CBS-OB3 level                                                          |                                  |                        |       |         |
| CH <sub>4</sub> SCH <sub>1</sub> CH <sub>2</sub> OOH                                              |                                  |                        |       |         |
| $CH_3SCH_1CH_2OOH + CH_3SCH_2CH_3 \rightarrow CH_3SCH_2CH_2OOH +$                                 | 3.5                              | 3.0                    | 3.9   | 3.4     |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> i                                                | 3.3                              | 3.1                    | 4.0   | 3.4     |
| $CH_3SCH_1CH_2OOH + CH_3SCH_2CH_3 \rightarrow CH_3SCH_2OH + CH_3SCH_1CH_3$                        | 3.0                              | 3.0                    | 3.9   | 3.4     |
| Average                                                                                           |                                  |                        |       |         |
| Hf=3.9. the average of the CBS-OB3 level                                                          |                                  |                        |       |         |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOj                                              |                                  |                        |       |         |
| $CH_3SCH_2CH_2OO_1+CH_3CH_2OOH \rightarrow CH_3SCH_2CH_2OOH + CH_3CH_2OO_1$                       | -0.7                             | -0.8                   | -0.4  | -0.7    |
| $CH_3SCH_2CH_2OO_1+CH_3CH_2CH_2OOH\rightarrow CH_3SCH_2CH_2OOH+CH_3CH_2CH_2O$                     | -0.2                             | -0.2                   | -0.1  | -0.1    |
| ОН                                                                                                | -0.5                             | -0.5                   | -0.3  | -0.4    |
| Average                                                                                           |                                  |                        |       |         |
| Hf=-0.3, the average of the CBS-QB3 level                                                         |                                  |                        |       |         |
| CH <sub>3</sub> SCH <sub>2</sub> OH                                                               |                                  |                        |       |         |
| $CH_3SCH_2OH + CH_3CH_3 \rightarrow CH_3SCH_3 + CH_3CH_2OH$                                       | -40.8                            | -40.7                  | -41.8 | -41.1   |
| $CH_3SCH_2OH + CH_3CH_2CH_3 \rightarrow CH_3SCH_3 + CH_3CH_2CH_2OH$                               | -40.5                            | -40.6                  | -41.6 | -40.9   |
| Average                                                                                           | -40.6                            | -40.7                  | -41.6 | -41.0   |
| Hf=-41.6, the average of the CBS-QB3 level                                                        |                                  |                        |       |         |
| CH <sub>3</sub> CH <sub>2</sub> SCH <sub>2</sub> OH                                               |                                  |                        |       |         |
| $CH_3CH_2SCH_2OH + CH_3CH_3 \rightarrow CH_3SCH_3 + CH_3CH_2CH_2OH$                               | -53.4                            | -52.7                  | -53.0 | -53.0   |
| $CH_3CH_2SCH_2OH + CH_3CH_2CH_3 \rightarrow CH_3SCH_2CH_3 + CH_3CH_2CH_2OH$                       | -53.4                            | -52.7                  | -52.6 | -52.9   |
| Average                                                                                           | -53.4                            | -52.7                  | -52.8 | -53.0   |
| Hf=-52.8, the average of the CBS-QB3 level                                                        |                                  |                        |       |         |
| CH <sub>3</sub> S(=O)CH <sub>2</sub> OH                                                           |                                  |                        |       |         |
| $CH_3S(=O)CH_2OH + CH_3SCH_3 \rightarrow CH_3SCH_2OH + CH_3S(=O)CH_3$                             | -72.9                            | -71.3                  | -69.8 | -71.4   |
| $CH_{3}S(=O)CH_{2}OH + CH_{3}SCH_{2}CH_{3} \rightarrow CH_{3}CH_{2}SCH_{2}OH + CH_{3}S(=O)CH_{3}$ | -72.0                            | -71.2                  | -70.8 | -71.3   |
| $CH_{3}S(=O)CH_{2}OH + CH_{3}SCH_{2}CH_{3} \rightarrow CH_{3}SCH_{2}OH + CH_{3}CH_{2}S(=O)CH_{3}$ | -72.3                            | -71.1                  | -69.6 | -71.0   |
| Average                                                                                           | -72.4                            | -71.2                  | -70.1 | -71.2   |
| Hf=-70.1, the average of the CBS-QB3 level                                                        |                                  |                        |       |         |
| CH <sub>3</sub> S(=O)CH(OH)CH <sub>3</sub>                                                        |                                  |                        |       |         |
| $CH_{3}S(=O)CH(OH)CH_{3}+CH_{3}SCH_{3} \rightarrow CH_{3}CH_{2}SCH_{2}OH + CH_{3}S(=O)CH_{3}$     | -86.7                            | -83.7                  | -84.8 | -85.1   |
| $CH_{3}S(=O)CH(OH)CH_{3}+CH_{3}SCH_{3} \rightarrow CH_{3}SCH_{2}OH + CH_{3}CH_{2}S(=O)CH_{3}$     | -87.0                            | -83.6                  | -83.6 | -84.7   |
| $CH_{3}S(=O)CH(OH)CH_{3}+CH_{3}SCH_{2}CH_{3}\rightarrow CH_{3}CH_{2}SCH_{2}OH+$                   | -86.1                            | -83.5                  | -84.5 | -84.7   |
| $CH_3CH_2S(=O)CH_3$                                                                               | -86.6                            | -83.6                  | -84.3 | -84.8   |
| Average                                                                                           |                                  |                        |       |         |

Hf=-84.3, the average of the CBS-QB3 level

Table 3.3 C—H Bond Energies of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> Calculated in kcal/mol

**Bond Energy:**  $CH_2 \bullet SCH_2 CH_3 + H \bullet$  $= CH_3SCH_2CH_3$ CH<sub>2</sub>(--H)SCH<sub>2</sub>CH<sub>3</sub> 26.2 52.1 26.2+52.1-(-14.5) = 92.8-14.5 CH<sub>3</sub>SCH•CH<sub>3</sub> + H• = CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub>SCH(--H)CH<sub>3</sub> 25.9 25.9+52.1-(-14.5) = 92.552.1 -14.5  $CH_3SCH_2CH_2\bullet + H\bullet$ = CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>  $CH_3SCH_2CH_2(--H)$ 33.2 52.1 33.2+52.1-(-14.5) = 99.7 -14.5 **Bond energies:** CH<sub>2</sub>(--H)SCH<sub>2</sub>CH<sub>3</sub> 92.8 kcal/mol CH<sub>3</sub>SCH(--H)CH<sub>3</sub> 92.5kcal/mol 99.7 kcal/mol CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>--H

# 3.2.3 X—H Bond Energies (X=C,O)

Bond energies corresponding to the loss of a H atom from the targeted C or O atom site on each parent molecule are reported at 298 K and 1 atm. The calculation are illustrated in Table 3.2 above where the radical  $\Delta_f H^o(298)$  value is obtained from different work reactions for each species. Bond energies for the formation of radicals reported at 298 K are calculated from the absolute  $\Delta H^o_{f298}$  values of the parent molecules and radicals are from the average CBS-QB3 level calculations. The work reactions here use the corresponding  $\Delta_f H^o(298)$  of the radical and the parent and that of the hydrogen atom, 52.1 kcal/mol. The C—H bond energies of the parent molecules are summarized in Table 3.3 and Table 3.4. The  $\Delta$ Hrxn of the reaction below is used to define the bond energy:

 $\Delta_{\rm f} {\rm H}^{\rm o}(298)$  Parent =  $\Delta_{\rm f} {\rm H}^{\rm o}(298)$  Radical + H atom (52.1)

The bond energies of H—CH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(--H)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>--H are calculated respectively using the reactions below:

 $CH_3SCH_2CH_3 \rightarrow H \bullet + CH_2jSCH_2CH_3$ 

 $CH_3SCH_2CH_3 \rightarrow H \bullet + CH_3SCH_jCH_3$ 

and  $CH_3SCH_2CH_3 \rightarrow H \bullet + CH_3SCH_2CH_2$ , respectively

The values are 92.8, 92.5 and 99.7kcal/mol respectively, as shown in Table 3.3.

In Table 3.4, similar work reactions and methods were applied to calculate the targeted C—H or OO—H bond energies of the species containing one C–OOH group in each molecule. It's evident that in each molecule the H—X (X=C, O) bond on the peroxide group is the weakest, at the same time that on the carbon farthest to sulfur is the highest.

**Table 3.4** H—X (X=C,O) Bond Energies of HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH Calculated in kcal/mol

|                                                       |   |      |   |                                                      | Bond Energy                                             |
|-------------------------------------------------------|---|------|---|------------------------------------------------------|---------------------------------------------------------|
| •OOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>   | + | H•   | = | HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>  | HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>     |
| -1.8                                                  |   | 52.1 |   | -35.8                                                | -1.8+52.1-(-35.8) = 86.1                                |
| HOOCH <sub>2</sub> SC•HCH <sub>3</sub>                | + | H•   | = | HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>  | HOOCH <sub>2</sub> SCH(H)CH <sub>3</sub>                |
| 4.9                                                   |   | 52.1 |   | -35.8                                                | 4.9+52.1-(-35.8) = 92.8                                 |
| $HOOCH_2SCH_2C\bullet H_2$                            | + | H•   | = | HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>  | HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> (H) |
| 10.5                                                  |   | 52.1 |   | -35.8                                                | 10.5+52.1-(-35.8) = 98.4                                |
| C•H <sub>2</sub> SCH(OOH)CH <sub>3</sub>              | + | H•   | = | CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>              | CH <sub>2</sub> (H)SCH(OOH)CH <sub>3</sub>              |
| 3.8                                                   |   | 52.1 |   | -39.9                                                | 3.8+52.1-(-39.9) = 95.8                                 |
| CH <sub>3</sub> SCH(OO•)CH <sub>3</sub>               | + | H•   | = | CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>              | CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>                 |
| -5.1                                                  |   | 52.1 |   | -39.9                                                | -5.1+52.1-(-39.9) = 86.9                                |
| CH <sub>3</sub> SCH(OOH)C•H <sub>2</sub>              | + | H•   | = | CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>              | CH <sub>3</sub> SCH(OOH)CH <sub>2</sub> (H)             |
| 11.7                                                  |   | 52.1 |   | -39.9                                                | 11.7+52.1-(-39.9) = 103.7                               |
| C•H <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH | + | H•   | = | CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH | CH <sub>2</sub> (H)SCH2CH2OOH                           |
| 8.3                                                   |   | 52.1 |   | -34.2                                                | 8.3+52.1-(-34.2) = 94.6                                 |
| CH <sub>3</sub> SC•HCH <sub>2</sub> OOH               | + | H•   | = | CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH | CH <sub>3</sub> SCH(H)CH <sub>2</sub> OOH               |
| 3.9                                                   |   | 52.1 |   | -34.2                                                | 3.9+52.1-(-34.2) = 90.2                                 |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OO•  | + | H•   | = | CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH | CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OO—H   |
| -0.3                                                  |   | 52.1 |   | -34.2                                                | -0.3+52.1-(-34.2) = 86.0                                |
| Bond energies:                                        |   |      |   |                                                      |                                                         |

| HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> | HOOCH <sub>2</sub> SCH(H)CH <sub>3</sub>  | HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> ( | H)       |
|-----------------------------------------------------|-------------------------------------------|-------------------------------------------------------|----------|
| 86.1                                                | 92.8                                      | 98.4                                                  | kcal/mol |
| CH <sub>2</sub> (H)SCH(OOH)CH <sub>3</sub>          | CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>   | CH <sub>3</sub> SCH(OOH)CH <sub>2</sub>               | e(H)     |
| 95.8                                                | 86.9                                      | 103.7                                                 | kcal/mol |
| CH <sub>2</sub> (H)SCH2CH2OOH                       | CH <sub>3</sub> SCH(H)CH <sub>2</sub> OOH | CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OO-  | -H       |
| 94.6                                                | 90.2                                      | 86.0                                                  | kcal/mol |

## 3.2.4 Frequencies and Moment of Inertia

The frequencies and the moments of inertia of the parent molecules and the corresponding radicals studied in Chapter 3 are listed in Table A.2 and Table A.3 in Appendix A. These parameters are needed for calculation of the thermo chemical properties at different temperatures and for frequencies and rotational spectroscopic constants as in FTIR and microwave analysis. Also, they're from the highest CQS-QB3 output files of the corresponding species.

# **3.2.5 Internal Rotational Potentials**

Figure 3.9-3.22 illustrate the internal rotor potentials of the parent molecule and their corresponding radicals of Methyl Ethyl Sulfide itself and all its presumed oxidation intermediates. They are also required when determining the lowest energy configuration of each molecule. The internal rotation potentials also indicate the relative energies and barriers to conversion between the conformers. They are also used to determine the entropy and heat capacity contributors from the internal rotors. Same to in Chapter 2, the energy as a function of rotation about the dihedral angle was computed by scanning the angle from  $0^{\circ}$  to  $360^{\circ}$  in steps of  $15^{\circ}$ .

In Figure 3.9 (a), (b), (c) and (d), those for CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH<sub>j</sub>CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>j are optimized using density functional theory at all the levels of B3LYP/6-31G(d,p), B3LYP/6-31+G(2d,p) and CBS-QB3.



**Figure 3.9** Potential energy barriers for internal rotations of the CS—CC bond in CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCHjCH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>j at B3LYP/6-31G(d, p) , B3LYP/6-31+G (2d, p) and CBS-QB3 level.



**Figure 3.9** Potential energy barriers for internal rotations of the CS—CC bond in CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCHjCH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>j at B3LYP/6-31G(d, p) , B3LYP/6-31+G (2d, p) and CBS-QB3 level. (Continued)

As three different levels of calculation outputs can be considered to be in an acceptable agreement with each other, so in the following targeted rotors, only the internal rotor potentials under the level of B3LYP/6-31g(d) were discussed for the

molecules containing one peroxide group in each molecule and their radicals, as shown in Figure 3.10 -3.18.

In Figure 3.10-3.12 there are rotation barriers of the bond between the sulfur and the secondary carbon atom , in each molecule and radical containing the peroxide group.



**Figure 3.10** Potential energy barriers for internal rotations of the QCS—CC (HOOCH<sub>2</sub>S—CH<sub>2</sub>CH<sub>3</sub>) bonds in QCS—CC (HOOCH<sub>2</sub>S—CH<sub>2</sub>CH<sub>3</sub>), jQCS—CC (jOOCH<sub>2</sub>S—CH<sub>2</sub>CH<sub>3</sub>), QCS—CjC (HOOCH<sub>2</sub>S—CH<sub>2</sub>CH<sub>3</sub>) and QCS—CCj (HOOCH<sub>2</sub>S—CH<sub>2</sub>CH<sub>2</sub>j) at B3LYP/6-31G(d) level.



