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ABSTRACT
INVESTIGATION ON ADVANCED IMAGE SEARCH TECHNIQUES

by
Abhishek Verma

Content-based image search for retrieval of images baségeasimilarity in their visual
contents, such as color, texture, and shape, to a query imageactive research area due
to its broad applications. Color, for example, provides edul information for image
search and classification. This dissertation investigade@anced image search techniques
and presents new color descriptors for image search ansifedaton and robust image
enhancement and segmentation methods for iris recognition

First, several new color descriptors have been developeddior image search.
Specifically, a new oRGB-SIFT descriptor, which integratessoRGB color space and the
Scale-Invariant Feature Transform (SIFT), is proposedtf@ge search and classification.
The oRGB-SIFT descriptor is further integrated with othelioc SIFT features to produce
the novel Color SIFT Fusion (CSF), the Color Grayscale SlE§ién (CGSF), and the
CGSF+PHOG descriptors for image category search with egipdns to biometrics. Im-
age classification is implemented using a novel EFM-KNNSsifas, which combines the
Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KN@bision rule. Exper-
imental results on four large scale, grand challenge dstasee shown that the proposed
ORGB-SIFT descriptor improves recognition performancerupther color SIFT descrip-
tors, and the CSF, the CGSF, and the CGSF+PHOG descriptdsmpebetter than the
other color SIFT descriptors. The fusion of both Color SIFEBdtiptors (CSF) and Color
Grayscale SIFT descriptor (CGSF) shows significant improa in the classification per-
formance, which indicates that various color-SIFT degorgand grayscale-SIFT descrip-
tor are not redundant for image search.

Second, four novel color Local Binary Pattern (LBP) dedonip are presented for

scene image and image texture classification. SpecifidhkyoRGB-LBP descriptor is



derived in the oRGB color space. The other three color LBRmijasrs, namely, the Color
LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), #mel CGLF+PHOG de-
scriptors, are obtained by integrating the oRGB-LBP desoriwith some additional image
features. Experimental results on three large scale, grhalienge datasets have shown
that the proposed descriptors can improve scene image aagkitexture classification
performance.

Finally, a new iris recognition method based on a robusseggmentation approach
is presented for improving iris recognition performanceheTproposed robust iris seg-
mentation approach applies power-law transformationsnfore accurate detection of the
pupil region, which significantly reduces the candidateblicnboundary search space for
increasing detection accuracy and efficiency. As the liminae, which has a center within
a close range of the pupil center, is selectively detechedeyelid detection approach leads
to improved iris recognition performance. Experimentsigshe Iris Challenge Evaluation

(ICE) database show the effectiveness of the proposed thetho
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CHAPTER 1

INTRODUCTION

Content-based image search for retrieval of images bassidniliarities in their visual con-
tents such as features from color, texture, shapes, etcuserasupplied query image or
user-specified image features has been a focus of interetefdast several years. Color
features provide powerful information for image searcllexing, and classification (Liu
and Yang 2009), (Yang and Liu 2008), (Shih and Liu 2005), intipalar for identification
of biometric images (Verma et al. 2011b; Verma and Liu 201abjects, natural scene, im-
age texture and flower categories (Verma et al. 2010; Verrdd.an2011c), (Banerji et al.
2011) and geographical features from images. The choicecofa space is important
for many computer vision algorithms. Different color spadésplay different color prop-
erties. With the large variety of available color spaces,ittevitable question that arises
is how to select a color space that produces best resultsgartecular computer vision
task. Two important criteria for color feature detectors tat they should be stable under
varying viewing conditions, such as changes in illuminatshading, highlights, and they
should have high discriminative power. Color features sagihe color histogram, color
texture and local invariant features provide varying degraf success against image vari-
ations such as viewpoint and lighting changes, clutter arafusions (Datta et al. 2008),

(Burghouts and Geusebroek 2009), (Stokman and Gevers.2007)

1.1 SIFT Feature Representation

Lately, there has been much emphasis on the detection aagnigon of locally affine
invariant regions (Lowe 2004), (Mikolajczyk et al. 2005)ucsessful methods are based
on representing a salient region of an image by way of anteliipaffine region, which

describes local orientation and scale. After normalizimg local region to its canonical



form, image descriptors are able to capture the invarianbreappearance. Interest point
detection methods and region descriptors can robusthctetgions, which are invariant
to translation, rotation and scaling (Lowe 2004), (Mikolgjk et al. 2005). Affine region
detectors when combined with the intensity Scale-Invar@ature Transform (SIFT) de-
scriptor (Lowe 2004) has been shown to outperform manyrateres (Mikolajczyk et al.
2005).

In this dissertation, the SIFT descriptor is extended ti@tgiht color spaces, includ-
ing the recently proposed oRGB color space (Bratkova eD&I9p, a new oRGB-SIFT fea-
ture representation is proposed, furthermore it is integravith other color SIFT features
to produce the Color SIFT Fusion (CSF), and the Color Grdgs8#T Fusion (CGSF)
descriptors. Additionally, the CGSF is combined with thedpyid of Histograms of Ori-
entation Gradients (PHOG) to obtain a new CGSF+PHOG ddseciigr image category
classification with special applications to biometricsasslfication is implemented using
a novel EFM-KNN classifier (Liu and Wechsler 2002), (Liu an@d&hNsler 2000b), which
combines the Enhanced Fisher Model (EFM) and the K NeareigthRer (KNN) deci-
sion rule (Fukunaga 1990). The effectiveness of the prapdsescriptors and classification
method will be evaluated on four large scale, grand chafletefasets: the Caltech 256

database, MIT scene database, Oxford flower database, @adP@L Iris database.

1.2 LBP Feature Representation

In recent years, the recognition and classification of tegwsing the Local Binary Pattern
(LBP) features has been shown to be promising (Ojala et 84)Y190jala et al. 1996), (Zhu
et al. 2010), (Chen et al. 2010), (Crosier and Griffin 2008)loCfeatures when combined
with the intensity based texture descriptors are able tpeytdrm many alternatives. In
this dissertation, a variable mask size is employed in ailmgenerate a multi-scale LBP
feature vector that is more robust to changes of scale aedtation. Further, the multi-

scale LBP descriptor is extended to different color spacelsiding the oRGB color space



(Bratkova et al. 2009). A new multi-scale oRGB-LBP featugpresentation is proposed,
which is further integrated with other color LBP featureptoduce the novel multi-scale
Color LBP Fusion (CLF) and the multi-scale Color GrayscakPLFusion (CGLF) de-
scriptors. The CGLF is further combined with PHOG to obt&ie hovel CGLF+PHOG
descriptor. Feature extraction applies the Enhanced Fidbéel (EFM) (Liu and Wechsler
2000b), (Liu and Wechsler 2002) and image classificatiomsed on the nearest neighbor
classification rule (EFM-NN). The effectiveness of the megd descriptors and classifi-
cation methodology will be evaluated using three grandlehgk datasets: the MIT scene

database, the KTH-TIPS2-b and the KTH-TIPS materials detedh

1.3 Iris Recognition and Biometric Authentication

Over the past decade biometric authentication has becoreeyaautive area of research
due to the increasing demands in automated personal idatitih. More recently several
new notable techniques and methods with applications ® facognition (Shih and Liu
2011; Liu and Yang 2009; Liu 2007; Yang et al. 2010), eye da&ir¢Shuo and Liu 2010)
and iris (Verma et al. 2011a; Verma and Liu 2011a; Verma €2@l1b) biometrics have
been proposed. Among many biometric techniques, iris r@tiog is one of the most
promising approaches due to its high reliability for pergantification (Ma et al. 2004).

The iris is a thin circular diaphragm, which lies between lgres and cornea of
the human eye. The formation of the unique patterns of teegdnandom and not related
to any genetic factors (Wildes 1997), and the iris patteemsain stable throughout the
adult life. Thus, the patterns within the iris are unique &zle person and two eyes of
an individual have independent iris patterns. Some rebesltows that when compared
with other biometric features such as face and fingerpristpatterns are more stable and
reliable (Du et al. 2004).

In this dissertation, a new iris search method is proposegdan a robust iris

segmentation approach for improving iris recognition perfance (Verma et al. 2011a),



(Verma and Liu 2011a). Major improvements are proposeddarth segmentation phase.
In particular, (i) power-law transformations are implereehfor more accurate detection
of the pupil region. Additionally, (ii) with the proposedctenique the candidate limbic
boundary search space can be reduced considerably, le@dangignificant increase in
the accuracy and speed of the segmentation. The segmarpatiormance is further en-
hanced with the application of thresholding. Furthermdug, for higher accuracy and

speed, the limbic circle having a center within close ranfgb®pupil center is selectively
detected. Additionally, (iv) proposed eyelid detectiopach is shown to improve per-
formance. The effectiveness of the proposed method is &ealon a grand challenge,
large scale database: the Iris Challenge Evaluation (I€hi)l{ps 2006) dataset.

Proposed method is able to correctly segment the pupil f@%®f the images in
the dataset. Iris region detection is 98.5% for the rightaya 98.8% for the left eye. The
rank-one recognition rate for proposed method is 3.5% an% digher than that of the
irisBEE method (Phillips et al. 2008) for the right eye and téft eye respectively. Fur-
thermore, proposed method improves upon the ND_IRIS (Lal.e2005) by a significant
1.9% on the rank-one recognition rate for the left eye. Thdigation rate is about 10%
higher than the irisBEE method (Phillips et al. 2008) forteage at a much lower equal
error rate; this emphasizes the higher accuracy of propostiod.

The rest of the dissertation is structured as follows: Céragtpresents a brief
overview of several representative works on color imagecbeacolor image represen-
tation, learning and classification techniques, and olgeackt scene search and retrieval
followed by a review on image acquisition, segmentatioaffee encoding and matching
for the iris image search. Chapter 3 describes the new cdléF 8nd LBP descriptors,
presents an overview of five color spaces, the details of fid Eature extraction tech-
nique, and classification by the novel EFM-KNN classifierllévsed by a description of
datasets used in the experiments along with a detailedai@tuof color descriptors and

classification methodology is presented in Chapter 4. @ndptescribes the iris dataset



used in the experiments along with the implementation Eetdithe proposed improved
iris recognition method based on robust iris segmentatidimage enhancement followed
by a thorough performance evaluation of the proposed methdé detailed analysis of the
experimental results. The conclusions and future work egegmted in Chapter 6, where
the major contributions of this dissertation are summareed future research directions

are discussed.



CHAPTER 2

RELATED WORK

2.1 Color Image Search
2.1.1 Image-level Global and Local Feature Descriptors

In recent years, use of color as a means to biometric imagevait(Liu and Yang 2009),
(Liu 2006), (Shih and Liu 2005) and object and scene searslyamed popularity. Color
features can capture discriminative information by medniseocolor invariants, color his-
togram, color texture, etc. The earliest methods for olgact scene classification were
mainly based on the global descriptors such as the colorextdre histogram (Niblack
et al. 1993), (Pontil and Verri 1998), (Schiele and Crowl89@). One of the earlier works
is the color indexing system designed by Swain and Ballahiciwses the color histogram
for image inquiry from a large image database (Swain andaB&tl991). Such methods
are sensitive to viewpoint and lighting changes, cluttet aoclusions. For this reason,
global methods were gradually replaced by the part-basedads, which became one of
the popular techniques in the object recognition commurigrt-based models combine
appearance descriptors from local features along with #paitial relationship. Harris in-
terest point detector was used for local feature extragsioch features are only invariant to
translation (Agarwal and Roth 2002), (Weber et al. 2000 eAvards, local features with
greater invariance were developed, which were found to bastoagainst scale changes
(Fergus et al. 2003) and affine deformations (Lazebnik &04l4). Learning and inference
for spatial relations poses a challenging problem in terfrissaccomplexity and compu-
tational cost. Whereas, the orderless bag-of-words metffeergus et al. 2003), (Leung
and Malik 2001), (Jurie and Triggs 2005) are simpler and aaatpnally efficient, though
they are not able to represent the geometric structure afifeet or to distinguish between

foreground and background features. For these reasonsaghef-words methods are not



Key Point/Region Detection Image-Level Feature Description
—— Laplacian of Gaussian (LoG) —— Gabor Image Representation (GIR)
— Difference of Gaussians (DoG) — Local Binary Patterns (LBP)
— Determinant of Hessian (DoH) —— Color Information
—— Maximally Stable Extremal Regions ——SIFT
—— Hough Transform —— SURF
— Affine Invariant Feature Detection —— GLOH
- Harris affine — Histogram of Oriented Gradients (HOG)

- Hessian affine

Statistics-Level Feature Description Learning and Classification
— Principal Component Analysis (PCA) —— Principal Components Analysis (PCA)
— Linear Discriminant Analysis (LDA) —— Kernel PCA
—— Enhanced Fisher Model (EFM) —— Kernel LDA
—— Independent Component Analysis (ICA)
—— Support Vector Machines

—— Hierarchical Clustering

Figure 2.1 An overview of the various techniques in color image search.

robust to clutter. One way to overcome this drawback is tagaekernels that can yield
high discriminative power in presence of noise and clutBzagman and Darrell 2005).

More recent work on color based image classification appeafisiu and Yang
2009), (Yang and Liu 2008), (Liu 2008) that propose seveeal nolor spaces and meth-
ods for face classification and in (Bosch et al. 2008) the H8Mrcspace is used for the
scene category recognition. Evaluation of local color fiarat descriptors is performed
in (Burghouts and Geusebroek 2009). Fusion of color modelsy region detection and
color edge detection have been investigated for represamiaf color images (Stokman
and Gevers 2007). Key contributions in color, texture, dmapg abstraction have been
discussed in Datta et al. (Datta et al. 2008).

As discussed before, many recent techniques for the déscripf images have
considered local features. The most successful local indageriptor so far is Lowe’s
SIFT descriptor (Lowe 2004). The SIFT descriptor encodesdiktribution of Gaussian

gradients within an image region. It is a 128-bin histograat summarizes the local ori-



ented gradients over 8 orientations and over 16 locatiohis. dan efficiently represent the
spatial intensity pattern, while being robust to small defations and localization errors.
Currently, several modifications to the SIFT features haentproposed; among them are
the PCA-SIFT (Ke and Sukthankar 2004), GLOH (Mikolajczyldeé®chmid 2005), and
SURF (Bay et al. 2008). These region-based descriptors dehvieved a high degree of
invariance to the overall illumination conditions for ptarsurfaces. Although, designed
to retrieve identical object patches, SIFT-like featutes but to be quite successful in the
bag-of-words approaches for general scene and objectfidagen (Bosch et al. 2008).

Lately, several methods based on LBP features have beengador image rep-
resentation and classification (Zhu et al. 2010), (Crosier @riffin 2008). Extraction of
LBP features is computationally efficient and with the usenatfti-scale filters; invariance
to scaling and rotation can be achieved (Zhu et al. 2010)ioRux different features has
been shown to achieve a good retrieval success rate (Bahalji2011), (Crosier and Grif-
fin 2008), (Zhang et al. 2007). Local image descriptors hése laeen shown to perform
well for texture based image retrieval (Banerji et al. 20{Chen et al. 2010), (Zhang et al.
2007). In a 3x 3 neighborhood of an image, the basic LBP operator assigmsaaydabel
0 or 1 to each surrounding pixel by thresholding at the grdyevaf the central pixel and
replacing its value with a decimal number converted from&mt binary number.

The Pyramid of Histograms of Orientation Gradients (PHO@&3adiptor Bosch
et al. (2007) is able to represent an image by its local shagetee spatial layout of the
shape. The local shape is captured by the distribution odge @rientations within a
region, and the spatial layout by tiling the image into regiat multiple resolutions. The
distance between two PHOG image descriptors then reflezestient to which the images

contain similar shapes and correspond in their spatialdayo



2.1.2 Statistics-level Feature Descriptors

The color images reside usually in a high-dimensional imsgggece. There is a great de-
mand to find meaningful and compact patterns in such a spaakeieloping robust im-
age recognition methods so as to meet two requirementsneetiaiscrimination ability
and computational efficiency. Therefore, most appeardased image recognition algo-
rithms usually start with the dimensionality reduction sing some popular linear sub-

space methods. In the following sections, several majtisital methods are introduced.

Principal Component Analysis (PCA)

As an optimal linear transformation in the sense of minimuakl Square Error
(MSE), Principal Component Analysis (PCA) has been a leatinhnique for dimension-
ality reduction of input data. Given a set dfdimensional column image vecto{%; },
whereX;j € RY is thej-th image of class. Let the training set consist @fpersons and
l; sample images for persan Thus, the number of training samplesnis= 37 ,1;. For
image recognition, each class has a prior probabilityjofThe within-class scatter matrix

is defined as:

c )\I -
Sv=3 T > (% X)X~ X) (2.1)
whereX; = %zljizlxu is the mean of class The between-class scatter matgxand the

total (mixture) scatter matri% are defined respectively as:

S = ZA X)X -X)T (2.2)

c )\I -
S = m Xij —X) (Xij — X) (2.3)
whereX = 15¢ zlji:]_Xij is the grand mean.

PCA seeks a principal subspace of lower dimensionality teimize the data re-
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construction capability of the features. As a result, ttegudees in this subspace can repre-
sent the original data accurately. The objective functibR©@A can be defined as:
W* = argmaxW'™ SW| (2.4)
IwW(=1
Maximizing the above equation can be solved via eigenvalgenvector analy-
sis. That is, the matri¥V* can be constructed by obtaining therincipal eigenvectors

corresponding to thk largest eigenvalues &.

