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ABSTRACT 

EXTENSIONS OF SNOMED TAXONOMY ABSTRACTION NETWORKS 
SUPPORTING AUDITING AND COMPLEXITY ANALYSIS 

 
by 

Duo Wei 

The Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) has been 

widely used as a standard terminology in various biomedical domains. The enhancement 

of the quality of SNOMED contributes to the improvement of the medical systems that it 

supports. 

In previous work, the Structural Analysis of Biomedical Ontologies Center 

(SABOC) team has defined the partial-area taxonomy, a hierarchical abstraction network 

consisting of units called partial-areas. Each partial-area comprises a set of SNOMED 

concepts exhibiting a particular relationship structure and being distinguished by a unique 

root concept. In this dissertation, some extensions and applications of the taxonomy 

framework are considered. Some concepts appearing in multiple partial-areas have been 

designated as “complex,” due to the fact that they constitute a tangled portion of a 

hierarchy and can be obstacles to users trying to gain an understanding of the hierarchy’s 

content. A methodology for partitioning the entire collection of these so-called 

overlapping complex concepts into singly-rooted groups was presented. A novel auditing 

methodology based on an enhanced abstraction network is described. 

In addition, the existing abstraction network relies heavily on the structure of the 

outgoing relationships of the concepts. But some of SNOMED hierarchies (or 

subhierarchies) serve only as targets of relationships, with few or no outgoing 

relationships of their own. This situation impedes the applicability of the abstraction



 

network. To deal with this problem, a variation of the above abstraction network, called 

the converse abstraction network (CAN) is defined and derived automatically from a 

given SNOMED hierarchy. An auditing methodology based on the CAN is formulated.  

Furthermore, a preliminary study of the complementary use of the abstraction 

network in description logic (DL) for quality assurance purposes pertaining to SNOMED 

is presented.  

Two complexity measures, a structural complexity measure and a hierarchical 

complexity measure, based on the abstraction network are introduced to quantify the 

complexity of a SNOMED hierarchy. An extension of the two measures is also utilized 

specifically to track the complexity of the versions of the SNOMED hierarchies before 

and after a sequence of auditing processes.  
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1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

With the advent of electronic health record (EHR) systems, IT solutions are needed to 

simplify the recording of standard codes for clinical providers as well as practitioners. 

The basis for these products is a standard terminology, without which the full benefits of 

an EHR are unlikely to be realized.  

The Systematized Nomenclature of Medicine – Clinical Terms (“SNOMED” for 

short, hereafter), one of the most popular standard terminologies, is well structured, 

highly computerized, and has many merits that make it superior to its peers. Among its 

advantages are: (1) the contents are systematically organized, which allow a consistent 

way of indexing, storage, retrieval, and integration; (2) concepts in the SNOMED have 

clear definitions that are unambiguous, where each concept has a Fully Specified Name 

(FSN), a preferred term, and potentially several synonyms. This helps to avoid 

ambiguity; (3) concepts are context-free and post-coordination is encouraged, which 

means a piece of clinical text can use more than one code or attribute to explain it; (4) 

Description Logic (DL) based modeling, which allows for DL-based classifiers that can 

position concepts within hierarchies and identify inconsistencies in the content. With all 

these features, concepts in the SNOMED cover a variety of domains, such as clinical 

finding, procedure, substance, and events. 

However, due to SNOMED’s large number of concepts as well as the complicated 

network of relationships among them, it is inevitable that errors will find their way to this 
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large knowledge base. Either a modeling error or a content error can result in very serious 

adverse effects. For example, according to statistics, more than 100,000 people die 

annually because of adverse drug reactions, some of which may be prevented by 

appropriate modeling of the EHR systems and their use of a terminology. 

Because of the importance of a terminology, quality assurance of SNOMED is 

critical. As people’s knowledge of health and healthcare is constantly evolving, the 

number of medical terminologies has grown tremendously; thus, the quality of SNOMED 

has become increasingly of significance. The International Health Terminology Standard 

and Organization (IHTSDO) [1] in fact formed a separate quality assurance group. It is in 

that group that SNOMED’s content undergoes a clinical quality assurance process prior 

to each release.  

The dissertation work is to assist in the quality assurance of SNOMED by 

applying computer science techniques combined with medical domain experts’ review. 

This process is called semi-automatic auditing. In previous research, the SABOC team 

has devised high-level abstraction networks based on analyses of a SNOMED hierarchy’s 

attribute relationships and their patterns of inheritance [2]. A hierarchy’s concepts were 

partitioned into groups, called areas, according to their specific attribute relationships. 

From this partition, an abstraction network, referred to as the area taxonomy, affording a 

summary view of the distribution of the attribute relationships was constructed. Further 

refinement of areas led to another abstraction network, the partial-area taxonomy, which 

conveyed information about sub-area hierarchical arrangements. In addition to their 

support for orientation to and comprehension of a SNOMED hierarchy, the two networks 

have served as the bases of the formulation of structural methodologies for auditing
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SNOMED hierarchies[2]. Importantly, the SABOC team has found that many concept 

errors manifested themselves as structural anomalies at the taxonomy level, and thus the 

taxonomies proved to be effective building blocks for automated auditing regimens. 

The objective of the current research is to present innovative auditing 

methodologies that take advantage of an enhanced abstraction network for quality-

assurance purposes. Moreover, the connection between the quality-assurance results and 

various SNOMED complexity measures defined using abstraction networks is explored. 

The ultimate goal, as stated by Alan Rector from the University of Manchester, 

UK, is: “We will know we have succeeded when clinical terminologies in software are 

used and re-used, and when multiple independently developed medical records, decision 

support, and clinical information retrieval systems sharing the same information using the 

same terminology are in routine use” [3]. 

 

1.2 Background and Literature Review 

 

1.2.1 Biomedical Terminologies and Their Application 

Biomedical informatics is an active research field, with the terminology sub-field gaining 

a lot of attention. Biomedical terminologies are critical for integration of data from 

diverse sources and for use by knowledge-based biomedical applications, especially 

natural language processing and associated mining and reasoning systems. 

A terminology is a repository of concepts pertaining to topics such as diseases, 

primary care, procedures, diagnostics, disorders, genes, laboratory observations, etc. In 

1986, Donald Lindberg and Betsy Humphreys from the National Library of Medicine 

(NLM) launched a project to construct a resource that would bring various disseminated 
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controlled medical terminologies [4-6] together to form the so-called Unified Medical 

Language System [7-9]. 

Standard biomedical terminologies and ontologies have evolved significantly over 

the past one hundred years or so. In 1893, one of the best known terminologies, the 

International Classification of Diseases (ICD) [10], was first published to classify 

diseases and a wide variety of signs, symptoms, abnormal findings, and social 

circumstances. In 1977, its Ninth Edition (ICD-9) was published by the World Health 

Organization (WHO), and 15 years later (in 1992), WHO published the Tenth Edition 

(ICD-10). In 1978, the US national Center for Health Statistics published the ICD-9 with 

Clinical Modifications (ICD-9-CM) [10]. ICD-9-CM has been widely adopted in the US 

and around the world since then. Subsequently, many other medical terminology systems 

emerged to meet different demands. These include the International Classification of 

Primary Care (ICPC) [11], Current Procedural Terminologies (CPT) [12], Diagnostic and 

Statistical Manual of Mental Disorders (DSM-IV) [13], the Gene Ontology (GO) [14], 

Logical Observations, Identifiers, Names, and Codes (LOINC) [15-17], the Medical 

Subject Headings (MeSH) [18], the Foundational Model of Anatomy (FMA) [19], and 

the UMLS [7-9]. 

Biomedical terminologies exist to serve various biomedical purposes in both 

laboratory-based research and in actual clinical settings. First and foremost is the 

demands placed upon them by the pursuit of the Electronic Health Record (EHR). 

According to the Health Information Management Systems Society’s definition:  

The Electronic Health Record (EHR) is a longitudinal electronic record of 

patient health information generated by one or more encounters in any care 
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delivery setting. Included in this information are patient demographics, 

progress notes, problems, medications, vital signs, past medical history, 

immunizations, laboratory data, and radiology reports. The EHR automates and 

streamlines the clinician’s workflow. The EHR has the ability to generate a 

complete record of a clinical patient encounter, as well as supporting other 

care-related activities directly or indirectly via interface – including evidence-

based decision support, quality management, and outcomes reporting. 

Biomedical terminologies play a strategic role in providing access to computerized health 

information because clinicians use a variety of terms for the same concept. For example, 

“Cardiac disorder,” “Cardiopathy,” or “Heart disease” might be written in the patient 

record – usually these are synonyms. Without a structured vocabulary, an automated 

system will not recognize these terms as being equivalent.   

Not only are terminologies applied in the flourishing EHR systems, they are also 

extensively utilized in many research areas, such as knowledge management (including 

indexing and retrieval of data and information, mapping among ontologies); data 

integration, exchange, and semantic interoperability; and decision-support and reasoning 

(including data selection and aggregation, natural language processing applications, 

knowledge discovery) [20].  

One example of knowledge management of biomedical terminologies is the 

utilization of the MeSH and UMLS as the backend search engine [21-24] to explore the 

biomedical literature. Besides MeSH and the UMLS, SNOMED CT is also used in a 

system that helps patients find physicians with particular expertise [25]. With the 
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indexing techniques, large document collections such as MEDLINE provide high recall 

and high precision.  

Applications of biomedical terminologies are also demonstrated in data 

integration and semantic interoperability process. For example, RxNorm [20], UMLS 

[26], and SNOMED [27] are used to exchange medication data between the Department 

of Veterans Affairs (VA) and the Department of Defense’s (DoD’s) clinical information 

systems. LOINC [16], in conjunction with HL7, is widely used in the exchange of 

laboratory data.  

Another example application of terminologies is in the field of medical language 

processing and natural language processing [28-30]. Linguistic approaches have been 

developed to represent patient data. Clinical statements are classified by the biomedical 

terminology’s categories using medical language processing systems to convert narrative 

information into relational database tables of patient information. During the process, 

clinical narratives are mapped to standard terminologies via medical language processing 

systems. On the other hand, terminologies (ontologies) provide the basis for free-context 

data mining and text mining. 

In addition, some tools for domain modeling and knowledge-based 

representations were developed to facilitate the application of terminologies. For 

instance, Protégé [31-36], a free, open-source software tool, provides a growing number 

of users a platform to support the creation, visualization, and manipulation of ontologies 

in various formats.  Furthermore, Protégé can be extended by various plug-ins for 

building knowledge-based tools and applications, such as reasoners. In this sense, Protégé 
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is considered not just a navigation and modeling tool, but also a knowledge discovery and 

decision-support system.  

 
1.2.2 SNOMED  

The SNOMED [37-40] is a comprehensive clinical terminology that provides clinical 

content and expressivity for clinical documentation and reporting. It can be used to code, 

retrieve, and analyze clinical data. It was developed as a joint venture between the 

College of American Pathologist (CAP) and the UK’s National Health Service (NHS). 

SNOMED was formed by merging, expanding, and restructuring an earlier version (i.e., 

SNOMED RT) and the UK’s Clinical Term Version 3 (CTV3). In 2007, the SNOMED 

intellectual property rights were transferred from the CAP to the IHTSDO. 

The basic building blocks of the SNOMED are concepts, descriptions, and 

relationships. SNOMED’s concepts are organized in 19 top-level hierarchies (as of the 

July ’09 release), each with a unique root called a top-level concept, such as Procedure, 

Clinical Finding, and Body Structure. This allows very detailed (“granular”) clinical data 

to be recorded and later accessed or aggregated at a more general level. Above all these 

top-level concepts sits a single concept called “SNOMED CT Concept,” which serves as 

the root of the entire terminology. Each concept is a descendant of SNOMED CT 

Concept via a sequence of IS-A (subsumption) relationships passing through exactly one 

top-level concept.  

Each SNOMED concept (the anchor of meaning) is represented by a unique 

human readable Fully Specified Name (FSN), which is a phrase that describes the 

concept in a way that is intended to be unambiguous. The concepts are formally defined 

in terms of their relationships with other concepts. These “logical definitions” give 
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explicit meaning that a computer can process and query on. Every concept also has a set 

of terms that name the concept in a human-readable way. The SNOMED includes more 

than 311,000 unique concepts (including inactive concepts). Examples include: Fever, X-

ray of left ankle, Exposure to toxin, Family history of ear disorder, and so on.  

Descriptions are the terms or names, assigned to each of SNOMED’s concepts. A 

given concept has one or more associated descriptions. In addition to the Fully Specified 

Name, there is a “Preferred term” that is meant to capture the common word or phrase 

used by clinicians to name the concept. Many concepts have alternative descriptions 

called “synonyms.” There are almost 800,000 descriptions in SNOMED. For example, 

heart disease (disorder) is the Fully Specified Name and “disorder” in parentheses is 

called a “semantic tag.” The preferred term is Heart disease. There are several synonyms, 

such as Cardiac disorder, Cardiopathy, Disorder of heart, and Morbus cordis. 

Relationships are the connections between concepts in SNOMED, with every 

concept having at least one relationship to another concept. Relationships in SNOMED 

are unidirectional, extending from a source concept to a target concept. Inverse 

relationships (from target to source) are not maintained. IS-A relationships form the basis 

of the hierarchies. Each connects a more specific concept (a child) to a more general 

concept (a parent). Additional attribute relationships characterize and further define 

concepts. Each can take on values (targets) only from a prescribed top-level hierarchy. 

IS-A relationships and attribute relationships are known as the “defining characteristics” 

of SNOMED concepts. For brevity, the “attribute relationship” will be referred to as 

“relationship,” while “IS-A relationship” will be referred to as “IS-A.”  For example, 

Bone fracture IS-A Bone injury. One of its relationships associated morphology has a 
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value Fracture, and the other relationship finding site has a value Bone structure. In total, 

there are approximately 1,360,000 links between the concepts. 

Relationships in SNOMED are SABOC team’s major interests when applying the 

partitioning techniques and constructing abstraction networks for auditing. Some 

hierarchies introduce many relationships. For example, the Procedure hierarchy 

introduces 23 different relationships, while some hierarchies have few relationships, such 

as the Physical Object, Substance, and Organism.  

A stated definition view (stated view) is the set of relationships (and groups of 

relationships) that an author has stated to be defining characteristics of a concept. An 

inferred definition view (inferred view) is derived from the stated concept definition by 

applying a consistent set of logical rules to the definition taking account of the definitions 

of related concepts. The standard SNOMED CT distribution includes the relationships 

table that represents an inferred view of the definitions of all active concepts, restricted to 

the proximal super types for each concept. From January 2010, the SNOMED 

distribution includes the stated view, too. 

 
1.2.3 Area Taxonomy and Partial-Area Taxonomy  

In previous work, structural analyses of SNOMED hierarchies have been carried out 

yielding two types of high-level abstraction networks: the area taxonomy and the partial-

area taxonomy [2]. Each serves to capture the relationship distribution within a hierarchy 

from a high-level perspective. Both networks are derived based on the respective 

relationships exhibited by the concepts in the hierarchy. The latter network refines the 

former by including additional hierarchical grouping knowledge. In the following, the 

important details pertaining to these two networks are presented.  
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The basis of the area taxonomy is a partition of the concepts into what is called 

areas according to their sets of (non-hierarchical) relationships. Five example areas are 

shown in Figure 1.1, where the boxes represent areas. Each area is named by placing in 

braces the set of relationships common to all its concepts. For example, the area 

{morphology} in the upper left has the relationship morphology. Concepts in the same 

area are listed in an indented format according to their IS-A relationships. In 

{morphology}, Specimen from wound IS-A Lesion sample, while Specimen from wound 

abscess IS-A Specimen from wound. On the other hand, a selected few concepts from 

different areas are explicitly linked by arrows to show additional IS-As. For example, 

Abscess swab in the area {procedure, morphology} IS-A Specimen from abscess in the 

area {morphology} and also IS-A Swab in the area {procedure}. A given concept 

belongs to only one area as determined by its set of relationships. Therefore, the areas 

taken together as a collection form a partition of a hierarchy’s concepts. Five different 

relationships are introduced to the concepts of the Specimen hierarchy; they are 

substance, morphology, procedure, topography, and identity. Different combinations of 

these relationships can form different areas. The two-relationship area {procedure, 

morphology} and {identity, procedure} can be seen in Figure 1.1. 
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Figure 1.1  Portion of areas of the Specimen hierarchy at the concept level. 

The areas are abstracted to form a network called the area taxonomy. The area 

taxonomy is a directed acyclic graph (DAG) constructed by making each area a node and 

then arranging them hierarchically – analogously to the underlying concepts – using what 

is referred to as child-of relationships as edges. The child-of’s are derived from the 
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concepts’ IS-A links. Figure 1.2 shows an excerpt of the area taxonomy of SNOMED’s 

Specimen hierarchy (July 2007 version).  

 

Figure 1.2  Portion of the area taxonomy of Specimen hierarchy. 

A child-of link in the area taxonomy is derived as follows. Let A and B be two 

areas such that a root of A has a parent in B. Then there exists a child-of from A to B. 

Overall, the collection of area nodes and child-of edges forms a DAG. The color coding 

of areas is according to levels, where each level has a specific number of relationships. 

On Level 1, each area is labeled with one relationship; on Level 2, the areas are labeled 

with two relationships, etc. The yellow box at the top marked Ø means that concepts in 

that area have no relationships at all. So, overall, this excerpt contains six areas 

distributed in three different levels. On Level 1, the three areas are {morphology}, 

{procedure}, and {identity} highlighted in green. On Level 2, displayed in blue, the two 

areas {procedure, morphology} and {identity, procedure} are found. Unlike in Figure 

1.1, no concepts are shown in the area taxonomy of Figure 1.2. This highly abstracted 

network provides a compact view of the relationship structure of a hierarchy. 
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Figure 1.3  Area taxonomy for SNOMED’s Specimen hierarchy. 

The area taxonomy of the 1,056-concept Specimen hierarchy (July ’07 release) 

has a total of 24 areas distributed over five levels (Figure 1.3). As stated above, the boxes 

are the areas and the edges (directed upward) are the child-of’s. The area Ø is on Level 0 

and has zero relationships. The five green rectangles on Level 1 are the areas having 

exactly one relationship each.  

Another level of abstraction is provided by the partial-area taxonomy. Before 

introducing it, let us start with the notions of root and partial area. A root of an area is a 

concept having no parents residing in its area. For instance, Abscess swab in the area 

{procedure, morphology} mentioned earlier is a root because one of its parents is in the 

area {procedure} and the other is in {morphology}. All the concepts with bold in Figure 

1.3 are roots. The roots are important for an area because all other concepts are subsumed 

by them, and thus the roots serve as summarizations of the area’s essence. 
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(a)                                                      (b) 

Figure 1.4  Portion of the partial-area taxonomy of Specimen hierarchy. 

The roots and all their descendants are further grouped into what are called 

partial-areas. An area may have more than one root, so it may have more than one partial-

area. As is shown in Figure 1.1, the area {morphology} has only one root and has only 

one partial-area. On the other hand, {procedure} has seven roots and, consequently, 

seven partial-areas. Partial-areas form a semantic division of an area, and abstracting 

them as nodes leads to a network called the partial-area taxonomy. Figure 1.4 shows a 

portion of the partial-area taxonomy of the Specimen hierarchy. The names of the partial-

areas are the root names and the numbers in the parentheses are the numbers of the 

concepts residing in the respective partial-areas (including the roots). For instance, one of 

the roots in {procedure} is called Biopsy sample, so there is such a partial-area. Biopsy 

sample has four descendants in its area, so the total number of concepts in its partial-area 

is five.  
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In Figure 1.4(a), the child-of links among partial-areas of the partial-area 

taxonomy are defined in a manner consistent with those appearing in the area taxonomy 

of Figure 1.1. If a concept of a partial-area IS-A some concept (not necessarily the root) 

in another partial-area, then there is a child-of link pointing from the partial-area where 

the child concept resides to the partial-area where the parent resides. Consider Abscess 

swab mentioned earlier as an example. Since its two parents are in the partial-areas 

Lesion sample and Swab, respectively, the partial-area Abscess swab has two child-of 

links to those two partial-areas. If all the links (from partial-areas to partial-areas) were 

shown in a partial-area taxonomy, they might be too densely packed. To address this 

problem, the child-of links are further abstracted as follows: if all child-of’s in the same 

area (source area) have a common direction toward the partial-areas within another area 

(target area), then only one child-of is used to connect the source area to the target area. 

For example, in Figure 1.4(a), both partial-area Abscess swab and Wound swab point to 

the partial-areas Lesion sample in {morphology} and the partial-area Swab in 

{procedure}. So, only two child-of’s are used. This abstraction of child-of links is shown 

in Figure 1.4(b). 

