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ABSTRACT

APPLICATIONS OF STOCHASTIC SIMULATION IN TWO-STAGE
MULTIPLE COMPARISONS WITH THE BEST PROBLEM AND TIME

AVERAGE VARIANCE CONSTANT ESTIMATION

by
Dibyendu Chakrabarti

In this dissertation, we study two problems. In the first part, we consider the two-stage

methods for comparing alternatives using simulation. Suppose there are a finite num-

ber of alternatives to compare, with each alternative having an unknown parameter

that is the basis for comparison. The parameters are to be estimated using simulation,

where the alternatives are simulated independently. We develop two-stage selection

and multiple-comparison procedures for simulations under a general framework. The

assumptions are that each alternative has a parameter estimation process that satisfies

a random- time-change central limit theorem (CLT), and there is a weakly consistent

variance estimator (WCVE) for the variance constant appearing in the CLT. The frame-

work encompasses comparing means of independent populations, functions of means,

and steady-state means. One problem we consider of considerable practical interest and

not handled in previous work on two-stage multiple-comparison procedures is compar-

ing quantiles of alternative populations. We establish the asymptotic validity of our

procedures as the prescribed width of the confidence intervals or indifference-zone pa-

rameter shrinks to zero. Also, for the steady-state simulation context, we compare our

procedures based on WCVEs with techniques that instead use standardized time series

methods. In the second part, we propose a new technique of estimating the variance pa-

rameter of a wide variety of stochastic processes. This new technique is better than the

existing techniques for some standard stochastic processes in terms of bias and variance

properties, since it reduces bias at the cost of no significant increase in variance.
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CHAPTER 1

INTRODUCTION

1.1 Mathematical Modeling

Mathematical modeling is a valuable tool in order to assess the future evolution of

a complex real world system. All possible non-physical models are mathematical in

nature. These models help in understanding the laws governing the system and also in

the prediction/control of the modeled system.

A mathematical model may be thought of as “a representation of the essential

aspects of an existing system (or a system to be constructed) which presents knowledge

of that system in usable form” (see [23, p. 240]). The model may be useful in natural

sciences, engineering and social sciences. Mathematical modeling is the process of

developing a mathematical model that describes a system using mathematical language.

There may be four stages of any mathematical modeling process:

1. Stating the laws relating the basic elements of the system: At this stage, the math-

ematical relationship between the objects of the system are explored, selecting the

most important aspects of the system and omitting the irrelevant details. Thus

we sometimes end up with a crude model at the expense of avoiding complexity

and intractability. For example, consider the differential equation governing the

motion of a clock’s pendulum: x′′(t) = −kx(t), where x(t) denotes the displace-

ment of the pendulum at time t, x′′(t) denotes the second derivative of x with

respect to t and k is a constant independent of time t. In this case, we often ig-

nore the physical real conditions to make the model simple (e.g., we ignore the

facts that usually the rod/thread of the pendulum is not massless, the bob is not

point-size and the amplitude of the oscillations is not small, i.e., less than 4◦).

Here, the resulting model is a simple differential equation. However, it may be a

random process having a probability distribution.
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2. Investigating the underlying mathematical problem: At this stage, the main ques-

tion is to solve the given direct problem; given the “input data”, we need to obtain

the “output data” by analyzing the model. For example, we may try to find the

position of the pendulum at time t = 100 given x(0) = 0 and x′(0) = 1.

3. Verifying the model: We need to compare the theoretical results derived for the

model with the observed results. The observed results may not be available if

the system being studied does not exist. If the results are not in close agreement

with each other, the model is rejected and we go back to stage 1 to rethink and

formulate another model, possibly by embellishing the original model.

4. Subsequently analyzing the model: If a better description of the system is desired,

the existing model may be insufficient for that purpose. In this case also, we return

to stage 1, but this time, we try to construct a more precise model at a higher

level of complexity.

1.2 Analytical and Simulation Methods

A set of equations or relations among mathematical variables is described by a mathe-

matical model, whereas a computer program implements a simulation model. Simulation

modeling is usually a comparatively inexpensive modeling technique and is often used

as a substitute of mathematical modeling.

We shall consider an example in order to compare and contrast these two ap-

proaches. Let there be a production line and we model it as a queuing system. In

the analytical approach, the system is represented by a set of equations and the so-

lution to it. In the simulation approach, a computer program representation of the

queuing system is created. The program is run to produce several sample paths. If we

need to calculate the steady state performance measures (e.g., average work in the sys-

tem, distribution of waiting times etc.), these may be obtained respectively from the

mathematical expressions or the simulation statistics.
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Suppose a given mathematical model may be solved using analytic methods or

may be approximated using analytical approximations or simulation. If the analytical

solution to the model is known, it is usually easier and faster to compute in comparison

with the corresponding simulation model. Usually it is very difficult to model com-

plex systems by sufficiently detailed mathematical models and the unavailability of the

analytical solution to the model compells the modeler to resort to simulation.

There are several reasons behind choosing a simulation method to model a com-

plex system. First, even though it might be possible to find an analytical solution, the

derivation of the solution might be prohibitively time-consuming. Second, due to math-

ematical complexity, the analytical solution may not be attempted at all. Finally, even

if the analytical solution is attempted, it might not be possible to come up with an

appropriate model capable enough to represent the system’s specific aspects of interest.

On the other hand, simulation modeling is very versatile in representing any sys-

tem constrained by any kind of assumptions. It spares the modeler the pain of finding

the analytical solutions. The entire task boils down to write and run a simulation pro-

gram. An ideal simulation user applies analytical methods whenever possible, e.g., via

variance reduction techniques (VRTs).

In practice, there is no denial of the fact that the simulation methods are more

versatile than the analytical methods. These methods may be used to evaluate two

or more competing system designs or evaluate the probability of extremely rare events.

The application areas of simulation are numerous and the complex business and industry

applications demand simulation as the only option.

For a more detailed account on this, please refer to [3].

1.3 Motivation

In this dissertation, we study two problems. In the first part, we consider the two-stage

methods for comparing alternatives using simulation. Suppose there are a finite num-

ber of alternatives to compare, with each alternative having an unknown parameter
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that is the basis for comparison. The parameters are to be estimated using simulation,

where the alternatives are simulated independently. We develop two-stage selection

and multiple-comparison procedures for simulations under a general framework. The

assumptions are that each alternative has a parameter estimation process that satisfies

a random- time-change central limit theorem (CLT), and there is a weakly consistent

variance estimator (WCVE) for the variance constant appearing in the CLT. The frame-

work encompasses comparing means of independent populations, functions of means,

and steady-state means. One problem we consider of considerable practical interest and

not handled in previous work on two-stage multiple-comparison procedures is compar-

ing quantiles of alternative populations. We establish the asymptotic validity of our

procedures as the prescribed width of the confidence intervals or indifference-zone pa-

rameter shrinks to zero. Also, for the steady-state simulation context, we compare our

procedures based on WCVEs with techniques that instead use standardized time series

methods.

In the second part, we propose a new technique of estimating the variance pa-

rameter of a wide variety of stochastic processes. This new technique is better than the

existing techniques for some standard stochastic processes in terms of bias and variance

properties, since it reduces bias at the cost of no significant increase in variance.

1.4 Organization

This dissertation has two major chapters. Chapter 2 develops two-stage methods for

comparing alternatives using simulation. Chapter 3 describes a special technique for

the estimation of the variance parameter of a broad family of stochastic processes.
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CHAPTER 2

ASYMPTOTIC ANALYSIS OF TWO-STAGE SELECTION AND

MULTIPLE-COMPARISON PROCEDURES FOR SIMULATIONS

2.1 Introduction

The goal of many simulation studies is to compare alternative system designs and

identify the best one relative to some parameter. For example, consider comparing 10

designs for a computer system in terms of the 0.95 quantiles of their distributions of

the times to failure.

This chapter develops two-stage methods for comparing alternatives using simu-

lation. The methods we focus on are multiple comparisons with the best (MCB; [39])

and a selection procedure. In two-stage MCB the goal is to construct simultaneously

confidence intervals with confidence level 1−α for the difference in performance of each

alternative to that of the best, where the intervals have a pre-specified width parame-

ter δ. The selection procedure we develop uses the indifference-zone formulation of [5],

where the user is indifferent to alternatives whose parameter values are within δ of each

other. Here, the goal is to correctly choose the best alternative with a pre-specified

probability of correct selection (PCS) when the difference in the performance of the

best and second-best alternatives is at least δ. See [6], [72], and [46] for overviews of

multiple-comparison and selection procedures.

Previous work on multiple-comparison and selection procedures mostly focuses

on comparing means or steady-state means of alternative systems. In this chapter we

consider a general framework that encompasses these and many other parameters of

interest. Our assumptions are that the parameter estimators satisfy a random-time-

change central limit theorem (CLT) and that there is a weakly consistent variance

estimator (WCVE) for the variance parameter appearing in the CLT. For example, one

setting of considerable interest not covered by previous two-stage multiple-comparison
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procedures is comparing quantiles, which cannot be expressed as means of random

variables. Other problems covered by our work include comparing means of independent

populations, functions of means, steady-state means, and Kiefer-Wolfowitz stochastic

approximation ([44]).

Once outside the realm of independent and identically distributed (i.i.d.) sampling

of independent normal populations, it is often not possible to develop MCB and selection

procedures that guarantee proper coverage and PCS for finite sample sizes. Thus, we

instead establish the asymptotic validity of our MCB and selection procedures as δ → 0.

In practice, however, one cannot let δ → 0 but rather must choose a specific fixed δ,

and our asymptotic results gives the user confidence that if δ is chosen “small enough,”

then the PCS and MCB coverage will be “close” to the nominal level. Section 3.3 of

[51] provides further justification of the study of asymptotic procedures.

The references [21] and [46] have shown the asymptotic validity of selection and

MCB procedures for steady-state simulations when each system satisfies a functional

central limit theorem (FCLT). The reference [21] analyze two-stage MCB procedures

using standardized time series (STS) methods ([64], [29]). STS methods lead to estima-

tors of the process’s variance parameter that are not consistent ([29]), and many (but

not all) STS variance estimators asymptotically have a chi-squared distribution. The

reference [45] develop two fully sequential screening and selection procedures under dif-

ferent assumptions on their batched variance estimators. (Screening methods allow for

early elimination of alternatives that are clearly inferior.) First they consider a proce-

dure in which variances are estimated only once in an initial sample, and they assume

the variance estimators are exactly chi-squared (not just asymptotically). Their other

approach allows for updating the variance estimators, but now requires them to be

strongly consistent.

Two-stage procedures enjoy some advantages over fully sequential methods. First,

fully sequential methods are more complicated to implement since they require fre-

quently stopping and restarting the simulations of each alternative and switching among



7

the alternatives. Moreover, fully sequential procedures typically require strongly consis-

tent variance estimators, and [32] provide an example showing that if a weakly consistent

variance estimator is used in a fully sequential stopping procedure, it may no longer

be asymptotically valid. On the other hand, the two-stage procedures we consider here

require only weakly consistent variance estimators. Indeed, the two-stage procedures

of [21] (also see [55]) use STS variance estimators, which are not even consistent. Of

course, fully sequential procedures also have desirable properties compared to two-stage

methods; e.g., the former can result in smaller overall run lengths, especially when com-

bined with screening methods.

Some heuristic selection procedures for steady-state simulations have also been

studied under various assumptions on the simulated processes. The reference [41] pro-

poses heuristic fully sequential and two-stage selection procedures for regenerative pro-

cesses, and [71] develop a heuristic subset selection method for stationary normal pro-

cesses by using spectral estimators of the variance parameter.

We also provide an asymptotic comparison in the context of steady-state simula-

tions of our WCVE MCB methods and the STS MCB procedures of [21]. We show that

WCVE MCB methods asymptotically have strictly smaller average and less variable to-

tal run lengths than STS MCB algorithms. However, if we use batched STS methods

in which the number of batches grows to infinity, then WCVE and STS MCB methods

become equivalent.

The rest of the chapter has the following organization. Section 2.2 describes our

notation and assumptions. Section 2.3 details our two-stage MCB procedure with an

absolute-width parameter, and we modify it to be a selection procedure in Section 2.4.

We consider a relative-width MCB procedure in Section 2.5. Section 2.6 provides several

examples of applications satisfying the framework of Section 2.2. Section 2.7 contains

an asymptotic comparison of WCVE and STS MCB methods. Section 2.8 presents

some experimental results. The reference [56] presents some of the results from this
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chapter without proofs for the special case of steady-state simulations of regenerative

processes.

2.2 Notation and Assumptions

Suppose there are k < ∞ alternatives, labeled 1, 2, . . . , k, where each alternative i has

an associated parameter θi ∈ <, which is unknown and needs to be estimated using

simulation. We want to compare the k alternatives in terms of the parameters θ1, . . . , θk.

For i = 1, . . . , k, let (i) denote the index of the alternative having the ith smallest

parameter, so θ(1) ≤ θ(2) ≤ · · · ≤ θ(k). We assume that larger parameters are better, so

our goal is to identify alternative (k).

For each alternative i, we assume there is a continuous-time estimation process

θ̂i = [θ̂i(t) : t ≥ 0], where θ̂i(t) denotes an estimator of θi based on a simulation of

alternative i up to time t. (Discrete-time estimators θ̂i,n fit into our framework by

taking θ̂i(t) = θ̂i,btc, where bac denotes the largest integer less than or equal to a ∈ <.)

For example, if Xi = [Xi(t) : t ≥ 0] is a real-valued stochastic process having steady-

state mean θi, a natural choice for the estimation process is θ̂i(t) = (1/t)
∫ t

0
Xi(s) ds for

each t > 0. We will require that the estimation processes θ̂1, . . . , θ̂k are independent,

and that each satisfies a central limit theorem (CLT) with rate parameter η > 0:

tη
[
θ̂i(t)− θi

]
⇒ N(0, σ2

i ) as t→∞, for each i = 1, . . . , k, (2.1)

where “⇒”means weak convergence as defined in [9], 0 < σi < ∞ is a constant. In

many applications, η assumes the canonical value of 1/2 (although we do not require

this). For instance, this is typically the case in our previous example of estimating the

steady-state mean of a process Xi.

The total run lengths of our two-stage procedures are random, and we need to

strengthen the CLT in (2.1) so that it still holds when applied with a random-time

change. For each alternative i, let [T̃i(δ) : δ > 0] be a family of positive random
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variables such that

δ1/ηT̃i(δ)⇒ τ̃i as δ → 0, where 0 < τ̃i <∞ is a constant. (2.2)

We allow T̃i(δ), i = 1, . . . , k, to be dependent. Let τ̃i,δ = τ̃iδ
−1/η, and we assume the

following:

Assumption 1 There exists a constant 0 < η < ∞ such that for T̃i(δ), i = 1, . . . , k,

satisfying (2.2),

(
τ̃ ηi,δ

[
θ̂i(T̃i(δ))− θi

]
, i = 1, . . . , k

)
⇒
(
Ni(0, σ

2
i ), i = 1, . . . , k

)
as δ → 0, (2.3)

where Ni(0, σ
2
i ), i = 1, . . . , k, are independent normals.

The CLT in (2.1) is a special case of Assumption 1 since we can take T̃i(δ) = δ−1/η.

Section 2.6 provides various sufficient conditions for Assumption 1 to hold.

We call σ2
i in (2.1) and (2.3) the variance parameter associated with the estimation

process θ̂i. For each alternative i, we define a variance estimation process Vi = [Vi(t) :

t ≥ 0], and we assume Vi(t) is a weakly consistent estimator for σ2
i :

Assumption 2 For each alternative i, Vi(t)⇒ σ2
i as t→∞.

For example,in the previous example where θi represents the steady-state mean of

the process Xi, if we assume that the process Xi is regenerative, we can use the regenera-

tive method ([42]) to construct a variance estimation process Vi satisfying Assumption 2.

Section 2.6 provides more details on this and other simulation settings satisfying our

two assumptions.

2.3 Absolute-Width MCB

The following two-stage procedure, which is related to a method of [59], constructs

MCB intervals with absolute-width parameter δ > 0.
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Procedure A

1. Specify the confidence level 1− α, the desired absolute-width parameter δ of the

MCB confidence intervals, and the first-stage run length T0,i for each alternative

i.