Linear Discriminant Analysis (LDA)

The best representation of data may not perform well froneldssification point of
view, as the total scatter matrix consists of both the withimd between-class variations.
To obtain the discrimination of features for differentragiimages of one category from
another, one needs to manipulate the within- and betwesss-elariations separately. To
that end, face recognition using Linear Discriminant As&éyLDA) has been an area of
increasing interest. LDA is also known as Fisher Linear Bismant (FLD). The objective

function of LDA can be defined as:

i WTSW|
W* = argmax———— 2.5
WWTSW &5

Equation (2.5) is called the Fisher criterion. To maximiae tatio value of this
criterion, LDA seeks an optimal subspadg that separates the different classes as far
as possible and compresses the same classes as compaablysddep To derivaV*,
LDA solves the generalized eigenvectorsW = A SW, and chooses thk principal

eigenvectors corresponding to théargest eigenvalues.
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Map features from lower to higher
dimensions

Low Dimensions Higher Dimensions

(b)

Figure 2.2 Maximum-margin hyperplane and margins for a SVM in 2D speaia¢d with
samples from two classes. Samples on the margin are cadesliffport vectors. (b) Map
features from lower dimensions to higher dimensions foreeaeparability.

2.1.3 Learning and Classification

Efficient retrieval requires a robust feature extractiorthrod that has the ability to learn
meaningful low-dimensional patterns in spaces of very tdghensionality (Liu 2003),
(Liu and Wechsler 2003), (Liu and Wechsler 2000a). Low-disienal representations
are also important when one considers the intrinsic contipuia aspect. PCA has been
widely used to perform dimensionality reduction for imageexing and retrieval (Liu
and Wechsler 2000b), (Liu 2004b). Recently, Support Vebtachine (SVM) classifier
for multiple category recognition has gained popularithd#g et al. 2007), (Bosch et al.
2008) though it suffers from the drawback of being compatstlly too expensive on large
scale image classification tasks. The EFM methodology Hais\aed good success for the
task of image based recognition (Liu and Wechsler 2002)y éid Wechsler 2001), (Liu
2004a). See Figure 2.1 for an overview of the various tectesdor color image search.
The SVM performs classification by constructing an N-dimenal hyperplane that
optimally separates the data into two categories. SVMslasely related to classical mul-
tilayer perceptron neural networks. The goal of SVM modgisto find the optimal hy-

perplane that separates clusters of sample vectors in suai that samples from different



12

target classes lie on different sides of the plane. See &g for an overview of a two

class SVM classification. Let the training data be a setpdints of the form:

D ={(x,c)x € RP,¢i e {—1,1}}]., (2.6)

wherec; has a value of -1 or 1, which indicates the class to whjdielongs. Eacl; is a
p dimensional vector. The goal is to find the maximum-margipdrplane that divides the
points havings; = 1 from those having; = —1. Any hyperplane can be written as a set of

pointsx satisfying:
wex—b=0 (2.7)

where the vectow is a vector normal to the hyperplane andienotes the dot product.
The parameteb/ | w || determines the offset of the hyperplane from the origin @ltre
normal vectow. Thew andb are to be chosen in such a way that it maximizes the margin,
or the distance between the parallel hyperplanes that dee apart as possible while still
separating the data. The primal form of the SVM problem is teimize (inw, b):

1|l w||* subject to (for any = 1,2,...,n)
Ci(wexi—b)>1 (2.8)

Using non-negative Lagrange multipliexsthe solution can be expressed as:

n
W= 0;CX (2.9)
i; (]
and 1 Nsv
b=— We X — Cj 2.10
NSVi;( ® Xi i) ( )

whereNsgy is the set of all support vectors. Using the fact, l1hth||2 = weWw and substitut-

ing, one can show that the dual of the SVM reduces to the faligwptimization problem:
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Figure 2.3 The leftimage3.5 from the Faces category in the Caltech a&&édt. Image on
the right shows the keypoints and elliptical regions degtty the Harris-affine detector.

Maximize (ina;)

~ n 1 T n 1
L(a) = _;a. ~5 ; aiajCiCiX Xj = i;a. -5 ; 0i 0 CiCiK(XiX]) (2.11)

subject to (for any = 1,2,...,n) a; > 0 andy{ ; aici = 0. Here the kernel is defined by:
k(xixj) =% X

The original optimal hyperplane algorithm proposed by Wiaid Vapnik (1963)
was a linear classifier. Boser et al. (1992) suggested a wesetde non-linear classifiers
by applying the kernel trick (Aizerman et al. 1964) to maximmnargin hyperplanes. Mul-
ticlass SVM aims to assign labels to instances by using stimector machines, where
the labels are drawn from a finite set of several elements.appeoach that is commonly
used is to reduce the single multiclass problem into mdtiplo-class problems. The
two methods commonly employed to build such binary clagsife@e one-versus-all and
one-versus-one. One popular implementation of the SVMad.thSVM (Chang and Lin

2011).
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2.1.4 Key Region Detection by Affine Detectors

The affine key point detector detects interest points inessphce, and then determines
an elliptical region for each point. Interest points mayle¢edted with the Harris detec-
tor. The elliptical region is determined with the second neatmatrix of the intensity
gradient (Lindeberg and Garding 1997). The second momettbamaoften used for fea-
ture detection and for describing local image structuréss Wised for point detection by
Harris detector and for the estimation of surrounding aleautithe point. The Harris de-
tector (Harris and Stephens 1988) is based on the followiimgiple. First, the local image
derivatives are computed with Gaussian kernels of diffeméon scale. Second, the deriva-
tives are averaged in the neighborhood of the point by snragthith a Gaussian window
of integration scale. The eigenvalues of this matrix regméswvo principal signal changes
in a neighborhood of the point. Those points for which thealghange is significant in
orthogonal directions are extracted. Such points areestaldrbitrary lighting conditions
and represent the image fairly well.

After the extraction of a set of initial points the next stefia perform the iterative
estimation of elliptical affine region (Lindeberg and Gaglil997). The region is then
normalized to the circular one. Harris-affine and the Hesaffine detectors are robust to
light intensity changes, blurring, scale, and viewpoirardes (Mikolajczyk et al. 2005).

See Figure 2.3 for the points and regions detected by thed-&ffine detector.

2.2 Iris Image Search

A general approach to iris image search consists mainly of $dages: (1) image ac-
quisition, (2) iris segmentation, (3) texture analysisj &h) matching of texture patterns.
Several notable contributions to the aforementioned stagesummarized here.

One of the earlier systems proposed by Flom and Safir (198érte the pupll
region by finding large connected regions of pixels with msiey values below a given

threshold. Iris descriptors were extracted using the iiffee operator, edge detection
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algorithms, and the Hough transform. Wildes (1997) systeeduow light level camera
along with diffuse source and polarization for image adtjois. Iris region was segmented
by computing the binary edge map followed by the Hough tiamsf For matching, it ap-
plied the Laplacian of Gaussian filter at multiple scalesrtmpce a template and computes
the normalized correlation as a similarity measure.

Masek (2003) performed segmentation of iris by canny ed¢gcten and circular
Hough transform. Encoding was performed by 1D Log-Gaborel&ts and matching was
based on hamming distance. Liu et al. (2005) proposed thelRIS_method based on
Masek’s implementation, hamming distance was used to caeipe iris templates. The
method proposed by Daugman (2006, 2007) performed segtimendathe iris region with
the integro-differential operator followed by its nornzatiion. The normalized iris image
was convolved with the 2D Gabor filters to extract the textafermation, which was
guantized into a compact 256 byte binary iriscode. Theadss were compared using the
normalized Hamming distance.

The issue of noise detection and handling for non-cooperais recognition was
explored by Proenca (2006); Proenca and Luis (2007). Bagegpproach to matching
of warped iris patterns was discussed by Thornton et al. {ROMore updated methods
in image understanding for iris biometrics were reviewe®loyvyer et al. (2008). Vatsa
et al. (2008) proposed a curve evolution approach to segmenn-ideal iris image us-
ing the modified Mumford-Shah functional. Beacon guideddeéor fast iris matching
was discussed by Hao et al. (2008) and use of short-lengtltades from the most de-
scriptive regions of the iris for fast matching was propobgdGentile et al. (2009). He
et al. (2009) proposed an Adaboost-cascade iris deteat@eigbiris segmentation. Spline
based edge fitting scheme was used for non-circular irisdeyrdetection. Eyelashes and
shadows were detected via a learned prediction model. Bakal (2010) explored the
issue of degraded iris biometrics performance with nonvai contact lenses. Proenca

(2010) proposed a segmentation method to handle the debnadges acquired in less
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constrained conditions for real-time applications. Pubial. (2011) proposed a fast iris
segmentation technique based on the Fourier spectraltgdosinoisy frontal view eye

images captured with minimum cooperation from the subjects



CHAPTER 3

COLOR SPACES, NEW COLOR DESCRIPTORS
AND THE NOVEL EFM-KNN CLASSIFIER

This chapter first presents a review of five color spaces irchvtiie new color SIFT and
new color LBP descriptors are defined followed by a discussio clustering, visual vo-
cabulary tree, and visual words for SIFT descriptors. Taieee five conventional SIFT
descriptors are presented: the RGB-SIFT, the rgh-SIFTH®SIFT, the YCbCr-SIFT,
and the grayscale-SIFT descriptors and four new color SESEuptors are presented: the
0RGB-SIFT, the Color SIFT Fusion (CSF), the Color Grays&ikerT Fusion (CGSF), and
the CGSF+PHOG descriptors for image classification witltspp@pplications to biomet-
rics. Second, four novel color Local Binary Pattern (LBPyad#tors are presented for
scene image and image texture classification. SpecifidhkyoRGB-LBP descriptor is
derived in the oRGB color space. The other three color LBRrij@srs, namely, the Color
LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), #mel CGLF+PHOG de-
scriptors, are obtained by integrating the oRGB-LBP desoriwith some additional image

features. Followed by a detailed discussion on the novel #HWW classification method-

ology.

3.1 Color Spaces

A color image contains three component images, and eachgdigecolor image is speci-
fied in a color space, which serves as a color coordinatersy§tee commonly used color
space is the RGB color space. Other color spaces are usaddlylated from the RGB
color space by means of either linear or nonlinear transdtions.

To reduce the sensitivity of the RGB images to luminancdaserorientation, and

other photographic conditions, the rgb color space is defiiyenormalizing theR, G, and

17
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B components:
r=R/(R+G+B)

g=G/(R+G+B) (3.1
b=B/(R+G+B)
Due to the normalizationandg are scale-invariant and thereby invariant to light intgnsi
changes, shadows and shading (Gevers et al. 2006).
The HSV color space is motivated by human vision system IsscAumans de-
scribe color by means of hue, saturation, and brightness.add saturation define chromi-
nance, while intensity or value specifies luminance (Gazahd Woods 2001). The HSV

color space is defined as follows (Smith 1978):

MAX = maxR, G, B)
Let { MIN = min(R, G,B)

3 = MAX —MIN

V = MAX

. g If MAX#0 3.2)
0 ifMAX=0
( 60(%52) if MAX =R

L 60558 +2) if MAX=G

60(R5€ +4) if MAX=B

\ not defined if MAX=0

The YCbCr color space is developed for digital video stad@ad television trans-

missions. In YCbCr, the RGB components are separated imbanhnce, chrominance
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Thive Dimensional Plot in rgb Color Space

Figure 3.1 Visualizing eight different colors in various color spaceésp left is the image
with eight colors numbered from 1 to 8. Left to right and toftdtom is the depiction of
colors in RGB space, HSV space, rgb space, oRGB space andr¥dpbCe.

blue, and chrominance red:

Y 16 654810 1285530 249660 R
Cb|=1|128 |+ | —37.7745 —741592 1119337 G (3.3)
Cr 128 1119581 —93.7509 —182072 B

where theR, G, B values are scaled {0, 1].

The oRGB color space (Bratkova et al. 2009) has three chahn@ll andC2. The
primaries of this model are based on the three fundamenyahptogical opponent axes:
white-black, red-green, and yellow-blue. The color infatman is contained i€1 andC2.

The value ofC1 lies within[—1, 1] and the value o€2 lies within[—0.8660 0.8660. The
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Figure 3.2 Color component images in the five color spaces: RGB, HSV, oftGB,

and YCbCr. The color image is from the Caltech 256 datasebselyrayscale image is

displayed as well.

L channel contains the luminance information and its valaege betweef0, 1|:

L 0.2990 05870 01140 R
Cl | =| 05000 Q05000 —1.0000 G
C2 0.8660 —0.8660 00000 B

Figure 3.1 shows eight different colors in various colorcgsa Figure 3.2 shows

(3.4)

the color component images in the five color spaces: RGB, Iift,0RGB, and YCbCr.
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Figure 3.3 (a) Various stages in representing an image as a featurervaaiense color
histogram and (b) learning and classification stages.

3.2 Dense Color Histogram Descriptors

Here, an image is defined in terms of a dense histogram of tee ttolor channels. This
allows image representation by way of its predominant ctdatures and classification
based on its most discriminative color features. Figuréa}.Bustrates various stages in
extracting a feature vector from a color image. The systamsstwith a color image as an
input and first splits it into three separate color compotmapes. Next step is to form a
histogram from each of the color channels. In order to mak&etfiree histograms indepen-
dent of the pixel count in an image, they are normalized to suone. The normalized
histograms are then concatenated to form a compact fixethléegure vector. The follow-
ing eight dense histograms are presented: Grayscale-D8EBeRH, RGB-DH, HSV-DH,
rgb-DH, YCbCr-DH, Color Histogram Fusion (CHF) that is faethfrom the combina-
tion of five dense color histograms, Color Gray Histogramiéiug¢CGHF) is formed by
combining Grayscale-DH with CGH. Figure 3.3(b) gives anraiev of the learning and

classification stages.



22

|
| Training Images
I
.
I o
I £
[ E
I o
| Q
|
! Q
! 2
| g
Region Detection | £
I =
} | g
[ K]
14 [m]
Color SIFT Features :
Dimensionality EFM-KNN
Reduction (PCA) / !
l ‘ Category
EFM Feature Extraction Classification

Figure 3.4 An overview of SIFT feature extraction, visual words, léagniand classifica-
tion stages.

3.3 SIFT Feature Extraction, Clustering, Visual Vocabulaty Tree,

and Visual Words

This section first gives details of the SIFT feature extaciprocedure. The next phase
deals with the formation of visual vocabulary tree and Visuards, here the normalized
SIFT features are quantized with the vocabulary tree suahe#ich image is represented
as a collection of visual words, provided from a visual vadaby. The visual vocabulary
is obtained by vector quantizing descriptors computed fthentraining images usinkr

means clustering. See Figure 3.4 for an overview of the gsiog pipeline.

3.3.1 SIFT Feature Extraction

Image similarity may be defined in many ways based on the ne#&teapplication. It
could be based on shape, texture, resolution, color or sdhex epatial features. The

experiments here compute the SIFT descriptors extracted fhe scale invariant points
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(Zhang et al. 2007) on aforementioned color spaces. Sudripss are called sparse
descriptors, they have been previously used in (Csurka 208#), (Lazebnik et al. 2003).
Scale invariant points are obtained with the Hessian-affioiat detector on the inten-
sity channel. For the experiments, the Hessian-affine ml@tector is used because it has
shown good performance in category recognition (Mikohgozt al. 2005). The remaining
portion of feature extraction is then implemented accaydothe SIFT feature extraction
pipeline of Lowe (Lowe 2004). Canonical directions are fdlased on an orientation
histogram formed on the image gradients. SIFT descript@shen extracted relative to

the canonical directions.

3.3.2 Clustering, Visual Vocabulary Tree, and Visual Words

The visual vocabulary tree defines a hierarchical quamizahat is constructed with the
hierarchicak-means clustering. A large set of representative descngtctors taken from
the training images are used in the unsupervised trainitigeofree. Instead df defining
the final number of clusters or quantization cekgjefines the branch factor (number of
children of each node) of the tree. First, an initaineans process is run on the training
data, definingk cluster centers. The training data is then partitioned kngooups, where
each group consists of the descriptor vectors closest tdtiaydar cluster center. The same
process is then recursively applied to each group of dascrgctors, recursively defining
clusters by splitting each cluster inkanew parts. The tree is determined level by level, up
to some maximum number of levels dayand each division int& parts is only defined by
the distribution of the descriptor vectors that belong t® plarent cluster. This process is
illustrated in Figure 3.5(a). Once the tree is computede#@snodes are used for quantizing
descriptors from the training and test images.

It has been experimentally observed that most importarthiretrieval quality is
to have a large vocabulary (large number of leaf nodes). &th#é computational cost of

increasing the size of the vocabulary in a non-hierarchihner would be very high, the
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Figure 3.5 (&) An illustration of the process of constructing a vocabyltree by hier-
archicalk-means. The hierarchical quantization is defined at ead ®vk centers (in
this casek = 3). (b) A large number of elliptical regions are extractezhirthe image and
normalized to circular regions. A SIFT descriptor vectocasnputed for each region. The
descriptor vector is then hierarchically quantized by tbeabulary tree. The number of
guantization bins is the number of leaf nodes in the vocabtitae; this is the length of the
final feature vector as well.

computational cost in the hierarchical approach is lofgarit in the number of leaf nodes.
The memory usage is linear in the number of leaf nddesThe current implementation
builds a tree of 8661 leaf nodes anki= 9.

To obtain fixed-length feature vectors per image, the visu@ds model is used
(Bosch et al. 2008), (Csurka et al. 2004). The visual worddehperforms vector quanti-
zation of the color descriptors in an image against a visoahlbulary. In the quantization
phase, each descriptor vector is simply propagated dowtrdbeat each level by compar-
ing the descriptor vector to thecandidate cluster centers (represented lmpildren in
the tree) and choosing the closest one till it is assignedgartacular leaf node. This is
a simple matter of performing dot products at each level, resulting in a totakafdot
products, which is very efficient K is not too large. See Figure 3.5(b) for an overview of

the quantization process.
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Figure 3.6 Multiple Color SIFT features fusion methodology using tHeMEfeature ex-
traction.