The partial-area taxonomy is designed in an effort to achieve hierarchical 

coherence in addition to the structural congruity of each of the areas. The network is a 

refinement of the area taxonomy. Figure 1.5 shows the (abridged) partial-area taxonomy 

of the Specimen hierarchy for the SNOMED July 2009 release. Each partial-area appears 

as a box inside its area node. In each partial-area node, the number in parentheses is the 

number of concepts it contains. For example, the area {identity} (second lower green box 

from left) is observed to have two partial-areas, Device specimen and Specimen from 
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patient, of 19 and two concepts, respectively. All 19 concepts of the partial-area Device 

specimen represent specimens from devices. The partial-area taxonomy has a total of 361 

partial-areas. An example child-of can be seen on the left side of the figure extending 

from partial-area Effusion sample to Body substance sample. Many child-of’s have been 

omitted.  

Note that in some areas in Figure 1.5, the numbers of concepts in the partial-areas 

do not add up to the total number of concepts in the area in Figure 1.3. As a matter of 

fact, the area {substance} only contains 81 concepts, while the sum of concept numbers 

appearing in parentheses of its partial-areas is 136. This is due to overlaps among partial-

areas, an issue that will be dealt with in detail in the following sections. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1.5  Partial-area taxonomy (abridged) for the Specimen hierarchy of the SNOMED July 2007 release.
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1.2.4 SNOMED Auditing Techniques 

Auditing is an important task of a terminology’s life cycle [41]. Various auditing 

techniques have been applied to SNOMED. For example, comparative assessment of 

SNOMED’s coverage and its completeness has been done [42-44]. The paper [45] 

proposed to use semantic methods to uncover concept classification errors. In [46], 

lexical information was used to detect classification omissions, and [47] focused on the 

inconsistent usage of “and” and “or” in SNOMED terms. In [48, 49], techniques were 

developed for discovering errors in concept hierarchies (e.g., cycles). The issue of 

balancing the problems of concept redundancy and ambiguity was addressed in [50]. In 

[51], a meta-level abstraction of the Semantic Network called a metaschema [52] was 

used to locate concepts having a high likelihood of errors. Ontological and linguistic 

techniques have been utilized to identify duplicates and redundancy [53, 54]. Bodenreider 

et al. [55, 56] analyzed how well SNOMED adheres to four basic ontological principles. 

The semantic completeness of SNOMED was assessed with a formal concept analysis 

(FCA)-based model in [57] and in [58] the impact of SNOMED revision was evaluated.  

 

1.3 Dissertation Overview 

This research builds upon and extends the previous work done by other members of the 

research group. This dissertation is an amalgamation of four papers that are organized as 

follows: 

Chapter 2 [59] investigates an innovative auditing approach based on enhanced 

taxonomies, with Section 2.1 providing some background on how the enhanced 

taxonomy is formed to partition the overlapping concepts of partial-areas into disjoint 
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sets. A thorough analysis of errors that are found as a result of auditing the overlapping 

concepts shows a need for enhancements to the partial-area taxonomy in order to capture 

a partition into disjoint sets having uniform semantics. 

Chapter 3 [60] describes the converse abstraction network (CAN), dealing with 

one of the limitations of the taxonomy methodology, which relies heavily on the structure 

of the outgoing relationships of the concepts and is therefore not applicable to concepts 

with few or no relationships.  

Chapter 4 [61] presents a preliminary study of  the complementary use of the 

partial-area taxonomy to description logic (DL) for quality assurance purposes pertaining 

to SNOMED. Two kinds of errors are demonstrated in detail: missing IS-A relations and 

duplicate concepts. After correction, SNOMED is reclassified to ensure that no new 

inconsistencies were introduced. 

Chapter 5 [62] brings up the idea of using taxonomies to measure the complexity 

and to track the evolution of a SNOMED hierarchy. The Specimen hierarchy is used as 

the test-bed. Two complexity measures are described: one is based on the relationship 

structure of the concepts and the other is based on the hierarchical arrangement of 

concepts with the same relationship structure. 

 Chapter 6 presents a preliminary exploration of the application of the partial-area 

taxonomy in a broader scope. Some methodologies that use the partial-area taxonomy to 

identify semantic-type assignment errors of SNOMED concepts in the UMLS are 

introduced. In particular, an application of an abstraction network based on the partial-

area taxonomy to the Procedure hierarchy, which contains a large number of concepts 

and a rich set of relationships, is presented. 
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CHAPTER 2 

 
AUDITING OVERLAPPING CONCEPTS OF SNOMED USING A REFINED 

HIERARCHICAL ABSTRACTION NETWORK 
 
 

Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid 

them in their efforts, it is essential to devise techniques that can automatically identify 

concepts warranting special attention. “Complex” concepts, which by their very nature 

are more difficult to model, fall neatly into this category. A special kind of grouping, 

called a partial-area, is utilized in the characterization of complex concepts. In particular, 

the complex concepts that are the focus of this work are those appearing in intersections 

of multiple partial-areas and are thus referred to as overlapping concepts. In this research, 

an automatic methodology for identifying and partitioning the entire collection of 

overlapping concepts into disjoint, singly-rooted groups, that are more manageable to 

work with and comprehend, abstraction network for the overlapping concepts called a 

disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a 

collection of semantically uniform partial-areas and is exploited herein as the basis for a 

novel auditing methodology. The review of the overlapping concepts is done in a top-

down order within semantically uniform groups. These groups are themselves reviewed 

in a top-down order, which proceeds from the less complex to the more complex 

overlapping concepts. The results of applying the methodology to SNOMED’s Specimen 

hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and 

between different kinds of overlapping concepts are formulated. Two phases of auditing 

the Specimen hierarchy for two release of SNOMED are reported on. With the use of the 
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double bootstrap and Fisher’s exact test (two-tailed), the auditing of concepts and 

especially roots of overlapping partial-areas is shown to yield a statistically significant 

higher proportion of errors. 

 

2.1 Disjoint Partial-Area Taxonomy 

While areas serve to partition all the concepts of a SNOMED hierarchy, partial-areas do 

not do the same for the concept within an area. That is, a given concept may reside in 

more than one partial-area, a situation that occurs when the concept is a descendant of 

two or more roots. Such a concept is called an overlapping concept. An example of this 

can be seen in Figure 2.1, where the concept at the bottom Dialysis fluid specimen 

belongs to the partial-areas Fluid sample and Drug specimen. For another example, see 

Blood bag specimen from patient appearing twice, within two partial-areas, in {identity} 

(Figure 1.1). 

 

Figure 2.1  Overlapping concept Dialysis fluid specimen. 

 The presence of overlapping concepts somewhat degrades the categorization 

power of partial-areas. On the one hand, when looking at a specific partial-area, one can 
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encounter concepts belonging solely to that partial-area and therefore elaborating the 

semantics of its root only. On the other hand, other concepts—the overlapping 

concepts—would belong to additional partial-areas at the same time and elaborate the 

semantics of multiple roots. The concept Dialysis fluid specimen from Figure 2.1 is both 

a fluid sample and a drug specimen, unlike its parent Dialysate sample which is only a 

kind of fluid sample. These situations cannot be determined at the level of the partial-area 

taxonomy. Moreover, overlapping concepts constitute knowledge convergence points 

within the hierarchy. As such, they warrant the designation “complex” and thus should be 

separated out from other concepts for the sake of auditing review. 

 In order to address these issues, the SABOC team has developed—in previous 

research [63]—an additional abstraction network, called the disjoint partial-area 

taxonomy, to properly model the overlapping portion partial-areas as nodes in their own 

right and therefore highlight the regions of complexity within the hierarchy. As it 

happens, the collection of overlapping concepts may represent a tangled hierarchy with 

many concepts exhibiting multi-parentage. The aim in formulating the disjoint partial-

area taxonomy was impose some order on the overlapping concepts by partitioning them 

in such a way as to obtain a collection of concept groups satisfying single-rootedness. 

The details of the disjoint partial-area taxonomy can be found in [63]. In the following, 

the aspects relevant to the proposed auditing regimen are highlighted. 

 The basis for partitioning the overlapping concepts is the notion of overlapping 

root. Basically, such a concept is one that sits at the top of the overlapping concepts, with 

none of its parents themselves being overlapping concepts. In a recursive fashion, 

additional overlapping roots are identified below those at the very top of the overlapping 
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section. As an illustration, the 15 overlapping roots of the area {substance} (2009) are 

shown as multi-colored boxes in Figure 2.2. The multi-coloring is used to indicate which 

area roots—appearing singly-colored at the top—the overlapping roots are descended 

from. For example, the overlapping root Acellular blood (serum or plasma) specimen is a 

descendant of Blood specimen, Body substance sample, and Fluid sample. The uncolored 

concepts are not roots of any kind.  

 Each overlapping root will be the root of its own newly formed concept group. 

The other concepts in a given group are, intuitively, those descendants of the root’s 

(within the area) that are “between” it and other overlapping roots below. Collectively, 

these concept groups, called disjoint partial-areas (or d-partial-areas, for short) constitute 

a partition of the overlapping concepts of an area. 

 To obtain a complete partition of the area, all overlapping concepts are removed 

from the partial-areas in which they originally resided. This leaves the partial-areas with 

only non-overlapping concepts. For consistency, these modified partial-areas are referred 

to as d-partial-areas, too. Therefore, two varieties of d-partial-areas appear here: those 

having area roots and those having overlapping roots. For example, the d-partial-area 

rooted at Body substance sample consists of two concepts, the second being the non-

overlapping concept Stool specimen. The d-partial-area rooted at the overlapping root 

Acellular blood (serum or plasma) specimen contains nine additional concepts, all of 

which are overlapping (see Figure 2.2). 

 The disjoint partial-area taxonomy is constructed from the d-partial-areas, which 

become nodes—within the area nodes—in the network. The labels of these nodes are the 

respective roots (either area or overlapping) of the d-partial-areas. The d-partial-area 
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nodes are connected via child-of’s in a similar manner to those for areas and partial-areas. 

It should be noted that the d-partial-areas having area roots will appear at the top of the d-

partial-area taxonomy; those with overlapping roots will be their descendants. The 

portion of the d-partial-area taxonomy for the area {substance} derived from the excerpt 

in Figure 2.2 can be seen in Figure 2.3. 

As is shown in [63], there is an increase in the level of complexity of the roots of 

the d-partial-areas when proceeding in a top-down traversal of the d-partial-area 

taxonomy. Note that the other concepts in a given d-partial-area carry the same 

complexity as their root. This increasing complexity is taken into account in the auditing 

methodology introduced in this research.  



 

 

 

Figure 2.2  Overlapping roots in the Specimen hierarchy. 25
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Figure 2.3  Portion of d-partial-area taxonomy corresponding to Figure 2.2. 

 

2.2 Methods 

 
As is discussed in the previous section, the overlapping concepts are complex concepts 

due to their multiple classifications with respect to the partial-area taxonomy and are thus 

targeted for auditing. Moreover, in [63], some overlapping concepts are seen to be more 

complex than others when moving down through the hierarchy. With these ideas in mind, 

the following auditing regimen is proposed that utilizes the paradigm of “group-based” 

auditing [2]. In the group-based approach applied to overlapping concepts, the concepts 

are reviewed in groups exhibiting semantic uniformity, that is, all the overlapping 

concepts of a d-partial-area are reviewed together with an eye toward the overlapping 

root which expresses the overarching semantics of the group. Furthermore, the concepts 

in the immediate neighborhood of the overlapping concepts (consisting of parents, 

children, siblings, and targets of relationships) are audited. This “neighborhood auditing” 

may help to uncover propagated errors, which might otherwise be missed if the review 

were limited to the overlapping concepts alone.  
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Since SNOMED is description-logic based [64], relationships are inherited by a 

child concept from its parent(s) along the IS-A hierarchy. Thus, an error such as an 

incorrect relationship will be inherited, too. Furthermore, even an error such as an 

omitted relationship may be “inherited” in the sense that if it is missing from the parent, it 

will probably be missing from the child (unless it is explicitly defined at the child). 

As a consequence, it is preferred in an audit of a group of hierarchically related 

concepts that the review follows a top-down order. Following such an order may help in 

detecting more errors as well as in accelerating the review process. In particular, when a 

child is scrutinized, the auditor is already aware of any errors with the parents and is alert 

to their potential propagation. The topological sort [65] of a directed acyclic graph 

(DAG) – the structure exhibited by a SNOMED hierarchy – offers a traversal of concepts 

in a manner where each is processed only after all its parents have been processed. 

Because the d-partial-areas and their child-of relationships also constitute a DAG [63], 

the disjoint partial-area taxonomy enables the utilization of the topological sort order at 

two different levels: the d-partial-area level and the concept level, with the latter nested in 

the former.  

 The following describes the auditing methodology for overlapping concepts based 

on the disjoint partial-area taxonomy. It should be noted that overlapping roots come in 

two varieties: base and derived. The details can be found in [63]. The important 

distinction between the two in this context is that the base overlapping roots occur toward 

the top of the concept hierarchy and are above all the derived overlapping roots. Also 

note that some d-partial-areas do not have any overlapping concepts at all. They are the 

ones at the very top of the disjoint partial-area taxonomy that were residually left over 
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after the lower-level d-partial-areas – containing overlapping concepts – were removed 

from their original partial-areas. For example, the top d-partial-area Drug specimen (1), 

comprising a single, non-overlapping concept, was left over as a result of extracting the 

d-partial-areas Intravenous infusion fluid sample (2) and Dialysis fluid specimen (1) (see 

Figure 6) from the partial-area also named “Drug specimen” that contained a total of four 

concepts. Those upper-level d-partial-areas are not considered in the auditing 

methodology. 

1. Taxonomy level: The d-partial-areas are processed in topological sort order 

starting with those having base overlapping roots. The processing proceeds 

through their children, grandchildren, etc., down to the very bottom of the 

disjoint partial-area taxonomy. As discussed in [63], the lower d-partial-areas 

are rooted at more complex overlapping concepts. 

2. Concept level: On arrival at a particular d-partial-area in (1), all its 

constituent concepts are reviewed in a topological sort order starting with its 

unique root and processing downwards. The concepts are presented to the 

auditor in an indented hierarchy (textual) former for inspection (see, e.g. 

Figure 1.1). The indented display neatly supports the top-down processing 

where each concept is reviewed only after all its respective parents are 

reviewed.  

Please note that the topological sort order leaves degrees of freedom with regards 

to the order with which the nodes of the graph are visited – and reviewed. For example, 

in a level-by-level traversal, all nodes on a given level are processed before any node on 

the next level. Another choice is a “preorder traversal,” where the processing proceeds 
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from a parent node to its children and even its grandchildren, assuming all their parents 

were already processed at that point. For the effectiveness of the auditing regimen, the 

preorder traversal is recommended. In this way, the scrutiny of a child follows that of the 

parent as quickly as possible, allowing an auditor to more readily retain knowledge of 

errors discovered at the parent and potentially propagating to the child. 

To illustrate the Taxonomy level, the review will begin with the bicolored d-

partial-areas in Figure 2.3, including Exhaled air specimen, Inhaled air specimen, etc. 

Once the review reaches Body fluid sample, the only bicolored d-partial-area with 

children, it proceeds to the bottom level containing eight tricolored d-partial-areas, i.e., 

Acellular blood (serum or plasma) specimen, Peripheral blood specimen, and so on. 

When all child d-partial-areas of Body fluid sample have been audited, the processing 

continues with the rest of the bicolored d-partial-areas, e.g., Dialysis fluid specimen. 

Again, the d-partial-areas of one color in Figure 2.3 do not have overlapping concepts 

and are therefore not part of the auditing regimen. 

Within the d-partial-area Body fluid sample, the Concept level processing would 

begin with the root Body fluid sample and then proceed to its 22 children, including 

Exudate sample and Discharge specimen (Figure 2.2). When a concept with children is 

encountered, the children are processed immediately after the parent to support the 

auditor in detecting error propagation from parent to child. For example, Amniotic fluid 

specimen is followed by its child Cytologic fluid specimen obtained from amniotic fluid. 

An example of a propagation of an error that is easily detectable when reviewing a d-

partial-area can be seen with the concept Synovial fluid specimen in the d-partial-area 

Body fluid sample (Figure 2.2). A missing topography relationship is detected with the 
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target Articular space in the Body Structure hierarchy. The same missing relationship is 

detected for its three children: Multiple joint synovial fluid, Cytologic material obtained 

from synovial fluid, and Synovial fluid joint NOS. Arriving later at the d-partial-area 

Acellular blood (serum or plasma) specimen, the root would be examined first. Note that 

the root’s overlapping parent Body fluid sample would already have been examined 

according to the Taxonomy level ordering. The review of its child Serum specimen and 

its four children would follow. Only after that would the review of the sibling Plasma 

Specimen and its three descendants occur (see Figure 2.2). 

To test the methodology, all the overlapping concepts of SNOMED’s Specimen 

hierarchy are audited. All areas of that hierarchy are considered. 

Two hypotheses are desired to be investigated in regard to this study. The first 

distinguishes between overlapping concepts and non-overlapping concepts. The second 

distinguishes between overlapping roots of d-partial-areas and other overlapping 

concepts. 

Hypothesis 1: Concepts residing in d-partial-areas having overlapping roots (i.e., 

overlapping concepts) are more likely to have errors than concepts residing in d-partial-

areas containing no overlapping concepts. 

Hypothesis 2: Overlapping roots of d-partial-areas are more likely to have errors than 

non-root overlapping concepts. 

 The first hypothesis asserts that these more complex concepts indeed exhibit a 

higher number of errors. The second hypothesis refers to the more significant overlapping 

concepts as the overlapping roots, where the convergence of multiple inheritance paths 

occurs and where higher concentrations of errors are expected.  
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As a basis for comparison a control sample comprising concepts gleaned from 

partial-areas having no overlaps whatsoever are also audited. Both kinds of concepts are 

audited by the same auditors. To compare overlapping concepts with those in the control 

sample, the proportion of erroneous concepts is checked. The d-partial-area is used as the 

unit of analysis, and across levels (because of the small number of concepts at Level 2) 

are aggregated. Both hypotheses are tested for Phases 1 and 2 of the auditing on the two 

releases of SNOMED, two years apart. The double bootstrap [66] is employed and 

Fisher’s exact test two tailed [67] to calculate the statistical significance of the difference 

of the proportions, for Hypothesis 1 and 2, respectively. 

 

2.3 Results 

Two phases of results obtained with respect to two releases of SNOMED are reported. 

Phase 1 for the July 2007 release and Phase 2 for July 2009. In Phase 2, the methodology 

described in the previous section is utilized and based on the disjoint partial-area 

taxonomy. During Phase 1, the methodology was not yet developed and therefore and 

exhaustive audit of all overlapping concepts was carried out without regard to any 

structural configuration or ordering. A preliminary report with some results of Phase 1 

appeared in [68]. 
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Figure 2.4  Area taxonomy for Specimen hierarchy (2009). 

 The results of Phase 1 (see Figure 1.3 and Figure 1.5) were reviewed by Dr. Kent 

A. Spackman (currently the Chief Terminologist of IHTSDO [1]) and those approved by 

him were submitted to CAP [69] for consideration and incorporation into the Specimen 

hierarchy. As a result, there were many changes in the overlapping concepts of this 

hierarchy as reflected in SNOMED’s July 2009 release. The area taxonomy and the 

partial-area taxonomy for the July 2009 release appear in Figure 2.4 and 2.5, respectively. 

A comparison of the area taxonomies of 2007 (Figure 1 in [63]) and 2009 (Figure 2.4) 

exposes many differences in the Specimen hierarchy. For example, the total number of 

concepts with one relationship – which is equal to the sum of the sizes of the (green) 

areas on Level 1 – went down from 468 to 420. At the same time, the area {substance} 

grew from 81 to 107 concepts. The number of areas with three relationships went down 

from seven to five with the loss of the two areas  
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Figure 2.5  Specimen partial-area taxonomy (2009). 
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{morphology, procedure, substance} and {topography, identity, procedure}. On the other 

hand, the area {procedure, topography, substance} grew from 26 concepts in 2007 to 288 

concepts in 2009. 