2. Independently simulate each alternative i for a run length of T0,i.

3. For each alternative i, compute the total run length required as

Ti(δ) = max

T0,i,

(
γ
√
Vi(T0,i)

δ

)1/η
 , (2.4)

where the constant γ ≡ γ(k, 1−α) =
√

2 z(1−α)1/(k−1) , with zβ satisfying Φ(zβ) = β

for 0 < β < 1, Φ is the distribution function of a standard (mean 0 and variance 1)

normal distribution, η is as defined in Assumption 1, and Vi(t) is any estimator

satisfying Assumption 2.

4. For each alternative i, continue to simulate from time T0,i to Ti(δ), where the k

alternatives are simulated independently, and form the point estimator θ̃i(δ) =

θ̂i(Ti(δ)) of θi.

5. Use the absolute-width parameter δ to construct simultaneous MCB confidence

intervals

Ii(δ) =

[
−
(
θ̃i(δ)−max

6̀=i
θ̃`(δ)− δ

)−
,

(
θ̃i(δ)−max

` 6=i
θ̃`(δ) + δ

)+
]
, i = 1, . . . , k,

for θi−max 6̀=i θ`, i = 1, . . . , k, respectively, where −(β)− = min(β, 0) and (β)+ =

max(β, 0).

Let γ̄ ≡ γ̄(k, 1− α) =
√

2z̄k−1,1−α, where z̄p,β is the upper-β equicoordinate point

of a p-variate standard normal distribution with unit variances and common correlation

coefficient 1/2. Table B.1 of [6] provides values for z̄p,β for various p and β. When σi,

i = 1, . . . , k, are known, one can instead use a single-stage procedure with the total run

length for alternative i being (γ̄σi/δ)
1/η (Section 2.6 of [6]).
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Theorem 1 If the CLT in (2.1) and Assumption 2 hold and Procedure A is used with

first-stage run length T0,i = ζiδ
−λ for each i, where ζi > 0 and 0 < λ ≤ 1/η are any

constants, then

(i) δ1/η Ti(δ)⇒ τi as δ → 0, where

τi =

{
(γσi)

1/η if λ < 1/η
max(ζi, (γσi)

1/η) if λ = 1/η
. (2.5)

Moreover, if {Vi(t) : t ≥ 0} is uniformly integrable, then E[δ1/η Ti(δ)] → τi as

δ → 0.

In addition, if the CLT in (2.1) is strengthened to Assumption 1, then the following

also hold:

(ii) limδ→0 P {θi −max 6̀=i θ` ∈ Ii(δ), i = 1, . . . , k} > 1− α.

(iii) If η = 1/2 and 0 < λ < 2, then (i)–(ii) still hold when γ in (2.4) is replaced

with γ̄, and γ̄ < γ. Moreover, Ti(δ)/(γ̄σi/δ)
2 ⇒ 1 as δ → 0, and if, in addition,

{Vi(t) : t ≥ 0} is uniformly integrable, then E[Ti(δ)/(γ̄σi/δ)
2]→ 1 as δ → 0.

Part (i) shows that Ti(δ) is asymptotically equal to τiδ
−1/η to first order, where

τi is deterministic. Part (ii) establishes the asymptotic validity of the MCB intervals.

Part (iii) shows that when η in Assumption 1 has the canonical value 1/2 and the

first-stage run length is asymptotically negligible compared to 1/δ2 (i.e., when λ < 2),

Procedure A using γ̄ instead of γ in (2.4) is asymptotically efficient in the sense that

the total run length is asymptotically the same (to first order) as when the σi are

known. The last result generalizes work of [54], which shows the asymptotic efficiency

of Rinott’s procedure ([59]) for i.i.d. normal populations when there are only k = 2

populations.

2.4 Selection Procedure

As shown in [52], MCB procedures can often be modified to also be selection procedures

under the “indifference zone” formulation of [5], and we now modify Procedure A to
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do this. Specifically, we use δ as an indifference parameter, and assume that we are

indifferent to selecting any alternative i as long as θi > θ(k) − δ, i.e., the parameter θi

of the selected alternative i is within δ of the largest parameter. Define [1], [2], . . . , [k]

such that θ̃[1](δ) ≤ θ̃[2](δ) ≤ · · · ≤ θ̃[k](δ); i.e., [i] is the alternative with the ith largest

estimated parameter in step 4 of Procedure A. Then we make the following modification

to Procedure A:

Procedure A.2

Use steps 1–5 of Procedure A, and include the additional step:

6. Select alternative [k] as the best alternative.

We define a correct selection to be choosing an alternative i whose parameter θi

is within δ of the largest parameter θ(k). Thus, we define CSθ(δ) = {θ[k] > θ(k) − δ},

which is the event of a correct selection under parameters θ = (θ1, . . . , θk) when the

indifference parameter is δ. Define the preference zone to be

Ω(δ) = {θ = (θ1, . . . , θk) : θ(k) ≥ θ(k−1) + δ},

which is the space of parameter configurations such that only the best alternative is

desirable. Hence,

CSθ(δ) = {θ̃(k)(δ) > θ̃i(δ),∀i 6= (k)} for θ ∈ Ω(δ).

To study the asymptotic validity of Procedure A.2, we need to develop a frame-

work such that the result proven is theoretically nontrivial. Specifically, in the setup in

Theorem 1, the k alternatives do not change as we take the limit δ → 0, so the parame-

ters θi are fixed as we take the limit. It is typically the case that θ̃i(δ) = θ̂i(Ti(δ))→ θi

almost surely (a.s.) as δ → 0 by the strong law of large numbers since λ > 0 and

Ti(δ) ≥ T0,i = ζiδ
−λ → ∞ as δ → 0. Hence, if we add step 6 to Procedure A and
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take δ → 0, we will be able to select the best alternative with probability approach-

ing 1. To avoid this theoretical triviality, we allow the vector θ of parameters to vary as

δ → 0. However, this significantly complicates the analysis required ([20]), so we make

the following simplifying assumption:

Assumption 3 For each alternative i, there exists a process Yi = [Yi(t) : t ≥ 0] such

that θ̂i(t) = θi + Yi(t) for all t > 0, where the distribution of Yi does not depend on θi,

and Y1, . . . , Yk are independent.

This means that θi is a “location parameter,” and we can think of Yi as being a

“noise” process with distribution independent of θi. In this case, the CLT (2.1) becomes

tηYi(t) ⇒ N(0, σ2
i ) as t → ∞. The reference [46] adopt a similar framework for their

selection procedures for steady-state simulations and provide additional justification.

Theorem 2 If Assumptions 1–3 hold and Procedure A.2 is used with first-stage run

length T0,i = ζiδ
−λ for each alternative i, where ζi > 0 and 0 < λ ≤ 1/η are any

constants, then

lim
δ→0

inf
θ∈Ω(δ)

P

{
CSθ(δ), θi −max

`6=i
θ` ∈ Ii(δ), i = 1, . . . , k

}
> 1− α.

2.5 Relative-Width MCB

Procedure A produces MCB intervals with absolute-width parameter δ. However, in

many situations, one desires confidence intervals having a pre-specified relative preci-

sion, e.g., ±10% of the point estimate. Below we present a procedure to do this.

For i = 1, . . . , k, define 〈i〉 to be the alternative with the ith smallest parameter

estimate at the end of the first stage. Thus, θ̂〈1〉(T0,〈1〉) ≤ θ̂〈2〉(T0,〈2〉) ≤ · · · ≤ θ̂〈k〉(T0,〈k〉).

Procedure R

1. Specify the confidence level 1 − α, the desired relative-width parameter δ of the

MCB confidence intervals, and the first-stage run length T0,i for each alternative

i.
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2. Independently simulate each alternative i for a run length of T0,i.

3. For each alternative i, compute the total run length required as

Ti,r(δ) = max

T0,i,

(
γ
√
Vi(T0,i)

δ εi(T0)

)1/η
 , (2.6)

where T0 = (T0,1, T0,2, . . . , T0,k),

εi(T0) =

{
θ̂〈k〉(T0,〈k〉)− θ̂i(T0,i) if θ̂i(T0,i) < θ̂〈k〉(T0,〈k〉),

θ̂〈k〉(T0,〈k〉)− θ̂〈k−1〉(T0,〈k−1〉) if θ̂i(T0,i) = θ̂〈k〉(T0,〈k〉),
(2.7)

the constant γ is the same as in (2.4), η is as defined in Assumption 1, and Vi(t)

is any estimator satisfying Assumption 2.

4. For each alternative i, continue to simulate from time T0,i to Ti,r(δ), where the k

alternatives are simulated independently, and form the point estimator θ̃i,r(δ) =

θ̂i(Ti,r(δ)) of θi.

5. Use the relative-width parameter δ to construct the simultaneous MCB confidence

intervals

Ii,r(δ) =

[
−
(
θ̃i,r(δ)−max

`6=i
θ̃`,r(δ)− δ

∣∣∣∣θ̃i,r(δ)−max
`6=i

θ̃`,r(δ)

∣∣∣∣)− ,(
θ̃i,r(δ)−max

`6=i
θ̃`,r(δ) + δ

∣∣∣∣θ̃i,r(δ)−max
`6=i

θ̃`,r(δ)

∣∣∣∣)+
]
, i = 1, . . . , k,

for θi −max 6̀=i θ`, i = 1, . . . , k, respectively.

Theorem 3 Suppose the CLT in (2.1) and Assumption 2 hold and θ(k−1) < θ(k). If

Procedure R is used with first-stage run length T0,i = ζiδ
−λ for each alternative i, where

ζi > 0 and 0 < λ ≤ 1/η are any constants, then

(i) δ1/η Ti,r(δ)⇒ τi,r as δ → 0, where

τi,r =

{
(γσi/εi)

1/η if λ < 1/η
max(ζi, (γσi/εi)

1/η) if λ = 1/η
, (2.8)
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εi = θ(k)−θi if i 6= (k), and εi = θ(k)−θ(k−1) if i = (k). Moreover, if {Vi(t) : t ≥ 0}

is uniformly integrable, then E[δ1/η Ti,r(δ)]→ τi,r as δ → 0.

In addition, if the CLT in (2.1) is strengthened to Assumption 1, then the following

also hold:

(ii) limδ→0 P {θi −max 6̀=i θ` ∈ Ii,r(δ), i = 1, . . . , k} > 1− α.

(iii) If η = 1/2 and 0 < λ < 2, then (i)–(ii) still hold when γ in (2.6) is replaced with

γ̄ defined just before Theorem 1. Moreover, Ti,r(δ)/(γ̄σi/δ)
2 ⇒ 1 as δ → 0, and if,

in addition, {Vi(t) : t ≥ 0} is uniformly integrable, then E[Ti,r(δ)/(γ̄σi/δ)
2] → 1

as δ → 0.

2.6 Examples

Before presenting simulation examples that satisfy Assumptions 1 and 2, we first develop

general conditions that guarantee Assumption 1 holds. First, consider the following,

which is known as Anscombe’s condition ([4])

Condition 1 For each alternative i and any positive ε and ψ, there exist positive ci

and ti such that

P

{
sup

s : |s−t|≤cit
tη
∣∣∣θ̂i(s)− θ̂i(t)∣∣∣ > ε

}
< ψ, for all t ≥ ti.

Then we have the following:

Proposition 1 The CLT in (2.1) and Condition 1 together imply Assumption 1.

The reference [4] demonstrates that Condition 1 holds for many estimators arising in

practice, including the sample mean of i.i.d. samples, maximum likelihood estimators,

and quantile estimators.

A slightly stronger assumption than the CLT in (2.1) is a functional central limit

theorem (FCLT), which we now describe. Let C[0, 1] and C[0,∞) be the spaces of
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continuous functions on [0, 1] and [0,∞), respectively, and let D[0, 1] and D[0,∞) be

the spaces of right-continuous functions with left limits on [0, 1] and [0,∞), respectively;

see [10] for details. We equip C[0, 1] and D[0, 1] with the uniform and Skorohod-J1

topologies, respectively; e.g., see Sections 7 and 12 of [10]. Assume that each estimation

process θ̂i ∈ D[0,∞). Then an FCLT is as follows:

Condition 2 There exist finite positive constants η, υ and ω with 2ω − υ = 2η such

that for each i, Ui,n ⇒ Ui in D[0, 1] as n → ∞, where Ui,n = [Ui,n(t) : 0 ≤ t ≤ 1],

Ui = [Ui(t) : 0 ≤ t ≤ 1], Ui,n(t) = nηtω
[
θ̂i(nt)− θi

]
for 0 ≤ t ≤ 1, Ui(t) = σiBi(t

υ) for

0 ≤ t ≤ 1, and Bi = [Bi(t) : t ≥ 0] a standard Brownian motion.

As we will see in the examples below, in many applications, η, ω and υ assume the

canonical values of 1/2, 1 and 1, respectively (although we do not require this).

For any values of η, ω and υ, the limit Ui in Condition 2 satisfies P{Ui ∈ C[0, 1]} =

1 since Brownian motion has continuous sample paths with probability 1. Thus, the

FCLT in Condition 2 and the continuous-mapping theorem (e.g., Theorem 2.7 of [10])

imply nη
[
θ̂i(n)− θi

]
= Ui,n(1)⇒ Ui(1) = σiBi(1) ∼ N(0, σ2

i ) as n→∞, so the FCLT

implies the ordinary CLT in (2.1). The reference [8] shows that Condition 1 is true when

the FCLT in Condition 2 holds in C[0, 1], and his arguments can also be applied to show

the same when the FCLT holds in D[0, 1] by applying Lemma 1.6.4 and Theorem 1.6.4

of [67]. Therefore, Proposition 1 implies the following:

Proposition 2 The FCLT in Condition 2 implies the CLT in (2.1) and Condition 1,

so Assumption 1 holds.

We now provide several examples of simulation settings that satisfy Assumptions 1

and 2. In all but the last example, η = 1/2 in Assumption 1. Other examples for which

Assumption 1 holds with η 6= 1/2 are discussed in Glynn and Whitt [31] and [27].

Example 1 (Means of independent populations) Suppose there are k indepen-

dent (not necessarily normally distributed) populations and we perform i.i.d. sampling
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within each population. The goal is to determine the population i with the largest mean

θi. Let Zi,1, Zi,2, . . . be the i.i.d. samples from the ith population, and let σ2
i = Var(Zi,1),

which we assume satisfies 0 < σ2
i < ∞. Then we can define the discrete-time esti-

mation process [θ̂i,n : n = 1, 2, . . .] and the discrete-time variance estimation process

[Vi,n : n = 2, 3, . . .] with θ̂i,n = (1/n)
∑n

j=1 Zi,j and Vi,n = (1/(n−1))
∑n

j=1

(
Zi,j − θ̂i,n

)2

,

respectively. Donsker’s theorem (e.g., Theorem 14.1 of [10]) implies that each θ̂i,n satis-

fies the FCLT in Condition 2 with ω = υ = 1, so Assumption 1 holds by Proposition 2.

Also, Vi,n satisfies Assumption 2; e.g., see p. 73 of [65]. This scenario covers simulating

i.i.d. replications in a transient simulation.

Example 2 (Functions of means) For each alternative i, suppose Zi = (Z
(1)
i , . . . ,

Z
(d)
i ) ∈ <d is a random vector having mean νi = (ν

(1)
i , . . . , ν

(d)
i ) ∈ <d. Assume that

E[‖Zi‖2] < ∞, where ‖ · ‖ denotes the Euclidean norm on <d, so the covariance ma-

trix Σi of Zi is finite. Also, assume Σi is positive definite. Let θi = g(νi), where

g : <d → <, and assume g is continuously differentiable in a neighborhood of νi

with ∇g(νi) 6= 0, where ∇g denotes the gradient of g. Again, the goal is to com-

pare θ1, . . . , θk. Let Zi,1, Zi,2, . . . be i.i.d. copies of Zi. Also, let Z̄i,n = (Z̄
(1)
i,n , . . . , Z̄

(d)
i,n ),

where Z̄
(p)
i,n = (1/n)

∑n
j=1 Z

(p)
i,j is the sample mean of Z

(p)
i,1 , . . . , Z

(p)
i,n , for p = 1, . . . , d.