After all the SIFT features from an image are quantized, adfiemgth feature
vector would be obtained. The feature vector is normalipexeto mean and unit standard
deviation. The advantage of representing an image as a fexgh feature vector lies in

the fact that it allows to effectively compare images thayva size.
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Figure 3.7 The multi-scale LBP operators.

3.4 New Color SIFT Descriptors

The SIFT descriptor proposed by Lowe transforms an imageanérge collection of fea-
ture vectors, each of which is invariant to image transtgtszaling, and rotation, partially
invariant to the illumination changes, and robust to loemetric distortion (Lowe 2004).
The key locations used to specify the SIFT descriptor arendéfas maxima and minima
of the result of the difference of Gaussian function appirethe scale-space to a series
of smoothed and resampled images. SIFT descriptors roblstal affine distortions are
then obtained by considering pixels around a radius of tlyddaation.

The grayscale SIFT descriptor is defined as the SIFT descrayplied to the
grayscale image. A color SIFT descriptor in a given colorcgga derived by individually
computing the SIFT descriptor on each of the three compadmeages in the specific color
space. This produces a 384 dimensional descriptor thatnsef from concatenating the
128 dimensional vectors from the three channels. As a rdsult color SIFT descriptors
are defined: the RGB-SIFT, the YCbCr-SIFT, the HSV-SIFT, tiedrgb-SIFT descriptors.

The four new color SIFT descriptors are defined in the oRGBrcgthace and the
fusion in different color spaces. In particular, the oRGIBISdescriptor is constructed
by concatenating the SIFT descriptors of the three compan&ges in the oRGB color
space. The Color SIFT Fusion (CSF) descriptor is formed kynfuthe RGB-SIFT, the
YCbCr-SIFT, the HSV-SIFT, the oRGB-SIFT, and the rgb-SIF&sctriptors. The Color
Grayscale SIFT Fusion (CGSF) descriptor is obtained bytugirther the CSF descriptor



27

=
=
=
-

A I
PE=IR
leosispacsl | | ! ! !

|oRGB || YCbCr|| RGB || HSV || rgb ||| Gray |
1 1 - 1 1 + 4

\ Color Multi-Scale LBP ] =
@
!

Dimensionality Reduction (PCA) o

il l l
EFM Feature Extraction

\ CLF ] \ CGLF | \CGLF+PHOG|
l l l

[ Nearest Neighbor Classification I

Figure 3.8 Multiple Color LBP features fusion methodology using theMEfeature ex-
traction.

and the grayscale-SIFT descriptor. The CGSF is combindutivt Pyramid of Histograms
of Orientation Gradients (PHOG) descriptor to obtain theSEGPHOG descriptor. See
Figure 3.6 for multiple Color SIFT features fusion methaapl.

3.5 New Color LBP Descriptors

The LBP descriptor proposed by Ojala et al. (1994, 1996passn intensity value to each
pixel of an image based on the intensity values of the eigigtht®ring pixels. Choosing

multiple neighborhoods of different distances from thgeapixel and orientations for each
pixel has been shown to achieve partial invariance to sgalid rotation (Zhu et al. 2010).
Using the multi-scale LBP operator shown in Figure 3.7,&itBP images from the three
neighborhoods are generated. The normalized histogramstfre LBP images are used
as feature vectors and they are independent of the image $tze fused histograms of

multi-scale LBP images give a feature vector that is pdytialzariant to image translation,
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scaling, and rotation.

The grayscale-LBP descriptor is defined as the LBP descrigpplied to the
grayscale image. A color LBP descriptor in a given color spacderived by individu-
ally computing the LBP descriptor on each of the three corepbimages in the specific
color space. This produces a 2,304 dimensional descripabird formed from concatenat-
ing the 768 dimensional vectors from the three channels. #esalt, the four color LBP
descriptors are defined: the RGB-LBP, the YCbCr-LBP, the 8, and the rgb-LBP
descriptors.

The four new color LBP descriptors are defined in the oRGBrcspace and the
fusion in different color spaces. In particular, the oRGBR.descriptor is constructed
by concatenating the LBP descriptors of the three compansages in the oRGB color
space. The Color LBP Fusion (CLF) descriptor is formed byniyishe RGB-LBP, the
YCbCr-LBP, the HSV-LBP, the oRGB-LBP, and the rgb-LBP dgsors. The Color
Grayscale LBP Fusion (CGLF) descriptor is obtained by fg$imther the CLF descriptor
and the grayscale-LBP descriptor. The CGLF is combined thighPHOG to obtain the
CGLF+PHOG descriptor. See Figure 3.8 for multiple Color LiBRtures fusion method-

ology.

3.6 The Novel EFM-KNN Classifier

Image classification using the new descriptors introduoetthé preceding section is im-
plemented using a novel EFM-KNN classifier (Liu and Wech2@02), (Liu and Wechsler
2000b), which combines the Enhanced Fisher Model (EFM) badtNearest Neighbor
(KNN) decision rule (Fukunaga 1990). L&t < RN be a random vector whose covariance

matrix is% -:
Sy =2 SN2 -E@)]Y (3.5)

where&’(+) is the expectation operator ahdlenotes the transpose operation. The eigen-
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vectors of the covariance matrix,- can be derived by PCA:
> 9 = OAD (3.6)

where® = [ ... gn] is an orthogonal eigenvector matrix ahd= diag{A1,A2,...,An}
a diagonal eigenvalue matrix with diagonal elements in @&ging order. An important

application of PCA is dimensionality reduction:

vy =P (3.7)

whereP = [@@... @], andK < N. # ¢ RK thus is composed of the most significant
principal components. PCA, which is derived based on amgtiepresentation criterion,
usually does not lead to good image classification perfoomaho improve upon PCA, the
Fisher Linear Discriminant (FLD) analysis (Fukunaga 1980ntroduced to extract the
most discriminating features.

The FLD method optimizes a criterion defined on the withiassl and between-

class scatter matriceS, andS, (Fukunaga 1990):

-

Sw=Y P(@)EUZ —Mi)(Z —M)'|w} (3.8)

L
S&,:ZF’(cu)(Nh—M)(wh—M)t (3.9)

whereP(aw) is a priori probability, g represent the classes, adgdandM are the means
of the classes and the grand mean, respectively. The onttre FLD method optimizes is
Ji1 =tr(Sy;'S), which is maximized whel contains the eigenvectors of the mat§x'S,

(Fukunaga 1990):

SISW =wA (3.10)

whereW A are the eigenvector and eigenvalue matrice§,8%,, respectively. The FLD

discriminating features are defined by projecting the pattector?” onto the eigenvectors
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of Y:
¥ =Y (3.11)

Z thus is more effective than the feature vectoderived by PCA for image classification.
The FLD method, however, often leads to overfitting when enpénted in an in-
appropriate PCA space. To improve the generalization padace of the FLD method, a
proper balance between two criteria should be maintairedemnergy criterion for adequate
image representation and the magnitude criterion for ettmg the small-valued trailing
eigenvalues of the within-class scatter matrix (Liu and kgéer 2000b). A new method,
the Enhanced Fisher Model (EFM), is capable of improvingyeeeralization performance
of the FLD method (Liu and Wechsler 2000b). Specifically, B method improves the
generalization capability of the FLD method by decomposhgFLD procedure into a
simultaneous diagonalization of the within-class and leetwclass scatter matrices (Liu
and Wechsler 2000b). The simultaneous diagonalizatiotesrgse equivalent to two op-
erations as pointed out by Fukunaga (1990): whitening thieimvclass scatter matrix and
applying PCA to the between-class scatter matrix usingivsformed data. The stepwise
operation shows that during whitening the eigenvalues efvithin-class scatter matrix
appear in the denominator. Since the small (trailing) eigkres tend to capture noise
(Liu and Wechsler 2000b), they cause the whitening step foffimisleading variations,
which leads to poor generalization performance. To achemheanced performance, the
EFM method preserves a proper balance between the needéhatlected eigenvalues
account for most of the spectral energy of the raw data (faresentational adequacy), and
the requirement that the eigenvalues of the within-claagesxcmatrix (in the reduced PCA
space) are not too small (for better generalization perémaee) (Liu and Wechsler 2000Db).
Image classification is implemented using the EFM-KNN amctERM-NN (nearest
neighbor) classifiers, Figure 3.6 and Figure 3.8 show thiefusiethodology of multiple

descriptors using the EFM feature extraction methodology.



CHAPTER 4

EXPERIMENTAL EVALUATION OF NEW COLOR DESCRIPTORS
AND THE NOVEL EFM-KNN CLASSIFIER

This chapter first describes the five datasets used in theimgrgs. Next, an evaluation of
dense color histogram is performed, followed by an evabmatif new color SIFT descrip-

tors and new color LBP descriptors upon the various datasets

4.1 Datasets
4.1.1 Caltech 256 Object Categories Dataset

The Caltech 256 dataset (Griffin et al. 2007) holds 30,607esalivided into 256 cat-
egories and a clutter class. The images have high intra-etasability and high object
location variability. Each category contains at least 88ges, a maximum of 827 images
and the mean number of images per category is 119. The imagesken collected from
Google and PicSearch, they represent a diverse set ofrigglethnditions, poses, back-

grounds, image sizes, and camera systematics. The vambegocies represent a wide

American
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|
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Spider Sunflower Swan Tombstone  Traffic Light Waterfall

Penguin School Bus

Figure 4.1 Example images from the Caltech 256 object categoriesetatas
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Figure 4.2 Example images from the Faces and People classes of thelCahé object
categories dataset.

variety of natural and artificial objects in various setinghe images are in color, in JPEG
format with only a small number of grayscale images. Theayesize of each image is
351x351 pixels. See Figure 4.1 for some images from the bbgegories and Figure 4.2

for some sample images from the Faces and People categories.

4.1.2 UPOL Iris Dataset

The UPOL iris dataset (Dobes et al. 2006) contains 128 uregas (or classes) belonging
to 64 subjects with each class containing three sample isndde images of the left and
right eyes of a person belong to different classes. Thesirgse scanned by a TOPCON
TRC50IA optical device connected with a SONY DXC-950P 3CGInera. The iris im-

ages are in 24-bit PNG format (color) and the size of each aia76x768 pixels. See

Figure 4.3 for some sample images from this dataset.

OO¢

Figure 4.3 Example images from the UPOL Iris dataset.
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Figure 4.4 Example images from the MIT Scene dataset.

4.1.3 MIT Scene Dataset

The MIT scene dataset (Oliva and Torralba 2001) has 2,68gemalassified as eight
categories: 360 coast, 328 forest, 374 mountain, 410 opentigo 260 highway, 308 inside
of cities, 356 tall buildings, and 292 streets. All of the mea are in color, in JPEG format,
and the average size of each image is 256x256 pixels. Tharéaige variation in light,

pose and angles, along with a high intra-class variatiore Jdurces of the images vary
(from commercial databases, websites, and digital can@disa and Torralba 2001). See

Figure 4.4 for some sample images from this dataset.

Fritillary Iris Lily Valley Pansy Tigerlily Tulip

Figure 4.5 Example images from the Oxford Flower dataset.
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Aluminium Foil Brown Bread Cork Cotton Lettuce Leaf Wool

Figure 4.6 Example images from the KTH-TIPS Texture dataset.

4.1.4 Oxford Flower Dataset

This data set consists of 17 species of flowers with 80 imageach category and a total
of 1,360 images. All the images are in color in JPEG formatthecaverage image size of
each image is 560x560 pixels. There are species that havg anigue visual appearance,
for example Fritillaries and Tigerlilies, as well as spscwith very similar appearance,
for example Dandelions and Coltsfoot. There are large viemtpscale, and illumination
variations. The large intra-class variability and the $rmaér-class variability make this
data set very challenging. The flower categories are delibsrchosen to have some am-
biguity on each aspect. For example, some classes cannidtheydished on color alone
(e.g., Dandelion and Buttercup), others cannot be diststgal on shape alone (e.g., Blue-
bell and Crocus). The flower images were retrieved from variwebsites and personal

photographs (Nilsback and Zisserman 2006). Figure 4.5 slsome of the categories.

4.1.5 KTH-TIPS Texture Dataset

The KTH-TIPS dataset (Hayman et al. 2004) consists of tesseks of textures with 81
images per class. All the images are in color, PNG format hadrtaximum image size is
200x200 pixels. All ten textures have been photographethatstales and nine illumina-

tion conditions for each scale. Some of the classes haveyssimailar visual appearance,
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Figure 4.7 The mean average classification performance of the eigltriges's: the
0oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DHgtgrayscale-DH,
the CHF, and the CGHF descriptors on the Oxford Flower Déatase

like cotton and linen, and brown bread and sponge which mtidisglataset moderately
challenging. The KTH-TIPS2-b (Caputo et al. 2005) dataset more challenging ex-
tension of the KTH-TIPS dataset with 11 classes of matedats four samples for each

material. Each of these samples has 108 images with 432 symyeclass and a total of

Figure 4.8 Image recognition using the EFM-NN classifier: Examplesafectly clas-
sified images of the Bluebell (top) and Lily Valley (bottorrgtegories from the Oxford
Flower dataset.
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Figure 4.9 The mean average classification performance of the eightriges's: the
0oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DHgtgrayscale-DH,
the CHF, and the CGHF descriptors on the MIT Scene Dataset.

4,752 images. Some of the images in the classes like wool@ttohcare from differently

colored samples leading to very high intra-class variabietween samples, while some
samples from different classes like cork and cracker haweséime color and general ap-
pearance lowering the inter-class variation. See Figusdat.some sample images from

this dataset.

4.2 Evaluation of Dense Color Histogram on:

Oxford Flower, MIT Scene, and Caltech 256 Datasets

The method starts with a color image as an input and firstsspiiito three separate color
component images. Next step is to compute histograms fratm efthe color channels.
After normalization the individual histograms are conocated to form a compact fixed
length feature vector. The following eight dense histog(Bid) descriptors are evaluated:
the oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgbtQhe grayscale-DH,
the Color Histogram Fusion (CHF), and the Color Grayscaktdgiram Fusion (CGHF)
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Figure 4.10 Image recognition using the EFM-NN classifier: Examplesavfectly clas-
sified images of the Coast (top) and Inside City (bottom)gaties from the MIT Scene
dataset.

descriptors. Learning and classification is performed withEFM-NN (nearest neighbor)

classifier.

4.2.1 Experimental Results on the Oxford Flower Dataset

Experimental setup consists of three sets of 40 trainingg@maand 20 test images per
class. See Figure 4.7 for the classification performanaesa@ight descriptors. On dense
histogram, HSV features give a success rate of 32.8% folldwergb-DH at 22.7% and
RGB-DH at 22.6%. The YCbCr-DH and oRGB-DH come next at 21.6#b 21.3%, re-
spectively. The grayscale-DH achieves 14.8% success @imbined color histograms
reach a performance of 44.9% and fusing color and gray histogeaches 46.3%.

Figure 4.8 shows some example images that were classifiedctgrusing the
EFM-NN classifier from the Bluebell and Lily Valley categesi of the Oxford Flower

dataset.
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Figure 4.11 The mean average classification performance of the eigltriges's: the
0oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DHgtgrayscale-DH,
the CHF, and the CGHF descriptors on the Caltech 256 Dataset.

4.2.2 Experimental Results on the MIT Scene Dataset

From each class, 100 images for training, 50 images fomgstie selected. Five-fold
cross validation is performed on the following dense hisdag descriptors: the oRGB-
DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgh-DH, the ggaale-DH, the Color
Histogram Fusion (CHF), and the Color Grayscale Histograsidh (CGHF) descriptors.
See Figure 4.9 for the classification performance acrost digscriptors. HSV features
give a success rate of 40% followed by RGB-DH at 36.8% andDgbat 27.9%. The
grayscale-DH achieves 26.8% success rate. The oRGB-DH @tdC¥DH come next at
24.8% and 22.2%, respectively. Combined color histograasir a performance of 51.6%
and fusing color and gray histogram reaches 52.1%.

Figure 4.10 shows some example images that were classifregctyg using the

EFM-NN classifier from the Coast and Inside City categorigbe MIT Scene dataset.
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4.2.3 Experimental Results on the Caltech 256 Dataset

On the Caltech 256 dataset (Griffin et al. 2007) experimengtparformed to evaluate the
performance of the following dense histogram descriptibrs o0RGB-DH, the YCbCr-DH,
the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH, thdd€dlistogram Fusion
(CHF), and the Color Grayscale Histogram Fusion (CGHF) digtezs. From each class,
50 images are used for training and 25 images for testingur€ig.11 shows the detailed
performance of the EFM-NN classification technique on thisadet. HSV features give a
success rate of 5% followed by RGB-DH at 3.6% and graysc#lea2.8%. The rgb-DH,
YCbCr-DH and oRGB-DH come next at 2.5%, 1.9% and 1.8%, rasdy. Combined
color histograms reach a performance of 5.9% and fusing eold gray histogram reaches
6%. This dataset has very high intra-class variability, loter-class variability, and in
several cases the object occupies a small portion of thanfidfje. This makes it chal-
lenging for the dense histogram to attain good success. Ssubs are later addressed
in this dissertation and new robust methods with improvedsification performance are
proposed.

Figure 4.12 shows some example images that were classifregctlp using the
EFM-NN classifier from the Bat and Swiss Army Knife categerid the Caltech 256

dataset.