 Similarly, comparing the partial-area taxonomies for 2007 and 2009 reveals many 

differences. For example, the area {substance} changed from having ten to 11 partial-

areas. But that small numerical change is misleading, as one can guess, considering the 

32% increase in the size of the area. Only six partial-areas did not change. A new partial-

area is Blood specimen with 25 concepts. At the same time, Drug specimen shrank from 

23 to four concepts, mainly due to the removal of blood specimen concepts. Body 

substance sample expanded from 47 to 67 concepts, while Fluid sample grew from 44 to 

55 concepts. Such large changes on the partial-area level seem to indicate an increase in 

the overlap size when compared to the overall increase of 26 concepts observed on the 

area level. As another example, the area {morphology, topography, substance} went from 

having three partial-areas to 12. The area {morphology, topography, procedure, 

substance} grew from one to ten. 

 The number of overlapping concepts increased by 48 from 162 to 210 (30%). 

Clearly, the landscape of the overlapping portions of partial-areas changed meaningfully 

from the time of the July 2007 release. For example, as was predicted above, in the area 

{substance}, there were 35 overlapping concepts in nine d-partial-areas in 2007 (Figure 9 

in [63]), but 48 overlapping concepts in 15 d-partial-areas in 2009 (Figure 2.3).  

 The SABOC team decided that this change warranted the Phase 2 auditing 

involving the July 2009 release’s overlapping concepts. This decision was also motivated 

by the opportunity to apply the new auditing methodology introduced in Section 2.1. The 



35 

 

expectation was that the new methodology employing a detailed order of review would 

expose errors missed during Phase 1. The results of Phase 2 were reviewed by Dr. James 

T. Case of the SNOMED US National Release Center (NRC) at the NLM for possible 

inclusion in the US extension of SNOMED. Any changes approved by him are 

transferred to the IHTSDO for review and potential inclusion in SNOMED’s 

international release. The results of the reviews conducted by Dr. Spackman for the 2007 

release and Dr. Case for the 2009 release serve in this study as validations of the errors 

uncovered by the auditors. Only those approved errors are used in the analysis that 

follows. 

 
2.3.1 Phase 1: Auditing of July 2007 SNOMED 

The July 2007 release of the Specimen hierarchy consists of 1,056 concepts, of which 

162 are overlapping. For its partial-area taxonomy, see Figure 2 in [63]. Most of the 

overlapping concepts reside in Level 1 areas, i.e., those having one relationship. In fact, 

roughly one third (155 out of 468) of the Level 1 concepts are overlapping. And these are 

found primarily in the area {topography} and {substance}. The d-partial-areas of 

{substance} and {topography} can be seen in Figure 9 and 10, respectively, in [63]. 

Overlapping concepts also appear in the partial-areas of areas with two relationships but 

in far fewer numbers. In fact, there are only seven of them. Six are in {topography, 

procedure}, and the other is in {topography, morphology}. 

 For Phase 1, two domain-expert are enrolled (GE and JX), each of whom has 

training in medicine as well as training and experience in medical terminologies. The 

overlapping concepts were reviewed individually by both of them. Their review did not 

follow the current auditing methodology – newly presented herein – but instead involved 
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an examination of all such concepts without regard to any specific order [68]. After that, 

the two together reviewed concepts for which their individual reports differed, and 

discussed the discrepancies until a consensus was reached. A consensus report was given 

to Dr. Spackman for further review, and only his accepted results are reported in this 

section for Phase 1. Note that the current new a posteriori analysis of the results and the 

assessment of the hypotheses are based on the new disjoint partial-area taxonomy 

presented in [63].  

 Table 2.1 presents the results of auditing the 35 overlapping concepts (see Figure 

8 in [63]) distributed across nine d-partial-areas in the area {substance} (Figure 9 in 

[63]). For each d-partial-area, the following are listed: number of overlapping concepts 

V, number of erroneous overlapping concepts Verr, the number of errors Eroot exhibited by 

the overlapping root, and the total number of errors E for all overlapping concepts.  

Table 2.1  Auditing Results for Overlapping Concepts of {substance} Arranged by D-
partial-area 

D-partial-area V Verr Eroot E 
Exhaled air specimen 1 0 0 0
Inhaled gas specimen 1 0 0 0
Fecal fluid sample 1 0 0 0
Acellular blood (serum or plasma) specimen 1 1 1 1
Serum specimen from blood product 1 1 3 3
Serum specimen 2 0 0 0
Plasma specimen 4 1 1 1
Body fluid sample 11 3 17 19
Blood specimen 13 5 2 7
Total: 35 11 24 31

V = # overlapping concepts; Verr = # erroneous overlapping concepts; 
Eroot = # errors at the overlapping root; E = total # errors at overlapping concepts 
 

For example, the largest d-partial-area Blood specimen has 13 concepts, of which 

five were found to be in error. The root Blood specimen had two errors, and overall the d-

partial-area’s concepts had seven. For this d-partial-area, 50% (six out of 12) of the non-
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root overlapping concepts are erroneous, while the root itself exhibits two errors. The 

result, for one example of a d-partial-area, gives support to Hypothesis 2. 

Table 2.2  Auditing Results for Overlapping Concepts by Area 
Area C V D Verr E E/ 

Verr 
E/V Derr Eroot Eroot/

Derr 
Derr 
/D 

(Verr-Derr) 
/(V-D) 

substance 81 35 9 11 31 2.8 0.89 5 24 4.8 56% 23% 
topography 333 116 52 71 110 1.6 0.95 39 62 1.59 75% 50% 
procedure 20 3 3 3 9 3.0 3.0 2 9 4.5 66% N/A 
identity 20 1 1 0 0 N/A 0 0 0 N/A 0% N/A 
topog., 
proc. 

380 6 6 4 9 2.3 1.5 4 9 2.3 66% N/A 

topog., 
morph. 

18 1 1 0 0 N/A 0 0 0 N/A 0% N/A 

Total: 852 162 72 89 159 1.8 0.93 50 104 2.1 69% 43% 
C = # concepts; V = # overlapping concepts; D = # overlapping roots; 
Verr = # erroneous overlapping concepts; E = total # errors at overlapping concepts; 
Derr = # erroneous overlapping roots; Eroot = # errors at the overlapping roots; N/A = Not applicable 
 

The auditing results for all overlapping concepts are listed by area Table 2.2. For 

each area, its total number of concepts C, number of overlapping concepts V, number of 

overlapping roots D, number of erroneous overlapping concepts Verr, total number of 

errors E for the overlapping concepts, number of erroneous overlapping roots Derr, 

number of errors Eroot exhibited by the set of overlapping roots, and a number of relevant 

ratios are shown. For example, {substance} has 81 concepts, of which 35 are 

overlapping. Eleven (31%) of the latter were found to have a total of 31 errors or an 

average of 2.8 per erroneous concept, as detailed in Table 2.2. The ratio of the total 

number of errors at the overlapping concepts to the number of overlapping concepts is 

0.89. Of the nine overlapping roots, five (56%) were found to be in error – with a 

combined 24 errors among them (or 4.8 errors per erroneous root). But only 23% (= (11-

5)/(35-9)) of the non-root overlapping concepts had errors. Let us note that for some 

areas (e.g., {procedure}), the ratio in the last column is not applicable (undefined) since 

singletons (i.e., d-partial-areas containing just one concept) have no non-root overlapping 

concepts. Other ratios may not be applicable due to a lack of errors. Nevertheless, the 



38 

 

total ratios at the bottom of the table are defined across all the areas with overlapping 

concepts. 

Table 2.3  Results of Auditing Intersections Involving partial-area Tissue specimen 

Second Partial-Area C V Verr Verr / V (%) 
Specimen from eye 18 12 8 67
Ear sample 2 1 0 0
Specimen from breast 8 4 2 50
Cardiovascular sample 13 3 1 33
Products of conception tissue sample 12 1 1 100
Genitourinary sample 73 20 17 85
Dermatological sample 6 2 0 0
Specimen from digestive system 74 29 18 62
Musculoskeletal sample 35 22 15 68
Respiratory sample 41 6 5 83
Endocrine sample 12 3 0 0
Specimen from central nervous system 4 1 0 0
Spec. from thymus gland 2 1 0 0
Specimen from trophoblast 2 1 0 0
 

Most overlapping concepts in {topography} are found in intersections of partial-

areas involving Tissue specimen containing 126 concepts. These results have been 

tabulated separately in Table 2.3. For example, the partial-area Specimen from eye has 18 

concepts. Its intersection with Tissue specimen has 12 of them. Eight of those are in error.  

The control sample was gleaned from partial-areas from partial-areas that had no 

intersections whatsoever with other partial-areas and from d-partial-areas having no 

overlapping concepts (i.e., those left over after the removal of the d-partial-areas with 

overlapping concepts from a partial-area; see, e.g., the six d-partial-areas at Level 1 of 

Figure 2.3). Furthermore, only partial-areas that contained more than one concept are 

used. The reason for the last requirement is that, as alluded to, partial-areas of one 

concept are already known to be error-prone [41, 70]. Thus, they do not make for a 

proper control sample.  
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A control sample of 78 concepts is used from Level 1, half of its overlapping 

concepts (155). From Level 2, seven concepts are gathered for the control sample, an 

equal number to the overlapping concepts. Hence, there are 155+7=162 overlapping 

concepts, and the control sample has 78+7 = 85 concepts. Since the purpose was to audit 

overlapping concepts, a smaller control sample is used that was large enough to support 

statistical significance for the result presented below. 

Table 2.4  Auditing Results for Overlapping Concepts vs. Control Sample (Phase 1) 
 C E E / C Cerr Cerr/C(%) E/Cerr 
Overlapping 162 158 0.98 89 55 1.8 
Control Sample 85 31 0.36 25 29 1.2 

 

Table 2.4 gives the results of the auditing carried out on these two groups of 

concepts. C denotes the number of concepts, E (Column 3) denotes the total number of 

errors, and Cerr  is the number of erroneous concepts (Column 5) – with a given concept 

potentially having more than one error. The average erroneous – concept rate among the 

overlapping concepts was 55%, and among the control sample it was 29% (Column 6). 

The difference was significant (using the double bootstrap [71]) at the 0.05 level, 

supporting Hypothesis 1. Let us point out that there was nearly one error (0.98) on 

average per overlapping concept as compared to 0.36 on average within the control 

sample (Column 4). Moreover, erroneous concepts in the overlapping group had 1.8 

errors on average (last column) versus 1.2 errors on average for the control sample, 

showing further difference between the two. 

In examining the auditing results, overlapping roots are found to be more error-

prone than other overlapping concepts. For example, in {procedure} and {topography, 

procedure}, all errors are found in overlapping roots. As shown in Table 2.2, in the area 
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{substance}, five out of nine roots (55%) versus six (= 11-5) out of 26 (=35-9) non-root 

overlapping concepts (23%) were found to be erroneous. To assess Hypothesis 2, the data 

from Table 2.2 are used for the entire collection of overlapping concepts. The percentage 

of erroneous concepts for overlapping roots is 69% (=50/72). The percentage of 

erroneous concepts in the set of non-root overlapping concepts is 43% (=(89-50)/(162-

72)). The difference in the percentages of erroneous concepts between the overlapping 

roots (69%) and the non-root overlapping concepts (43%) is statistically significant 

(Fisher’s exact test two-tailed [67], p-value = 0.0014), supporting Hypothesis 2. 

 
2.3.2 Phase 2: Auditing of July 2009 SNOMED 

For Phase 2, three domain-experts (GE, JX, and YC) are enrolled, each of whom has 

training in medicine as well as training and experience in medical terminologies. The 

overlapping concepts were reviewed individually by each of the auditors, according to 

the methodology described above. That is, the concepts of each d-partial-area’s root. 

Furthermore, if one d-partial-area is the child of another, the review of the concepts of the 

parent precedes the review of the concepts of the child. The experts reviewed the 

overlapping concepts for eight types of errors, enumerated on a given form. Their 

findings were anonymized and summarized. The three experts were requested to review 

the summarized report, and they marked whether they agreed or disagreed with the errors 

listed. 
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Table 2.5  Sample of Error Types of Overlapping Concepts for July 2009 Release 
Concept Partial-areas Error Type(s) Correction(s) 
Serum specimen 
from blood 
product 

Blood specimen / Fluid 
sample/Body substance 
sample 

Missing parent Add parent: Blood 
specimen from 
blood product 

Dentin specimen Specimen from 
digestive 
system/Specimen from 
head and neck structure 

Incorrect Parent: 
Oral cavity sample 

Correct parent: 
Specimen from 
tooth 

a.m. serum 
specimen 

Blood specimen/Fluid 
sample(specimen)/Body 
substance sample 

Missing 
relationship 

Add relationship: 
TIME_ASPECT 
with the value of – 
am-ante meridiem 

Specimen from 
tooth 

Specimen from 
digestive 
system/Specimen from 
head and neck structure 

Incorrect 
relationship target: 
Oral cavity 
structure 

Refine with: Tooth 
structure 

Specimen 
obtained by fine 
needle aspiration 
procedure 

Specimen obtained by 
aspiration/Biopsy 
sample 

Missing child Add children: 
*Breast fine needle 
aspirate sample; 
*Soft tissue lesion 
fine needle aspirate 
sample; 
*Specimen from 
heart obtained by 
fine needle 
aspiration 
procedure; 
*Specimen from 
thymus gland 
obtained by fine 
needle aspiration 
biopsy 

Tissue specimen 
from placenta 

Tissue specimen from 
genital system/Products 
of conception tissue 
sample 

Other error type: 
missing ancestor 
“Soft tissue 
sample” 

Create a proper 
concept to parent it 
in the “Soft tissue 
sample” tree. 

 

 In the Phase 2 review, a better agreement regarding the combined reported results 

is tried to be achieved. One expert might have overlooked an error discovered by another, 

and may have agreed with it, once the potential error was reported. The level of 

agreement improved after the second-stage review. All overlapping concepts are reported 
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as potential errors to the SNOMED United States NRC having at least one auditor 

reporting an error for them. The report was reviewed by Dr. Case (who works at the 

NRC). Only errors confirmed by him are considered in the results presented in the 

following. 

 A sample of different types of errors agreed upon by all three auditors is listed in 

Table 2.5. For example, it was agreed that Serum specimen from blood product is missing 

a parent Blood specimen from blood product that should be added. Table 2.6 summarizes 

the number of occurrences for each type of error found in the overlapping concepts of the 

July 2009 release reported to the NRC. Missing parents, for example, were found for 23 

concepts.  

Table 2.6  Distribution of Types of Errors in the Second Phase of Auditing Overlapping 
Concepts 

Error Type # Concepts 
Missing parent 23 
Incorrect parent 22 
Missing child 6 
Incorrect child 2 
Missing relationship 55 
Incorrect relationship target 2 
Other error type 6 

 

The auditing results for Phase 2 are listed by area in Table 2.7, in the same format 

used in Table 2.2 for Phase 1. In this case, for example, {topography} has 249 concepts, 

with 110 of them being overlapping. Fifty-two out of the 110 (47%) were found to have a 

total of 57 errors or an average of 1.10 per erroneous concept. The ratio of the total 

number of errors to the number of overlapping concepts is 0.52. Twenty of the 37 

overlapping roots (54%) were found to be in error – with a combined 22 errors among 
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them (or 1.10 errors per root). Finally, 44% (=(52-20)/(110-37)) of the non-root 

overlapping concepts had errors. 

For the entire set of overlapping concepts summarized in the bottom row of Table 

2.7, 127 out of 210 (60%) were found to be erroneous. This result is applicable in 

assessing Hypothesis 1 (as shown in Table 2.8).  

Table 2.7  Phase 2 Auditing Results for Overlapping Concepts by Area 
Area C V D Verr E E/ 

Verr 
E/ 
V 

Derr Eroot Eroot 
/Derr 

Derr 
/D 

(%) 

(Verr-
Derr) 

/(V-D) 
substance 107 48 15 28 36 1.29 0.75 8 11 1.38 53 61% 
topography 249 110 37 52 57 1.10 0.52 20 22 1.10 54 44% 
procedure 23 2 1 1 1 1.00 0.50 1 1 1.00 100 0% 
topog., proc. 244 29 16 28 38 1.36 1.31 15 19 1.27 94 100% 
topog., subst. 171 5 4 3 4 1.33 0.80 3 4 1.33 75 0% 
subst., 
topog., proc. 

288 16 14 15 25 1.67 1.56 14 23 1.64 100 50% 

Total: 1,082 210 87 127 161 1.27 0.77 61 80 1.30 70 54% 
C = #concepts; V=#overlapping concepts; D=#overlapping roots; 
Verr = #erroneous overlapping concepts; E=total #errors; 
Derr = # erroneous overlapping roots; Eroot = #errors at the roots; 
 

The control sample for Phase 2 was taken strictly from partial-areas and d-partial-

areas that had no intersections whatsoever. As with Phase 1, only partial-areas that 

contained more than one concept are used. The sample consisted of 111 concepts from 

the same areas as the overlapping concepts. And as in Phase 1, the number of sample 

concepts taken from areas with small numbers (i.e., 2 – 16) of overlapping concepts was 

about the same as the number of overlapping concepts taken from those areas. The 

sample concepts numbered about half the overlapping concepts for areas with larger 

numbers of overlapping concepts. As with Phase 1, the purpose was to audit overlapping 

concepts, and a smaller control sample is used that was nevertheless big enough to 

support statistical significance of the result. 

Like Table 2.4, Table 2.8 juxtaposes the results of auditing the overlapping 

concepts and those in the control sample. The average erroneous-concept rate among the 
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overlapping concepts was 60%, versus 31% for the control sample (Column 6). The 

difference was significant at the 0.05 level, supporting Hypothesis 1. Let us note that 

there were 0.77 errors on average per overlapping concept as compared to 0.32 on 

average within the control sample (Column 4). Erroneous concepts in the overlapping 

group had 1.27 errors on average (last column) versus 1.03 errors on average for the 

control sample, showing further difference between the two samples.  

Table 2.8  Auditing Results for Overlapping Concepts vs. Control Sample (Phase 2) 
 C E E/C Cerr Cerr/C(%) E/Cerr 
Overlapping 210 161 0.77 127 60 1.27 
Control Sample 111 36 0.32 35 32 1.03 

 

For the assessment of Hypothesis 2, the results obtained for all overlapping 

concepts are used, reflected in the bottom row of Table 2.7. Among the 87 overlapping 

roots, 61 (70%) were erroneous, while for the 123 (=210 - 87) non-root overlapping 

concepts, 66 (=210-87 or 54%) were found to be in error. The difference in the 

percentages of erroneous concepts between the overlapping roots (70%) and the non-root 

overlapping concepts (54%) is statistically significant (Fisher’s exact test two-tailed, p-

value = 0.0217). 

 

2.4 Discussion 

 
2.4.1 Auditing Theme: Complex Concepts 

This study is motivated by a general theme that more “complex” concepts tend to have 

more errors than simpler concepts. The theme of being more complex may manifest itself 

in a variety of ways. One manifestation of this theme for partial-areas was the group of 

concepts residing in “strict inheritance” partial-areas [70]. In the context of the present 
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work, this theme appears twice: the first time in identifying overlapping concepts as more 

complex than non-overlapping concepts due to their elaborating the multiple semantics of 

the multiple partial-areas they belong to; the second in the distinction between 

overlapping roots and non-root overlapping concepts. The reason for the higher 

complexity of overlapping roots stems from their being at the junction points where 

multiple hierarchical paths from ancestors converge. Each such path contributes a portion 

of a diverse collection of inherited knowledge at the overlapping root. Hypothesis 1 

addresses the first appearance. Hypothesis 2 pertains to the second.  

 As was also shown in [70] with regards to strict inheritance partial-areas, the 

results of the study confirm the auditing theme that complex concepts have relatively 

more errors. In view of the fact that modeling complex concepts is more challenging than 

modeling simpler concepts, it is not really surprising to find more errors in the former. 

The research challenge is to discover various characterizations of “complex” concepts. In 

particular, it is fruitful to identify structural characterizations that can be computed 

automatically, as in the current study and in [70]. The higher error rate shown here and in 

[70] will help achieve higher productivity from quality-assurance personnel in their 

review of such concepts. It is suggested that the design of partial area taxonomies and the 

auditing of the complex concepts discussed here and in [70] should become integral parts 

of the design cycle for terminologies such as SNOMED and the NCIt [41]. Such 

techniques will also help interface terminologies such as Kaiser-Permanente’s CMT [72]  

or the VA’s ERT [73], which were derived initially from SNOMED and were enhanced 

with local vocabulary as well as integrated parts of other terminologies. It is a research 



46 

 

challenge to identify more manifestation of complex concepts using taxonomies or other 

structural techniques for SNOMED and similar terminologies. 