**Figure 3.11** Potential energy barriers for internal rotations of the CS—C(Q)C (CH<sub>3</sub>S—CH(OOH)CH<sub>3</sub>) bonds in CS—C(Q)C (CH<sub>3</sub>S—CH(OOH)CH<sub>3</sub>), CjS—C(Q)C (CH<sub>2</sub>jS—CH(OOH)CH<sub>3</sub>), CS—C(Qj)C (CH<sub>3</sub>S—CH(OOj)CH<sub>3</sub>) and CS—C(Q)Cj (CH<sub>3</sub>S—CH(OOH)CH<sub>2</sub>j) at B3LYP/6-31G(d) level.



**Figure 3.12** Potential energy barriers for internal rotations of the CS—CCQ (CH<sub>3</sub>S—CH<sub>2</sub>CH<sub>2</sub>OOH) bonds in CS—CCQ (CH<sub>3</sub>S—CH<sub>2</sub>CH<sub>2</sub>OOH), CjS—CCQ (CH<sub>2</sub>jS—CH<sub>2</sub>CH<sub>2</sub>OOH), CS—CjCQ (CH<sub>3</sub>S—CH<sub>2</sub>jCH<sub>2</sub>OOH) and CS—CCQj (CH<sub>3</sub>S—CH<sub>2</sub>CH<sub>2</sub>OOH) at B3LYP/6-31G(d) level.

Then, in Figure 3.13-3.15, there are rotational barriers of the bond connecting the

peroxide group to the carbon atom in each molecule and radical containing the peroxide

group.



**Figure 3.13** Potential energy barriers for internal rotations of the C--Q bonds in Q— CSCC (HOO—CH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>), jQ—CSCC (jOO—CH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>), Q—CSCjC (HOO— CH<sub>2</sub>SCHjCH<sub>3</sub>) and Q—CSCCj (HOO—CH<sub>2</sub>SCH<sub>2</sub>CH<sub>2</sub>j) at B3LYP/6-31G(d) level.



**Figure 3.14** Potential energy barriers for internal rotations of the C--Q bonds in CSC(--Q)C (CH<sub>3</sub>SCH(-OOH)CH<sub>3</sub>), CjSC(-Q)C (CH<sub>2</sub>jSCH(-OOH)CH<sub>3</sub>), CSC(-Qj)C (CH<sub>3</sub>SCH(-OOj)CH<sub>3</sub>) and CSC(-Q)Cj (CH<sub>3</sub>SCH(-OOH)CH<sub>2</sub>j) at B3LYP/6-31G(d) level.



**Figure 3.15** Potential energy barriers for internal rotations of the C--Q bonds in CSCC—Q (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>—OOH), CjSCC—Q (CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>2</sub>—OOH), CSCjC—Q (CH<sub>3</sub>SCHjCH<sub>2</sub>—OOH) and CSCC—Qj (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>—OOj) at B3LYP/6-31G(d) level.

And then, in Figure 3.16-3.18, there are rotation barriers of the bond between the two oxygen atoms on the hydrogen peroxide group, for each molecule and radical with a complete hydrogen peroxide group attached to one carbon atom in the molecule.



**Figure 3.16** Potential energy barriers for internal rotations of the CO--OH bonds in HO--OCSCC (HO—OCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>), HO—OCSCjC (HO—OCH<sub>2</sub>SCHjCH<sub>3</sub>) and HO--OCSCCj (HO—OCH<sub>2</sub>SCH<sub>2</sub>CH<sub>2</sub>j) at B3LYP/6-31G(d) level.


**Figure 3.17** Potential energy barriers for internal rotations of the CO--OH bonds in CSC(O-OH)C (CH<sub>3</sub>SCH(O—OH)CH<sub>3</sub>), CjSC(O—OH)C (CH<sub>2</sub>jSCH(O—OH)CH<sub>3</sub>) and CSC(O-OH)Cj (CH<sub>3</sub>SCH(O—OH)CH<sub>2</sub>j) at B3LYP/6-31G(d) level.



**Figure 3.18** Potential energy barriers for internal rotations of the CO--OH bonds in CSCCO—OH (CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>O—OH), CjSCCO—OH (CH<sub>2</sub>jSCH<sub>2</sub>CH<sub>2</sub>O—OH) and CSCjCO—OH (CH<sub>3</sub>SCHjCH<sub>2</sub>O—OH) at B3LYP/6-31G(d) level.

Then, the internal rotor potentials optimized under the level of B3LYP/6-31g(2d,2p) for the targeted bonds in the stable molecules of CH<sub>3</sub>S(=O)CH<sub>2</sub>OH and CH<sub>3</sub>S(=O)CH(OH)CH<sub>3</sub> were also discussed, and they're shown in Figure 3.19-3.22.Same as in Chapter 2, all scans are performed in relaxed mode.



Figure 3.19 Potential energy barriers for internal rotation of the CS(=O)--COH bond in  $CH_3S(=O)CH_2OH$  at B3LYP/6-31G(2d,2p) level.



**Figure 3.20** Potential energy barriers for internal rotation of the CS(=O)C--OH bond in  $CH_3S(=O)CH_2OH$  at B3LYP/6-31G(2d,2p) level.



0 100 200 300 400 500 Dihedral Figure 3.21 Potential energy barriers for internal rotation of the CS(=O)--C(OH)Cbond in  $CH3S(=O)CH(OH)CH_3$  at B3LYP/6-31G(2d,2p) level.



**Figure 3.22** Potential energy barriers for internal rotation of the CS(=O)C(-OH)C bond in CH3S(=O)CH(OH)CH<sub>3</sub> at B3LYP/6-31G(2d,2p) level.

### **3.2.6 S°298 and Cp°(T)**

Entropy and heat capacity values from vibration, translation and rotation contributions are calculated using SMCPS and the Rotator programs. The scaled vibrations and the moment of inertia are from the optimized geometries under the B3LYP/6-31G(2d,d,p) in the CBS-QB3 method. These are scaled by the factor of 0.9613. Table 3.5 lists the data about 298K entropy and heat capacity vs. temperature of all the parents and radicals accompanied by those of their radicals after one H atom departure. Then, the ideal gas-phase thermodynamic property vs. temperature data of each species are listed in Table B.4-B.8 in Appendix B, with a temperature range of 1-5000K. All these data are also ideal gas thermodynamic properties at standard state (P=1atm and T=298K). To note, same as that mentioned in section 2.2.6, torsion frequencies are used for internal rotor contribution, with the ROTOR in the SMCPS input files being 0.

| Species      | S <sup>•</sup> 298K | Ср<br>300 | Ср<br>400 | Ср<br>500 | Ср<br>600 | Ср<br>800 | Ср<br>1000 | Ср<br>1500 |
|--------------|---------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|
| CSCC         | 76.7                | 22.3      | 27.5      | 32.4      | 36.5      | 43.2      | 48.2       | 56.2       |
| CjSCC        | 74.8                | 22.8      | 27.6      | 31.8      | 35.3      | 40.9      | 45.1       | 51.8       |
| CSCjC        | 76.4                | 22.6      | 27.2      | 31.4      | 35.0      | 40.7      | 45.0       | 51.8       |
| CSCCj        | 75.9                | 23.0      | 27.8      | 32.0      | 35.5      | 41.0      | 45.2       | 51.9       |
| CQSCC        | 93.2                | 29.9      | 36.3      | 41.9      | 46.6      | 53.9      | 59.2       | 67.5       |
| CQjSCC       | 93.9                | 27.9      | 33.9      | 39.2      | 43.6      | 50.5      | 55.4       | 63.0       |
| CQSCjC       | 94.5                | 30.5      | 36.2      | 41.1      | 45.2      | 51.4      | 56.0       | 63.2       |
| CQSCCj       | 90.1                | 30.4      | 36.5      | 41.5      | 45.6      | 51.7      | 56.2       | 63.2       |
| CSCQC        | 87.2                | 30.8      | 37.1      | 42.5      | 47.1      | 54.2      | 59.4       | 67.6       |
| CjSCQC       | 87.2                | 31.2      | 37.1      | 41.9      | 45.9      | 51.8      | 56.2       | 63.2       |
| CSCQjC       | 88.1                | 28.7      | 34.6      | 39.8      | 44.1      | 50.7      | 55.6       | 63.1       |
| CSCQCj       | 88.8                | 31.6      | 37.4      | 42.2      | 46.1      | 52.0      | 56.4       | 63.3       |
| CSCCQ        | 85.4                | 26.1      | 32.2      | 37.8      | 42.5      | 49.8      | 55.2       | 63.5       |
| CjSCCQ       | 91.5                | 30.6      | 36.3      | 41.2      | 45.3      | 51.5      | 56.0       | 63.1       |
| CSCjCQ       | 91.9                | 30.0      | 35.9      | 40.9      | 45.0      | 51.3      | 55.9       | 63.1       |
| CSCCQj       | 91.1                | 27.8      | 33.7      | 39.1      | 43.5      | 50.4      | 55.4       | 63.0       |
| CSCOH        | 70.9                | 17.3      | 21.4      | 25.1      | 28.3      | 33.3      | 37.0       | 42.9       |
| CCSCOH       | 79.9                | 25.6      | 31.6      | 36.9      | 41.4      | 48.3      | 53.5       | 61.7       |
| CS(=O)COH    | 79.9                | 24.8      | 29.7      | 33.9      | 37.4      | 42.7      | 46.6       | 52.6       |
| CS(=O)C(OH)C | 84.2                | 29.5      | 36.2      | 419       | 467       | 54.0      | 59.3       | 67.6       |

 Table 3.5
 298K Entropy, and Data of Heat Capacity vs. Temperature

#### **3.3 Summary**

Structures, thermochemical parameters Hf, S, Cp(t), bond energies, internal rotor potentials, vibration frequencies properties and molecular structures are presented for the lowest energy conformers of parent CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> and three of its main partial oxidation intermediates with one attached hydrogen peroxide group: HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH, and three radicals on each of them corresponding to loss of an H atom from one C or O atom in the molecule. The corresponding alcohols and sulfoxide intermediates have also been studied. They were calculated using density functional theory and the composite CBS-QB3 methods. Enthalpies from all the work reactions and each of the calculation levels can be considered to be in reasonably good agreement. The CBS-QB3 results are recommended as these are the highest calculation level. It's evident that B3LYP/6-31G+(2d,p) calculations are an acceptable method for larger sulfur-oxygen hydrocarbons when used together with several work reactions.

## **APPENDIX A**

## FREQUENCIES AND MOMENTS OF INERTIA FROM CBS-QB3 OUTPUT FILES

Lists the frequencies and the moments of inertia of the parent molecules and the corresponding radicals. They are needed for SMCPS calculation of thermochemical properties of the corresponding species.

**Table A.1** Frequencies and Moments of Inertia from CBS-QB3 Output Files of Stable CH<sub>3</sub>SCH<sub>2</sub>CHO, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub> and Their Radicals Formed After Losing One H Atom.

| Species                               | Moments of $(D, 1)^2$ | Inertia, | units | amu | Frequencies (cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|-----------------------|----------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | (Bohr) <sup>2</sup>   |          |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CH <sub>3</sub> SCH <sub>2</sub> CHO  | 259.8                 |          |       |     | 88, 116, 169, 265, 303, 492, 657, 707, 861,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | 665.6                 |          |       |     | 939, 983, 1033, 1049, 1187, 1231, 1365,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | 835.9                 |          |       |     | 1412, 1448, 1467, 1486, 1797, 2897, 3043,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3058, 3124, 3128, 3136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>2</sub> jSCH <sub>2</sub> CHO | 226.1                 |          |       |     | 72, 114, 190, 267, 318, 388, 483, 662, 816,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | 683.1                 |          |       |     | 849, 923, 1021, 1037, 1184, 1231, 1402,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | 836.6                 |          |       |     | 1412, 1445, 1805, 2900, 3059, 3131, 3154,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>3</sub> SCHjCHO               | 257.1                 |          |       |     | 71, 170, 216, 294, 325, 661, 668, 709, 810,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ů,                                    | 565.5                 |          |       |     | 958, 967, 1004, 1108, 1360, 1380, 1415,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | 811.3                 |          |       |     | 1457. 1461, 1606, 2906, 3063, 3156, 3175,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>3</sub> SCH <sub>2</sub> CiO  | 268.2                 |          |       |     | 89, 157, 180, 204, 265, 581, 678, 715, 765,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0                                     | 626.0                 |          |       |     | 796 978 996 1173 1246 1357 1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | 784 6                 |          |       |     | 1467 1490 1935 3039 3042 3105 3123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 701.0                 |          |       |     | 3140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | 317 /                 |          |       |     | <u>63 196 230 278 346 515 640 734 776</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | 564.0                 |          |       |     | 03, 190, 230, 270, 340, 313, 040, 734, 770, 022 000 1060 1078 1286 1207 1272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | JU4.U<br>702 0        |          |       |     | 933, 900, 1009, 1070, 1200, 1307, 1372, 1415, 1450, 1404, 1504, 1756, 2042, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | /83.8                 |          |       |     | 1415, 1459, 1494, 1504, 1750, 2945, 5052,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | 216.0                 |          |       |     | 3067, 3094, 3110, 3130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>2</sub> JCH <sub>2</sub> SCHU | 316.0                 |          |       |     | 72, 200, 221, 274, 318, 512, 525, 647, 729,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | 527.9                 |          |       |     | 768, 930, 1048, 1077, 1227, 1271, 1368,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | 752.7                 |          |       |     | 1445, 1475, 1752, 2941, 3074, 3135, 3148,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH₃CHjSCHO                            | 190.9                 |          |       |     | 70, 91, 168, 263, 330, 445, 535, 687, 762,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | 742.9                 |          |       |     | 885, 1002, 1030, 1112, 1303, 1362, 1412,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | 922.1                 |          |       |     | 1474, 1487, 1745, 2964, 2971, 3046, 3087,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>3</sub> CH <sub>2</sub> SCjO  | 315.2                 |          |       |     | 65, 154, 254, 276, 349, 478, 578, 612, 767,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · · ·                                 | 556.2                 |          |       |     | 976, 1054, 1073, 1274, 1291, 1418, 1463,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | 780.7                 |          |       |     | 1494. 1503. 1842. 3032, 3058, 3094, 3105,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>2</sub> SC=OCH <sub>2</sub>   | 247.4                 |          |       |     | 26, 42, 136, 211, 350, 484, 540, 612, 710,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | 590.8                 |          |       |     | 954 981 1007, 1018, 1126, 1354, 1388,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 815 5                 |          |       |     | 1461 1470 1474 1476 1776 3041 3059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 015.5                 |          |       |     | 3110 3130 3151 3153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH-ISC-OCH                            | 22/ 5                 |          |       |     | <u>45 143 235 254 355 380 474 523 600</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | 570.1                 |          |       |     | (43, 143, 233, 234, 333, 300, 474, 323, 000, 921 022 000 1013 1120 1371 1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | 702.5                 |          |       |     | 021, 522, 550, 1015, 1120, 1571, 1571, 1460, 1476, 1702, 2040, 2105, 2120, 2158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | 193.3                 |          |       |     | 1408, 1470, 1785, 5040, 5105, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 51500, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 5150, 515 |
|                                       | 242.0                 |          |       |     | 3299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $CH_3SC=OCH_2J$                       | 242.9                 |          |       |     | 55, 119, 214, 349, 354, 472, 552, 616, 713,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | 555.3                 |          |       |     | 737, 969, 978, 1020, 1156, 1354, 1453,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | 786.8                 |          |       |     | 1458, 1470, 1654, 3057, 3148, 3148, 3152,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                       |          |       |     | 3267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Table A.2** Frequencies and Moments of Inertia From CBS-QB3 Output Files of Stable CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH and Their Radicals Formed After Losing One H Atom.