Then if we take θ̂i,n = g(Z̄i,n), each θ̂i satisfies the FCLT in Condition 2 with υ =

ω = 1 and σ2
i = (∇g(νi))

>Σi(∇g(νi)), where superscript > denotes transpose (e.g.,

see Theorem 3 of [31]), so Assumption 1 holds by Proposition 2. Let Σ̂i,n = (Σ̂
(p,q)
i,n :

p, q = 1, . . . , d) be the sample covariance matrix of Zi based on Zi,1, . . . , Zi,n; i.e.,

Σ̂
(p,q)
i,n = (1/(n − 1))

∑n
j=1[Z

(p)
i,j − Z̄

(p)
i,n ][Z

(q)
i,j − Z̄

(q)
i,n ]. It is straightforward to show that

Vi,n = (∇g(Z̄i,n))>Σ̂i,n(∇g(Z̄i,n)) satisfies Assumption 2.

Example 3 (Regenerative processes on the cycle time scale) For each alterna-

tive i, let Xi = [Xi(t) : t ≥ 0] be a continuous-time stochastic process evolving on a

state space Si under a probability measure Pi having expectation Ei. Let fi : Si → < be

a reward function on Si, and we want to compare the alternatives in terms of their long-
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run average rewards. Assume that for each alternative i, there exists a sequence of times

Ai,−1 = 0 ≤ Ai,0 < Ai,1 < · · · such that Xi is regenerative with respect to the sequence

(Ai,j : j ≥ 0) under measure Pi. For each j ≥ 1, [Xi(s) : Ai,j−1 ≤ s < Ai,j] is the jth

regenerative cycle of alternative i. Let τi,j = Ai,j−Ai,j−1 be the length of the jth regen-

erative cycle for process i, and define Yi,j =
∫ Ai,j
Ai,j−1

fi(Xi(t)) dt, which is the cumulative

reward over the jth regenerative cycle of the ith process. It is well known that (Yi,j, τi,j),

j = 1, 2, . . . are i.i.d. Thus, assuming that Ei[Y
2
i,j] < ∞ and Ei[τ

2
i,j] < ∞, we then can

use the setting of Example 2 to handle this case. Specifically, let Zi,j = (Z
(1)
i,j , Z

(2)
i,j ),

where Z
(1)
i,j = Yi,j and Z

(2)
i,j = τi,j, and let g(z1, z2) = z1/z2. In this case, we want to esti-

mate θ = Ei[Yi,1]/Ei[τi,1], and its estimator θ̂i,n = g(Z̄
(1)
i,n , Z̄

(2)
i,n ) = (

∑n
j=1 Yi,j)/(

∑n
j=1 τi,j)

satisfies Assumption 1 by Example 2, with σ2
i = Ei[(Yi,1 − θiτi,1)2]/(Ei[τi,1])2. Note

that θ̂i,n is the estimator of θi based on a fixed number n of cycles simulated. If

we let τ̄i,n = (1/n)
∑n

j=1 τi,j, then Vi,n = (1/(nτ̄ 2
i,n))

∑n
j=1

[
Yi,j − θ̂i,nτi,j

]2

satisfies

Assumption 2 ([30]).

Example 4 (Quantiles) Suppose there are k independent (not necessarily normally

distributed) populations and we perform i.i.d. sampling within each population. Let Hi

denote the distribution function of population i. For 0 < y < 1, let ξi,y denote the yth

quantile of Hi; i.e., ξi,y = inf{x : Hi(x) ≥ y} ≡ H−1
i (y). The goal is to determine for

fixed 0 < p < 1 the population i with the largest pth quantile θi = ξi,p. Assume that

for each i, Hi is differentiable at ξi,p, with H ′i(ξi,p) = hi(ξi,p) > 0, where H ′i denotes the

derivative of Hi and hi is the density of Hi (with respect to Lebesgue measure). Let

Zi,1, Zi,2, . . . be i.i.d. samples from distribution Hi, and let Hi,n denote the empirical

distribution function based on the first n samples; i.e., Hi,n(x) = (1/n)
∑n

j=1 1{Zi,j ≤

x}, where 1{C} denotes the indicator function of the event C. The sample pth quantile

is then H−1
i,n (p). Consequently, the discrete-time estimator θ̂i,n = H−1

i,n (p) satisfies the

CLT in (2.1) with η = 1/2 and σ2
i = p(1−p)/h2(ξi,p); e.g., see p. 77 of [65]. Assumption 1

holds by Theorem 5 of [4]. To construct a consistent estimator of σ2
i , let Vi,n = p(1 −

p)[(H−1
i,n (p + εn) − H−1

i,n (p − εn))/(2εn)]2. Then Bloch and Gastwirth (1968) show that
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Vi,n satisfies Assumption 2 when εn → 0 and nεn → ∞ as n → ∞. The reference [11]

shows that εn = O(n−1/5) minimizes the MSE1 of the estimator of 1/hi(ξi,p). Hall and

Sheather (1988) show that εn = O(n−1/3) asymptotically minimizes coverage error for a

confidence interval for a single quantile when using a single-stage procedure. Although

this is different than our context, since we consider simultaneous confidence intervals

for differences of quantiles and a two-stage procedure, using εn = O(n−1/3) for our MCB

intervals may be a reasonable choice in terms of coverage. Section 2.8.2 explores this

issue in some numerical experiments on a small example.

Example 5 (Steady-state simulations) Consider again the model in Example 3,

but we no longer assume that Xi is necessarily regenerative. Let

θ̂i(t) =
1

t

∫ t

0

fi(Xi(s)) ds, (2.9)

which is the time-average reward of the process Xi up to time t. Section 4.4 of [75]

discusses stochastic processes (including Markov chains, mixing processes, associated

processes and martingales) for which θ̂i(t) satisfies the FCLT in Condition 2 with ω =

υ = 1 and variance parameter σ2
i , so Assumption 1 holds by Proposition 2. Examples of

estimators of σ2
i satisfying Assumption 2 include regenerative estimators ([30]), spectral

estimators ([18]), autoregressive estimators ([24], p. 252), and various batch means and

batched area estimators in which the number of batches m → ∞ at an appropriate

rate as the run length increases ([19]). The references [49] and [12] provide overviews

of these techniques.

For example, consider the regenerative case, in which we form our estimator θ̂i(t)

in (2.9) based on simulating the process Xi up to a fixed time t, resulting in a random

number of cycles completed. This differs from Example 3, which simulated for a fixed

number n of cycles. Define Ni(t) = sup{j ≥ 0 : Ai,j ≤ t}, which is the number of

1If σ̂2 is a candidate estimator of σ2, then we may evaluate the performance of σ̂2 by deter-
mining its bias, Bias[σ̂2] ≡ E[σ̂2]−σ2; its variance, Var[σ̂2] ≡ E[(σ̂2−E[σ̂2])2]; and finally its
mean-squared error, MSE[σ̂2] ≡ E[(σ̂2 − σ2)2] = Bias2[σ̂2] + Var[σ̂2].
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regenerative cycles that process i completes by time t. Under the same assumptions as

in Example 3, the estimator θ̂i(t) in (2.9) satisfies Assumption 1 with σ2
i = Ei[(Yi,1 −

θiτi,1)2]/Ei[τi,1]. The variance estimator

Vi(t) =
1

t

Ni(t)∑
j=1

[
Yi,j − θ̂i(t)τi,j

]2

(2.10)

satisfies Assumption 2 ([30]).

Example 6 (Kiefer-Wolfowitz stochastic approximation) For each alternative i,

suppose βi(ρi) is a real-valued function that can be represented as βi(ρi) = E[Zi(ρi)],

where ρi ∈ < and βi is three-times differentiable on <. Suppose βi is minimized at

θi = ρ∗i , and ρ∗i is the unique solution to β′i(ρi) = 0, where β′i denotes the derivative

of βi. We want to compare the alternatives in terms of the θ1, . . . , θk. One approach

to finding ρ∗i is to apply to each alternative i the Kiefer-Wolfowitz stochastic approxi-

mation algorithm ([44]), which generates a sequence ρi,1, ρi,2, . . . that converges a.s. to

ρ∗i . Specifically, for each alternative i, let (ci,n : n ≥ 0) be a deterministic sequence

of nonnegative constants, and take ρi,n+1 = ρi,n − ci,nXi,n+1, where Xi,n+1 is generated

independently conditional on ρi,n, i.e.,

P{Xi,n+1 ∈ A | (ρi,j, Xi,j), j ≤ n} = P

{
Zi(ρi,n + hi,n+1)− Zi(ρi,n − hi,n+1)

2hi,n+1

∈ A
}
,

with Zi(ρi,n + hi,n+1) and Zi(ρi,n− hi,n+1) generated independently. We then define the

discrete-time estimation process θ̂i,n = ρi,n for n ≥ 0. Suppose we choose the constants

ci,n and hi,n as ci,n = cin
−1 and hi,n = hin

−1/3 for constants ci and hi. Assume that

ciβ
′′
i (ρ∗i ) > 1/3, where β′′i denotes the second derivative of βi. Then under additional

mild regularity conditions, [60] establishes the FCLT in Condition 2 with noncanonical

η = 1/3, υ = 2bi − 2/3, ω = bi, bi = ciβ
′′
i (ρ∗i ), σ

2
i = c2

iκ
2
i /((2bi − 2/3)(4h2

i )), and

κ2
i = 2Var[Zi(ρ

∗
i )], so Assumption 1 holds by Proposition 2.

The reference [73], p. 189, provides some directions on how to construct an esti-

mator Vi,n for σ2
i so that Assumption 2 holds.
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2.7 Asymptotic Comparison of WCVE and STS MCB Methods

We now compare our WCVE MCB methods and the STS MCB procedures of [21], when

both are applied in the setting of steady-state simulations from Example 5 of Section 2.6.

Hence, each alternative i has a corresponding simulated process Xi = [Xi(t) : t ≥ 0]

such that fi(Xi(t))⇒ fi(Xi(∞)) as t→∞, θi = E[fi(Xi(∞))] is the steady-state mean

reward, and Assumption 1 holds with η = 1/2. While Damerdji and Nakayama only

develop MCB procedures, their methods can also be extended to become asymptotically

valid selection procedures by assuming a framework similar to that used in Section 2.4

and Assumption 3.

Before doing the comparison, we need some background on STS methods. Assume

each simulated process Xi ∈ D[0,∞), and define the estimator θ̂i(t) as in (2.9). The

validity of STS methods requires the FCLT in Condition 2 to hold with η = 1/2

and υ = ω = 1, so Ui(t) = σiBi(t) and Ui,n(t) = n1/2
(
X̄i,n(t)− θit

)
with X̄i,n(t) =

1
n

∫ nt
0
fi(Xi(s)) ds. Both Ui,n(t) and Ui(t) are continuous at all t ≥ 0 almost surely,

and to simplify the discussion, we modify Condition 2 to hold in C[0,∞) rather than

C[0, 1]. We assume that the processes Xi, i = 1, . . . , k, are simulated independently, so

the limiting Brownian motions Bi, i = 1, . . . , k, in Condition 2 are independent.

Each STS method has a corresponding function g, whose square, when scaled and

applied to an integrated version of the original process (i.e., X̄i,n or Ui,n), provides an

estimate of the process’s variance parameter. To define the function g, first define the

restriction mapping r[0,1] : C[0,∞) → C[0, 1] with r[0,1](x)(t) = x(t) for 0 ≤ t ≤ 1

and x ∈ C[0,∞). Let B be a standard one-dimensional Brownian motion on [0,∞).

Assume g : C[0,∞)→ < satisfies the following conditions:

C1. The value of g(x) for x ∈ C[0,∞) depends only on [x(t) : 0 ≤ t ≤ 1]; i.e.,

there exists a function g[0,1] : C[0, 1] → < such that g(x) = g[0,1](r[0,1](x)) for all

x ∈ C[0,∞).

C2. g(βx) = βg(x) for all β ∈ < with β > 0 and x ∈ C[0,∞);
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C3. g(x− βe) = g(x) for all β ∈ < and x ∈ C[0,∞), where e ∈ C[0,∞) with e(t) = t;

C4. P{g(B) > 0} = 1;

C5. P{B ∈ D(g)} = 0, where D(g) denotes the set of discontinuities of g;

C6. g(B) has a density function fg with respect to Lebesgue measure and fg(β) > 0

for all β ∈ < with β > 0.

Conditions C2–C5 are from [29], and [55] and [21] added C1 and a weaker version

of C6 for two-stage STS procedures. For two-stage procedures, we rescale time so that

the first stage is the unit interval, so C1 ensures that g only depends on the process’s

evolution in the first stage. Instead of C6, [21] assume that P{g(B) ∈ A} = 0 for

countable sets A. However, all known STS functions g satisfy both conditions, and we

believe (although we have no formal proof) that conditions C1–C5 imply C6. Indeed,

many (but not all) STS functions g result in g2(B) having a χ2 distribution with some

number of degrees of freedom, so C6 holds. One exception is Calvin and Nakayama’s

maximum estimator ([15]), for which g(B) has a Weibull distribution, but this also

satisfies C6.

The reference [29] provide functions g for several STS methods, including Schruben

’s area estimator ([64]), and standardized maximum estimator. Also, they show that

batch means (BM) with a fixed numberm of batches has STS function gbm,m : C[0,∞)→

< with

gbm,m(x) =

[(
m

m− 1

) m∑
i=1

(∆mx(i/m)− x(1)/m)2

]1/2

, (2.11)

where ∆hx(t) = x(t)− x(t− 1/h). Note that ∆mB(i/m), i = 1, . . . ,m, are increments

of B, so are i.i.d. N(0, 1/m). Since B(1)/m is the sample average of these, (m −

1)g2
bm,m(B) is distributed as χ2(m−1), a χ2 distribution with m−1 degrees of freedom,

so E[g2
bm,m(B)] = 1.
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We now describe how to apply batching withm ≥ 1 batches to other STS methods.

For each j = 1, . . . ,m, define the mapping Λj,m : C[0,∞)→ C[0,∞) as

Λj,m(x)(t) =
√
m

[
x

(
j − 1 + t

m

)
− x

(
j − 1

m

)]
, t ≥ 0,

for x ∈ C[0,∞). Note that if B is a standard Brownian motion, then Λj,m(B) is

also a standard Brownian motion. Moreover, the processes [Λj,m(B)(t) : 0 ≤ t ≤ 1],

j = 1, . . . ,m, are independent standard Brownian motions on the unit interval by the

independent-increments property of B. Then for a STS function g and p > 0 such that

E[gp(B)] < ∞, we define the batched STS function ḡm with m ≥ 1 batches and using

the p-norm as

ḡm(x) =

(
1

m

m∑
j=1

gp ◦ Λj,m(x)

E[gp(B)]

)1/p

, (2.12)

where f ◦ h(x) = f(h(x)); see [15] and [29].

2.7.1 Overlapping area estimator

Let T be the first-stage sample size, b be the batch size and m = T/b be the ratio of

the sample size to the batch size (for more details, see Section 2.8). The bridging map

Θ : (x, s) ∈ C[0,∞)× [0, m−1
m

]→ Θ(x, s) ∈ C[0, 1] is defined by

Θ(x, s)(t) ≡
√
m

[[
x

(
s+

t

m

)
− x (s)

]
− t
[
x

(
s+

1

m

)
− x (s)

]]
for t ∈ [0, 1].

We may note that Θ(B, s)(·) is a standard Brownian bridge process on [0, 1].

Define a weighting function w(t) that satisfies the following conditions: w(t) is

continuous at every t ∈ [0, 1] and

Var

[∫ 1

0

w(t)Z(t)dt

]
= 1,

where Z(·) is a standard Brownian bridge process on [0, 1]. The weighting function

w(·) is normalized so that
∫ 1

0

∫ 1

0
w(s)w(t)(min(s, t) − st) ds dt = 1. Popular choices of
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weighting functions are w0(t) =
√

12, w2(t) =
√

840(3t2 − 3t + 1/2) and wcos,j(t) =
√

8πj cos(2πjt) with j = 1, 2, . . . for t ∈ [0, 1]. The last function is known as the

trigonometric weighting function and is used in our experiments.

Then the overlapping area map g : x ∈ C[0,∞)→ g(x) ∈ < is defined by

g2(x) =
m

m− 1

∫ 1− 1
m

0

[∫ 1

0

w(u)Θ(x, s)(u) du

]2

ds.

It may be verified that g : C[0,∞) → < satisfies the conditions C1-C6 of Section 2.7.