 One may wonder why there are more errors in overlapping roots than there are in 

other overlapping concepts (as stated in Hypothesis 2), in spite of the expectation that this 

methodology will expose error propagation from parents to children, which implies that 

errors at an overlapping root would be “inherited” by the other concepts in its d-partial-

area. One should realize that indeed missing or incorrect relationship errors are 

“inherited,” but that is not true of other errors, e.g., an incorrect parent. Furthermore, 

many d-partial-areas have just a single concept (which serves as the respective root), with 

no children below to inherit the errors. Hence, this methodology is designed to expose the 

cross-generational error propagation to the extent that it exists. 

 
2.4.2 Repeated Application of an Auditing Methodology 

In previous research [2, 70], various methodologies for auditing a SNOMED hierarchy 

are presented. A question to consider is whether there is a reason to reapply the same 

auditing technique to the hierarchy obtained following corrections derived from the 

earlier auditing phase that used the same technique. Should it be assumed that not all 

errors were found and corrected? In the context of this research, the question was: should 

the overlapping concepts be audited again following the first phase reported in [68]? 

Furthermore, how many times should the same technique be applied? Another way to 

phrase this last question is: how do we identify the convergence of the auditing process? 

 We had several reasons to re-audit the overlapping concepts. First, in Phase 1, we 

just audited the set of all overlapping concepts without utilizing any structure among 

them. In this paper, we introduced the new “group auditing” methodology of overlapping 
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concepts where d-partial-areas were utilized as the grouping unit following the new 

framework described in [63]. Furthermore, the new methodology employs a top-down 

ordering within each d-partial-area and among various d-partial-areas. 

 Another reason for repeating the auditing on the overlapping concepts is the large 

increase in their numbers and the number of d-partial-areas. For example, see Figure 2.3 

for the d-partial-areas in the area {substance} in comparison to the corresponding Figure 

9 that appeared in [63]. In Figure 9 of [63], only four d-partial-areas without overlapping 

concepts are seen at the first level and nine d-partial-areas comprising overlapping 

concepts. In Figure 2.3, showing the overlapping concepts of {substance} in 2009, there 

are six top d-partial-areas without overlapping concepts and 15 d-partial-areas with 

overlapping concepts. Moreover, when one reviews the details of the two figures, many 

internal changes can be seen. For example, the d-partial-area Body fluid sample had 11 

concepts in 2007 and 23 in 2009. Blood specimen had 13 overlapping concepts in Level 3 

originally, and in 2009 it is a top d-partial-area of one concept only. It has eight child d-

partial-areas containing 18 overlapping concepts on Level 3, which are shared jointly by 

the parent d-partial-area Body fluid sample (see Figure 2.3). The latter was a parent of 

Blood specimen in Figure 9 of [63]. Obviously, such changes reflect an entire remodeling 

of many overlapping concepts. 

 When realizing the extent of the changes, it was possible that new errors were 

introduced and that the new d-partial-taxonomy would lead to exposure of errors not 

reported in the review of the 2007 release. The results shown in Table 2.7 justify the 

decision for the second auditing phase. While a meaningful amount of errors are expected 

to be found in Phase 2, it is surprising by their magnitude. Both the percentages of the 
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erroneous concepts among overlapping concepts (60% vs. 55%) and among overlapping 

roots (70% vs. 69%) were little changed in spite of this being a second round of auditing. 

Part of the explanation may be the improved methodology employed in this study. 

Another reason may be the large increase in the number of overlapping concepts (from 

162 to 210). A further factor might be that in practice the proper modeling of these 

complex concepts demands more than one iteration. 

 On the other hand, the ratio of errors per erroneous concept was reduced (0.93 to 

0.77) for all overlapping concepts, as was the ratio for erroneous overlapping roots (2.1 to 

1.3). Hence, while the percentage of erroneous concepts persisted, the average number of 

errors fell. That is, fewer concepts with multiple errors are found. This last observation 

seems in line with the speculation above that multiple iterations are required for the 

proper modeling of complex concepts. 

 One could certainly question the expectation of the need for an additional phase 

of auditing after all corrections from the overlapping concept regimen have been 

implemented. That is particularly true when the corrections have made their way into 

SNOMED’s international release following the report of Dr. Case (at the NRC) to 

IHTSDO. To better understand the phenomenon of finding more errors in a subsequent 

phase of auditing overlapping concepts mentioned above, one needs to keep in mind the 

restructuring undergone by d-partial-areas due to the discovered errors. For example, in 

the description of the methodology in Section 2.1, a concept Synovial fluid specimen in 

the d-partial-area Body fluid sample are mentioned, which together with its children is 

missing the relationship topography to Articular space. But reviewing the complete audit 

report for the overlapping concepts in {substance}, one may realize that the same concept 
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was found to have an incorrect parent, Body fluid sample, which was replaced by Joint 

fluid specimen. This latter concept was independently found to be missing the same 

topography relationship, as was its child Cytologic material obtained from joint fluid. 

Furthermore, another concept Synovial fluid cells in the area {topography} was also 

made a child of Synovial fluid specimen instead of Synovial sample. What is seen is that a 

movement of many concepts into the d-partial-area rooted at Joint fluid specimen, which 

before had only one child. Moreover, this d-partial-area would move from the area 

{substance} to the area {substance, topography} due to the additional topography 

relationship. When all these corrections are incorporated into a future release of 

SNOMED, the d-partial-area taxonomy will convey the refined modeling of all joint fluid 

specimen concepts, contributing to better overall comprehension. However, this new 

modeling may expose errors not yet detected and deserves the analysis provided by the d-

partial-area taxonomy. 

 If the new d-partial-area taxonomy for the Specimen hierarchy obtained as a result 

of the Phase 2 audit, and possibly reflecting a future release of SNOMED, were to differ 

meaningfully from the d-partial-area taxonomy of the 2009 release of SNOMED, then it 

may be advisable to reapply the auditing utilizing this new view. 

 
2.4.3 Error Rates and the Complexity of the d-partial-area taxonomy 

In Phase 1 of auditing, the bulk of the erroneous overlapping concepts and the 

overlapping concept errors occur for the areas {substance} and {topography}. It is 

interesting to compare the various ratios of errors for these two areas. The percentage of 

erroneous overlapping concepts in {topography} (61%) is about double that in 

{substance} (31%). However, when measuring the ratios of errors to overlapping 
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concepts, the values for the two areas 0.95 and 0.89, respectively, are close. This is a 

result of a much higher ratio of errors to erroneous concepts for {substance} (2.8) than 

for {topography} (1.6). This observation indicates a correlation between the ratio of the 

number of errors to the number of erroneous concepts and the level of complexity of 

overlapping concepts, as expressed in the structure of the disjoint partial-area taxonomy. 

As was discussed and shown in Figure 9 and 10 in [63], the nature of the overlap is much 

more complex for {substance} with several levels in its disjoint partial-area taxonomy, 

while it is simpler and relatively flat for {topography}. 

 
2.4.4 An Audit Report from Several Auditors 

The auditing in Phase 1 was performed by two of the auditors (GE, JX) who are MDs 

with experience in medical terminologies. Their error report was obtained by a consensus 

from their individual findings. Only these errors, which were approved by Dr. Spackman, 

where corrected in SNOMED’s July ’08 release. Anecdotal evidence from the auditors 

was that the face-to-face consensus process seemed to follow more of a social give-and-

take rather than a deep investigation about the concepts. Similar anecdotal evidence was 

obtained for a study of auditor performance regarding a consensus-building stage [74]. 

 As a result, the SABOC team decided in the Phase 2 auditing to avoid the 

discussion-based, consensus-building effort. Instead, a combined report derived from the 

three auditors’ Phase 2 reports is circulated. This report was anonymized and contained 

listings of the number of auditors for each identified error. In this second stage, each 

auditor was asked to indicate their agreement with each of the errors. Errors that had the 

support of at least one auditor were submitted to Dr. Case for further review. It seems that 

a second review of others’ audit reports carried out by each auditor individually without 
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the pressure of direct social interaction is functioning well in achieving an agreement 

level. Not only was a better level of agreement reached, but auditors backing off from 

certain errors were witnessed, when noticing that the other auditors did not mark them. 

 
2.4.5 Limitations and Future Work 

As can be seen from Tables 2.4 and 2.8, according to all reported measures, there is a 

significantly higher return for the auditing effort obtained for the overlapping concepts 

compared to concepts in partial-areas without overlaps. Such higher return seems to 

justify concentrating auditing efforts on the more complex overlapping concepts. The 

results confirm Hypothesis 1. More experiments with different and larger hierarchies of 

SNOMED and similar terminologies, e.g., NCIt [41], are needed to further confirm the 

finding. One idea expressed in [63] that was not confirmed by the current study was that 

“derived” overlapping roots (of d-partial-areas) would be more error-prone than “base” 

overlapping roots due to their higher complexity. The current results did not support such 

a phenomenon. Future studies should look again at whether this extra inherent 

complexity manifests itself in higher error rates in other SNOMED hierarchies. 

 SABOC team’s interest in this research was not in studying the auditing process 

per se, but in the distribution of the unquestionable errors resulting from it. Auditor 

performance and the impact of various protocols in achieving better agreement among a 

group of auditors may be investigated in the future. 

 

2.5 Summary 

The SABOC team proceeded from the assumption that “complex” concepts warrant 

particular attention in quality assurance activities pertaining to SNOMED. Toward that 
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end, an auditing methodology based on a refined abstraction network for a SNOMED 

hierarchy is presented, called the disjoint partial-area taxonomy, formulated in [63]. The 

complex concepts in this study were taken to be those residing in elements of the disjoint 

partial-area taxonomy that represented certain overlapping subsets of portions of a 

SNOMED hierarchy. These so-called overlapping concepts in the Specimen hierarchy (in 

two different releases of SNOMED) were identified programmatically and then put 

through rigorous audits. Comparing these auditing results with those from control sets, a 

statistically significant of higher error rate among the overlapping concepts is found. 

Furthermore, among the overlapping concepts, roots have a statistically significantly 

higher error rate than do non-roots. Thus, the auditing methodology based on disjoint 

partial-area taxonomy and its overlapping concepts can be seen as an important addition 

to the existing suite of SNOMED and SNOMED-related terminology auditing regimens. 
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CHAPTER 3  

AUDITING SNOMED RELATIONSHIPS USING A CONVERSE 
ABSTRACTION NETWORK 

 

In SNOMED, a given kind of relationship is defined between two hierarchies, a source 

and a target. Certain hierarchies (or subhierarchies) serve only as targets, with no 

outgoing relationships of their own. However, converse relationships—those pointing in 

a direction opposite to the defined relationships—while not explicitly represented in 

SNOMED’s inferred view (the definition of inferred view was referred to Chapter 1 

Section 1.2.2), can be utilized in forming an alternative view of a source. In particular, 

they can help shed light on a source hierarchy’s overall relationship structure. Toward 

this end, an abstraction network, called the converse abstraction network (CAN), derived 

automatically from a given SNOMED hierarchy is presented. An auditing methodology 

based on the CAN is formulated. The methodology is applied to SNOMED’s Device 

subhierarchy and the related device relationships of the Procedure hierarchy. The results 

indicate that the CAN is useful in finding opportunities for refining and improving 

SNOMED. 

 

3.1 Introduction 

A particular hierarchy may serve as a source for one relationship and the target for 

another. Certain hierarchies have no outgoing relationships of their own. Such a hierarchy 

is called a strict target hierarchy (or subhierarchy, when appropriate). 

Even though a strict target hierarchy has no relationships, it does exhibit converse 

relationships—i.e., those pointing in the opposite direction to the existing incoming 
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relationships. While these relationships are not explicitly represented in SNOMED’s 

inferred view, available, for example, through the CLUE browser, they are, however, 

often utilized in data retrieval tasks or in the formation of expressions in clinical 

environments. They can be employed in providing an alternative view of a source 

hierarchy’s relationship structure. A new kind of abstraction network, called the converse 

abstraction network (CAN), is introduced to represent and display a hierarchy’s concepts 

according to their distribution of converse relationships. This network is automatically 

derived from the underlying inferred view of the concept network. The CAN offers a 

unique perspective on the source hierarchy’s relationships that differs significantly from 

the original design view and therefore can bring unexpected structural features to light. 

The SABOC team avail themselves of this unique perspective by defining an 

auditing methodology that utilizes the CAN and is applicable to the source hierarchy. The 

methodology is applied to the Device subhierarchy (of the Physical Object hierarchy) and 

the device relationships of the Procedure hierarchy. Potential improvements to the 

relationship configuration discovered through this process are presented. 

 

3.2 Auditing Using Converse Abstraction Network 

More than half of SNOMED’s hierarchies are strict target hierarchies, with only 

incoming relationships. The Device subhierarchy is an example. The Procedure hierarchy 

targets it with five defining relationships: procedure device, using access device, direct 

device, using device, and indirect device. Each describes devices associated with a 

particular procedure. Procedure device subsumes the others in a role hierarchy [1]. The 

current analysis involves converse relationships derived from SNOMED’s inferred view. 
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 Specifically, a non-nested transform of SNOMED’s original DL representation available 

from the relationships table is used. 

 
3.2.1 Converse Relationship 

Let us start with the definition of converse relationship with respect to SNOMED’s 

inferred view. After that, the CAN is defined. Lastly, an auditing methodology is 

introduced based on the CAN. 

 
Figure 3.1  Example of converse relationship. 

 
Consider the concepts Cannular procedure (from the Procedure hierarchy) and Cannula 

(from Device), connected by the relationship procedure device (Figure 3.1). The converse 

relationship of procedure device is defined to be the relationship that reverses its 

direction, connecting Cannula to Cannular procedure. In this case, it is called associated 

procedure (see the dashed arrow in Figure 3.1). A converse relationship r′ will have a 

name derived from its original relationship r. 

 
3.2.2 Converse Abstraction Network 

As mentioned in previous chapters, various auditing methodologies are formulated based 

on the area taxonomy and partial-area taxonomy [2, 70]. Both are derived from a 

hierarchy that is the source of relationships. Please note that these taxonomies and their 

accompanying auditing are not appropriate for a strict target subhierarchy such as Device. 

In this chapter, a new abstraction network is presented that is applicable in such 

circumstances. 
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A new kind of abstraction network is defined, called the converse abstraction 

network (CAN), on the side of the target hierarchy of relationships in SNOMED’s 

inferred view. Unlike the taxonomies of the previous work, the CAN is not a purely 

hierarchical structure reflecting logical concept subsumption and relationship inheritance. 

In fact, inheritance is not a characteristic of the converse relationships that is derived. 

Therefore, such inheritance is not reflected in the CAN. Moreover, the partial areas 

defined with respect to the CAN do not necessarily have the level of hierarchical 

cohesion found in the partial areas previously derived, as will be described. 

Two concept groupings for the converse relationships of a SNOMED target 

hierarchy are defined. Let r1′, r2′,…, rn′  be converse relationships. The area of r1′, r2′,…, 

rn′ to be the set of concepts with exactly these converse relationships are defined. An area 

is named by its unique set of relationships (written in braces). An example is the area 

{used for access by proc, used by proc} (“proc” short for procedure), a set of 48 

concepts from the Device subhierarchy. One of its concepts is Endoscope, which is a 

target of two relationships, using access device and using device. 

It is possible that some concepts within a hierarchy are not targets of any 

relationships at all. For these, an additional area is defined, denoted ∅ (read “having no 

converse relationships”), to hold them. Collectively, the areas of a given hierarchy form a 

partition of that hierarchy. That is, each concept belongs to one and only one area.  

The second grouping is derived from the first and is hierarchical in nature. Within 

an area A, a concept is a root if none of its ancestors is also in A. For each root O of A, a 

set called the partial area containing O and all its descendants in A is defined. The partial 

area is denoted as O. For example, the concept Endoscope is a root of {used for access by 
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proc, used by proc}. It and its 41 descendants (e.g., Fetoscope) in that area form a partial 

area. 

In a taxonomy [2, 70], the subhierarchy residing in a partial area is completely 

connected. However, a partial area of a CAN may be disconnected. For example, 

Ureteroscope is in its grandparent Endoscope’s partial area. But its parent, Urinary 

endoscope, resides in an entirely different area, {used for access by proc}, thus upsetting 

the connectedness. 

The areas and partial areas serve to give an indication of the converse relationship 

sources within a hierarchy and their associated hierarchical arrangement. For the purpose 

of visualization, a network structure based on the areas and partial areas is defined. This 

directed network is referred to as the converse abstraction network (CAN). Each node of 

the CAN represents an area. Within an area node, embedded nodes are found, each of 

which represents a partial area. The edges of the CAN are defined between partial areas 

residing in different areas as follows. Let O be a root and let P be its parent. Recall that P 

resides in a partial area, say, LP that must be in an area different from O’s. Then there 

exists an edge directed from partial area O to LP. As examples, there are three partial 

areas Urinary endoscope, Otoscope, and Rigid tracheoscope in the area {used for access 

by proc}. The roots of the first two are children of Endoscope, and the root of the third is 

a grandchild of Endoscope via the parent Rigid scope. Thus, there is an edge from each of 

these three partial areas to the partial area Endoscope. The parent of Endoscope is Scope 

AND/OR camera, residing in the area ∅. As a special case, the edge in this circumstance 

goes from the partial area Endoscope to ∅. As it happens, the CAN is not a hierarchical 

network (e.g., a lattice). 
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The CAN provides a compact abstract view of the content of a hierarchy 

organized according to the concepts’ sets of converse relationships and their IS-A 

arrangements. For example, there are 2,985 device concepts without any incoming 

relationships, and six medical balloon devices targeted by using device relationships. 

The CAN’s importance comes to light in the context of auditing relationships 

from one SNOMED hierarchy to another, target hierarchy. As in the previous work [2, 

70], the SABOC team is looking for unexpected structural features in the CAN that could 

possibly be manifestations of underlying problems. For example, the concepts in ∅ have 

no incoming relationships whatsoever. There are also general device concepts (e.g., 

Catheter) in small partial areas having many converse relationships, while their 

descendants (e.g., Vascular catheter) appear in partial areas with fewer relationships. 

Such unexpected arrangements deserve attention from an auditor. In the auditing work, 

one needs to consider the original relationship targeting such (device) concepts and their 

related (procedure) source concepts. The goal in this is to find opportunities for 

refinement and improvement of SNOMED’s relationship structure; or, in fact, to further 

validate the existing structure. 

 

3.3 Results 

The Device subhierarchy exhibits a total of five converse relationships, mentioned above, 

directed to the Procedure hierarchy. A portion of its CAN is shown in Figure 3.2. Overall, 

it has 22 areas and 260 partial areas. The number in parentheses in a partial area node 

indicates its number of member concepts. The CAN of the Device subhierarchy is not a 

pure hierarchical structure. In fact, one can see edges emanating from the same partial 



59 

 

area (e.g., Biliary T-tube) pointing upward and downward. However, the SABOC team 

does lay the CAN out in levels and color-code them according to the number of 

relationships of the various areas. For example, the green area {used for access by proc} 

is on Level one with four partial areas (e.g., Urinary endoscope) and five concepts. The 

pink area with all five converse relationships is on Level five. It has one partial area 

Catheter. If not all partial areas are shown for an area, then the numbers of concepts and 

partial areas are written in parentheses. For example, {used for access by proc, used by 

proc} has 48 concepts and six partial areas. The largest partial area is Endoscope (42). 

A review of Device’s CAN reveals many interesting structural features, 

enumerated in the following. (1) The vast majority of devices (2985, 78%) are not being 

pointed to by any procedures. (2) An edge pointed downward may exist from a partial 

area with fewer relationships to a partial area with more. E.g., Urinary endoscope (Level 

1) has an edge to Endoscope (Level 2). (3) Many partial areas are singletons, meaning 

they contain only one concept each. (4) Some small partial areas are of a very broad 

nature, such as Catheter and Drain. (5) Certain partial areas include extremely high-level, 

non-specific devices, such as Device itself, which subsumes all the devices in all the 

CAN’s partial areas. (6) Certain partial areas are pointed to by one or very few 

procedures. (7) Devices of a similar nature, such as Venous catheter and Arterial 

catheter, reside in different areas. 

These features were used to focus the auditing efforts on certain concepts and 

relationships of the Procedure hierarchy (targeting Device), and thus provided 

opportunities to find potential errors that would probably not be detected directly from 

the Procedure hierarchy. In the following discussion, examples are provided pertaining to 
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these observed features and review their value as indicators of potential errors or 

improvements in the modeling. 