| Species                                               | Moments of Inertia, units | Frequencies (cm <sup>-1</sup> )             |
|-------------------------------------------------------|---------------------------|---------------------------------------------|
|                                                       | amu $(Bohr)^2$            |                                             |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub>      | 186.5                     | 90, 172, 208, 277,350, 638, 709, 761, 960,  |
|                                                       | 475.2                     | 973, 980, 1063, 1084, 1281, 1303, 1360,     |
|                                                       | 578.2                     | 1413, 1466, 1473, 1485, 1495, 1502, 3025,   |
|                                                       |                           | 3034, 3038, 3078, 3087, 3109, 3113, 3126    |
| CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>3</sub>     | 166.9                     | 101, 211, 240, 282, 363, 418, 641, 767,     |
|                                                       | 459.0                     | 828, 924, 976, 1062, 1080, 1277, 1301,      |
|                                                       | 546.7                     | 1404, 1413, 1471, 1490, 1502, 3028, 3046,   |
|                                                       |                           | 3089, 3093, 3115, 3139, 3265                |
| CH <sub>3</sub> SCHjCH <sub>3</sub>                   | 183.3                     | 94, 149, 201, 235, 386, 440, 670, 733, 960, |
|                                                       | 424.5                     | 974, 1008, 1045, 1103, 1316, 1357, 1408,    |
|                                                       | 573.5                     | 1468, 1476, 1486, 1490, 2951, 3041, 3046,   |
|                                                       |                           | 3086, 3127, 3134, 3172                      |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> j    | 186.1                     | 95, 166, 207, 258, 319, 546, 626, 702, 761, |
|                                                       | 444.2                     | 953, 974, 1063, 1071, 1224, 1264, 1356,     |
|                                                       | 550.8                     | 1454, 1469, 1480, 1486, 3035, 3046, 3098,   |
|                                                       |                           | 3115, 3128, 3142, 3245                      |
| HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>   | 265.4                     | 48, 74, 125, 204, 214, 241, 267, 324, 432,  |
|                                                       | 1412.5                    | 658, 774, 796, 878, 946, 991, 1006, 1050,   |
|                                                       | 1575.6                    | 1083, 1223, 1266, 1296, 1324, 1357, 1417,   |
|                                                       |                           | 1490, 1493, 1496, 1506, 3023, 3032, 3048,   |
|                                                       |                           | 3079, 3091, 3098, 3118, 3772                |
| jOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub>   | 277.3                     | 15, 57, 108, 199, 241, 274, 351, 453, 656,  |
|                                                       | 1330.9                    | 776, 797, 864, 914, 990, 1050, 1079, 1159,  |
|                                                       | 1510.1                    | 1219, 1269, 1298, 1323, 1419, 1453, 1490,   |
|                                                       |                           | 1496, 1506, 3034, 3047, 3069, 3092, 3100,   |
|                                                       |                           | 3115, 3138                                  |
| HOOCH <sub>2</sub> SCHjCH <sub>3</sub>                | 253.1                     | 50, 68, 100, 122, 188, 216, 260, 329, 396,  |
|                                                       | 1410.4                    | 444, 719, 773, 873, 953, 1006, 1012, 1037,  |
|                                                       | 1567.3                    | 1110, 1223, 1298, 1321, 1363, 1412, 1473,   |
|                                                       |                           | 1488, 1493, 2959, 3027, 3041, 3082, 3084,   |
|                                                       |                           | 3167, 3777                                  |
| HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> j | 473.1                     | 52, 94, 131, 209, 261, 298, 325, 359, 483,  |
|                                                       | 820.3                     | 534, 626, 689, 757, 862, 939, 1014, 1055,   |
|                                                       | 1160.9                    | 1073, 1220, 1262, 1276, 1318, 1384, 1428,   |
|                                                       |                           | 1454, 1481, 3043, 3056, 3108, 3118, 3145,   |
|                                                       |                           | 3254, 3709                                  |
| CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>               | 422.0                     | 89, 120, 136, 196, 208, 249, 268, 333, 408, |
|                                                       | 924.4                     | 475, 698, 730, 857, 881, 974, 978, 1033,    |
|                                                       | 1240.4                    | 1090, 1119, 1271, 1344, 1354, 1368, 1404,   |
|                                                       |                           | 1466, 1486, 1490, 1499, 3040, 3045, 3047,   |
|                                                       |                           | 3113, 3117, 3127, 3148, 3781                |
| CH <sub>2</sub> jSCH(OOH)CH <sub>3</sub>              | 395.6                     | 82, 124, 198, 203, 239, 257, 270, 340, 405, |
|                                                       | 905.9                     | 454, 478, 714, 817, 861, 889, 936, 1030,    |
|                                                       | 1214.1                    | 1088, 1119, 1265, 1348, 1372, 1396, 1405,   |
|                                                       |                           | 1486, 1499, 3041, 3064, 3114, 3118, 3152,   |
|                                                       |                           | 3280, 3781                                  |

**Table A.2** Frequencies and Moments of Inertia From CBS-QB3 Output Files of Stable CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub>, HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub>, CH<sub>3</sub>SCH(OOH)CH<sub>3</sub> and CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH and Their Radicals Formed After Losing One H Atom. (Continued)

| Species                                               | Moments of Inertia, units | Frequencies (cm <sup>-1</sup> )             |
|-------------------------------------------------------|---------------------------|---------------------------------------------|
|                                                       | amu (Bohr) <sup>2</sup>   |                                             |
| CH <sub>3</sub> SCH(OOj)CH <sub>3</sub>               | 429.0                     | 61, 98, 145, 184, 230, 287, 331, 435, 454,  |
|                                                       | 871.1                     | 698, 727, 802, 974, 979, 1007, 1082, 1109,  |
|                                                       | 1198.3                    | 1169, 1281, 1336, 1359, 1409, 1468, 1486,   |
|                                                       |                           | 1488, 1495, 3045, 3045, 3087, 3122, 3123,   |
|                                                       |                           | 3130, 3143                                  |
| CH <sub>3</sub> SCH(OOH)CH <sub>2</sub> j             | 407.2                     | 83, 116, 137, 187, 201, 228, 265, 318, 400, |
|                                                       | 920.4                     | 481, 553, 692, 758, 861, 879, 974, 974,     |
|                                                       | 1217.7                    | 1050, 1108, 1216, 1346, 1349, 1358, 1447,   |
|                                                       |                           | 1465, 1488, 3045, 3049, 3127, 3145, 3148,   |
|                                                       |                           | 3259, 3764                                  |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH  | 144.6                     | -109, 38, 80, 116, 121, 185, 247, 318, 464, |
|                                                       | 1850.4                    | 704, 759, 818, 936, 972, 976, 1032, 1046,   |
|                                                       | 1960.7                    | 1082, 1218, 1264, 1286, 1358, 1374, 1440,   |
|                                                       |                           | 1468, 1484, 1495, 1535, 3016, 3034, 3044,   |
|                                                       |                           | 3055, 3096, 3112, 3129, 3804                |
| CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>2</sub> OOH | 129.9                     | 442, 78, 116, 129, 191, 211, 272, 317, 385, |
|                                                       | 1806.3                    | 478, 744, 811, 832, 930, 941, 1023, 1034,   |
|                                                       | 1907.5                    | 1087, 1211, 1264, 1286, 1368, 1401, 1408,   |
|                                                       |                           | 1492, 1531, 3012, 3056, 3062, 3116, 3148,   |
|                                                       |                           | 3275, 3769                                  |
| CH <sub>3</sub> SCHjCH <sub>2</sub> OOH               | 249.7                     | 47, 59, 129, 162, 193, 217, 268, 418, 449,  |
|                                                       | 1441.7                    | 598, 695, 755, 844, 942, 968, 974, 1032,    |
|                                                       | 1522.9                    | 1121, 1257, 1327, 1354, 1362, 1369, 1457,   |
|                                                       |                           | 1468, 1482, 3014, 3044, 3070, 3128, 3139,   |
|                                                       |                           | 3186, 3774                                  |
| CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOj  | 139.7                     | 40, 70, 92, 123, 185, 258, 313, 508, 702,   |
| _                                                     | 1799.7                    | 761, 798, 945, 970, 981, 1015, 1090, 1185,  |
|                                                       | 1905.0                    | 1186, 1266, 1292, 1360, 1392, 1469, 1483,   |
|                                                       |                           | 1495, 1504, 3037, 3043, 3064, 3090, 3116,   |
|                                                       |                           | 3124, 3132                                  |

| Species                                             | Moments of Inertia, units amu (Bohr) <sup>2</sup> | Frequencies (cm <sup>-1</sup> ) |
|-----------------------------------------------------|---------------------------------------------------|---------------------------------|
| CH <sub>3</sub> SCH <sub>2</sub> OH                 | 106.1                                             | -119, 111, 164, 203, 372, 703,  |
|                                                     | 553.1                                             | 727, 952, 981, 988, 1079, 1214, |
|                                                     | 636.1                                             | 1221, 1356, 1401, 1468, 1485,   |
|                                                     |                                                   | 1519, 2970, 3010, 3029, 3100,   |
|                                                     |                                                   | 3128, 3834                      |
| CH <sub>3</sub> CH <sub>2</sub> SCH <sub>2</sub> OH | 307.1                                             | 65, 130, 193, 259, 337, 347,    |
|                                                     | 722.6                                             | 458, 636, 682, 762, 921, 977,   |
|                                                     | 859.5                                             | 1043, 1066, 1073, 1190, 1284,   |
|                                                     |                                                   | 1295, 1331, 1396, 1414, 1476,   |
|                                                     |                                                   | 1487, 1496, 1499, 3017, 3025,   |
|                                                     |                                                   | 3057, 3086, 3093, 3110, 3116,   |
|                                                     |                                                   | 3799                            |
| $CH_3S(=O)CH_2OH$                                   | 273.6                                             | 109, 185, 214, 283, 308, 366,   |
|                                                     | 600.3                                             | 381, 632, 706, 880, 937, 991,   |
|                                                     | 769.0                                             | 1065, 1080, 1150, 1299, 1327,   |
|                                                     |                                                   | 1380, 1454, 1468, 1489, 3034,   |
|                                                     |                                                   | 3037, 3117, 3137, 3148, 3826    |
| $CH_3S(=O)CH(OH)CH_3$                               | 429.0                                             | 95, 201, 212, 246, 278, 292,    |
|                                                     | 816.1                                             | 350, 454, 506, 592, 635, 662,   |
|                                                     | 853.7                                             | 902, 940, 953, 1015, 1028,      |
|                                                     |                                                   | 1112, 1148, 1204, 1325, 1353,   |
|                                                     |                                                   | 1410, 1453, 1456, 1470, 1490,   |
|                                                     |                                                   | 1496, 3031, 3040, 3069, 3104,   |
|                                                     |                                                   | 3108, 3138, 3152, 3493          |

**Table A.3** Frequencies and Moments of Inertia From CBS-QB3 Output Files of Stable CH<sub>3</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>SCHO and CH<sub>3</sub>SC(=O)CH<sub>3</sub>.

## **APPENDIX B**

# IDEAL GAS-PHASE THERMODYNAMIC PROPERTY VS. TEMPERATURE DIRECTLY FROM SMCPS OUTPUT FILES

Entropy and heat capacity values from vibration, translation and rotation contributions that are calculated using SMCPS and the Rotor programs. And torsion frequencies are used for internal rotor contribution,

with the ROTOR in the SMCPS input files being 0.

| (a) CH <sub>3</sub> SC                        | H <sub>2</sub> CHO |             |                                               | (b) CH <sub>2</sub> jSC | CH <sub>2</sub> CHO |             |            |
|-----------------------------------------------|--------------------|-------------|-----------------------------------------------|-------------------------|---------------------|-------------|------------|
| T(K)                                          | Ср                 | S [H(       | T)-H(0K)]                                     | T(K)                    | Ср                  | S [H(       | T)-H(0K)]  |
| (ca                                           | l/mol/K)           | (cal/mol/K) | (kcal/mol)                                    | (ca                     | ul/mol/K)           | (cal/mol/K) | (kcal/mol) |
| 1.00                                          | 7.949              | 18.405      | .008                                          | 1.00                    | 7.949               | 19.066      | .008       |
| 50.00                                         | 10.444             | 50.512      | .436                                          | 50.00                   | 10.556              | 51.416      | .443       |
| 100.00                                        | 13.794             | 58.849      | 1.047                                         | 100.00                  | 13.909              | 59.782      | 1.056      |
| 150.00                                        | 16.192             | 64.907      | 1.799                                         | 150.00                  | 16.726              | 65.964      | 1.824      |
| 200.00                                        | 18.403             | 69.861      | 2.664                                         | 200.00                  | 19.208              | 71.113      | 2.724      |
| 250.00                                        | 20.740             | 74.209      | 3.642                                         | 250.00                  | 21.602              | 75.651      | 3.744      |
| 298.00                                        | 23.103             | 78.046      | 4.694                                         | 298.00                  | 23.856              | 79.632      | 4.835      |
| 300.00                                        | 23.203             | 78.201      | 4.740                                         | 300.00                  | 23.949              | 79.792      | 4.883      |
| 400.00                                        | 28.090             | 85.540      | 7.307                                         | 400.00                  | 28.293              | 87.279      | 7.500      |
| 500.00                                        | 32.440             | 92.277      | 10.339                                        | 500.00                  | 31.954              | 93.990      | 10.518     |
| 600.00                                        | 36.120             | 98.517      | 13.773                                        | 600.00                  | 34.962              | 100.082     | 13.869     |
| 700.00                                        | 39.221             | 104.316     | 17.544                                        | 700.00                  | 37.461              | 105.659     | 17.494     |
| 800.00                                        | 41.861             | 109.723     | 21.602                                        | 800.00                  | 39.575              | 110.797     | 21.348     |
| 900.00                                        | 44.128             | 114.782     | 25.904                                        | 900.00                  | 41.388              | 115.561     | 25.399     |
| 1000.00                                       | 46.084             | 119.530     | 30.417                                        | 1000.00                 | 42.955              | 120.001     | 29.618     |
| 1100.00                                       | 47.777             | 123.999     | 35.112                                        | 1100.00                 | 44.316              | 124.156     | 33.983     |
| 1200.00                                       | 49.245             | 128.217     | 39.965                                        | 1200.00                 | 45.499              | 128.061     | 38.475     |
| 1300.00                                       | 50.519             | 132.207     | 44.954                                        | 1300.00                 | 46.529              | 131.742     | 43.078     |
| 1400.00                                       | 51.627             | 135.989     | 50.063                                        | 1400.00                 | 47.428              | 135.222     | 47.777     |
| 1500.00                                       | 52.594             | 139.582     | 55.275                                        | 1500.00                 | 48.214              | 138.519     | 52.560     |
| 2000.00                                       | 55.915             | 155.209     | 82.489                                        | 2000.00                 | 50.931              | 152.795     | 77.416     |
| 2500.00                                       | 57.743             | 167.897     | 110.946                                       | 2500.00                 | 52.437              | 164.333     | 103.292    |
| 3000.00                                       | 58.832             | 178.526     | 140.111                                       | 3000.00                 | 53.337              | 173.977     | 129.754    |
| 3500.00                                       | 59.525             | 187.649     | 169.713                                       | 3500.00                 | 53.912              | 182.244     | 156.576    |
| 4000.00                                       | 59.990             | 195.628     | 199.599                                       | 4000.00                 | 54.298              | 189.469     | 183.635    |
| 4500.00                                       | 60.317             | 202.713     | 229.680                                       | 4500.00                 | 54.570              | 195.880     | 210.856    |
| 5000.00                                       | 60.554             | 209.080     | 259.901                                       | 5000.00                 | 54.767              | 201.640     | 238.193    |
| Zero Point Vibration Energy (kcal/mol) = 52.5 |                    |             | Zero Point Vibration Energy (kcal/mol) = 43.7 |                         |                     |             |            |

