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ABSTRACT 

DISPERSION OF PARTICLES ON LIQUID SURFACES 

by 

Sathishkumar Gurupatham 

 
When small particles (e.g., flour, pollen, etc.) come in contact with a liquid surface, they 

immediately disperse. The dispersion can occur so quickly that it appears explosive, 

especially for small particles on the surface of mobile liquids like water. This explosive 

dispersion is the consequence of capillary force pulling particles into the interface 

causing them to accelerate to a relatively large velocity. The maximum velocity increases 

with decreasing particle size; for nanometer-sized particles (e.g., viruses and proteins), 

the velocity on an air-water interface can be as large as 47 m/s. They also oscillate at a 

relatively high frequency about their floating equilibrium before coming to stop under 

viscous drag. The observed dispersion is a result of strong repulsive hydrodynamic forces 

that arise because of these oscillations. Experiments were conducted to validate the 

Direct Numerical Simulation results which were available already.  

 This dispersion of particles was also witnessed on the liquid-liquid interface. The 

dispersion on a liquid-liquid interface was relatively weaker than on an air-liquid 

interface, and occurred over a longer period of time. This was a consequence of the fact 

that particles became separated while sedimenting through the upper liquid and reached 

the interface over a time interval that lasted for several seconds. The rate of dispersion 

depended on the size of particles, the particle and liquids densities, the viscosities of the 



 

 

 

ii    

liquids involved, and the contact angle. The frequency of oscillation of particles about 

their floating equilibrium increased with decreasing particle size on both air-water and 

liquid-liquid interfaces, and the time taken to reach equilibrium decreased with 

decreasing particle size. These results are in agreement with the analysis. 

 Although it is known that a clump of powder floating on a liquid surface breaks 

up to form a particle monolayer on the surface, the mechanism that causes this break up 

remains abstruse. It is shown that a floating clump breaks up because when particles on 

its outer periphery of a floating clump come into contact with the liquid surface they are 

pulled into the interface by the vertical component of capillary force overcoming the 

cohesive forces which keep them attached and move away from the clump. The latter is a 

consequence of the fact that when a particle is adsorbed on to a liquid surface it causes a 

flow away from itself on the interface. This flow causes the newly-adsorbed particles to 

move away from the clump, and thus the clump size decreases with time and this exposes 

a new layer of particles that are then adsorbed onto the liquid surface. Interestingly, when 

many particles are asymmetrically broken apart from a clump’s periphery the clump itself 

is pushed away in the opposite direction by the newly adsorbed particles. 
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                                                                CHAPTER 1 

INTRODUCTION 

 

In recent years, significant effort has been made to understand the behavior of particles 

trapped at fluid–liquid interfaces because of its importance in a wide range of 

applications and physical problems, e.g., the self-assembly of particles at fluid–fluid 

interfaces, the stabilization of emulsions, the pollination in hydrophilous plants, the 

flotation of insect eggs, the dispersion of viruses and protein macromolecules, etc [1-7].  

The following experiment is not only exciting to do but also can be easily 

performed in any reasonably well-equipped kitchen. If a dish is partially filled with water 

and after the water became quiescent, a small amount of wheat or corn flour is sprinkled 

onto the water surface, the moment the flour comes in contact with the surface it quickly 

disperses into an approximately circular shaped region, forming a monolayer of dispersed 

flour particles on the surface (Figure 1.1). The interfacial forces that cause this sudden 

dispersion of flour particles are, in fact, so strong that a few milligrams of flour sprinkled 

onto the surface almost instantaneously covers the entire surface of the water contained in 

the dish. The above experiment can be performed using other finely granulated powders 

(e.g., corn flour, salt, sugar, sand, etc.) or even small seeds, such as mustard and sesame 

seeds and pollen (Figure 1.2). The tendency of powders to disperse, however, varies. The 

fact that salt and sugar dissolve in water is not important in this experiment, because the 

dispersion occurs at a time scale that is much smaller than the time taken by particles to 

dissolve. Also, the speed with which particles dispersed increases with decreasing their 

size.  
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                                  t = 0.033 s                                           t = 0.067 s 

Figure 1.1 Wheat flour particles of 2-100 micron size at two time intervals on water surface. 