 

3.4 Discussion 

The CAN exhibits properties that differentiate it from the previous partial area 

taxonomies [2, 70]. For example, with partial area taxonomies, there is inheritance of 

relationships among partial areas along the child-of hierarchy. No such inheritance is 

guaranteed for the CAN. For example, Vascular Catheter is in the red area {used for 

access by proc, acted on directly by proc, used by proc} and has an edge directed to the 

Catheter partial area (in the pink, Level-five area). Two of the relationships are not 

appearing for Vascular Catheter. In the figure, this is manifested by the edge pointing 

downward, while in the partial-area taxonomy the child-of relationships point up to areas 

with fewer relationships. 
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Figure 3.2  CAN of the Device sub-hierarchy. 

Intracavitary brachytherapy is a procedure that does not have any device relationship. 

However, the procedure achieves sufficient definition by using another relationship, 
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method to Brachytherapy – action. Due to this, Brachytherapy implant does not have any 

incoming relationships and resides in ∅.  

Additionally, the Device subhierarchy does not use inheritance of attribute values 

but instead relies on the notion of refinability. A refinability value is assigned to every 

relationship type between a pair of concepts, usually at some ancestral level. As a result, 

many descendant concepts will reside in ∅. For example, Charnley total hip prosthesis 

resides in ∅ along with its siblings. However, the procedure Total hip replacement points 

to the parent device, Total hip replacement prosthesis. Thus, the procedure achieves 

sufficient definition while allowing the device to be refined as needed by the procedure’s 

descendants. 

However, from a user perspective, as in a decision-support system or other 

terminology-driven systems, such an arrangement may be perceived as deficient. If one 

wants to select a specific endoscope for a gastrointestinal procedure while that procedure 

is sufficiently defined with the device Endoscope, one may be able to select, say, 

Otoscope as the device. And since the Device subhierarchy does not have any outgoing 

relationships, the devices cannot be defined by the body systems or organs they act upon. 

The CAN also highlights the fact that a partial area may have a downward edge 

directed to another partial area with fewer relationships. For example, Urinary 

endoscope, its child Nephroscope, and its sibling Otoscope reside on Level 1. However, 

all three are children/descendants of Endoscope and have other siblings that reside on 

Level 2 along with Endoscope. Moreover, Urinary endoscope and Otoscope are each 

pointed at by only one procedure. With taxonomies, such small partial areas are seen as 
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being indicative of possible errors, and one might expect that a child have at least as 

many device relationship types as its parent. Regarding Urinary endoscope, it might be 

more appropriate for urinary procedures with relationships currently using Endoscope to 

have the more specific target, instead. This would result in Urinary endoscope’s 

movement into the Endoscope partial area. However the current structure is still 

sufficient by SNOMED criteria.  

While the notion of sufficient definition may explain the use of higher-level 

device categories, some may seem at too high a level. For example, Removal of 

Kantrowitz heart pump points to Device via direct device. While acknowledging 

refinability, this assignment seems overly general since Device roots a significant 

subhierarchy. As is the case with other fully specified procedure concepts, such as Open 

insertion of Hickman central venous catheter, the procedure should point to either Heart 

pump or the more specific Kantrowitz heart pump. However, these device concepts do 

not exist in SNOMED. Their omission suggests a needed refinement. 

The Hickman example highlights another observation. While the fully specified 

Hickman procedure above uses the explicitly specified Hickman catheter device, its 

sibling, Open insertion of Broviac central venous catheter, does not. The Broviac device 

is missing. In this case, two “parallel” concepts are modeled differently and offer an 

opportunity for further refinement. 

In this discussion, an effort is made to illustrate various kinds of problems 

exposed by the alternative view offered by the CAN. Unlike SABOC team’s previous 

work, this study did not unearth a large number of errors. This is not surprising since this 

part of SNOMED received comprehensive scrutiny by its editors. This is one possible 
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(and potentially the most preferred) result of an auditing effort. However, it is better to 

emphasize that the CAN is not proposed as an all-inclusive auditing method but rather as 

an additional tool in an auditor’s toolbox. The abstraction view is structural-based and 

helps expose anomalies that might not be uncovered otherwise. It is complimentary to 

other methods such as DL-based auditing methodologies. 

 

3.5 Summary 

Converse relationships, derived from relationships in SNOMED’s inferred view, have 

been used in the construction of a new kind of abstraction network, the CAN, for a strict 

target hierarchy. An auditing methodology for such a hierarchy’s incoming relationships 

whose basis is the CAN was presented. The results of applying this methodology to the 

Device subhierarchy indicate that the CAN is a useful auditing vehicle that can bring 

various aspects of the relationship structure to light and aid an auditor in refining and 

improving SNOMED. 
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CHAPTER 4 

USING AN ABSTRACTION NETWORK IN COMPLEMENT TO DESCRIPTION 
LOGICS FOR QUALITY ASSURANCE IN SNOMED 

 
The objective of this research is to investigate errors identified in SNOMED CT by 

human reviewers with help from the abstraction network methodology and examine why 

they had escaped detection by the DL classifier. Two examples of errors are presented in 

detail (one is missing IS-As and the other is duplicate concepts). After correction, 

SNOMED is reclassified to ensure that no new inconsistency was introduced. Towards 

the end, a conclusion is drawn that DL-based auditing techniques built in terminology 

development environments ensure the logical consistency of the terminology. However, 

complementary approaches are needed for identifying and addressing other types of 

errors. 

 

4.1 Introduction 

Modern terminologies including SNOMED and the NCI Thesaurus are created with the 

support of DLs, which ensures the logical consistency of the terminological assertions. 

However, errors still exist in SNOMED, even after the automatic classification of the DL 

reasoners. As presented in previous chapters, the types of errors include inaccurate or 

incomplete logical definitions (e.g., errors in the nature or in the target of asserted 

relationships, as well as missing relationships). Chapter 1 Section 1.2.5 discussed a 

number of auditing techniques based on lexical, structural, and ontological principles. In 

general, those approaches applied computational method to the identification of potential 

errors. The automated processes are designed to facilitate the work of human editors 
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 (subject matter experts) and it contributes to the quality assurance of biomedical 

terminologies.  

The objective of this research is to investigate errors identified in SNOMED by 

human reviewers, with help from the abstraction network methodology. More 

specifically, the reason why such errors could not be identified by a DL classifier is 

examined and a strategy for using the abstraction networks in complement to DL-based 

techniques is proposed for the quality assurance purposes. The contribution of this work 

is not to propose novel approaches to identifying errors in SNOMED, but rather to tease 

out differences between existing approaches based on several cases of errors thoroughly 

investigated. 

 

4.2 Comparison of Description Logics with Abstraction Network for Quality 
Assurance 

 
4.2.1 Description Logic for Quality Assurance 

Description logics (DL) are a family of knowledge representation formalisms often used 

as ontology languages [75]. Not only does DL provide support for defining concepts, but 

it also provides methods for reasoning about concepts and their instances. DL reasoning 

services are carried out by DL classifiers.  

The basic inference on a concept expression is subsumption, i.e., comparing two 

classes and checking whether one class is more general than the other. For example, 

Brain disorder is more specific than (i.e., is subsumed by) Disorder, because Brain 

disorder is defined as a disorder located to the brain. Another important inference is 

concept satisfiability. A class is deemed unsatisfiable (i.e., inconsistent) if it cannot 
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possibly have any instances. For example, nothing can be at the same time a procedure 

and an anatomical structure. If a class C were defined as a subclass of both Procedure and 

Body structure, while Procedure and Body structure are defined to be disjoint, a DL 

classifier would identify C as unsatisfiable. The interested reader is referred to [75] for 

additional details about DL. 

There are, however, many different dialects of DL in terms of the set of 

constructors they offer, resulting in different levels of expressiveness for what can be 

defined. The expressiveness of the DL also determines the kinds of inference a DL 

classifier is enabled to perform and the kinds of logical inconsistency it is able to identify. 

The dialect of DL natively used by SNOMED is “EL”, whose expressiveness is relatively 

limited. For example, EL does not allow disjunction to be stated between classes and the 

example of unsatisfiability presented earlier could therefore not be identified by the DL 

classifier used for the creation of SNOMED. 

From the perspective of error identification in ontologies, two major types of 

errors can be distinguished. Type I errors are the logical inconsistencies in concept 

expressions that can be detected by DL classifiers (assuming the DL dialect used is 

expressive enough to state the circumstances under which concepts would be 

inconsistent, e.g., disjointedness). In contrast, Type II errors are those content errors (e.g., 

incorrect relationships, missing relationships) that would not generate logical conflicts in 

the DL system. Quality assurance processes in SNOMED ensure that all Type I errors 

have been identified and corrected before the terminology is released to users. All the 

errors under investigation in this study are therefore Type II errors. (Here, Type I and 
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Type II errors are defined in reference to the level of expressiveness of the EL dialect of 

DL). 

As mentioned earlier in Chapter 1 (Section 1.2.2), the inferred view is 

automatically derived from the asserted view by a DL classifier. In this research, the 

inferred view is analyzed, but, unlike most users, we also modify the asserted view and 

use a DL classifier in order to check any suggested changes for consistency.  

 
4.2.2 Abstraction Network for Quality Assurance 

In Chapter 1, two abstraction networks: area taxonomy and partial-area taxonomy have 

already been defined. Both are derived automatically. These two abstraction networks are 

structural methodologies developed for reducing the complexity of large biomedical 

terminologies [2]. The structural methodologies that applying the two abstraction 

networks are called Abstraction Network (AN) methodologies. As mentioned earlier, the 

AN methodology is based on the relationships and their inheritance patterns in the 

hierarchies of the terminology. It has been applied to auditing SNOMED. Here, a brief 

description of its underlying principles is given and its application to SNOMED is 

reviewed. The examples in the research focus on the Specimen hierarchy of SNOMED. 

AN provides an abstraction of the hierarchical and relationships of concepts in a 

SNOMED CT hierarchy. The idea is to partition such concepts into structural uniformity 

groups (strUGs), and then to refine the partition into semantic uniformity groups 

(smtUGs). A detailed description can be found in [2, 68, 70].  In previous chapters, 

structural uniformity group is referred to as area, while semantic uniformity group is 
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referred to as partial-area. For the sake of clear demonstration, strUG and smtUG are 

used in this chapter. 

A structural uniformity group (strUG) is the group of all concepts with exactly 

the same set of relationships. In a graph structure, a node to represent a strUG is used. 

The label for the strUG node is the set of relationships in which its concepts participate. 

Five different relationships are introduced to the concepts of the Specimen 

hierarchy; they are substance, morphology, procedure, topography, and identity1. For 

example, the concept Surgical excision sample has one relationship procedure pointing to 

a concept Excision (from the Procedure hierarchy). Therefore, the concept Surgical 

excision sample is in the strUG{procedure}. Similarly, the concept Abscess swab has two 

relationships procedure and morphology pointing to Taking of swab and Abscess 

morphology (from the Procedure and Body structure hierarchy, respectively). Thus, 

Abscess swab is in the strUG{procedure, morphology}. Note that strUGs do not overlap, 

because, by construction, one given concept belongs to one and only one strUG 

corresponding to its relationship pattern. Therefore, the entire set of strUGs forms a 

partition of the concepts in a given hierarchy of SNOMED. 

StrUGs can be organized into a graph structure. Hierarchical relations between 

strUGs are determined by the inclusion of the sets of relationships they represent. For 

example, the strUG{procedure} subsumes the strUG{procedure, morphology}. Figure 

4.1(a) shows a portion of the graph of strUGs for the Specimen hierarchy. Each colored 

box represents a strUG. The boxes are color-coded to differentiate the levels. Each level 

                                                 
1 The full names of these relationships are specimen substance, specimen source morphology, specimen procedure, 
specimen source topography, and specimen source identity, respectively. 
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corresponds to the number of relationships in the strUG. The concepts in the strUG Ø 

have no relationships. 

 

Figure 4.1  (a) Portion of the graph of StrUGs for the Specimen hierarchy  
(b) Corresponding portion of the graph of smtUGs. 
 

A semantic uniformity group (smtUG) is a group of concepts within a structural 

uniformity group sharing the same lowest common ancestor (LCA). In other words, the 

smtUG groups concepts with the same relationships by hierarchical relationships. The 

label for the smtUG is the LCA from which all other concepts in the smtUG are 

descendants. A strUG may have more than one LCA and thus more than one smtUG. The 

smtUGs form a semantic subdivision of the strUG, but not necessarily a subpartition of it, 

since a concept may have more than one LCA. 

The graph of strUGs in Figure 4.1(a) can be refined with the smtUGs contained 

within each strUG, as shown in Figure 4.1(b). For example, the strUG{procedure} 

contains the four smtUGs: smtUG(Swab), smtUG(Scrapings), smtUG(Surgical excision 
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sample) and smtUG(Specimen obtained by amputation). The number in the parentheses 

indicates the number of concepts within a smtUG. For example, in the smtUG(Surgical 

excision sample), there is a total of seven concepts. The six hidden concepts are all 

subsumed by Surgical excision sample. 

The strUGs and smtUGs hide some of the complexity of the terminology. In 

previous chapters, this abstracted view has already proved itself to be a useful auditing 

tool for manual review of biomedical terminologies by subject matter experts.  

 
4.2.3 Review of Auditing Methods Using Abstraction Networks 

Several strategies have been devised to help subject matter experts review parts of 

SNOMED based on the Abstraction Network methodology. 

Group-based auditing takes advantage of the grouping of concepts in semantic 

uniformity groups [2]. All concepts from a given group are reviewed at the same time, 

making it easier for experts to identify discrepancies among concepts expected to be both 

structurally and semantically similar. Errors exposed via group-based auditing include 

redundant concepts, erroneous relationships, incorrect IS-A assignments, and other 

content errors. 

Auditing “complex” concepts focuses on those concepts within a structural 

uniformity group, which belong to several semantic uniformity groups because they have 

ancestors in several smtUGs [68]. Errors found in such complex concepts include missing 

children and incorrect parents. 

Error concentration based auditing is predicated on the fact that small semantic 

uniformity groups are more likely to contain errors, because small sets of similar 
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concepts might have received less modeling attention, compared to larger sets (e.g., based 

on a concept model). The correlation between small smtUG size and error concentration 

was assessed in [70]. 

 

4.3 Case Study 

Two of the errors detected in SNOMED by subject matter experts with help from the 

Abstraction Network methodology were selected and reported to the International Health 

Terminology Standards Development (IHTSDO) 2 , the organization in charge of 

SNOMED. The objective in this chapter is to investigate these cases and examine how 

they escaped detection by the DL classifier used to check the logical consistency of 

SNOMED. 

DL reasoners are stand-alone tools that point out logical inconsistencies in an 

ontology. In contrast, the Abstraction Network methodology helps organize the workflow 

of subject matter experts, in order to focus their attention to parts of the ontology where 

errors are likely and by grouping the concepts to be audited according to the principles 

described earlier. 

The two errors under investigation were identified in the Specimen hierarchy of 

SNOMED. In the first one, “amputation,” it was argued that two sibling concepts actually 

stand in a subsumption relationship. The issue is thus a missing IS-A between these two 

concepts. The second case, “leukocyte,” highlights two concepts that are arguably 

equivalent but stand in an IS-A. 

                                                 
2 http://www.ihtsdo.org/ 
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In addition to discussing the errors, it is also desirable to test the remediation 

suggested to the IHTSDO. Toward this end, the asserted version of SNOMED is loaded 

in OWL DL into the ontology editor Protégé3 and tested the suggested changes with the 

DL classifier Fact++4. The goal is to verify that the proposed changes did not introduce 

any inconsistencies into SNOMED. Classification was performed on a standard desktop 

machine with the 64-bit Microsoft Windows operating system and 4 GB of RAM. The 

classification of the OWL version of the SNOMED CT takes about 17 minutes. 

 
4.3.1 Case 1: Amputation 

This error was identified by the subject matter expert while examining a group of 

concepts from the Specimen hierarchy corresponding to one particular structural 

uniformity group, namely, strUG{procedure}. By construction, the concepts naming the 

smtUGs within a strUG are not expected to stand in any kind of hierarchical relationship. 

The assumption for the subject matter expert reviewing the concepts from a strUG is that 

they are all expected to be siblings. Therefore, reviewing these concepts as a group makes 

it easy to identify errors including missing or incorrect parent/child relationships, for 

example. 

 
Figure 4.2  “Specimen obtained by amputation” and “Surgical excision sample” 
displayed in the CliniClue browser. 
                                                 
3 http://protege.stanford.edu/ 
4 http://owl.man.ac.uk/factplusplus/ 
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Figure 4.2 shows a portion of the inferred view of SNOMED displayed in the 

CliniClue browser5. The two concepts circled in red, Specimen obtained by amputation 

and Surgical excision sample, are siblings. Both of them are in the Specimen hierarchy 

under the root concept Specimen. The corresponding target concepts with the relationship 

procedure are Amputation and Excision, respectively, in the Procedure hierarchy, under 

the parent concept Surgical removal (not shown in the figure). The four concepts 

Specimen obtained by amputation, Surgical excision sample, Amputation, and Excision 

are fully defined. 

The subject matter expert determined that Specimen obtained by amputation is, in 

fact, a kind of Surgical excision sample. The fact that the two concepts were grouped in 

strUG{procedure} made it easier for the expert to identify this error. Of note, there was 

no logical inconsistency in the concept expression, and the DL reasoner failed to detect 

the missing subsumption relationship because its absence did not create any kind of 

conflict in the terminology. One particular reason why no conflict could be identified is 

because there was a parallel error on the target side. The target concepts Amputation and 

Excision are siblings (descendants of Surgical removal), while amputation is actually a 

kind of excision. Because of a missing IS-A in parallel on both sides of the procedure 

relationship, there was no logical error that could be identified by the DL classifier. 

From the perspective of the Abstraction Network, both smtUG(Surgical excision 

sample) and smtUG(Specimen obtained by amputation) are in the strUG{procedure} (see 

Figure 4.1(b)). But the existence – indicated by the expert – of an IS-A between these two 

                                                 
5 http://www.cliniclue.com/ 



75 

 

concepts within the same strUG{procedure} violates the principles under which the 

strUG was constructed. 

Figure 4.3 shows the comparison before and after addition of the missing IS-As. 

As a result of this modification, Specimen obtained by amputation is now subsumed by 

Surgical excision sample, and smtUG(Surgical excision sample) has gained a new 

member. 

 

(a) 

 

(b) 

Figure 4.3  Parent-child error with  Surgical excision sample and Specimen obtained by 
amputation (a) Before correction (b) After correction. 

The target hierarchy (Procedure) is modified by making Surgical Excision the 

superclass of Amputation in the authors’ copy of SNOMED in Protégé, while leaving the 

source hierarchy (Specimen) unchanged. After reclassification, the classifier is seen to 
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have used the changes made to the target hierarchy (Procedure) to automatically make 

parallel changes to the source hierarchy (Specimen), where Surgical excision sample has 

become the superclass of Specimen obtained by amputation (Figure 4.3(b)). 

 
4.3.2 Case 2: Leukocyte 

This error was identified by the subject matter expert while examining a group of 

concepts from the Specimen hierarchy corresponding to one particular semantic 

uniformity group, namely, smtUG(White blood cell sample). By construction, concepts 

within a smtUG are expected to stand in an IS-A with the lowest common ancestor after 

which the smtUG is named. The assumption for the subject matter expert reviewing the 

concepts from a strUG is that they are all expected to be distinct and descendants of 

White blood cell sample. Therefore, reviewing these concepts as a group makes it easy to 

identify duplicate concepts, for example. 

As shown in Figure 4.4, Leukocyte specimen is one of the children of White blood 

cell sample. The subject matter expert determined that Leukocyte specimen and White 

blood cell sample are, in fact, duplicate concepts. The fact that the two concepts were 

grouped in smtUG(White blood cell sample) made it easier for the expert to identify this 

error. 

 
Figure 4.4  Leukocyte specimen and White blood cell sample displayed in the CliniClue 
browser. 
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In DL, concepts exhibiting the same logical definitions are treated as equivalent 

concepts by the classifier. In this case, the DL classifier did not identify these two 

concepts as equivalent, because the logical definitions were actually slightly different. 

Leukocyte specimen is a primitive concept, whereas White blood cell sample is fully 

defined. Because the definition of Leukocyte specimen is underspecified (primitive), the 

DL classifier cannot recognize it as equivalent to the fully defined White blood cell 

sample. 

From the perspective of the Abstraction Network, there is no difference between 

primitive and defined concepts. Only the set of relationships is taken into account during 

the creation of the groups. 

The definition of Leukocyte specimen is modified in the authors’ copy of 

SNOMED in Protégé, so as to make it fully defined instead of primitive. After 

reclassification, White blood cell sample and Leukocyte specimen were indicated as being 

equivalent concepts. 