We shall show some of them. C1 follows from definition of g. We observe that

g2(βx) =
m

m− 1

∫ 1− 1
m

0

[∫ 1

0

w(u)Θ(βx, s)(u) du

]2

ds.

Now Θ(βx, s)(t) = βΘ(x, s)(t). Hence

g2(βx) =
m

m− 1

∫ 1− 1
m

0

[∫ 1

0

w(u)βΘ(x, s)(u) du

]2

ds

= β2 m

m− 1

∫ 1− 1
m

0

[∫ 1

0

w(u)Θ(x, s)(u) du

]2

ds

= β2g2(x).

So g(βx) = βg(x) and hence C2 is satisfied. Next, we observe that for all β ∈ < and

e ∈ C[0,∞) with e(t) = t, we have

Θ(x− βe, s)(t)

=
√
m

[[
(x− βe)

(
s+

t

m

)
− (x− βe) (s)

]
− t
[
(x− βe)

(
s+

1

m

)
− (x− βe) (s)

]]
=
√
m

[[
x

(
s+

t

m

)
− x(s)− β

(
s+

t

m

)
+ βs

]
− t

[
x

(
s+

1

m

)
− x(s)

− β
(
s+

1

m

)
+ βs

]]

=
√
m

[[
x

(
s+

t

m

)
− x(s)− β t

m

]
− t
[
x

(
s+

1

m

)
− x(s)− β/m

]]
=
√
m

[[
x

(
s+

t

m

)
− x(s)

]
− t
[
x

(
s+

1

m

)
− x(s)

]]
= Θ(x, s)(t).
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So g(x− βe) = g(x). Hence C3 is also satisfied.

The proof of C5 follows from a modification of the proof of Proposition A-1 of [2].

2.7.2 Overlapping CvM estimator

For the details of this estimator, see [2]. We maintain the same notations from the

previous subsection. We also define C(wN) ≡
∫ 1

0
wN(t)(Z(t))2 dt, where wN(·) is the

normalized weighting function (the subscript N is used to emphasize the fact that the

weighting function is normalized) so that E[C(wN)] = 1 and d2wN(t)/dt2 is continuous

at every t ∈ [0, 1]. Here, C(wN) is the limiting functional of the weighted CvM estimator

for σ2.

Then we define the overlapping CvM map g : x ∈ C[0,∞)→ g(x) ∈ < as

g2(x) =
m

m− 1

∫ 1− 1
m

0

∫ 1

0

wN(u) [Θ(x, s)(u)]2 du ds.

2.7.3 Comparison of WCVE and STS MCB procedures

We now describe the two-stage MCB procedures of [21]. Let T0,i be the first-stage run

length, and for gm defined as either gbm,m in (2.11) or ḡm in (2.12), let

V ′i,m(T0,i) = T0,i g
2
m(X̄i,T0,i) = g2

m(Ui,T0,i) (2.13)

as the first-stage estimate of σ2
i , where the second equality in (2.13) follows from C2

and C3. Then the STS MCB method for constructing intervals with absolute-width

parameter δ is the same as Procedure A in Section 2.3 except (2.4) is changed to

T ′i,m(δ) = max

(
T0,i,

γ′2V ′i,m(T0,i)

δ2

)
, (2.14)

where γ′ is a constant to be discussed shortly, and we replace θ̃i(δ) in steps 4 and 5 with

θ̃′i(δ) = θ̂i(T
′
i,m(δ)). Similar modifications can be made to Procedure R of Section 2.5

to construct STS MCB intervals with relative-width parameter δ. ([21] actually define

their two-stage STS MCB procedures to determine the total number of batches to
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simulate for each system, but these can easily be modified to determine instead the

total run length required, as in (2.14).)

We now provide more details on the constant γ′ in (2.14). Suppose that we want

to construct STS MCB intervals having asymptotic joint confidence level at least 1−α.

Then γ′ = γ′(k, 1− α, gm) in (2.14) is chosen to satisfy

E

[
k−1∏
i=1

Φ

(
γ′

[(1/g2
m(Bi)) + (1/g2

m(Bk))]
1/2

)]
= 1− α. (2.15)

In contrast our WCVE MCB method requires the constant γ = γ(k, 1 − α) in (2.4),

which satisfies [
Φ(γ/

√
2)
]k−1

= 1− α, (2.16)

so γ =
√

2 z(1−α)1/(k−1) .

When gm is the BM function gbm,m in (2.11) with m ≥ 2 batches, [(1/g2
m(Bi)) +

(1/g2
m(Bk))] in (2.15) is distributed as (m − 1)[(1/χ2

i ) + (1/χ2
k)], where χ2

1, . . . , χ
2
k are

independent χ2 random variables, each with m− 1 degrees of freedom. In this case the

parameter γ′(k, 1−α, gbm,m) in (2.15) is exactly Rinott’s constant ([59]) in his two-stage

selection procedure for comparing independent normal populations when the first-stage

sample size for each population is m. The reference [6] provide tables of values for γ′.

We are now in a position to compare WCVE and STS MCB procedures in the

steady-state simulation setting, where η = 1/2. We first state our assumptions used in

the comparison:

Assumption 4 The k alternatives are simulated independently, and satisfy the FCLT

in Condition 2 in C[0,∞) with η = 1/2. The STS function gm is either the batch means

function gbm,m in (2.11) with m ≥ 2 batches, or the g functions defined in Subsections

2.7.1 and 2.7.2, or the batched STS function ḡm in (2.12) with m ≥ 1 batches and

p > 0 such that E[gp(B)] < ∞ and E[ḡ2
m(B)] = 1, where B is a standard Brownian

motion. The first-stage run length for each alternative i for both the WCVE and STS

MCB methods is T0,i = ζiδ
−2 for any constant ζi > 0.
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The assumption that E[ḡ2
m(B)] = 1, which we earlier showed holds for BM, is not

restrictive as long as E[ḡ2
m(B)] <∞. It ensures that the limiting variance estimator is

unbiased since (2.13) and the FCLT imply V ′i,m(T0,i)⇒ g2
m(σiBi) = σ2

i g
2
m(Bi) as δ → 0

by C2.

We now compare the STS and WCVE MCB methods in terms of their total run

lengths T ′i,m(δ) and Ti(δ). We also compare the methods in terms of the potential total

run lengths, which we define as the second terms in the maximums in (2.14) and (2.4).

Specifically, these are

T̄ ′i,m(δ) =
γ′2V ′i,m(T0,i)

δ2
and T̄i(δ) =

γ2Vi(T0,i)

δ2
, (2.17)

for the STS and WCVE MCB methods, respectively. For the comparisons, we define

the ratios Ri,m(δ) = T ′i,m(δ)/Ti(δ) and R̄i,m(δ) = T̄ ′i,m(δ)/T̄i(δ), and recall the definition

of τi in (2.5).

Theorem 4 Under Assumptions 2 and 4, the following hold for each number m ≥ 1 of

batches and for each alternative i:

(i) δ2T ′i,m(δ) ⇒ τ ′i,m as δ → 0, where τ ′i,m = max[ζi, γ
′2σ2

i g
2
m(Bi)] > 0 a.s. is nonde-

generate.

(ii) γ′(k, 1− α, gm) > γ(k, 1− α).

(iii) Ri,m(δ) ⇒ Ri,m and R̄i,m(δ) ⇒ R̄i,m as δ → 0, where Ri,m =
τ ′i,m
τi

and R̄i,m =

γ′2g2m(Bi)
γ2

.

(iv) If {V ′i,m(t) : t > 0} is uniformly integrable, then

limδ→0E [Ri,m(δ)] > 1. If {V ′i,m(t)/Vi(t) : t > 0} is uniformly integrable, then

limδ→0E
[
R̄i,m(δ)

]
=
[
γ′(k,1−α,gm)
γ(k,1−α)

]2

> 1.

Theorem 4(iv) shows that on average, the total run length for STS MCB methods

is asymptotically strictly larger than that for WCVE MCB methods. The reason is that
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for a fixed number m of batches, the STS variance estimator is not consistent as the

first-stage run length grows, whereas the estimator Vi(t) is consistent by Assumption 2.

We now examine the variability of the total run lengths Ti(δ) and T ′i,m(δ) (de-

fined in (2.4) and (2.14), respectively) and the potential total run lengths T̄i(δ) and

T̄ ′i,m(δ) (defined in (2.17)) of the WCVE and STS MCB methods. Theorem 1(ii) shows

δ2Ti(δ)⇒ τi as δ → 0 for WCVE MCB procedures. For STS MCB methods with a fixed

number m ≥ 1 of batches, Theorem 4(i) gives δ2T ′i,m(δ)⇒ τ ′i,m as δ → 0. In the case of

WCVE MCB, τi > 0 is deterministic, whereas for STS MCB, τ ′i,m is a nondegenerate

positive random variable. Hence, we see that STS MCB methods have asymptotically

more variable total run lengths than WCVE MCB procedures. The reference [57] quan-

tifies this observation another way by comparing the limiting variances (appropriately

normalized) of Ti(δ), T
′
i,m(δ), T̄i(δ) and T̄ ′i,m(δ).

We now establish what happens to STS MCB methods as the number of batches

grows large.

Theorem 5 Under Assumptions 2 and 4, the following hold:

(i) γ′(k, 1− α, gm)→ γ(k, 1− α) as m→∞.

(ii) limm→∞ limδ→0 δ
2T ′i,m(δ)⇒ τi, where τi is defined in (2.5).

(iii) Ri,m ⇒ 1 and R̄i,m ⇒ 1 as m→∞.

(iv) If {g2
m(B) : m ≥ 1} is uniformly integrable, then E [Ri,m] → 1 and E

[
R̄i,m

]
→ 1

as m→∞.

From this we now can make the following comparisons of the STS MCB procedures

applied to the limiting Brownian motions and our WCVE MCB methods. As the

number of batches grows large, STS MCB methods become comparable to WCVE

MCB methods in terms of overall run lengths by Theorem 5(iii)–(iv). But for any

fixed number of batches, STS MCB methods have asymptotically longer run lengths on

average than WCVE MCB methods by Theorem 4(iv).
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As an illustration, we list values of γ(k, 1− α) for the WCVE MCB methods and

γ′(k, 1−α, gbm,m) for the BM MCB methods for k = 4 systems and nominal confidence

level 1− α = 0.9 for different numbers m of batches:

γ′(4, 0.9, gbm,10) = 2.912,

γ′(4, 0.9, gbm,30) = 2.666,

γ′(4, 0.9, gbm,50) = 2.627,

γ(4, 0.9) = 2.571.

The values of γ′(4, 0.9, gbm,m) are always strictly greater than γ(4, 0.9), as noted by

Theorem 4(ii), but γ′(4, 0.9, gbm,m) approaches γ(4, 0.9) as m gets large, which is con-

sistent with Theorem 5(i). For comparison, γ̄(4, 0.9) = 2.452; see Theorem 1(iii).

2.8 Experimental Results

In this section, we demonstrate the asymptotic validity of our procedures as the pre-

scribed width of the confidence intervals shrinks to zero. Also, for the steady-state

simulation context, we compare our procedures based on WCVEs (see Sections 2.3 and

2.5) with techniques that instead use standardized time series methods (see Section

2.7). The simulation experiments are conducted for comparison of the mean waiting

time of M/M/1 queues for both medium and heavy traffic intensities. We have also

considered the comparison of a fixed quantile of the longest path of different stochastic

activity networks (SANs).

2.8.1 M/M/1 queues

We ran simulation experiments comparing the WCVE and STS MCB procedures with

relative-width parameter δ. We compared k = 4 systems, where each system corre-

sponds to an M/M/1 queue. For each system i, we simulated the discrete-time process
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of waiting times [Wi,j : j = 0, 1, 2, . . .]. Each system’s simulation started with Wi,0 = 0,

i.e., the initial customer has no wait, and we used Lindley’s equation to simulate the

successive waiting times as Wi,j+1 = max(Wi,j + Si,j −Ai,j, 0), where Si,j is the service

time of the jth customer and Ai,j is the interarrival time between the jth and (j+ 1)th

customers in the ith system. We conducted two sets of experiments. For both sets, the

service rate is 1. In the first set, the 4 systems have interarrival rates 0.50, 0.51, 0.51,

0.51, respectively (see Tables 2.1 and 2.2). In the second set, we deal with higher traffic

intensities and consider the following interarrival rates: 0.80, 0.81, 0.81 and 0.81 (see

Tables 2.3 and 2.4).

Let θi be the steady-state expected waiting time for system i. We know that

θi = E2[Sj,1]/(E[Ai,1] − E[Sj,1]). Each system i is regenerative with regenerations

occurring when Wi,j = 0, so Assumption 1 holds with η = 1/2 (see Example 5 in

Section 2.6). We compare the systems in terms of the θi, where we assume smaller θi

is better.

We use the regenerative method’s (RM) variance estimator in (2.10) in the WCVE

MCB method. We applied Procedure R using γ rather than γ̄; see Theorem 3(iii). For

the STS MCB procedure, we employed batch means with either m = 10 batches (BM10)

or 20 batches (BM20).

For the STS MCB procedure, we also used the overlapping area estimator with

trigonometric weighting functions, which we briefly described in Section 2.7.1. For the

details of this algorithm, please refer to [1] and its online supplement. In Section 2.7.1,

we defined the overalapping area estimator as applied to a continuous-time process, and

we now explain how to compute it for a discrete-time process.

Suppose we have a discrete-time simulation output process {Xi : i = 1, 2, . . .}.

Let T be the first-stage run length. Consider a sample {Xi : i = 1, . . . , T}, which is

divided into (T − b + 1) overlapping batches, each of size b so that the observations

{Xi+k : k = 0, . . . , b−1} constitute batch i for i = 1, . . . , T −b+1. Let m ≡ T/b denote

the ratio of the sample size to the batch size. The standardized time series computed
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from overlapping batch i is

Y o
i,b(t) ≡ bbtc(X

o

i,b −X
o

i,bbtc)/
√
b

for t ∈ [0, 1] and i = 1, . . . , T − b+ 1, where

X
o

i,j ≡
1

j

j−1∑
k=0

f(Xi+k),

for i = 1, . . . , T − b+ 1 and j = 1, . . . , b. We define the above function f as the identity

function f(x) = x in the experiments.

We define the overlapping area estimator computed from overlapping batch i by

Aoi (w; b) ≡

[
1

b

b∑
k=1

w

(
k

b

)
Y o
i,b

(
k

b

)]2

, i = 1, . . . , T − b+ 1.

The overlapping area estimator for σ2 is

Ao(w;m, b) ≡ 1

T − b+ 1

T−b+1∑
i=1

Aoi (w; b).

In particular, we have used the following estimator:

A
o

l (wcos,j;m, b) ≡ (1/l)
l∑

j=1

Ao(wcos,j;m, b),

where wcos,j(t) =
√

8πj cos(2πjt). This family of estimators is first-order unbiased,

since each of them is the average of l first-order unbiased estimators. We have used

this estimator with l = 1 (though it is possible to choose l = 2, 3, . . .), batch size T/10

(which we denote as Area10) or T/20 (denoted as Area20), where T is the first-stage

run length. In the initialization step, we arbitrarily choose the user-selected positive

integer j = 1. Other possible choices could be 2, 3, . . ..

From [1], we find that the area estimator A
o

1(wcos,1;m, b) that we used here ap-

proximately follows a Chi-square distribution:

A
o

1(wcos,1;m, b) ∼ E(A
o

1(wcos,1;m, b))χ2(veff)

veff

,
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Here, χ2(k) is a Chi-square distribution with k degrees of freedom and

veff = Round
(

2E2(A)
Var(A)

)
and Round(z) denotes rounding of z towards the nearest integer.

The variance of the estimator is given by

Var(A
o

1(wcos,1;m, b)) =
((16π2 + 30)m− (20π2 + 33))σ4

(24π2(m− 1)2
.

For the overlapping area estimator, E(A
o

1(wcos,1;m, b)) ≈ σ2. See Theorem 3 of

[2] for details. The values of veff are 23 and 48 for m = 10 and m = 20 respectively. The

values of γ′ are available from Table 2.13, p. 62 of [6] and also from the FORTRAN

program available from [7].