 

                                        

                                       t = 0.033 s                                t = 0.181 s 

                                                             

                                                                  t = 0.363 s 

Figure 1.2 Colored Sand particles of 200 micron size at various time intervals on water 
surface. 
 

Above all, the newly adsorbed particles cause particles already adsorbed on the 

interface to move away, too. The Figure.1.3 shows that a newly adsorbed particle creates a 
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circular particle-free region around itself, the radius of which can be several times larger than 

its own radius. 

                          

                                                                  

Figure 1.3 Dispersion of particles trapped on the surface due to a newly adsorbed particle. 
(Left) A mustard seed of diameter 1.1mm being dropped onto a monolayer of 18µm glass 
particles on the surface of a 60% glycerin in water. (Right) The mustard seed causes all of the 
nearby glass particles to move away, and thus creates an approximately circular particle-free 
region.  
     

The aim of this research was to study the fluid dynamics of initial explosive 

dispersion of particles on air-liquid interface as well as liquid-liquid interface and relate it to 

the real time phenomena like the breakup of a clump of particles when it is placed on a liquid 

surface so as to unravel the mysteries of dynamics behind them. 

1.1 Literature Review 

 
Though small particles first dispersed violently at large speeds, later they slowly came 

back to form monolayer clusters due to attractive lateral capillary forces. The same 

dynamics were observed for more viscous liquids except that the dispersion speeds were 

smaller. The fluid dynamics of the attractive phase are well understood [8-16], but 

surprisingly there is no mention in the past studies of the initial violent dispersion of 
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particles despite the fact that this dispersion is ubiquitous, and occurs for many common 

liquids and particles. 

 
Though the particle dispersion is ubiquitous it has remained a mystery over many 

decades. But, this phenomenon has been the root cause of formation of a porous pollen 

structure known as “pollen rafts” in which an important first step is the initial dispersion of 

pollen occurring after it comes in contact with the water surface [17]. Cox and Knox [17] did 

not give a reason for the initial dispersion of pollen. 

After this initial dispersion, the pollen particles (usually, form a single anther) cluster 

to form a pollen raft. It was shown in references [17] and [18] that the formation of porous 

pollen rafts increases the probability of pollination, because the surface area of the raft is 

much greater than that of a single pollen grain. Besides, there have been sharp declines in sea 

grasses of some polluted coastal regions [19,20] that may be associated with surface 

contamination, which, even when the concentration of contaminants is very small, can 

influence the porous structure of pollen rafts.  

The same way it may be explained why a female of some mosquito species (Culex) 

has to hold onto the egg raft with its hind legs to prevent it from drifting away while she 

attaches new eggs. The eggs are laid one at a time and stuck together to form a raft that 

enables them to float together on the water. If she did not hold onto the raft, it would move 

away. The eggs of some other mosquitoes (Anopheles) are laid individually onto the water 

surface; they aggregate under the action of lateral capillary forces with the ends of the eggs 

touching each other. The spacing between the eggs in this case is relatively larger (which is 

perhaps advantageous for this species) as they dispersed initially. Lateral capillary forces 

cause the eggs to cluster and keep them together while the cluster moves around on the water 

surface. Traveling in large numbers helps ensure survival of the species, because some of the 



 

 

 

5    

eggs are eaten by other insects before they hatch. 

 

Figure 1.4 Sudden dispersion of flour sprinkled onto water in a dish. Streaklines formed due 
to the radially-outward motion of the particles emanating from the location where they were 
sprinkled. The size of flour particles was ~2-100 µm.  
 

This relatively-violent phase, when small particles, e.g., flour, pollen, etc., come in 

contact (Figure 1.4) with a liquid surface, lasts for a short period of time (only about one 

second or less on mobile liquids like water) and usually followed by a phase that is 

dominated by attractive lateral capillary forces during which particles slowly come back to 

cluster. However, once micron- and nano-sized particles are dispersed, they may remain 

dispersed since attractive capillary forces for them are insignificant. Small particles may 

experience other lateral forces, e.g., electrostatic, Brownian, etc., which may cause them to 

cluster or form, patterns [21-23]. 

