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ABSTRACT

INVESTIGATION ON ADVANCED IMAGE SEARCH TECHNIQUES

by
Abhishek Verma

Content-based image search for retrieval of images based onthe similarity in their visual

contents, such as color, texture, and shape, to a query imageis an active research area due

to its broad applications. Color, for example, provides powerful information for image

search and classification. This dissertation investigatesadvanced image search techniques

and presents new color descriptors for image search and classification and robust image

enhancement and segmentation methods for iris recognition.

First, several new color descriptors have been developed for color image search.

Specifically, a new oRGB-SIFT descriptor, which integratesthe oRGB color space and the

Scale-Invariant Feature Transform (SIFT), is proposed forimage search and classification.

The oRGB-SIFT descriptor is further integrated with other color SIFT features to produce

the novel Color SIFT Fusion (CSF), the Color Grayscale SIFT Fusion (CGSF), and the

CGSF+PHOG descriptors for image category search with applications to biometrics. Im-

age classification is implemented using a novel EFM-KNN classifier, which combines the

Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN)decision rule. Exper-

imental results on four large scale, grand challenge datasets have shown that the proposed

oRGB-SIFT descriptor improves recognition performance upon other color SIFT descrip-

tors, and the CSF, the CGSF, and the CGSF+PHOG descriptors perform better than the

other color SIFT descriptors. The fusion of both Color SIFT descriptors (CSF) and Color

Grayscale SIFT descriptor (CGSF) shows significant improvement in the classification per-

formance, which indicates that various color-SIFT descriptors and grayscale-SIFT descrip-

tor are not redundant for image search.

Second, four novel color Local Binary Pattern (LBP) descriptors are presented for

scene image and image texture classification. Specifically,the oRGB-LBP descriptor is



derived in the oRGB color space. The other three color LBP descriptors, namely, the Color

LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), andthe CGLF+PHOG de-

scriptors, are obtained by integrating the oRGB-LBP descriptor with some additional image

features. Experimental results on three large scale, grandchallenge datasets have shown

that the proposed descriptors can improve scene image and image texture classification

performance.

Finally, a new iris recognition method based on a robust irissegmentation approach

is presented for improving iris recognition performance. The proposed robust iris seg-

mentation approach applies power-law transformations formore accurate detection of the

pupil region, which significantly reduces the candidate limbic boundary search space for

increasing detection accuracy and efficiency. As the limbiccircle, which has a center within

a close range of the pupil center, is selectively detected, the eyelid detection approach leads

to improved iris recognition performance. Experiments using the Iris Challenge Evaluation

(ICE) database show the effectiveness of the proposed method.
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CHAPTER 1

INTRODUCTION

Content-based image search for retrieval of images based onsimilarities in their visual con-

tents such as features from color, texture, shapes, etc. to auser-supplied query image or

user-specified image features has been a focus of interest for the last several years. Color

features provide powerful information for image search, indexing, and classification (Liu

and Yang 2009), (Yang and Liu 2008), (Shih and Liu 2005), in particular for identification

of biometric images (Verma et al. 2011b; Verma and Liu 2011b), objects, natural scene, im-

age texture and flower categories (Verma et al. 2010; Verma and Liu 2011c), (Banerji et al.

2011) and geographical features from images. The choice of acolor space is important

for many computer vision algorithms. Different color spaces display different color prop-

erties. With the large variety of available color spaces, the inevitable question that arises

is how to select a color space that produces best results for aparticular computer vision

task. Two important criteria for color feature detectors are that they should be stable under

varying viewing conditions, such as changes in illumination, shading, highlights, and they

should have high discriminative power. Color features suchas the color histogram, color

texture and local invariant features provide varying degrees of success against image vari-

ations such as viewpoint and lighting changes, clutter and occlusions (Datta et al. 2008),

(Burghouts and Geusebroek 2009), (Stokman and Gevers 2007).

1.1 SIFT Feature Representation

Lately, there has been much emphasis on the detection and recognition of locally affine

invariant regions (Lowe 2004), (Mikolajczyk et al. 2005). Successful methods are based

on representing a salient region of an image by way of an elliptical affine region, which

describes local orientation and scale. After normalizing the local region to its canonical
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form, image descriptors are able to capture the invariant region appearance. Interest point

detection methods and region descriptors can robustly detect regions, which are invariant

to translation, rotation and scaling (Lowe 2004), (Mikolajczyk et al. 2005). Affine region

detectors when combined with the intensity Scale-Invariant Feature Transform (SIFT) de-

scriptor (Lowe 2004) has been shown to outperform many alternatives (Mikolajczyk et al.

2005).

In this dissertation, the SIFT descriptor is extended to different color spaces, includ-

ing the recently proposed oRGB color space (Bratkova et al. 2009), a new oRGB-SIFT fea-

ture representation is proposed, furthermore it is integrated with other color SIFT features

to produce the Color SIFT Fusion (CSF), and the Color Grayscale SIFT Fusion (CGSF)

descriptors. Additionally, the CGSF is combined with the Pyramid of Histograms of Ori-

entation Gradients (PHOG) to obtain a new CGSF+PHOG descriptor for image category

classification with special applications to biometrics. Classification is implemented using

a novel EFM-KNN classifier (Liu and Wechsler 2002), (Liu and Wechsler 2000b), which

combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN) deci-

sion rule (Fukunaga 1990). The effectiveness of the proposed descriptors and classification

method will be evaluated on four large scale, grand challenge datasets: the Caltech 256

database, MIT scene database, Oxford flower database, and the UPOL Iris database.

1.2 LBP Feature Representation

In recent years, the recognition and classification of textures using the Local Binary Pattern

(LBP) features has been shown to be promising (Ojala et al. 1994), (Ojala et al. 1996), (Zhu

et al. 2010), (Chen et al. 2010), (Crosier and Griffin 2008). Color features when combined

with the intensity based texture descriptors are able to outperform many alternatives. In

this dissertation, a variable mask size is employed in orderto generate a multi-scale LBP

feature vector that is more robust to changes of scale and orientation. Further, the multi-

scale LBP descriptor is extended to different color spaces including the oRGB color space
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(Bratkova et al. 2009). A new multi-scale oRGB-LBP feature representation is proposed,

which is further integrated with other color LBP features toproduce the novel multi-scale

Color LBP Fusion (CLF) and the multi-scale Color Grayscale LBP Fusion (CGLF) de-

scriptors. The CGLF is further combined with PHOG to obtain the novel CGLF+PHOG

descriptor. Feature extraction applies the Enhanced Fisher Model (EFM) (Liu and Wechsler

2000b), (Liu and Wechsler 2002) and image classification is based on the nearest neighbor

classification rule (EFM-NN). The effectiveness of the proposed descriptors and classifi-

cation methodology will be evaluated using three grand challenge datasets: the MIT scene

database, the KTH-TIPS2-b and the KTH-TIPS materials databases.

1.3 Iris Recognition and Biometric Authentication

Over the past decade biometric authentication has become a very active area of research

due to the increasing demands in automated personal identification. More recently several

new notable techniques and methods with applications to face recognition (Shih and Liu

2011; Liu and Yang 2009; Liu 2007; Yang et al. 2010), eye detection (Shuo and Liu 2010)

and iris (Verma et al. 2011a; Verma and Liu 2011a; Verma et al.2011b) biometrics have

been proposed. Among many biometric techniques, iris recognition is one of the most

promising approaches due to its high reliability for personidentification (Ma et al. 2004).

The iris is a thin circular diaphragm, which lies between thelens and cornea of

the human eye. The formation of the unique patterns of the iris is random and not related

to any genetic factors (Wildes 1997), and the iris patterns remain stable throughout the

adult life. Thus, the patterns within the iris are unique to each person and two eyes of

an individual have independent iris patterns. Some research shows that when compared

with other biometric features such as face and fingerprint, iris patterns are more stable and

reliable (Du et al. 2004).

In this dissertation, a new iris search method is proposed based on a robust iris

segmentation approach for improving iris recognition performance (Verma et al. 2011a),
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(Verma and Liu 2011a). Major improvements are proposed to the iris segmentation phase.

In particular, (i) power-law transformations are implemented for more accurate detection

of the pupil region. Additionally, (ii) with the proposed technique the candidate limbic

boundary search space can be reduced considerably, leadingto a significant increase in

the accuracy and speed of the segmentation. The segmentation performance is further en-

hanced with the application of thresholding. Furthermore,(iii) for higher accuracy and

speed, the limbic circle having a center within close range of the pupil center is selectively

detected. Additionally, (iv) proposed eyelid detection approach is shown to improve per-

formance. The effectiveness of the proposed method is evaluated on a grand challenge,

large scale database: the Iris Challenge Evaluation (ICE) (Phillips 2006) dataset.

Proposed method is able to correctly segment the pupil for 99.8% of the images in

the dataset. Iris region detection is 98.5% for the right eyeand 98.8% for the left eye. The

rank-one recognition rate for proposed method is 3.5% and 2.7% higher than that of the

irisBEE method (Phillips et al. 2008) for the right eye and the left eye respectively. Fur-

thermore, proposed method improves upon the ND_IRIS (Liu etal. 2005) by a significant

1.9% on the rank-one recognition rate for the left eye. The verification rate is about 10%

higher than the irisBEE method (Phillips et al. 2008) for each eye at a much lower equal

error rate; this emphasizes the higher accuracy of proposedmethod.

The rest of the dissertation is structured as follows: Chapter 2 presents a brief

overview of several representative works on color image search, color image represen-

tation, learning and classification techniques, and objectand scene search and retrieval

followed by a review on image acquisition, segmentation, feature encoding and matching

for the iris image search. Chapter 3 describes the new color SIFT and LBP descriptors,

presents an overview of five color spaces, the details of the EFM feature extraction tech-

nique, and classification by the novel EFM-KNN classifier. Followed by a description of

datasets used in the experiments along with a detailed evaluation of color descriptors and

classification methodology is presented in Chapter 4. Chapter 5 describes the iris dataset
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used in the experiments along with the implementation details of the proposed improved

iris recognition method based on robust iris segmentation and image enhancement followed

by a thorough performance evaluation of the proposed methodand a detailed analysis of the

experimental results. The conclusions and future work are presented in Chapter 6, where

the major contributions of this dissertation are summarized and future research directions

are discussed.



CHAPTER 2

RELATED WORK

2.1 Color Image Search

2.1.1 Image-level Global and Local Feature Descriptors

In recent years, use of color as a means to biometric image retrieval (Liu and Yang 2009),

(Liu 2006), (Shih and Liu 2005) and object and scene search has gained popularity. Color

features can capture discriminative information by means of the color invariants, color his-

togram, color texture, etc. The earliest methods for objectand scene classification were

mainly based on the global descriptors such as the color and texture histogram (Niblack

et al. 1993), (Pontil and Verri 1998), (Schiele and Crowley 2000). One of the earlier works

is the color indexing system designed by Swain and Ballard, which uses the color histogram

for image inquiry from a large image database (Swain and Ballard 1991). Such methods

are sensitive to viewpoint and lighting changes, clutter and occlusions. For this reason,

global methods were gradually replaced by the part-based methods, which became one of

the popular techniques in the object recognition community. Part-based models combine

appearance descriptors from local features along with their spatial relationship. Harris in-

terest point detector was used for local feature extraction; such features are only invariant to

translation (Agarwal and Roth 2002), (Weber et al. 2000). Afterwards, local features with

greater invariance were developed, which were found to be robust against scale changes

(Fergus et al. 2003) and affine deformations (Lazebnik et al.2004). Learning and inference

for spatial relations poses a challenging problem in terms of its complexity and compu-

tational cost. Whereas, the orderless bag-of-words methods (Fergus et al. 2003), (Leung

and Malik 2001), (Jurie and Triggs 2005) are simpler and computationally efficient, though

they are not able to represent the geometric structure of theobject or to distinguish between

foreground and background features. For these reasons, thebag-of-words methods are not

6
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Figure 2.1 An overview of the various techniques in color image search.

robust to clutter. One way to overcome this drawback is to design kernels that can yield

high discriminative power in presence of noise and clutter (Grauman and Darrell 2005).

More recent work on color based image classification appearsin (Liu and Yang

2009), (Yang and Liu 2008), (Liu 2008) that propose several new color spaces and meth-

ods for face classification and in (Bosch et al. 2008) the HSV color space is used for the

scene category recognition. Evaluation of local color invariant descriptors is performed

in (Burghouts and Geusebroek 2009). Fusion of color models,color region detection and

color edge detection have been investigated for representation of color images (Stokman

and Gevers 2007). Key contributions in color, texture, and shape abstraction have been

discussed in Datta et al. (Datta et al. 2008).

As discussed before, many recent techniques for the description of images have

considered local features. The most successful local imagedescriptor so far is Lowe’s

SIFT descriptor (Lowe 2004). The SIFT descriptor encodes the distribution of Gaussian

gradients within an image region. It is a 128-bin histogram that summarizes the local ori-
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ented gradients over 8 orientations and over 16 locations. This can efficiently represent the

spatial intensity pattern, while being robust to small deformations and localization errors.

Currently, several modifications to the SIFT features have been proposed; among them are

the PCA-SIFT (Ke and Sukthankar 2004), GLOH (Mikolajczyk and Schmid 2005), and

SURF (Bay et al. 2008). These region-based descriptors haveachieved a high degree of

invariance to the overall illumination conditions for planar surfaces. Although, designed

to retrieve identical object patches, SIFT-like features turn out to be quite successful in the

bag-of-words approaches for general scene and object classification (Bosch et al. 2008).

Lately, several methods based on LBP features have been proposed for image rep-

resentation and classification (Zhu et al. 2010), (Crosier and Griffin 2008). Extraction of

LBP features is computationally efficient and with the use ofmulti-scale filters; invariance

to scaling and rotation can be achieved (Zhu et al. 2010). Fusion of different features has

been shown to achieve a good retrieval success rate (Banerjiet al. 2011), (Crosier and Grif-

fin 2008), (Zhang et al. 2007). Local image descriptors have also been shown to perform

well for texture based image retrieval (Banerji et al. 2011), (Chen et al. 2010), (Zhang et al.

2007). In a 3×3 neighborhood of an image, the basic LBP operator assigns a binary label

0 or 1 to each surrounding pixel by thresholding at the gray value of the central pixel and

replacing its value with a decimal number converted from the8-bit binary number.

The Pyramid of Histograms of Orientation Gradients (PHOG) descriptor Bosch

et al. (2007) is able to represent an image by its local shape and the spatial layout of the

shape. The local shape is captured by the distribution over edge orientations within a

region, and the spatial layout by tiling the image into regions at multiple resolutions. The

distance between two PHOG image descriptors then reflects the extent to which the images

contain similar shapes and correspond in their spatial layout.
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2.1.2 Statistics-level Feature Descriptors

The color images reside usually in a high-dimensional imagespace. There is a great de-

mand to find meaningful and compact patterns in such a space for developing robust im-

age recognition methods so as to meet two requirements: enhanced discrimination ability

and computational efficiency. Therefore, most appearance-based image recognition algo-

rithms usually start with the dimensionality reduction by using some popular linear sub-

space methods. In the following sections, several major statistical methods are introduced.

Principal Component Analysis (PCA)

As an optimal linear transformation in the sense of minimum Mean Square Error

(MSE), Principal Component Analysis (PCA) has been a leading technique for dimension-

ality reduction of input data. Given a set ofd-dimensional column image vectors{Xi j},

whereXi j ∈ R
d is the j-th image of classi. Let the training set consist ofc persons and

l i sample images for personi. Thus, the number of training samples ism= ∑c
i=1 l i . For

image recognition, each class has a prior probability ofλi. The within-class scatter matrix

is defined as:

Sw =
c

∑
i=1

λi

l i

l i

∑
j=1

(Xi j −Xi)(Xi j −Xi)
T (2.1)

whereXi =
1
l i ∑l i

j=1Xi j is the mean of classi. The between-class scatter matrixSb and the

total (mixture) scatter matrixSt are defined respectively as:

Sb =
c

∑
i=1

λi(Xi −X)(Xi −X)T (2.2)

St =
c

∑
i=1

λi

l i

l i

∑
j=1

(Xi j −X)(Xi j −X)T (2.3)

whereX = 1
m ∑c

i=1 ∑l i
j=1Xi j is the grand mean.

PCA seeks a principal subspace of lower dimensionality to maximize the data re-



10

construction capability of the features. As a result, the features in this subspace can repre-

sent the original data accurately. The objective function of PCA can be defined as:

W∗ = argmax
‖W‖=1

|WTStW| (2.4)

Maximizing the above equation can be solved via eigenvalue-eigenvector analy-

sis. That is, the matrixW∗ can be constructed by obtaining thek principal eigenvectors

corresponding to thek largest eigenvalues ofSt .

Linear Discriminant Analysis (LDA)

The best representation of data may not perform well from theclassification point of

view, as the total scatter matrix consists of both the within- and between-class variations.