Recall we defined the first-stage run length for system i as T0,i = ζiδ
−λ, and in

our experiments we took ζi = ζ for all i. We varied the values of ζ, δ, and λ, which

gave rise to different first-stage run lengths, where the run length denotes the number

of customers simulated. We used ζ = 256, 1024, 4096; δ = 0.2, 0.1, 0.05; and λ = 1,

2 for the first set of experiments (moderate traffic intensity) and ζ = 8320, 16640,

33280; δ = 0.2, 0.1, 0.05; and λ = 1, 2 for the second set of experiments (heavy traffic

intensity).

We ran 2000 independent replications in each experiment to estimate the MCB

intervals’ joint coverage, which had a nominal lower bound of 1 − α = 0.9. In each

replication we computed the sum of the scaled total run lengths across all systems as∑4
i=1 δ

2Ti(δ) and
∑4

i=1 δ
2T ′i,m(δ). We then calculated the sample mean and standard

deviation of these quantities across the replications.

Table 2.1 and Table 2.3 contain the coverage results for the first set of experiments

and the second set of experiments respectively. For each method, coverage increases

as δ decreases for fixed ζ, with coverages larger than or just slightly below 90% for

at least the larger values of ζ when δ is small. Thus, we see the asymptotic validity

of Theorem 3(i) and procedure R.1 of [21] taking effect. Coverage also increases as ζ

increases for fixed δ for each method. In addition, the coverages are higher for λ = 2

than for λ = 1, so it appears that the shorter first-stage lengths (λ = 1) require smaller
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Table 2.1 Coverage results (in percent) for moderate traffic intensity cases

λ = 1 λ = 2
ζ ζ

δ Method 256 1024 4096 256 1024 4096

0.05 BM10 61.30 70.50 92.20 78.00 96.00 100.00
Area10 61.35 69.40 92.25 77.70 95.80 99.85
BM20 60.70 69.55 92.30 77.85 95.85 99.90
Area20 60.20 68.90 92.30 77.30 95.55 99.55

RM 60.10 69.20 92.15 77.20 95.50 99.45
0.1 BM10 60.30 66.30 84.85 77.80 95.15 99.80

Area10 57.90 65.25 84.80 77.70 94.80 98.85
BM20 57.65 65.85 84.70 77.40 94.65 99.30
Area20 57.15 66.00 84.55 77.05 94.70 98.75

RM 56.05 65.75 84.60 77.00 94.50 98.20
0.2 BM10 55.90 62.20 74.45 73.70 94.35 97.75

Area10 54.20 61.05 74.25 73.05 93.65 97.40
BM20 53.75 61.10 74.40 73.20 93.90 97.55
Area20 52.40 60.05 74.05 72.85 93.55 97.35

RM 52.05 59.75 74.10 72.80 92.50 96.80

δ for the asymptotics to take effect than for the longer first-stage lengths (λ = 2).

All of the coverages for λ = 1 are below the nominal lower bound of 90%, so we see

the asymptotic validity of the MCB intervals now appears to hold. For almost all the

experiments, BM10 has higher coverage than RM, which seems to indicate that batch

means with a small number of batches is more robust than the regenerative method.

In contrast, when the coverages are below the nominal lower bound, the values for

BM20 are lower than both RM and BM10. This appears to be because for a fixed run

length, the Brownian approximation on which BM is based breaks down as the number

of batches increases; this leads to a degradation in the BM estimate of the variance as

m increases, which leads to poorer coverage. We also observe that when the coverages

are above the nominal level, coverage of Area10 is greater than or equal to the coverage

of Area20, which in turn is greater than RM.

Tables 2.2 and 2.4 contain the results of the sum of the scaled total run lengths

across all systems for the first and the second set of experiments respectively. We

begin by making the following observations for the combinations of method, δ, λ and

ζ that have coverage levels in Table 2.1 at least or just slightly below 90%. First, for
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Table 2.3 Coverage results (in percent) for high traffic intensity cases

λ = 1 λ = 2
ζ ζ

δ Method 8320 16640 33280 8320 16640 33280

0.05 BM10 78.45 82.85 87.45 93.90 97.70 98.80
Area10 78.35 82.80 85.95 93.60 97.20 98.75
BM20 77.55 83.20 86.70 93.70 97.10 98.70
Area20 78.35 82.75 85.60 93.60 97.20 98.45

RM 77.50 82.85 85.90 93.80 97.20 98.60
0.1 BM10 68.40 83.65 89.35 88.50 93.95 98.50

Area10 67.25 82.90 87.80 88.25 93.50 97.50
BM20 68.80 84.40 87.80 88.10 93.75 97.90
Area20 67.65 81.95 86.85 88.00 93.10 97.50

RM 66.70 82.30 86.95 88.05 93.95 97.75
0.2 BM10 58.80 78.75 82.40 79.75 89.60 96.55

Area10 59.65 77.80 82.05 79.85 88.30 95.95
BM20 59.60 78.25 81.55 81.00 88.20 96.00
Area20 59.95 77.35 82.55 79.65 89.80 95.40

RM 59.40 77.30 81.15 79.40 89.20 94.75

these cases, RM has smaller or equal average total run length than BM10 and BM20,

and also Area10 and Area20, which agrees with Theorem 4. The same is true for

the standard deviation of the total run lengths; see the discussion about run-length

variability following the proof of Theorem 4. Also, BM20 has average total run length

close to that of RM, which is consistent with Theorem 5. However, the variance for

BM20 is larger than the variance for RM, so it appears the asymptotics as the number

m of batches grows large hold sooner for the mean run length than for the variance.

Finally, the asymptotic (as δ gets small) orderings for the mean and variance take effect

sooner for λ = 2 than for λ = 1. The mean run length of BM20, Area20 and RM are

very close to each other.

2.8.2 Stochastic Activity Networks (SAN)

SANs are useful in modeling, planning and management of large projects. We consider

the same SAN used by [40]. There are 3 paths and 5 activities in the network. The

duration of the ith activity is Ai, 1 ≤ i ≤ 5, which are i.i.d. exponentials with rate 1.

Let us denote the density function of Ai by fi for 1 ≤ i ≤ 5. Hence fi(t) = exp(−t)
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for t ≥ 0. We specify the jth path by the set of activities on path j and denote the

set by Bj. Let B1 = {1, 2}, B2 = {1, 3, 5} and B3 = {4, 5}. The length of path j is

Tj =
∑

i∈Bj Ai. The length of the longest path is X = max(T1, T2, T3).

Our objective is to compare k = 4 versions of the SAN described above. Since we

shall work with more than one SAN, we shall use i to index the ith SAN, for i = 1, 2, 3, 4.

In particular, Xi will denote the length of the longest path of the ith SAN and ξp,i will

denote the pth quantile of Xi. The four SANs are as in the previous paragraph but

three of them have an additional “delay” element introduced at the end, while one SAN

does not have the delay element. For our experiments, we have chosen the value of the

delay element as 0.30. The SANs will be compared in terms of ξp,i for i = 1, 2, 3, 4 and

p = 0.95. Here, we assume that smaller values are better.

We used the variance estimator given in Example 4. We have considered two

different choices of εn viz., εn = cn−1/5 and also εn = cn−1/3 , where n is the first-

stage run length and the constant c is chosen as 0.1. In this case also, the first-stage

run length for system i is taken as n = ζδ−λ. Table 2.5 contains the coverage results

and Table 2.6 contains the results of the sum of the scaled total run lengths across all

systems. We observe that in this case, the coverage values are usually higher when we

choose εn = 0.1n−1/5 instead of choosing εn = 0.1n−1/3.

Since the run lengths are higher and less variable in the case of the estimator given

by [11] (i.e., the estimator corresponding to εn = 0.1n−1/5) at least when λ = 1, this

might lead to higher coverage. The theory of asymptotic coverage error minimization

in the case of a single quantile is probably not applicable for the comparison of multiple

quantiles and that could be the possible reason behind the poorer coverage of the

estimator given by [34] (i.e., the estimator corresponding to εn = 0.1n−1/3).
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Table 2.5 Coverage results (in percent) for the 0.95 quantile of the longest path of a
SAN

λ = 1 λ = 2
ζ ζ

δ εn
0.1

1024 2048 4096 1024 2048 4096

0.05 n−1/3 45.40 51.20 62.95 72.65 87.40 96.95
n−1/5 49.55 54.05 64.20 73.30 88.15 97.30

0.1 n−1/3 44.20 47.70 53.30 71.20 86.80 95.75
n−1/5 46.30 48.50 54.65 72.65 87.65 96.20

0.2 n−1/3 42.60 44.25 45.45 68.90 83.75 94.30
n−1/5 45.00 46.55 47.55 69.20 83.95 94.35

2.9 Proofs

2.9.1 Proof of Theorem 1

We start by proving part (i). Since T0,i = ζiδ
−λ for ζi > 0 and 0 < λ ≤ 1/η, (2.4)

implies

τi(δ) ≡ δ1/η Ti(δ) = max

(
ζiδ

(1/η)−λ,

(
γ
√
Vi(T0,i)

)1/η
)
. (2.18)

Hence, Assumption 2 and the generalized continuous-mapping theorem (e.g., Theorem

3.4.4 of [75]) imply

δ1/η Ti(δ) = τi(δ)⇒ τi (2.19)

as δ → 0, where τi is defined in (2.5) and is deterministic, which proves the first part

of (i). The uniform-integrability assumption and Theorem 3.5 of Billingsley (1999)

establish the rest of (i).

Now we establish (ii). Define the event

G(δ) =
{(
θ̃i(δ)− θ̃(k)(δ)

)
−
(
θi − θ(k)

)
< δ,∀i 6= (k)

}
, (2.20)

and we can establish

G(δ) ⊆
{
θi −max

j 6=i
θj ∈ Ii(δ), i = 1, 2, . . . , k

}
(2.21)
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by following a line of reasoning developed by Hsu (1984) (also see pages 150–151 of [38]

and [21]). We now show that

lim
δ→0

P{G(δ)} > 1− α. (2.22)

Define

Wi(δ) =
1

δ

[
θ̃i(δ)− θi

]
=

1

τ ηi
(τiδ

−1/η)η
[
θ̂i(Ti(δ))− θi

]
, (2.23)

and note that

G(δ) =

 Wi(δ)−W(k)(δ)[(
σ2
i /τ

2η
i (δ)

)
+
(
σ2

(k)/τ
2η
(k)(δ)

)]1/2
<

1[(
σ2
i /τ

2η
i (δ)

)
+
(
σ2

(k)/τ
2η
(k)(δ)

)]1/2
, ∀i 6= (k)

 .

Observe that each τj(δ) ≥
(
γ
√
Vj(T0,j)

)1/η

≥ 0 by (2.18), so τ 2η
j (δ) ≥ γ2Vj(T0,j), and

H(δ) ⊆ G(δ), (2.24)

where

H(δ) =

 Wi(δ)−W(k)(δ)[(
σ2
i /τ

2η
i (δ)

)
+
(
σ2

(k)/τ
2η
(k)(δ)

)]1/2

− γ[
(σ2

i /Vi(T0,i)) +
(
σ2

(k)/V(k)(T0,(k))
)]1/2

< 0,∀i 6= (k)

 . (2.25)

We now want to show that

lim
δ→0

P{H(δ)} > 1− α, (2.26)

which will then establish (2.22).

To prove (2.26), first recall (2.19), where 0 < τi < ∞ is deterministic. Hence,

(2.23) and Assumption 1 ensure (Wi(δ), i = 1, . . . , k) ⇒ (Wi, i = 1, . . . , k) as δ → 0,

where each Wi ∼ N(0, σ2
i /τ

2η
i ) and Wi, i = 1, . . . , k, are independent. Since Vi(T0,i) =

Vi(ζiδ
−λ) ⇒ σ2

i by Assumption 2 with σ2
i deterministic, ((Wi(δ), τi(δ), Vi(ζiδ

−λ)), i =
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1, . . . , k)⇒ ((Wi, τi, σ
2
i ), i = 1, . . . , k) as δ → 0 by (2.19) and Theorem 3.9 of [10]. The

continuous-mapping theorem then implies Wi(δ)−W(k)(δ)[(
σ2
i /τ

2η
i (δ)

)
+
(
σ2

(k)/τ
2η
(k)(δ)

)]1/2
− γ[(

σ2
i /Vi(ζiδ

−λ)
)

+
(
σ2

(k)/V(k)(ζiδ−λ)
)]1/2

,∀i 6= (k)


⇒

(
Zi −

γ√
2
,∀i 6= (k)

)
(2.27)

as δ → 0, where Zi = [Wi−W(k)]/[(σ
2
i /τ

2η
i )+(σ2

(k)/τ
2η
(k))]

1/2. Because the limiting random

vector in (2.27) is multivariate normal and therefore has a continuous distribution,

P{Zi − γ/
√

2 = 0,∀i 6= (k)} = 0, so

lim
δ→0

P{H(δ)} = P

{
Zi −

γ√
2
< 0,∀i 6= (k)

}
(2.28)

by the Portmanteau theorem (e.g., Theorem 2.1 of [10]).

Each Zi ∼ N(0, 1), and for i 6= j with i, j 6= (k),

Cov(Zi, Zj) =
σ2

(k)/τ
2η
(k)([(

σ2
i /τ

2η
i

)
+
(
σ2

(k)/τ
2η
(k)

)] [(
σ2
j/τ

2η
j

)
+
(
σ2

(k)/τ
2η
(k)

)])1/2
, (2.29)

which is positive. Hence, Slepian’s [68] inequality implies

P

{
Zi <

γ√
2
,∀i 6= (k)

}
>
∏
i 6=(k)

P

{
Zi <

γ√
2

}
=
∏
i 6=(k)

Φ(γ/
√

2) = 1− α (2.30)

since γ =
√

2z(1−α)1/(k−1) . Thus, (2.26) follows from (2.28), so (2.22) holds, thereby

proving (ii).

To show (iii), note that if we replace γ with γ̄, all of the arguments up to (2.30)

are still valid. Hence, when η = 1/2 and 0 < λ < 2, part (ii) now shows that τi = γ̄2σ2
i ,

so the covariance in (2.29) reduces to 1/2. Consequently, we no longer need to use

Slepian’s inequality in (2.30) to bound P{Zi < γ̄/
√

2,∀i 6= (k)}, which equals 1− α by

the definition of γ̄. Also, the inequality in (2.30) holds if γ is replaced with any x > 0,

so γ̄ < γ. Part (ii) implies Ti(δ)/(γ̄σi/δ)
2 ⇒ 1 as δ → 0, and the final result follows

immediately by the uniform integrability.
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2.9.2 Proof of Theorem 2

We write Gθ(δ) instead of G(δ) in (2.20) to emphasize the dependence on the parameters

θ = (θ1, . . . , θk). Then for any θ ∈ Ω(δ) and δ > 0,

Gθ(δ) =
{
θ̃(k)(δ) > θ̃i(δ) + (θ(k) − θi − δ),∀i 6= (k)

}
⊆ {θ̃(k)(δ) > θ̃i(δ), ∀i 6= (k)} = CSθ(δ)

since θ(k) − θi − δ > 0 for (θ1, . . . , θk) ∈ Ω(δ). Also, the proof of (2.21) holds for all

θ ∈ Ω(δ), so

Gθ(δ) ⊆ CSθ(δ) ∩
{
θi −max

j 6=i
θj ∈ Ii(δ), i = 1, 2, . . . , k

}
for all θ ∈ Ω(δ) and δ > 0. (2.31)

Because of Assumption 3, we can write θ̃i(δ) = θi + Ỹi(δ), where Ỹi(δ) = Yi(Ti(δ)), and

the distribution of Ỹi(δ) does not depend on θi. Consequently, for any θ ∈ Ω(δ),

Gθ(δ) =
{
θ̃(k)(δ)− θ(k) > θ̃i(δ)− θi − δ, ∀i 6= (k)

}
=
{
Ỹ(k)(δ) > Ỹi(δ)− δ, ∀i 6= (k)

}
,

so for all δ > 0, the probability of Gθ(δ) does not depend on θ because of Assumption 3.

Hence, we again write G(δ) rather than Gθ(δ), and (2.31) implies

P{G(δ)} ≤ inf
θ∈Ω(δ)

P

{
CSθ(δ), θi −max

`6=i
θ` ∈ Ii(δ), ∀i = 1, . . . , k

}
for all δ > 0. Similarly, the probability of H(δ) in (2.25) does not depend on θ since

Wi(δ) = Ỹi(δ)/δ by (2.23) and Assumption 3, so

P{H(δ)} ≤ P{G(δ)} ≤ inf
θ∈Ω(δ)

P

{
CSθ(δ), θi −max

`6=i
θ` ∈ Ii(δ), ∀i = 1, . . . , k

}
(2.32)

for all δ > 0 by (2.24). Replacing θ̂i(Ti(δ))− θi with Yi(Ti(δ)) throughout the proof of

(2.26), we see that (2.26) holds regardless of θ. Thus, taking limits as δ → 0 in (2.32)

completes the proof by (2.26).