4.3 Evaluation of SIFT Descriptors on the Caltech 256 and th&/POL Iris Datasets
4.3.1 Experimental Methodology

The following two publicly accessible datasets are usegatuate the proposed descriptors
and classification method: the Caltech 256 object categ@@Geiffin et al. 2007) and the
UPOL iris dataset (Dobes et al. 2006). In order to make a tigit@omparative assessment
of the proposed descriptors and methods; from the above &abdses, three datasets are

generated: the Biometric 20, the Biometric 100, and the Bioim 257. The Biometric
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Figure 4.12 Image recognition using the EFM-NN classifier: Examplesavfectly clas-
sified images of the Bat (top) and Swiss Army Knife (bottontegaries from the Caltech
256 dataset.

20 dataset with 20 categories includes the Iris categomn fiioke UPOL dataset, Faces
and People categories and 17 randomly chosen categoriastiie Caltech 256 dataset.
The Biometric 100 dataset with 100 categories includesrisecategory from the UPOL
dataset, Faces and People categories and 97 randomly ataisgories from the Caltech
256 dataset. The Biometric 257 dataset with 257 categareades all categories from
the UPOL dataset and the Caltech 256 dataset. The latteratasets are of high difficulty
due to the large number of classes with high intra-class andriter-class variations.

The classification task is to assign each test image to onewfrdoer of categories.
The performance is measured using a confusion matrix, andwérall performance rates
are measured by the average value of the diagonal entrié® afoinfusion matrix. Each
dataset is split randomly into two separate sets of imagesdming and testing. From
each class 60 images for training and 20 images for testmgaadomly selected. There
is no overlap in the images selected for training and tesfiing classification scheme on
the dataset compares the overall and category wise penficerd ten different descriptors:
the oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIHE rgb-SIFT, the PHOG,
the grayscale-SIFT, the CSF, the CGSF, and the CGSF+PHOsitess. Classification
is implemented using a novel EFM-KNN classifier, which congsi the Enhanced Fisher

Model (EFM) and the K Nearest Neighbor (KNN) decision rule.
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Figure 4.13 The mean average classification performance of the tenipgessr the
ORGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, thb-SIFT, the grayscale-
SIFT, the CSF, the CGSF, and the CGSF+PHOG descriptors d@idheetric 20 dataset.

4.3.2 Experimental Results on the Biometric 20 Categories@aset

Evaluation of Overall Classification Performance of Deptors with

the EFM-KNN Classifier

The first set of experiments assesses the overall clasgfiga¢rformance of the
ten descriptors on the Biometric 20 Dataset with 20 categorNote that for each cate-
gory a five-fold cross validation is implemented for eachcdgsor using the EFM-KNN
classification technique to derive the average classificgierformance. As a result, each
descriptor yields 20 average classification rates corredipg to the 20 image categories.
The mean value of these 20 average classification rates iedefs the mean average clas-
sification performance for the descriptor. Figure 4.13 shttve mean average classification
performance of the eight descriptors: the oRGB-SIFT, thd@ESIFT, the RGB-SIFT,
the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT, the PHO®,ESF, the CGSF, and the
CGSF+PHOG descriptors.
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Figure 4.14 Classification results using the PCA method across the tecrigéors with
varying number of features on the Biometric 20 dataset.

The best recognition rate that is obtained is 78.8% from 88E+PHOG, which is
a very respectable value for a dataset of this size and cartpl&€he oRGB-SIFT achieves
the classification rate of 62.8%. It outperforms other twimcdescriptors (HSV-SIFT and
rgb-SIFT) while showing roughly the same success rate a¥ €&Cr-SIFT and RGB-
SIFT, both are in second place with 62.5%. It is noted thabfusf the color SIFT de-
scriptors (CSF) improves upon the grayscale-SIFT by a h@gg®4 margin. The grayscale-
SIFT descriptor improves the fusion (CGSF) result by a go@&margin upon the CSF

descriptor.

Evaluation of PCA and EFM-KNN Results upon Varying Numbé&ieatures

The second set of experiments evaluates the classificatidarmance using the
PCA and the EFM-KNN methods respectively by varying the nernds features over the
following ten descriptors: CGSF+PHOG, CGSF, CSF, YCbGTSbRGB-SIFT, RGB-
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Table 4.1 Comparison of Classifiers across Ten Descriptors (%) on tbhen&ric 20
Dataset

Descriptor PCA | EFM-NN | EFM-KNN
RGB-SIFT 58.0 60.5 62.5
HSV-SIFT 55.0 57.8 59.5
rgb-SIFT 52.3 56.3 58.0
ORGB-SIFT 59.3 61.5 62.8
YCDbCr-SIFT 62.0 60.8 62.5
Grayscale-SIFT 56.0 57.5 58.5
PHOG 51.0 54.8 55.5
CSF 71.5 71.3 71.3
CGSF 74.5 75.5 75.5
CGSF+PHOG | 79.5 78.3 78.8

SIFT, HSV-SIFT, Grayscale-SIFT, PHOG, and rgb-SIFT. AB@omparison between the
overall success rates of the three classification techaiq@€A, EFM-NN (nearest neigh-
bor), and EFM-KNN can be seen from Table 4.1.

Classification performance is computed for up to 780 featwith the PCA method.
From Figure 4.14 it can be seen that the success rate for tI8FEEHOG stays consis-
tently above that of the CGSF and CSF over varying numberaififes. These three de-
scriptors show an increasing trend till 660 features and &talip slightly thereafter. The
YCbCr-SIFT and oRGB-SIFT show a similar increasing trend dacline only towards
the latter half. The HSV-SIFT and RGB-SIFT dip in the middtelagain steadily there-
after. Performance of the grayscale-SIFT varies more ghaxer the increasing number
of features peaking at 540 features.

Using the EFM-KNN method, success rates for up to 19 featarescomputed.
From Figure 4.15 it can be seen that the success rate for tI8FEEHOG stays consis-
tently above that of the CGSF and the CSF over varying numbéradures and peaks
between 18 and 19 features. These two descriptors by areldamyv an increasing trend
throughout. The oRGB-SIFT, YCbCr-SIFT, and RGB-SIFT showrereasing trend and

outperform the rest of the descriptors. The grayscale-Sifaintains its higher perfor-
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Figure 4.15 Classification results using the EFM-KNN method acrossehedescriptors
with varying number of features on the Biometric 20 dataset.

mance over the rgb-SIFT for the varying number of features.

Evaluation of Descriptors and Classifier on Individual Inea@ategories

The third set of experiments assesses the ten descripiogsthe EFM-KNN clas-
sifier on individual image categories. Here a detailed asigalg performed for the perfor-
mance of the descriptors with the EFM-KNN classifier ovettadltwenty image categories.
First the classification results on the three biometricgates are presented. Table 4.2
shows that the Iris category has a 100% recognition ratesaat the descriptors. For
the Faces category, the color SIFT descriptors outperfbergtayscale-SIFT descriptor
by 15% to 20% and the fusion of all color descriptors (CSFginea a 100% success rate.
The People category achieves a high success rate of 80%heit6 &SF+PHOG, which
is a respectable recognition rate when considering verly imya-class variability due to

the challenging background, variable postures, variapfgearance, occlusion, multiple
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Figure 4.16 Image recognition using the EFM-KNN classifier on the Biomnee20
dataset: (a) examples of the correctly classified images tiee three biometric image
categories; (b) images unrecognized using the graysdale-&scriptor but recognized
using the oRGB-SIFT descriptor; (c) images unrecognizétgute oRGB-SIFT descrip-
tor but recognized using the CSF descriptor; (d) imagesaagrzed using the CSF but
recognized using the CGSF+PHOG descriptor.

humans in the same image, and different illumination comast Fusion of the individual
color SIFT descriptors (CSF) improves the classificatiaiggenance, which indicates that
various color descriptors are not redundant for recogmiviothe People category.

The average success rate for the CGSF+PHOG descriptothaveayt 15 categories
is 89.7% with only five categories below the 80% mark. Indixtcolor SIFT features
improve upon the grayscale-SIFT features for most of thegmates, in particular for the
Grapes, the Roulette wheel, the Waterfall, and the Rotapneltategories. The CSF
descriptor almost always improves upon the grayscale-8HSEriptor, with the exception
of only a few categories where it performs at par or sligh#olw. The CGSF descriptor
either is at par or improves upon the CSF descriptor for adlgaries with the exception of

the Waterfall and snake categories.

Evaluation of Descriptors and Classifier Based on CorreBtycognized Images

The final set of experiments further assesses the perfoenainthe descriptors

based on the correctly recognized images. Figure 4.16(adime examples of the cor-
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Table 4.2 Category Wise Descriptor Performance (%) Split-out wite tBFM-KNN
Classifier on the Biometric 20 Dataset (Note That the Categoare Sorted on the
CGSF+PHOG Results)

Category CGSF+| CGSF| CSF| oRGB YCDbCr RGB| Gray| PHOG
PHOG SIFT SIFT SIFT| SIFT
iris 100 100| 100 100 100 100 100 100
faces 100 100| 100 95 90 95| 75 95
people 80 70| 60 40 40 35| 45 20
cartman 100 100| 95 90 100 95 90 60
grand piano 95 100| 95 85 85 70, 90 85
grapes 95 90| 90 70 95 80 60 70
roulette wheel 95 95| 95 90 75 85/ 75 40
waterfall 95 90| 95 80 75 85/ 75 65
rainbow 90 85| 80 55 35 60| 75 95
cockroach 85 75| 70 50 50 60 55 20
human skeleton 85 90| 80 70 60 75| 60 40
laptop 85 85| 80 75 90 70 65 65
centipede 80 75| 65 55 60 55| 45 20
mountain bike 80 80| 80 75 70 80 85 75
rotary phone 80 80| 80 60 75 45| 45 65
buddha 70 50| 40 40 65 45| 45 70
owl 60 60| 45 40 45 30] 25 35
jesus christ 50 40| 30 35 10 30] 20 45
shake 25 20| 25 25 20 30 15 25
wheelbarrow 25 25| 20 25 10 25 25 20
Mean 78.8| 75.5| 71.3| 62.8 62.5 62.5 58.5| 555

rectly classified images from the Iris, Faces, and Peopkgoaies. Notice the high intra-
class variability for the Faces and People classes. Figl&(l?) shows some example
images from the Faces class that are not recognized by theKd¥N classifier using the
grayscale-SIFT descriptor but are correctly recognizedgughe oRGB-SIFT descriptor.
This reaffirms the importance of color and the distinctiveenaf the oRGB-SIFT descriptor
for image category recognition. Figure 4.16(c) shows sanages that are not recognized
by the EFM-KNN classifier using the oRGB-SIFT descriptor ate correctly recognized
by using the CSF descriptor. Figure 4.16 (d) shows imagescognized using the CSF
but recognized using the CGSF+PHOG descriptor.
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Figure 4.17 Image recognition using the EFM-KNN classifier on the Biomnee20
dataset: (a) example images unrecognized using the gteyStar descriptor but recog-
nized using the oRGB-SIFT descriptor; (b) example imagesaognized using the oRGB-
SIFT descriptor but recognized using the CSF descriptpexXample images unrecognized
using the CSF but recognized using the CGSF+PHOG descr{pgidExample images un-
recognized using the EFM-KNN but recognized using the PCtwhe CGSF+PHOG
descriptor.

Figure 4.17(a) shows some example images that are not rieeoginy the EFM-
KNN classifier using the grayscale-SIFT descriptor but ameectly recognized using the
ORGB-SIFT descriptor. Figure 4.17(b) displays some imaig&isare not recognized by the
EFM-KNN classifier using the oRGB-SIFT descriptor but arerectly recognized using
the CSF descriptor. Figure 4.17(c) shows example imagescagnized using the CSF
but recognized using the CGSF+PHOG descriptor. Figure(d) shows example images
unrecognized using the EFM-KNN but recognized using the R@A the CGSF+PHOG

descriptor.
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Figure 4.18 The mean average classification performance of the tenigessr the
ORGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, thb-SIFT, the grayscale-
SIFT, the PHOG, the CSF, the CGSF, and the CGSF+PHOG dessrimt the Biometric
100 dataset.

4.3.3 Experimental Results on the Biometric 100 Categorie3ataset

Evaluation of Overall Classification Performance of Deptors with

the EFM-NN Classifier

The first set of experiments assesses the overall classifigagrformance of the ten
descriptors on the Biometric 100 Dataset with 100 categoN®te that for each category a
five-fold cross validation is implemented for each desoripising the EFM-NN classifica-
tion technique to derive the average classification perdmee. As a result, each descriptor
yields 100 average classification rates correspondingdadl@® image categories. The
mean value of these 100 average classification rates is defgithe mean average classi-
fication performance for the descriptor. Figure 4.23 shdwesmhean average classification
performance of various descriptors.

The best recognition rate that is obtained is 51.9% from 88E+PHOG, which is

a very respectable value for a dataset of this size and caitpl&€he oRGB-SIFT achieves
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the classification rate of 32.2% and hence once again ootpesfother color descriptors.
The success rate for YCbCr-SIFT comes in second place wifl¥gfollowed by the RGB-

SIFT at 30.5%. Fusion of color SIFT descriptors (CSF) impswver the grayscale-SIFT
by a huge 13.2%. Again, the grayscale-SIFT shows more disténess than the rgb-SIFT,
and improves the fusion (CGSF) result by a good 3.9% over 8fe Eusing the CGSF and

PHOG further improves the recognition rate over the CGSF.8Y66

Comparison of PCA and EFM-NN Results

The second set experiments compares the classificatioorpenfice of the PCA
and the EFM-NN (nearest neighbor) classifiers. Table 4.@/slloe results of the two clas-
sifiers across various descriptors. It can be seen that the MR technique improves over
the PCA technique by 2% to 3% on the color SIFT descriptorL.096 on the grayscale-
SIFT, and by 1.9% on the PHOG. The improvement on fused geecsiis in the range of
1%-2.6%. These results reaffirm the superiority of the EFM-®assifier over the PCA

technique.

Table 4.3 Comparison of Classifiers across Ten Descriptors (%) on then&ric 100
Dataset

Descriptor PCA | EFM-NN
RGB-SIFT 27.9 30.5
HSV-SIFT 26.1 29.0
rgb-SIFT 23.1 25.1
oRGB-SIFT 29.4 32.2
YCbCr-SIFT 28.2 31.1
SIFT 26.3 28.4
PHOG 28.0 29.8
CSF 40.2 41.6
CGSF 44.6 45.5
CGSF+PHOG | 49.4 51.9
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Figure 4.19 Classification results using the PCA method across the tecrigéors with
varying number of features on the Biometric 100 dataset.

Evaluation of PCA and EFM-NN Results upon Varying Numbereatires

The third set of experiments evaluates the classificatioiopeance using the PCA
and the EFM-NN methods respectively by varying the numbéeatures over the follow-
ing ten descriptors: CGSF+PHOG, CGSF, CSF, YCbCr-SIFT, BfSG-T, RGB-SIFT,
HSV-SIFT, Grayscale-SIFT, rgh-SIFT, and PHOG.

Classification performance is computed for up to 780 featurigh the PCA clas-
sifier. From Figure 4.19 it can be seen that the success rateddCGSF+PHOG stays
consistently above that of the CGSF and CSF over varying reunmbfeatures and peaks
at around 660 features. These three descriptors show aasiog trend overall and flatten
out toward the end. The oRGB-SIFT, YCbCr-SIFT, RGB-SIFT] grayscale-SIFT show
a similar increasing trend and flatten toward the end. TheBASG-T descriptor consis-
tently stays above other color SIFT descriptors. The HS¥F2ind PHOG peak in the first

half of the graph and show a declining trend thereafter. Tagsgale-SIFT maintains its
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Figure 4.20 Classification results using the EFM-NN method across thal&scriptors
with varying number of features on the Biometric 100 dataset

superior performance upon the rgb-SIFT on the varying nurobieatures.

With the EFM-NN classifier, the success rates are computedddo 95 features.
From Figure 4.20 it can be seen that the success rate for tIB-EEHOG stays consis-
tently above that of the CGSF and CSF over varying numberatfifes and peaks at about
80 features. These three descriptors show an increasimg tiheoughout and tend to flat-
ten above 65 features. The oRGB-SIFT consistently staysedibe rest of the descriptors.
The grayscale-SIFT improves over the rgb-SIFT but fall®wehe PHOG.

Evaluation of Descriptors and Classifier on Individual Inea@ategories

The fourth set of experiments assesses the eight deseripsing the EFM-NN
classifier on individual image categories. Here a detaileyais of the performance of
the descriptors is performed with the EFM-NN classifier alethe 100 image categories.