To obtain the discrimination of features for differentiating images of one category from

another, one needs to manipulate the within- and between-class variations separately. To

that end, face recognition using Linear Discriminant Analysis (LDA) has been an area of

increasing interest. LDA is also known as Fisher Linear Discriminant (FLD). The objective

function of LDA can be defined as:

W∗ = argmax
W

|WTSbW|

|WTSwW|
(2.5)

Equation (2.5) is called the Fisher criterion. To maximize the ratio value of this

criterion, LDA seeks an optimal subspaceW∗ that separates the different classes as far

as possible and compresses the same classes as compactly as possible. To deriveW∗,

LDA solves the generalized eigenvectors ofSbW = λSwW, and chooses thek principal

eigenvectors corresponding to thek largest eigenvalues.
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Figure 2.2 Maximum-margin hyperplane and margins for a SVM in 2D space trained with
samples from two classes. Samples on the margin are called the support vectors. (b) Map
features from lower dimensions to higher dimensions for easier separability.

2.1.3 Learning and Classification

Efficient retrieval requires a robust feature extraction method that has the ability to learn

meaningful low-dimensional patterns in spaces of very highdimensionality (Liu 2003),

(Liu and Wechsler 2003), (Liu and Wechsler 2000a). Low-dimensional representations

are also important when one considers the intrinsic computational aspect. PCA has been

widely used to perform dimensionality reduction for image indexing and retrieval (Liu

and Wechsler 2000b), (Liu 2004b). Recently, Support VectorMachine (SVM) classifier

for multiple category recognition has gained popularity (Zhang et al. 2007), (Bosch et al.

2008) though it suffers from the drawback of being computationally too expensive on large

scale image classification tasks. The EFM methodology has achieved good success for the

task of image based recognition (Liu and Wechsler 2002), (Liu and Wechsler 2001), (Liu

2004a). See Figure 2.1 for an overview of the various techniques for color image search.

The SVM performs classification by constructing an N-dimensional hyperplane that

optimally separates the data into two categories. SVMs are closely related to classical mul-

tilayer perceptron neural networks. The goal of SVM modeling is to find the optimal hy-

perplane that separates clusters of sample vectors in such away that samples from different
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target classes lie on different sides of the plane. See Figure 2.2 for an overview of a two

class SVM classification. Let the training data be a set ofn points of the form:

D = {(xi ,ci)|xi ∈ Rp,ci ∈ {−1,1}}n
i=1 (2.6)

whereci has a value of -1 or 1, which indicates the class to whichxi belongs. Eachxi is a

p dimensional vector. The goal is to find the maximum-margin hyperplane that divides the

points havingci = 1 from those havingci =−1. Any hyperplane can be written as a set of

pointsx satisfying:

w•x−b= 0 (2.7)

where the vectorw is a vector normal to the hyperplane and• denotes the dot product.

The parameterb/ ‖ w ‖ determines the offset of the hyperplane from the origin along the

normal vectorw. Thew andb are to be chosen in such a way that it maximizes the margin,

or the distance between the parallel hyperplanes that are asfar apart as possible while still

separating the data. The primal form of the SVM problem is to minimize (inw, b):

1
2‖ w ‖2 subject to (for anyi = 1,2, . . . ,n)

ci(w•xi −b)≥ 1 (2.8)

Using non-negative Lagrange multipliersαi the solution can be expressed as:

w=
n

∑
i=0

αicixi (2.9)

and
b=

1
NSV

NSV

∑
i=1

(w•xi −ci) (2.10)

whereNSV is the set of all support vectors. Using the fact, that‖ w ‖2 =w•w and substitut-

ing, one can show that the dual of the SVM reduces to the following optimization problem:
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Figure 2.3 The left image3.5 from the Faces category in the Caltech 256 dataset. Image on
the right shows the keypoints and elliptical regions detected by the Harris-affine detector.

Maximize (inαi)

L̃(α) =
n

∑
i=1

αi −
1
2∑

i, j
αiα jcic jx

T
i x j =

n

∑
i=1

αi −
1
2∑

i, j
αiα jcic jk(xix j) (2.11)

subject to (for anyi = 1,2, . . . ,n) αi ≥ 0 and∑n
i=1 αici = 0. Here the kernel is defined by:

k(xix j) = xi •x j

The original optimal hyperplane algorithm proposed by Vladimir Vapnik (1963)

was a linear classifier. Boser et al. (1992) suggested a way tocreate non-linear classifiers

by applying the kernel trick (Aizerman et al. 1964) to maximum-margin hyperplanes. Mul-

ticlass SVM aims to assign labels to instances by using support vector machines, where

the labels are drawn from a finite set of several elements. Theapproach that is commonly

used is to reduce the single multiclass problem into multiple two-class problems. The

two methods commonly employed to build such binary classifiers are one-versus-all and

one-versus-one. One popular implementation of the SVM is the LibSVM (Chang and Lin

2011).
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2.1.4 Key Region Detection by Affine Detectors

The affine key point detector detects interest points in scale-space, and then determines

an elliptical region for each point. Interest points maybe detected with the Harris detec-

tor. The elliptical region is determined with the second moment matrix of the intensity

gradient (Lindeberg and Garding 1997). The second moment matrix is often used for fea-

ture detection and for describing local image structures. It is used for point detection by

Harris detector and for the estimation of surrounding area about the point. The Harris de-

tector (Harris and Stephens 1988) is based on the following principle. First, the local image

derivatives are computed with Gaussian kernels of differentiation scale. Second, the deriva-

tives are averaged in the neighborhood of the point by smoothing with a Gaussian window

of integration scale. The eigenvalues of this matrix represent two principal signal changes

in a neighborhood of the point. Those points for which the signal change is significant in

orthogonal directions are extracted. Such points are stable in arbitrary lighting conditions

and represent the image fairly well.

After the extraction of a set of initial points the next step is to perform the iterative

estimation of elliptical affine region (Lindeberg and Garding 1997). The region is then

normalized to the circular one. Harris-affine and the Hessian-affine detectors are robust to

light intensity changes, blurring, scale, and viewpoint changes (Mikolajczyk et al. 2005).

See Figure 2.3 for the points and regions detected by the Harris-affine detector.

2.2 Iris Image Search

A general approach to iris image search consists mainly of four stages: (1) image ac-

quisition, (2) iris segmentation, (3) texture analysis, and (4) matching of texture patterns.

Several notable contributions to the aforementioned stages are summarized here.

One of the earlier systems proposed by Flom and Safir (1987) detected the pupil

region by finding large connected regions of pixels with intensity values below a given

threshold. Iris descriptors were extracted using the difference operator, edge detection
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algorithms, and the Hough transform. Wildes (1997) system used low light level camera

along with diffuse source and polarization for image acquisition. Iris region was segmented

by computing the binary edge map followed by the Hough transform. For matching, it ap-

plied the Laplacian of Gaussian filter at multiple scales to produce a template and computes

the normalized correlation as a similarity measure.

Masek (2003) performed segmentation of iris by canny edge detection and circular

Hough transform. Encoding was performed by 1D Log-Gabor wavelets and matching was

based on hamming distance. Liu et al. (2005) proposed the ND_IRIS method based on

Masek’s implementation, hamming distance was used to compare two iris templates. The

method proposed by Daugman (2006, 2007) performed segmentation of the iris region with

the integro-differential operator followed by its normalization. The normalized iris image

was convolved with the 2D Gabor filters to extract the textureinformation, which was

quantized into a compact 256 byte binary iriscode. The iriscodes were compared using the

normalized Hamming distance.

The issue of noise detection and handling for non-cooperative iris recognition was

explored by Proenca (2006); Proenca and Luis (2007). Bayesian approach to matching

of warped iris patterns was discussed by Thornton et al. (2007). More updated methods

in image understanding for iris biometrics were reviewed byBowyer et al. (2008). Vatsa

et al. (2008) proposed a curve evolution approach to segmenta non-ideal iris image us-

ing the modified Mumford-Shah functional. Beacon guided search for fast iris matching

was discussed by Hao et al. (2008) and use of short-length iris codes from the most de-

scriptive regions of the iris for fast matching was proposedby Gentile et al. (2009). He

et al. (2009) proposed an Adaboost-cascade iris detector for fast iris segmentation. Spline

based edge fitting scheme was used for non-circular iris boundary detection. Eyelashes and

shadows were detected via a learned prediction model. Bakeret al. (2010) explored the

issue of degraded iris biometrics performance with non-cosmetic contact lenses. Proenca

(2010) proposed a segmentation method to handle the degraded images acquired in less
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constrained conditions for real-time applications. Puhanet al. (2011) proposed a fast iris

segmentation technique based on the Fourier spectral density for noisy frontal view eye

images captured with minimum cooperation from the subjects.



CHAPTER 3

COLOR SPACES, NEW COLOR DESCRIPTORS

AND THE NOVEL EFM-KNN CLASSIFIER

This chapter first presents a review of five color spaces in which the new color SIFT and

new color LBP descriptors are defined followed by a discussion on clustering, visual vo-

cabulary tree, and visual words for SIFT descriptors. Thereafter, five conventional SIFT

descriptors are presented: the RGB-SIFT, the rgb-SIFT, theHSV-SIFT, the YCbCr-SIFT,

and the grayscale-SIFT descriptors and four new color SIFT descriptors are presented: the

oRGB-SIFT, the Color SIFT Fusion (CSF), the Color GrayscaleSIFT Fusion (CGSF), and

the CGSF+PHOG descriptors for image classification with special applications to biomet-

rics. Second, four novel color Local Binary Pattern (LBP) descriptors are presented for

scene image and image texture classification. Specifically,the oRGB-LBP descriptor is

derived in the oRGB color space. The other three color LBP descriptors, namely, the Color

LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), andthe CGLF+PHOG de-

scriptors, are obtained by integrating the oRGB-LBP descriptor with some additional image

features. Followed by a detailed discussion on the novel EFM-KNN classification method-

ology.

3.1 Color Spaces

A color image contains three component images, and each pixel of a color image is speci-

fied in a color space, which serves as a color coordinate system. The commonly used color

space is the RGB color space. Other color spaces are usually calculated from the RGB

color space by means of either linear or nonlinear transformations.

To reduce the sensitivity of the RGB images to luminance, surface orientation, and

other photographic conditions, the rgb color space is defined by normalizing theR, G, and

17
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B components:

r = R/(R+G+B)

g= G/(R+G+B)

b= B/(R+G+B)

(3.1)

Due to the normalizationr andg are scale-invariant and thereby invariant to light intensity

changes, shadows and shading (Gevers et al. 2006).

The HSV color space is motivated by human vision system because humans de-

scribe color by means of hue, saturation, and brightness. Hue and saturation define chromi-

nance, while intensity or value specifies luminance (Gonzalez and Woods 2001). The HSV

color space is defined as follows (Smith 1978):

Let























MAX = max(R,G,B)

MIN = min(R,G,B)

δ = MAX−MIN

V = MAX

S=











δ
MAX if MAX 6= 0

0 if MAX = 0

H =



































60(G−B
δ ) if MAX = R

60(B−R
δ +2) if MAX = G

60(R−G
δ +4) if MAX = B

not de f ined if MAX = 0

(3.2)

The YCbCr color space is developed for digital video standard and television trans-

missions. In YCbCr, the RGB components are separated into luminance, chrominance
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Figure 3.1 Visualizing eight different colors in various color spaces. Top left is the image
with eight colors numbered from 1 to 8. Left to right and top tobottom is the depiction of
colors in RGB space, HSV space, rgb space, oRGB space and YCbCr space.

blue, and chrominance red:
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(3.3)

where theR,G,B values are scaled to[0,1].

The oRGB color space (Bratkova et al. 2009) has three channelsL, C1 andC2. The

primaries of this model are based on the three fundamental psychological opponent axes:

white-black, red-green, and yellow-blue. The color information is contained inC1 andC2.

The value ofC1 lies within [−1,1] and the value ofC2 lies within[−0.8660,0.8660]. The
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Figure 3.2 Color component images in the five color spaces: RGB, HSV, rgb, oRGB,
and YCbCr. The color image is from the Caltech 256 dataset, whose grayscale image is
displayed as well.

L channel contains the luminance information and its values range between[0,1]:
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(3.4)

Figure 3.1 shows eight different colors in various color spaces. Figure 3.2 shows

the color component images in the five color spaces: RGB, HSV,rgb, oRGB, and YCbCr.
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Figure 3.3 (a) Various stages in representing an image as a feature vector of dense color
histogram and (b) learning and classification stages.

3.2 Dense Color Histogram Descriptors

Here, an image is defined in terms of a dense histogram of the three color channels. This

allows image representation by way of its predominant colorfeatures and classification

based on its most discriminative color features. Figure 3.3(a) illustrates various stages in

extracting a feature vector from a color image. The system starts with a color image as an

input and first splits it into three separate color componentimages. Next step is to form a

histogram from each of the color channels. In order to make the three histograms indepen-

dent of the pixel count in an image, they are normalized to sumto one. The normalized

histograms are then concatenated to form a compact fixed length feature vector. The follow-

ing eight dense histograms are presented: Grayscale-DH, oRGB-DH, RGB-DH, HSV-DH,

rgb-DH, YCbCr-DH, Color Histogram Fusion (CHF) that is formed from the combina-

tion of five dense color histograms, Color Gray Histogram Fusion (CGHF) is formed by

combining Grayscale-DH with CGH. Figure 3.3(b) gives an overview of the learning and

classification stages.
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Figure 3.4 An overview of SIFT feature extraction, visual words, learning and classifica-
tion stages.

3.3 SIFT Feature Extraction, Clustering, Visual Vocabulary Tree,

and Visual Words

This section first gives details of the SIFT feature extraction procedure. The next phase

deals with the formation of visual vocabulary tree and visual words, here the normalized

SIFT features are quantized with the vocabulary tree such that each image is represented

as a collection of visual words, provided from a visual vocabulary. The visual vocabulary

is obtained by vector quantizing descriptors computed fromthe training images usingk-

means clustering. See Figure 3.4 for an overview of the processing pipeline.

3.3.1 SIFT Feature Extraction

Image similarity may be defined in many ways based on the need of the application. It

could be based on shape, texture, resolution, color or some other spatial features. The

experiments here compute the SIFT descriptors extracted from the scale invariant points
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(Zhang et al. 2007) on aforementioned color spaces. Such descriptors are called sparse

descriptors, they have been previously used in (Csurka et al. 2004), (Lazebnik et al. 2003).

Scale invariant points are obtained with the Hessian-affinepoint detector on the inten-

sity channel. For the experiments, the Hessian-affine pointdetector is used because it has

shown good performance in category recognition (Mikolajczyk et al. 2005). The remaining

portion of feature extraction is then implemented according to the SIFT feature extraction

pipeline of Lowe (Lowe 2004). Canonical directions are found based on an orientation

histogram formed on the image gradients. SIFT descriptors are then extracted relative to

the canonical directions.

3.3.2 Clustering, Visual Vocabulary Tree, and Visual Words

The visual vocabulary tree defines a hierarchical quantization that is constructed with the

hierarchicalk-means clustering. A large set of representative descriptor vectors taken from

the training images are used in the unsupervised training ofthe tree. Instead ofk defining

the final number of clusters or quantization cells,k defines the branch factor (number of

children of each node) of the tree. First, an initialk-means process is run on the training

data, definingk cluster centers. The training data is then partitioned intok groups, where

each group consists of the descriptor vectors closest to a particular cluster center. The same

process is then recursively applied to each group of descriptor vectors, recursively defining

clusters by splitting each cluster intok new parts. The tree is determined level by level, up

to some maximum number of levels sayL, and each division intok parts is only defined by

the distribution of the descriptor vectors that belong to the parent cluster. This process is

illustrated in Figure 3.5(a). Once the tree is computed, itsleaf nodes are used for quantizing

descriptors from the training and test images.

It has been experimentally observed that most important forthe retrieval quality is

to have a large vocabulary (large number of leaf nodes). While the computational cost of

increasing the size of the vocabulary in a non-hierarchicalmanner would be very high, the
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Figure 3.5 (a) An illustration of the process of constructing a vocabulary tree by hier-
archicalk-means. The hierarchical quantization is defined at each level by k centers (in
this casek= 3). (b) A large number of elliptical regions are extracted from the image and
normalized to circular regions. A SIFT descriptor vector iscomputed for each region. The
descriptor vector is then hierarchically quantized by the vocabulary tree. The number of
quantization bins is the number of leaf nodes in the vocabulary tree; this is the length of the
final feature vector as well.

computational cost in the hierarchical approach is logarithmic in the number of leaf nodes.

The memory usage is linear in the number of leaf nodeskL. The current implementation

builds a tree of 6,561 leaf nodes andk= 9.

To obtain fixed-length feature vectors per image, the visualwords model is used

(Bosch et al. 2008), (Csurka et al. 2004). The visual words model performs vector quanti-

zation of the color descriptors in an image against a visual vocabulary. In the quantization

phase, each descriptor vector is simply propagated down thetree at each level by compar-

ing the descriptor vector to thek candidate cluster centers (represented byk children in

the tree) and choosing the closest one till it is assigned to aparticular leaf node. This is

a simple matter of performingk dot products at each level, resulting in a total ofkL dot

products, which is very efficient ifk is not too large. See Figure 3.5(b) for an overview of

the quantization process.
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Figure 3.6 Multiple Color SIFT features fusion methodology using the EFM feature ex-
traction.