2.10 Proof of Theorem 3

We start by proving part (i). Since T0,i = ζiδ
−λ for ζi > 0 and 0 < λ ≤ 1/η, (2.6)

implies

τi,r(δ) ≡ δ1/η Ti,r(δ) = max

ζiδ(1/η)−λ,

(
γ
√
Vi(T0,i)

εi(T0)

)1/η
 . (2.33)
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Note that (2.1) implies

θ̂i(T0,i) = T−η0,i T
η
0,i[θ̂i(T0,i)− θi] + θi ⇒ 0 ·N(0, σ2

i ) + θi = θi (2.34)

as δ → 0. Since each θi is deterministic, Theorem 3.9 of [10] yields (θ̂i(T0,i) : i =

1, . . . , k) ⇒ (θi : i = 1, . . . , k). Therefore, we have that εi(T0) defined in (2.7) satisfies

εi(T0) ⇒ εi as δ → 0 by the continuous-mapping theorem, where εi is defined imme-

diately after (2.8) and is deterministic. Assumption 2 then implies (εi(T0), Vi(T0,i)) ⇒

(εi, σ
2
i ) as δ → 0 by Theorem 3.9 of [10]. Hence, it follows from the generalized

continuous-mapping theorem that

δ1/η Ti,r(δ) = τi,r(δ)⇒ τi,r (2.35)

as δ → 0, where τi,r is defined in (2.8) and is deterministic, which proves the first

part of (i). The uniform-integrability assumption and Theorem 3.5 of Billingsley (1999)

establish the second part of (i).

Now we establish (i). Define the event Gr(δ) = A1(δ) ∩ A2(δ), where

A1(δ) =
{(
θ̃(k),r(δ)− θ̃i,r(δ)

)
−
(
θ(k) − θi

)
≥ −δ

(
θ̃(k),r(δ)− θ̃i,r(δ)

)
,∀i 6= (k)

}
,

A2(δ) =
{
θ̃(k),r(δ) > θ̃(k−1),r(δ),∀i 6= (k)

}
,

and we can establish

Gr(δ) ⊆
{
θi −max

j 6=i
θj ∈ Ii,r(δ), i = 1, 2, . . . , k

}
(2.36)

by following a line of reasoning developed by [21]. We now show that

lim
δ→0

P{Gr(δ)} > 1− α. (2.37)

Define

Wi,r(δ) =
1

δ

[
θ̃i,r(δ)− θi

]
=

1

τ ηi,r
(τi,rδ

−1/η)η
[
θ̂i(Ti,r(δ))− θi

]
(2.38)

and note that

A1(δ) =
{[
Wi,r(δ)−W(k),r(δ)

]
−
[
θ̃(k),r(δ)− θ̃i,r(δ)

]
≤ 0,∀i 6= (k)

}
.
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Since τi,r > 0 in (2.35) is deterministic, Assumption 1 ensures

(Wi,r(δ) : i = 1, . . . , r)⇒ (Wi,r : i = 1, . . . , k)

as δ → 0, where W1,r, . . . ,Wk,r are independent and Wi,r ∼ N(0, σ2
i /τ

2η
i,r ). Also, arguing

as in (2.34), we can show that θ̃i(δ)⇒ θi as δ → 0, where θi is deterministic. Hence,

(Wi,r(δ), θ̃i(δ) : i = 1, . . . , k)⇒ (Wi,r, θi : i = 1, . . . , k) (2.39)

as δ → 0 by Theorem 3.9 of [10].

Now define the mapping g = (g1, g2) with g1 : <2k → <k−1 and g2 : <2k → <, as

g1(xi, yi : i = 1, . . . , k) = ((xi − x(k))− (y(k) − yi) : ∀ i 6= (k)),

g2(xi, yi : i = 1, . . . , k) = y(k) − y(k−1).

Observe that A1(δ) = {g1(Wi,r(δ), θ̃i(δ) : i = 1, . . . , k) ≤ 0} and A2(δ) = {g2(Wi,r(δ),

θ̃i(δ) : i = 1, . . . , k) > 0}. Since g1 and g2 are continuous functions, the continuous-

mapping theorem and (2.39) yield g(Wi,r(δ), θ̃i(δ) : i = 1, . . . , k) ⇒ g(Wi,r, θi : i =

1, . . . , k) as δ → 0. Since Wi,r : i = 1, . . . , k, are independent normals, P{g1(Wi,r, θi :

i = 1, . . . , k) = 0} = 0, so the Portmanteau theorem gives

P{Gr(δ)} = P{ g1(Wi,r(δ), θ̃i(δ) : i = 1, . . . , k) ≤ 0; g2(Wi,r(δ), θ̃i(δ) : i = 1, . . . , k) > 0 }

→ P{ g1(Wi,r, θi : i = 1, . . . , k) ≤ 0; g2(Wi,r, θi : i = 1, . . . , k) > 0 } ≡ p1

as δ → 0. Note that g2(Wi,r, θi : i = 1, . . . , k) = θ(k) − θ(k−1), so P{g2(Wi,r, θi : i =

1, . . . , k) > 0} = 1 by our assumption that θ(k) > θ(k−1), and consequently, p1 =

P{g1(Wi,r, θi : i = 1, . . . , k) ≤ 0}. Hence, to establish (2.37), we need to show that

p1 ≥ 1− α.

To prove this, note that

p1 = P
{
Wi,r −W(k),r ≤ θ(k) − θi, ∀ i 6= (k)

}
= P

 Wi,r −W(k),r[(
σ2
i /τ

2η
i,r

)
+
(
σ2

(k)/τ
2η
(k),r

)]1/2
≤

θ(k) − θi[(
σ2
i /τ

2η
i,r

)
+
(
σ2

(k)/τ
2η
(k),r

)]1/2
, ∀ i 6= (k)

 .
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By (2.8), each τj,r ≥ (γσj/εj)
1/η > 0, so τ 2η

j,r ≥ (γσj/εj)
2. Moreover, εj ≥ ε(k) > 0 for all

j, so for i 6= (k), [
σ2
i

τ 2η
i,r

+
σ2

(k)

τ 2η
(k),r

]1/2

≤

[
σ2
i

(γσi/εi)2
+

σ2
(k)

(γσ(k)/ε(k))2

]1/2

≤

[
σ2
i

(γσi/εi)2
+

σ2
(k)

(γσ(k)/εi)2

]1/2

=
√

2

(
θ(k) − θi

γ

)
.

Consequently,

p1 ≥ P

{
Zi,r ≤

γ√
2
, ∀ i 6= (k)

}
where Zi,r = [Wi,r −W(k),r]/[(σ

2
i /τ

2η
i,r ) + (σ2

(k)/τ
2η
(k),r)]

1/2 ∼ N(0, 1). The rest of the proof

follows the same line of reasoning in the proof of Theorem 1 from (2.29) onward with a

subscript r added to the variables Zi, τi, and Ti.

2.11 Proof of Proposition 1

For each i = 1, . . . , k, note that

τ̃ ηi,δ

[
θ̂i(T̃i(δ))− θi

]
= τ̃ ηi,δ

[
θ̂i(τ̃i,δ)− θi

]
+ τ̃ ηi,δ

[
θ̂i(T̃i(δ))− θ̂i(τ̃i,δ)

]
≡ Xi,δ + Yi,δ.

The fact that each τ̃i,δ is deterministic implies Xi,δ ⇒ Zi ∼ N(0, σ2
i ) as δ → 0 by (2.1).

It also follows that θ̂i(τ̃i,δ), i = 1, . . . , k, are independent by the independence of θ̂i,

i = 1, . . . , k, since τ̃i,δ, i = 1, . . . , k, are deterministic. Thus, Theorem 11.4.4 of [75]

guarantees (Xi,δ, i = 1, . . . , k)⇒ (Zi, i = 1, . . . , k) as δ → 0, where Zi, i = 1, . . . , k, are

independent. Theorem 3.1 of [10] then ensures that it is sufficient to prove (Yi,δ, i =

1, . . . , k) ⇒ (0, . . . , 0) as δ → 0 to establish the result. But [4] shows that Yi,δ ⇒ 0

for each i, and since the limit is deterministic, they converge jointly by Theorem 3.9 of

[10], completing the proof.
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2.11.1 Proof of Theorem 4

First note that the FCLT in Condition 2 and C5 imply

g2
m(Ui,T0,i) = g2

m(Ui,ζiδ−λ)⇒ g2
m(σiBi) = σ2

i g
2
m(Bi) (2.40)

as δ → 0 by the continuous-mapping theorem and C2. Hence, δ2 T ′i,m(δ) =

max
(
ζi, γ

′2g2
m(Ui,T0,i)

)
⇒ τ ′i,m as δ → 0 by C5 and the continuous-mapping theorem, so

(i) holds by C6.

Section 2.12 contains the proof of (ii). For (iii), note that

Ri,m(δ) =
max

[
ζi, γ

′2g2
m(Ui,T0,i)

]
max [ζi, γ2Vi(T0,i)]

and R̄i,m(δ) =
γ′2g2

m(Ui,T0,i)

γ2Vi(T0,i)
(2.41)

for each i. Since Vi(T0,i) ⇒ σ2
i as T0,i → ∞ by Assumption 2 and σ2

i is deterministic,

(2.40) implies

(g2
m(Ui,T0,i), Vi(T0,i))⇒ (σ2

i g
2
m(Bi), σ

2
i ) (2.42)

as δ → 0 by Theorem 3.9 of [10], so the continuous-mapping theorem yields (iii).

Note that 0 ≤ Ri,m(δ) ≤ max
[
ζi, γ

′2V ′i,m(ζi/δ
2)
]
/ζi, so the uniform integrability

of {V ′i,m(t) : t > 0} implies {Ri,m(δ) : δ > 0} also is; hence, (iii) ensures E[Ri,m(δ)] →

E[Ri,m] as δ → 0 by Theorem 3.5 of [10]. Applying Jensen’s inequality results in

E[Ri,m] = E

[
max

[
ζi, γ

′2σ2
i g

2
m(Bi)

]
max [ζi, γ2σ2

i ]

]
>

max
[
ζi, γ

′2σ2
iE[g2

m(Bi)]
]

max [ζi, γ2σ2
i ]

=
max

[
ζi, γ

′2σ2
i

]
max [ζi, γ2σ2

i ]
,

where the strict inequality holds because P{γ′2σ2
i g

2
m(Bi) < ζi} > 0 and P{γ′2σ2

i g
2
m(Bi) >

ζi} > 0 by C6, and the second equality holds because we assumed E[g2
m(Bi)] = 1. Thus,

the first part of (iv) follows from (ii). The second part of (iv) similarly holds.

2.12 Proof of Theorem 4(ii)

First recall our definition of Fm in (2.55), and it suffices to show that

Fm(a) < [Φ(a/
√

2)]k−1 for all a > 0. We first show that

Fm(a) ≤
[
Φ

(
a√
2

)]k−1

(2.43)



47

for all a > 0.

Let G(x) = P{g2
m(B) ≤ x}, where B is a standard Brownian motion. Note that

Fm(a) =

∫ ∞
0

[∫ ∞
0

Φ(aC(x, y)) dG(x)

]k−1

dG(y), (2.44)

where C(x, y) =
[

1
x

+ 1
y

]−1/2

. We first show that for each a > 0 and y > 0, the inner

integral in (2.44) satisfies∫ ∞
0

Φ(aC(x, y)) dG(x) ≤ Φ(aC(1, y)). (2.45)

Let K be any distribution function with K(0) = 0 and K(∞) = 1, and let

K(x) = 1−K(x). For each a > 0 and y > 0, note that

∫ ∞
0

Φ(aC(x, y)) dK(x) = −
∫ ∞

0
Φ(aC(x, y)) dK(x)

= −
[
Φ(aC(x, y))K(x)

]∞
x=0

+

∫ ∞
0

K(x)φ(aC(x, y)) a c(x, y) dx

=
1

2
+

∫ ∞
0

K(x)φ(aC(x, y)) a c(x, y) dx,

where the penultimate step follows by applying an integration by parts, φ denotes the

density function of a standard normal, and c(x, y) = ∂
∂x
C(x, y). To simplify notation,

let ψ(x) = φ(aC(x, y)) a c(x, y), so∫ ∞
0

Φ(aC(x, y)) dK(x) =
1

2
+

∫ ∞
0

K(x)ψ(x) dx. (2.46)

Now define the distribution function H as

H(x) =

{
0 if x < 1
1 if x ≥ 1 ,

and we can write the right-hand side of (2.45) as

Φ(aC(1, y)) =

∫ ∞
0

Φ(aC(x, y)) dH(x) =
1

2
+

∫ ∞
0

H(x)ψ(x) dx

by (2.46). Similarly, we can use (2.46) to express the left-hand side of (2.45) as∫ ∞
0

Φ(aC(x, y)) dG(x) =
1

2
+

∫ ∞
0

G(x)ψ(x) dx.



48

So to establish (2.45), it suffices to show
∫∞

0
G(x)ψ(x) dx ≤

∫∞
0
H(x)ψ(x) dx, which is

equivalent to proving ∫ ∞
0

[
H(x)−G(x)

]
ψ(x) dx ≥ 0. (2.47)

We now show that ψ(x) is strictly decreasing in x > 0 by showing its derivative

ψ′(x) is negative for all x > 0. Observe that

ψ′(x) = φ′(aC(x, y)) (a c(x, y))2 + φ(aC(x, y)) a c′(x, y), (2.48)

where φ′(x) = d
dx
φ(x) and c′(x, y) = ∂

∂x
c(x, y). Note that

c(x, y) =
1

2x2

[
1

x
+

1

y

]−3/2

,

c′(x, y) =
−1

x3

[
1

x
+

1

y

]−3/2

+
3

4x4

[
1

x
+

1

y

]−5/2

.

Since φ(z) is strictly decreasing in z > 0, φ′(z) < 0 for z > 0, so φ′(aC(x, y)) < 0

because C(x, y) > 0 for x > 0 and y > 0. Also, c(x, y) > 0 for all x > 0 and y > 0,

so the first term in (2.48) is negative. We now show the second term in (2.48) is also

negative. First note that φ(z) > 0 for all z, and we now show c′(x, y) < 0 for all

x > 0 and y > 0. This holds if and only if 3
4x

[
1
x

+ 1
y

]−1

< 1, which clearly is true since

3
4x
< 1

x
< 1

x
+ 1

y
for x > 0 and y > 0. Therefore, (2.48) is negative, so ψ(x) in (2.47) is

strictly decreasing in x > 0.

Now note that

H(x)−G(x) ≥ 0 for x < 1, (2.49)

H(x)−G(x) ≤ 0 for x ≥ 1. (2.50)

Hence, ∫ 1

0

[
H(x)−G(x)

]
dxψ(1) ≤

∫ 1

0

[
H(x)−G(x)

]
ψ(x) dx (2.51)

and ∫ ∞
1

[
H(x)−G(x)

]
dxψ(1) ≤

∫ ∞
1

[
H(x)−G(x)

]
ψ(x) dx. (2.52)
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Adding (2.51) and (2.52) then yields∫ ∞
0

[
H(x)−G(x)

]
dxψ(1) ≤

∫ ∞
0

[
H(x)−G(x)

]
ψ(x) dx. (2.53)

But the left-hand side of (2.53) is zero because
∫∞

0
G(x) dx = E[g2(B)] = 1 by Assumption

4 and
∫∞

0
H(x) dx = 1, which establishes (2.47) and therefore (2.45).

Because of (2.44) and (2.45), if we now want to show (2.43), it suffices to prove

that ∫ ∞
0

[Φ(aC(1, y))]k−1 dG(y) ≤
[
Φ

(
a√
2

)]k−1

. (2.54)

Because Φ(a/
√

2) = Φ(aC(1, 1)), this can be established using arguments similar to

those applied to show (2.45), which proves (2.43). Because of our arguments in the

proof, the only way equality can hold in (2.43) is if P{g2
m(B) = 1} = 1, but [29] show

this is impossible for any fixed m ≥ 1. (Alternatively, C6 implies the inequalities in

(2.49) and (2.50) are strict, which implies (2.51)–(2.54) also have strict inequalities.)