 

4.4 Discussion 

 
4.4.1 Strengths and Limitations of Each Approach 

The main advantage of DL is that it identifies errors completely automatically, while the 

Abstraction Network (AN) methodology only constrains the workflow of subject matter 

experts in such a way that it facilitates their work and improves their chances of 

identifying errors by reducing the complexity of the terminology and by organizing the 
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concepts to be reviewed in small groups, with assumed relationships among concepts 

within and across groups. 

Unlike the DL classifier, the AN does not rely on defined concepts, but simply 

takes advantage of the structural properties of concepts, i.e., their sets of relationships. 

Unlike AN, the DL classifier processes the terminology as a whole and can address 

remote inconsistencies, whereas experts tend to focus on a small portion of the 

terminology and may not foresee the consequences of local changes to distant parts of the 

terminology. 

Finally, DL classifiers are limited to the identification of logical inconsistencies. 

Moreover, they are limited in the type of logical inconsistencies they can identify by the 

level of expressiveness of the dialect of DL used for creating the ontology [76]. In 

contrast, subject matter experts guided by the Abstraction Network methodology can 

address a wider range of issues (i.e., beyond logical inconsistencies) and identify content 

errors, such as inaccurate and missing relationships. 

 
4.4.2 Auditing Strategy 

The DL classifier is used for detecting logical inconsistencies at the time the terminology 

is built. The performance of the classifiers has improved tremendously in the past few 

years and the editors of large terminologies will soon enjoy real-time classification. The 

use of the Abstraction Network methodology is recommended for targeted auditing, as a 

possible alternative to dual editing. However, multiple auditing strategies combining 

lexical, structural, and ontological methods are required for quality assurance of large, 

complex terminologies such as SNOMED. 
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4.4.3 Current Developments and Future Work 

One of the limitations of the Abstraction Network methodology is that it relies heavily on 

the structure of relationships of the concepts and is therefore not applicable to concepts 

with few or no relationships. In order to address this limitation, the converse abstraction 

network [77] is developed as described in Chapter 3. 

 

4.5 Summary 

In this work, the differences between two approaches are examined to identifying errors 

in large biomedical terminologies such as SNOMED. On the one hand, DL classifiers can 

automatically identify logical inconsistencies in the terminology. On the other, the 

Abstraction Network methodology helps experts perform targeted manual reviews of the 

terminology by reducing its complexity and grouping the concepts by their structural and 

semantic properties. The differences between the two approaches are illustrated through 

two cases of errors identified in SNOMED. 
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CHAPTER 5 

AUDITING AND COMPLEXITY OF SNOMED TAXONOMIES 

 

SNOMED CT is an extensive terminology with an attendant amount of complexity. Two 

measures are proposed for quantifying that complexity. Both are based on abstraction 

networks, called the area taxonomy and the partial-area taxonomy, that provide, for 

example, distributions of the relationships within a SNOMED hierarchy. The complexity 

measures are employed specifically to track the complexity of the versions of the 

Specimen hierarchy of SNOMED before and after it is put through a sequence of auditing 

processes. The complexity measures for the pre-audit and post-audit versions are 

compared for two periods of auditing efforts for the Specimen hierarchy. The first audit’s 

results have been previously published elsewhere. The second audit comprises two 

separate efforts. In the first, designed especially for this study, auditing of a special class 

of “singleton concepts” (defined with respect to the partial area taxonomy) is conducted. 

In the second, conducted during the same period, another class of concepts called 

“overlapping concepts were audited (with results reported elsewhere). The complexity 

results show that the initial auditing processes lead to a simplification of the 

terminology’s structure. The results for a further auditing process are mixed. 

 

5.1 Introduction 

In [2, 70], the SNOMED’s lateral relationships (also called “attribute relationships”) and 

their inheritance patterns within hierarchies were utilized to formulate structural 

methodologies for auditing SNOMED. These methodologies utilize two abstraction 



81 

 

networks, the area taxonomy and the partial-area taxonomy, that serve to capture the 

structure of a hierarchy in a compact manner. The taxonomies highlight where errors tend 

to concentrate [70] and offer techniques to detect them [2]. The errors reported in [2, 70] 

were subsequently corrected in later releases of SNOMED. 

 In this research, the impact of the corrections of errors on the complexity of a 

SNOMED hierarchy is investigated. The hypothesis is that, in general, errors contribute 

to structural disorderliness. The question is: can one expect to see a simplification of the 

hierarchy structure due to the reduction of such disorderliness after an auditing regimen 

has been carried out? For this, one needs to posit a way to assess the complexity of a 

hierarchy. The previously defined taxonomies offer a natural framework for this, since 

they are derived via structural analyses of the underlying hierarchy. The proposed 

assessment measures are applied to the Specimen hierarchy in order to track changes in 

its complexity over two periods of auditing efforts. This is done for the July 2004 version 

(the one prior to the corrections), the July 2007 version (after the corrections), and the 

July 2008 version (after further auditing in 2007). One might expect that the 2007 

Specimen hierarchy is error free since it underwent several comprehensive audits in 

2004. But that is too optimistic. Some errors that were hidden before were then exposed 

by changes made during the process of correction. Also, a few new concepts had been 

added to the hierarchy in the interim, and their introduction may have indeed led to new 

errors. Furthermore, both editing and auditing of a hierarchy are difficult tasks which by 

themselves are never foolproof. An auditor may very well overlook some errors, and the 

editorial policies may be incomplete or inconsistent. 
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Thus, in the process of doing the complexity assessment, an audit is performed for all the 

partial-area taxonomy’s foundational concept groups (called partial-areas) of the 

consisting of just one concept (so-called “singletons”) with respect to the July 2007 

release, based on the methodologies [2, 70]. The errors found are reported in this 

research. Further results of auditing another class of concepts (called overlapping 

concepts) [59] are also applied. These extra audits provide us with a third version of the 

hierarchy on which to assess the complexity measures and a second audit period from 

July 2007 to July 2008 to track changes in complexity due to the second auditing effort. 

Any further impact of this subsequent audit effort on the complexity measures will be 

looked for, in comparison to the impact of the initial audit effort for the same hierarchy. 

An initial report of this study appeared in [62]; however, the research further evolved 

including changes in the definitions of the complexity measures. 

 

5.2 Methods 

The issue investigated in this research is how to measure the complexity of a SNOMED 

hierarchy. In particular, it is interesting to study how complexity measures reflect on the 

results of auditing tasks performed on a given hierarchy following its evolution over 

multiple releases. One natural criterion is a global weighting function for a hierarchy such 

as size (the number of concepts) or height (number of levels in the longest hierarchical 

path). Indeed, in a comparison of such measures following the first audit of the Specimen 

hierarchy in the 2004 SNOMED release, the number of concepts was reduced from 1,056 

to 1,044 (July 2005 release), and the height was reduced from 12 to ten. At the same 

time, SNOMED’s total concepts went up from 357,134 to 364,461. Furthermore, only 
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two hierarchies of SNOMED decreased in size during this period, the second of which 

was the huge Clinical Finding hierarchy. The author attributes the decrease in the size of 

the Specimen hierarchy, which went against the general trend of growth in SNOMED 

during the same period, to the correction of duplicate concept errors (such as Ear sample 

and Specimen from ear [2]) and the removal of improper concepts due to the  auditing 

efforts[2, 70]. The former were caused by the failure to identify the synonymy of 

“sample” and “specimen” when integrating SNOMED RT and CTV3 into SNOMED CT 

[78]. The errors found were reported to College of American Pathologists (CAP) by K. 

Spackman and were implemented in future releases. The reduction in height can be 

attributed to finding errors in some of the most complex concepts in the hierarchy, which 

participated in the longest hierarchical paths. 

 However, these measures are more magnitude measures than complexity 

measures. The size measure accounts only for limited auditing impacts such as erroneous 

concepts eliminated from the hierarchy, but not for other errors that were corrected. The 

size is also influenced by concepts added to the hierarchy as part of normal modeling 

expansion. The height measure reflects only auditing of a few concepts in the longest 

hierarchical path. Furthermore, such global measures fail to take into account the role of 

lateral relationships in the complexity of the concepts. For example, a hierarchy may 

keep its size and height while going through an auditing process, which may make it 

simpler or more complex. 

 To illustrate the difficulty of using the size measure, note that the Specimen 

hierarchy grew from 1,044 concepts in July 2005 to 1,052 in January 2007, while no 

special auditing was applied. Finally, the number grew to 1,056 (the original number in 
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2004) in July of 2007, before a second auditing effort was applied. Having two releases 

(2004 and 2007) of the same size does not necessarily imply they are of the same 

complexity. 

 As a more appropriate way of measuring the complexity of a hierarchy, it is 

suggesting to utilize the area taxonomy and partial-area taxonomy. The area taxonomy 

reflects the lateral relationship (just “relationship,” for short) distribution of all the 

concepts in the underlying SNOMED hierarchy. The partial-area taxonomy further shows 

hierarchical cohesiveness [52], where concepts subsumed under a common root concept 

are clustered into a partial-area. All these concepts elaborate the semantics of their root. 

Thus, the partial-area taxonomy can support a measure of hierarchical complexity. 

 
5.2.1 Structural Complexity Measures 

The author asserts that a concept C with two given relationships is more complex than a 

parent concept P exhibiting only one of those relationships, since concept C with multiple 

relationships expresses more detailed knowledge than concept P. Similarly, the author 

asserts that a concept C with three given relationships is more complex than a parent 

concept having two out of the three relationships. 

 For example, as is seen from Figure 1(a) and Figure 1(c), the concept Skin swab 

in the area {procedure, morphology} has a parent Swab in the {procedure} area, and 

another parent Dermatological sample in the {morphology} area. In this case, Skin swab 

is the specialization of the two parents. From the complexity point of view, it is more 

complex as compared to either one of its parents because it has the extra knowledge 

expressed by the relationship inherited from the other parent. 
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 Similarly, a root concept Skin ulcer swab in the area {morphology, topography, 

procedure} (see Figure 1(a) and Figure 1(c)) has three parents in three separate areas. 

One parent Skin swab, with two relationships, was mentioned above. Another parent Skin 

lesion sample, with two relationships, is from {morphology, topography}. A third parent 

Specimen from ulcer, with the one relationship morphology, is a non-root concept in the 

partial-area Lesion sample in {morphology}.The concept Skin ulcer swab is more 

complex than the one-relationship parent Specimen from ulcer. It is also more complex 

than each of the two parents with two relationships, because of its extra relationship. 

 The higher complexity when comparing a descendant concept to its ancestor is 

obvious. In general, the structural complexity of a concept by the number of its 

relationships is measured, since as mentioned, the structure of a concept is its set of 

relationships. In the context of the area taxonomy: a concept on a lower-numbered level 

is simpler than a concept on a higher-numbered level. This assumption is called the 

structural assumption, since it is based on a structural feature of the area taxonomy. In 

measuring structural complexity by the number of relationships, independent of their 

kind, the author extends the notion of higher structural complexity, from the case of 

comparing a child concept to its parent concept, to the case of comparing any pair of 

concepts, where the first has more relationships than the second. The justification for this 

generalization is that, even in the first case, the reason for the higher complexity of the 

child is its extra relationship. The area levels of the area taxonomy serve to partition the 

concepts of the hierarchy according to their numbers of relationships, and thus 

partitioning the concepts according to their structural complexity. If, as a result of an 

auditing phase, one sees an increase in the number of concepts in a lower-numbered area 
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level of a hierarchy at the expense of a decrease in the number of concepts in a higher-

numbered area level of this hierarchy, then this change can be interpreted as a 

simplification of the hierarchy structure. Such a change may occur when discovering an 

unnecessary relationship for a group of concepts. Of course, a concept must first be 

modeled with all its necessary relationships. A simpler representation of a concept is seen 

as a desired quality in the modeling of a terminology, but is only secondary to 

correctness. Hence, the auditing process should not seek to delete required relationships 

just for the sake of simplification. However, as a result of auditing, where relationships of 

concepts are removed or added, it is expected to see changes in the structural complexity. 

 Hence, one is looking for a complexity measure that will enable the comparison 

of two states of the same SNOMED hierarchy as it evolves over time. It is interesting in a 

measure that reflects the number of concepts in the various levels and the changes to 

those numbers due to the migration of concepts from one level to another, (as their 

relationships change) as a result, for example, of auditing. This is different from, say, a 

global complexity measure that just reflects the total number of relationships in a 

hierarchy and their partition into levels. Such a related measure is of course also 

important and will be introduced later. 

 To formalize this measure, the structural complexity function S(x, H) is defined, 

which is a function from the non-negative integers of a hierarchy to the number of 

concepts with the corresponding number of relationships, where x represents a level and 

H is a hierarchy. That is, S(x, H) is the number of concepts on Level x of the area 

taxonomy of hierarchy H. When there is no ambiguity regarding H, it will often be 

omitted. For example, according to the previously defined area taxonomy in Figure 3, 
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Level 0 has 21 concepts, so S(0) = 21. For a given hierarchy of Levels 0, 1, 2, …, m, the 

sequence is often written as (S(0), S(1),…, S(m)).The function S is a structural measure 

as it depends solely on the number of relationships, not on their kind. It is a global 

structural measure for the complexity of the hierarchy because it is dependent on all 

concepts and their respective structure. To interpret the structural complexity: if more 

concepts lose relationships than gain relationships, then in the area taxonomy, there is an 

increase in the number of concepts in a lower-numbered levels and a decrease in the 

number of concepts in higher-numbered levels. In this case, one can say that the 

complexity function is going through a downward weight-shifting towards the lower-

numbered levels; one can say that the structural complexity is reduced. 

 The Aggregated Structural Complexity SA  is also defined on a hierarchy that has 

the compliment to one of the reciprocal of the average number of relationships per 

concept (AVGrel): 

SA(H)=1 – 
 AVG

1

rel

 = 1 – 
S(i,H)

i= 0

m

∑

i * S(i,H)
i= 0

m

∑
 

Where m is the highest level in H. The interpretation of SA(H) is as follows: if the 

average number of relationships per concept decreases, then SA(H) also decreases and it 

implies a simplification of the structure; otherwise, it implies an increase of the structural 

complexity. Hence, when the structural complexity function goes through a downward 

weight-shifting, SA(H) also decreases. 

 
5.2.2 Accumulated Structural Complexity Measure 
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The structural complexity measure is still not completely justifying since it fails to reflect 

the impact of concepts’ migrations from one level to another when the hierarchy is 

transformed from one state to the next. For instance, there was a large increase in the 

number of concepts on Level 1 for the July 2007 SNOMED. A reason for this 

phenomenon was a “weight shifting” from the higher-numbered Level 3 towards the 

lower-numbered Level 1.The condition where one element of (S(0), S(1),…, S(m)) 

increases while another element decreases does not communicate the decrease in 

structural complexity that took place. To reflect the above described downward weight-

shifting phenomenon, an accumulated structural complexity measure is desirable, which 

not only measures the changes in the number of concepts at the different levels but also 

reflects the direction of the migration. 

 One would like to define a structural complexity measure that will enable a 

comparison of two states of the same SNOMED hierarchy and express the situation 

where a hierarchy in one state is more complex than in another. 

 Consider, for example, a downward weight-shifting transformation that occurs 

when, say, 20 concepts on Level 2 in a hierarchy H at time t (denoted Ht) have lost one 

relationship at the state t+1. In such a case, the total number of concepts in Ht and in Ht+1 

is equal, and one would consider Ht+1to be structurally less complex. However, the 

structural complexity function S does not express this fact. To illustrate this, assume that 

Ht has five levels with 50 concepts each. Then the S sequence for Ht is (50, 50, 50, 50, 

50), and it is (50, 70, 30, 50, 50) for Ht+1. By comparing these sequences, it is not 

possible to judge which is more complex since the S(1, Ht+1) > S(1, Ht), but S(2, Ht+1) < 

S(2, Ht) (while all other components are equal). 
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 To achieve the purpose of defining a structural complexity measure that can 

quantify that Ht+1is less complex than Ht, the Accumulated Structural Complexity 

Measure function Sc from S is defined as follows: 

Sc(0, H) = S(0, H); 
And for j = 1, …, m 

Sc(j, H) = S(i,H)
i=0

j

∑
 

In sequence notation with respective to all levels, one can get (50, 100, 150, 200, 250) for 

Ht and (50, 120, 150, 200, 250) for Ht+1 from the function Sc. In this case, Sc(1, Ht+1) > 

Sc(1, Ht), while all other components are equal. 

 In general, for two hierarchy states Ht and Ht+1 of the same total number of 

concepts, and with m levels, one can say Ht+1  dominates Ht  if  

(1) There exists p (0 ≤p<m) such that ∀i, p ≤ i ≤ m, Sc(i, Ht+1) ≥ Sc(i, Ht). 

and 

(2) There exist j and k (p ≤ j < k < m) such that ∀i, j ≤ i ≤ k, Sc(i, Ht+1) > Sc(i, Ht). 

According to condition (1), Sc(i, Ht+1) ≥ Sc(i, Ht) is only required beyond the Level p. 

Condition (2) states that there exists an interval of Levels k – j above p reflecting an 

overall downward weight-shifting transformation from Ht   to Ht+1. 

 When Ht+1 dominates Ht, one can say that the hierarchy state Ht is structurally 

more complex than the hierarchy state Ht+1. Such a transformation may involve a simple 

downward weight-shifting between two consecutive levels, as in the example above, or it 

may involve more complex transformations. For example, some concepts in Level 2 lose 

one relationship while less concepts in Level 1 gain one relationship, so that the net 

change is a downward weight-shifting. Other more complex transformations may involve 
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more than two levels, e.g., a net downward weight-shifting from Level 2 to Level 1, a net 

downward weight-shifting from Level 3 to Level 1, and a net downward weight-shifting 

from Level 3 to Level 2. For such a combination of two or three downward weight-

shifting, there will be an interval [1, 2] of indices such that Sc(i, Ht+1) > Sc(i, Ht), for 1 ≤ i 

≤ 2. (Note that in such a case, Sc(3, Ht) = Sc(3, Ht+1), due to the accumulative nature of 

Sc.) 

 Now let us illustrate the domination between two actual states of the Specimen 

Hierarchy for the July 2004 release and the July 2007 release of SNOMED. Table 5.1 

shows the structural complexity function S for the Specimen Hierarchy of July 2004 and 

July 2007, a duration when the auditing effort [2, 70] took place, reviewed by K. 

Spackman and implemented in SNOMED. Comparing the values, one can see that 2007 

is larger for Levels 1 and 2, while 2004 is larger for Levels 0, 3, and 4. Thus, one cannot 

conclude which hierarchy state is more complex. 

 Table 5.2 shows the similar comparison for Sc. Here, one can see a clear 

domination of the hierarchy for 2007 over 2004, implying that the Specimen hierarchy of 

2007 is structurally simpler. Hence, in this case, the auditing effort helped to turn the 

Specimen hierarchy into a structurally simpler hierarchy. 

 
Table 5.1  Number of Concepts for Levels (2004 vs. 2007) 

Level(l) # Concepts (2004) #Concepts (2007) 
S(l) S(l) 

0 29 21 
1 399 468 
2 430 517 
3 194 48 
4 4 2 

Total: 1,056 1,056 
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Table 5.2  Cumulative Number of Concepts for Levels (2004 vs. 2007) 
Level(l) # Concepts (2004) #Concepts (2007) 

Sc(l) Sc(l) 
0 29 21 
1 428 489 
2 858 1,006 
3 1,052 1,054 
4 1,056 1,056 

 

 It is noted that in case Ht+1 dominates Ht, Ht+1will also have a lower aggregated 

structural complexity function since the denominator i * S(i,H )
i= 0

m

∑ is decreased in 

Ht+1while the numerator of the fraction in the formula did not change. For example, 

SA(H) for the Specimen hierarchy was decreased from 1 – 1056/1827  = 0.422 in 2004 to 

1 – 1056/1654  =  0.362 in 2007. 

 The conditions (1) and (2) are given for the case where the total number of 

concepts in Ht+1 is equal to that in Ht. In case the number of concepts in Ht+1  is smaller or 

larger than in Ht, a scaling will be needed to bring the number of concepts in line to 

enable a comparison. 

 For the scaling, one can look at the percentage of the number of concepts in each 

level. The scaling is illustrated with the July 2008 release of 1,173 concepts, to be 

compared with the July 2007 release of 1,056 concepts. Table 5.3 shows the computation 

involved in the scaling. 