After all the SIFT features from an image are quantized, a fixed length feature

vector would be obtained. The feature vector is normalized to zero mean and unit standard

deviation. The advantage of representing an image as a fixed length feature vector lies in

the fact that it allows to effectively compare images that vary in size.
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Figure 3.7 The multi-scale LBP operators.

3.4 New Color SIFT Descriptors

The SIFT descriptor proposed by Lowe transforms an image into a large collection of fea-

ture vectors, each of which is invariant to image translation, scaling, and rotation, partially

invariant to the illumination changes, and robust to local geometric distortion (Lowe 2004).

The key locations used to specify the SIFT descriptor are defined as maxima and minima

of the result of the difference of Gaussian function appliedin the scale-space to a series

of smoothed and resampled images. SIFT descriptors robust to local affine distortions are

then obtained by considering pixels around a radius of the key location.

The grayscale SIFT descriptor is defined as the SIFT descriptor applied to the

grayscale image. A color SIFT descriptor in a given color space is derived by individually

computing the SIFT descriptor on each of the three componentimages in the specific color

space. This produces a 384 dimensional descriptor that is formed from concatenating the

128 dimensional vectors from the three channels. As a result, four color SIFT descriptors

are defined: the RGB-SIFT, the YCbCr-SIFT, the HSV-SIFT, andthe rgb-SIFT descriptors.

The four new color SIFT descriptors are defined in the oRGB color space and the

fusion in different color spaces. In particular, the oRGB-SIFT descriptor is constructed

by concatenating the SIFT descriptors of the three component images in the oRGB color

space. The Color SIFT Fusion (CSF) descriptor is formed by fusing the RGB-SIFT, the

YCbCr-SIFT, the HSV-SIFT, the oRGB-SIFT, and the rgb-SIFT descriptors. The Color

Grayscale SIFT Fusion (CGSF) descriptor is obtained by fusing further the CSF descriptor
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Figure 3.8 Multiple Color LBP features fusion methodology using the EFM feature ex-
traction.

and the grayscale-SIFT descriptor. The CGSF is combined with the Pyramid of Histograms

of Orientation Gradients (PHOG) descriptor to obtain the CGSF+PHOG descriptor. See

Figure 3.6 for multiple Color SIFT features fusion methodology.

3.5 New Color LBP Descriptors

The LBP descriptor proposed by Ojala et al. (1994, 1996) assigns an intensity value to each

pixel of an image based on the intensity values of the eight neighboring pixels. Choosing

multiple neighborhoods of different distances from the target pixel and orientations for each

pixel has been shown to achieve partial invariance to scaling and rotation (Zhu et al. 2010).

Using the multi-scale LBP operator shown in Figure 3.7, three LBP images from the three

neighborhoods are generated. The normalized histograms from the LBP images are used

as feature vectors and they are independent of the image size. The fused histograms of

multi-scale LBP images give a feature vector that is partially invariant to image translation,
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scaling, and rotation.

The grayscale-LBP descriptor is defined as the LBP descriptor applied to the

grayscale image. A color LBP descriptor in a given color space is derived by individu-

ally computing the LBP descriptor on each of the three component images in the specific

color space. This produces a 2,304 dimensional descriptor that is formed from concatenat-

ing the 768 dimensional vectors from the three channels. As aresult, the four color LBP

descriptors are defined: the RGB-LBP, the YCbCr-LBP, the HSV-LBP, and the rgb-LBP

descriptors.

The four new color LBP descriptors are defined in the oRGB color space and the

fusion in different color spaces. In particular, the oRGB-LBP descriptor is constructed

by concatenating the LBP descriptors of the three componentimages in the oRGB color

space. The Color LBP Fusion (CLF) descriptor is formed by fusing the RGB-LBP, the

YCbCr-LBP, the HSV-LBP, the oRGB-LBP, and the rgb-LBP descriptors. The Color

Grayscale LBP Fusion (CGLF) descriptor is obtained by fusing further the CLF descriptor

and the grayscale-LBP descriptor. The CGLF is combined withthe PHOG to obtain the

CGLF+PHOG descriptor. See Figure 3.8 for multiple Color LBPfeatures fusion method-

ology.

3.6 The Novel EFM-KNN Classifier

Image classification using the new descriptors introduced in the preceding section is im-

plemented using a novel EFM-KNN classifier (Liu and Wechsler2002), (Liu and Wechsler

2000b), which combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor

(KNN) decision rule (Fukunaga 1990). LetX ∈R
N be a random vector whose covariance

matrix isΣX :

ΣX = E {[X −E (X )][X −E (X )]t} (3.5)

whereE (·) is the expectation operator andt denotes the transpose operation. The eigen-
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vectors of the covariance matrixΣX can be derived by PCA:

ΣX = ΦΛΦt (3.6)

whereΦ = [φ1φ2 . . .φN] is an orthogonal eigenvector matrix andΛ = diag{λ1,λ2, . . . ,λN}

a diagonal eigenvalue matrix with diagonal elements in decreasing order. An important

application of PCA is dimensionality reduction:

Y = Pt
X (3.7)

whereP = [φ1φ2 . . .φK], andK < N. Y ∈ R
K thus is composed of the most significant

principal components. PCA, which is derived based on an optimal representation criterion,

usually does not lead to good image classification performance. To improve upon PCA, the

Fisher Linear Discriminant (FLD) analysis (Fukunaga 1990)is introduced to extract the

most discriminating features.

The FLD method optimizes a criterion defined on the within-class and between-

class scatter matrices,Sw andSb (Fukunaga 1990):

Sw =
L

∑
i=1

P(ωi)E {(Y −Mi)(Y −Mi)
t |ωi} (3.8)

Sb =
L

∑
i=1

P(ωi)(Mi −M)(Mi −M)t (3.9)

whereP(ωi) is a priori probability,ωi represent the classes, andMi andM are the means

of the classes and the grand mean, respectively. The criterion the FLD method optimizes is

J1 = tr(S−1
w Sb), which is maximized whenΨ contains the eigenvectors of the matrixS−1

w Sb

(Fukunaga 1990):

S−1
w SbΨ = Ψ∆ (3.10)

whereΨ,∆ are the eigenvector and eigenvalue matrices ofS−1
w Sb, respectively. The FLD

discriminating features are defined by projecting the pattern vectorY onto the eigenvectors
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of Ψ:

Z = Ψt
Y (3.11)

Z thus is more effective than the feature vectorY derived by PCA for image classification.

The FLD method, however, often leads to overfitting when implemented in an in-

appropriate PCA space. To improve the generalization performance of the FLD method, a

proper balance between two criteria should be maintained: the energy criterion for adequate

image representation and the magnitude criterion for eliminating the small-valued trailing

eigenvalues of the within-class scatter matrix (Liu and Wechsler 2000b). A new method,

the Enhanced Fisher Model (EFM), is capable of improving thegeneralization performance

of the FLD method (Liu and Wechsler 2000b). Specifically, theEFM method improves the

generalization capability of the FLD method by decomposingthe FLD procedure into a

simultaneous diagonalization of the within-class and between-class scatter matrices (Liu

and Wechsler 2000b). The simultaneous diagonalization is stepwise equivalent to two op-

erations as pointed out by Fukunaga (1990): whitening the within-class scatter matrix and

applying PCA to the between-class scatter matrix using the transformed data. The stepwise

operation shows that during whitening the eigenvalues of the within-class scatter matrix

appear in the denominator. Since the small (trailing) eigenvalues tend to capture noise

(Liu and Wechsler 2000b), they cause the whitening step to fitfor misleading variations,

which leads to poor generalization performance. To achieveenhanced performance, the

EFM method preserves a proper balance between the need that the selected eigenvalues

account for most of the spectral energy of the raw data (for representational adequacy), and

the requirement that the eigenvalues of the within-class scatter matrix (in the reduced PCA

space) are not too small (for better generalization performance) (Liu and Wechsler 2000b).

Image classification is implemented using the EFM-KNN and the EFM-NN (nearest

neighbor) classifiers, Figure 3.6 and Figure 3.8 show the fusion methodology of multiple

descriptors using the EFM feature extraction methodology.



CHAPTER 4

EXPERIMENTAL EVALUATION OF NEW COLOR DESCRIPTORS

AND THE NOVEL EFM-KNN CLASSIFIER

This chapter first describes the five datasets used in the experiments. Next, an evaluation of

dense color histogram is performed, followed by an evaluation of new color SIFT descrip-

tors and new color LBP descriptors upon the various datasets.

4.1 Datasets

4.1.1 Caltech 256 Object Categories Dataset

The Caltech 256 dataset (Griffin et al. 2007) holds 30,607 images divided into 256 cat-

egories and a clutter class. The images have high intra-class variability and high object

location variability. Each category contains at least 80 images, a maximum of 827 images

and the mean number of images per category is 119. The images have been collected from

Google and PicSearch, they represent a diverse set of lighting conditions, poses, back-

grounds, image sizes, and camera systematics. The various categories represent a wide

Figure 4.1 Example images from the Caltech 256 object categories dataset.
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Figure 4.2 Example images from the Faces and People classes of the Caltech 256 object
categories dataset.

variety of natural and artificial objects in various settings. The images are in color, in JPEG

format with only a small number of grayscale images. The average size of each image is

351x351 pixels. See Figure 4.1 for some images from the object categories and Figure 4.2

for some sample images from the Faces and People categories.

4.1.2 UPOL Iris Dataset

The UPOL iris dataset (Dobes et al. 2006) contains 128 uniqueeyes (or classes) belonging

to 64 subjects with each class containing three sample images. The images of the left and

right eyes of a person belong to different classes. The irises were scanned by a TOPCON

TRC50IA optical device connected with a SONY DXC-950P 3CCD camera. The iris im-

ages are in 24-bit PNG format (color) and the size of each image is 576x768 pixels. See

Figure 4.3 for some sample images from this dataset.

Figure 4.3 Example images from the UPOL Iris dataset.
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Figure 4.4 Example images from the MIT Scene dataset.

4.1.3 MIT Scene Dataset

The MIT scene dataset (Oliva and Torralba 2001) has 2,688 images classified as eight

categories: 360 coast, 328 forest, 374 mountain, 410 open country, 260 highway, 308 inside

of cities, 356 tall buildings, and 292 streets. All of the images are in color, in JPEG format,

and the average size of each image is 256x256 pixels. There isa large variation in light,

pose and angles, along with a high intra-class variation. The sources of the images vary

(from commercial databases, websites, and digital cameras) (Oliva and Torralba 2001). See

Figure 4.4 for some sample images from this dataset.

Figure 4.5 Example images from the Oxford Flower dataset.
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Figure 4.6 Example images from the KTH-TIPS Texture dataset.

4.1.4 Oxford Flower Dataset

This data set consists of 17 species of flowers with 80 images in each category and a total

of 1,360 images. All the images are in color in JPEG format andthe average image size of

each image is 560x560 pixels. There are species that have a very unique visual appearance,

for example Fritillaries and Tigerlilies, as well as species with very similar appearance,

for example Dandelions and Coltsfoot. There are large viewpoint, scale, and illumination

variations. The large intra-class variability and the small inter-class variability make this

data set very challenging. The flower categories are deliberately chosen to have some am-

biguity on each aspect. For example, some classes cannot be distinguished on color alone

(e.g., Dandelion and Buttercup), others cannot be distinguished on shape alone (e.g., Blue-

bell and Crocus). The flower images were retrieved from various websites and personal

photographs (Nilsback and Zisserman 2006). Figure 4.5 shows some of the categories.

4.1.5 KTH-TIPS Texture Dataset

The KTH-TIPS dataset (Hayman et al. 2004) consists of ten classes of textures with 81

images per class. All the images are in color, PNG format and the maximum image size is

200x200 pixels. All ten textures have been photographed at nine scales and nine illumina-

tion conditions for each scale. Some of the classes have a very similar visual appearance,
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Figure 4.7 The mean average classification performance of the eight descriptors: the
oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH,
the CHF, and the CGHF descriptors on the Oxford Flower Dataset.

like cotton and linen, and brown bread and sponge which makesthis dataset moderately

challenging. The KTH-TIPS2-b (Caputo et al. 2005) dataset is a more challenging ex-

tension of the KTH-TIPS dataset with 11 classes of materialsand four samples for each

material. Each of these samples has 108 images with 432 images per class and a total of

Figure 4.8 Image recognition using the EFM-NN classifier: Examples of correctly clas-
sified images of the Bluebell (top) and Lily Valley (bottom) categories from the Oxford
Flower dataset.
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Figure 4.9 The mean average classification performance of the eight descriptors: the
oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH,
the CHF, and the CGHF descriptors on the MIT Scene Dataset.

4,752 images. Some of the images in the classes like wool and cotton are from differently

colored samples leading to very high intra-class variationbetween samples, while some

samples from different classes like cork and cracker have the same color and general ap-

pearance lowering the inter-class variation. See Figure 4.6 for some sample images from

this dataset.

4.2 Evaluation of Dense Color Histogram on:

Oxford Flower, MIT Scene, and Caltech 256 Datasets

The method starts with a color image as an input and first splits it into three separate color

component images. Next step is to compute histograms from each of the color channels.

After normalization the individual histograms are concatenated to form a compact fixed

length feature vector. The following eight dense histogram(DH) descriptors are evaluated:

the oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH,

the Color Histogram Fusion (CHF), and the Color Grayscale Histogram Fusion (CGHF)
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Figure 4.10 Image recognition using the EFM-NN classifier: Examples of correctly clas-
sified images of the Coast (top) and Inside City (bottom) categories from the MIT Scene
dataset.

descriptors. Learning and classification is performed withthe EFM-NN (nearest neighbor)

classifier.

4.2.1 Experimental Results on the Oxford Flower Dataset

Experimental setup consists of three sets of 40 training images and 20 test images per

class. See Figure 4.7 for the classification performance across eight descriptors. On dense

histogram, HSV features give a success rate of 32.8% followed by rgb-DH at 22.7% and

RGB-DH at 22.6%. The YCbCr-DH and oRGB-DH come next at 21.6% and 21.3%, re-

spectively. The grayscale-DH achieves 14.8% success rate.Combined color histograms

reach a performance of 44.9% and fusing color and gray histogram reaches 46.3%.

Figure 4.8 shows some example images that were classified correctly using the

EFM-NN classifier from the Bluebell and Lily Valley categories of the Oxford Flower

dataset.
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Figure 4.11 The mean average classification performance of the eight descriptors: the
oRGB-DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH,
the CHF, and the CGHF descriptors on the Caltech 256 Dataset.

4.2.2 Experimental Results on the MIT Scene Dataset

From each class, 100 images for training, 50 images for testing are selected. Five-fold

cross validation is performed on the following dense histogram descriptors: the oRGB-

DH, the YCbCr-DH, the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH, the Color

Histogram Fusion (CHF), and the Color Grayscale Histogram Fusion (CGHF) descriptors.

See Figure 4.9 for the classification performance across eight descriptors. HSV features

give a success rate of 40% followed by RGB-DH at 36.8% and rgb-DH at 27.9%. The

grayscale-DH achieves 26.8% success rate. The oRGB-DH and YCbCr-DH come next at

24.8% and 22.2%, respectively. Combined color histograms reach a performance of 51.6%

and fusing color and gray histogram reaches 52.1%.

Figure 4.10 shows some example images that were classified correctly using the

EFM-NN classifier from the Coast and Inside City categories of the MIT Scene dataset.
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4.2.3 Experimental Results on the Caltech 256 Dataset

On the Caltech 256 dataset (Griffin et al. 2007) experiments are performed to evaluate the

performance of the following dense histogram descriptors:the oRGB-DH, the YCbCr-DH,

the RGB-DH, the HSV-DH, the rgb-DH, the grayscale-DH, the Color Histogram Fusion

(CHF), and the Color Grayscale Histogram Fusion (CGHF) descriptors. From each class,

50 images are used for training and 25 images for testing. Figure 4.11 shows the detailed

performance of the EFM-NN classification technique on this dataset. HSV features give a

success rate of 5% followed by RGB-DH at 3.6% and grayscale-DH at 2.8%. The rgb-DH,

YCbCr-DH and oRGB-DH come next at 2.5%, 1.9% and 1.8%, respectively. Combined

color histograms reach a performance of 5.9% and fusing color and gray histogram reaches

6%. This dataset has very high intra-class variability, lowinter-class variability, and in

several cases the object occupies a small portion of the fullimage. This makes it chal-

lenging for the dense histogram to attain good success. Suchissues are later addressed

in this dissertation and new robust methods with improved classification performance are

proposed.

Figure 4.12 shows some example images that were classified correctly using the

EFM-NN classifier from the Bat and Swiss Army Knife categories of the Caltech 256

dataset.

4.3 Evaluation of SIFT Descriptors on the Caltech 256 and theUPOL Iris Datasets

4.3.1 Experimental Methodology

The following two publicly accessible datasets are used to evaluate the proposed descriptors

and classification method: the Caltech 256 object categories (Griffin et al. 2007) and the

UPOL iris dataset (Dobes et al. 2006). In order to make a thorough comparative assessment

of the proposed descriptors and methods; from the above two databases, three datasets are

generated: the Biometric 20, the Biometric 100, and the Biometric 257. The Biometric
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Figure 4.12 Image recognition using the EFM-NN classifier: Examples of correctly clas-
sified images of the Bat (top) and Swiss Army Knife (bottom) categories from the Caltech
256 dataset.