Thus, the proof is complete.

2.12.1 Proof of Theorem 5

For i = 1, . . . , k, note that Bi(1) has a standard normal distribution. Define the vector

(B1(1), . . . , Bk−1(1), g2
m(B1), . . . , g2

m(Bk)), and define the function h : <2k−1 → < as

h(z1, . . . , zk−1, v1, . . . , vk) = max
i<k

[
zi

(
1

vi
+

1

vk

)1/2
]
.

Then evaluating the left-hand side of (2.15) at any point a rather than γ′, we have

Fm(a) ≡ E

[
k−1∏
i=1

Φ

(
a

[(1/g2
m(Bi)) + (1/g2

m(Bk))]
1/2

)]
(2.55)

= P
{
h(B1(1), . . . , Bk−1(1), g2

m(B1), . . . , g2
m(Bk)) ≤ a

}
since Bi(1) and g(Bi) are independent ([29]) and B1, . . . , Bk are independent.

If gm = gbm,m, then g2
m(Bi) ∼ χ2(m−1)

(m−1)
⇒ 1 as m → ∞, where χ2(t) denotes

a χ2 random variable with t degrees of freedom. Now suppose gm = ḡm in (2.12).

For each i, the processes [Λj,mBi(t) : 0 ≤ t ≤ 1], j = 1, . . . ,m, are independent
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standard Brownian motions on the unit interval, so it follows from C1 that g ◦Λj,m(Bi),

j = 1, . . . ,m, are i.i.d. Since E[gp(B)] < ∞, the weak law of large numbers implies

(1/m)
∑m

j=1 g
p ◦ Λj,m(Bi)⇒ E[gp(B)] as m→∞, so (2.12) yields that again

g2
m(Bi)⇒ 1 (2.56)

as m→∞ by the continuous-mapping theorem.

Equation (2.56) also holds when gm is the overlapping area estimator in Section

2.7.1 or the overlapping CvM estimator in Section 2.7.2, as we now explain. The

reference [2] shows that in both cases, gm(B) converges to 1 in quadratic mean as

m → ∞; see Theorems 5 and 8 of [2]. Since convergence in quadratic mean implies

convergence in distribution (e.g., see pp. 140–141 of [43]), we see that (2.56) then holds

for these two estimators; It also can be shown that both overlapping estimators satisfy

properties C1–C6.

Since B1(1), . . . , Bk−1(1), g2
m(B1), . . . , g2

m(Bk), are mutually independent, (2.56)

and Theorem 3.9 of [10] guarantee

(B1(1), . . . , Bk−1(1), g2
m(B1), . . . , g2

m(Bk))⇒ (B1(1), . . . , Bk−1(1), 1, . . . , 1) (2.57)

as m → ∞. Each Bi(1) ∼ N(0, 1), so P{h(B1(1), . . . , Bk−1(1), 1, . . . , 1) = a} =

P{maxi<k
[
Bi(1)

√
2
]

= a} = 0. Thus, the a.s. continuity of h at the limit in (2.57)

implies that as m→∞,

P
{
h(B1(1), . . . , Bk−1(1), g2

m(B1), . . . , g2
m(Bk)) ≤ a

}
→ P {h(B1(1), . . . , Bk−1(1), 1, . . . , 1) ≤ a} =

[
Φ(a/

√
2)
]k−1

≡ F (a),

by the Portmanteau theorem. Since a was arbitrary, we have now proven Fm ⇒ F as

m→∞. The proof of Lemma 1.5.6 of [65] shows that there is a one-to-one correspon-

dence between the elements of the set {t : 0 < t < 1, F−1
m (t) 6→ F−1(t) as m→∞} and

the flat portions of F . However, since F is strictly increasing, F−1
m (t)→ F−1(t) for all

0 < t < 1, so we get (i).
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Parts (ii) and (iii) hold by applying part (i), (2.56) and the continuous-mapping

theorem to Theorem 4(i) and (iii). Part (iv) then follows from the uniform integrability.



52

CHAPTER 3

ESTIMATING THE TIME AVERAGE VARIANCE CONSTANT

3.1 Introduction

Let a real sequence {Xn : n ≥ 1} represent the output of a steady-state simulation and

assume that the sequence is ergodic, i.e., we assume the existence of a finite constant

µ such that (1/n)
∑n

i=1Xi
d−→ µ, as n→∞. Here “

d−→” means convergence in distribu-

tion of random variables (see [9]). The sample mean X(n) ≡ (1/n)
∑n

i=1Xi is the most

common point estimator for the parameter µ. People are more interested in construct-

ing an interval estimator for µ. Several interval estimation techniques are available in

the literature. These include the methods of replication ([50]), batched means ([62]),

autoregression ([25]), spectrum estimation ([35]), regeneration ([17]) and ARMA mod-

eling ([63]). Several comparative studies of simulation confidence interval estimators

have been reported ([22]), [50], [61]). In order to give a measure of the precision of the

estimate, the variance parameter, σ2 ≡ limn→∞ nV ar(X(n)) is also estimated. There

are several different techniques in the literature for the estimation of σ2. For exam-

ple the methods of nonoverlapping batch means(NBM) ([62]), overlapping batch means

(OBM) ([53]) and other standardized time series (STS) ([64]). The consensus of these

studies is that the various interval estimation techniques work well only in situations

in which their supporting assumptions are valid. Unfortunately, it is not always easy

to verify that a particular simulated process has the properties assumed. We try to

develop a general approach to interval estimation that has very mild theoretical re-

quirements for validity, but not less than the method of batch means. This approach is

an STS approach, though the focus is mainly on the estimation of the variance param-

eter. One may use the variance parameter to construct an interval estimator for the

mean of the stochastic process under consideration.
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3.2 Background and theory

Let Xj =
∑j

k=1Xk/j, j = 1, 2, . . . , n.

Assumption 5 Suppose that the series σ2 = Var(X1) + 2
∑∞

k=1 Cov(X1, X1+k) con-

verges absolutely and σ2 > 0. For each positive integer n, let

Yn

(
i

n

)
≡ i(X i − µ)

σ
√
n

for 0 ≤ i ≤ n. (3.1)

We define Yn(t) by linear interpolation elsewhere on [0, 1] so that it is a continuous

function. Then Yn
d−→ B(·) as n → ∞, where B(·) is a standard Brownian motion

process on [0, 1].

Assumption 5 is satisfied by almost all the stochastic processes relevant to the

steady-state simulations. For example, consider the mixed autoregressive-moving aver-

age time series (stationary and invertible), finite-state discrete-time Markov chains (ir-

reducible and aperiodic), finite state continuous-time Markov processes, waiting times

in a stable M/M/1 queueing system etc. This assumption has also been used in [2].

The class of processes that satisfy this assumption (also known as Assumption FCLT )

is given in [28]. The related references are also given in [28]. Assumption 5 is necessary,

since it has been directly used in the proof of Theorem 9 and hence also is necessary

for Theorem 10, Theorem 11 and Theorem 12.

Next we discuss a few variance estimators. Without loss of generality, we may

assume that E[X1] = 0. We also assume that n = mb, where m is the batch size and b

is sometimes interpreted as the number of nonoverlapping batches.

3.2.1 Nonoverlapping Batch Means

Nonoverlapping Batch Means (NBM) is a very popular estimator having practical use.

It is defined as

N(b,m) =
m

b− 1

b∑
i=1

(X i,m −Xn)2 =
m

b− 1

(
b∑
i=1

X
2

i,m − bX
2

n

)
. (3.2)
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Here, X i,m =
∑m

j=1 X(i−1)m+j/m is the ith nonoverlapping batch mean, i = 1, 2, . . . , b,

i.e., the sample mean of the observations X(i−1)m+1, X(i−1)m+2, . . . , Xim, which form the

ith nonoverlapping batch. For details, see [16], [33] and [70].

3.2.2 Overlapping Batch Means

This estimator is defined as

O(b,m) =
nm

(n−m+ 1)(n−m)

n−m+1∑
i=1

(X
o

i,m −Xn)2. (3.3)

Here, X
o

i,m =
∑m−1

j=0 Xi+j/m is the ith overlapping batch mean, i = 1, 2, . . . , n−m+ 1,

i.e., the sample mean of the observations Xi, Xi+1, . . . , Xi+m−1, which form the ith

overlapping batch. For details, see [53].

3.2.3 Standardized Time Series

The Standardized Time Series (STS) of X = X1, X2, . . . is defined as Tn(t) =

bntc(Xn−Xbntc)
σ
√
n

for t ∈ [0, 1]. Under assumption 5, [29] and [64] show that Tn
d−→

B, a Brownian bridge on [0, 1], which is a Gaussian process with E[B(t)] = 0 and

Cov(B(s), B(s)) = min(s, t)− st.

3.3 Some results from the empirical process literature

3.3.1 The p-fold integrated empirical process

Let X1, X2, . . . , Xn be independent observations on a random variable X with contin-

uous distribution function F and write

Fn(x) =
1

n

n∑
i=1

1Xi<x

for the usual empirical distribution function of the sample (X1, X2, . . . , Xn). The ran-

dom variables Ui = F (Xi), i ≥ 1, are independent and uniformly distributed on (0, 1).

Let

Gn(t) =
1

n

n∑
i=1

1Ui<t
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be the corresponding empirical distribution function; we have of course a.s. Fn = Gn◦F .

See [48] for details. For testing the null hypothesis H0 : F = F0, where F0 is an

apriori specified continuous distribution function, many celebrated statistics are based

on comparing Fn and F0; see for instance [58, 66]. In [37, 36], the authors propose new

goodness-of-fit tests which are based on the integrated empirical process. Actually the

underlying limiting process is the integrated Brownian bridge which has been studied

in [48].

Let p ≥ 1 be a fixed integer. Let us introduce the p-fold integrated empirical

process as follows:

Fp,n(x) ≡
∫ x

−∞

[F0(x)− F0(y)]p−1

(p− 1)!
Fn(y)dF0(y).

Fp,0(x) ≡
∫ x

−∞

[F0(x)− F0(y)]p−1

(p− 1)!
F0(y)dF0(y)

=

∫ x

−∞

[F0(x)− F0(y)]p

p!
dF0(y)

=
F0(x)p+1

(p+ 1)!
.

Fp,n(x) ≡
√
n[Fp,n(x)− Fp,0(x)].

We also introduce the similar quantities related to the uniform distribution. For

t ∈ [0, 1],

Gp,n(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
Gn(s)ds =

1

n

n∑
i=1

[(t− Ui)+]p

p!

Gp,0(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
sds =

∫ t

0

(t− s)p

p!
ds =

tp+1

(p+ 1)!

Gp,n(t) ≡
√
n[Gp,n(t)−Gp,0(t)].

The foregoing notations can be extended to the non-integrated case p = 0 by

setting

F0,n(x) ≡ Fn(x), F0,0(x) ≡ F0(x), F0,n(x) ≡
√
n[Fn(x)− F0(x)]

G0,n(t) ≡ Gn(t), G0,0(t) ≡ t, G0,n(t) ≡
√
n[Gn(t)− t]
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3.3.2 Relationships between integrated statistics and integrated Brownian

bridge

Let β ≡ (β(t))0≤t≤1 be the standard Brownian bridge. We introduce the underlying

process βp = (βp(t))0≤t≤1 associated with the statistics which occur in our work:

βp(t) ≡
∫ t

0

(t− s)p−1

(p− 1)!
β(s)ds =

∫ t

0

(t− s)p

p!
dβ(s)

Actually βp is nothing but the p-fold primitive of β. It is a well-known fact that

the process G0,n converges weakly towards the Brownian bridge β. See [48] for details.

Theorem 6 The process Gp,n converges weakly towards βp as n→ +∞, p 6= 0.

3.3.3 Covariance function

We shall need the following result in calculating the theoretical covariance matrix of

the integrated paths. We derive the following expression for the covariance function of

the process βp by using the rule:

E
[∫ s

0

f(u)dβ(u)

∫ t

0

g(u)dβ(u)

]
=

∫ s∧t

0

f(u)g(u)du−
∫ s

0

f(u)du

∫ t

0

g(u)du

Theorem 7 The process βp is a centered Gaussian process with the covariance function:

Gβp(s, t) ≡ E[βp(s)βp(t)] =

∫ s∧t

0

(s− u)p

p!

(t− u)p

p!
du− (st)p+1

(p+ 1)!2
.

3.4 The context

Recall that if a simulation produces output X = {X1, X2, . . . , Xn}, then the time

average variance constant is given by

σ2 ≡ lim
n→∞

n Var

(
1

n

n∑
i=1

Xi

)
.

in cases where this limit exists. A quadratic function (see [69]) may be applied to the

output vector X in order to construct an estimator for σ2; this approach is given in [69].

The computational complexity of this estimator is proportional to n2 where n is the

simulation run length. Batch means estimator is a typical example of this approach.
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However, due to the special form of the batch means estimator, the computational

complexity is linear in n. See [13] for details.

If σ̂2 is a candidate estimator of σ2, then we may evaluate the performance of σ̂2

by determining its bias, Bias[σ̂2] ≡ E[σ̂2]−σ2; its variance, Var[σ̂2] ≡ E[(σ̂2−E[σ̂2])2];

and finally its mean-squared error, MSE[σ̂2] ≡ E[(σ̂2 − σ2)2] = Bias2[σ̂2] + Var[σ̂2].

Usually, the lower the bias and variance, the better.

Efficiency of an estimator is defined as the reciprocal of the product of work and

mean-squared error. See [13] for details. Suppose an estimator has bias B and variance

V . If the estimator takes time T to compute, the efficiency of the estimator η is given

by η = 1
T (B2+V )

. In [13], the author has shown that the efficiency of the integrated path

estimators is better compared to batch means.

In our approach, we take into account the covariance structure of the underlying

limiting stochastic process and suggest an estimator for the TAVC. As far as we know,

this has not been done earlier. Usually it is found that the estimators of the TAVC are

either low in bias and high in variance or vice versa. The interesting part of our exper-

imental result is that at least for the AR(1) process (introduced later), our estimator is

both low in bias and variance in comparison with the standard batch means estimator.

We have given the main result in Theorem 10.

3.5 Some relevant results from the existing literature

The results mentioned in this subsection are given in [14]. Still we mention those here

for the sake of completeness.

Set W̃ j
0 = 0 for 0 ≤ j ≤ k and for i > 0, set W̃ 0

i =
i∑
l=1

Xl, and for 1 ≤ j ≤ k, set

W̃ j
i = j

i∑
l=1

W̃ j−1
l .

Define W̃n = (W̃ 0
n , W̃

1
n , . . . , W̃

k
n ), where k is the integration count parameter.
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Define W 0
n(j/n) = n−1/2

j∑
i=1

Xi, 0 ≤ j ≤ n, and, for 0 ≤ t ≤ 1, define W 0
n(t) by

linear interpolation of W 0
n(j/n), 0 ≤ j ≤ n. For r ≥ 1 and 0 ≤ j ≤ n, set

W r
n(j/n) = n−1/2

j∑
i=1

Xi

(
j − i+ 1

n

)r
, 0 ≤ j ≤ n.

Define continuous functions: W̃ r
n(j/n) = W̃ r

j for 0 ≤ j ≤ n and by linear inter-

polation elsewhere. Set Wn(t) = (W 0
n(t), . . . ,W k

n (t)) and W̃n(t) = (W̃ 0
n(t), . . . , W̃ k

n (t))

for 0 ≤ t ≤ 1.

Define the (k + 1)× (k + 1) matrix A by:

A(r, q) ≡


(−1)r−q

[
r
q

]
, q ≤ r

0 q > r

for 0 ≤ r, q ≤ k, where
[
r
q

]
are the Stirling numbers of the first kind [47], satisfying the

recurrence:
[
n+1
m

]
=
[

n
m−1

]
+ n
[
n
m

]
, 1 ≤ m ≤ n,

[
n
n

]
= 1,

[
0
0

]
= 1, and

[
n
0

]
= 0 for n ≥ 1.