**Table B.1** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of  $CH_3SCH_2CHO$  and its Radicals.

| (c) CH <sub>3</sub> SC                        | НјСНО    |             |                                               | (d) $CH_3SC$ | CH <sub>2</sub> CjO |             |            |
|-----------------------------------------------|----------|-------------|-----------------------------------------------|--------------|---------------------|-------------|------------|
| T(K)                                          | Ср       | S [H(       | T)-H(0K)]                                     | T(K)         | Ср                  | S [H(       | T)-H(0K)]  |
| (cal                                          | l/mol/K) | (cal/mol/K) | (kcal/mol)                                    | (ca          | l/mol/K)            | (cal/mol/K) | (kcal/mol) |
| 1.00                                          | 7.949    | 18.170      | .008                                          | 1.00         | 7.949               | 18.279      | .008       |
| 50.00                                         | 9.938    | 50.274      | .433                                          | 50.00        | 10.140              | 50.192      | .429       |
| 100.00                                        | 12.936   | 58.091      | 1.006                                         | 100.00       | 13.920              | 58.472      | 1.038      |
| 150.00                                        | 15.360   | 63.804      | 1.716                                         | 150.00       | 16.306              | 64.584      | 1.796      |
| 200.00                                        | 17.609   | 68.524      | 2.540                                         | 200.00       | 18.478              | 69.565      | 2.665      |
| 250.00                                        | 19.940   | 72.696      | 3.478                                         | 250.00       | 20.742              | 73.924      | 3.645      |
| 298.00                                        | 22.224   | 76.387      | 4.490                                         | 298.00       | 22.947              | 77.749      | 4.694      |
| 300.00                                        | 22.318   | 76.535      | 4.534                                         | 300.00       | 23.038              | 77.903      | 4.740      |
| 400.00                                        | 26.860   | 83.578      | 6.997                                         | 400.00       | 27.372              | 85.125      | 7.265      |
| 500.00                                        | 30.772   | 89.995      | 9.885                                         | 500.00       | 31.090              | 91.635      | 10.193     |
| 600.00                                        | 34.011   | 95.892      | 13.129                                        | 600.00       | 34.185              | 97.577      | 13.462     |
| 700.00                                        | 36.699   | 101.336     | 16.669                                        | 700.00       | 36.780              | 103.041     | 17.014     |
| 800.00                                        | 38.961   | 106.383     | 20.455                                        | 800.00       | 38.987              | 108.094     | 20.805     |
| 900.00                                        | 40.889   | 111.081     | 24.450                                        | 900.00       | 40.884              | 112.794     | 24.801     |
| 1000.00                                       | 42.546   | 115.473     | 28.624                                        | 1000.00      | 42.523              | 117.184     | 28.973     |
| 1100.00                                       | 43.976   | 119.593     | 32.952                                        | 1100.00      | 43.945              | 121.301     | 33.298     |
| 1200.00                                       | 45.213   | 123.470     | 37.413                                        | 1200.00      | 45.179              | 125.176     | 37.756     |
| 1300.00                                       | 46.287   | 127.130     | 41.989                                        | 1300.00      | 46.252              | 128.833     | 42.329     |
| 1400.00                                       | 47.220   | 130.593     | 46.665                                        | 1400.00      | 47.186              | 132.293     | 47.002     |
| 1500.00                                       | 48.035   | 133.877     | 51.429                                        | 1500.00      | 48.002              | 135.575     | 51.762     |
| 2000.00                                       | 50.833   | 148.114     | 76.219                                        | 2000.00      | 50.810              | 149.803     | 76.538     |
| 2500.00                                       | 52.376   | 159.634     | 102.057                                       | 2500.00      | 52.361              | 161.320     | 102.367    |
| 3000.00                                       | 53.296   | 169.269     | 128.493                                       | 3000.00      | 53.285              | 170.952     | 128.797    |
| 3500.00                                       | 53.882   | 177.531     | 155.298                                       | 3500.00      | 53.874              | 179.212     | 155.597    |
| 4000.00                                       | 54.276   | 184.752     | 182.344                                       | 4000.00      | 54.269              | 186.432     | 182.638    |
| 4500.00                                       | 54.552   | 191.161     | 209.555                                       | 4500.00      | 54.547              | 192.841     | 209.846    |
| 5000.00                                       | 54.753   | 196.919     | 236.884                                       | 5000.00      | 54.749              | 198.598     | 237.173    |
| Zero Point Vibration Energy (kcal/mol) = 45.0 |          |             | Zero Point Vibration Energy (kcal/mol) = 44.8 |              |                     |             |            |

**Table B.1** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of<br/> $CH_3SCH_2CHO$  and its Radicals. (Continued)

| (a) CH <sub>3</sub> CH                        | <sub>2</sub> SCHO |             |            | (b) CH <sub>2</sub> jCH | H <sub>2</sub> SCHO |             |            |
|-----------------------------------------------|-------------------|-------------|------------|-------------------------|---------------------|-------------|------------|
| T(K)                                          | Ср                | S [H(       | T)-H(0K)]  | T(K)                    | Ср                  | S [H(       | T)-H(0K)]  |
| (ca                                           | l/mol/K)          | (cal/mol/K) | (kcal/mol) | (ca                     | l/mol/K)            | (cal/mol/K) | (kcal/mol) |
| 1.00                                          | 7.949             | 18.375      | .008       | 1.00                    | 7.949               | 19.037      | .008       |
| 50.00                                         | 9.866             | 50.592      | .436       | 50.00                   | 9.777               | 51.077      | .431       |
| 100.00                                        | 12.779            | 58.298      | 1.000      | 100.00                  | 12.940              | 58.796      | .997       |
| 150.00                                        | 15.433            | 63.988      | 1.707      | 150.00                  | 15.889              | 64.605      | 1.720      |
| 200.00                                        | 17.869            | 68.756      | 2.540      | 200.00                  | 18.589              | 69.543      | 2.582      |
| 250.00                                        | 20.329            | 73.000      | 3.495      | 250.00                  | 21.163              | 73.962      | 3.576      |
| 298.00                                        | 22.739            | 76.769      | 4.528      | 298.00                  | 23.526              | 77.876      | 4.649      |
| 300.00                                        | 22.840            | 76.922      | 4.574      | 300.00                  | 23.622              | 78.034      | 4.697      |
| 400.00                                        | 27.749            | 84.160      | 7.106      | 400.00                  | 28.073              | 85.444      | 7.287      |
| 500.00                                        | 32.120            | 90.823      | 10.105     | 500.00                  | 31.785              | 92.111      | 10.286     |
| 600.00                                        | 35.834            | 97.007      | 13.508     | 600.00                  | 34.826              | 98.176      | 13.622     |
| 700.00                                        | 38.974            | 102.765     | 17.253     | 700.00                  | 37.348              | 103.733     | 17.234     |
| 800.00                                        | 41.650            | 108.142     | 21.288     | 800.00                  | 39.480              | 108.858     | 21.078     |
| 900.00                                        | 43.948            | 113.177     | 25.570     | 900.00                  | 41.307              | 113.611     | 25.120     |
| 1000.00                                       | 45.931            | 117.908     | 30.067     | 1000.00                 | 42.886              | 118.043     | 29.331     |
| 1100.00                                       | 47.646            | 122.363     | 34.748     | 1100.00                 | 44.255              | 122.193     | 33.690     |
| 1200.00                                       | 49.132            | 126.571     | 39.588     | 1200.00                 | 45.445              | 126.092     | 38.176     |
| 1300.00                                       | 50.421            | 130.552     | 44.567     | 1300.00                 | 46.482              | 129.769     | 42.774     |
| 1400.00                                       | 51.542            | 134.328     | 49.667     | 1400.00                 | 47.386              | 133.245     | 47.468     |
| 1500.00                                       | 52.519            | 137.915     | 54.871     | 1500.00                 | 48.177              | 136.540     | 52.247     |
| 2000.00                                       | 55.872            | 153.525     | 82.057     | 2000.00                 | 50.907              | 150.807     | 77.089     |
| 2500.00                                       | 57.716            | 166.205     | 110.497    | 2500.00                 | 52.421              | 162.341     | 102.956    |
| 3000.00                                       | 58.813            | 176.830     | 139.651    | 3000.00                 | 53.326              | 171.983     | 129.411    |
| 3500.00                                       | 59.511            | 185.951     | 169.244    | 3500.00                 | 53.904              | 180.248     | 156.228    |
| 4000.00                                       | 59.980            | 193.928     | 199.124    | 4000.00                 | 54.292              | 187.472     | 183.283    |
| 4500.00                                       | 60.308            | 201.012     | 229.201    | 4500.00                 | 54.565              | 193.883     | 210.501    |
| 5000.00                                       | 60.547            | 207.379     | 259.418    | 5000.00                 | 54.763              | 199.642     | 237.836    |
| Zero Point Vibration Energy (kcal/mol) = 53.0 |                   |             | Zero Point | Vibration               | Energy (kcal/       | mol) = 44.0 |            |

**Table B.2** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of Radicals of CH<sub>3</sub>CH<sub>2</sub>SCHO and Its Radicals.

| (c) CH <sub>3</sub> CH                        | jSCHO    |             |                                               | (d) CH <sub>3</sub> CH | <sub>2</sub> SCjO |             |            |
|-----------------------------------------------|----------|-------------|-----------------------------------------------|------------------------|-------------------|-------------|------------|
| T(K)                                          | Ср       | S [H(       | T)-H(0K)]                                     | T(K)                   | Ср                | S [H(       | T)-H(0K)]  |
| (ca                                           | l/mol/K) | (cal/mol/K) | (kcal/mol)                                    | (ca                    | l/mol/K)          | (cal/mol/K) | (kcal/mol) |
| 1.00                                          | 7.949    | 18.272      | .008                                          | 1.00                   | 7.949             | 18.317      | .008       |
| 50.00                                         | 10.991   | 50.930      | .453                                          | 50.00                  | 10.058            | 50.580      | .438       |
| 100.00                                        | 14.032   | 59.525      | 1.082                                         | 100.00                 | 12.980            | 58.430      | 1.013      |
| 150.00                                        | 16.544   | 65.693      | 1.848                                         | 150.00                 | 15.743            | 64.219      | 1.732      |
| 200.00                                        | 18.868   | 70.767      | 2.734                                         | 200.00                 | 18.218            | 69.086      | 2.582      |
| 250.00                                        | 21.146   | 75.216      | 3.734                                         | 250.00                 | 20.530            | 73.396      | 3.552      |
| 298.00                                        | 23.307   | 79.109      | 4.801                                         | 298.00                 | 22.670            | 77.179      | 4.589      |
| 300.00                                        | 23.396   | 79.265      | 4.848                                         | 300.00                 | 22.758            | 77.331      | 4.634      |
| 400.00                                        | 27.643   | 86.577      | 7.404                                         | 400.00                 | 26.952            | 84.451      | 7.123      |
| 500.00                                        | 31.323   | 93.143      | 10.357                                        | 500.00                 | 30.635            | 90.862      | 10.007     |
| 600.00                                        | 34.410   | 99.127      | 13.648                                        | 600.00                 | 33.762            | 96.724      | 13.231     |
| 700.00                                        | 37.005   | 104.625     | 17.223                                        | 700.00                 | 36.412            | 102.126     | 16.744     |
| 800.00                                        | 39.212   | 109.709     | 21.037                                        | 800.00                 | 38.675            | 107.134     | 20.501     |
| 900.00                                        | 41.105   | 114.434     | 25.055                                        | 900.00                 | 40.621            | 111.799     | 24.468     |
| 1000.00                                       | 42.737   | 118.847     | 29.249                                        | 1000.00                | 42.302            | 116.164     | 28.616     |
| 1100.00                                       | 44.150   | 122.985     | 33.595                                        | 1100.00                | 43.757            | 120.262     | 32.921     |
| 1200.00                                       | 45.373   | 126.877     | 38.072                                        | 1200.00                | 45.019            | 124.121     | 37.361     |
| 1300.00                                       | 46.434   | 130.549     | 42.664                                        | 1300.00                | 46.115            | 127.766     | 41.919     |
| 1400.00                                       | 47.357   | 134.022     | 47.355                                        | 1400.00                | 47.068            | 131.217     | 46.580     |
| 1500.00                                       | 48.162   | 137.315     | 52.132                                        | 1500.00                | 47.899            | 134.491     | 51.329     |
| 2000.00                                       | 50.923   | 151.584     | 76.975                                        | 2000.00                | 50.753            | 148.697     | 76.067     |
| 2500.00                                       | 52.441   | 163.121     | 102.851                                       | 2500.00                | 52.325            | 160.203     | 101.872    |
| 3000.00                                       | 53.344   | 172.767     | 129.316                                       | 3000.00                | 53.260            | 169.830     | 128.287    |
| 3500.00                                       | 53.919   | 181.034     | 156.141                                       | 3500.00                | 53.856            | 178.087     | 155.077    |
| 4000.00                                       | 54.305   | 188.260     | 183.203                                       | 4000.00                | 54.256            | 185.305     | 182.111    |
| 4500.00                                       | 54.576   | 194.672     | 210.427                                       | 4500.00                | 54.536            | 191.712     | 209.313    |
| 5000.00                                       | 54.772   | 200.432     | 237.767                                       | 5000.00                | 54.740            | 197.468     | 236.635    |
| Zero Point Vibration Energy (kcal/mol) = 44.1 |          |             | Zero Point Vibration Energy (kcal/mol) = 45.3 |                        |                   |             |            |