20 dataset with 20 categories includes the Iris category from the UPOL dataset, Faces

and People categories and 17 randomly chosen categories from the Caltech 256 dataset.

The Biometric 100 dataset with 100 categories includes the Iris category from the UPOL

dataset, Faces and People categories and 97 randomly chosencategories from the Caltech

256 dataset. The Biometric 257 dataset with 257 categories includes all categories from

the UPOL dataset and the Caltech 256 dataset. The latter two datasets are of high difficulty

due to the large number of classes with high intra-class and low inter-class variations.

The classification task is to assign each test image to one of anumber of categories.

The performance is measured using a confusion matrix, and the overall performance rates

are measured by the average value of the diagonal entries of the confusion matrix. Each

dataset is split randomly into two separate sets of images for training and testing. From

each class 60 images for training and 20 images for testing are randomly selected. There

is no overlap in the images selected for training and testing. The classification scheme on

the dataset compares the overall and category wise performance of ten different descriptors:

the oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT,the rgb-SIFT, the PHOG,

the grayscale-SIFT, the CSF, the CGSF, and the CGSF+PHOG descriptors. Classification

is implemented using a novel EFM-KNN classifier, which combines the Enhanced Fisher

Model (EFM) and the K Nearest Neighbor (KNN) decision rule.
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Figure 4.13 The mean average classification performance of the ten descriptors: the
oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, thergb-SIFT, the grayscale-
SIFT, the CSF, the CGSF, and the CGSF+PHOG descriptors on theBiometric 20 dataset.

4.3.2 Experimental Results on the Biometric 20 Categories Dataset

Evaluation of Overall Classification Performance of Descriptors with

the EFM-KNN Classifier

The first set of experiments assesses the overall classification performance of the

ten descriptors on the Biometric 20 Dataset with 20 categories. Note that for each cate-

gory a five-fold cross validation is implemented for each descriptor using the EFM-KNN

classification technique to derive the average classification performance. As a result, each

descriptor yields 20 average classification rates corresponding to the 20 image categories.

The mean value of these 20 average classification rates is defined as the mean average clas-

sification performance for the descriptor. Figure 4.13 shows the mean average classification

performance of the eight descriptors: the oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT,

the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT, the PHOG, the CSF, the CGSF, and the

CGSF+PHOG descriptors.
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Figure 4.14 Classification results using the PCA method across the ten descriptors with
varying number of features on the Biometric 20 dataset.

The best recognition rate that is obtained is 78.8% from the CGSF+PHOG, which is

a very respectable value for a dataset of this size and complexity. The oRGB-SIFT achieves

the classification rate of 62.8%. It outperforms other two color descriptors (HSV-SIFT and

rgb-SIFT) while showing roughly the same success rate as theYCbCr-SIFT and RGB-

SIFT, both are in second place with 62.5%. It is noted that fusion of the color SIFT de-

scriptors (CSF) improves upon the grayscale-SIFT by a huge 12.8% margin. The grayscale-

SIFT descriptor improves the fusion (CGSF) result by a good 4.2% margin upon the CSF

descriptor.

Evaluation of PCA and EFM-KNN Results upon Varying Number ofFeatures

The second set of experiments evaluates the classification performance using the

PCA and the EFM-KNN methods respectively by varying the number of features over the

following ten descriptors: CGSF+PHOG, CGSF, CSF, YCbCr-SIFT, oRGB-SIFT, RGB-



43

Table 4.1 Comparison of Classifiers across Ten Descriptors (%) on the Biometric 20
Dataset

Descriptor PCA EFM-NN EFM-KNN
RGB-SIFT 58.0 60.5 62.5
HSV-SIFT 55.0 57.8 59.5
rgb-SIFT 52.3 56.3 58.0
oRGB-SIFT 59.3 61.5 62.8
YCbCr-SIFT 62.0 60.8 62.5
Grayscale-SIFT 56.0 57.5 58.5
PHOG 51.0 54.8 55.5
CSF 71.5 71.3 71.3
CGSF 74.5 75.5 75.5
CGSF+PHOG 79.5 78.3 78.8

SIFT, HSV-SIFT, Grayscale-SIFT, PHOG, and rgb-SIFT. Also,a comparison between the

overall success rates of the three classification techniques: PCA, EFM-NN (nearest neigh-

bor), and EFM-KNN can be seen from Table 4.1.

Classification performance is computed for up to 780 features with the PCA method.

From Figure 4.14 it can be seen that the success rate for the CGSF+PHOG stays consis-

tently above that of the CGSF and CSF over varying number of features. These three de-

scriptors show an increasing trend till 660 features and start to dip slightly thereafter. The

YCbCr-SIFT and oRGB-SIFT show a similar increasing trend and decline only towards

the latter half. The HSV-SIFT and RGB-SIFT dip in the middle and gain steadily there-

after. Performance of the grayscale-SIFT varies more sharply over the increasing number

of features peaking at 540 features.

Using the EFM-KNN method, success rates for up to 19 featuresare computed.

From Figure 4.15 it can be seen that the success rate for the CGSF+PHOG stays consis-

tently above that of the CGSF and the CSF over varying number of features and peaks

between 18 and 19 features. These two descriptors by and large show an increasing trend

throughout. The oRGB-SIFT, YCbCr-SIFT, and RGB-SIFT show an increasing trend and

outperform the rest of the descriptors. The grayscale-SIFTmaintains its higher perfor-
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Figure 4.15 Classification results using the EFM-KNN method across the ten descriptors
with varying number of features on the Biometric 20 dataset.

mance over the rgb-SIFT for the varying number of features.

Evaluation of Descriptors and Classifier on Individual Image Categories

The third set of experiments assesses the ten descriptors using the EFM-KNN clas-

sifier on individual image categories. Here a detailed analysis is performed for the perfor-

mance of the descriptors with the EFM-KNN classifier over allthe twenty image categories.

First the classification results on the three biometric categories are presented. Table 4.2

shows that the Iris category has a 100% recognition rate across all the descriptors. For

the Faces category, the color SIFT descriptors outperform the grayscale-SIFT descriptor

by 15% to 20% and the fusion of all color descriptors (CSF) reaches a 100% success rate.

The People category achieves a high success rate of 80% with the CGSF+PHOG, which

is a respectable recognition rate when considering very high intra-class variability due to

the challenging background, variable postures, variable appearance, occlusion, multiple
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Figure 4.16 Image recognition using the EFM-KNN classifier on the Biometric 20
dataset: (a) examples of the correctly classified images from the three biometric image
categories; (b) images unrecognized using the grayscale-SIFT descriptor but recognized
using the oRGB-SIFT descriptor; (c) images unrecognized using the oRGB-SIFT descrip-
tor but recognized using the CSF descriptor; (d) images unrecognized using the CSF but
recognized using the CGSF+PHOG descriptor.

humans in the same image, and different illumination conditions. Fusion of the individual

color SIFT descriptors (CSF) improves the classification performance, which indicates that

various color descriptors are not redundant for recognition of the People category.

The average success rate for the CGSF+PHOG descriptor over the top 15 categories

is 89.7% with only five categories below the 80% mark. Individual color SIFT features

improve upon the grayscale-SIFT features for most of the categories, in particular for the

Grapes, the Roulette wheel, the Waterfall, and the Rotary phone categories. The CSF

descriptor almost always improves upon the grayscale-SIFTdescriptor, with the exception

of only a few categories where it performs at par or slightly below. The CGSF descriptor

either is at par or improves upon the CSF descriptor for all categories with the exception of

the Waterfall and snake categories.

Evaluation of Descriptors and Classifier Based on CorrectlyRecognized Images

The final set of experiments further assesses the performance of the descriptors

based on the correctly recognized images. Figure 4.16(a) for some examples of the cor-
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Table 4.2 Category Wise Descriptor Performance (%) Split-out with the EFM-KNN
Classifier on the Biometric 20 Dataset (Note That the Categories are Sorted on the
CGSF+PHOG Results)

Category CGSF+ CGSF CSF oRGB YCbCr RGB Gray PHOG
PHOG SIFT SIFT SIFT SIFT

iris 100 100 100 100 100 100 100 100
faces 100 100 100 95 90 95 75 95
people 80 70 60 40 40 35 45 20
cartman 100 100 95 90 100 95 90 60
grand piano 95 100 95 85 85 70 90 85
grapes 95 90 90 70 95 80 60 70
roulette wheel 95 95 95 90 75 85 75 40
waterfall 95 90 95 80 75 85 75 65
rainbow 90 85 80 55 35 60 75 95
cockroach 85 75 70 50 50 60 55 20
human skeleton 85 90 80 70 60 75 60 40
laptop 85 85 80 75 90 70 65 65
centipede 80 75 65 55 60 55 45 20
mountain bike 80 80 80 75 70 80 85 75
rotary phone 80 80 80 60 75 45 45 65
buddha 70 50 40 40 65 45 45 70
owl 60 60 45 40 45 30 25 35
jesus christ 50 40 30 35 10 30 20 45
snake 25 20 25 25 20 30 15 25
wheelbarrow 25 25 20 25 10 25 25 20
Mean 78.8 75.5 71.3 62.8 62.5 62.5 58.5 55.5

rectly classified images from the Iris, Faces, and People categories. Notice the high intra-

class variability for the Faces and People classes. Figure 4.16(b) shows some example

images from the Faces class that are not recognized by the EFM-KNN classifier using the

grayscale-SIFT descriptor but are correctly recognized using the oRGB-SIFT descriptor.

This reaffirms the importance of color and the distinctiveness of the oRGB-SIFT descriptor

for image category recognition. Figure 4.16(c) shows some images that are not recognized

by the EFM-KNN classifier using the oRGB-SIFT descriptor butare correctly recognized

by using the CSF descriptor. Figure 4.16 (d) shows images unrecognized using the CSF

but recognized using the CGSF+PHOG descriptor.
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Figure 4.17 Image recognition using the EFM-KNN classifier on the Biometric 20
dataset: (a) example images unrecognized using the grayscale-SIFT descriptor but recog-
nized using the oRGB-SIFT descriptor; (b) example images unrecognized using the oRGB-
SIFT descriptor but recognized using the CSF descriptor; (c) example images unrecognized
using the CSF but recognized using the CGSF+PHOG descriptor. (d) Example images un-
recognized using the EFM-KNN but recognized using the PCA with the CGSF+PHOG
descriptor.

Figure 4.17(a) shows some example images that are not recognized by the EFM-

KNN classifier using the grayscale-SIFT descriptor but are correctly recognized using the

oRGB-SIFT descriptor. Figure 4.17(b) displays some imagesthat are not recognized by the

EFM-KNN classifier using the oRGB-SIFT descriptor but are correctly recognized using

the CSF descriptor. Figure 4.17(c) shows example images unrecognized using the CSF

but recognized using the CGSF+PHOG descriptor. Figure 4.17(d) shows example images

unrecognized using the EFM-KNN but recognized using the PCAwith the CGSF+PHOG

descriptor.
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Figure 4.18 The mean average classification performance of the ten descriptors: the
oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, thergb-SIFT, the grayscale-
SIFT, the PHOG, the CSF, the CGSF, and the CGSF+PHOG descriptors on the Biometric
100 dataset.

4.3.3 Experimental Results on the Biometric 100 CategoriesDataset

Evaluation of Overall Classification Performance of Descriptors with

the EFM-NN Classifier

The first set of experiments assesses the overall classification performance of the ten

descriptors on the Biometric 100 Dataset with 100 categories. Note that for each category a

five-fold cross validation is implemented for each descriptor using the EFM-NN classifica-

tion technique to derive the average classification performance. As a result, each descriptor

yields 100 average classification rates corresponding to the 100 image categories. The

mean value of these 100 average classification rates is defined as the mean average classi-

fication performance for the descriptor. Figure 4.23 shows the mean average classification

performance of various descriptors.

The best recognition rate that is obtained is 51.9% from the CGSF+PHOG, which is

a very respectable value for a dataset of this size and complexity. The oRGB-SIFT achieves
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the classification rate of 32.2% and hence once again outperforms other color descriptors.

The success rate for YCbCr-SIFT comes in second place with 31.1% followed by the RGB-

SIFT at 30.5%. Fusion of color SIFT descriptors (CSF) improves over the grayscale-SIFT

by a huge 13.2%. Again, the grayscale-SIFT shows more distinctiveness than the rgb-SIFT,

and improves the fusion (CGSF) result by a good 3.9% over the CSF. Fusing the CGSF and

PHOG further improves the recognition rate over the CGSF by 6.4%.

Comparison of PCA and EFM-NN Results

The second set experiments compares the classification performance of the PCA

and the EFM-NN (nearest neighbor) classifiers. Table 4.3 shows the results of the two clas-

sifiers across various descriptors. It can be seen that the EFM-NN technique improves over

the PCA technique by 2% to 3% on the color SIFT descriptors, by2.1% on the grayscale-

SIFT, and by 1.9% on the PHOG. The improvement on fused descriptors is in the range of

1%-2.6%. These results reaffirm the superiority of the EFM-NN classifier over the PCA

technique.

Table 4.3 Comparison of Classifiers across Ten Descriptors (%) on the Biometric 100
Dataset

Descriptor PCA EFM-NN
RGB-SIFT 27.9 30.5
HSV-SIFT 26.1 29.0
rgb-SIFT 23.1 25.1
oRGB-SIFT 29.4 32.2
YCbCr-SIFT 28.2 31.1
SIFT 26.3 28.4
PHOG 28.0 29.8
CSF 40.2 41.6
CGSF 44.6 45.5
CGSF+PHOG 49.4 51.9
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Figure 4.19 Classification results using the PCA method across the ten descriptors with
varying number of features on the Biometric 100 dataset.

Evaluation of PCA and EFM-NN Results upon Varying Number of Features

The third set of experiments evaluates the classification performance using the PCA

and the EFM-NN methods respectively by varying the number offeatures over the follow-

ing ten descriptors: CGSF+PHOG, CGSF, CSF, YCbCr-SIFT, oRGB-SIFT, RGB-SIFT,

HSV-SIFT, Grayscale-SIFT, rgb-SIFT, and PHOG.

Classification performance is computed for up to 780 features with the PCA clas-

sifier. From Figure 4.19 it can be seen that the success rate for the CGSF+PHOG stays

consistently above that of the CGSF and CSF over varying number of features and peaks

at around 660 features. These three descriptors show an increasing trend overall and flatten

out toward the end. The oRGB-SIFT, YCbCr-SIFT, RGB-SIFT, and grayscale-SIFT show

a similar increasing trend and flatten toward the end. The oRGB-SIFT descriptor consis-

tently stays above other color SIFT descriptors. The HSV-SIFT and PHOG peak in the first

half of the graph and show a declining trend thereafter. The grayscale-SIFT maintains its
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Figure 4.20 Classification results using the EFM-NN method across the ten descriptors
with varying number of features on the Biometric 100 dataset.

superior performance upon the rgb-SIFT on the varying number of features.

With the EFM-NN classifier, the success rates are computed for up to 95 features.

From Figure 4.20 it can be seen that the success rate for the CGSF+PHOG stays consis-

tently above that of the CGSF and CSF over varying number of features and peaks at about

80 features. These three descriptors show an increasing trend throughout and tend to flat-

ten above 65 features. The oRGB-SIFT consistently stays above the rest of the descriptors.

The grayscale-SIFT improves over the rgb-SIFT but falls below the PHOG.

Evaluation of Descriptors and Classifier on Individual Image Categories

The fourth set of experiments assesses the eight descriptors using the EFM-NN

classifier on individual image categories. Here a detailed analysis of the performance of

the descriptors is performed with the EFM-NN classifier overall the 100 image categories.

First the classification results on the three biometric categories are presented. From Ta-
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Table 4.4 Category Wise Descriptor Performance (%) Split-out with the EFM-NN
Classifier on the Biometric 100 Dataset (Note That the Categories are Sorted on the
CGSF+PHOG Results)

Category CGSF+ CGSF CSF oRGB YCbCr RGB Gray PHOG
PHOG SIFT SIFT SIFT SIFT

iris 100 100 100 100 100 100 100 100
faces 95 90 90 90 95 90 85 95
people 40 40 25 20 20 15 30 10
hibiscus 100 100 95 70 80 85 75 55
french horn 95 85 85 85 65 80 90 20
leopards 95 90 100 90 95 95 100 90
saturn 95 95 95 95 85 90 95 55
school bus 95 95 95 75 85 95 80 60
swiss army knife 95 90 80 65 75 65 65 25
watch 95 60 55 45 40 45 30 85
zebra 95 80 60 60 35 40 45 60
galaxy 90 85 85 85 70 65 80 15
american flag 85 85 80 55 75 65 40 5
cartman 85 75 75 40 55 65 55 30
desk-globe 85 75 75 60 65 65 45 80
harpsichord 85 80 85 50 80 70 60 55
ketch 85 85 85 45 50 45 50 70
roulette wheel 85 80 75 70 65 75 55 35
hawksbill 80 80 75 55 60 70 55 40
iris flower 80 75 75 35 65 80 65 30
mountain bike 80 85 90 70 65 85 75 70

ble 4.4 it can be seen that the Iris has a 100% recognition rateacross all the descriptors.