First the classification results on the three biometricgaties are presented. From Ta-
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Table 4.4 Category Wise Descriptor Performance (%) Split-out witle tBFM-NN
Classifier on the Biometric 100 Dataset (Note That the Categaare Sorted on the
CGSF+PHOG Results)

Category CGSF+| CGSF CSF oRGB YCbCr RGB| Gray| PHOG
PHOG SIFT SIFT SIFT| SIFT
iris 100 100 100{ 100 100 100 100 100
faces 95 90 90 90 95 90 85 95
people 40 40 25 20 20 15/ 30 10
hibiscus 100 100 95 70 80 85 75 55
french horn 95 85 85 85 65 80 90 20
leopards 95 90 100 90 95 95/ 100 90
saturn 95 95 95 95 85 90 95 55
school bus 95 95 95 75 85 95 80 60
swiss army knife| 95 90 80 65 75 65| 65 25
watch 95 60 55 45 40 45 30 85
zebra 95 80 60 60 35 40, 45 60
galaxy 90 85 85 85 70 65/ 80 15
american flag 85 85 80 55 75 65| 40 5
cartman 85 75 75 40 55 65| 55 30
desk-globe 85 75 75 60 65 65| 45 80
harpsichord 85 80 85 50 80 70, 60 55
ketch 85 85 85 45 50 45, 50 70
roulette wheel 85 80 75 70 65 75| 55 35
hawksbill 80 80 75 55 60 70, 55 40
iris flower 80 75 75 35 65 80 65 30
mountain bike 80 85 90 70 65 85/ 75 70

ble 4.4 it can be seen that the Iris has a 100% recognitionaatess all the descriptors.
For the Faces category the color SIFT descriptors outpartbe grayscale-SIFT by 5%
to 10% and the fusion of all descriptors (CGSF+PHOG) reaah@s% success rate. The
People category achieves a high success rate of 40% withG&-EPHOG, surprisingly
grayscale-SIFT outperforms the color descriptors by 1020#b. The fusion of individual
SIFT descriptors (CGSF) improves the classification pertorce for the People category.
The average success rate for the CGSF+PHOG over the top @fociats is 90%
with ten categories above the 90% mark. Individual colorTSigatures improve upon the

grayscale-SIFT on most of the categories, in particulattierSwiss army knife, Watch,
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Figure 4.21 Image recognition using the EFM-NN classifier on the Biomeitd0 dataset:
(a) examples of the correctly classified images from thecthiemetric image categories;
(b) images unrecognized using the grayscale-SIFT desecripit recognized using the
ORGB-SIFT descriptor; (c) images unrecognized using th@BFSIFT descriptor but rec-
ognized using the CSF descriptor; (d) images unrecogniged)uhe CSF but recognized
using the CGSF+PHOG; (e) images unrecognized by PCA bugneoed by EFM-NN on
the CGSF+PHOG descriptor.

American flag, and Roulette wheel categories. The CSF alalostys improves over
the grayscale-SIFT, with the exception of People and Fréwach categories. The CGSF
either is at par or improves over the CSF for all categorigh tie exception of two of
the categories. Most categories perform at their best wieeRPHOG is combined with the

CGSF.

Evaluation of Descriptors and Classifier Based on CorreBtycognized Images

The final set of experiments further assesses the perfoenainthe descriptors
based on the correctly recognized images. See Figure 4. (aome examples of the

correctly classified images from the Iris, Faces, and Pecgiiegories. Once again no-



54

Desk-globe Hibiscus

(a) (b)

French-horn  Roulette-wheel Swiss-army-knife Leopards Mountain-bike Watch

(©) (d)

Figure 4.22 Image recognition using the EFM-NN classifier on the Biomeeitb0 dataset:
(a) example images unrecognized using the grayscale-S#Eadrigtor but recognized us-
ing the oRGB-SIFT descriptor; (b) example images unrecaghusing the oRGB-SIFT
descriptor but recognized using the CSF descriptor; (c)gagsaunrecognized using the
CSF but recognized using the CGSF+PHOG. (d) Images unremajusing the PCA but
recognized using the EFM-NN on the CGSF+PHOG descriptor.

tice the high intra-class variability in the recognized gea for the Faces and People class.
Figure 4.21(b) shows some images from the Faces and Pedpdpmdas that are not recog-
nized by the grayscale-SIFT but are correctly recognizeitibpRGB-SIFT. Figure 4.21(c)
shows some images that are not recognized by the oRGB-SHFaFdaorrectly recognized
by the CSF. Figure 4.21(d) shows some images from the Pelgds, avhich are not rec-
ognized by the CSF but are correctly recognized by the CGHBXP descriptor. Thus,
combining grayscale-SIFT, PHOG, and CSF lends more digtatime power. Lastly in
Figure 4.21(e) a face image unrecognized by the PCA but rezed by the EFM-NN
classifier on the CGSF+PHOG descriptor.

See Figure 4.22(a) for some examples of the images unrexxbhy the grayscale-
SIFT but are correctly recognized by the oRGB-SIFT. Figug2&) shows some images
that are not recognized by the oRGB-SIFT but are correcttpgrized by the CSF. Fig-
ure 4.22(c) shows some images unrecognized by the CSF bobaeetly recognized by
the CGSF+PHOG descriptor. Lastly in Figure 4.22(d) imaga®cognized by the PCA
but recognized by the EFM-NN classifier on the CGSF+PHOGrg#sc.
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Figure 4.23 The mean average classification performance of the tenipgessr the
ORGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, thb-SIFT, the grayscale-
SIFT, the PHOG, the CSF, the CGSF, and the CGSF+PHOG dessrimt the Biometric
257 dataset.

4.3.4 Experimental Results on the Biometric 257 Categorieand the Caltech 256

Datasets

Evaluation of Overall Classification Performance of Deptors with

the EFM-NN Classifier

The first set of experiments assesses the overall classifigagrformance of the ten
descriptors on the Biometric 257 Dataset with 257 categoN®te that for each category a
five-fold cross validation is implemented for each desoripising the EFM-NN classifica-
tion technique to derive the average classification perdmee. As a result, each descriptor
yields 257 average classification rates correspondingad®8Y image categories. The
mean value of these 257 average classification rates is defgithe mean average classi-
fication performance for the descriptor. Figure 4.23 shdwesmhean average classification

performance of various descriptors.
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The best recognition rate that is obtained is 42.3% from 88E+PHOG, which is
a very respectable value for a dataset of this size and caitpl€he oRGB-SIFT achieves
the classification rate of 24.7%. It outperforms the othéorc8IFT descriptors. It is noted
that fusion of the color SIFT descriptors (CSF) improvesrufite grayscale-SIFT by a
huge 11.3% margin. The grayscale-SIFT descriptor impravesusion (CGSF) result by

a good 5.3% margin upon the CSF descriptor.

Comparison of PCA and EFM-NN Results

The second set of experiments compares the classificatitorpance of the PCA
and the EFM-NN (nearest neighbor) classifiers. Table 4.5vshbe results of the two
classifiers across various descriptors. It can be seenhtd&REM-NN technique improves
over the PCA technique by 1.5% to 2.6% upon the color SIFTrij@scs, by 2.1% upon
the grayscale-SIFT descriptor, and by 1.1% upon the PHOGriggsr. The improvement

on fused descriptors is in the range of 1.6% to 2.2%.

Table 4.5 Comparison of Classifiers across Ten Descriptors (%) on then&ric 257
Dataset

Descriptor PCA | EFM-NN
RGB-SIFT 20.5 22.6
HSV-SIFT 20.2 22.2
rgb-SIFT 16.0 17.4
oRGB-SIFT 22.4 24.7
YCbCr-SIFT 21.2 23.8
SIFT 18.2 20.3
PHOG 19.5 20.6
CSF 30.1 31.6
CGSF 35.3 36.9
CGSF+PHOG | 40.1 42.3




57

Classification Performance (%)
[+ [\
[=) [4,]

o | = OoRGB-SIFT e YCHCr-SIFT ~ — RGB-SFT |
X | ——HSV-SIFT —=—PHOG ----Grayscale-SIFT
| | ——rgbSIFT
5
0 60 140 220 300 380 460 540 620 700 780

Number of Features

Figure 4.24 Classification results using the PCA method across the tecrigéors with
varying number of features on the Biometric 257 dataset.

Evaluation of PCA and EFM-NN Results upon Varying Numbereatires

The third set of experiments evaluates the classificatioiopeance using the PCA
and the EFM-NN methods respectively by varying the numbéeatures over the follow-
ing ten descriptors: CGSF+PHOG, CGSF, CSF, YCbCr-SIFT, BfSG-T, RGB-SIFT,
HSV-SIFT, Grayscale-SIFT, rgh-SIFT, and PHOG.

Classification performance is computed for up to 780 featwieh the PCA classi-
fier. From Figure 4.24 it can be seen that the success ratedd®@GESF+PHOG descriptor
stays consistently above that of the CGSF and CSF des@iptovarying number of fea-
tures and peaks at around 700 features. These three descshbw an increasing trend
during the first half and flatten out toward the second halfe ®RGB-SIFT descriptor
consistently stays above other color SIFT descriptors. RG8-SIFT and HSV-SIFT de-
scriptors have a similar success rate throughout. The gadssSIFT descriptor maintains

its superior performance upon the rgb-SIFT and PHOG ddscsipn the varying number
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Figure 4.25 Classification results using the EFM-NN method across thal&scriptors
with varying number of features on the Biometric 257 dataset

of features.
With the EFM-NN classifier, the success rates are computeapfto 250 features.

From Figure 4.25 it can be seen that the success rate for tIBFEEHOG stays consis-
tently above that of the CGSF and CSF descriptors on varyimgber of features. These
two descriptors show an increasing trend till 200 featuressdart to dip slightly thereafter.
The YCbCr-SIFT and oRGB-SIFT descriptors show a similaréasing trend and decline
only toward the latter half and continue to perform bettamtithe rest of the descriptors.
The grayscale-SIFT descriptor maintains its higher parérce over the rgb-SIFT descrip-

tor on the varying number of features.

Evaluation of Descriptors and Classifier on Individual Inea@ategories

The fourth set of experiments assesses the eight deseripsing the EFM-NN

classifier on individual image categories. Here a detaileyais of the performance of
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Table 4.6 Category Wise Descriptor Performance (%) Split-out witle tBFM-NN
Classifier on the Biometric 257 Dataset (Note That the Categare Sorted on the
CGSF+PHOG Results)

Category CGSF+| CGSF| CSF| oRGB | YCbCr | RGB | Gray | PHOG
PHOG SIFT| SIFT | SIFT | SIFT
iris 100 100| 100 100 100| 100 97 95
faces 97 97| 97 92 60 92 73 95
people 17 14| 13 10 8 10 7 11
car side 100 100| 100 93 67| 100| 100 95
leopards 100 98| 100 70 70 93 98 97
motorbikes 98 92| 90 82 77 70 73 97
sunflower 97 97| 93 88 68 95 90 53
trilobite 95 80| 67 62 62 60 50 83
lawn mower 93 80| 77 78 77 70 78 77
american flag 90 88| 85 60 60 70 40 5
zebra 90 87| 67 75 85 27 30 38
chess board 88 92| 88 90 80 78 83 13
tower pisa 88 92| 85 82 87 77 77 77
swiss army knife| 87 82| 77 60 60 75 68 8
airplanes 85 70| 63 60 62 38 48 82
saturn 85 83| 72 83 80 67 52 53
cereal box 83 88| 72 73 52 52 47 17
french horn 83 85| 78 72 67 68 70 32
ketch 83 62| 57 28 30 32 37 65
pci card 83 80| 78 68 50 58 58 10
hibiscus 82 85| 80 65 72 72 62 48

the descriptors is performed with the EFM-NN classifier alethe 257 image categories.
First the classification results on the three biometricgates are presented. Table 4.6
shows that the Iris category has a 100% recognition ratesacth the descriptors with
the exception of PHOG. For the Faces category the three fissctiptors reach a 97%
success rate. The People category achieves a success 1& afith the CGSF+PHOG
indicating the effect of very high intra-class variabildye to the challenging background,
variable postures, variable appearance, occlusion, pheiiumans in the same image, and
different illumination conditions. Fusion of the individucolor SIFT descriptors (CSF)

improves the classification performance, which indicates various color descriptors are
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(d)

Figure 4.26 Image recognition using the EFM-NN classifier on the Biomeeétb7 dataset:

(a) examples of the correctly classified images from thestbiemetric image categories;
(b) images unrecognized using the grayscale-SIFT desecripit recognized using the
OoRGB-SIFT descriptor; (c) images unrecognized using th@eBfSIFT descriptor but rec-
ognized using the CSF descriptor; (d) images unrecogniged)uhe CSF but recognized
using the CGSF+PHOG descriptor.

not redundant for recognition of the People category.

The average success rate for the CGSF+PHOG over the top&tfbciass is 90.35%
with ten categories at or above the 90% mark. Three categgbaee a 100% recognition
rate. Individual color SIFT features improve over the geays-SIFT for most of the cat-
egories, in particular for the Trilobite, American flag, TemPisa, Saturn, and Hibiscus
categories. The CSF almost always improves over the grieeySEBT. The CGSF either is
at par or improves over the CSF on all categories with thepg@e of Leopards category.

Most categories perform at their best when the PHOG is coadbivith the CGSF.

Evaluation of Descriptors and Classifier Based on CorreBtycognized Images

The final set of experiments further assesses the perfoenainthe descriptors
based on the correctly recognized images. See Figure 4.f28(asome examples of the
correctly classified images from the Iris, Faces, and Pecgiegories. Notice the high
intra-class variability for the Faces and People classegré& 4.26(b) shows some exam-

ple images from the Faces class that are not recognized IBRK&eNN classifier using the
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Figure 4.27 Image recognition using the EFM-NN classifier on the Biomeetb7 dataset:
(a) example images unrecognized using the grayscale-S#Bdrigitor but recognized us-
ing the oRGB-SIFT descriptor; (b) example images unrecaghusing the oRGB-SIFT
descriptor but recognized using the CSF descriptor; (c)ggsaunrecognized using the
CSF but recognized using the CGSF+PHOG. (d) Images unremmyjusing the PCA but
recognized using the EFM-NN on the CGSF+PHOG descriptor.

grayscale-SIFT descriptor but are correctly recognizedgughe oRGB-SIFT descriptor.
This reaffirms the importance of color and the distinctivsnef the oRGB-SIFT descrip-
tor for image category recognition. Figure 4.26(c) showages unrecognized using the
ORGB-SIFT descriptor but recognized using the CSF desergntd Figure 4.26(d) shows
images unrecognized using the CSF but recognized using@s8+EPHOG.

See Figure 4.27(a) for some examples of the images unrexmyiy the EFM
using the grayscale-SIFT but are correctly recognized byolRGB-SIFT. Figure 4.27(b)
shows some images that were previously not recognized bgRIG&B-SIFT but are cor-
rectly recognized by the CSF. In Figure 4.27(c) see someesiagrecognized by the CSF
but are correctly recognized by the CGSF+PHOG descriptastiy. in Figure 4.27(d) im-
ages unrecognized by the PCA but recognized by the EFM-Nds¢ifiar on the CGSF+PHOG

descriptor.
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Table 4.7 Classification Performance (%) Comparison on the Calteéha2tel the Bio-
metric 257 Categories Datasets on Groups of 15, 30, 45, and&@0ing Images From
Each Class

Dataset Method 15| 30| 45| 60
Caltech 256 | SPM (Griffin et al. 2007) -134.1 - -
Caltech 256 | KC (Gemert et al. 2008) -1 27.2 - -
Caltech 256 | KSPM (Yang et al. 2009)| 23.3| 29.5 - -
Caltech 256 | LSPM (Yang et al. 2009) | 13.2| 15.5| 16.4| 16.6
Caltech 256 | ScSPM (Yang et al. 2009) 27.7 | 34.0| 37.5| 40.1
Proposed Methods:
Caltech 256 | CGSF+PHOG (PCA) 27.1| 33.8| 37.3| 39.9
Caltech 256 | CGSF+PHOG (EFM-NN) 30.0| 36.5| 39.7| 42.1
Biometric 257| CGSF+PHOG (PCA) 27.5]34.1| 37.6| 40.1
Biometric 257| CGSF+PHOG (EFM-NN) 30.4| 36.9| 40.0| 42.3

Comparison with other Methods on the Caltech 256 and the BinoR257 Datasets

Finally the results of proposed methods are presented gmganumber of training
images per class over the Caltech 256 dataset and the Bior28# dataset. The number
of test images per class is fixed at 20 for each of the expetsn&mnom Table 4.7 on the
Biometric 257 dataset it can be seen that on the 15 trainiagé@® a success rate of 30.39%
is attained. This improves over the previous best resulherCaltech 256 by 2.66%. For
the 30 and 45 training images, there is an improvement onrthequs best on the Caltech
256 by 2.85% and 2.58%, respectively. On the 60 training @sag success rate of 42.28%
is achieved and this improves over the previous best by 2.14%

From Table 4.7 on the Caltech 256 dataset it can be seen thaedlb training
images per class a success rate of 29.97% is achieved. Tpievas over the previous
best result by 2.24%. For the set of 30 and 45 training imagesnprovement of 2.39%
and 2.28%, respectively is achieved on the previous bestth®®0 training images, a

success rate of 42.06% is achieved, which improves overrthaqus best by 1.92%.
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Figure 4.28 Classification results on the three biometric categories.each biometric
category, from left to right bars in the triad denote the lssftom the Biometric 20 dataset,
the Biometric 100 dataset, and the Biometric 257 dataset.

4.3.5 Panoramic Assessment of the Performance of Biometi@ategories across Three

Datasets and Five Descriptors

Finally, an overall view of the performance of the three bétric categories across three
datasets is provided. From Figure 4.28 it can be seen thatisheategory has a success
rate of 100% across all three datasets. The Faces categdoynpe above the 95% mark
on all three datasets and reaches 100% on the Biometric 28etatThe success rate for
the People category varies widely from 16.7% on the Bioro@®i7 dataset to 80% on the
Biometric 20 dataset.
Figure 4.29 shows the classification results on the CGSF#PHOGSF, CSF,

0oRGB-SIFT, and grayscale-SIFT descriptors across alktdegasets. It can be seen that

the performance of each descriptor across the three datds®iges in a consistent manner.
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Figure 4.29 Classification results on the five descriptors. For eachrgeec from left to
right bars in the triad denote the results from the Biometfiadataset, the Biometric 100
dataset, and the Biometric 257 dataset.