 The modeling of interactions among floating particles is a formidable 

challenge because of the complexity of the interactions and forces involved, i.e., the fluid 

dynamics of the interface motion, the contact-angle condition on the surface of the particles, 

the contact-line motion, etc. Recently, a DNS approach was developed for particles trapped at 

fluid-fluid interfaces [16]. This approach provides not only a capability for resolving the 

motion of a particle as well as clusters of particles, but also the ability to address the rapidly-

changing dynamics of the particles. It is necessary to resolve the particle-level details for 

particles trapped at fluid-fluid interfaces because the deformation of the interface in between 



 

 

 

6    

the particles determines the strength of the lateral capillary forces between them, the latter 

being one of the main driving forces for their motion. The DNS scheme was used to study 

two different cases of constrained motions of floating spherical and cylindrical particles. In 

the first case, the contact angle of floating spheres was fixed by the Young-Dupré law while 

the contact line was allowed to move to meet the contact-angle requirement. In the second 

case, the contact line was pinned at the sharp edge of disks (short cylinders) with flat ends; 

while the contact angle was allowed to change. The angle at the sharp edge was allowed to 

change within the limits specified by the Gibbs extension to the Young-Dupré law.    

The spreading of solid powders on liquid surfaces and of liquids on solid surfaces are 

common phenomena that we encounter in our day to day life such as laundry, lubrication, 

wet granulation, dyeing and printing, pharmaceutical and food industries [24-27]. Although 

thermodynamic predictions for liquids spreading over solid surfaces have been developed for 

many of these applications [28,29], the mechanism by which solid powders spread over 

liquid surfaces is not completely understood [30-32].  

The spreading behavior of a liquid over a solid surface (or over a liquid with which it 

is immiscible) is determined by the sign of the spreading coefficient 

λL/S = γs – γl – γsl           (1.1) 

where γsl is the interfacial tension between the solid and the liquid, and γl and γs are 

the interfacial tensions of the liquid and solid, respectively. When the spreading coefficient is 

greater than zero the liquid spreads spontaneously on the solid surface [29].  

It is known that certain powdered materials spontaneously spread on liquid surfaces, 

just like a liquid on a solid surface. More specifically, the particles of the clump break away, 

usually a few at a time and move away from the clump to form a monolayer on the liquid 

surface. In Ref. [29,30] an approach based on interfacial energies that included the work of 

adhesion due to the polar and non-polar intermolecular interactions was used to obtain an 
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expression for the spreading coefficient of solid particles on liquids  

/ 4 2 .
d d p p
S L S L

S L Sd d p p
S L S L

   
 

   
 

     
         (1.2) 

Here the superscripts d and p refer to non-polar and polar contributions to the surface 

free energy respectively. Rowe [30] tested the predictions of this model for untreated and 

surface-treated glass granulated with a number of polymeric binders considered. A positive 

value of the spreading coefficient implied poor film formation in experiments for the binders 

considered. Tuske et al. [25] used the spreading coefficients of granules/pellets to select a 

suitable binding agent for a pharmaceutical application. The friability, an important property 

of the powder indicating better dispersion, correlated well with the spreading coefficient. He 

et al. [31] used the same approach to calculate the spreading coefficient of Celecoxib on 

kollidon 30, HPMC (hydroxypropylmethyl cellulose) and HPC (hydroxypropyl cellulose) 

that were used as binders. They showed that the positive spreading coefficient of Celecoxib 

over kollidon leading to formation of open porous granule which facilitates better dispersion 

of the former, and better dispersion than on HPMC or HPC. They also showed that the 

spreading coefficient of Celecoxib over HPMC and HPC were negative and hence they did 

not spread on them.  

Nguyen et al. [32] have noted that equation (1.2) for the spreading coefficient of solid 

particles over liquids is empirical and lacks thermodynamic validity. For example, when the 

interfacial tension values for PTFE (polytetrafluoroethylene) and water are substituted in 

equation (1.2), a positive value for λS/L is obtained, suggesting that PTFE would 

spontaneously spread over water. But, in experiments PTFE does not spread over the surface 

of a water droplet [28]. They further noted that “The spreading of solid powder over a liquid 

surface, however, is a very different phenomenon compared to liquid spreading over solid. 