The (k + 1)× (k + 1) diagonal matrix Nn is defined by:

Nn(r, q) ≡


nq+1/2, q = r

0 q 6= r

The simulation produces the discrete iterated sums, W̃n, which may be trans-

formed to iterated integrals using the following theorem.

Theorem 8 Wn(1) = (ANn)−1W̃n.

In order to center the output, define the map ψ : C[0, 1] → C[0, 1] by ψ(f)(t) ≡

f(t)− tf(1), f ∈ C[0, 1], 0 ≤ t ≤ 1, and set W
0

n = ψ(W 0
n); i.e.,

W
0

n(s) = W 0
n(s)− sW 0

n(1), 0 ≤ s ≤ 1.

For r ≥ 1 and 0 ≤ t ≤ 1, set W
r

n(t) ≡ r

∫ t

s=0

W
0

n(s)(t− s)r−1ds.

Set Wn(t) ≡ (W
0

n(t), . . . ,W
k

n(t)), 0 ≤ t ≤ 1.

There is a stochastic process to which W n converges. If B denotes a standard

Brownian motion, then ψB is a Brownian bridge. For r ≥ 1, let T r : C[0, 1] → C[0, 1]

denote the operator of r-fold integration. For a continuous function f ,
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T rf(t) ≡
∫ t

s1=0

. . .

∫ sr−1

sr=0

f(sr)dsr . . . ds1 =

∫ t

s=0

f(s)
(t− s)r−1

(r − 1)!
ds. The last part follows

by changing the order of integration. The next theorem provides the basis for the

simulation output analysis method:

Theorem 9 As n→∞,(
W

0

n,W
1

n, . . . ,W
k

n

)
d−→ σ(ψB, TψB, 2T 2ψB, . . . , k!T kψB).

3.6 Our approach

3.6.1 Construction of the integrated paths of the simulation output process

Let the i-fold integrated Brownian bridge be denoted by Wi(·) for i = 0, 1, 2, . . ..

We can calculate the theoretical covariance between Wi(s) and Wj(t) for all values of

i, j, s and t. Now we shall show how we can construct the integrated paths from the

simulation output.

Let the simulation output be X1, X2, . . . , Xn. Consider the integrated paths (IP)

W0,W1, . . . ,Wk. The construction of the j-th path Wj is shown below: For 2 ≤ i ≤ n,

define the following:

W0(1) = 0

W0(i) =
1√
n

(
i∑

k=0

X(k)− i

n

n∑
k=0

X(k))

For j = 1, 2, . . . , k, define the following:

Wj(1) = 0

Wj(i) =
1

n
(Wj(i− 1) +Wj−1(i))
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3.6.2 Construction of the theoretical covariance matrix

Suppose we want to construct the covariance matrix for Wa,Wa+1,Wa+2, . . . ,Wb. Using

Theorem 7, we can calculate the covariance between Wb(s) and Wb(t) for both the cases,

viz., s ≤ t and s > t. Denote these two expressions by F1 and F2 respectively.

Suppose we want to calculate the covariance between Wi(s) and Wj(t) for i, j ≤ b.

Let î = b − i and ĵ = b − j. The expression for covariance is simply given by ∂ ĵ+îF

∂tĵ∂sî
.

Note that F = F1 or F = F2 depending on whether s ≤ t or s > t.

3.6.3 An example

Consider the covariance between W1(s) and W2(t):

1. If s ≤ t, then Cst = s2

24
(s2 − 4st+ 6t2 − 2t3).

2. If s > t, then Cst = t3

24
(−t+ 4s− 2s2).

3. If we put t = s, we find that both of the above formulas yield the same expression

Cst = s4

24
(3− 2s), which shows the continuity of the covariance function.

Similarly, consider the covariance between W2(s) and W1(t):

1. If s ≤ t, then Cst = s3

24
(−s+ 4t− 2t2).

2. If s > t, then Cst = t2

24
(t2 − 4st+ 6s2 − 2s3).

3. If we put t = s, we find that both of the above formulas yield the same expression

Cst = s4

24
(3− 2s), which shows the continuity of the covariance function.

3.7 The estimator of the TAVC

Let C be the non-singular covariance matrix of a p-dimensional normal random variable

U , i.e., U ∼ Np(0, C). Let the rank-factorization of C be C = FF T , where F is a p×m

matrix,

Theorem 10 If U ∼ kNp(0, C) = Np(0, k
2C) then Y = F−1U ∼ Np(0, k

2). The

estimator of k2 is given by Y TY
p

= UTC−1U
p

.
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3.7.1 The proof of a more general result

Let U, Y be random variables and U ∼ Np(0, k
2C). C is a p× p matrix of rank m. Let

the rank-factorization of C be C = FF T , where F is a p×m matrix, so F T is a m× p

matrix. Let F− be a left inverse of F , which is a m× p matrix. Note that F−F = Im

and F T (F−)T = Im.

Define Y = F−U .

Y = kF−U ∼ Nm(0, (kF− C (kF−)T )

Or, Y ∼ Nm(0, kF−FF T (F−)Tk)

Or, Y ∼ Nm(0, k2)

Hence the estimator of k is given by Y TY
m

. If C is non-singular then m = p and the

above expression may be simplified to

UTC−1U

p
=
UTC−1U

rank(C)

3.7.2 Relationship between Theorem 10 and our estimator

We may note that the above theorem may be used to construct an estimator for the

TAVC using the integrated paths. If we construct several integrated pathsWa,Wa+1, . . . ,

Wb−1,Wb and concatenate them to form the vector U (see Theorem 10), it is clear that

the mean of the vector is 0 and the covariance matrix may be computed. The constant

k of Theorem 10 may be identified as the TAVC, the scaling constant for the process

U .

Theorem 11 Suppose that X ∼ Np(µ, ψ), where ψ is positive definite. Let ∆2(X) =

(X − µ)′ψ−1(X − µ). Then ∆2(X) follows a chi-square distribution with p degrees of

freedom.

See Theorem 3.3.2 of [26] for the proof of the above theorem.

Specializing Theorem 11 to our case, we observe that we have µ = 0 and ψ = σ2C,

where σ2 is the TAVC. So U ′(σ2C)−1U ∼ χ2
k, where k is the dimension of the covariance

matrix C.
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Theorem 12 E(U ′(σ2C)−1U) = k and var(U ′(σ2C)−1U) = 2k.

The proof of the theorem follows from the properties of the χ2 distribution. It may be

noted that from the above theorem also, we have σ2 = E(U ′C−1U)
k

. In fact, this is the

key step in the derivation of our estimator.

3.7.3 The algorithm

Let a and b be the indices of the already computed IPs, n be the number of data points

generated, g be the size of an equispaced grid of points. Assume that n is a multiple

of g, i.e., n = mg where m is an integer. Let the g grid points be denoted by t1, . . . , tg,

where tk = (k−1)∗m, k = 1, . . . , g. We sample the IPs at the grid points and construct

the following vectors W i from the IP Wi for i = a, a+ 1, . . . , b. Note that

W a = Wa(t1), . . . , Wa(tg)
W a+1 = Wa+1(t1), . . . , Wa+1(tg)

...
W b = Wb(t1), . . . , Wb(tg)

We can calculate the bias and the variance of the proposed estimator for a process for

which the true TAVC is known. Let BL be the bias and VL be the variance of our

proposed estimator L. Let γ = b− a+ 1 and REPS be the number of replications.

Algorithm: Input: a, b, n, g.

Output: L, BL and VL.

1. Calculate the covariance matrix C for the vectors W a,W a+1,W a+2, . . . ,W b. This

is a γg × γg matrix. Also calculate the inverse of C.

2. for each replication r, 1 ≤ r ≤ REPS, do the following:

(a) Generate the vectors W a,W a+1,W a+2, . . . ,W b.

(b) Concatenating the above γ vectors, we obtain a vector of size γg. Denote it

by W .

(c) The value of the estimator L in the rth replication is given by L(r) =

WC−1WT

γ∗g .
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3. Calculate the sample mean and variance of L. Hence calculate the bias of L.

3.8 Experimental results

We conducted computer experiments on AR(1) process and M/M/1 queuing process

and calculated the bias, variance, mean-squared error (MSE) and efficiency for the

estimation of the TAVC of these two processes under different conditions. The results

are shown in Tables 3.1-3.5. The “start index” a and the “end index” b of each of

the tables denote the fact that the corresponding estimator is based on all the b −

a + 1 integrated paths, starting with the ath integrated path and ending with the bth

integrated path.

While computing the estimators, a frequently encountered problem is that the

covariance matrix becomes ill-conditioned and consequently we get meaningless esti-

mates. That is why many of the possible estimators could not be used at all and we

had to remain content with only three or four estimators. The pairwise estimators also

suffer a lot from this problem. We have observed that the estimators based on the (i, j)-

th pair-wise paths give meaningful results only when i = 1. We have shown the results

for the pair-wise estimators for the AR(1) process in Table 3.5.

3.8.1 AR(1) process

The AR(1) process is a stationary Gaussian process defined as follows: Y0 ∼ N(0, 1)

and Yi = ψYi−1 + εi, i ≥ 1. Here, −1 < ψ < 1 and the {εi} are independent and

εi ∼ N(0, 1−ψ2). For this particular process, it is possible to compute the value of the

theoretical TAVC. The value is given by σ2 = 1+ψ
1−ψ . For our experiments, we had chosen

ψ = 0.9, resulting in σ2 = 19.

We ran 1, 000 independent replications for each of the estimators of TAVC with

run length n = 20, 000. The best values obtained are compared with the values ob-

tained by (i) the non-overlapping batch means estimator (NBM) and (ii) the overlap-

ping batch means estimator (OBM) as given in [1]. We find that the best bias and
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variance combination is obtained from the second row of Table 3.2 and is given by

(−0.101, 16.910). This compares favorably (both in terms of bias and variance) with

the NBM and OBM estimators given in Tables 2 and 3 of [1], which are respectively

(0.18, 38.00) and (0.15, 25.56).

We also ran another set of experiments for 10, 000 replications which gave slightly

better results, as shown in Tables 3.3 and 3.4. Finally, we have also considered some

pair-wise estimators that gave meaningful results and reported the results in Table 3.5.

3.8.2 M/M/1 waiting time process

We also considered the M/M/1 waiting time sequence, where arrivals and service times

are independent and exponentially distributed with mean 0.8. For traffic intensity ρ,

the theoretical value of the TAVC is known in this case also. The value is given by

σ2 = ρ(2+5ρ−4ρ2+ρ3)
(1−ρ)4

. The derivation of this result is given in [74]. We had chosen

ρ = 0.8, which gives σ2 = 1976.

We ran 1, 000 independent replications for each of the estimators of TAVC with run

length n = 20, 000. The values obtained are compared with the values obtained by (i)

the non-overlapping batch means estimator (NBM) and (ii) the overlapping batch means

estimator (OBM) as given in [1]. We find that the best bias and variance combination

is obtained from the row 2 of Table 3.6 and is given by (−1.63, 4.08 × 106). This

compares favorably in terms of bias, but not in terms of variance with the NBM and

OBM estimators given in Tables 4 and 5 of [1], which are respectively (116, 1.866×106)

and (125, 1.762× 106). We also ran another set of experiments with 10, 000 replications

and obtained slightly different values as shown in Tables 3.8 and 3.9.

3.9 Discussion

In many cases, we find that the covariance matrix becomes close to singular and con-

sequently we get unreliable estimates. This is the reason why we practically get few

useful estimators out of several possible combinatorial combinations of integrated path
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Table 3.1 AR(1) process experiments with n = 20, 000, grid size = 4, REPS = 1, 000.

Start index End index Bias Variance MSE
1 1 0.377 195.329 195.471
1 2 −0.272 85.820 85.746
1 3 −0.033 56.366 56.365

Table 3.2 AR(1) process experiments with n = 20, 000, grid size = 20, REPS = 1, 000.

Start index End index Bias Variance MSE
1 1 0.057 38.369 38.372
1 2 −0.101 16.910 16.921
1 3 0.491 62.803 63.044

Table 3.3 AR(1) process experiments with n = 20, 000, grid size = 4, REPS = 10, 000.

Start index End index Bias Variance MSE
1 1 −0.19 170.60 170.64
1 2 −0.12 89.31 89.33
1 3 −0.69 58.37 58.84

Table 3.4 AR(1) process experiments with n = 20, 000, grid size = 20, REPS =
10, 000.

Start index End index Bias Variance MSE
1 1 −0.03 34.96 34.96
1 2 −0.06 17.61 17.62
1 3 −0.002 59.77 59.77

Table 3.5 Pairwise paths: AR(1) process experiments with n = 20, 000, grid size =
20, REPS = 1000.

First path Second path Bias Variance MSE
1 2 0.040 16.939 16.941
1 3 −0.098 15.696 15.706
1 4 −0.011 19.005 19.005
1 5 0.011 17.736 17.736
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Table 3.6 M/M/1 queuing process experiments with grid size 4, n = 20, 000, REPS
= 1, 000.

Start index End index Bias Variance (×106) MSE (×106)
1 1 −111.51 3.21 3.22
1 2 −1.63 4.08 4.08
1 3 −120.73 1.80 1.82

Table 3.7 M/M/1 queuing process experiments with grid size 20, n = 20, 000, REPS
= 1, 000.

Start index End index Bias Variance (×106) MSE (×106)
1 1 −30.13 2.66 2.67
1 2 −24.55 3.00 3.01
1 3 −23.24 4.77 4.77

Table 3.8 M/M/1 queuing process experiments with grid size 4, n = 20, 000, REPS
= 10, 000.

Start index End index Bias Variance (×106) MSE (×106)
1 1 −36.64 2.1 2.1
1 2 −125.67 1.5 1.5
1 3 11.36 3.1 3.1

Table 3.9 M/M/1 queuing process experiments with grid size 20, n = 20, 000, REPS
= 10, 000.

Start index End index Bias Variance (×106) MSE (×106)
1 1 −50.7 4.4 4.4
1 2 −2.17 2.7 2.7
1 3 −52.3 2.5 2.5



67

estimators. The general observation about the experimental results is that usually we

get very low bias values when we consider more than one integrated path. Inclusion

of higher order integrated paths sometimes leads to numerical instabilities and gives us

counter-intuitive results. Empirically we find that the combination of the first and the

second integrated paths may give promising values in many cases, though inclusion of

the third integrated path may further reduce bias (provided it does not result in nu-

merical problems). For the AR(1) experiments, the pairwise paths also gave us very

low values of bias and variance, though the results become instable if we exclude the

first order integrated paths. The bias and variance values are usually much lower in the

case of AR(1) experiments compared to the M/M/1 experiments. It may be possible

to reduce the bias further by computing a bias correction of first order/possibly higher

order.
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CHAPTER 4

CONCLUSIONS

We established the asymptotic validity of two-stage selection and MCB procedures

under the general setting of a parameter estimator satisfying a random-time-change

CLT (Assumption 1) and the existence of a weakly convergent variance estimator for the

variance parameter appearing in the CLT (Assumption 2). For the case when η in the

CLT takes on the canonical value of 1/2 and the first-stage run length is asymptotically

negligible compared to the total run length (i.e., when λ < 2), Theorems 1(iii) and

3(iii) established the asymptotic efficiency of our two-stage WCVE MCB methods in

the sense that the total run length is asymptotically equivalent to what it would be when

the variances σ2
i are known. However, our empirical results seem to indicate that it takes

smaller values of δ for the asymptotics to take effect when λ < 2 compared to when

λ = 2. In the setting of steady-state simulations, we also provided a comparison of our

WCVE MCB methods with those based on STS, and showed that WCVE methods are

asymptotically strictly better (in terms of the mean and variance of total run lengths)

than any STS method with a fixed number of batches. As the number of batches grows

to infinity, the methods become equivalent.

We have also given an estimator for TAVC based on the integrated paths. Due

to ill-conditioning of the resulting covariance matrix, many of the possible estimators

could not be used and we had to remain content with only three or four estimators.

Though we compared the estimators with NBM and OBM estimators only, it may be

mentioned that our estimator outperforms many of the estimators presented in Tables

2-5 of [1]. The novel feature of this estimator is significantly less bias, at the cost of not

so significant increase in variance. This estimator is really a counter example of the so-

called bias variance trade-off among the class of estimators for TAVC. In the future, we
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plan to incorporate a first order (possibly higher order) bias correction to the proposed

estimator, which is expected to reduce the bias further, without affecting the variance.
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