4.4 Evaluation of SIFT Descriptors on the MIT Scene Dataset

4.4.1 Experimental Methodology

The classification task is to assign each test image to onenofrdoer of categories. The

performance is measured using a confusion matrix, and teet\performance rates are

measured by the average value of the diagonal entries ofahieigion matrix. For the

MIT scene dataset five sets are selected randomly and eaobrnsésts of 2,000 images for

training (250 images per class) and the rest 688 imagesgtnge Within each set there

is no overlap in the images selected for training and tesfiing classification scheme on

the datasets compares the overall and category wise pemficerof ten different descrip-

tors: the oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSN¥~T, the rgb-SIFT, the

grayscale-SIFT, the PHOG, the CSF, the CGSF, and the CGSB&Rt¢scriptors. Classi-

fication is implemented using the EFM-KNN classifier.
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Figure 4.30 The mean average classification performance of the tenigessrusing
the EFM-KNN classifier on the MIT scene dataset: the oRGBFStRe YCbCr-SIFT,
the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the grayscaleTSthe PHOG, the CSF, the
CGSF, and the CGSF+PHOG descriptors.

4.4.2 Experimental Results

The first set of experiments on this dataset assesses thal@lassification performance
of the ten descriptors. Note that for each category a five-6obss validation is imple-
mented for each descriptor using the EFM-KNN classifier taveeghe average classifica-
tion performance. Figure 4.30 shows the mean average fatasisin performance of vari-
ous descriptors. The best recognition rate that is obtag®@.6% from the CGSF+PHOG,
which is a very respectable value for a dataset of this sideeamplexity. The oRGB-SIFT
achieves the classification rate of 74.2%. It outperforrasther color SIFT descriptors. It
is noted that fusion of the color SIFT descriptors (CSF) iowes upon the grayscale-SIFT
by a huge 15.1% margin. The grayscale-SIFT descriptor ing®the fusion (CGSF) result
by a good 2.5% margin upon the CSF descriptor.

The second set of experiments assesses the five best dascaipt the grayscale-

SIFT using the EFM-KNN classifier on individual image catege. From Table 4.8 it
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Table 4.8 Category Wise Descriptor Performance (%) Split-out withBiM-KNN Clas-
sifier on the MIT Scene Dataset (Note That the Categories@te®on the CGSF+PHOG

Results)
Category CGSF+| CGSF CSF oRGB | Gray| PHOG
PHOG SIFT | SIFT
Highway 100 100 100{ 100 82 91
Forest 99 97 97 88 90 95
Inside City 97 90 88 75 86 80
Coast 91 77 66 63 65 84
Street 90 93 89 90 60 86
Mountain 88 82 79 69 60 75
Tall Building 85 81 80 65 62 71
Open Country 67 58 57 43 32 56
Mean 89.6| 84.6 821 74.2 67 79.6

can be seen that the top five categories achieve a success oater 90%. The Highway

category achieves a success rate of 100% across the bedegmiptors. Individual color

SIFT features improve upon the grayscale-SIFT on most ofdkegories. The CSF results

on each of the eight categories show improvement upon tlyscabe-SIFT and the CGSF

improves upon the CSF. Integration of PHOG with the CGSF taialihe CGSF+PHOG

highly benefits most categories and in particular there igmifscant increase in the clas-

sification performance upon the CGSF results for the Coasitjé City and Open Country

categories where the increment is in the range of 7% to 14%.

The final set of experiments further assesses the perfoenainthe descriptors

Table 4.9 Comparison of the Classification Performance (%) with Ot¥iethod on the

MIT Scene Dataset

# Train # Test

Proposed Method

(Oliva and Torralba 2001

CSF 82.1
2000 688 | CGSF 84.6
CGSF+PHOG 89.6 -
CSF 79.4
800 1888 | CGSF 81.9
CGSF+PHOG 86.7 83.7
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Figure 4.31 Image recognition using the EFM-KNN classifier on the MITrseelataset:
(a) example images unrecognized using the grayscale-S#Bdrigitor but recognized us-
ing the oRGB-SIFT descriptor; (b) example images unrecaghusing the oRGB-SIFT
descriptor but recognized using the CSF descriptor; (c)ggsaunrecognized using the
CSF but recognized using the CGSF descriptor; (d) imagescognized using the CGSF
but recognized using the CGSF+PHOG descriptor.

based on the correctly recognized images. See Figure 3.&t(some example images
that are not recognized by the EFM-KNN classifier using tlaygrale-SIFT descriptor but
are correctly recognized using the oRGB-SIFT descriptagurfeé 4.31(b) shows images
unrecognized using the oRGB-SIFT descriptor but recoghimeng the CSF descriptor,
Figure 4.31(c) shows images unrecognized using the CSFebagnized using the CGSF
descriptor and Figure 4.31(d) shows images unrecognized tise CGSF but recognized
using the CGSF+PHOG descriptor.
From Table 4.9 it can be seen that on the 800 training image® ifhages per

class) and 1,688 testing images a success rate of 86.7%évedhvith the CGSF+PHOG
descriptor. This improves over the result of authors in@énd Torralba 2001) by a good

3%.
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Figure 4.32 The mean average classification performance of the tenigassrfusing
the EFM-KNN classifier on the Oxford flower dataset: the oR&IBT, the YCbCr-SIFT,
the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the grayscaleiSthe PHOG, the CSF, the
CGSF, and the CGSF+PHOG descriptors.

4.5 Evaluation of SIFT Descriptors on the Oxford Flower Dataset
4.5.1 Experimental Methodology

The classification task is to assign each test image to onenofrdoer of categories. The
performance is measured using a confusion matrix, and teet\performance rates are
measured by the average value of the diagonal entries obtifesion matrix. Three sets
of 40 training images per class and 20 test images per clasebacted (same data splits as
used in (Nilsback and Zisserman 2006)). Within each seetlseno overlap in the images
selected for training and testing. The classification sghemthe datasets compares the
overall and category wise performance of ten different dptws: the oRGB-SIFT, the
YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, thaygcale-SIFT, the PHOG,
the CSF, the CGSF, and the CGSF+PHOG descriptors. Clasisifitcsimplemented using
the EFM-KNN classifier.
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4.5.2 Experimental Results

The first set of experiments assesses the overall clasgifigaerformance of the ten de-
scriptors on the Oxford flower dataset. Note that for eachgmal three-fold cross valida-
tion is implemented for each descriptor using the EFM-KNBksifier to derive the aver-
age classification performance. As a result, each descyijgtlols 17 average classification
rates corresponding to the 17 image categories. The mea@ obthese 17 average classi-
fication rates is defined as the mean average classificatrforipance for the descriptor.
Figure 4.32 shows the mean average classification perfaenafnvarious descriptors.

The best recognition rate that is obtained is 89.5% from 88E+PHOG, which is
a very respectable value for a dataset of this size and coutypl&€he o0RGB-SIFT achieves
the classification rate of 82.6%. It outperforms the othéorc8IFT descriptors. It is noted
that fusion of the color SIFT descriptors (CSF) improvesrufite grayscale-SIFT by a
huge 19.7% margin. The grayscale-SIFT descriptor impravesusion (CGSF) result by
a good 1.8% margin upon the CSF descriptor.

The second set of experiments assesses the five best dascaptl the grayscale-
SIFT using the EFM-KNN classifier on individual image categse. From Table 4.10 it
can be seen that three categories achieve 100% successdateea 50% of the categories
achieve a success rate of more than 90% with the CGSF+PHO&imtes Sunflower
achieves 100% success rate across the best five descriptoris and Tulip have a suc-
cess rate of 75% indicating high intra-class variabilitg dow inter-class variability. The
average success rate for the top 10 categories with the CH8B& descriptor is a re-
spectable 95%. Individual color SIFT features improve ugiengrayscale-SIFT on most
of the categories. The CSF almost always improves upon tgsgale-SIFT, this indi-
cates that various color descriptors are not redundant CI3®F improves upon the CSF,;
furthermore most categories perform at their best when @@ is combined with the
CGSF.

The final set of experiments further assesses the perfoenainthe descriptors
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Table 4.10 Category Wise Descriptor Performance (%) Split-out wite BFM-KNN
Classifier on the Oxford Flower Dataset (Note That the Categaare Sorted on the
CGSF+PHOG Results)

Category | CGSF+| CGSF CSF oRGB | YCbCr | Gray

PHOG SIFT| SIFT | SIFT
Daisy 100 98 98 100 98 93
Sunflower 100 100 100{ 100 100 95
Windflower 100 98 92 92 92 90
Tigerlily 98 98 97 98 95 78
Dandelion 95 93 92 92 92 82
Bluebell 93 93 90 85 79 49
Colt’s Foot 93 93 95 90 93 83
Lily Valley 93 91 90 82 80 78
Pansy 91 93 89 76 78 75
Cowslip 87 90 88 84 88 46
Iris 87 85 80 75 72 78
Buttercup 84 85 84 83 82 49
Fritillary 84 85 83 80 83 75
Snowdrop 83 81 78 62 60 63
Daffodil 82 80 83 78 73 45
Crocus 75 69 68 63 59 25
Tulip 75 74 73 64 70 37
Mean 89.5| 88.8 87| 82.6 82| 67.3

based on the correctly recognized images. See Figure 3.88(some example images
that are not recognized by the EFM-KNN classifier using treyseale-SIFT descriptor
but are correctly recognized using the oRGB-SIFT desaripidis reaffirms the impor-
tance of color and the distinctiveness of the oRGB-SIFT igisr for image category
recognition. Figure 4.33(b) shows images unrecognizengusie oORGB-SIFT descriptor
but recognized using the CSF descriptor, Figure 4.33(cjvshmages unrecognized us-
ing the CSF but recognized using the CGSF descriptor andé#33(d) shows images
unrecognized using the CGSF but recognized using the CG3G&descriptor.

Table 4.11 shows a comparison of the results with those rddady Nilsback and
Zisserman (2006) and Varma and Ray (2007). Proposed taghoigtperforms the state

of the art on this dataset even without combining color dpsas or considering texture
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Figure 4.33 Image recognition using the EFM-KNN classifier on the Oxfélimver
dataset: (a) example images unrecognized using the gteyStar descriptor but recog-
nized using the oRGB-SIFT descriptor; (b) example imagesaognized using the oRGB-
SIFT descriptor but recognized using the CSF descriptrinfages unrecognized using
the CSF but recognized using the CGSF descriptor; (d) imagescognized using the
CGSF but recognized using the CGSF+PHOG descriptor.

and shape features independently. Each of the four coloF 8HScriptors outperform
descriptors in (Nilsback and Zisserman 2006), (Varma angl ®®7). Combined SIFT
descriptors (CSF, CGSF and CGSF+PHOG) improve over therfugsult in (Nilsback
and Zisserman 2006) and SVM 1-vs-All fusion result in (Vatana Ray 2007), previously

the best result on this dataset.

Table 4.11 Comparison of the Classification Performance (%) with OMethods on the
Oxford Flower Dataset

Proposed Method Nilsback 2006 Varma 2007
RGB-SIFT 74.8| Color 73.7| Shape 68.88
HSV-SIFT 76.3| Shape 71.8 Color 59.71
YCbCr-SIFT 82.0 Texture 56.0* Texture 59.00
ORGB-SIFT 82.6

CSF 87.0

CGSF 88.8

CGSF+PHOG 89.5| Fusion 81.3| Fusion 82.55

*Approximate value inferred from Figure 12 in Nilsback 2006
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Figure 4.34 The mean average classification performance of the tenigassrusing the
EFM-NN classifier on the MIT scene dataset: the oORGB-LBPMG®Cr-LBP, the RGB-
LBP, the HSV-LBP, the rgb-LBP, the grayscale-LBP, the PH@®,CLF, the CGLF, and
the CGLF+PHOG descriptors.

4.6 Evaluation of LBP Descriptors on the MIT Scene Dataset
4.6.1 Experimental Methodology

The classification task is to assign each test image to onenofrdoer of categories. The
performance is measured using a confusion matrix, and temt\performance rates are
measured by the average value of the diagonal entries ofottiegion matrix. Five sets
are randomly selected and each set consists of 2,000 imaggsaihing (250 images per
class) and the rest 688 images for testing. Within each set ik no overlap in the images
selected for training and testing. The classification s&hemthis dataset compares the
overall and category wise performance of ten different dpsws: the oRGB-LBP, the
YCbCr-LBP, the RGB-LBP, the HSV-LBP, the rgb-LBP, the gregie-LBP, the CLF, the
CGLF, the PHOG and the CGLF+PHOG descriptors. Classificatigmplemented using
the EFM-nearest neighbor (EFM-NN) classifier.
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Table 4.12 Category Wise Descriptor Performance (%) Split-out wign BFM-NN Clas-
sifier on the MIT Scene Dataset (Note That the Categories@te®on the CGLF+PHOG
Results)

Category CGLF+ | CGLF CLF|oRGB YCbCr RGB| Gray| PHOG
PHOG LBP LBP LBP| LBP
Highway 97 90 93 90 87 90| 93 90
Forest 96 97 97 97 97 95 94 94
Coast 91 88 87 85 88 83| 86 84
Street 90 90 86 83 83 82| 81 86
Mountain 90 85 84 80 81 80| 77 75
Tall Building 90 86 86 86 83 84| 79 70
Inside City 86 87 87 86 83 81 83 79
Open Country 76 71 71 68 66 65| 61 56
Mean 89.5| 86.6 86.4] 84.2 835 824 817, 79.1

4.6.2 Experimental Results

The first set of experiments on this dataset assesses thal@lassification performance
of the ten descriptors. Note that for each category a five-6obss validation is imple-
mented for each descriptor using the EFM-nearest neighassitier to derive the average
classification performance. As a result, each descriptldyieight average classification
rates corresponding to the eight image categories. The watae of these 8 average clas-
sification rates is defined as the mean average classifiqgagidormance for the descriptor.
Figure 4.34 shows the mean average classification perfaenavarious descriptors. The
best recognition rate that is obtained is 89.5% from the CEUHOG, which is a very
respectable value for a dataset of this size and complekthg oRGB-LBP achieves the
classification rate of 84.3%. It outperforms the other c&lBP descriptors. It is noted
that fusion of the color LBP descriptors (CLF) improves uplos grayscale-LBP by a sig-
nificant 4.0% margin. The grayscale-LBP descriptor impsotree fusion (CGLF) result
slightly upon the CLF descriptor.

The second set of experiments assesses the ten descriptoggthe EFM-nearest

neighbor classifier on individual image categories. Frorlda&.12 it can be seen that
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Figure 4.35 Image recognition using the EFM-NN classifier on the MIT stceataset:
(a) example images unrecognized using the grayscale-LB&tigeor but recognized using
the oRGB-LBP descriptor; (b) example images unrecognizédguthe oRGB-LBP de-
scriptor but recognized using the CLF descriptor; (c) insagrerecognized using the CLF
but recognized using the CGLF descriptor; (d) images umyeeed using the CGLF but
recognized using the CGLF+PHOG descriptor.

the top six categories achieve a success rate of over 90%Fdrest category achieves a
success rate of over 90% across all ten descriptors. IndiVwblor LBP features improve
upon the grayscale-LBP on most of the categories. The CLHtsesn each of the eight
categories show significant improvement upon the grayddaie and the CGLF slightly
improves upon the CLF. Integration of PHOG with the CGLF ttantbthe CGLF+PHOG
highly benefits most categories and in particular there igrafgcant increase in the classi-
fication performance upon the CGLF results for the Highwaguktain and Open Country
categories where the increment is in the range of 5% to 7%.

The final set of experiments further assesses the perfoenainthe descriptors

based on the correctly recognized images. See Figure 3.85(some example images
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Table 4.13 Comparison of the Classification Performance (%) with OMethod on the
MIT Scene Dataset

# Train # Test| Proposed Method (Oliva and Torralba 2001
CLF 86.4

2000 688 | CGLF 86.6
CGLF+PHOG 89.5 -
CLF 79.3

800 1888 | CGLF 80.0
CGLF+PHOG 84.3 83.7

that are not recognized by the EFM-nearest neighbor clessi§ing the grayscale-LBP
descriptor but are correctly recognized using the oRGB-ld@Bcriptor. Figure 4.35(b)
shows images unrecognized using the oRGB-LBP descriptaebagnized using the CLF
descriptor, Figure 4.35(c) shows images unrecognizedjubaCLF but recognized using
the CGLF descriptor and Figure 4.35(d) shows images unrezed using the CGLF but
recognized using the CGLF+PHOG descriptor.
From Table 4.13 it can be seen that on the 800 training imal@3 ifnages per
class) and 1,688 testing images a success rate of 84.3%évedhvith the CGLF+PHOG

descriptor. This improves over the result of authors in®&nd Torralba 2001) by 0.6%.

4.7 Evaluation of LBP Descriptors on the KTH-TIPS and
the KTH-TIPS-2b Datasets

4.7.1 Experimental Methodology

The classification task is to assign each test image to onenofrdoer of categories. The
performance is measured using a confusion matrix, and teet\performance rates are
measured by the average value of the diagonal entries obtifesion matrix. For KTH-
TIPS2-b dataset, five random sets of 200 training imageslass and 100 testing images
per class are used. For the KTH-TIPS dataset, five randomo$&t8 training images

per class and 41 test images per class are selected (samemuashused in (Crosier and
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Figure 4.36 The mean average classification performance of the eiglstiges's using
the EFM-NN classifier on the KTH-TIPS2-b dataset: the oR@8?Lthe YCbCr-LBP,
the RGB-LBP, the HSV-LBP, the rgb-LBP, the grayscale-LB#® CLF, and the CGLF
descriptors.