**Table B.2** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of Radicals of CH<sub>3</sub>CH<sub>2</sub>SCHO and Its Radicals. (Continued)

| (a) CH <sub>3</sub> SC                        | (=O)CH <sub>3</sub> |             |            | (b) CH <sub>2</sub> jSC | $C(=O)CH_3$   |              |            |
|-----------------------------------------------|---------------------|-------------|------------|-------------------------|---------------|--------------|------------|
| T(K)                                          | Ср                  | S [H(       | T)-H(0K)]  | T(K)                    | Ср            | S [H(        | T)-H(0K)]  |
| (ca                                           | l/mol/K)            | (cal/mol/K) | (kcal/mol) | (ca                     | l/mol/K)      | (cal/mol/K)  | (kcal/mol) |
| 1.00                                          | 7.949               | 16.035      | .008       | 1.00                    | 7.949         | 16.687       | .008       |
| 50.00                                         | 12.416              | 51.666      | .524       | 50.00                   | 10.441        | 49.595       | .454       |
| 100.00                                        | 14.779              | 61.021      | 1.206      | 100.00                  | 13.598        | 57.757       | 1.053      |
| 150.00                                        | 16.971              | 67.420      | 2.000      | 150.00                  | 16.814        | 63.881       | 1.814      |
| 200.00                                        | 19.242              | 72.605      | 2.905      | 200.00                  | 19.669        | 69.110       | 2.728      |
| 250.00                                        | 21.602              | 77.145      | 3.926      | 250.00                  | 22.242        | 73.773       | 3.777      |
| 298.00                                        | 23.916              | 81.130      | 5.018      | 298.00                  | 24.527        | 77.870       | 4.900      |
| 300.00                                        | 24.012              | 81.290      | 5.066      | 300.00                  | 24.619        | 78.035       | 4.949      |
| 400.00                                        | 28.702              | 88.837      | 7.705      | 400.00                  | 28.840        | 85.701       | 7.628      |
| 500.00                                        | 32.864              | 95.689      | 10.788     | 500.00                  | 32.344        | 92.517       | 10.693     |
| 600.00                                        | 36.399              | 101.993     | 14.256     | 600.00                  | 35.225        | 98.669       | 14.076     |
| 700.00                                        | 39.395              | 107.828     | 18.050     | 700.00                  | 37.628        | 104.279      | 17.722     |
| 800.00                                        | 41.958              | 113.253     | 22.121     | 800.00                  | 39.674        | 109.435      | 21.590     |
| 900.00                                        | 44.169              | 118.320     | 26.430     | 900.00                  | 41.438        | 114.208      | 25.647     |
| 1000.00                                       | 46.087              | 123.070     | 30.945     | 1000.00                 | 42.971        | 118.651      | 29.870     |
| 1100.00                                       | 47.753              | 127.539     | 35.639     | 1100.00                 | 44.308        | 122.807      | 34.235     |
| 1200.00                                       | 49.203              | 131.754     | 40.488     | 1200.00                 | 45.475        | 126.711      | 38.726     |
| 1300.00                                       | 50.466              | 135.740     | 45.473     | 1300.00                 | 46.495        | 130.389      | 43.325     |
| 1400.00                                       | 51.568              | 139.518     | 50.576     | 1400.00                 | 47.387        | 133.866      | 48.020     |
| 1500.00                                       | 52.531              | 143.107     | 55.782     | 1500.00                 | 48.170        | 137.161      | 52.799     |
| 2000.00                                       | 55.855              | 158.715     | 82.965     | 2000.00                 | 50.886        | 151.423      | 77.632     |
| 2500.00                                       | 57.695              | 171.391     | 111.394    | 2500.00                 | 52.401        | 162.952      | 103.488    |
| 3000.00                                       | 58.795              | 182.012     | 140.539    | 3000.00                 | 53.309        | 172.590      | 129.934    |
| 3500.00                                       | 59.495              | 191.130     | 170.123    | 3500.00                 | 53.889        | 180.853      | 156.743    |
| 4000.00                                       | 59.967              | 199.106     | 199.996    | 4000.00                 | 54.280        | 188.075      | 183.792    |
| 4500.00                                       | 60.298              | 206.188     | 230.067    | 4500.00                 | 54.555        | 194.484      | 211.005    |
| 5000.00                                       | 60.538              | 212.554     | 260.279    | 5000.00                 | 54.755        | 200.243      | 238.335    |
| Zero Point Vibration Energy (kcal/mol) = 52.2 |                     |             | Zero Point | Vibration               | Energy (kcal/ | (mol) = 43.6 |            |

**Table B3** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of Radicals of  $CH_3SC(=O)CH_3$  and Its Radicals.

| (c) CH <sub>3</sub> SC | (=O)CH <sub>2</sub> j |               |              |
|------------------------|-----------------------|---------------|--------------|
| T(K)                   | Ср                    | S [H(         | T)-H(0K)]    |
| (ca                    | al/mol/K)             | (cal/mol/K)   | (kcal/mol)   |
| 1.00                   | 7.949                 | 16.687        | .008         |
| 50.00                  | 10.555                | 49.366        | .451         |
| 100.00                 | 13.198                | 57.493        | 1.045        |
| 150.00                 | 15.918                | 63.348        | 1.773        |
| 200.00                 | 18.643                | 68.295        | 2.637        |
| 250.00                 | 21.275                | 72.733        | 3.635        |
| 298.00                 | 23.674                | 76.670        | 4.715        |
| 300.00                 | 23.770                | 76.829        | 4.762        |
| 400.00                 | 28.234                | 84.285        | 7.369        |
| 500.00                 | 31.921                | 90.986        | 10.383       |
| 600.00                 | 34.927                | 97.073        | 13.730       |
| 700.00                 | 37.413                | 102.643       | 17.351       |
| 800.00                 | 39.512                | 107.774       | 21.200       |
| 900.00                 | 41.312                | 112.529       | 25.243       |
| 1000.00                | 42.870                | 116.960       | 29.454       |
| 1100.00                | 44.224                | 121.108       | 33.810       |
| 1200.00                | 45.404                | 125.005       | 38.293       |
| 1300.00                | 46.434                | 128.678       | 42.886       |
| 1400.00                | 47.335                | 132.150       | 47.576       |
| 1500.00                | 48.123                | 135.441       | 52.349       |
| 2000.00                | 50.859                | 149.694       | 77.165       |
| 2500.00                | 52.383                | 161.217       | 103.010      |
| 3000.00                | 53.296                | 170.853       | 129.447      |
| 3500.00                | 53.880                | 179.114       | 156.252      |
| 4000.00                | 54.273                | 186.335       | 183.296      |
| 4500.00                | 54.549                | 192.743       | 210.505      |
| 5000.00                | 54.750                | 198.501       | 237.833      |
| Zero Poin              | t Vibration           | Energy (kcal/ | (mol) = 44.1 |

**Table B3** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of Radicals of<br/> $CH_3SC(=O)CH_3$  and Its Radicals. (Continued)

| (a) CH <sub>3</sub> SCH <sub>2</sub> CH <sub>3</sub> |          |             |                                               | (b) CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>3</sub> |          |             |            |  |
|------------------------------------------------------|----------|-------------|-----------------------------------------------|-------------------------------------------------------|----------|-------------|------------|--|
| T(K)                                                 | Ср       | S [H(       | T)-H(0K)]                                     | T(K)                                                  | Ср       | S [H(       | T)-H(0K)]  |  |
| (ca                                                  | l/mol/K) | (cal/mol/K) | (kcal/mol)                                    | (ca                                                   | l/mol/K) | (cal/mol/K) | (kcal/mol) |  |
| 1.00                                                 | 7.949    | 14.689      | .008                                          | 1.00                                                  | 7.949    | 15.254      | .008       |  |
| 50.00                                                | 9.694    | 46.474      | .423                                          | 50.00                                                 | 9.286    | 46.843      | .416       |  |
| 100.00                                               | 12.863   | 54.194      | .990                                          | 100.00                                                | 12.479   | 54.227      | .959       |  |
| 150.00                                               | 15.235   | 59.872      | 1.695                                         | 150.00                                                | 15.362   | 59.845      | 1.657      |  |
| 200.00                                               | 17.383   | 64.541      | 2.510                                         | 200.00                                                | 17.864   | 64.604      | 2.489      |  |
| 250.00                                               | 19.714   | 68.660      | 3.437                                         | 250.00                                                | 20.312   | 68.847      | 3.443      |  |
| 298.00                                               | 22.154   | 72.322      | 4.441                                         | 298.00                                                | 22.687   | 72.610      | 4.475      |  |
| 300.00                                               | 22.259   | 72.470      | 4.485                                         | 300.00                                                | 22.785   | 72.762      | 4.520      |  |
| 400.00                                               | 27.515   | 79.582      | 6.975                                         | 400.00                                                | 27.562   | 79.969      | 7.041      |  |
| 500.00                                               | 32.351   | 86.241      | 9.973                                         | 500.00                                                | 31.751   | 86.571      | 10.013     |  |
| 600.00                                               | 36.526   | 92.507      | 13.423                                        | 600.00                                                | 35.281   | 92.672      | 13.369     |  |
| 700.00                                               | 40.103   | 98.404      | 17.259                                        | 700.00                                                | 38.273   | 98.334      | 17.051     |  |
| 800.00                                               | 43.194   | 103.958     | 21.427                                        | 800.00                                                | 40.850   | 103.610     | 21.010     |  |
| 900.00                                               | 45.883   | 109.197     | 25.884                                        | 900.00                                                | 43.095   | 108.548     | 25.210     |  |
| 1000.00                                              | 48.231   | 114.150     | 30.593                                        | 1000.00                                               | 45.060   | 113.187     | 29.620     |  |
| 1100.00                                              | 50.282   | 118.840     | 35.521                                        | 1100.00                                               | 46.783   | 117.560     | 34.214     |  |
| 1200.00                                              | 52.074   | 123.289     | 40.640                                        | 1200.00                                               | 48.295   | 121.693     | 38.970     |  |
| 1300.00                                              | 53.639   | 127.516     | 45.928                                        | 1300.00                                               | 49.620   | 125.609     | 43.867     |  |
| 1400.00                                              | 55.008   | 131.539     | 51.362                                        | 1400.00                                               | 50.782   | 129.327     | 48.888     |  |
| 1500.00                                              | 56.207   | 135.373     | 56.924                                        | 1500.00                                               | 51.802   | 132.863     | 54.018     |  |
| 2000.00                                              | 60.357   | 152.162     | 86.172                                        | 2000.00                                               | 55.357   | 148.295     | 80.899     |  |
| 2500.00                                              | 62.662   | 165.895     | 116.979                                       | 2500.00                                               | 57.345   | 160.876     | 109.119    |  |
| 3000.00                                              | 64.040   | 177.448     | 148.681                                       | 3000.00                                               | 58.537   | 171.442     | 138.113    |  |
| 3500.00                                              | 64.919   | 187.388     | 180.936                                       | 3500.00                                               | 59.300   | 180.525     | 167.586    |  |
| 4000.00                                              | 65.510   | 196.096     | 213.553                                       | 4000.00                                               | 59.814   | 188.478     | 197.372    |  |
| 4500.00                                              | 65.925   | 203.836     | 246.418                                       | 4500.00                                               | 60.175   | 195.544     | 227.374    |  |
| 5000.00                                              | 66.228   | 210.798     | 279.460                                       | 5000.00                                               | 60.438   | 201.898     | 257.531    |  |
| Zero Point Vibration Energy (kcal/mol) = 64.0        |          |             | Zero Point Vibration Energy (kcal/mol) = 55.4 |                                                       |          |             |            |  |