Table 5.3  Scaling for the 2008 Specimen Hierarchy 
Level # in Level % of Level Proportional level reduction Scaled # 

0 20 2 2 18
1 397 34 40 357
2 450 38 45 405
3 293 25 29 264
4 13 1 1 12

Total 1,173 100 117 1,056
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 The percentage of the levels appears in column 3. The level difference (up or 

down) between the number of concepts in the two hierarchy states is distributed between 

the levels according to their percentages. Column 4 shows the proportional distribution of 

the 117 (= 1173 – 1056) concepts among the levels. The number of concepts in the new 

hierarchy state is modified (up or down) according to the level differences to yield a 

distribution of the number of concepts in hierarchy state Ht, according to the level 

percentages of hierarchy state Ht+1. The last column of Table 5.3 shows the scaled level 

numbers obtained in reducing the size of Ht+1 (1,173) into the size of Ht (1,056). For 

example, the number in Level 1, 357, is 34% of the 1,056 scaled down size, rather than 

the 397 actual number of concepts in Level 1 of July 2008, which is 34% of the total of 

1,173 concepts. The scaling enables a fair comparison of the cumulative structural 

complexity functions of two hierarchy states of different sizes to check for possible 

domination. 

 
5.2.3 Hierarchical Complexity Measures 

Another complexity measure concentrates on what is happening inside an area. An area 

may have several roots. Those roots are semantically independent of one another since 

none sits in an ancestor/descendant relationship to any other. Each root defines a partial-

area, named after it, containing all concepts that are its specializations in the area. Each 

partial-area expresses an overarching semantics for its constituent concepts: each being a 

kind of the root concept. For example, all 19 concepts in the partial-area Device specimen 

in the {identity} area (Figure 3) are concepts that are specimens derived from various 

devices, such as Catheter specimen. That is, the division of an area into partial-areas 

serves to divide all concepts of the same structure (expressed by the area’s name) into 
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groups of semantically similar concepts. The semantics of each group is captured 

explicitly by the partial-area’s name. Thus, one can make an assumption that a set of the 

same number of concepts with the same structure having fewer sub-hierarchies is simpler 

than one with more sub-hierarchies. In the context of the partial-area taxonomy, an area 

with fewer partial-areas is simpler than an area with more partial-areas (assuming the 

same number of concepts), as it contains a smaller variety of concepts. Similarly, an area 

with more concepts, but with the same number of partial-areas as before, is considered 

simpler. The above assumption is called the hierarchical assumption. 

 The ratio of the number of partial-areas to the number of concepts in an area can 

be used as a good measure of the hierarchical complexity of the area. In fact, the 

hierarchical complexity ratio of an area X is defined as follows. Let )(XP be the set of 

partial-areas in X and )(XE denote the extent of X(i.e., set of concepts of X). Then the 

Hierarchical Complexity (HC) Ratio 
)(
)(

)(
XE
XP

XHC = , where )(XP ( )(XE ) is the 

number of partial-areas (concepts) in X (i.e., the cardinality of )(XP  ( )(XE )). The idea 

behind the formula is that the semantics of each group is captured explicitly by the 

partial-area’s name. Thus, an area with fewer partial-areas for the same number of 

concepts is an area with a smaller number of sets with different semantics. So, if the 

hierarchical complexity ratio gets smaller, then the hierarchical structure gets simpler. 

For example, in SNOMED 2004, the area {substance} had 56 concepts distributed across 

15 partial-areas, for a hierarchical complexity ratio HC({substance}) = 
56
15

= 0.27. In 

SNOMED 2007, the same area has 81 concepts in ten partial-areas, for a ratio of 0.12. 

Hence, this area became simpler between 2004 and 2007. 
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5.2.4 Aggregated Hierarchical Complexity Measure 

One can calculate the hierarchical complexity ratio for a whole level of areas having the 

same number of relationships. The aggregated hierarchical complexity ratio HC(i, H) for 

a Level i (0 ≤ i ≤ m) of the hierarchy H of m levels is defined by the following formula: 

HC(i,H) =
P(X )

X ∈A( i,H )
∑

E (X )
X ∈A( i,H )
∑

 

Where A(i, H) is the set of areas in the ith level in hierarchy H. For example, there 

were 399 concepts in 153 partial-areas exhibiting exactly one relationship in 2004. 

Hence, the hierarchical complexity ratio HC(1, H2004) for Level 1, obtained by dividing 

the number of its partial-areas, 153 into the number of 399 concepts  for Level 1, is 0.38. 

The ratio for the same level for 2007 is HC(1, H2007)= 10.0
468
45

= . Therefore, as a whole, 

the aggregated hierarchical complexity of all areas of one relationship for the Specimen 

hierarchy became simpler from its state H2004 to its state H2007. The hierarchical 

complexity for all levels will be compared. 

 This measure can also be applied for the whole hierarchy H of m levels. 

HC(H) = ∑
=

m

i
HiHC

0
),( = 

P(X)
X ∈L( i)
∑

i= 0

m

∑

E(X)
X ∈L( i)
∑

i= 0

m

∑
 

A possible impact of auditing is discovering that the root of a small partial-area, 

especially a singleton (i.e., a one-concept partial-area), should be a child of a concept in 

another partial-area. Hence, the small partial-area will be absorbed into the new parent’s 

partial-area. For example, in 2004, {morphology} had nine partial-areas, four of which 
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were: Specimen from abscess, Specimen from ulcer, Specimen from wound, and Lesion 

sample. In 2007, the first three of these became part of the expanded Lesion sample, 

which then consisted of all 14 concepts in {morphology}. HC({morphology}) went from 

6.0
15
9
=  to 07.0

14
1
= , reflecting a hierarchical simplification that this area underwent 

when it was realized that abscess, ulcer, and wound were all kinds of lesions. 

 For the hierarchical measure, the complexity functions for an area, a level, and a 

whole hierarchy are defined. Both kinds of measures will be utilized to explore the 

impact of the application of an auditing process [2] on the complexity measure by 

examining the impact on the Specimen hierarchy. 

 An auditing process was applied again to this hierarchy in its 2007 release. An in-

depth audit of all 255 singletons is performed. The larger partial-areas only had their 

names reviewed. This review will enable the identification of possible duplicates or 

missing IS-A relationships from the roots of the singletons to other partial-areas. While 

concentrating on the singletons, the auditors watched for propagation of errors to other 

partial-areas, and pursue these if appropriate. 

 It is hypothesized that in spite of the previous audits that were performed on the 

Specimen hierarchy for the 2004 release; there still were errors to be found. As a matter 

of fact, correction of previous errors may have caused new errors to arise or lead to the 

exposure of errors that remained hidden before. Another audit effort is also conducted on 

overlapping concepts of the partial areas in the Specimen hierarchy of July 2007 

SNOMED release. This study is reported in [59]. Finally, the impact of this extra auditing 

effort applied to the Specimen hierarchy is investigated on the complexity measures that 
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have postulated. An interesting question is whether the impact of the two audit efforts on 

the complexity measures is similar. 

 

5.3 Results 

First, let us apply the complexity measures to compare the state of two versions of the 

Specimen hierarchy over a long period of time, irrespective of any auditing. In particular, 

let us compare the version of July 2004 with that of January 2011. During that seven-year 

interval, the number of concepts grew from 1,056 to 1,329, while the number of 

relationships grew from 1,857 to 2,553 (with the average number of relationships per 

concept growing from 1.75 to 1.92). This growth is reflected by the aggregated structural 

hierarchy, which increased from 0.422 to 0.470. 

Table 5.4  Scaling for the 2011.01.31 Specimen Hierarchy 
Level # in Level % of level Proportional level reduction Scaled # 

0 28 2 6 22
1 433 33 90 343
2 522 39 106 416
3 334 25 68 266
4 12 1 3 9

Total 1,329 273 1,056
 

To obtain the more detailed picture about what happened at the various levels, it 

helps to compare the structural complexity measure and the accumulated structural 

complexity measure for the two releases. (As discussed, scaling down is used for the Jan. 

2011 release due to its greater number of concepts (see Table 5.4)). The values of the 

structural complexity and the accumulated structural complexity are given in Tables 5.5 

and 5.6, respectively. In Level 1, there were 343 concepts (after scaling) in January 2011 

in comparison to 399 in July 2004. As shown in Table 5.6, the accumulated structural 
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complexity values for Level 1 were 365 and 428, respectively. The main change in the 

structural complexity is due to the growth of Level 3 at the expense of Level 1. When 

considering the absolute number of relationships, growth occurred in all levels except 

Level 0, but it was highest for Level 3 and also meaningful for Level 2. From Table 5.6, 

one can see that H2004 dominates H2011 for all levels. Hence, H2011 is structurally more 

complex. 

Table 5.5  Structural Complexity Measures (2004, 2011) 
Level(i) S(i, H2004) S(i, H2011) 

0 29 22 
1 399 343 
2 430 416 
3 194 266 
4 4 9 

Total: 1,056 1,056 
 

Table 5.6  Accumulated Structural Complexity Measures (2004, 2011) 
Level(i) SC(i, H2004) SC(i, H2011) 

0 29 22 
1 428 365 
2 858 781 
3 1,052 1,047 
4 1,056 1,056 

 

The hierarchical complexity measures HC for both releases appear in Table 5.7. In 

total, one can find values of 0.43 for H2004 and 0.31 for H2011, making the latter less 

hierarchically complex, with less and larger partial areas and thus more cohesiveness. 

Looking at values for the various levels, one can see that the decrease in the hierarchical 

complexity measure occurs in all levels except Level 0, which is mainly due to the 

dramatic decrease in Level 1 caused by the large decline in the number of partial areas 

with one relationship. 
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Table 5.7  Hierarchical Complexity Measures (2004, 2011) 
Level 

(i) 
2004 2011 

|P(i)| |E(i)| HC(i) |P(i)| |E(i)| HC(i) 
0 1 29 0.03 1 28 0.04 
1 153 399 0.38 46 433 0.11 
2 186 430 0.43 196 522 0.38 
3 107 194 0.55 155 334 0.46 
4 4 4 1.00 11 12 0.92 

Total 451 1,056 0.43 409 1,329 0.31 
 

Two audits were conducted on SNOMED’s Specimen hierarchy. In the first, 

various auditing techniques were applied to the July 2004 release. The techniques and 

results were documented in [2, 70]. The audit reports were submitted to Dr. K. 

Spackman, currently Chief Terminologist of IHTSDO, an international organization in 

charge of developing and distributing SNOMED. The errors approved by Dr. Spackman 

were forwarded to the College of American Pathologists (CAP) for correction in 

SNOMED. The July 2007 release reflects the correction of these errors. 

 The second audit, comprising three separate auditing efforts, took place on the 

2007 Specimen hierarchy. During the first effort, all partial-areas of one concept 

(singletons) were reviewed. The report on this effort appears in the current research. In 

the second and third efforts, all overlapping concepts of partial-areas and a set of non-

overlapping concepts of a control sample, respectively, were reviewed. These efforts 

were reported in [63]. As with the audit on the 2004 version, corrections of errors which 

were found in all three efforts on the 2007 version and approved by Dr. Spackman, were 

implemented in SNOMED. The corrections are reflected in the July 2008 release. 

 To assess the impact of the first auditing effort on the complexity of the Specimen 

hierarchy, the complexity measures for 2004 and 2007 will be compared. Similarly to 

assess the impact of the second auditing effort, the complexity measures for 2007 and 
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2008 will be compared. For convenience, one will refer to the states of the Specimen 

hierarchy as H1 for 2004, H2 for 2007, and H3 for 2008. 

 
5.3.1 Structural Complexity Measures  

Table 5.4 compares the number of concepts of all different levels for the three states of 

the Specimen hierarchy. For example, on Level 1 and Level 2, the values of the structural 

complexity function S(1, H2007) and S(2, H2007) reflect a large increase for concepts with 

one and two relationships in 2007, representing many more concepts with lower 

structural complexity as compared to 2004. The increase for Levels 1 and 2 is from 399 

and 430 in 2004 to 468 and 517 in 2007, respectively. These increases are balanced by 

the decrease in concepts on Level 3 from 194 to 48. The total number of concepts of H1 

and H2 is the same, following the initial decrease and subsequent increase due to changes 

in intermediate states as reported earlier. So the total number of concepts of H1 and H2 is 

equal by coincidence.  

 Interestingly, the picture is reversed when comparing H2 and H3. A large decrease 

occurs for Levels 1 and 2, balanced by an increase in Levels 3 and 4. Note that the 

number of concepts in the Specimen hierarchy in 2008 was actually 1,173, and the 1,056 

total listed for H3 reflects the scaling operation to enable a fair comparison of structural 

complexity (see Section 5.2). 

It is noted that the decreases in S(1, H3) and S(2, H3) in 2008 from the corresponding 

numbers in 2007, are not as sharp as is seems from Table 5.8. Table 5.8 shows the scaled 

down numbers. The actual S(1, H3) = 397 and S(2, H3) = 450 (see Table 5.3) still reflect a 

decrease versus H2 but are in line with S(1, H1) = 399 and S(2, H1) = 430. 
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Table 5.8  Structural Complexity Measures S(i, H) for 2004, 2007, 2008 
Level(i) S(i, H2004) S(i, H2007) S(i, H2008) 

0 29 21 18
1 399 468 357
2 430 517 405
3 194 48 264
4 4 2 12

Total: 1,056 1,056 1,056
 

5.3.2 Accumulated Structural Complexity Measures 

Table 5.5 shows the accumulated structural complexity measures SC for H1, H2, and H3. 

As already shown in Section 5.2 above, H2 dominates H1, implying that H2 is a less 

structurally complex hierarchy state. On the other side, H2 also dominates H3. Hence, H3 

is a more complex hierarchy state than H2. When comparing H1 and H3, one can see that 

H1 dominates and is thus less complex than H3. Hence, H3 is the structurally most 

complex hierarchy state of these three states for the Specimen hierarchy. 

Table 5.9  Accumulated Structural Complexity Measures for 2004, 2007, 2008 
Level(i) SC(i, H2004) SC(i, H2007) SC(i, H2008) 

0 29 21 19
1 428 489 378
2 858 1,006 755
3 1,052 1,054 1,046
4 1,056 1,056 1,056

The aggregated structural complexity measure for H1, H2, and H3 is 0.422, 0.362, 

and 0.474, respectively. 

 
5.3.3 Hierarchical Complexity Measures 

Table 5.6 presents in detail the dramatic hierarchical simplification of the areas on Level 

1 from 2004 to 2007. This can be seen by examining the ratio )(XP / )(XE  of each area, 

separately. The large decrease in the structural complexity occurs mainly due to the large 
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decrease in the number of partial-areas for the areas {morphology}, {topography}, and 

{identity}. For example, in{topography}, the ratio decreased from 0.38 to 0.08. In 

contrast, little change is seen from 2007 to 2008. 

Table 5.10  The Hierarchical Complexity for Areas with One Relationship (2004, 2007, 
2008) 

 
 The hierarchical complexity ratio in Table 5.11 is given with respect to the 

taxonomy’s various levels for the three hierarchy states. The whole hierarchy became 

simpler from 2004 to 2007 with a decrease in the number of partial-areas from 451 to 

361, as seen in the last row. Level1 became much simpler because there are more 

concepts and quite a bit fewer partial-areas, and thus a much lower hierarchical 

complexity. Level2 became somewhat more complex hierarchically from 2004 to 2007, 

as there are more concepts, but relatively even more partial-areas. On Level 3, there are 

fewer concepts, even fewer partial-areas, and thus higher hierarchical complexity. 

Comparing hierarchical complexity for 2007 and 2008, one can see a further small 

decrease due to the increase of the number of concepts for H3 while the number of partial 

areas increased only slightly. The major contributions for the decrease come from the 

sharp decrease in |P(2)| and sharp increase in |E(3)|. 

 

 

 

Area (X) 2004 2007 2008 
|P(X)| |E(X)| HC(X) |P(X)| |E(X)| HC(X) |P(X)| |E(X)| HC(X)

substance 15 56 0.27 10 81 0.12 10 98 0.10
morphology 9 15 0.60 1 14 0.07 1 13 0.08
topography 112 297 0.38 25 333 0.08 23 245 0.09
procedure 9 12 0.75 7 20 0.35 8 20 0.40
identity 8 19 0.42 2 20 0.10 2 21 0.10
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Table 5.11  The Hierarchical Complexity Measures for Levels (2004, 2007, 2008) 
Level 

(i) 
2004 2007 2008  

|P(i)| |E(i)| HC(i) |P(i)| |E(i)| HC(i) |P(i)| |E(i)| HC(i)
0 1 29 0.03 1 21 0.05 1 20 0.05
1 153 399 0.38 45 468 0.10 44 397 0.11
2 186 430 0.43 269 517 0.52 178 450 0.40
3 107 194 0.55 44 48 0.92 133 293 0.45
4 4 4 1.00 2 2 1.00 12 13 0.92

Total 451 1,056 0.43 361 1,056 0.34 368 1,173 0.31
 

 In the auditing results for the 255 singletons in 2007, it is found that errors of 

different kinds. A sample of such errors is shown in Table 5.12. For example, it was 

discovered that Edema fluid sample in the area {morphology, substance} has a parent 

Fluid sample that is incorrect because it is too general. The parent should instead be Body 

fluid sample. The auditing was performed by JX who is a MD with experience using 

SNOMED in practice and research. The errors were reviewed by Dr. Spackman. Only 

errors confirmed by him are reported in Tables 5.8 and 5.9. 
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Table 5.12  Sample of Errors Discovered in the Specimen Hierarchy 
Concept Name Area Error Type Correction 

Edema fluid sample morphology, 
substance 

Incorrect parent: 
Fluid sample 

Correct parent: 
Body fluid sample 

Vein sample topography, 
substance 

Incorrect parent: 
Specimen from heart 

Correct parent: 
Cardiovascular 
sample 

Specimen from 
pleura obtained by 
fine needle 
aspiration 
procedure 

topography, 
procedure 

Missing parent Add parent: 
Specimen obtained 
by aspiration 

Specimen from 
thoracic 
mesothelium 
obtained by open 
thoracotomy 

topography, 
procedure 

Missing parent Add parent: 
Surgical excision 
sample 

Specimen from 
breast obtained by 
image guided core 
biopsy 

topography, 
identity, procedure 

Incorrect identity 
relationship to Core 
biopsy needle 

Delete relationship 

Drainage fluid 
sample 

morphology, 
procedure, 
substance 

Incorrect morphology 
relationship to 
Discharge 

Delete relationship 

Tissue specimen 
obtained from anus 
by polypectomy 

topography, 
procedure 

Missing substance 
relationship 

Add substance 
relationship to Body 
tissue material 

Buccal smear 
sample 

topography, 
procedure 

Incorrect procedure 
target: Biopsy 

Correct target: 
Smear 

Tissue cell sample topography, 
procedure 

Ambiguous concept Retire it 

Cervical secretion 
sample 

topography, 
substance 

Duplicate concept 
with Cervical mucus 
specimen 

Remove duplicate 
concept. 
Combine parents 

Skin ulcer swab topography, 
morphology, 
procedure 

Duplicate procedure 
targets: Taking skin 
swab, Swabbing skin 
area 

Consolidate the two 
targets 

 
 In Table 5.13, the 88 confirmed errors are divided according to their kind. The 

majority of them—–69 in total—were incorrect or missing parents. These errors were 

corrected in the 2008 release. The next two errors in terms of frequency of occurrence, 

namely, missing relationships and incorrect relationships, occurred only for eight and 
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four concepts, respectively. In Section 5.4, the kinds of errors are related to the findings 

regarding the complexity measures. For this reason, one can include here also the 

distribution of the kinds of errors found for the other auditing efforts with respect to the 

2007 Specimen hierarchy that involved 162 “overlapping” concepts and for a control 

sample of 85 concepts (see Tables 5.10 and 5.11, respectively). As reported in [63], the 

auditing for this project was performed by three auditors: GE, JX, and YC, all trained in 

medicine and medical terminologies, and experienced in auditing medical terminologies. 

For the overlapping concepts, there were a total of 53 errors of missing or incorrect 

children and a total of 74 missing or incorrect parents. There were 21 missing 

relationships. For the errors in the control sample, there was a total of 45 errors of 

missing or incorrect parents, eight errors of missing or incorrect children, and 55 cases of 

missing relationships. 