Griffin 2008), (Zhang et al. 2007), (Kondra and Torre 2008)jithin each set there is no
overlap in the images selected for training and testing. dlassification scheme on the
datasets compares the overall and category wise perfoerarten different descriptors:
the oRGB-LBP, the YCbCr-LBP, the RGB-LBP, the HSV-LBP, tgb4LBP, the grayscale-
LBP, the CLF, the CGLF, the PHOG and the CGLF+PHOG descstbe final two eval-
uated on the scene dataset). Classification is implemested the EFM-nearest neighbor

(EFM-NN) classifier.

4.7.2 Experimental Results

Here, a detailed experimental evaluation is presentedeKTi-TIPS2-b dataset followed
by a comparison of success rate with other research grougedtTrH-TIPS dataset. The
first set of experiments assesses the overall classificatidarmance of the eight descrip-

tors on the KTH-TIPS2-b dataset. Note that for each categdiye-fold cross validation
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Table 4.14 Category Wise Descriptor Performance (%) Split-out wign BFM-NN Clas-
sifier on the KTH-TIPS2-b Dataset (Note That the CategoriesSorted on the CGLF
Results)

Category CGLF CLF|oRGB| HSV | rgb | Gray

LBP | LBP | LBP | LBP
Aluminium Foil 100 100 100| 100| 100| 100
Brown Bread 100 100 100 99 99 94
Corduroy 100 100 100| 100| 100 93
Cork 100 100 100 98 98 98
Cracker 100 100 96 93 93 90
Lettuce Leaf 100 100 100| 100| 100 97
Linen 100 100 100 99 99 99
Wood 100 100 100| 100| 100| 100
Wool 100 100 99| 100| 100 96
White Bread 99 99 99 99 99 97
Cotton 98 97 97 96 96 91
Mean 99.6 99.6/ 98.7| 98.3| 98.3| 95.9

is implemented for each descriptor using the EFM-nearaghber classifier to derive the
average classification performance. Figure 4.36 shows #anraverage classification per-
formance of various descriptors. The best recognitionttaeis obtained is 99.6% from
the CLF and CGLF descriptors. The oRGB-LBP achieves thesifieation rate of 98.7%.
It outperforms the other color LBP descriptors. It is notkdttfusion of the color LBP
descriptors (CLF) improves upon the grayscale-LBP by aifsagmt 3.7% margin. The
grayscale-LBP descriptor does not have any effect on therf € GLF) result in case of
this dataset.

The second set of experiments assesses the five best dascaipt the grayscale-
LBP using the EFM-nearest neighbor classifier on individoelge categories. From Ta-
ble 4.14 it can be seen that nine out of eleven categoriesaehiD0% success rate and all
of the categories achieve a success rate of 98% or more vat&@iLF descriptor. Alu-
minium Foil, Corduroy, Lettuce Leaf and Wood achieve 100%csss rate across the best
five descriptors. Individual color LBP features improve nghe grayscale-LBP on most

of the categories. The CLF almost always improves upon thgsgale-LBP, this indicates
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Figure 4.37 Image recognition using the EFM-NN classifier on the KTH-$%b dataset:

(a) example images unrecognized using the grayscale-LBg&tigeor but recognized using
the oRGB-LBP descriptor; (b) example images unrecogniaa@thithe RGB-LBP descrip-
tor but recognized using the oRGB-LBP descriptor; (c) insagarecognized using the
0RGB-LBP but recognized using the CLF descriptor; (d) insagerecognized using the
grayscale-LBP but recognized using the CGLF descriptor.

that various color descriptors are not redundant. The CGr¥ slightly improves upon the
CLF. This, however, does not necessarily indicate that thgsgale information is redun-
dant as almost all the categories show a success rate of 1@@%ese two descriptors. It
only indicates that CLF alone contains enough informatmeodrrectly classify the texture
images in the case of KTH-TIPS2-b dataset.

The final set of experiments further assesses the perfoenainthe descriptors
based on the correctly recognized images. See Figure 3.o7(some example images
that are not recognized by the EFM-nearest neighbor clessi§ing the grayscale-LBP
descriptor but are correctly recognized using the oRGB-dBS&triptor. This reaffirms the

importance of color and the distinctiveness of the oRGB-dBBcriptor for image category
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Table 4.15 Comparison of the Classification Performance (%) with OMethods on the
KTH-TIPS Dataset

Method Performance
Proposed Methods:

CGLF 99.6
CLF 99.6
oRGB-LBP 99.1
Crosier 2008 98.5
Kondra 2008 97.7
Zhang 2007 95.5

recognition. Figure 4.37(b) shows images unrecognizathukie RGB-LBP descriptor but
recognized using the oRGB-LBP descriptor, Figure 4.37fows images unrecognized
using the oRGB-LBP but recognized using the CLF descriptod, Figure 4.37(d) shows
images unrecognized using the grayscale-LBP but recogvideen combined with the
CLF, i.e., the CGLF descriptor.

The same set of experiments is repeated on the KTH-TIPSeatatBise best result
on this dataset while using a single color space was once &gen the oRGB-LBP de-
scriptor, which achieves a 99.1% classification rate withnaorovement of 3% over the
grayscale-LBP. The CLF and the CGLF descriptors are tie@ &99. Table 4.15 shows a
comparison of the results with those obtained from othehou in (Crosier and Griffin
2008), (Zhang et al. 2007), (Kondra and Torre 2008). In th&BRolor space, proposed
technique outperforms the state of the art on this dataget without combining color de-
scriptors. Combined LBP descriptors (CLF and CGLF) impngpen the result in (Crosier

and Griffin 2008), previously the best result on this dataset



CHAPTER 5

IRIS IMAGE SEARCH BASED ON ROBUST SEGMENTATION
AND IMAGE ENHANCEMENT

5.1 Robust Iris Search Method and Its Major Components

A robust iris search method is proposed and implemented d&r@teémprovement in iris
recognition performance is shown using the Iris Challengaudation (ICE) (Phillips 2006)
dataset. First details of the ICE dataset are given in Se&ib.1. Next the major com-
ponents of the iris recognition method are presented. Tinek&de iris segmentation, iris
encoding, and iris matching. Figure 5.1 shows the iris mredietween the sclera and the
pupil. See Figure 5.2 for an overview of the iris recognitiethod.

Research efforts here mainly focus on improving the iristsegtation stage of the
system. This allows to compare the performance of the seti@m stage with that im-
plemented by the irisBEE method (Phillips et al. 2008). Tégnsentation step performs
the localization of the iris region by detecting the pupiblahe limbic boundary along
with the eyelid detection. The iris encoding and iris matghstage are similar to that
implemented by the irisBEE method (Phillips et al. 2008)he Biometric Experimen-
tation Environment (BEE) system. In comparison to the iE&Bmethod (Phillips et al.
2008) the proposed method leads to a significant increa$e iadcuracy of the iris region
segmentation along with a much higher overall recognitierfggmance at a lower error
rate. Furthermore, proposed method outperforms the raekrecognition performance

achieved by the ND_IRIS (Liu et al. 2005) method.

80
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Figure 5.1 Front view of the human eye. The various parts labeled areitapt to iris
segmentation and recognition.

5.1.1 The Iris Challenge Evaluation (ICE) Dataset

The ICE dataset (Phillips 2006) consists of 1,425 right eyages of 124 different subjects
and 1,528 left eye images of 120 different subjects. Eye enéglong to 132 total subjects
with 112 overlapping subjects between the left eye and tijiet ye images. The iris
images are intensity images with a resolution of 640x480enTIFF format. The average
diameter of an iris is 228 pixels. The images vary in quality ¢o the percentage of the
iris region occlusion, the degree of blur in the image, offflanmage, and images with
subject wearing the contact lens. Figure 5.3(a) shows som@mm@e images of the right
eye and Figure 5.3(b) shows some images from the left eye tihenhiCE dataset. Notice

the varying degree of illumination levels, pupil dilatiangle and occlusion.

5.1.2 Iris Segmentation

Here the details of the iris segmentation method are predemn particular, the effect of
the power-law transformations on an eye image along withdt@ntages is discussed. Next
details of efficient determination of the pupil region aregented, followed by a discussion
on the effective method to determine the limbic boundarytaedris region segmentation.

Finally, details of the improved eyelid detection phasegvwen. See Figure 5.4 for an
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Figure 5.2 An overview of the iris recognition method.

overview of the three main stages in iris segmentation: ihngl mletection, the limbic

boundary detection, and the eyelid detection.

Performing the Power-Law Transformations on an Eye Image

The power-law transformation when applied to a grayscakgenchanges its dy-
namic range. The pixel intensity values in the input imageaadhe basis, which is raised
to a (fixed) power. The operator is defined by the followingrala (Gonzalez and Woods
2001):

1

R(p) = cxl? (5.1)

wherel is the intensity value of a pixel in the input imagss the scaling factor, and/p
is the power.
For p < 1, this operation increases the bandwidth of the high inexalues at the

cost of the low pixel values. Far > 1, this process enhances the low intensity values while
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(@)

(b)

Figure 5.3 Example images of the (a) right eye and (b) left eye from thE Hataset,
under varying illumination levels, pupil dilation, angledaocclusion.

decreasing the bandwidth of the high intensity values, b@osts the contrast in the dark
regions. Fop = 1, the above transformation linearly scales the intensityes.

In Figure 5.5 the plot shows the result of the power-law tiamsations on the
image intensity values at various valuesmf The output pixel intensity value is scaled
back to[0,255. This operation when applied on the input pixel intensitytmg = 1 and
c =1 does not have any effect on the output intensity. This caseka in the plot foR(p)
atp = 1. At p = 1.9 and 2.5 the lower intensity values gain more than the highensity
values. Atp = 0.5 the intensity values get pulled down and the lower valued te get
mapped into a narrower range.

Assessment of the impact of the power-law transformationsio eye image in
terms of the pixel intensity frequency can be seen from leiguB. The original eye image
is shown in Figure 5.6(a), transformed images vaitralues as 0.5, 1.9 and 2.5 can be seen
in Figure 5.6(b), (c) and (d), respectively. The correspoggixel intensity frequency plot
for the four images is presented in Figure 5.6(e). f-or 1 many more pixels get mapped
into a narrower brighter intensity range as seen in Figuée. Also, this effect can be
observed from the eye images in Figure 5.6(c) and (d) wheredhtrast between the pupil

and the iris becomes more significant.
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Figure 5.4 An overview of the three main stages in iris segmentatioa pilpil detection,
the limbic boundary detection, and the eyelid detection.

Efficient Determination of the Pupil Region

Proposed new iris segmentation method first applies the plametransformation
on an eye image and then detects the pupil boundary. Fidetgction of the pupil bound-
ary is performed followed by the detection of outer iris bdary. The reason for this
approach lies in the observation that the contrast betweiris and the pupil is usually
larger than that between the iris and the sclera. The cdnsrésrther enhanced from the
application of the power-law transformation; this makessaisier to detect the pupil region
and thereby increases the accuracy of the pupil segmemt&®ioposed method results in
the accurate detection of the pupil boundary for 99.8% ofittineges in the dataset; this
includes the entire right eye and the left eye images. Theogpiatep value for the power-
law transformation is selected after analyzing the cohbasveen the iris and the pupil on

a validation set chosen from the ICE dataset.

In Figure 5.4 and Figure 5.7(a) details of the pupil detecsitage are presented. As
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Figure 5.5 Plot showing the result of the power-law transformationth@image intensity
values at various values pf

a first step Gaussian filter is applied to the input image fasa@mng, in order to get rid of
the noise. The Gaussian smoothing filter is defined by theviatig formula (Forsyth and

Ponce 2003):

1 _x2+)2/2
G(xY) = 5 g€ (5.2)

wherex is the distance from the origin in the horizontal axiss the distance from the
origin in the vertical axis, and is the standard deviation of the Gaussian distribution. In
the next stage, power-law transformation is applied foldwy the canny edge detector to
detect edges in the image. Thresholding is performed tadjef the weak edges.

Finally, circular Hough transform is applied on the edgegm#o detect the pupil
boundary. In order to make the pupil search more accuratefamida candidate pupil
having radius within a narrow range is searched. This ramgemputed from a validation
set chosen from the ICE dataset. See in Figure 5.7(a) theeimaghe left for the range
of the radius and on the right the edge image space to be selafoh candidate pupil

circles. The circular Hough transform can be described eenaformation of a pointin the
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Figure 5.6 Results of the power-law transformations on (a) input eyages atp = 0.5,
1.9 and 2.5 shown in (b), (c) and (d), respectively. (e) Pidhe frequency of intensity of
the input image at varioys values. Plot ap = 1.0 corresponds to the input image in (a).

X, y-plane to the circle parameter space. The parametric repiason of the circle is given

as:

X=a-+rcogq6

9) (5.3)
y=Db+rsin(0)

wherea andb are the center of the circle in tlxeandy direction respectively and where

is the radius and is the angle between 0 andr2
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Figure 5.7 Efficient determination of: (a) the pupil region radius, (g iris region radius
and search space, and (c) the limbic boundary center.

Efficient Determination of the Limbic Boundary and the Iregion

It is observed that when detecting the limbic boundary thedtotransform often
makes incorrect detections. Research reveals that suctréct detections are due to the
presence of a large number of weak edges. Therefore, a thdésiptechnique is applied
to the edge image produced by the Canny edge detector tadgdtthe insignificant edge
points. This has shown to improve the percentage of the atyreegmented iris region by
close to 3% for both the right eye and the left eye images. 8pead-5.4 and Figure 5.7(b)
for detalils.

In order to further improve the accuracy of the Hough tramaféor detecting the
limbic boundary, the circle within a specific region arouhd tletected pupil boundary is
searched. Furthermore, a candidate limbic boundary haeitdigis within a narrow range
is searched. The range for the radius is estimated on traati@ih set chosen from the ICE
dataset. The reduced search space and the narrow radigstharsgconsiderably increase
the speed of the circle detection. See in Figure 5.7(b) tfegeon the left for the range

of the radius and on the right the reduced edge image spaicis tearched for candidate
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Figure 5.8 Detection of iris region occlusion from the upper and lowgelel.

limbic circles.

Additionally, another efficient technique is applied toetdtthe limbic boundary.
The Hough transform implemented by the irisBEE method (iPkikt al. 2008) searches
the maximum in the parameter space to detect the circle. latgae based on the Hough
transform is implemented in order to increase the accuratlyeocorrect limbic boundary
detection by 1.3% for the right eye and by 1.4% for the leftieyages. Specifically, when
the distance between the center of the detected circle anzktiter of the detected pupil is
more than a predefined threshold value, then the detecidd w@rrejected. Out of all the
non-rejected circles, the one that corresponds to the mawim the parameter space of
the Hough transform and has center coordinates within aefireti threshold value from
the pupil center is selected. As a result, proposed heurgtithod considerably increases
the accuracy of the Hough transform. In Figure 5.7(c) theeyeof the pupil is pointed in
yellow, the incorrect limbic boundary circle with centergreen is rejected as it is farther
away from the pupil center when compared to the acceptabladidetection with center
displayed in white.

Here the results of time complexity analysis for the segat@m stage are pre-

sented. Mean average implementation time of the segmentstthge for an image is com-
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(b)

Figure 5.9 (a) Segmented iris region and (b) its normalized iris region

puted. First the average processing time for an image fro@, @3 images is computed
and then ten runs are made to obtain the mean average impbdioariime for an image.
The experiment is performed on a 3.00 GHz Pentium 4 CPU wi2hGB RAM running

on Linux. By reducing the search space for Hough transforop@sed algorithm takes
748 milliseconds to process an image against 853 millisgsanthout this optimization.
Hence, proposed efficient limbic boundary detection tempimidecreases the processing

time by approximately 12%.

Improved Eyelid Detection

One of the earlier system proposed by Wildes (1997) detieetsytelids by applying
edge detection filter and Hough transform to obtain edgetpaimd then fits parameterized
parabolic arcs to localize the upper and lower eyelids. iBydgtection is implemented by
modeling the eyelid as two straight lines using linear Hoghsform. Additionaly, power-
law transformation is performed on an eye image in order taroe the contrast between
the eyelid and the iris/pupil region. Hence, occlusion freyelids is more accurately
detected.

Furthermore, iris region is split horizontally and vertigaesulting in four win-
dows. See Figure 5.8 for the result of eyelid detection. treoto detect the upper eyelid

search is performed within the top half of the iris region.rtRarmore, to detect the top
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Table 5.1 Correctness of Segmentation (%) for the Pupil and the Irgidteat Various
Values ofp

P Right Eye Left Eye

Pupil Region| Iris Region| Pupil Region| Iris Region
0.7 96.3 95.5 96.8 96.0
1.0 98.3 97.4 98.6 97.7
1.3 98.9 98.0 99.2 98.1
1.6 99.2 98.2 99.5 98.4
1.9 99.7 98.5 99.9 98.8
2.2 99.6 98.4 99.9 98.8
2.5 99.6 98.4 99.8 98.7

left of the eyelid region, only the left three quarters of thp half of the iris region is con-
sidered. The top right of the eyelid region is detected withe right three quarters of the
top half of the iris region. Thus, there is an overlap of aiporbf the iris region between
two splits. Similarly, the bottom eyelid is detected in thevér two windows. After detect-
ing the eyelid in each of these four windows the results amneoted together. Proposed
approach has shown to improve performance when comparée tméthod in (Liu et al.

2005) where the splits do not overlap.