When a solid powder aggregate expands its apparent coverage over a liquid surface, the 
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behaviour of the molecules in the powder particles is different from the behaviour of 

molecules of the liquid as they spread over a solid surface. For a hydrophobic powder, solid 

powder particles do not increase their surface area as they spread. Instead, powder aggregates 

merely disintegrate as they move towards the free liquid surface. The only change in this 

process is that a fraction of the solid powder surface becomes a solid/liquid interface.” They 

emphasized that this important difference has not been addressed sufficiently in the past 

studies.  

Nguyen et al. [32] noted that only when the attractive forces among the particles of a 

cluster are overcome, its particles can detach to spread over a liquid surface. Since there is no 

quantitative relation between solid surface free energy and van der Waal forces which exist 

among the particles holding them together, it is inappropriate to use solid-surface free energy 

to explain the cohesive work between the particles.  

They also calculated the free energy change between the final and initial states when 

solid particles spread on a liquid surface 

  LSSLSAL WAG   )(             (1.3) 

where Φ is the fraction of the liquid surface that becomes covered by the solid powder, WA 

is the work of adhesion between liquid and solid. γS, γL and γSL are the interfacial energies of 

the solid, liquid and solid–liquid interfaces, β denotes the ratio of the solid/liquid interface 

area and the liquid surface area it replaces while touching the liquid surface. They stressed 

upon the fact that only a fraction of the liquid surface replaced by solid/liquid interface can 

not be responsible for free energy change of the powder spreading process and hence the 

original considerations for the “spreading coefficient of solid over liquid (λS/L)” does not 

capture the physical process of powder spreading over a liquid phase. They also have pointed 

out that the spreading of solid powders on a liquid surface is dominated by the surface 
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tension of liquid and also emphasized that the phenomena needs to be further investigated.  

 

      The rest of the report is organized as follows. In Chapter 2, the experimental  

methods and in Chapter 3, the direct numerical simulation and the results and in Chapter 4, 

the force balance of a particle in motion  are described which are used to understand and 

model the process by which particles disperse when they come in contact with a liquid 

surface. In Chapter 5, the experimental results for the particle dispersion on liquid-liquid 

interface and the breakup of clump of particles on liquid surface in Chapter 6 are described 

which is followed by the conclusions.  



 

 

 

10    

                                      CHAPTER 2 

EXPERIMENTAL METHOD AND RESULTS 

 
There are several factors that determine whether a particle dropped onto the surface of a 

liquid will sink or float. First, the vertical capillary force must be large enough to balance 

the particle’s buoyant weight. The vertical capillary and pressure forces must also 

overcome the momentum of the particle, which it possesses before coming in contact 

with the liquid surface. Since the capillary force acting on a particle varies linearly with 

the particle size and the buoyant weight and the momentum vary as the third power of the 

particle radius [33,16], small particles are more easily captured at the interface. 

Furthermore, to reduce the momentum at impact, particles in the experiments were 

dropped from a distance of a few millimeters above the interface. 

 The liquids used in this study are water, corn oil and glycerin. The presence of 

contaminants on the air-water interface, even when their concentration is very small, can 

alter the interfacial tension and the contact angle of the water. To address this problem, 

Millipore water was used. In most of the experiments, particles were spherical; they were 

dried for several hours at the temperature of 70º C in an oven to eliminate the influence of 

any residual moisture. Moisture is important because it can influence the contact angle 

and thus the position of the three phase contact line on the particle’s surface. In Figure 

2.1b, the top view of two floating glass particles of nearly the same size shortly after they 

were trapped at the air-water interface is shown. The particle which was dried for several 

hours was more hydrophobic, and so it floated with more of its surface in the air; even a 

slight amount of moisture on the surface of a particle can influence the contact angle. 

After a few minutes, the exposed areas for both particles in became similar.  Since the 
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dispersion phase of the motion of particles sprinkled onto a liquid surface is very short, 

the surface moisture influences the velocity with which particles disperse. Therefore, for 

all of the cases for which quantitative data are reported in this paper, particles and 

powders were dried in an oven to eliminate the influence of the day-to-day variation of 

the humidity on the dispersion of particles. 