For the Faces category the color SIFT descriptors outperform the grayscale-SIFT by 5%

to 10% and the fusion of all descriptors (CGSF+PHOG) reachesa 95% success rate. The

People category achieves a high success rate of 40% with the CGSF+PHOG, surprisingly

grayscale-SIFT outperforms the color descriptors by 10% to20%. The fusion of individual

SIFT descriptors (CGSF) improves the classification performance for the People category.

The average success rate for the CGSF+PHOG over the top 20 categories is 90%

with ten categories above the 90% mark. Individual color SIFT features improve upon the

grayscale-SIFT on most of the categories, in particular forthe Swiss army knife, Watch,
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Figure 4.21 Image recognition using the EFM-NN classifier on the Biometric 100 dataset:
(a) examples of the correctly classified images from the three biometric image categories;
(b) images unrecognized using the grayscale-SIFT descriptor but recognized using the
oRGB-SIFT descriptor; (c) images unrecognized using the oRGB-SIFT descriptor but rec-
ognized using the CSF descriptor; (d) images unrecognized using the CSF but recognized
using the CGSF+PHOG; (e) images unrecognized by PCA but recognized by EFM-NN on
the CGSF+PHOG descriptor.

American flag, and Roulette wheel categories. The CSF almostalways improves over

the grayscale-SIFT, with the exception of People and Frenchhorn categories. The CGSF

either is at par or improves over the CSF for all categories with the exception of two of

the categories. Most categories perform at their best when the PHOG is combined with the

CGSF.

Evaluation of Descriptors and Classifier Based on CorrectlyRecognized Images

The final set of experiments further assesses the performance of the descriptors

based on the correctly recognized images. See Figure 4.21(a) for some examples of the

correctly classified images from the Iris, Faces, and Peoplecategories. Once again no-
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Figure 4.22 Image recognition using the EFM-NN classifier on the Biometric 100 dataset:
(a) example images unrecognized using the grayscale-SIFT descriptor but recognized us-
ing the oRGB-SIFT descriptor; (b) example images unrecognized using the oRGB-SIFT
descriptor but recognized using the CSF descriptor; (c) images unrecognized using the
CSF but recognized using the CGSF+PHOG. (d) Images unrecognized using the PCA but
recognized using the EFM-NN on the CGSF+PHOG descriptor.

tice the high intra-class variability in the recognized images for the Faces and People class.

Figure 4.21(b) shows some images from the Faces and People categories that are not recog-

nized by the grayscale-SIFT but are correctly recognized bythe oRGB-SIFT. Figure 4.21(c)

shows some images that are not recognized by the oRGB-SIFT but are correctly recognized

by the CSF. Figure 4.21(d) shows some images from the People class, which are not rec-

ognized by the CSF but are correctly recognized by the CGSF+PHOG descriptor. Thus,

combining grayscale-SIFT, PHOG, and CSF lends more discriminative power. Lastly in

Figure 4.21(e) a face image unrecognized by the PCA but recognized by the EFM-NN

classifier on the CGSF+PHOG descriptor.

See Figure 4.22(a) for some examples of the images unrecognized by the grayscale-

SIFT but are correctly recognized by the oRGB-SIFT. Figure 4.22(b) shows some images

that are not recognized by the oRGB-SIFT but are correctly recognized by the CSF. Fig-

ure 4.22(c) shows some images unrecognized by the CSF but arecorrectly recognized by

the CGSF+PHOG descriptor. Lastly in Figure 4.22(d) images unrecognized by the PCA

but recognized by the EFM-NN classifier on the CGSF+PHOG descriptor.
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Figure 4.23 The mean average classification performance of the ten descriptors: the
oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, thergb-SIFT, the grayscale-
SIFT, the PHOG, the CSF, the CGSF, and the CGSF+PHOG descriptors on the Biometric
257 dataset.

4.3.4 Experimental Results on the Biometric 257 Categoriesand the Caltech 256

Datasets

Evaluation of Overall Classification Performance of Descriptors with

the EFM-NN Classifier

The first set of experiments assesses the overall classification performance of the ten

descriptors on the Biometric 257 Dataset with 257 categories. Note that for each category a

five-fold cross validation is implemented for each descriptor using the EFM-NN classifica-

tion technique to derive the average classification performance. As a result, each descriptor

yields 257 average classification rates corresponding to the 257 image categories. The

mean value of these 257 average classification rates is defined as the mean average classi-

fication performance for the descriptor. Figure 4.23 shows the mean average classification

performance of various descriptors.
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The best recognition rate that is obtained is 42.3% from the CGSF+PHOG, which is

a very respectable value for a dataset of this size and complexity. The oRGB-SIFT achieves

the classification rate of 24.7%. It outperforms the other color SIFT descriptors. It is noted

that fusion of the color SIFT descriptors (CSF) improves upon the grayscale-SIFT by a

huge 11.3% margin. The grayscale-SIFT descriptor improvesthe fusion (CGSF) result by

a good 5.3% margin upon the CSF descriptor.

Comparison of PCA and EFM-NN Results

The second set of experiments compares the classification performance of the PCA

and the EFM-NN (nearest neighbor) classifiers. Table 4.5 shows the results of the two

classifiers across various descriptors. It can be seen that the EFM-NN technique improves

over the PCA technique by 1.5% to 2.6% upon the color SIFT descriptors, by 2.1% upon

the grayscale-SIFT descriptor, and by 1.1% upon the PHOG descriptor. The improvement

on fused descriptors is in the range of 1.6% to 2.2%.

Table 4.5 Comparison of Classifiers across Ten Descriptors (%) on the Biometric 257
Dataset

Descriptor PCA EFM-NN
RGB-SIFT 20.5 22.6
HSV-SIFT 20.2 22.2
rgb-SIFT 16.0 17.4
oRGB-SIFT 22.4 24.7
YCbCr-SIFT 21.2 23.8
SIFT 18.2 20.3
PHOG 19.5 20.6
CSF 30.1 31.6
CGSF 35.3 36.9
CGSF+PHOG 40.1 42.3
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Figure 4.24 Classification results using the PCA method across the ten descriptors with
varying number of features on the Biometric 257 dataset.

Evaluation of PCA and EFM-NN Results upon Varying Number of Features

The third set of experiments evaluates the classification performance using the PCA

and the EFM-NN methods respectively by varying the number offeatures over the follow-

ing ten descriptors: CGSF+PHOG, CGSF, CSF, YCbCr-SIFT, oRGB-SIFT, RGB-SIFT,

HSV-SIFT, Grayscale-SIFT, rgb-SIFT, and PHOG.

Classification performance is computed for up to 780 features with the PCA classi-

fier. From Figure 4.24 it can be seen that the success rate for the CGSF+PHOG descriptor

stays consistently above that of the CGSF and CSF descriptors on varying number of fea-

tures and peaks at around 700 features. These three descriptors show an increasing trend

during the first half and flatten out toward the second half. The oRGB-SIFT descriptor

consistently stays above other color SIFT descriptors. TheRGB-SIFT and HSV-SIFT de-

scriptors have a similar success rate throughout. The grayscale-SIFT descriptor maintains

its superior performance upon the rgb-SIFT and PHOG descriptors on the varying number
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Figure 4.25 Classification results using the EFM-NN method across the ten descriptors
with varying number of features on the Biometric 257 dataset.

of features.

With the EFM-NN classifier, the success rates are computed for up to 250 features.

From Figure 4.25 it can be seen that the success rate for the CGSF+PHOG stays consis-

tently above that of the CGSF and CSF descriptors on varying number of features. These

two descriptors show an increasing trend till 200 features and start to dip slightly thereafter.

The YCbCr-SIFT and oRGB-SIFT descriptors show a similar increasing trend and decline

only toward the latter half and continue to perform better than the rest of the descriptors.

The grayscale-SIFT descriptor maintains its higher performance over the rgb-SIFT descrip-

tor on the varying number of features.

Evaluation of Descriptors and Classifier on Individual Image Categories

The fourth set of experiments assesses the eight descriptors using the EFM-NN

classifier on individual image categories. Here a detailed analysis of the performance of
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Table 4.6 Category Wise Descriptor Performance (%) Split-out with the EFM-NN
Classifier on the Biometric 257 Dataset (Note That the Categories are Sorted on the
CGSF+PHOG Results)

Category CGSF+ CGSF CSF oRGB YCbCr RGB Gray PHOG
PHOG SIFT SIFT SIFT SIFT

iris 100 100 100 100 100 100 97 95
faces 97 97 97 92 60 92 73 95
people 17 14 13 10 8 10 7 11
car side 100 100 100 93 67 100 100 95
leopards 100 98 100 70 70 93 98 97
motorbikes 98 92 90 82 77 70 73 97
sunflower 97 97 93 88 68 95 90 53
trilobite 95 80 67 62 62 60 50 83
lawn mower 93 80 77 78 77 70 78 77
american flag 90 88 85 60 60 70 40 5
zebra 90 87 67 75 85 27 30 38
chess board 88 92 88 90 80 78 83 13
tower pisa 88 92 85 82 87 77 77 77
swiss army knife 87 82 77 60 60 75 68 8
airplanes 85 70 63 60 62 38 48 82
saturn 85 83 72 83 80 67 52 53
cereal box 83 88 72 73 52 52 47 17
french horn 83 85 78 72 67 68 70 32
ketch 83 62 57 28 30 32 37 65
pci card 83 80 78 68 50 58 58 10
hibiscus 82 85 80 65 72 72 62 48

the descriptors is performed with the EFM-NN classifier overall the 257 image categories.

First the classification results on the three biometric categories are presented. Table 4.6

shows that the Iris category has a 100% recognition rate across all the descriptors with

the exception of PHOG. For the Faces category the three fuseddescriptors reach a 97%

success rate. The People category achieves a success rate of17% with the CGSF+PHOG

indicating the effect of very high intra-class variabilitydue to the challenging background,

variable postures, variable appearance, occlusion, multiple humans in the same image, and

different illumination conditions. Fusion of the individual color SIFT descriptors (CSF)

improves the classification performance, which indicates that various color descriptors are
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Figure 4.26 Image recognition using the EFM-NN classifier on the Biometric 257 dataset:
(a) examples of the correctly classified images from the three biometric image categories;
(b) images unrecognized using the grayscale-SIFT descriptor but recognized using the
oRGB-SIFT descriptor; (c) images unrecognized using the oRGB-SIFT descriptor but rec-
ognized using the CSF descriptor; (d) images unrecognized using the CSF but recognized
using the CGSF+PHOG descriptor.

not redundant for recognition of the People category.

The average success rate for the CGSF+PHOG over the top 20 categories is 90.35%

with ten categories at or above the 90% mark. Three categories have a 100% recognition

rate. Individual color SIFT features improve over the grayscale-SIFT for most of the cat-

egories, in particular for the Trilobite, American flag, Tower Pisa, Saturn, and Hibiscus

categories. The CSF almost always improves over the grayscale-SIFT. The CGSF either is

at par or improves over the CSF on all categories with the exception of Leopards category.

Most categories perform at their best when the PHOG is combined with the CGSF.

Evaluation of Descriptors and Classifier Based on CorrectlyRecognized Images

The final set of experiments further assesses the performance of the descriptors

based on the correctly recognized images. See Figure 4.26(a) for some examples of the

correctly classified images from the Iris, Faces, and Peoplecategories. Notice the high

intra-class variability for the Faces and People classes. Figure 4.26(b) shows some exam-

ple images from the Faces class that are not recognized by theEFM-NN classifier using the
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Figure 4.27 Image recognition using the EFM-NN classifier on the Biometric 257 dataset:
(a) example images unrecognized using the grayscale-SIFT descriptor but recognized us-
ing the oRGB-SIFT descriptor; (b) example images unrecognized using the oRGB-SIFT
descriptor but recognized using the CSF descriptor; (c) images unrecognized using the
CSF but recognized using the CGSF+PHOG. (d) Images unrecognized using the PCA but
recognized using the EFM-NN on the CGSF+PHOG descriptor.

grayscale-SIFT descriptor but are correctly recognized using the oRGB-SIFT descriptor.

This reaffirms the importance of color and the distinctiveness of the oRGB-SIFT descrip-

tor for image category recognition. Figure 4.26(c) shows images unrecognized using the

oRGB-SIFT descriptor but recognized using the CSF descriptor and Figure 4.26(d) shows

images unrecognized using the CSF but recognized using the CGSF+PHOG.

See Figure 4.27(a) for some examples of the images unrecognized by the EFM

using the grayscale-SIFT but are correctly recognized by the oRGB-SIFT. Figure 4.27(b)

shows some images that were previously not recognized by theoRGB-SIFT but are cor-

rectly recognized by the CSF. In Figure 4.27(c) see some images unrecognized by the CSF

but are correctly recognized by the CGSF+PHOG descriptor. Lastly in Figure 4.27(d) im-

ages unrecognized by the PCA but recognized by the EFM-NN classifier on the CGSF+PHOG

descriptor.



62

Table 4.7 Classification Performance (%) Comparison on the Caltech 256 and the Bio-
metric 257 Categories Datasets on Groups of 15, 30, 45, and 60Training Images From
Each Class

Dataset Method 15 30 45 60
Caltech 256 SPM (Griffin et al. 2007) - 34.1 - -
Caltech 256 KC (Gemert et al. 2008) - 27.2 - -
Caltech 256 KSPM (Yang et al. 2009) 23.3 29.5 - -
Caltech 256 LSPM (Yang et al. 2009) 13.2 15.5 16.4 16.6
Caltech 256 ScSPM (Yang et al. 2009) 27.7 34.0 37.5 40.1

Proposed Methods:
Caltech 256 CGSF+PHOG (PCA) 27.1 33.8 37.3 39.9
Caltech 256 CGSF+PHOG (EFM-NN) 30.0 36.5 39.7 42.1
Biometric 257 CGSF+PHOG (PCA) 27.5 34.1 37.6 40.1
Biometric 257 CGSF+PHOG (EFM-NN) 30.4 36.9 40.0 42.3

Comparison with other Methods on the Caltech 256 and the Biometric 257 Datasets

Finally the results of proposed methods are presented on varying number of training

images per class over the Caltech 256 dataset and the Biometric 257 dataset. The number

of test images per class is fixed at 20 for each of the experiments. From Table 4.7 on the

Biometric 257 dataset it can be seen that on the 15 training images a success rate of 30.39%

is attained. This improves over the previous best result on the Caltech 256 by 2.66%. For

the 30 and 45 training images, there is an improvement on the previous best on the Caltech

256 by 2.85% and 2.58%, respectively. On the 60 training images, a success rate of 42.28%

is achieved and this improves over the previous best by 2.14%.

From Table 4.7 on the Caltech 256 dataset it can be seen that onthe 15 training

images per class a success rate of 29.97% is achieved. This improves over the previous

best result by 2.24%. For the set of 30 and 45 training images,an improvement of 2.39%

and 2.28%, respectively is achieved on the previous best. Onthe 60 training images, a

success rate of 42.06% is achieved, which improves over the previous best by 1.92%.
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Figure 4.28 Classification results on the three biometric categories. For each biometric
category, from left to right bars in the triad denote the results from the Biometric 20 dataset,
the Biometric 100 dataset, and the Biometric 257 dataset.

4.3.5 Panoramic Assessment of the Performance of BiometricCategories across Three

Datasets and Five Descriptors

Finally, an overall view of the performance of the three biometric categories across three

datasets is provided. From Figure 4.28 it can be seen that theIris category has a success

rate of 100% across all three datasets. The Faces category performs above the 95% mark

on all three datasets and reaches 100% on the Biometric 20 dataset. The success rate for

the People category varies widely from 16.7% on the Biometric 257 dataset to 80% on the

Biometric 20 dataset.

Figure 4.29 shows the classification results on the CGSF+PHOG, CGSF, CSF,

oRGB-SIFT, and grayscale-SIFT descriptors across all three datasets. It can be seen that

the performance of each descriptor across the three datasets changes in a consistent manner.
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Figure 4.29 Classification results on the five descriptors. For each descriptor, from left to
right bars in the triad denote the results from the Biometric20 dataset, the Biometric 100
dataset, and the Biometric 257 dataset.

4.4 Evaluation of SIFT Descriptors on the MIT Scene Dataset

4.4.1 Experimental Methodology

The classification task is to assign each test image to one of anumber of categories. The

performance is measured using a confusion matrix, and the overall performance rates are

measured by the average value of the diagonal entries of the confusion matrix. For the

MIT scene dataset five sets are selected randomly and each setconsists of 2,000 images for

training (250 images per class) and the rest 688 images for testing. Within each set there

is no overlap in the images selected for training and testing. The classification scheme on

the datasets compares the overall and category wise performance of ten different descrip-

tors: the oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the

grayscale-SIFT, the PHOG, the CSF, the CGSF, and the CGSF+PHOG descriptors. Classi-

fication is implemented using the EFM-KNN classifier.
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Figure 4.30 The mean average classification performance of the ten descriptors using
the EFM-KNN classifier on the MIT scene dataset: the oRGB-SIFT, the YCbCr-SIFT,
the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT, the PHOG, the CSF, the
CGSF, and the CGSF+PHOG descriptors.