5.1.3 Feature Encoding and Matching

The feature encoding stage encodes the iris image textatrerqma into iriscodes using
filters. Iris region is normalized to a constant dimensiofoteeencoding. Denoising of the
noise regions in the normalized pattern is implemented bgneef averaging. This results
in a bitwise template, which contains iris information andaase mask for corrupt areas
within the iris pattern. Figure 5.9 shows the result of thenmalization of the iris region.
Encoding is implemented by convolving the normalized iddgt@rn with the 1D

Log-Gabor wavelets (Masek 2003). The frequency responad_ofj-Gabor filter is given
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(a) (b) (c) (d)

Figure 5.10 Comparison of the pupil segmentation performance of thpgwed improved
method with the irisBEE method (Phillips et al. 2008). (apuheye images, (b) images
after the power-law transformation, (c) examples of cdrsegmentation of the pupil and
iris region by proposed method, and (d) examples of incosegmentation by the irisBEE
method (Phillips et al. 2008).

as:

_ —(log(f/fo))”
ot _exp< 2(10g(0/f0))? ) o4

where fg represents the centre frequency, andives the bandwidth of the filter. Details
of the Log-Gabor filter are given by Field (1987).

Hamming distance is used to measure the similarity of theitiwdemplates. The
Hamming distance defines the similarity between two irigsp@nd the two iriscodes are
a match when their Hamming distance is close to each otheorfiparing the bit patterns
X andY, the Hamming distance (HD) is defined as the sum of disagyd®ia (sum of the
XOR betweerX andY) overN, which is the total number of bits in the bit pattern. Below
is the formula:

1 N
HD =55 X&) (5.5)
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Figure 5.11 Comparison of the limbic boundary segmentation perforraasfcthe pro-
posed improved method with the irisBEE method (Phillipsle@08). (a) Examples of
correct segmentation by proposed method and (b) examplesatect segmentation by
the irisBEE method (Phillips et al. 2008).

Noise bits in the two templates are discarded. The iris tatep$ shifted bit-wise from -15
degrees to +15 degrees with an increment of 1.5 degreesiesghand the Hamming dis-
tance is computed for two shift positions. The lowest Hangistance is the best match
between the two templates. As suggested by Daugman (200R)shifting is necessary
to take care of the misalignment in the normalized iris patecaused by the rotational

differences during imaging.

5.2 Experimental Results

Here, the details of the experimental evaluation of the psed method are presented on
the ICE dataset. In order to make a through comparative stssed of the performance of
proposed method with other methods, three sets of expetafmrthe right eye and the left
eye are performed. First the correctness of iris segmentatiassessed, followed by an as-
sessment of the rank-one recognition performance andyfitielverification performance
for the right eye and the left eye is evaluated accordingécettperimental setup proposed
by the ICE system. The rank-one recognition criterion amdvérification criterion eval-

uate the performance of proposed method for recognitiom fnwo different viewpoints;
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Table 5.2 Comparison with the Results (%) from the irisBEE Method ([Ris et al. 2008)
of the Correctness of Segmentation for the Pupil RegionpigrBoundary and Iris Region

Regions Proposed Method irisBEE Method
Right Eye| Left Eye | Right Eye| Left Eye
Pupil Region 99.7 99.9 95.4 95.7
Limbic Boundary 98.7 99.0 93.4 93.6
Iris Region 98.5 98.8 90.2 90.5

more details are provided later in this Section. For all expents discussed here the input
image is scaled to 0.4 of its original size, this significamilits down the processing time

without compromising the correctness of the results.

5.2.1 Assessing the Correctness of Segmentation

The first set of experiments is designed to assess the aoesscof segmentation for the
pupil region, the limbic boundary and the iris region on tight eye and the left eye.
Considering the nature of the ICE dataset, definition of threectness of segmentation is
provided here and it is based on the assumption that the pogilris can be modeled as
a circle. The pupil region is said to be correctly segmentbdmthe circle fully encloses
the pupil region and does not include any area other thandhemupil. Incorrect pupil
segmentation may cover parts of the iris region and or ontyose the pupil region par-
tially. Refer to Section 5.1.2 for the discussion on the mdtand Figure 5.10(c) and (d)
for the results. The limbic boundary is said to be correatiyrsented when the circle fully
bounds the iris region from outside and does not include agg autside of the iris region
other than the pupil or the eyelids that may sometimes oecthd iris. Incorrect limbic
boundary segmentation may cover parts of the sclera regidroaonly enclose the iris
region partially. Refer to Section 5.1.2 for the discussiarthe method and Figure 5.11(a)
and (b) for the results. The iris region is said to be coryestigmented when for any given

eye image both the pupil and the limbic boundary are coyrefetected.
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Table 5.3 Rank-one Recognition Performance (%) at Various Valugs of

p | Right Eye| Left Eye
0.7 95.4 95.9
1.0 97.6 98.1
1.3 98.3 98.5
1.6 98.7 98.8
1.9 99.0 99.0
2.2 98.9 99.0
2.5 98.9 98.9

Table 5.1 gives the results of the correctness of the pupii@mregion segmenta-
tion. The power-law transformations are performed for pdgiection on the right and left
eye image at various values pf At p = 1 andc = 1 the power-law transformation leaves
the intensity values of the pixels in the input image uncleahd~or values op > 1, the
power-law transformation enhances the contrast in the iayikbns and thereby makes the
pupil boundary easier to detect. This is confirmed by thegyeege of correct pupil detec-
tion asp goes higher. Also, fop < 1, the contrast between the pupil and the surrounding
region decreases making it harder to detect the pupil. Bgst getection results are ob-
tained atp = 1.9 with close to 100% correct pupil detection for the left epe 89.7% for
the right eye. For th@ values higher than 1.9 no significant change in the segmentat
performance is noticed. The best result for the iris regietection is 98.5% for the right
eye and 98.8% for the left eye. The iris region detection igsatighest when the pupil
region detection is at its maximum; this is largely due to fiaet that for the proposed
method the correct detection of iris region is to an extepiedeent on the correct pupll
region detection. Finally, the iris region detection rat@a= 1.9 is 1.1% higher for both
the right and the left eye when compared with the raje at1.

Figure 5.10(c) shows examples of correct segmentationeoptipil based on pro-
posed improved pupil region detection method. Input imagesshown in Figure 5.10(a)

and the result of the power-law transformation can be saen figure 5.10(b). Compar-
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Table 5.4 Comparison of the Rank-one Recognition Performance (%) wie Other
Methods

Methods Right Eye| Left Eye
Proposed Method 99.0 99.0
ND_IRIS (Liu et al. 2005) - 97.1
irisBEE method (Phillips et al. 2008) 95.5 96.3

ison of results to the incorrect segmentation results oifeBEE method (Phillips et al.
2008) is shown in Figure 5.10(d). Figure 5.11(a) presemseahults of proposed improved
limbic boundary segmentation method and a comparison Wéhrtcorrect limbic bound-
ary detections of the irisBEE method (Phillips et al. 20@33hown in Figure 5.11(b).
From Table 5.2 it can be seen that proposed method improwas tine irisBEE

method (Phillips et al. 2008) for pupil region segmentatiyri.3% and 4.2% for the right
eye and the left eye respectively. Proposed limbic boundatgction rates are higher by
5.3% and 5.4% for the right and left eye respectively. Finalfoposed method leads to an
improvement upon the irisBEE method (Phillips et al. 20088t8% for both the right and

the left eye iris region detection.

5.2.2 Assessment of the Rank-one Recognition Performance

Here, in order to determine the effectiveness of the prapasethod an evaluation is per-
formed based on the rank-one recognition rate. This is alpopwaluation criterion for
iris recognition. In order to obtain the recognition ratestfthe Hamming distance between
every pair of a query image and a target image is calculateti{teen the nearest-neighbor
classifier is employed for classifying all query images.hi fquery image and the target
image belong to the same subject, then it is considered asectmatch. The recognition
rate is the ratio of the number of correctly classified quemgges to the total number of
guery images. The rank-one recognition rate underlinesithéarity of the samples that

are close to one another within a class.
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Figure 5.12 Comparison of the iris verification performance (ROC cunsdffie right eye)
of the irisBEE method (Phillips et al. 2008) with the propdseethod.

From Table 5.3 it can be seen that the best recognition ra@8% for both the
right eye and the left eye @t = 1.9, when compared to the rate@t= 1, this is higher by
1.4% for the right eye and by 0.9% for the left eye. No signiftazhange is noticed in the
recognition performance fgr > 1.9.

The rank-one recognition rate for proposed method as showable 5.4 is 3.5%
and 2.7% higher than that of the irisBEE method (Phillipd.€2@08) for the right eye and
the left eye respectively. Furthermore, the proposed nakittnproves upon the ND_IRIS
(Liu et al. 2005) by a significant 1.9% for the left eye. Notattthe authors in (Liu et al.
2005) do not report the recognition rate on the right eye.i#altally, proposed improved
eyelid detection method as described in Section 5.1.2 iboméis to a performance increase

of 1% for both the right and the left eye.
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Figure 5.13 Comparison of the iris verification performance (ROC cursethie left eye)
of the irisBEE method (Phillips et al. 2008) with the propdseethod.

5.2.3 Assessment of the Verification Performance and EqualrEor Rate (EER)

For the final set of experiments an evaluation is performetherverification performance
and a comparison is made with the results from the irisBEEhotke{Phillips et al. 2008).
The ICE protocol recommends using the receiver operatiagaciteristic (ROC) curves,
which plot the iris verification rate, i.e., the true accegierversus the false accept rate
(FAR), to report the iris recognition performance. The fregition rate is the rate at which
a matching algorithm correctly determines that a genuingggamatches an enrolled sam-
ple. The equal error rate (EER) is obtained when the FAR adbalfalse reject rate (FRR).
Generally, the lower the EER value the higher will be the a&cy of the biometric system.
The ROC curves are automatically generated by the BEE systen a similarity
matrix is input to the system. In particular, the BEE systemeagates two ROC curves,
corresponding to the Experiment 1 for the right eye and Erpant 2 for the left eye
images. The iris verification rate at the false accept rate.t¥ is generally used as a

standard for performance comparison (Yang et al. 2010).
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Table 5.5 Iris Verification Performance (%) at 0.1% False Accept RateEBER at Various
Values ofp (VR is the Verification Rate and EER is the Equal Error Rate)

p | RightEye | Left Eye
VR | EER| VR | EER
0.7|851| 83|84.7| 7.7
1.0/ 91.3| 52|90.9| 4.6
1.3/92.8| 4.9|922| 4.2
1.6/94.2| 3.9|93.3| 3.1
1.9(951| 28944 23
22(951| 28|944| 23
25950 28|943] 23

It should be pointed out that the verification rate in the ICEp&iment 1 and 2
emphasizes the similarity of samples that are relativedyadit from one another within a
class because it needs to measure all similarity betweepleanwhereas the recognition
rate discussed in Section 5.2.2 emphasizes the simildriggrmples that are close to one
another within a class since it applies a nearest-neighlassiier. Therefore, these two
criteria evaluate the performance of proposed method furgmition from two different
viewpoints.

From Table 5.5 it can be seen that the best verification radetenlowest EER is
achieved ap = 1.9. When compared to the performancepat 1, the VR is higher by
3.8% at a low EER of 2.8% for the right eye and the VR is higheBB#o at the EER of
2.3% for the left eye. No significant change is noticed in thgfication performance for
p>1.9.

See Figure 5.12 and Figure 5.13 for a comparison of the pedoce of proposed
method with that of the irisBEE method (Phillips et al. 2008)erms of the ROC curves.
Figure 5.12 and Figure 5.13 show the ROC curves for the righegperiment and the left
eye experiment respectively. It can be observed that thposexl method improves the
iris recognition performance significantly in comparisoithvthe irisBEE method (Phillips

et al. 2008).
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Table 5.6 Comparison with other Methods on the Iris Verification Parfance (%) at
0.1% False Accept Rate and EER (VR is the Verification RateEdtl is the Equal Error
Rate)

Methods Right Eye Left Eye
VR | EER VR | EER
Proposed Method 95.1| 2.8 94.4| 2.3
SAGEM:-Iridian’ | above 99.0* - | above 99.0* -
irisBEE Method 85.2| 8.5 849| 7.8

TPhillips et al. (2008). *Result estimated from Figure 4 irillgs et al. (2008).

From Table 5.6 it can be seen that proposed method improvas tine irisBEE
method (Phillips et al. 2008) notably. For the right eye, pheposed method has a verifi-
cation rate of 95.1%, which is about 10% higher than the E&Bnethod (Phillips et al.
2008). The EER is 2.8%, which is much lower than the 8.5% ferittsBEE method
(Phillips et al. 2008). For the left eye, the proposed methasia VR of 94.4%, which is
again higher by 9.5% than the irisBEE method (Phillips e2808). The EER is 2.3%,
which is much lower than the 7.8% from the irisBEE method lRisi et al. 2008); this

emphasizes the higher accuracy of the proposed method.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This dissertation investigates advanced techniques or @olge search and retrieval. The
SIFT descriptor is extended to different color spaces,uniclg the recently proposed
ORGB color space, a new oRGB-SIFT feature representatipnojgosed, furthermore it
is integrated with other color SIFT features to produce tb®CSIFT Fusion (CSF), the
Color Grayscale SIFT Fusion (CGSF), and the CGSF+PHOG ig¢ais for image cat-
egory classification. Applications to image search in ahjscene, flower, and texture
datasets are presented along with special application®toeirics. Classification is im-
plemented using a novel EFM-KNN classifier, which combimesEnhanced Fisher Model
(EFM) and the K Nearest Neighbor (KNN) decision rule. Resoltthe experiments on
the Caltech 256 dataset, the MIT Scene dataset, the OxfomdeFldataset, and the Upol
Iris dataset show that the oRGB-SIFT descriptor improvesgaition performance upon
other color SIFT descriptors, the CSF, the CGSF, and the GB8BPG descriptors per-
form better than the other color SIFT descriptors. The fusibboth Color SIFT descrip-
tors (CSF) and Color Grayscale SIFT descriptor (CGSF) shgwifgcant improvement
in the classification performance, which indicates thaioues color-SIFT descriptors and
grayscale-SIFT descriptor are not redundant for imagesitieation.

Four novel color Local Binary Pattern (LBP) descriptors presented in this dis-
sertation for scene image and image texture classificatitmapplications to image search
and retrieval. Specifically, the first color LBP descriptbe oRGB-LBP descriptor, is de-
rived by concatenating the LBP features of the componeng@man an opponent color
space - the oRGB color space. The other three color LBP ¢¢sisiare obtained by the
integration of the oRGB-LBP descriptor with some additionaage features: the Color
LBP Fusion (CLF) descriptor is constructed by integratimgRGB-LBP, the YCbCr-LBP,
the HSV-LBP, the rgb-LBP, as well as the oRGB-LBP descriptos Color Grayscale LBP

100



101

Fusion (CGLF) descriptor is derived by integrating the geafe-LBP descriptor and the
CLF descriptor; and the CGLF+PHOG descriptor is obtaineshtsgrating the Pyramid of
Histograms of Orientation Gradients (PHOG) and the CGLEue®r. Feature extraction
applies the Enhanced Fisher Model (EFM) and image clasifices based on the nearest
neighbor classification rule (EFM-NN). The proposed imagsadiptors and the feature ex-
traction and classification methods are evaluated usieg tiprand challenge databases: the
MIT scene database, the KTH-TIPS2-b database, and the KIPS-materials database.
The experimental results show that the proposed oRGB-LBEerigetor improves image
classification performance upon other color LBP descriptand the CLF, the CGLF, and
the CGLF+PHOG descriptors further improve upon the oRGBRLd&scriptor for scene
image and image texture classification.

Another major contribution of this dissertation lies in trea of iris image search.
A robust iris recognition method with enhanced performaocehe ICE dataset is pre-
sented. In particular, the power-law transformations farenaccurate detection of the
pupil region are implemented. Additionally, the proposedhnique is able to consider-
ably reduce the candidate limbic boundary search spaagdintp#o a significant increase
in the accuracy and speed of the segmentation. The segimeanpatformance is further
increased with the application of the thresholding. Furtiere, for higher accuracy and
speed, the limbic circle having a center within close ranfgb®pupil center is selectively
detected. Additionally, the proposed improved eyelid di&ba phase has shown to increase
performance. From the experiments, it can be concludedukisig power-law transforma-
tions withp = 1.9 or above, the proposed method show constantly betterrpeafece for
pupil and iris region segmentation for both left and right®ysing the ICE dataset, conse-
guently comparison studies show improved segmentatidonmeance comparing with the
irisBEE method (Phillips et al. 2008) and on the rank-onegadtion performance than
other methods with improved VR and EER for both eyes.

Future work on color image search would include an evalnaticthe color SIFT
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descriptors and classifier on the KTH-TIPS (Textures undegyiag lllumination, Pose and
Scale) dataset (Hayman et al. 2004) and the KTH-TIPS2-tsdaf{&aputo et al. 2005).
Additionally, development of more discriminative colorsgeiptors would be looked into
in order to improve the classification performance on theenoballenging datasets such as
the Caltech 256 dataset. One way would be to develop desgifpbm hybrid color spaces
and normalized color spaces (Yang et al. 2010), along wélGthbor feature representation
methods. Furthermore, exploration of advanced scorefesigin methodology of the color
descriptors for improved classification performance wdaddooked into.

Future work on iris image search aims to process the visiblelength iris images,
it will leverage previous research results in attenuatilugnination variations (Liu 2006),
(Yang and Liu 2007), applying novel color models (Liu and [2008b), (Liu and Liu
2008a), (Yang and Liu 2008), (Liu 2008), as well as effecteature extraction and classi-
fication techniques (Liu and Wechsler 2001), (Liu and Weatht998a), (Liu and Wechsler
1998Db) to process the visible wavelength iris images, sa¢hase in the UBIRIS database
(Proenca et al. 2010), which display different charadiessrom the IR or near IR iris
images in the ICE database. On the one hand, the visible srayt#l iris images possess
additional classification cues, such as color. But on therdtland, they pose challenging

issues as well, such as large variations in lighting cooni
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