**Table B4** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> and Its Radicals.

| (c) CH <sub>3</sub> SCHjCH <sub>3</sub> |             |              | (d) CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> j |                                                |          |             |            |  |
|-----------------------------------------|-------------|--------------|--------------------------------------------------------|------------------------------------------------|----------|-------------|------------|--|
| T(K)                                    | Ср          | S [H(        | T)-H(0K)]                                              | T(K)                                           | Ср       | S [H(       | T)-H(0K)]  |  |
| (ca                                     | l/mol/K)    | (cal/mol/K)  | (kcal/mol)                                             | (ca                                            | l/mol/K) | (cal/mol/K) | (kcal/mol) |  |
| 1.00                                    | 7.949       | 14.511       | .008                                                   | 1.00                                           | 7.949    | 15.337      | .008       |  |
| 50.00                                   | 9.905       | 46.337       | .425                                                   | 50.00                                          | 9.711    | 47.089      | .423       |  |
| 100.00                                  | 13.303      | 54.295       | 1.010                                                  | 100.00                                         | 13.129   | 54.900      | .997       |  |
| 150.00                                  | 15.815      | 60.177       | 1.740                                                  | 150.00                                         | 15.753   | 60.731      | 1.721      |  |
| 200.00                                  | 18.012      | 65.024       | 2.586                                                  | 200.00                                         | 18.134   | 65.583      | 2.568      |  |
| 250.00                                  | 20.242      | 69.275       | 3.542                                                  | 250.00                                         | 20.562   | 69.882      | 3.535      |  |
| 298.00                                  | 22.474      | 73.014       | 4.567                                                  | 298.00                                         | 22.944   | 73.690      | 4.579      |  |
| 300.00                                  | 22.568      | 73.164       | 4.612                                                  | 300.00                                         | 23.043   | 73.844      | 4.625      |  |
| 400.00                                  | 27.211      | 80.286       | 7.103                                                  | 400.00                                         | 27.829   | 81.127      | 7.173      |  |
| 500.00                                  | 31.389      | 86.807       | 10.038                                                 | 500.00                                         | 32.000   | 87.787      | 10.170     |  |
| 600.00                                  | 34.962      | 92.846       | 13.361                                                 | 600.00                                         | 35.500   | 93.931      | 13.550     |  |
| 700.00                                  | 38.013      | 98.462       | 17.013                                                 | 700.00                                         | 38.458   | 99.624      | 17.252     |  |
| 800.00                                  | 40.648      | 103.708      | 20.950                                                 | 800.00                                         | 41.005   | 104.923     | 21.228     |  |
| 900.00                                  | 42.943      | 108.625      | 25.132                                                 | 900.00                                         | 43.223   | 109.878     | 25.442     |  |
| 1000.00                                 | 44.950      | 113.250      | 29.529                                                 | 1000.00                                        | 45.167   | 114.529     | 29.863     |  |
| 1100.00                                 | 46.705      | 117.614      | 34.113                                                 | 1100.00                                        | 46.873   | 118.912     | 34.467     |  |
| 1200.00                                 | 48.241      | 121.742      | 38.862                                                 | 1200.00                                        | 48.370   | 123.052     | 39.231     |  |
| 1300.00                                 | 49.585      | 125.654      | 43.755                                                 | 1300.00                                        | 49.684   | 126.973     | 44.135     |  |
| 1400.00                                 | 50.761      | 129.369      | 48.774                                                 | 1400.00                                        | 50.837   | 130.695     | 49.163     |  |
| 1500.00                                 | 51.792      | 132.905      | 53.903                                                 | 1500.00                                        | 51.850   | 134.235     | 54.298     |  |
| 2000.00                                 | 55.369      | 148.338      | 80.785                                                 | 2000.00                                        | 55.383   | 149.678     | 81.196     |  |
| 2500.00                                 | 57.359      | 160.922      | 109.012                                                | 2500.00                                        | 57.360   | 162.263     | 109.426    |  |
| 3000.00                                 | 58.551      | 171.491      | 138.013                                                | 3000.00                                        | 58.548   | 172.832     | 138.427    |  |
| 3500.00                                 | 59.312      | 180.575      | 167.492                                                | 3500.00                                        | 59.308   | 181.916     | 167.904    |  |
| 4000.00                                 | 59.823      | 188.530      | 197.284                                                | 4000.00                                        | 59.820   | 189.870     | 197.693    |  |
| 4500.00                                 | 60.183      | 195.597      | 227.291                                                | 4500.00                                        | 60.179   | 196.936     | 227.698    |  |
| 5000.00                                 | 60.445      | 201.951      | 257.451                                                | 5000.00                                        | 60.441   | 203.291     | 257.857    |  |
| Zero Point                              | t Vibration | Energy (kcal | /mol) = 55.4                                           | Zero Point Vibration Energy (kcal/mol) = 55. 1 |          |             |            |  |

**Table B4** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>3</sub> and Its Radicals. (Continued)

| (a) HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>3</sub> |           |                 | (b) j00      | CH <sub>2</sub> SCH <sub>2</sub>              | CH <sub>3</sub> |             |             |
|---------------------------------------------------------|-----------|-----------------|--------------|-----------------------------------------------|-----------------|-------------|-------------|
| T(K)                                                    | Ср        | S [H(           | T)-H(0K)]    | T(K)                                          | Ср              | S [H        | I(T)-H(0K)] |
| (ca                                                     | l/mol/K)  | (cal/mol/K)     | (kcal/mol)   | (ca                                           | l/mol/K)        | (cal/mol/K) | (kcal/mol)  |
| 1.00                                                    | 7.949     | 20.351          | .008         | 1.00                                          | 7.949           | 20.265      | .008        |
| 50.00                                                   | 12.292    | 54.095          | .486         | 50.00                                         | 12.818          | 56.765      | .535        |
| 100.00                                                  | 17.212    | 64.167          | 1.228        | 100.00                                        | 16.390          | 66.759      | 1.266       |
| 150.00                                                  | 20.794    | 71.853          | 2.183        | 150.00                                        | 19.327          | 73.972      | 2.162       |
| 200.00                                                  | 23.756    | 78.237          | 3.297        | 200.00                                        | 22.010          | 79.892      | 3.195       |
| 250.00                                                  | 26.766    | 83.850          | 4.559        | 250.00                                        | 24.844          | 85.096      | 4.366       |
| 298.00                                                  | 29.806    | 88.801          | 5.917        | 298.00                                        | 27.733          | 89.697      | 5.627       |
| 300.00                                                  | 29.934    | 89.000          | 5.976        | 300.00                                        | 27.855          | 89.882      | 5.683       |
| 400.00                                                  | 36.260    | 98.471          | 9.289        | 400.00                                        | 33.866          | 98.712      | 8.772       |
| 500.00                                                  | 41.883    | 107.169         | 13.204       | 500.00                                        | 39.191          | 106.844     | 12.432      |
| 600.00                                                  | 46.598    | 115.222         | 17.635       | 600.00                                        | 43.641          | 114.384     | 16.580      |
| 700.00                                                  | 50.537    | 122.700         | 22.498       | 700.00                                        | 47.347          | 121.388     | 21.135      |
| 800.00                                                  | 53.873    | 129.663         | 27.723       | 800.00                                        | 50.470          | 127.912     | 26.030      |
| 900.00                                                  | 56.733    | 136.170         | 33.257       | 900.00                                        | 53.135          | 134.007     | 31.214      |
| 1000.00                                                 | 59.206    | 142.272         | 39.057       | 1000.00                                       | 55.425          | 139.721     | 36.645      |
| 1100.00                                                 | 61.354    | 148.013         | 45.087       | 1100.00                                       | 57.402          | 145.093     | 42.289      |
| 1200.00                                                 | 63.224    | 153.429         | 51.318       | 1200.00                                       | 59.114          | 150.159     | 48.116      |
| 1300.00                                                 | 64.856    | 158.551         | 57.724       | 1300.00                                       | 60.599          | 154.947     | 54.104      |
| 1400.00                                                 | 66.282    | 163.407         | 64.282       | 1400.00                                       | 61.890          | 159.482     | 60.230      |
| 1500.00                                                 | 67.531    | 168.020         | 70.974       | 1500.00                                       | 63.016          | 163.789     | 66.476      |
| 2000.00                                                 | 71.868    | 188.094         | 105.935      | 2000.00                                       | 66.886          | 182.496     | 99.053      |
| 2500.00                                                 | 74.290    | 204.409         | 142.529      | 2500.00                                       | 69.018          | 197.666     | 133.078     |
| 3000.00                                                 | 75.744    | 218.089         | 180.066      | 3000.00                                       | 70.289          | 210.368     | 167.931     |
| 3500.00                                                 | 76.674    | 229.837         | 218.187      | 3500.00                                       | 71.098          | 221.266     | 203.292     |
| 4000.00                                                 | 77.301    | 240.118         | 256.690      | 4000.00                                       | 71.642          | 230.796     | 238.985     |
| 4500.00                                                 | 77.742    | 249.248         | 295.457      | 4500.00                                       | 72.023          | 239.257     | 274.906     |
| 5000.00                                                 | 78.063    | 257.456         | 334.412      | 5000.00                                       | 72.300          | 246.860     | 310.991     |
| Zero Point                                              | Vibration | n Energy (kcal/ | (mol) = 69.0 | Zero Point Vibration Energy (kcal/mol) = 61.7 |                 |             |             |

**Table B5** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub> and Its Radicals.

| (c) HOOCH <sub>2</sub> SCHjCH <sub>3</sub> |             |               | (d) HOOCH <sub>2</sub> SCH <sub>2</sub> CH <sub>2</sub> j |                                                |          |             |            |
|--------------------------------------------|-------------|---------------|-----------------------------------------------------------|------------------------------------------------|----------|-------------|------------|
| T(K)                                       | Ср          | S [H(         | T)-H(0K)]                                                 | T(K)                                           | Ср       | S [H(       | T)-H(0K)]  |
| (ca                                        | ıl/mol/K)   | (cal/mol/K)   | (kcal/mol)                                                | (ca                                            | l/mol/K) | (cal/mol/K) | (kcal/mol) |
| 1.00                                       | 7.949       | 20.269        | .008                                                      | 1.00                                           | 7.949    | 20.860      | .008       |
| 50.00                                      | 13.397      | 54.539        | .506                                                      | 50.00                                          | 11.700   | 54.101      | .471       |
| 100.00                                     | 18.433      | 65.467        | 1.309                                                     | 100.00                                         | 16.150   | 63.577      | 1.168      |
| 150.00                                     | 21.958      | 73.635        | 2.324                                                     | 150.00                                         | 20.145   | 70.889      | 2.078      |
| 200.00                                     | 24.837      | 80.345        | 3.495                                                     | 200.00                                         | 23.723   | 77.172      | 3.175      |
| 250.00                                     | 27.651      | 86.181        | 4.807                                                     | 250.00                                         | 27.125   | 82.824      | 4.447      |
| 298.00                                     | 30.418      | 91.266        | 6.200                                                     | 298.00                                         | 30.287   | 87.851      | 5.825      |
| 300.00                                     | 30.534      | 91.469        | 6.261                                                     | 300.00                                         | 30.416   | 88.054      | 5.886      |
| 400.00                                     | 36.158      | 101.020       | 9.599                                                     | 400.00                                         | 36.453   | 97.637      | 9.237      |
| 500.00                                     | 41.074      | 109.620       | 13.468                                                    | 500.00                                         | 41.483   | 106.317     | 13.142     |
| 600.00                                     | 45.157      | 117.470       | 17.786                                                    | 600.00                                         | 45.553   | 114.243     | 17.501     |
| 700.00                                     | 48.553      | 124.685       | 22.477                                                    | 700.00                                         | 48.888   | 121.515     | 22.229     |
| 800.00                                     | 51.421      | 131.353       | 27.479                                                    | 800.00                                         | 51.686   | 128.223     | 27.261     |
| 900.00                                     | 53.879      | 137.549       | 32.747                                                    | 900.00                                         | 54.080   | 134.446     | 32.552     |
| 1000.00                                    | 56.004      | 143.333       | 38.244                                                    | 1000.00                                        | 56.152   | 140.249     | 38.066     |
| 1100.00                                    | 57.851      | 148.754       | 43.939                                                    | 1100.00                                        | 57.957   | 145.682     | 43.774     |
| 1200.00                                    | 59.460      | 153.855       | 49.806                                                    | 1200.00                                        | 59.534   | 150.790     | 49.650     |
| 1300.00                                    | 60.865      | 158.667       | 55.824                                                    | 1300.00                                        | 60.914   | 155.608     | 55.674     |
| 1400.00                                    | 62.094      | 163.220       | 61.973                                                    | 1400.00                                        | 62.125   | 160.164     | 61.827     |
| 1500.00                                    | 63.171      | 167.539       | 68.238                                                    | 1500.00                                        | 63.189   | 164.485     | 68.094     |
| 2000.00                                    | 66.918      | 186.271       | 100.855                                                   | 2000.00                                        | 66.907   | 183.216     | 100.712    |
| 2500.00                                    | 69.014      | 201.444       | 134.885                                                   | 2500.00                                        | 68.999   | 198.386     | 134.735    |
| 3000.00                                    | 70.275      | 214.144       | 169.733                                                   | 3000.00                                        | 70.260   | 211.083     | 169.574    |
| 3500.00                                    | 71.082      | 225.039       | 205.086                                                   | 3500.00                                        | 71.069   | 221.977     | 204.921    |
| 4000.00                                    | 71.626      | 234.567       | 240.771                                                   | 4000.00                                        | 71.616   | 231.503     | 240.600    |
| 4500.00                                    | 72.009      | 243.026       | 276.685                                                   | 4500.00                                        | 72.000   | 239.961     | 276.510    |
| 5000.00                                    | 72.288      | 250.627       | 312.763                                                   | 5000.00                                        | 72.281   | 247.562     | 312.583    |
| Zero Point                                 | t Vibration | Energy (kcal/ | (mol) = 60.1                                              | Zero Point Vibration Energy (kcal/mol) = 60.32 |          |             |            |

**Table B5** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of HOOCH<sub>2</sub>SCH<sub>2</sub>CH<sub>3</sub> and Its Radicals. (Continued)

| (a) CH <sub>3</sub> SCH(OOH)CH <sub>3</sub>     |          |             | (b) CH <sub>2</sub> jSCH(OOH)CH <sub>3</sub>  |         |          |             |            |
|-------------------------------------------------|----------|-------------|-----------------------------------------------|---------|----------|-------------|------------|
| T(K)                                            | Ср       | S [H(       | T)-H(0K)]                                     | T(K)    | Ср       | S [H        | (T)-H(0K)] |
| (ca                                             | l/mol/K) | (cal/mol/K) | (kcal/mol)                                    | (ca     | l/mol/K) | (cal/mol/K) | (kcal/mol) |
| 1.00                                            | 7.949    | 17.970      | .008                                          | 1.00    | 7.949    | 18.642      | .008       |
| 50.00                                           | 11.131   | 50.242      | .443                                          | 50.00   | 10.629   | 50.804      | .437       |
| 100.00                                          | 16.874   | 59.788      | 1.149                                         | 100.00  | 16.289   | 59.892      | 1.111      |
| 150.00                                          | 21.016   | 67.446      | 2.102                                         | 150.00  | 20.972   | 67.414      | 2.047      |
| 200.00                                          | 24.355   | 73.950      | 3.237                                         | 200.00  | 24.707   | 73.963      | 3.192      |
| 250.00                                          | 27.555   | 79.720      | 4.535                                         | 250.00  | 28.061   | 79.832      | 4.512      |
| 298.00                                          | 30.656   | 84.815      | 5.932                                         | 298.00  | 31.120   | 85.016      | 5.933      |
| 300.00                                          | 30.785   | 85.020      | 5.994                                         | 300.00  | 31.245   | 85.224      | 5.995      |
| 400.00                                          | 37.046   | 94.730      | 9.390                                         | 400.00  | 37.055   | 95.014      | 9.418      |
| 500.00                                          | 42.532   | 103.589     | 13.376                                        | 500.00  | 41.907   | 103.809     | 13.374     |
| 600.00                                          | 47.113   | 111.750     | 17.865                                        | 600.00  | 45.853   | 111.801     | 17.769     |
| 700.00                                          | 50.939   | 119.298     | 22.774                                        | 700.00  | 49.101   | 119.112     | 22.521     |
| 800.00                                          | 54.185   | 126.309     | 28.034                                        | 800.00  | 51.838   | 125.845     | 27.572     |
| 900.00                                          | 56.974   | 132.849     | 33.595                                        | 900.00  | 54.187   | 132.083     | 32.876     |
| 1000.00                                         | 59.392   | 138.974     | 39.417                                        | 1000.00 | 56.226   | 137.895     | 38.399     |
| 1100.00                                         | 61.498   | 144.730     | 45.463                                        | 1100.00 | 58.006   | 143.335     | 44.112     |
| 1200.00                                         | 63.336   | 150.157     | 51.707                                        | 1200.00 | 59.565   | 148.446     | 49.993     |
| 1300.00                                         | 64.943   | 155.287     | 58.123                                        | 1300.00 | 60.932   | 153.266     | 56.019     |
| 1400.00                                         | 66.350   | 160.149     | 64.689                                        | 1400.00 | 62.133   | 157.823     | 62.174     |
| 1500.00                                         | 67.585   | 164.766     | 71.387                                        | 1500.00 | 63.190   | 162.144     | 68.441     |
| 2000.00                                         | 71.885   | 184.850     | 106.364                                       | 2000.00 | 66.893   | 180.873     | 101.054    |
| 2500.00                                         | 74.295   | 201.167     | 142.963                                       | 2500.00 | 68.984   | 196.040     | 135.070    |
| 3000.00                                         | 75.745   | 214.848     | 180.502                                       | 3000.00 | 70.247   | 208.734     | 169.902    |
| 3500.00                                         | 76.674   | 226.596     | 218.622                                       | 3500.00 | 71.058   | 219.626     | 205.243    |
| 4000.00                                         | 77.300   | 236.876     | 257.125                                       | 4000.00 | 71.607   | 229.151     | 240.917    |
| 4500.00                                         | 77.741   | 246.007     | 295.892                                       | 4500.00 | 71.993   | 237.608     | 276.822    |
| 5000.00                                         | 78.062   | 254.214     | 334.847                                       | 5000.00 | 72.274   | 245.208     | 312.893    |
| Zero Point Vibration Energy (kcal/mol) = $68.6$ |          |             | Zero Point Vibration Energy (kcal/mol) = 60.0 |         |          |             |            |