 In the experiments, one, two or more particles were dropped onto a liquid surface 

simultaneously. The lateral velocity of particles after they were trapped at the interface 

was calculated by analyzing the video recordings. Glass particles with diameter between 

~10 µm and 1.1 mm, and mustard seeds of ~1.1 mm diameter were used. 
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Figure 2.1a Schematic of the experimental setup used to study dispersion of particles which come 
in contact with a fluid-fluid interface.  
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Figure 2.1b Photographs of glass particles floating on the air-water interface (taken from 
above the surface) showing the influence of humidity on the contact line. The diameter of 
particles was 550 µm. (left) A particle that was kept under normal room conditions.(right)A 
particle that was kept in an oven at 70º C for 24 hours. The area exposed to air is larger in the 
latter and so the dried particle is more hydrophobic. 
 
 
  When a particle comes in contact with a liquid surface, it experiences a vertical 

force due to capillarity which acts to bring the particle to its equilibrium height within the 

interface. The equilibrium height can be defined as the distance between the center of 

mass of the particle and the undisturbed liquid surface (before the particle was sprinkled). 

The equilibrium height is determined by a balance of the buoyant weight and the vertical 

interfacial force, and the contact angle which determines the latter force. 

 The experiments show that when a single spherical particle is dropped onto a 

liquid surface it causes the fluid around it to move away. The dropped particle is called  

test particle. The particle itself, of course, does not move laterally on the interface. To 

investigate the fluid motion caused by a test particle, the interface was seeded with 100 

µm sized glass particles. Since the size of these seeded particles was several times smaller 

than that of the test particle, the assumption is made that they acted approximately as 

tracer particles and their motion can be used to deduce the local fluid velocity caused by 

dropping a larger particle. The size of tracer particles compared to that of a test particle, 

and the field of view/magnification for the camera, were selected so that the motion of 

Contact line 
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tracer particles within several diameters of the test particle could be monitored. Also, 

although the number density of tracer particles at the interface was kept small to ensure 

that they did not influence the fluid motion caused by the test particle, it was large 

enough to measure the fluid velocity at a sufficient number of points at various distances 

from the test particles. 

2.1 One particle 
 
Figure 2.2 shows the velocity of tracer particles, as a function of the distance from the 

center of a test glass particle of 850 µm diameter, 0.033 s after contact with the air-water 

interface. The experiment was repeated for several different spherical particles of the 

same approximate diameter. After a test particle was trapped at the interface, all of the 

nearby tracer particles on the air-water interface moved outward from the center of the 

test particle. The figure shows that the velocity of tracer particles decreased with 

increasing distance from the test particle. The velocity data points do not fall on a single 

curve, but are spread about a mean curve. There can be several reasons for this spreading. 

The surface properties and the smoothness of particles used may be different. The contact 

line, soon after it was trapped at the interface, was not smooth (Figure 2.1b). There can 

also be a variation in the particle’s rotational velocity, acquired when it was dropped onto 

the interface.  

 The velocity of tracer particles decreased with increasing time. For a tracer, 

initially at a distance of 2.05 mm from the center of the test particle, the velocity at t=0.8 

s decayed to approximately zero (Figure 2.3). A particle of radius 1.0 mm attains a 

velocity of O(10) cm/s normal to the interface under the action of the vertical capillary 

force. Therefore, the time taken by it to travel a distance equal to its radius downwards is 

O(10-2) s. The test particle, however, oscillates about its equilibrium height for a longer 
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period before coming to a state of rest. The frequency of oscillation in the experiments 

for a ~850 µm particle was around 60 Hz. The frequency of oscillation increased with 

decreasing particle size. Furthermore, the velocity of tracer particles near the dropped 

particle (~10 mm/s) was an order of magnitude smaller than the estimated value of the 

velocity of the test particle normal to the interface.  
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Figure 2.2 The velocity of tracer particles on the air-water interface is plotted as a function 
of the distance (d) from the center of a test glass particle. The velocity distribution plotted 
here is at a time 0.033 s after the particle was trapped at the interface. The data were taken for 
7 different particles of the same approximate diameter of 850 µm.  
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Figure 2.3 The velocity of a tracer particle on the air-water interface initially at a distance of 
2.05 mm from a glass test particle of diameter 850 µm is shown as a function of time. The 
velocity became negligibly small at t = ~0.8 s. 
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A direct measurement of the latter velocity and an accurate measurement of the 

frequency of oscillation for particles smaller than ~850 µm was not possible using the 

present setup.  