4.4.2 Experimental Results

The first set of experiments on this dataset assesses the overall classification performance

of the ten descriptors. Note that for each category a five-fold cross validation is imple-

mented for each descriptor using the EFM-KNN classifier to derive the average classifica-

tion performance. Figure 4.30 shows the mean average classification performance of vari-

ous descriptors. The best recognition rate that is obtainedis 89.6% from the CGSF+PHOG,

which is a very respectable value for a dataset of this size and complexity. The oRGB-SIFT

achieves the classification rate of 74.2%. It outperforms the other color SIFT descriptors. It

is noted that fusion of the color SIFT descriptors (CSF) improves upon the grayscale-SIFT

by a huge 15.1% margin. The grayscale-SIFT descriptor improves the fusion (CGSF) result

by a good 2.5% margin upon the CSF descriptor.

The second set of experiments assesses the five best descriptors and the grayscale-

SIFT using the EFM-KNN classifier on individual image categories. From Table 4.8 it
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Table 4.8 Category Wise Descriptor Performance (%) Split-out with the EFM-KNN Clas-
sifier on the MIT Scene Dataset (Note That the Categories are Sorted on the CGSF+PHOG
Results)

Category CGSF+ CGSF CSF oRGB Gray PHOG
PHOG SIFT SIFT

Highway 100 100 100 100 82 91
Forest 99 97 97 88 90 95
Inside City 97 90 88 75 86 80
Coast 91 77 66 63 65 84
Street 90 93 89 90 60 86
Mountain 88 82 79 69 60 75
Tall Building 85 81 80 65 62 71
Open Country 67 58 57 43 32 56
Mean 89.6 84.6 82.1 74.2 67 79.6

can be seen that the top five categories achieve a success rateof over 90%. The Highway

category achieves a success rate of 100% across the best fourdescriptors. Individual color

SIFT features improve upon the grayscale-SIFT on most of thecategories. The CSF results

on each of the eight categories show improvement upon the grayscale-SIFT and the CGSF

improves upon the CSF. Integration of PHOG with the CGSF to obtain the CGSF+PHOG

highly benefits most categories and in particular there is a significant increase in the clas-

sification performance upon the CGSF results for the Coast, Inside City and Open Country

categories where the increment is in the range of 7% to 14%.

The final set of experiments further assesses the performance of the descriptors

Table 4.9 Comparison of the Classification Performance (%) with OtherMethod on the
MIT Scene Dataset

# Train # Test Proposed Method (Oliva and Torralba 2001)
CSF 82.1

2000 688 CGSF 84.6
CGSF+PHOG 89.6 -
CSF 79.4

800 1888 CGSF 81.9
CGSF+PHOG 86.7 83.7
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Figure 4.31 Image recognition using the EFM-KNN classifier on the MIT scene dataset:
(a) example images unrecognized using the grayscale-SIFT descriptor but recognized us-
ing the oRGB-SIFT descriptor; (b) example images unrecognized using the oRGB-SIFT
descriptor but recognized using the CSF descriptor; (c) images unrecognized using the
CSF but recognized using the CGSF descriptor; (d) images unrecognized using the CGSF
but recognized using the CGSF+PHOG descriptor.

based on the correctly recognized images. See Figure 4.31(a) for some example images

that are not recognized by the EFM-KNN classifier using the grayscale-SIFT descriptor but

are correctly recognized using the oRGB-SIFT descriptor. Figure 4.31(b) shows images

unrecognized using the oRGB-SIFT descriptor but recognized using the CSF descriptor,

Figure 4.31(c) shows images unrecognized using the CSF but recognized using the CGSF

descriptor and Figure 4.31(d) shows images unrecognized using the CGSF but recognized

using the CGSF+PHOG descriptor.

From Table 4.9 it can be seen that on the 800 training images (100 images per

class) and 1,688 testing images a success rate of 86.7% is achieved with the CGSF+PHOG

descriptor. This improves over the result of authors in (Oliva and Torralba 2001) by a good

3%.
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Figure 4.32 The mean average classification performance of the ten descriptors fusing
the EFM-KNN classifier on the Oxford flower dataset: the oRGB-SIFT, the YCbCr-SIFT,
the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT, the PHOG, the CSF, the
CGSF, and the CGSF+PHOG descriptors.

4.5 Evaluation of SIFT Descriptors on the Oxford Flower Dataset

4.5.1 Experimental Methodology

The classification task is to assign each test image to one of anumber of categories. The

performance is measured using a confusion matrix, and the overall performance rates are

measured by the average value of the diagonal entries of the confusion matrix. Three sets

of 40 training images per class and 20 test images per class are selected (same data splits as

used in (Nilsback and Zisserman 2006)). Within each set there is no overlap in the images

selected for training and testing. The classification scheme on the datasets compares the

overall and category wise performance of ten different descriptors: the oRGB-SIFT, the

YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT, the PHOG,

the CSF, the CGSF, and the CGSF+PHOG descriptors. Classification is implemented using

the EFM-KNN classifier.
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4.5.2 Experimental Results

The first set of experiments assesses the overall classification performance of the ten de-

scriptors on the Oxford flower dataset. Note that for each category three-fold cross valida-

tion is implemented for each descriptor using the EFM-KNN classifier to derive the aver-

age classification performance. As a result, each descriptor yields 17 average classification

rates corresponding to the 17 image categories. The mean value of these 17 average classi-

fication rates is defined as the mean average classification performance for the descriptor.

Figure 4.32 shows the mean average classification performance of various descriptors.

The best recognition rate that is obtained is 89.5% from the CGSF+PHOG, which is

a very respectable value for a dataset of this size and complexity. The oRGB-SIFT achieves

the classification rate of 82.6%. It outperforms the other color SIFT descriptors. It is noted

that fusion of the color SIFT descriptors (CSF) improves upon the grayscale-SIFT by a

huge 19.7% margin. The grayscale-SIFT descriptor improvesthe fusion (CGSF) result by

a good 1.8% margin upon the CSF descriptor.

The second set of experiments assesses the five best descriptors and the grayscale-

SIFT using the EFM-KNN classifier on individual image categories. From Table 4.10 it

can be seen that three categories achieve 100% success rate and over 50% of the categories

achieve a success rate of more than 90% with the CGSF+PHOG descriptor. Sunflower

achieves 100% success rate across the best five descriptors.Crocus and Tulip have a suc-

cess rate of 75% indicating high intra-class variability and low inter-class variability. The

average success rate for the top 10 categories with the CGSF+PHOG descriptor is a re-

spectable 95%. Individual color SIFT features improve uponthe grayscale-SIFT on most

of the categories. The CSF almost always improves upon the grayscale-SIFT, this indi-

cates that various color descriptors are not redundant. TheCGSF improves upon the CSF;

furthermore most categories perform at their best when the PHOG is combined with the

CGSF.

The final set of experiments further assesses the performance of the descriptors
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Table 4.10 Category Wise Descriptor Performance (%) Split-out with the EFM-KNN
Classifier on the Oxford Flower Dataset (Note That the Categories are Sorted on the
CGSF+PHOG Results)

Category CGSF+ CGSF CSF oRGB YCbCr Gray
PHOG SIFT SIFT SIFT

Daisy 100 98 98 100 98 93
Sunflower 100 100 100 100 100 95
Windflower 100 98 92 92 92 90
Tigerlily 98 98 97 98 95 78
Dandelion 95 93 92 92 92 82
Bluebell 93 93 90 85 79 49
Colt’s Foot 93 93 95 90 93 83
Lily Valley 93 91 90 82 80 78
Pansy 91 93 89 76 78 75
Cowslip 87 90 88 84 88 46
Iris 87 85 80 75 72 78
Buttercup 84 85 84 83 82 49
Fritillary 84 85 83 80 83 75
Snowdrop 83 81 78 62 60 63
Daffodil 82 80 83 78 73 45
Crocus 75 69 68 63 59 25
Tulip 75 74 73 64 70 37
Mean 89.5 88.8 87 82.6 82 67.3

based on the correctly recognized images. See Figure 4.33(a) for some example images

that are not recognized by the EFM-KNN classifier using the grayscale-SIFT descriptor

but are correctly recognized using the oRGB-SIFT descriptor. This reaffirms the impor-

tance of color and the distinctiveness of the oRGB-SIFT descriptor for image category

recognition. Figure 4.33(b) shows images unrecognized using the oRGB-SIFT descriptor

but recognized using the CSF descriptor, Figure 4.33(c) shows images unrecognized us-

ing the CSF but recognized using the CGSF descriptor and Figure 4.33(d) shows images

unrecognized using the CGSF but recognized using the CGSF+PHOG descriptor.

Table 4.11 shows a comparison of the results with those obtained by Nilsback and

Zisserman (2006) and Varma and Ray (2007). Proposed technique outperforms the state

of the art on this dataset even without combining color descriptors or considering texture
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Figure 4.33 Image recognition using the EFM-KNN classifier on the Oxfordflower
dataset: (a) example images unrecognized using the grayscale-SIFT descriptor but recog-
nized using the oRGB-SIFT descriptor; (b) example images unrecognized using the oRGB-
SIFT descriptor but recognized using the CSF descriptor; (c) images unrecognized using
the CSF but recognized using the CGSF descriptor; (d) imagesunrecognized using the
CGSF but recognized using the CGSF+PHOG descriptor.

and shape features independently. Each of the four color SIFT descriptors outperform

descriptors in (Nilsback and Zisserman 2006), (Varma and Ray 2007). Combined SIFT

descriptors (CSF, CGSF and CGSF+PHOG) improve over the fusion result in (Nilsback

and Zisserman 2006) and SVM 1-vs-All fusion result in (Varmaand Ray 2007), previously

the best result on this dataset.

Table 4.11 Comparison of the Classification Performance (%) with OtherMethods on the
Oxford Flower Dataset

Proposed Method Nilsback 2006 Varma 2007
RGB-SIFT 74.8 Color 73.7 Shape 68.88
HSV-SIFT 76.3 Shape 71.8 Color 59.71
YCbCr-SIFT 82.0 Texture 56.0* Texture 59.00
oRGB-SIFT 82.6
CSF 87.0
CGSF 88.8
CGSF+PHOG 89.5 Fusion 81.3 Fusion 82.55

*Approximate value inferred from Figure 12 in Nilsback 2006.
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Figure 4.34 The mean average classification performance of the ten descriptors using the
EFM-NN classifier on the MIT scene dataset: the oRGB-LBP, theYCbCr-LBP, the RGB-
LBP, the HSV-LBP, the rgb-LBP, the grayscale-LBP, the PHOG,the CLF, the CGLF, and
the CGLF+PHOG descriptors.

4.6 Evaluation of LBP Descriptors on the MIT Scene Dataset

4.6.1 Experimental Methodology

The classification task is to assign each test image to one of anumber of categories. The

performance is measured using a confusion matrix, and the overall performance rates are

measured by the average value of the diagonal entries of the confusion matrix. Five sets

are randomly selected and each set consists of 2,000 images for training (250 images per

class) and the rest 688 images for testing. Within each set there is no overlap in the images

selected for training and testing. The classification scheme on this dataset compares the

overall and category wise performance of ten different descriptors: the oRGB-LBP, the

YCbCr-LBP, the RGB-LBP, the HSV-LBP, the rgb-LBP, the grayscale-LBP, the CLF, the

CGLF, the PHOG and the CGLF+PHOG descriptors. Classification is implemented using

the EFM-nearest neighbor (EFM-NN) classifier.
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Table 4.12 Category Wise Descriptor Performance (%) Split-out with the EFM-NN Clas-
sifier on the MIT Scene Dataset (Note That the Categories are Sorted on the CGLF+PHOG
Results)

Category CGLF+ CGLF CLF oRGB YCbCr RGB Gray PHOG
PHOG LBP LBP LBP LBP

Highway 97 90 93 90 87 90 93 90
Forest 96 97 97 97 97 95 94 94
Coast 91 88 87 85 88 83 86 84
Street 90 90 86 83 83 82 81 86
Mountain 90 85 84 80 81 80 77 75
Tall Building 90 86 86 86 83 84 79 70
Inside City 86 87 87 86 83 81 83 79
Open Country 76 71 71 68 66 65 61 56
Mean 89.5 86.6 86.4 84.2 83.5 82.6 81.7 79.1

4.6.2 Experimental Results

The first set of experiments on this dataset assesses the overall classification performance

of the ten descriptors. Note that for each category a five-fold cross validation is imple-

mented for each descriptor using the EFM-nearest neighbor classifier to derive the average

classification performance. As a result, each descriptor yields eight average classification

rates corresponding to the eight image categories. The meanvalue of these 8 average clas-

sification rates is defined as the mean average classificationperformance for the descriptor.

Figure 4.34 shows the mean average classification performance of various descriptors. The

best recognition rate that is obtained is 89.5% from the CGLF+PHOG, which is a very

respectable value for a dataset of this size and complexity.The oRGB-LBP achieves the

classification rate of 84.3%. It outperforms the other colorLBP descriptors. It is noted

that fusion of the color LBP descriptors (CLF) improves uponthe grayscale-LBP by a sig-

nificant 4.0% margin. The grayscale-LBP descriptor improves the fusion (CGLF) result

slightly upon the CLF descriptor.

The second set of experiments assesses the ten descriptors using the EFM-nearest

neighbor classifier on individual image categories. From Table 4.12 it can be seen that
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Figure 4.35 Image recognition using the EFM-NN classifier on the MIT scene dataset:
(a) example images unrecognized using the grayscale-LBP descriptor but recognized using
the oRGB-LBP descriptor; (b) example images unrecognized using the oRGB-LBP de-
scriptor but recognized using the CLF descriptor; (c) images unrecognized using the CLF
but recognized using the CGLF descriptor; (d) images unrecognized using the CGLF but
recognized using the CGLF+PHOG descriptor.

the top six categories achieve a success rate of over 90%. TheForest category achieves a

success rate of over 90% across all ten descriptors. Individual color LBP features improve

upon the grayscale-LBP on most of the categories. The CLF results on each of the eight

categories show significant improvement upon the grayscale-LBP and the CGLF slightly

improves upon the CLF. Integration of PHOG with the CGLF to obtain the CGLF+PHOG

highly benefits most categories and in particular there is a significant increase in the classi-

fication performance upon the CGLF results for the Highway, Mountain and Open Country

categories where the increment is in the range of 5% to 7%.

The final set of experiments further assesses the performance of the descriptors

based on the correctly recognized images. See Figure 4.35(a) for some example images
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Table 4.13 Comparison of the Classification Performance (%) with OtherMethod on the
MIT Scene Dataset

# Train # Test Proposed Method (Oliva and Torralba 2001)
CLF 86.4

2000 688 CGLF 86.6
CGLF+PHOG 89.5 -
CLF 79.3

800 1888 CGLF 80.0
CGLF+PHOG 84.3 83.7

that are not recognized by the EFM-nearest neighbor classifier using the grayscale-LBP

descriptor but are correctly recognized using the oRGB-LBPdescriptor. Figure 4.35(b)

shows images unrecognized using the oRGB-LBP descriptor but recognized using the CLF

descriptor, Figure 4.35(c) shows images unrecognized using the CLF but recognized using

the CGLF descriptor and Figure 4.35(d) shows images unrecognized using the CGLF but

recognized using the CGLF+PHOG descriptor.

From Table 4.13 it can be seen that on the 800 training images (100 images per

class) and 1,688 testing images a success rate of 84.3% is achieved with the CGLF+PHOG

descriptor. This improves over the result of authors in (Oliva and Torralba 2001) by 0.6%.

4.7 Evaluation of LBP Descriptors on the KTH-TIPS and

the KTH-TIPS-2b Datasets

4.7.1 Experimental Methodology

The classification task is to assign each test image to one of anumber of categories. The

performance is measured using a confusion matrix, and the overall performance rates are

measured by the average value of the diagonal entries of the confusion matrix. For KTH-

TIPS2-b dataset, five random sets of 200 training images per class and 100 testing images

per class are used. For the KTH-TIPS dataset, five random setsof 40 training images

per class and 41 test images per class are selected (same numbers as used in (Crosier and
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Figure 4.36 The mean average classification performance of the eight descriptors using
the EFM-NN classifier on the KTH-TIPS2-b dataset: the oRGB-LBP, the YCbCr-LBP,
the RGB-LBP, the HSV-LBP, the rgb-LBP, the grayscale-LBP, the CLF, and the CGLF
descriptors.

Griffin 2008), (Zhang et al. 2007), (Kondra and Torre 2008)).Within each set there is no

overlap in the images selected for training and testing. Theclassification scheme on the

datasets compares the overall and category wise performance of ten different descriptors:

the oRGB-LBP, the YCbCr-LBP, the RGB-LBP, the HSV-LBP, the rgb-LBP, the grayscale-

LBP, the CLF, the CGLF, the PHOG and the CGLF+PHOG descriptors (the final two eval-

uated on the scene dataset). Classification is implemented using the EFM-nearest neighbor

(EFM-NN) classifier.