**Table B6** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of  $CH_3SCH(OOH)CH_3$  and Its Radicals.

| (c) CH <sub>3</sub> SCH(OOj)CH <sub>3</sub> |             |                | (d) C        | CH <sub>3</sub> SCH(O                         | OH)CH <sub>2</sub> j |             |            |
|---------------------------------------------|-------------|----------------|--------------|-----------------------------------------------|----------------------|-------------|------------|
| T(K)                                        | Ср          | S [H(          | T)-H(0K)]    | T(K)                                          | Ср                   | S [H        | (T)-H(0K)] |
| (ca                                         | al/mol/K)   | (cal/mol/K)    | (kcal/mol)   | (ca                                           | l/mol/K)             | (cal/mol/K) | (kcal/mol) |
| 1.00                                        | 7.949       | 17.865         | .008         | 1.00                                          | 7.949                | 18.690      | .008       |
| 50.00                                       | 11.574      | 50.797         | .462         | 50.00                                         | 11.355               | 51.092      | .447       |
| 100.00                                      | 16.163      | 60.279         | 1.160        | 100.00                                        | 17.256               | 60.851      | 1.169      |
| 150.00                                      | 19.698      | 67.520         | 2.060        | 150.00                                        | 21.548               | 68.690      | 2.144      |
| 200.00                                      | 22.717      | 73.598         | 3.122        | 200.00                                        | 25.076               | 75.372      | 3.312      |
| 250.00                                      | 25.678      | 78.976         | 4.331        | 250.00                                        | 28.372               | 81.315      | 4.648      |
| 298.00                                      | 28.572      | 83.725         | 5.633        | 298.00                                        | 31.426               | 86.553      | 6.084      |
| 300.00                                      | 28.693      | 83.916         | 5.691        | 300.00                                        | 31.551               | 86.763      | 6.147      |
| 400.00                                      | 34.575      | 92.972         | 8.858        | 400.00                                        | 37.365               | 96.642      | 9.600      |
| 500.00                                      | 39.746      | 101.245        | 12.581       | 500.00                                        | 42.199               | 105.505     | 13.587     |
| 600.00                                      | 44.068      | 108.875        | 16.779       | 600.00                                        | 46.111               | 113.547     | 18.009     |
| 700.00                                      | 47.674      | 115.938        | 21.371       | 700.00                                        | 49.324               | 120.895     | 22.786     |
| 800.00                                      | 50.721      | 122.500        | 26.295       | 800.00                                        | 52.029               | 127.656     | 27.857     |
| 900.00                                      | 53.328      | 128.622        | 31.500       | 900.00                                        | 54.351               | 133.916     | 33.179     |
| 1000.00                                     | 55.575      | 134.354        | 36.948       | 1000.00                                       | 56.368               | 139.744     | 38.717     |
| 1100.00                                     | 57.519      | 139.739        | 42.605       | 1100.00                                       | 58.130               | 145.196     | 44.444     |
| 1200.00                                     | 59.206      | 144.813        | 48.444       | 1200.00                                       | 59.673               | 150.317     | 50.336     |
| 1300.00                                     | 60.672      | 149.608        | 54.439       | 1300.00                                       | 61.028               | 155.145     | 56.372     |
| 1400.00                                     | 61.949      | 154.149        | 60.572       | 1400.00                                       | 62.218               | 159.709     | 62.536     |
| 1500.00                                     | 63.064      | 158.459        | 66.824       | 1500.00                                       | 63.266               | 164.035     | 68.811     |
| 2000.00                                     | 66.904      | 177.175        | 99.416       | 2000.00                                       | 66.940               | 182.782     | 101.455    |
| 2500.00                                     | 69.027      | 192.348        | 133.447      | 2500.00                                       | 69.016               | 197.958     | 135.490    |
| 3000.00                                     | 70.293      | 205.051        | 168.302      | 3000.00                                       | 70.270               | 210.657     | 170.335    |
| 3500.00                                     | 71.100      | 215.949        | 203.665      | 3500.00                                       | 71.075               | 221.552     | 205.686    |
| 4000.00                                     | 71.643      | 225.480        | 239.359      | 4000.00                                       | 71.620               | 231.079     | 241.368    |
| 4500.00                                     | 72.024      | 233.940        | 275.281      | 4500.00                                       | 72.003               | 239.537     | 277.279    |
| 5000.00                                     | 72.301      | 241.543        | 311.365      | 5000.00                                       | 72.283               | 247.138     | 313.354    |
| Zero Poin                                   | t Vibration | n Energy (kcal | (mol) = 61.4 | Zero Point Vibration Energy (kcal/mol) = 59.5 |                      |             |            |

**Table B6** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of<br/> $CH_3SCH(OOH)CH_3$  and Its Radicals. (Continued)

| (a) CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOH |           |             | (b) CH <sub>2</sub> jSCH <sub>2</sub> CH <sub>2</sub> OOH |         |          |             |            |
|----------------------------------------------------------|-----------|-------------|-----------------------------------------------------------|---------|----------|-------------|------------|
| T(K)                                                     | Ср        | S [H(       | T)-H(0K)]                                                 | T(K)    | Ср       | S [H        | T)-H(0K)]  |
| (ca                                                      | ıl/mol/K) | (cal/mol/K) | (kcal/mol)                                                | (ca     | l/mol/K) | (cal/mol/K) | (kcal/mol) |
| 1.00                                                     | 7.949     | 20.234      | .008                                                      | 1.00    | 7.949    | 20.854      | .008       |
| 50.00                                                    | 11.267    | 52.717      | .449                                                      | 50.00   | 13.088   | 55.086      | .501       |
| 100.00                                                   | 15.336    | 61.888      | 1.124                                                     | 100.00  | 18.259   | 65.842      | 1.293      |
| 150.00                                                   | 17.974    | 68.623      | 1.959                                                     | 150.00  | 21.830   | 73.950      | 2.300      |
| 200.00                                                   | 20.382    | 74.114      | 2.918                                                     | 200.00  | 24.752   | 80.628      | 3.465      |
| 250.00                                                   | 23.074    | 78.938      | 4.003                                                     | 250.00  | 27.636   | 86.452      | 4.775      |
| 298.00                                                   | 25.937    | 83.224      | 5.178                                                     | 298.00  | 30.470   | 91.539      | 6.169      |
| 300.00                                                   | 26.060    | 83.398      | 5.230                                                     | 300.00  | 30.589   | 91.743      | 6.230      |
| 400.00                                                   | 32.220    | 91.727      | 8.146                                                     | 400.00  | 36.304   | 101.324     | 9.579      |
| 500.00                                                   | 37.795    | 99.516      | 11.653                                                    | 500.00  | 41.239   | 109.959     | 13.464     |
| 600.00                                                   | 42.503    | 106.824     | 15.675                                                    | 600.00  | 45.299   | 117.838     | 17.798     |
| 700.00                                                   | 46.449    | 113.671     | 20.128                                                    | 700.00  | 48.653   | 125.072     | 22.500     |
| 800.00                                                   | 49.795    | 120.089     | 24.945                                                    | 800.00  | 51.479   | 131.751     | 27.511     |
| 900.00                                                   | 52.666    | 126.116     | 30.072                                                    | 900.00  | 53.899   | 137.951     | 32.783     |
| 1000.00                                                  | 55.149    | 131.790     | 35.465                                                    | 1000.00 | 55.993   | 143.736     | 38.280     |
| 1100.00                                                  | 57.305    | 137.144     | 41.091                                                    | 1100.00 | 57.818   | 149.155     | 43.972     |
| 1200.00                                                  | 59.182    | 142.208     | 46.917                                                    | 1200.00 | 59.411   | 154.252     | 49.836     |
| 1300.00                                                  | 60.820    | 147.007     | 52.919                                                    | 1300.00 | 60.805   | 159.060     | 55.848     |
| 1400.00                                                  | 62.251    | 151.564     | 59.074                                                    | 1400.00 | 62.028   | 163.609     | 61.991     |
| 1500.00                                                  | 63.505    | 155.899     | 65.363                                                    | 1500.00 | 63.101   | 167.923     | 68.248     |
| 2000.00                                                  | 67.860    | 174.818     | 98.316                                                    | 2000.00 | 66.852   | 186.634     | 100.831    |
| 2500.00                                                  | 70.291    | 190.240     | 132.908                                                   | 2500.00 | 68.961   | 201.794     | 134.831    |
| 3000.00                                                  | 71.751    | 203.191     | 168.448                                                   | 3000.00 | 70.233   | 214.485     | 169.655    |
| 3500.00                                                  | 72.686    | 214.324     | 204.573                                                   | 3500.00 | 71.049   | 225.375     | 204.989    |
| 4000.00                                                  | 73.316    | 224.072     | 241.083                                                   | 4000.00 | 71.599   | 234.899     | 240.659    |
| 4500.00                                                  | 73.759    | 232.733     | 277.858                                                   | 4500.00 | 71.987   | 243.355     | 276.561    |
| 5000.00                                                  | 74.082    | 240.521     | 314.822                                                   | 5000.00 | 72.270   | 250.954     | 312.629    |
| Zero Point Vibration Energy (kcal/mol) = 68.8            |           |             | Zero Point Vibration Energy (kcal/mol) = 60.3             |         |          |             |            |

**Table B7** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of CH<sub>3</sub>SCH<sub>2</sub>CH<sub>2</sub>OOH and Its Radicals.

| (c) CH <sub>3</sub> SCHjCH <sub>2</sub> OOH |             |               | (d) CH <sub>3</sub> SCH <sub>2</sub> CH <sub>2</sub> OOj |                                               |          |             |            |
|---------------------------------------------|-------------|---------------|----------------------------------------------------------|-----------------------------------------------|----------|-------------|------------|
| T(K)                                        | Ср          | S [H(         | T)-H(0K)]                                                | T(K)                                          | Ср       | S [H        | (T)-H(0K)] |
| (ca                                         | al/mol/K)   | (cal/mol/K)   | (kcal/mol)                                               | (ca                                           | l/mol/K) | (cal/mol/K) | (kcal/mol) |
| 1.00                                        | 7.949       | 20.249        | .008                                                     | 1.00                                          | 7.949    | 20.115      | .008       |
| 50.00                                       | 12.802      | 54.454        | .500                                                     | 50.00                                         | 13.447   | 54.809      | .515       |
| 100.00                                      | 17.555      | 64.875        | 1.266                                                    | 100.00                                        | 17.364   | 65.452      | 1.295      |
| 150.00                                      | 20.938      | 72.651        | 2.232                                                    | 150.00                                        | 19.895   | 72.986      | 2.229      |
| 200.00                                      | 23.935      | 79.079        | 3.354                                                    | 200.00                                        | 22.250   | 79.021      | 3.282      |
| 250.00                                      | 26.950      | 84.735        | 4.626                                                    | 250.00                                        | 24.888   | 84.257      | 4.459      |
| 298.00                                      | 29.890      | 89.711        | 5.990                                                    | 298.00                                        | 27.674   | 88.855      | 5.720      |
| 300.00                                      | 30.013      | 89.911        | 6.050                                                    | 300.00                                        | 27.793   | 89.041      | 5.775      |
| 400.00                                      | 35.870      | 99.347        | 9.349                                                    | 400.00                                        | 33.732   | 97.840      | 8.854      |
| 500.00                                      | 40.899      | 107.896       | 13.195                                                   | 500.00                                        | 39.057   | 105.941     | 12.500     |
| 600.00                                      | 45.031      | 115.719       | 17.499                                                   | 600.00                                        | 43.524   | 113.458     | 16.636     |
| 700.00                                      | 48.444      | 122.916       | 22.178                                                   | 700.00                                        | 47.247   | 120.445     | 21.180     |
| 800.00                                      | 51.316      | 129.571       | 27.169                                                   | 800.00                                        | 50.385   | 126.957     | 26.066     |
| 900.00                                      | 53.772      | 135.754       | 32.427                                                   | 900.00                                        | 53.062   | 133.043     | 31.242     |
| 1000.00                                     | 55.896      | 141.526       | 37.913                                                   | 1000.00                                       | 55.363   | 138.750     | 36.666     |
| 1100.00                                     | 57.742      | 146.937       | 43.597                                                   | 1100.00                                       | 57.348   | 144.116     | 42.304     |
| 1200.00                                     | 59.352      | 152.028       | 49.453                                                   | 1200.00                                       | 59.067   | 149.177     | 48.127     |
| 1300.00                                     | 60.760      | 156.832       | 55.461                                                   | 1300.00                                       | 60.557   | 153.962     | 54.109     |
| 1400.00                                     | 61.992      | 161.378       | 61.600                                                   | 1400.00                                       | 61.853   | 158.495     | 60.232     |
| 1500.00                                     | 63.074      | 165.690       | 67.854                                                   | 1500.00                                       | 62.983   | 162.799     | 66.475     |
| 2000.00                                     | 66.843      | 184.396       | 100.429                                                  | 2000.00                                       | 66.866   | 181.498     | 99.039     |
| 2500.00                                     | 68.959      | 199.555       | 134.427                                                  | 2500.00                                       | 69.005   | 196.665     | 133.056    |
| 3000.00                                     | 70.233      | 212.246       | 169.249                                                  | 3000.00                                       | 70.280   | 209.365     | 167.902    |
| 3500.00                                     | 71.049      | 223.136       | 204.584                                                  | 3500.00                                       | 71.091   | 220.261     | 203.259    |
| 4000.00                                     | 71.600      | 232.660       | 240.255                                                  | 4000.00                                       | 71.636   | 229.791     | 238.949    |
| 4500.00                                     | 71.988      | 241.116       | 276.157                                                  | 4500.00                                       | 72.019   | 238.251     | 274.868    |
| 5000.00                                     | 72.271      | 248.715       | 312.226                                                  | 5000.00                                       | 72.297   | 245.853     | 310.951    |
| Zero Point                                  | t Vibration | Energy (kcal/ | (mol) = 60.7                                             | Zero Point Vibration Energy (kcal/mol) = 61.8 |          |             |            |