Table 5.13  Kinds of Errors and Their Counts (Auditing Singletons) 
Kind of Error # 

Incorrect parent  55
Missing parent 14
Missing relationship 8
Incorrect relationship 4
Incorrect target 3
Ambiguous concept 2
Duplicate concept 1
Duplicate targets 1
Total 88
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Table 5.14  Kinds of Errors and Their Counts (Auditing Overlapping Concepts) 
Kind of Error # 

Ambiguous concept  1
Missing child 48
Incorrect child 5
Missing parent 30
Incorrect parent 44
Missing relationship 21
Missing sibling 4
Incorrect target of relationship 5
Total 158

 
Table 5.15  Kinds of Errors and Their Counts (Auditing Non-overlapping Concepts 
(Control Sample)) 

Kind of Error # 
Missing parent 23
Incorrect parent 22
Missing child 6
Incorrect child 2
Missing relationship 55
Incorrect relationship target 2
Other types 6
Total 116

 
 

5.4 Discussion 

In this research, one can set out to define complexity measures for a SNOMED hierarchy 

and explore the changes in those measures as the hierarchy goes through stages of 

auditing. Two kinds of measures are introduced. The first relates to the structure (set of 

relationships) defined for a hierarchy. This measure is closely related to the area 

taxonomy that have previously introduced [2]. The second kind of complexity measure 

depends on the ratio of the partial-areas to the number of concepts. This kind is defined in 

the context of the partial-area taxonomy [2] and seeks to measure the cohesiveness of the 

hierarchy. 
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 When auditing, one can eliminate or change incorrect knowledge elements and 

add missing ones. The idea of a connection of some sort between auditing and 

complexity stems from the possibility that errors in the modeling of concepts cause some 

disorderliness in the knowledge of a hierarchy. If so, the auditing may help to decrease 

disorderliness. If disorderliness is expressed by an increase in complexity of a hierarchy, 

then perhaps auditing will be manifested as a decrease of the complexity of the hierarchy. 

 However, one needs to be aware that complexity also relates to how extensive and 

involved the knowledge represented in the hierarchy is, and not necessarily errors. Hence, 

the connection between auditing and complexity may be subtle, depending on the kind of 

auditing applied, and also on any further development that has taken place in a hierarchy. 

Furthermore, there may be differences between an initial audit phase and a subsequent 

audit phase. 

 As is seen in the Section 5.3, there is a difference in the changes between the two 

auditing periods tracked in this study. The first audit phase yields a decrease in 

complexity measures of both kinds. First, let us concentrate on the structural complexity 

measures. The aggregated structural complexity was reduced from 0.422 to 0.362 

reflecting a reduction of 203 relationships (from 1,857 to 1,654) between 2004 and 2007. 

(This count does not include occurrences of multiple targets for the same relationship 

with respect to the same source concept, which are not reflected in the definition of the 

structural complexity.) The reduction of 203 erroneous relationships in a hierarchy of 

1,056 concepts is a meaningful improvement in both quality and simplicity. The amount 

of incorrect relationships is even higher than it seems to be if one also considers the 

relationships that were found to be missing and were subsequently added (e.g., for eight 
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(= 29–21) of the area Ø on Level 0), since those cancel the impact of the same number of 

deleted relationships. Obviously, it is imperative that concepts have the correct 

relationships, even if it makes them more complex. To illustrate such an example, in 

2004, the partial-area Specimen from digestive system had an extraneous identity 

relationship that was subsequently removed from its 38 concepts [2]. This improvement 

in structural complexity obtained by the movement of concepts from Levels 3 and 4 to 

Levels 1 and 2 (see Table 5.8) is properly captured by the accumulated structural 

complexity measure for which H2 dominates H1 (see Table 5.9). 

 The change from 2004 to 2007 in the hierarchical complexity (HC) measure is 

more involved. Globally, the ratio of HC decreased from 0.43 to 0.34 due to the large 

decrease of 90 (20% of 451) in the number of partial-areas. But in the levels only, HC(1) 

decreased, while HC(0), HC(2), and HC(3) increased. There were several different 

factors at play here. The main contribution was the finding that many roots of small 

partial-areas (mainly singletons) were missing IS-A relationships to concepts in other 

areas. When those IS-As were added, these concepts ceased to be roots of independent 

partial-areas, and all concepts of their partial-areas became part of another partial-area. In 

general, these corrections turned the hierarchy into a more cohesive structure with fewer 

and larger partial-areas. For example, the nine partial-areas of {morphology} turned into 

one called Lesion sample, consisting of 14 concepts. This consistent and dramatic 

transformation in all areas of Level 1 is documented in Table 5.10. 

 Another phenomenon was the increase in the number of partial-areas in Level 2 

from 186 (2004) to 269 (2007). This increase was much larger than the increase in the 

number of concepts: 430 to 517. This phenomenon centers around two areas, 
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{topography, substance} of 90 concepts and {topography, procedure} of 380 concepts 

(see Figure 2). Another page and a half (omitted) were required to draw them. Those two 

areas have so many partial-areas, 31 and 194, respectively, that they cannot be displayed 

in Figure 3. Those partial-areas were created by the many combinations of ten partial-

areas of {substance} and 25 partial-areas of {topography} (see Level 1 in Figure 3). It is 

found that a similar situation for the combinations of the partial-areas of {topography} 

with those of {procedure}. As it happened, many procedures can be applied to many 

body parts leading to all those 194 partial-areas of {topography, procedure}. Finally, at 

Level 3, the 48 concepts left in 2007, after the movement of 194 to lower levels, resided 

in as many as 44 partial-areas, yielding an HC = 0.92. However, when all these interplays 

were combined, the impact of the consolidation of partial-areas in Level 1 outweighs the 

others, and the result of the auditing phase for 2004 was a more cohesive Specimen 

hierarchy with lower hierarchical complexity. 

 Hence, as a result of the 2004 audit phase, the Specimen hierarchy became 

simpler both structurally and hierarchically. That is, in parallel to many errors being 

corrected, the hierarchy became more cohesive and its concepts less structurally complex. 

The average number of relationships per concept was reduced from 1.76 to 1.57. 

 The picture for the second audit phase applied for the 2007 Specimen hierarchy is 

very different. The structural hierarchy increased even beyond the original 2004 level. 

For example, the aggregated structural complexity grew to 0.474, 30% higher than in 

2004. This increase is well reflected by the cumulative structural complexity measure, 

where H3 is dominated by both H1 and H2, that is, H3 is more complex than both. On the 

other hand, the hierarchical complexity continued to decrease a little in this auditing 
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phase. The number of partial-areas increased minimally from 361 to 368, but the number 

of concepts increased by 11% to 1,173. Thus, HC increased, with a larger number of 

concepts arranged in about the same number of partial-areas, implying an increase in 

hierarchical cohesiveness. 

 One question which arises is: what is the reason for the difference between the 

two phases regarding the structural complexity? A second question is what is the reason 

for the difference in the direction of change for the two complexity measure during the 

second phase? To look for answers, one needs to look at the nature of the auditing 

techniques used in the second phase and the kinds of errors found, as documented in 

Tables 5.13, 5.14, and 5.15. 

 Altogether, in the three separate auditing efforts on 2007 Specimen hierarchy (502 

concepts), a little less than half of the hierarchy was reviewed. According to the 

confirmed hypotheses of [62] and [59], those are concepts with the highest likelihood of 

being in error. The errors relevant for structural complexity are incorrect relationships, 

which should be removed, and missing relationships, which should be added. Only in the 

context of the singleton auditing did one find four errors of incorrect relationships. On the 

other hand, missing relationships were found during all three auditing efforts. The audits 

exposed eight missing relationships for the singletons, 21 for the overlapping concepts, 

and 55 for the non-overlapping control sample. Hence, a total 84 missing relationships 

and four incorrect relationships were reported, leading to a net gain of 80 relationships in 

the Specimen hierarchy. Obviously, such corrections will increase the structural 

complexity.  
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 An obvious question is: what is the reason for such a difference in the change of 

the number of relationships between the first audit and the second audit. In 2004, the 

overlapping concepts were not audited but singletons and other small partial-areas were 

audited. It is discovered that so many incorrect relationships that after accounting for the 

added relationships, one still had a net decrease of 203 relationships. 

 One possibility is that incorrect relationships, that need to be deleted, are 

relatively easier to detect than missing relationships that need to be included. The 

erroneous knowledge asserted by incorrect relationships are perhaps stick out like a sore 

thumb. These relationships are detectable even on a cursory review. On the other hand, to 

detect a missing relationship, one has to absorb all the existing knowledge and then 

surmise that some is missing, which can be a much more demanding mental task. Hence, 

it is assumed that almost all incorrect relationships were discovered in the 2004 audit, 

while only a portion of the missing relationships were uncovered and added in that initial 

audit phase. 

 The errors relevant for the hierarchical complexity measure are missing parent 

relationships and perhaps incorrect parent relationships. Tables 5.13, 5.14, and 5.15 show 

respectively 14, 30, and 23 missing parent relationships in the corresponding auditing 

projects. The numbers of incorrect parent relationships are 55, 44 and 22, respectively. 

Thus it is found that a total of 67 missing parent relationships and 121 wrong parent 

relationships during the second audit phase of 2007. 

 As explained earlier, when missing parent relationships are added, it sometimes 

implies a partial-area merging into another partial-area. Based on the number of missing 

parent relationships found, one would expect to see a continuation of the reduction in the 
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number of partial-areas similar to the impact of the previous audit of 2004. But what one 

can see is a small increase of seven partial-areas. Again, there may be an interplay of 

several factors here. For example, it is not clear what the impact of handling errors of 

incorrect parent relationships on the number of partial-areas is. A deletion of such a 

relationship may separate one partial-area into two, while a replacement by a parent 

relationship to another concept has typically no impact on the number of partial-areas. 

 Also, one can see that a net of 117 concepts were added to the Specimen 

hierarchy during this period, which are attributed to the routine developmental work done 

by CAP (which maintained SNOMED at the time). New partial-areas are likely to arise 

as a result of that development. On the other hand, one can see among these 117 concepts 

added the inclusion of general concepts like Specimen from head and neck structure or 

Specimen from head and neck structure obtained by biopsy that were added as parents of 

many existing concepts and some new concepts. This ended up turning many small-

partial areas into one large one. In summary, the period of 2007–2008 was not a period of 

just auditing activity but one of combined development and auditing. Hence, it is difficult 

to isolate the impact of the auditing itself on the complexity. This is discussed further 

below. 

Limitations and Future Work 
 In this work, it is shown that the Specimen hierarchy of SNOMED became 

simpler according to the two complexity measures due to an initial auditing effort. The 

situation for a subsequent auditing effort was a mixed report due to several issues 

discussed above. More experiments with other hierarchies of SNOMED or similar 

terminologies (e.g., NCIt) are needed to further study the connection between complexity 
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and the impact of auditing on a hierarchy of a DL-based terminology [61, 79, 80] such as 

SNOMED. 

 A major limitation of the suggested complexity measures is that they are not 

applicable for SNOMED hierarchies without outgoing relationships. Eleven out of the 19 

hierarchies (e.g., the Physical Object hierarchy) fall into this category. The concepts of 

these hierarchies just serve as targets for the relationships from other hierarchies. Thus, 

the area taxonomy and the partial-area taxonomy are not defined for them. (In [60], the 

converse abstraction network is introduced to handle such hierarchies.) Hence, neither of 

the two complexity measures is applicable. It is a research problem to identify what 

aspects of such a hierarchy need to be reflected in a complexity measure. 

 A particular problem one encountered was in reporting the complexity measure 

for the period 2007–2008, during which time the Specimen hierarchy went through three 

separate audits and, evidently, regular content development performed by CAP. It is 

noted that potentially, these two activities may influence changes in the complexity 

measures in different ways. A future research problem is to investigate the impact of 

content development on complexity measures of a hierarchy. One expects a different 

impact from that for auditing due to several factors. One also expects different impacts in 

early development stages versus later stages. For example, in early stages, new concepts 

are expected to be less complex (with few relationships), while in later stages, many 

simple concepts are already in the hierarchy and typically more complex concepts (with 

relatively more relationships) are added. Also, in earlier stages, many new concepts are 

expected to be roots of new partial-areas, while in later stages concepts are mostly joining 
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existing partial-areas. Such phenomena will influence the complexity measures 

differently. 

 To investigate such phenomena, one has to identify precisely when a hierarchy 

goes through the different processes. For example, in the SNOMED releases of July 

2008, July 2009, July 2010, and January 2011, it is observed that the following numbers 

of concepts in the Specimen hierarchy, respectively: 1,173, 1,236, 1,266, and 1,329. To 

ones’ knowledge, there was no auditing activity for this hierarchy during this period. 

Hence, the period from July 2008 through January 2011 represented a time of just content 

development, for which one could investigate the impact on the complexity measures.  

 Another interesting research problem is what will happen if an audit will target 

the new concepts that were added to the Specimen hierarchy during a phase of content 

development, as for this period of July 2008 – January 2011. Would one see a decrease in 

the complexity due to such an audit, as one saw for the initial audit of 2004? 

It is observed that an increase in the structural complexity and a decrease in the 

hierarchical complexity when comparing the releases of 2011 to that of 2004. This is not 

unexpected because concepts added later in the hierarchy’s life cycle tend to be more 

complex and have more relationships, since the simpler ones in the lower-numbered 

levels already exist. The cohesiveness of the hierarchy tends to improve over time since 

concepts added later, more often join existing partial-areas than establish new ones. 

However, this broad range comparison overlooks important facts that were 

exposed when tracking the impact of auditing efforts. For example, the decrease in the 

number of partial-areas in Level 1, causing the decrease in the hierarchical complexity, is 

due to the initial audit carried out with respect to the 2004 version. When comparing the 
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hierarchical complexity of 2008 and 2011, no change is seen in spite of the addition of 

156 concepts. Similarly, the structural complexity declined at first due to the initial 2004 

audit, but later increased. These observations support ones opinion that more refined 

analysis is needed to reflect different change patterns for auditing versus content 

development. Furthermore, there are differences between changes occurring during the 

initial periods of a hierarchy’s lift cycle and later periods when the hierarchy is in a more 

mature state. Such differences exist for both auditing activity and content development 

activity. 

 It is noted that the results of the 2004 auditing effort were visible in the July 2005 

release, where the Specimen hierarchy had decreased in size to just 1,042 concepts. In 

subsequent releases, it grew back to 1,049 (July 2006), 1,052 (January 2007), and 

eventually to 1,056 (July 2007), its original size in July 2004. 

 One had the option of auditing the July 2005 release instead of the July 2007 

release. During the July 2004 – July 2005 period, the Specimen hierarchy seemed to have 

gone strictly through auditing, as reported in [2, 70]. The following two years of release 

periods showed very slow growth of 12 concepts. It is not certain if these 12 concepts 

were added as a result of the auditing reports or some other auditing performed by CAP, 

or just reflected a slow development process. One decided to use the July 2007 release as 

both ending the first audit period (of 2004) and starting the second audit period (ending 

July 2008) for several reasons. First and foremost, the impact of the addition of the 12 

concepts seems negligible compared to the major changes that resulted from auditing, as 

described in Section 5.3. Second, it was simpler to deal with only three states of the 

hierarchy, where H2 represented both the end of the first period and the beginning of the 
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second. Otherwise, one would have needed to process the July 2005 version, as the end 

state for the first audit period, and deal with the increase in size (from 1,044 concepts to 

1,056). The third reason was that the coincidence of H2 and H1 having the same number 

of concepts enabled the direct comparison of the structural complexity measures of 2004 

and 2007 without introducing scaling. This simplified the presentation of the results. 

Once such a comparison was done, it was easier to introduce the reader to scaling, 

necessary for the second period. It is also confident that the results for comparison with 

the July 2005 release would be very similar and no scientific gain would have been 

obtained for the price of a longer and more complex presentation. Note that no scaling 

was necessary for the hierarchical complexity measures, which are based on the number 

of partial-areas and the number of concepts (42). 

 

5.5 Summary 

Two kinds of measures were introduced to quantify the complexity of a SNOMED 

hierarchy. They are based, respectively, on characteristics of the area taxonomy and 

partial-area taxonomy abstraction networks that are previously introduced. Both networks 

are derived automatically via analysis of structural aspects of the hierarchy. 

 The structural complexity measure is proposed as a means to measure the lateral 

density of the hierarchy network by computing the ratio of the number of lateral 

relationships (non-hierarchical links) with respect to the number of concepts (nodes). The 

denser the network, the higher the aggregated structural complexity. The hierarchical 

complexity measure reflects the cohesiveness of the hierarchy by computing the ratio of 
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semantically uniform concept groups (partial-areas) to the number of concepts. The fewer 

and larger the partial-areas, the lower the hierarchical complexity. 

 The two suggested measures offer a quantitative way to track a hierarchy over 

time and see the changes occurring in its density and cohesiveness. In particular, it is 

studied the changes occurring as a result of auditing efforts applied to the Specimen 

hierarchy. It is observed that during the initial audit period, both complexity measures 

decreased. The outcome of the subsequent audit period is mixed: the structural 

complexity increased, while the hierarchical complexity decreased. 
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CHAPTER 6 
 

SUMMARY AND FUTURE WORK 

 

This dissertation is aimed to develop automated or semi-automated methods that focus 

auditing of the SNOMED on those areas that are most likely to have errors. A medical 

terminology, such as SNOMED, is like a bridge that connects two sides – human 

cognitive processing and computer processing. However, previous research work 

indicates that the quality of SNOMED is often not up to the standard required for critical 

application. Therefore, quality assurance of SNOMED is extremely important for medical 

systems and EHR/EMR systems. 

This research is built upon the previous work by extending and using previously 

defined abstraction networks for structural auditing of SNOMED. Converse relationships, 

derived from relationships in SNOMED’s inferred view, have been used in the 

construction of a new kind of abstraction network, the Converse Abstraction Network 

(CAN), for a strict target hierarchy. An auditing methodology for such a hierarchy’s 

incoming relationships based on the CAN has been presented. The results of applying this 

methodology to the Device sub-hierarchy indicate that the CAN is a useful auditing 

vehicle that can bring various aspects of the relationship structure to light and aid an 

auditor in refining and improving SNOMED. 

The difference between Description Logic (DL) classification and the Abstraction 

Network (AN) methodology (mentioned in Section 4.2.2) are examined in identifying 

errors in SNOMED. DL classifiers can automatically identify logical inconsistencies in 

the terminology, while the AN methodology helps experts perform targeted manual 
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reviews of the terminology by reducing its complexity and grouping the concepts by their 

structural and semantic properties. The differences between the two approaches were 

illustrated through two cases of errors identified in SNOMED. 

Two complexity measures are explained in detail: one structural and one 

hierarchical. A global complexity measure is investigated for the structural complexity 

that is more detailed than just the total number of relationships and thus can measure the 

impact of the phenomenon of concepts moving between levels due to omitted or added 

relationships. They have been utilized to assess the hypothesis that following the 

application of an auditing process, the Specimen hierarchy got simpler. An auditing 

process has been further utilized to this hierarchy in its July 2007 release. Reflecting the 

typical situation of scarce resources for auditing, an in-depth audit of only the 255 

singleton partial-areas has been done. The larger partial-areas only had their names 

reviewed. This review enabled the identification of possible duplicates or missing IS-A 

relationships from the (roots of) singletons to other partial-areas. While concentrating on 

the singletons, the auditor can watch for propagation of errors to other partial-areas, and 

pursue those if appropriate.  

It is realized that in spite of the two previous audits performed on the Specimen 

hierarchy, there were still be errors to be found. As a matter of fact, correction of 

previous errors would cause new errors to arise or lead to the exposure of errors 

remaining hidden before. So, whether this extra auditing effort further simplifies the 

Specimen hierarchy according to the measures we have postulated has been checked. 

Finally, the author proceeded from the assumption that “complex” concepts 

warrant particular attention in quality assurance activities pertaining to terminologies like 
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SNOMED. An auditing methodology is presented in which the author took such complex 

concepts to be those residing in special overlapping subsets of a SNOMED hierarchy 

defined with respect to the partial-area taxonomy. These so-called overlapping concepts 

in the Specimen hierarchy are identified programmatically and then put through a 

rigorous audit. Comparing these auditing results with results from a control set, a 

statistically significant of higher error rate among the overlapping concepts has been 

found.  

In the future, the current study will be extended in the following directions: 

applying the abstraction networks (including area taxonomy and partial-area taxonomy) 

to the hierarchies with large numbers of concepts and rich sets of relationships; and 

associating the errors found in the source terminology, like SNOMED, with the UMLS 

semantic-type assignments and investigate the reasons for those errors. The overarching 

goal for the future research is to identify semantic-type assignment errors of SNOMED 

concepts in the UMLS by utilizing the previously defined partial-area taxonomy.  The 

partial-area taxonomy’s semantic division of a hierarchy’s concepts will be used to 

facilitate the task of auditing semantic-type assignments. The SNOMED semantic 

divisions, as logic units, will be mapped to the UMLS version of SNOMED. Such 

semantically uniform groupings are more comprehensible and much easier for auditing 

UMLS semantic type assignments. 
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