4.7.2 Experimental Results

Here, a detailed experimental evaluation is presented on the KTH-TIPS2-b dataset followed

by a comparison of success rate with other research groups onthe KTH-TIPS dataset. The

first set of experiments assesses the overall classificationperformance of the eight descrip-

tors on the KTH-TIPS2-b dataset. Note that for each categorya five-fold cross validation
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Table 4.14 Category Wise Descriptor Performance (%) Split-out with the EFM-NN Clas-
sifier on the KTH-TIPS2-b Dataset (Note That the Categories are Sorted on the CGLF
Results)

Category CGLF CLF oRGB HSV rgb Gray
LBP LBP LBP LBP

Aluminium Foil 100 100 100 100 100 100
Brown Bread 100 100 100 99 99 94
Corduroy 100 100 100 100 100 93
Cork 100 100 100 98 98 98
Cracker 100 100 96 93 93 90
Lettuce Leaf 100 100 100 100 100 97
Linen 100 100 100 99 99 99
Wood 100 100 100 100 100 100
Wool 100 100 99 100 100 96
White Bread 99 99 99 99 99 97
Cotton 98 97 97 96 96 91
Mean 99.6 99.6 98.7 98.3 98.3 95.9

is implemented for each descriptor using the EFM-nearest neighbor classifier to derive the

average classification performance. Figure 4.36 shows the mean average classification per-

formance of various descriptors. The best recognition ratethat is obtained is 99.6% from

the CLF and CGLF descriptors. The oRGB-LBP achieves the classification rate of 98.7%.

It outperforms the other color LBP descriptors. It is noted that fusion of the color LBP

descriptors (CLF) improves upon the grayscale-LBP by a significant 3.7% margin. The

grayscale-LBP descriptor does not have any effect on the fusion (CGLF) result in case of

this dataset.

The second set of experiments assesses the five best descriptors and the grayscale-

LBP using the EFM-nearest neighbor classifier on individualimage categories. From Ta-

ble 4.14 it can be seen that nine out of eleven categories achieve 100% success rate and all

of the categories achieve a success rate of 98% or more with the CGLF descriptor. Alu-

minium Foil, Corduroy, Lettuce Leaf and Wood achieve 100% success rate across the best

five descriptors. Individual color LBP features improve upon the grayscale-LBP on most

of the categories. The CLF almost always improves upon the grayscale-LBP, this indicates
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Figure 4.37 Image recognition using the EFM-NN classifier on the KTH-TIPS2-b dataset:
(a) example images unrecognized using the grayscale-LBP descriptor but recognized using
the oRGB-LBP descriptor; (b) example images unrecognized using the RGB-LBP descrip-
tor but recognized using the oRGB-LBP descriptor; (c) images unrecognized using the
oRGB-LBP but recognized using the CLF descriptor; (d) images unrecognized using the
grayscale-LBP but recognized using the CGLF descriptor.

that various color descriptors are not redundant. The CGLF very slightly improves upon the

CLF. This, however, does not necessarily indicate that the grayscale information is redun-

dant as almost all the categories show a success rate of 100% with these two descriptors. It

only indicates that CLF alone contains enough information to correctly classify the texture

images in the case of KTH-TIPS2-b dataset.

The final set of experiments further assesses the performance of the descriptors

based on the correctly recognized images. See Figure 4.37(a) for some example images

that are not recognized by the EFM-nearest neighbor classifier using the grayscale-LBP

descriptor but are correctly recognized using the oRGB-LBPdescriptor. This reaffirms the

importance of color and the distinctiveness of the oRGB-LBPdescriptor for image category
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Table 4.15 Comparison of the Classification Performance (%) with OtherMethods on the
KTH-TIPS Dataset

Method Performance
Proposed Methods:
CGLF 99.6
CLF 99.6
oRGB-LBP 99.1
Crosier 2008 98.5
Kondra 2008 97.7
Zhang 2007 95.5

recognition. Figure 4.37(b) shows images unrecognized using the RGB-LBP descriptor but

recognized using the oRGB-LBP descriptor, Figure 4.37(c) shows images unrecognized

using the oRGB-LBP but recognized using the CLF descriptor,and Figure 4.37(d) shows

images unrecognized using the grayscale-LBP but recognized when combined with the

CLF, i.e., the CGLF descriptor.

The same set of experiments is repeated on the KTH-TIPS dataset. The best result

on this dataset while using a single color space was once again from the oRGB-LBP de-

scriptor, which achieves a 99.1% classification rate with animprovement of 3% over the

grayscale-LBP. The CLF and the CGLF descriptors are tied at 99.6%. Table 4.15 shows a

comparison of the results with those obtained from other methods in (Crosier and Griffin

2008), (Zhang et al. 2007), (Kondra and Torre 2008). In the oRGB color space, proposed

technique outperforms the state of the art on this dataset even without combining color de-

scriptors. Combined LBP descriptors (CLF and CGLF) improveupon the result in (Crosier

and Griffin 2008), previously the best result on this dataset.



CHAPTER 5

IRIS IMAGE SEARCH BASED ON ROBUST SEGMENTATION

AND IMAGE ENHANCEMENT

5.1 Robust Iris Search Method and Its Major Components

A robust iris search method is proposed and implemented hereand improvement in iris

recognition performance is shown using the Iris Challenge Evaluation (ICE) (Phillips 2006)

dataset. First details of the ICE dataset are given in Section 5.1.1. Next the major com-

ponents of the iris recognition method are presented. Theseinclude iris segmentation, iris

encoding, and iris matching. Figure 5.1 shows the iris region between the sclera and the

pupil. See Figure 5.2 for an overview of the iris recognitionmethod.

Research efforts here mainly focus on improving the iris segmentation stage of the

system. This allows to compare the performance of the segmentation stage with that im-

plemented by the irisBEE method (Phillips et al. 2008). The segmentation step performs

the localization of the iris region by detecting the pupil and the limbic boundary along

with the eyelid detection. The iris encoding and iris matching stage are similar to that

implemented by the irisBEE method (Phillips et al. 2008) in the Biometric Experimen-

tation Environment (BEE) system. In comparison to the irisBEE method (Phillips et al.

2008) the proposed method leads to a significant increase in the accuracy of the iris region

segmentation along with a much higher overall recognition performance at a lower error

rate. Furthermore, proposed method outperforms the rank-one recognition performance

achieved by the ND_IRIS (Liu et al. 2005) method.

80
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Figure 5.1 Front view of the human eye. The various parts labeled are important to iris
segmentation and recognition.

5.1.1 The Iris Challenge Evaluation (ICE) Dataset

The ICE dataset (Phillips 2006) consists of 1,425 right eye images of 124 different subjects

and 1,528 left eye images of 120 different subjects. Eye images belong to 132 total subjects

with 112 overlapping subjects between the left eye and the right eye images. The iris

images are intensity images with a resolution of 640x480 in the TIFF format. The average

diameter of an iris is 228 pixels. The images vary in quality due to the percentage of the

iris region occlusion, the degree of blur in the image, off angle image, and images with

subject wearing the contact lens. Figure 5.3(a) shows some example images of the right

eye and Figure 5.3(b) shows some images from the left eye fromthe ICE dataset. Notice

the varying degree of illumination levels, pupil dilation,angle and occlusion.

5.1.2 Iris Segmentation

Here the details of the iris segmentation method are presented. In particular, the effect of

the power-law transformations on an eye image along with itsadvantages is discussed. Next

details of efficient determination of the pupil region are presented, followed by a discussion

on the effective method to determine the limbic boundary andthe iris region segmentation.

Finally, details of the improved eyelid detection phase aregiven. See Figure 5.4 for an
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Figure 5.2 An overview of the iris recognition method.

overview of the three main stages in iris segmentation: the pupil detection, the limbic

boundary detection, and the eyelid detection.

Performing the Power-Law Transformations on an Eye Image

The power-law transformation when applied to a grayscale image changes its dy-

namic range. The pixel intensity values in the input image act as the basis, which is raised

to a (fixed) power. The operator is defined by the following formula (Gonzalez and Woods

2001):

R(ρ) = c∗I
1
ρ (5.1)

whereI is the intensity value of a pixel in the input image,c is the scaling factor, and 1/ρ

is the power.

Forρ < 1, this operation increases the bandwidth of the high intensity values at the

cost of the low pixel values. Forρ > 1, this process enhances the low intensity values while
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Figure 5.3 Example images of the (a) right eye and (b) left eye from the ICE dataset,
under varying illumination levels, pupil dilation, angle and occlusion.

decreasing the bandwidth of the high intensity values, i.e., boosts the contrast in the dark

regions. Forρ = 1, the above transformation linearly scales the intensity values.

In Figure 5.5 the plot shows the result of the power-law transformations on the

image intensity values at various values ofρ . The output pixel intensity value is scaled

back to[0,255]. This operation when applied on the input pixel intensity with ρ = 1 and

c= 1 does not have any effect on the output intensity. This can beseen in the plot forR(ρ)

at ρ = 1. At ρ = 1.9 and 2.5 the lower intensity values gain more than the higherintensity

values. Atρ = 0.5 the intensity values get pulled down and the lower values tend to get

mapped into a narrower range.

Assessment of the impact of the power-law transformations on an eye image in

terms of the pixel intensity frequency can be seen from Figure 5.6. The original eye image

is shown in Figure 5.6(a), transformed images withρ values as 0.5, 1.9 and 2.5 can be seen

in Figure 5.6(b), (c) and (d), respectively. The corresponding pixel intensity frequency plot

for the four images is presented in Figure 5.6(e). Forρ > 1 many more pixels get mapped

into a narrower brighter intensity range as seen in Figure 5.6(e). Also, this effect can be

observed from the eye images in Figure 5.6(c) and (d) where the contrast between the pupil

and the iris becomes more significant.
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Figure 5.4 An overview of the three main stages in iris segmentation: the pupil detection,
the limbic boundary detection, and the eyelid detection.

Efficient Determination of the Pupil Region

Proposed new iris segmentation method first applies the power-law transformation

on an eye image and then detects the pupil boundary. Firstly,detection of the pupil bound-

ary is performed followed by the detection of outer iris boundary. The reason for this

approach lies in the observation that the contrast between the iris and the pupil is usually

larger than that between the iris and the sclera. The contrast is further enhanced from the

application of the power-law transformation; this makes iteasier to detect the pupil region

and thereby increases the accuracy of the pupil segmentation. Proposed method results in

the accurate detection of the pupil boundary for 99.8% of theimages in the dataset; this

includes the entire right eye and the left eye images. The appropriateρ value for the power-

law transformation is selected after analyzing the contrast between the iris and the pupil on

a validation set chosen from the ICE dataset.

In Figure 5.4 and Figure 5.7(a) details of the pupil detection stage are presented. As
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Figure 5.5 Plot showing the result of the power-law transformations onthe image intensity
values at various values ofρ .

a first step Gaussian filter is applied to the input image for smoothing, in order to get rid of

the noise. The Gaussian smoothing filter is defined by the following formula (Forsyth and

Ponce 2003):

G(x,y) =
1

2πσ2e−
x2+y2

2σ2 (5.2)

wherex is the distance from the origin in the horizontal axis,y is the distance from the

origin in the vertical axis, andσ is the standard deviation of the Gaussian distribution. In

the next stage, power-law transformation is applied followed by the canny edge detector to

detect edges in the image. Thresholding is performed to get rid of the weak edges.

Finally, circular Hough transform is applied on the edge image to detect the pupil

boundary. In order to make the pupil search more accurate andfast, a candidate pupil

having radius within a narrow range is searched. This range is computed from a validation

set chosen from the ICE dataset. See in Figure 5.7(a) the image on the left for the range

of the radius and on the right the edge image space to be searched for candidate pupil

circles. The circular Hough transform can be described as a transformation of a point in the
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Figure 5.6 Results of the power-law transformations on (a) input eye image, atρ = 0.5,
1.9 and 2.5 shown in (b), (c) and (d), respectively. (e) Plot of the frequency of intensity of
the input image at variousρ values. Plot atρ = 1.0 corresponds to the input image in (a).

x, y-plane to the circle parameter space. The parametric representation of the circle is given

as:

x= a+ r cos(θ)

y= b+ r sin(θ)
(5.3)

wherea andb are the center of the circle in thex andy direction respectively and wherer

is the radius andθ is the angle between 0 and 2π .
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Figure 5.7 Efficient determination of: (a) the pupil region radius, (b)the iris region radius
and search space, and (c) the limbic boundary center.

Efficient Determination of the Limbic Boundary and the Iris Region

It is observed that when detecting the limbic boundary the Hough transform often

makes incorrect detections. Research reveals that such incorrect detections are due to the

presence of a large number of weak edges. Therefore, a thresholding technique is applied

to the edge image produced by the Canny edge detector to get rid of the insignificant edge

points. This has shown to improve the percentage of the correctly segmented iris region by

close to 3% for both the right eye and the left eye images. See Figure 5.4 and Figure 5.7(b)

for details.

In order to further improve the accuracy of the Hough transform for detecting the

limbic boundary, the circle within a specific region around the detected pupil boundary is

searched. Furthermore, a candidate limbic boundary havingradius within a narrow range

is searched. The range for the radius is estimated on the validation set chosen from the ICE

dataset. The reduced search space and the narrow radius range thus considerably increase

the speed of the circle detection. See in Figure 5.7(b) the image on the left for the range

of the radius and on the right the reduced edge image space that is searched for candidate
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Figure 5.8 Detection of iris region occlusion from the upper and lower eyelid.

limbic circles.

Additionally, another efficient technique is applied to detect the limbic boundary.

The Hough transform implemented by the irisBEE method (Phillips et al. 2008) searches

the maximum in the parameter space to detect the circle. A technique based on the Hough

transform is implemented in order to increase the accuracy of the correct limbic boundary

detection by 1.3% for the right eye and by 1.4% for the left eyeimages. Specifically, when

the distance between the center of the detected circle and the center of the detected pupil is

more than a predefined threshold value, then the detected circle is rejected. Out of all the

non-rejected circles, the one that corresponds to the maximum in the parameter space of

the Hough transform and has center coordinates within a predefined threshold value from

the pupil center is selected. As a result, proposed heuristic method considerably increases

the accuracy of the Hough transform. In Figure 5.7(c) the center of the pupil is pointed in

yellow, the incorrect limbic boundary circle with center ingreen is rejected as it is farther

away from the pupil center when compared to the acceptable limbic detection with center

displayed in white.

Here the results of time complexity analysis for the segmentation stage are pre-

sented. Mean average implementation time of the segmentation stage for an image is com-
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Figure 5.9 (a) Segmented iris region and (b) its normalized iris region.

puted. First the average processing time for an image from all 2,953 images is computed

and then ten runs are made to obtain the mean average implementation time for an image.

The experiment is performed on a 3.00 GHz Pentium 4 CPU with 3.2 GB RAM running

on Linux. By reducing the search space for Hough transform proposed algorithm takes

748 milliseconds to process an image against 853 milliseconds without this optimization.

Hence, proposed efficient limbic boundary detection technique decreases the processing

time by approximately 12%.

Improved Eyelid Detection

One of the earlier system proposed by Wildes (1997) detects the eyelids by applying

edge detection filter and Hough transform to obtain edge points and then fits parameterized

parabolic arcs to localize the upper and lower eyelids. Eyelid detection is implemented by

modeling the eyelid as two straight lines using linear Houghtransform. Additionaly, power-

law transformation is performed on an eye image in order to enhance the contrast between

the eyelid and the iris/pupil region. Hence, occlusion fromeyelids is more accurately

detected.

Furthermore, iris region is split horizontally and vertically resulting in four win-

dows. See Figure 5.8 for the result of eyelid detection. In order to detect the upper eyelid

search is performed within the top half of the iris region. Furthermore, to detect the top
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Table 5.1 Correctness of Segmentation (%) for the Pupil and the Iris Region at Various
Values ofρ

ρ Right Eye Left Eye
Pupil Region Iris Region Pupil Region Iris Region

0.7 96.3 95.5 96.8 96.0
1.0 98.3 97.4 98.6 97.7
1.3 98.9 98.0 99.2 98.1
1.6 99.2 98.2 99.5 98.4
1.9 99.7 98.5 99.9 98.8
2.2 99.6 98.4 99.9 98.8
2.5 99.6 98.4 99.8 98.7

left of the eyelid region, only the left three quarters of thetop half of the iris region is con-

sidered. The top right of the eyelid region is detected within the right three quarters of the

top half of the iris region. Thus, there is an overlap of a portion of the iris region between

two splits. Similarly, the bottom eyelid is detected in the lower two windows. After detect-

ing the eyelid in each of these four windows the results are connected together. Proposed

approach has shown to improve performance when compared to the method in (Liu et al.

2005) where the splits do not overlap.

5.1.3 Feature Encoding and Matching

The feature encoding stage encodes the iris image texture patterns into iriscodes using

filters. Iris region is normalized to a constant dimension before encoding. Denoising of the

noise regions in the normalized pattern is implemented by means of averaging. This results

in a bitwise template, which contains iris information and anoise mask for corrupt areas

within the iris pattern. Figure 5.9 shows the result of the normalization of the iris region.

Encoding is implemented by convolving the normalized iris pattern with the 1D

Log-Gabor wavelets (Masek 2003). The frequency response ofa Log-Gabor filter is given
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Figure 5.10 Comparison of the pupil segmentation performance of the proposed improved
method with the irisBEE method (Phillips et al. 2008). (a) Input eye images, (b) images
after the power-law transformation, (c) examples of correct segmentation of the pupil and
iris region by proposed method, and (d) examples of incorrect segmentation by the irisBEE
method (Phillips et al. 2008).

as:

G( f ) = exp

(

−(log( f/ f0))
2

2(log(σ/ f0))
2

)

(5.4)

where f0 represents the centre frequency, andσ gives the bandwidth of the filter. Details

of the Log-Gabor filter are given by Field (1987).