**Table B7** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> ofCH3SCH2CH2OOH and Its Radicals. (Continued)

| (a) CH <sub>3</sub> SCH <sub>2</sub> OH |           |                | (b) CH <sub>3</sub> CH <sub>2</sub> SCH <sub>2</sub> OH |                                               |          |             |            |
|-----------------------------------------|-----------|----------------|---------------------------------------------------------|-----------------------------------------------|----------|-------------|------------|
| T(K)                                    | Ср        | S [H(          | T)-H(0K)]                                               | T(K)                                          | Ср       | S [H(       | T)-H(0K)]  |
| (ca                                     | l/mol/K)  | (cal/mol/K)    | (kcal/mol)                                              | (ca                                           | l/mol/K) | (cal/mol/K) | (kcal/mol) |
| 1.00                                    | 7.949     | 16.638         | .008                                                    | 1.00                                          | 7.949    | 18.751      | .008       |
| 50.00                                   | 8.554     | 47.875         | .403                                                    | 50.00                                         | 10.475   | 51.154      | .443       |
| 100.00                                  | 10.534    | 54.426         | .882                                                    | 100.00                                        | 13.953   | 59.486      | 1.055      |
| 150.00                                  | 12.052    | 58.990         | 1.448                                                   | 150.00                                        | 17.010   | 65.729      | 1.831      |
| 200.00                                  | 13.549    | 62.654         | 2.087                                                   | 200.00                                        | 19.808   | 71.000      | 2.752      |
| 250.00                                  | 15.295    | 65.856         | 2.807                                                   | 250.00                                        | 22.658   | 75.716      | 3.813      |
| 298.00                                  | 17.182    | 68.696         | 3.586                                                   | 298.00                                        | 25.509   | 79.930      | 4.969      |
| 300.00                                  | 17.264    | 68.811         | 3.620                                                   | 300.00                                        | 25.629   | 80.101      | 5.020      |
| 400.00                                  | 21.368    | 74.331         | 5.553                                                   | 400.00                                        | 31.553   | 88.277      | 7.882      |
| 500.00                                  | 25.110    | 79.501         | 7.881                                                   | 500.00                                        | 36.860   | 95.890      | 11.309     |
| 600.00                                  | 28.292    | 84.360         | 10.556                                                  | 600.00                                        | 41.348   | 103.007     | 15.226     |
| 700.00                                  | 30.981    | 88.922         | 13.523                                                  | 700.00                                        | 45.126   | 109.663     | 19.555     |
| 800.00                                  | 33.282    | 93.207         | 16.739                                                  | 800.00                                        | 48.345   | 115.896     | 24.232     |
| 900.00                                  | 35.272    | 97.240         | 20.169                                                  | 900.00                                        | 51.119   | 121.747     | 29.209     |
| 1000.00                                 | 37.006    | 101.043        | 23.785                                                  | 1000.00                                       | 53.527   | 127.254     | 34.444     |
| 1100.00                                 | 38.522    | 104.639        | 27.563                                                  | 1100.00                                       | 55.626   | 132.451     | 39.904     |
| 1200.00                                 | 39.849    | 108.045        | 31.483                                                  | 1200.00                                       | 57.458   | 137.367     | 45.560     |
| 1300.00                                 | 41.013    | 111.279        | 35.527                                                  | 1300.00                                       | 59.059   | 142.026     | 51.388     |
| 1400.00                                 | 42.034    | 114.354        | 39.681                                                  | 1400.00                                       | 60.461   | 146.452     | 57.366     |
| 1500.00                                 | 42.931    | 117.283        | 43.930                                                  | 1500.00                                       | 61.691   | 150.663     | 63.474     |
| 2000.00                                 | 46.070    | 130.101        | 66.259                                                  | 2000.00                                       | 65.971   | 169.048     | 95.499     |
| 2500.00                                 | 47.837    | 140.584        | 89.776                                                  | 2500.00                                       | 68.368   | 184.044     | 129.137    |
| 3000.00                                 | 48.904    | 149.405        | 113.982                                                 | 3000.00                                       | 69.809   | 196.643     | 163.710    |
| 3500.00                                 | 49.588    | 156.996        | 138.616                                                 | 3500.00                                       | 70.731   | 207.476     | 198.861    |
| 4000.00                                 | 50.050    | 163.649        | 163.533                                                 | 4000.00                                       | 71.354   | 216.962     | 234.391    |
| 4500.00                                 | 50.375    | 169.563        | 188.644                                                 | 4500.00                                       | 71.792   | 225.392     | 270.184    |
| 5000.00                                 | 50.613    | 174.883        | 213.894                                                 | 5000.00                                       | 72.110   | 232.973     | 306.163    |
| Zero Point                              | Vibration | Energy (kcal/i | mol) = 48.9                                             | Zero Point Vibration Energy (kcal/mol) = 67.5 |          |             |            |

**Table B8** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of  $CH_3SCH_2OH$ ,<br/> $CH_3CH_2SCH_2OH$ ,  $CH_3S(=O)CH_2OH$  and  $CH_3S(=O)CH(OH)CH_3$ .

| (c) $CH_3S(=O)CH_2OH$                         |          |             | (d) CH <sub>3</sub> S(=O)CH(OH)CH <sub>3</sub> |         |          |             |            |
|-----------------------------------------------|----------|-------------|------------------------------------------------|---------|----------|-------------|------------|
| T(K)                                          | Ср       | S [H(       | T)-H(0K)]                                      | T(K)    | Ср       | S [H        | (T)-H(0K)] |
| (ca                                           | l/mol/K) | (cal/mol/K) | (kcal/mol)                                     | (ca     | l/mol/K) | (cal/mol/K) | (kcal/mol) |
| 1.00                                          | 7.949    | 18.405      | .008                                           | 1.00    | 7.949    | 17.491      | .008       |
| 50.00                                         | 9.385    | 49.967      | .416                                           | 50.00   | 9.597    | 49.195      | .421       |
| 100.00                                        | 13.294   | 57.638      | .981                                           | 100.00  | 14.164   | 57.181      | 1.011      |
| 150.00                                        | 16.709   | 63.694      | 1.735                                          | 150.00  | 18.529   | 63.761      | 1.831      |
| 200.00                                        | 19.511   | 68.885      | 2.642                                          | 200.00  | 22.362   | 69.615      | 2.855      |
| 250.00                                        | 22.142   | 73.516      | 3.683                                          | 250.00  | 25.990   | 74.987      | 4.064      |
| 298.00                                        | 24.642   | 77.612      | 4.806                                          | 298.00  | 29.398   | 79.834      | 5.394      |
| 300.00                                        | 24.745   | 77.777      | 4.856                                          | 300.00  | 29.538   | 80.031      | 5.452      |
| 400.00                                        | 29.681   | 85.572      | 7.582                                          | 400.00  | 36.209   | 89.443      | 8.746      |
| 500.00                                        | 33.912   | 92.653      | 10.768                                         | 500.00  | 41.938   | 98.143      | 12.662     |
| 600.00                                        | 37.391   | 99.145      | 14.339                                         | 600.00  | 46.680   | 106.210     | 17.101     |
| 700.00                                        | 40.264   | 105.124     | 18.226                                         | 700.00  | 50.622   | 113.700     | 21.972     |
| 800.00                                        | 42.684   | 110.656     | 22.376                                         | 800.00  | 53.955   | 120.674     | 27.205     |
| 900.00                                        | 44.756   | 115.801     | 26.751                                         | 900.00  | 56.813   | 127.191     | 32.747     |
| 1000.00                                       | 46.550   | 120.607     | 31.318                                         | 1000.00 | 59.285   | 133.302     | 38.555     |
| 1100.00                                       | 48.112   | 125.114     | 36.053                                         | 1100.00 | 61.432   | 139.049     | 44.593     |
| 1200.00                                       | 49.476   | 129.357     | 40.934                                         | 1200.00 | 63.301   | 144.472     | 50.832     |
| 1300.00                                       | 50.671   | 133.362     | 45.943                                         | 1300.00 | 64.932   | 149.600     | 57.245     |
| 1400.00                                       | 51.718   | 137.154     | 51.064                                         | 1400.00 | 66.357   | 154.462     | 63.811     |
| 1500.00                                       | 52.639   | 140.752     | 56.282                                         | 1500.00 | 67.604   | 159.080     | 70.511     |
| 2000.00                                       | 55.857   | 156.374     | 83.487                                         | 2000.00 | 71.929   | 179.174     | 105.505    |
| 2500.00                                       | 57.670   | 169.046     | 111.909                                        | 2500.00 | 74.338   | 195.501     | 142.126    |
| 3000.00                                       | 58.764   | 179.662     | 141.039                                        | 3000.00 | 75.781   | 209.189     | 179.684    |
| 3500.00                                       | 59.467   | 188.775     | 170.609                                        | 3500.00 | 76.704   | 220.942     | 217.822    |
| 4000.00                                       | 59.941   | 196.748     | 200.468                                        | 4000.00 | 77.325   | 231.226     | 256.338    |
| 4500.00                                       | 60.276   | 203.827     | 230.527                                        | 4500.00 | 77.762   | 240.359     | 295.116    |
| 5000.00                                       | 60.519   | 210.191     | 260.729                                        | 5000.00 | 78.079   | 248.569     | 334.080    |
| Zero Point Vibration Energy (kcal/mol) = 51.9 |          |             | Zero Point Vibration Energy (kcal/mol) = 69.3  |         |          |             |            |

**Table B8** Ideal Gas-Phase Thermodynamic Property vs. Temperature<sup>a</sup> of CH<sub>3</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>SCH<sub>2</sub>OH, CH<sub>3</sub>S(=O)CH<sub>2</sub>OH and CH<sub>3</sub>S(=O)CH(OH)CH<sub>3</sub>. (Continued)

### REFERENCES

- 1) Molecular Weight: <u>http://www.webqc.org/mmcalc.php</u>.
- 2) <u>http://www.lenntech.com/calculators/molecular/molecular-weight-calculator.htm</u> (Accessed in 4/15/2011).
- 3) F. A. Carey, R. J. Sundberg, "Advance Organic Chemistry, Part A: Structure and Mechanisms, 4th ed.", Charlottesville, VA: Springer, **2004**.
- 4) M. Munowitz, "Principles of Chemistry, 1<sup>st</sup> ed.", QD133 M984, **2000**.
- 5) A. Gunturu, J. W. Bozzelli, R. Asatryan, *Thermochemistry, bond energies and internal rotor barriers of methyl sulfuric acid, methyl sulfuric acid ester and their radicals*, J. of Physical Organic Chemistry, **2010**, 9999 1-12.
- 6) Li Zhu and J. W. Bozzelli, *The multi-channel reaction of CH*<sub>3</sub>S+O<sub>2</sub>: thermochemistry and kinetic barriers, J. Mol. Struct.: THERMOCHEM, vol: 728(**2005**) 147-157.
- Asatryan R., Bozzelli J.W., Simmie J.M. Thermochemistry of Methyl and Ethyl Nitro, R-NO2, and Nitrite, RONO, Organic Compounds, J. Phys. Chem. A, 112 (2008) 3172-3185.
- 8) A. G. Vandeputte, M-F Reyniers et al., *Theoretical study of the thermal decomposition of dimethyl disulfide*, J. Phys. Chem. A **2010**, 114, 10531-10549.
- 9) Frank Jensen, "Introduction to Computational Chemistry", New York: Wiley, c1999.
- 10) David C. Young, "Computational chemistry: a practical guide for applying techniques to real world problems", New York: Wiley, c**1999**.
- 11) X. Zheng, E. M. Fisher and F. C. Gouldin et al. Pyrolysis and oxidation of ethyl methyl sulfide in a flow reactor", Combustion and Flame. vol: 158 (2011) 1049-1058.
- 12) X. Zheng, E. M. Fisher and F. C. Gouldin et al. *Experimental and computational Study of diethyl sulfide pyrolysis and mechanism*, Proceedings of the Combustion Institute, vol: 32 (2009) 469-476.
- 13) E. Frisch and Micheal J. Frisch, "Gaussian 03 Pocket Reference", Carnegie, PA: Gaussian Inc. March 2003.
- 14) NIST Webbook: http://webbook.nist.gov/chemistry/.
- 15) Daan Frenkel and Berend Smit: "Understanding Molecular Simulation From Alrorithms to Applications, 2<sup>nd</sup> Edition", San Diego, CA: Elsevier, **2002**.

- 16) S. Snitsiriwat and Joseph W. Bozzelli, *The Thermochemistry and Bond Energies of Nitro-alkanes, -Alkenes, -Carbonyls and Corresponding Nitrites, NJIT Master* Thesis, Jan. **2009**.
- 17) F. Jin, J. Bozzelli, R. Asatryan, *Thermodynamic and Kinetic Analysis on the Activation Reaction of Dimethyl Sulfide Radical with Oxygen*, **2011**, to be *submitted*.
- 18) Sh. P. Pillai, *Structure and Thermochemistry of Disulfide-Oxygen Species*, NJIT Master Thesis, Jan. **2008**.
- 19) G. da Silva and J. W. Bozzelli, Enthalpies of Formation, Bond Dissociation Energies, and Molecular Structures of the n-Aldehydes (Acetaldehyde, Propanal, Butanal, Pentanal, Hexanal and Heptanal) and Their Radicals, J. Phys. Chem. A 2006, Vol: 110. 13058-13067.
- 20) <u>http://www.spaceref.com/news/viewpr.html?pid=10216</u> (Accessed in 05/02/2011).
- 21) Gary V. and Stephen D. "Environmental Chemistry, A Global Perspective, 2<sup>nd</sup> Ed", Oxford, UK: Oxford University Press, **2005** P362.
- 22) <u>http://en.wikipedia.org/wiki/Enthalpy\_of\_atomization</u> (Accessed in 05/08/2011).
- 23) <u>http://en.wikipedia.org/wiki/Standard\_enthalpy\_of\_formation</u> (Accessed in 05/08/2011).
- 24) Chad Sheng, Ph D Thesis, Chemical Engineering, New Jersey Institute of Technology, **2002**.