Hamming distance is used to measure the similarity of the twoiris templates. The

Hamming distance defines the similarity between two iriscodes, and the two iriscodes are

a match when their Hamming distance is close to each other. Incomparing the bit patterns

X andY, the Hamming distance (HD) is defined as the sum of disagreeing bits (sum of the

XOR betweenX andY) overN, which is the total number of bits in the bit pattern. Below

is the formula:

HD =
1
N

N

∑
j=1

Xj ⊕Yj (5.5)
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Figure 5.11 Comparison of the limbic boundary segmentation performance of the pro-
posed improved method with the irisBEE method (Phillips et al. 2008). (a) Examples of
correct segmentation by proposed method and (b) examples ofincorrect segmentation by
the irisBEE method (Phillips et al. 2008).

Noise bits in the two templates are discarded. The iris template is shifted bit-wise from -15

degrees to +15 degrees with an increment of 1.5 degrees each time, and the Hamming dis-

tance is computed for two shift positions. The lowest Hamming distance is the best match

between the two templates. As suggested by Daugman (2002) such shifting is necessary

to take care of the misalignment in the normalized iris patterns caused by the rotational

differences during imaging.

5.2 Experimental Results

Here, the details of the experimental evaluation of the proposed method are presented on

the ICE dataset. In order to make a through comparative assessment of the performance of

proposed method with other methods, three sets of experiments for the right eye and the left

eye are performed. First the correctness of iris segmentation is assessed, followed by an as-

sessment of the rank-one recognition performance and finally the verification performance

for the right eye and the left eye is evaluated according to the experimental setup proposed

by the ICE system. The rank-one recognition criterion and the verification criterion eval-

uate the performance of proposed method for recognition from two different viewpoints;
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Table 5.2 Comparison with the Results (%) from the irisBEE Method (Phillips et al. 2008)
of the Correctness of Segmentation for the Pupil Region, Limbic Boundary and Iris Region

Regions Proposed Method irisBEE Method
Right Eye Left Eye Right Eye Left Eye

Pupil Region 99.7 99.9 95.4 95.7
Limbic Boundary 98.7 99.0 93.4 93.6
Iris Region 98.5 98.8 90.2 90.5

more details are provided later in this Section. For all experiments discussed here the input

image is scaled to 0.4 of its original size, this significantly cuts down the processing time

without compromising the correctness of the results.

5.2.1 Assessing the Correctness of Segmentation

The first set of experiments is designed to assess the correctness of segmentation for the

pupil region, the limbic boundary and the iris region on the right eye and the left eye.

Considering the nature of the ICE dataset, definition of the correctness of segmentation is

provided here and it is based on the assumption that the pupiland iris can be modeled as

a circle. The pupil region is said to be correctly segmented when the circle fully encloses

the pupil region and does not include any area other than the dark pupil. Incorrect pupil

segmentation may cover parts of the iris region and or only enclose the pupil region par-

tially. Refer to Section 5.1.2 for the discussion on the method and Figure 5.10(c) and (d)

for the results. The limbic boundary is said to be correctly segmented when the circle fully

bounds the iris region from outside and does not include any area outside of the iris region

other than the pupil or the eyelids that may sometimes occlude the iris. Incorrect limbic

boundary segmentation may cover parts of the sclera region and or only enclose the iris

region partially. Refer to Section 5.1.2 for the discussionon the method and Figure 5.11(a)

and (b) for the results. The iris region is said to be correctly segmented when for any given

eye image both the pupil and the limbic boundary are correctly detected.
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Table 5.3 Rank-one Recognition Performance (%) at Various Values ofρ

ρ Right Eye Left Eye
0.7 95.4 95.9
1.0 97.6 98.1
1.3 98.3 98.5
1.6 98.7 98.8
1.9 99.0 99.0
2.2 98.9 99.0
2.5 98.9 98.9

Table 5.1 gives the results of the correctness of the pupil and iris region segmenta-

tion. The power-law transformations are performed for pupil detection on the right and left

eye image at various values ofρ . At ρ = 1 andc= 1 the power-law transformation leaves

the intensity values of the pixels in the input image unchanged. For values ofρ > 1, the

power-law transformation enhances the contrast in the darkregions and thereby makes the

pupil boundary easier to detect. This is confirmed by the percentage of correct pupil detec-

tion asρ goes higher. Also, forρ < 1, the contrast between the pupil and the surrounding

region decreases making it harder to detect the pupil. Best pupil detection results are ob-

tained atρ = 1.9 with close to 100% correct pupil detection for the left eye and 99.7% for

the right eye. For theρ values higher than 1.9 no significant change in the segmentation

performance is noticed. The best result for the iris region detection is 98.5% for the right

eye and 98.8% for the left eye. The iris region detection is atits highest when the pupil

region detection is at its maximum; this is largely due to thefact that for the proposed

method the correct detection of iris region is to an extent dependent on the correct pupil

region detection. Finally, the iris region detection rate at ρ = 1.9 is 1.1% higher for both

the right and the left eye when compared with the rate atρ = 1.

Figure 5.10(c) shows examples of correct segmentation of the pupil based on pro-

posed improved pupil region detection method. Input imagesare shown in Figure 5.10(a)

and the result of the power-law transformation can be seen from Figure 5.10(b). Compar-
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Table 5.4 Comparison of the Rank-one Recognition Performance (%) with the Other
Methods

Methods Right Eye Left Eye
Proposed Method 99.0 99.0
ND_IRIS (Liu et al. 2005) - 97.1
irisBEE method (Phillips et al. 2008) 95.5 96.3

ison of results to the incorrect segmentation results of theirisBEE method (Phillips et al.

2008) is shown in Figure 5.10(d). Figure 5.11(a) presents the results of proposed improved

limbic boundary segmentation method and a comparison with the incorrect limbic bound-

ary detections of the irisBEE method (Phillips et al. 2008) is shown in Figure 5.11(b).

From Table 5.2 it can be seen that proposed method improves upon the irisBEE

method (Phillips et al. 2008) for pupil region segmentationby 4.3% and 4.2% for the right

eye and the left eye respectively. Proposed limbic boundarydetection rates are higher by

5.3% and 5.4% for the right and left eye respectively. Finally, proposed method leads to an

improvement upon the irisBEE method (Phillips et al. 2008) by 8.3% for both the right and

the left eye iris region detection.

5.2.2 Assessment of the Rank-one Recognition Performance

Here, in order to determine the effectiveness of the proposed method an evaluation is per-

formed based on the rank-one recognition rate. This is a popular evaluation criterion for

iris recognition. In order to obtain the recognition rate, first the Hamming distance between

every pair of a query image and a target image is calculated, and then the nearest-neighbor

classifier is employed for classifying all query images. If the query image and the target

image belong to the same subject, then it is considered as a correct match. The recognition

rate is the ratio of the number of correctly classified query images to the total number of

query images. The rank-one recognition rate underlines thesimilarity of the samples that

are close to one another within a class.
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Figure 5.12 Comparison of the iris verification performance (ROC curve for the right eye)
of the irisBEE method (Phillips et al. 2008) with the proposed method.

From Table 5.3 it can be seen that the best recognition rate is99% for both the

right eye and the left eye atρ = 1.9, when compared to the rate atρ = 1, this is higher by

1.4% for the right eye and by 0.9% for the left eye. No significant change is noticed in the

recognition performance forρ > 1.9.

The rank-one recognition rate for proposed method as shown in Table 5.4 is 3.5%

and 2.7% higher than that of the irisBEE method (Phillips et al. 2008) for the right eye and

the left eye respectively. Furthermore, the proposed method improves upon the ND_IRIS

(Liu et al. 2005) by a significant 1.9% for the left eye. Note that the authors in (Liu et al.

2005) do not report the recognition rate on the right eye. Additionally, proposed improved

eyelid detection method as described in Section 5.1.2 contributes to a performance increase

of 1% for both the right and the left eye.
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Figure 5.13 Comparison of the iris verification performance (ROC curve for the left eye)
of the irisBEE method (Phillips et al. 2008) with the proposed method.

5.2.3 Assessment of the Verification Performance and Equal Error Rate (EER)

For the final set of experiments an evaluation is performed onthe verification performance

and a comparison is made with the results from the irisBEE method (Phillips et al. 2008).

The ICE protocol recommends using the receiver operating characteristic (ROC) curves,

which plot the iris verification rate, i.e., the true accept rate versus the false accept rate

(FAR), to report the iris recognition performance. The verification rate is the rate at which

a matching algorithm correctly determines that a genuine sample matches an enrolled sam-

ple. The equal error rate (EER) is obtained when the FAR equals the false reject rate (FRR).

Generally, the lower the EER value the higher will be the accuracy of the biometric system.

The ROC curves are automatically generated by the BEE systemwhen a similarity

matrix is input to the system. In particular, the BEE system generates two ROC curves,

corresponding to the Experiment 1 for the right eye and Experiment 2 for the left eye

images. The iris verification rate at the false accept rate of0.1% is generally used as a

standard for performance comparison (Yang et al. 2010).
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Table 5.5 Iris Verification Performance (%) at 0.1% False Accept Rate and EER at Various
Values ofρ (VR is the Verification Rate and EER is the Equal Error Rate)

ρ Right Eye Left Eye
VR EER VR EER

0.7 85.1 8.3 84.7 7.7
1.0 91.3 5.2 90.9 4.6
1.3 92.8 4.9 92.2 4.2
1.6 94.2 3.9 93.3 3.1
1.9 95.1 2.8 94.4 2.3
2.2 95.1 2.8 94.4 2.3
2.5 95.0 2.8 94.3 2.3

It should be pointed out that the verification rate in the ICE Experiment 1 and 2

emphasizes the similarity of samples that are relatively distant from one another within a

class because it needs to measure all similarity between samples, whereas the recognition

rate discussed in Section 5.2.2 emphasizes the similarity of samples that are close to one

another within a class since it applies a nearest-neighbor classifier. Therefore, these two

criteria evaluate the performance of proposed method for recognition from two different

viewpoints.

From Table 5.5 it can be seen that the best verification rate and the lowest EER is

achieved atρ = 1.9. When compared to the performance atρ = 1, the VR is higher by

3.8% at a low EER of 2.8% for the right eye and the VR is higher by3.5% at the EER of

2.3% for the left eye. No significant change is noticed in the verification performance for

ρ > 1.9.

See Figure 5.12 and Figure 5.13 for a comparison of the performance of proposed

method with that of the irisBEE method (Phillips et al. 2008)in terms of the ROC curves.

Figure 5.12 and Figure 5.13 show the ROC curves for the right eye experiment and the left

eye experiment respectively. It can be observed that the proposed method improves the

iris recognition performance significantly in comparison with the irisBEE method (Phillips

et al. 2008).
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Table 5.6 Comparison with other Methods on the Iris Verification Performance (%) at
0.1% False Accept Rate and EER (VR is the Verification Rate andEER is the Equal Error
Rate)

Methods Right Eye Left Eye
VR EER VR EER

Proposed Method 95.1 2.8 94.4 2.3
SAGEM-Iridian† above 99.0* - above 99.0* -
irisBEE Method† 85.2 8.5 84.9 7.8

†Phillips et al. (2008). *Result estimated from Figure 4 in Phillips et al. (2008).

From Table 5.6 it can be seen that proposed method improves upon the irisBEE

method (Phillips et al. 2008) notably. For the right eye, theproposed method has a verifi-

cation rate of 95.1%, which is about 10% higher than the irisBEE method (Phillips et al.

2008). The EER is 2.8%, which is much lower than the 8.5% for the irisBEE method

(Phillips et al. 2008). For the left eye, the proposed methodhas a VR of 94.4%, which is

again higher by 9.5% than the irisBEE method (Phillips et al.2008). The EER is 2.3%,

which is much lower than the 7.8% from the irisBEE method (Phillips et al. 2008); this

emphasizes the higher accuracy of the proposed method.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This dissertation investigates advanced techniques in color image search and retrieval. The

SIFT descriptor is extended to different color spaces, including the recently proposed

oRGB color space, a new oRGB-SIFT feature representation isproposed, furthermore it

is integrated with other color SIFT features to produce the Color SIFT Fusion (CSF), the

Color Grayscale SIFT Fusion (CGSF), and the CGSF+PHOG descriptors for image cat-

egory classification. Applications to image search in object, scene, flower, and texture

datasets are presented along with special applications to biometrics. Classification is im-

plemented using a novel EFM-KNN classifier, which combines the Enhanced Fisher Model

(EFM) and the K Nearest Neighbor (KNN) decision rule. Results of the experiments on

the Caltech 256 dataset, the MIT Scene dataset, the Oxford Flower dataset, and the Upol

Iris dataset show that the oRGB-SIFT descriptor improves recognition performance upon

other color SIFT descriptors, the CSF, the CGSF, and the CGSF+PHOG descriptors per-

form better than the other color SIFT descriptors. The fusion of both Color SIFT descrip-

tors (CSF) and Color Grayscale SIFT descriptor (CGSF) show significant improvement

in the classification performance, which indicates that various color-SIFT descriptors and

grayscale-SIFT descriptor are not redundant for image classification.

Four novel color Local Binary Pattern (LBP) descriptors arepresented in this dis-

sertation for scene image and image texture classification with applications to image search

and retrieval. Specifically, the first color LBP descriptor,the oRGB-LBP descriptor, is de-

rived by concatenating the LBP features of the component images in an opponent color

space - the oRGB color space. The other three color LBP descriptors are obtained by the

integration of the oRGB-LBP descriptor with some additional image features: the Color

LBP Fusion (CLF) descriptor is constructed by integrating the RGB-LBP, the YCbCr-LBP,

the HSV-LBP, the rgb-LBP, as well as the oRGB-LBP descriptor; the Color Grayscale LBP

100
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Fusion (CGLF) descriptor is derived by integrating the grayscale-LBP descriptor and the

CLF descriptor; and the CGLF+PHOG descriptor is obtained byintegrating the Pyramid of

Histograms of Orientation Gradients (PHOG) and the CGLF descriptor. Feature extraction

applies the Enhanced Fisher Model (EFM) and image classification is based on the nearest

neighbor classification rule (EFM-NN). The proposed image descriptors and the feature ex-

traction and classification methods are evaluated using three grand challenge databases: the

MIT scene database, the KTH-TIPS2-b database, and the KTH-TIPS materials database.

The experimental results show that the proposed oRGB-LBP descriptor improves image

classification performance upon other color LBP descriptors, and the CLF, the CGLF, and

the CGLF+PHOG descriptors further improve upon the oRGB-LBP descriptor for scene

image and image texture classification.

Another major contribution of this dissertation lies in thearea of iris image search.

A robust iris recognition method with enhanced performanceon the ICE dataset is pre-

sented. In particular, the power-law transformations for more accurate detection of the

pupil region are implemented. Additionally, the proposed technique is able to consider-

ably reduce the candidate limbic boundary search space, leading to a significant increase

in the accuracy and speed of the segmentation. The segmentation performance is further

increased with the application of the thresholding. Furthermore, for higher accuracy and

speed, the limbic circle having a center within close range of the pupil center is selectively

detected. Additionally, the proposed improved eyelid detection phase has shown to increase

performance. From the experiments, it can be concluded that, using power-law transforma-

tions withρ = 1.9 or above, the proposed method show constantly better performance for

pupil and iris region segmentation for both left and right eyes using the ICE dataset, conse-

quently comparison studies show improved segmentation performance comparing with the

irisBEE method (Phillips et al. 2008) and on the rank-one recognition performance than

other methods with improved VR and EER for both eyes.

Future work on color image search would include an evaluation of the color SIFT
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descriptors and classifier on the KTH-TIPS (Textures under varying Illumination, Pose and

Scale) dataset (Hayman et al. 2004) and the KTH-TIPS2-b dataset (Caputo et al. 2005).

Additionally, development of more discriminative color descriptors would be looked into

in order to improve the classification performance on the more challenging datasets such as

the Caltech 256 dataset. One way would be to develop descriptors from hybrid color spaces

and normalized color spaces (Yang et al. 2010), along with the Gabor feature representation

methods. Furthermore, exploration of advanced score levelfusion methodology of the color

descriptors for improved classification performance wouldbe looked into.

Future work on iris image search aims to process the visible wavelength iris images,

it will leverage previous research results in attenuating illumination variations (Liu 2006),

(Yang and Liu 2007), applying novel color models (Liu and Liu2008b), (Liu and Liu

2008a), (Yang and Liu 2008), (Liu 2008), as well as effectivefeature extraction and classi-

fication techniques (Liu and Wechsler 2001), (Liu and Wechsler 1998a), (Liu and Wechsler

1998b) to process the visible wavelength iris images, such as those in the UBIRIS database

(Proenca et al. 2010), which display different characteristics from the IR or near IR iris

images in the ICE database. On the one hand, the visible wavelength iris images possess

additional classification cues, such as color. But on the other hand, they pose challenging

issues as well, such as large variations in lighting conditions.
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