The above experiment was repeated for a mixture of 60% glycerin in water. The 

results obtained were qualitatively similar except for that the velocity of tracer particles was 

smaller. For example, Figure 2.4 shows that the velocity of tracer particles at a distance of 1 

mm from the surface of a glass (test) particle of diameter 850 µm for glycerin was ~2 mm/s 

which is approximately 3 times smaller than on the air-water interface (Figure 2.2). This is 

expected since the viscosity of 60% aqueous glycerin is about 6 times larger than that of 

water. The interfacial tension and the density of glycerin are also smaller. The velocity 

decayed to zero, 0.5 s after the particle was trapped at the interface. This time interval for 

60% aqueous glycerin-air interface, as expected, is also shorter than for the air-water 

interface. 
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Figure 2.4 The velocity of tracer particles on the surface of a mixture of 60% glycerin in 
water is shown as a function of the distance (d) from the center of a test particle. The velocity 
distribution here is at a time 0.033 s after the particle was trapped at the interface. The case 
marked “1” is for a glass sphere of diameter 850 µm, “2” is for a glass sphere of diameter 550 
µm, and “3” is for a mustard seed of diameter 1.1 mm. 
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                             Contact line 

 

  

Figure 2.4 (b) The contact line positions for glass particles floating on the surface of 60% 
glycerin in water are shown. Both particles were dried in an oven for one day. The fraction of 
the surface of an 850 µm particle exposed to air is smaller than that of 550 µm particle. The 
dispersion velocity is larger for the latter particles. 
 

 The velocity of tracer particles at a distance of 1 mm from the surface of a 550 µm 

glass test particle was ~3.5 mm/s, as shown in Figure 2.4a. The velocity induced by a 550 

µm particle, therefore, was larger than that by an 850 µm glass particle. This could be due 

to the fact that the fraction of the particle’s surface exposed to air was significantly larger 

for the 550 µm sized particle (Figure 2.4b). The velocity induced due to a mustard seed, 

at a distance of 1 mm from the particle, was ~4.9 mm/s. This relatively large surface 

velocity due to a mustard seed is consistent with the fact that it also floated with 

approximately one half of its surface exposed to air. The frequency of oscillation of a 

~1.2 mm mustard seed was about 83 Hz. These results imply that the surface flow 

induced by the dropping of a particle is greater when it floats so that one half of its 

surface remains exposed to air. This is also consistent with numerical results and the 

analysis presented in fore coming chapters.  
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Figure 2.5 The velocity of tracer particles at the distances of ~2.0 and ~3.0 mm from the test 
particles on the air-water interface. The height from which the test particles were dropped 
was 3, 6 or 8 mm. The velocity values shown in this figure are at a time 0.033 s after the 
particle was trapped at the interface. The diameter of the test particles was 850 µm. Notice 
that the velocity of tracer particles was approximately independent of the height from which 
the particle was dropped. 
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Figure 2.6 The distance traveled by tracer particles on the air-water interface is plotted as a 
function of their initial distance from the glass test particle. The diameter of the test particle 
was 850 µm and of a tracer particle was 100 µm.  

 
 Next, the results which show that the velocity of tracer particles on the air-water 

interface due to a test particle was approximately independent of the height from which the 

particle was dropped when the height was varied between 3 mm to 8 mm are presented. The 

experimental setup did not allow us to drop the particle from a smaller height. In Figure 2.5, 

the velocity of tracer particles at the distances of approximately 2 and 3 mm from the test 
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particle is shown. The Figure shows that the height from which the particles were 

dropped did not noticeably influence the velocity with which tracer particles moved away 

from the test particle.   

 The total distance traveled by a tracer particle (away from the test particle) 

depended on the initial distance from the test particle. Figure 2.6 shows that a tracer 

particle initially at a distance of 1 mm from a test particle of diameter 850 µm moved a 

distance of 3.4 mm and that this value decreased as the distance from the test particle 

increased. The former implies that a test particle creates a circular space free of tracer 

particles the radius of which can be more than four times its own diameter. The latter is 

consistent with the result that the velocity of tracer particles decreased with increasing 

distance from the test particle. 

 
2.2 Two Particles 

 
The results for the interfacial fluid velocity when two identical glass test particles were 

dropped simultaneously onto the air-water interface are discussed below. The diameter of 

the test particles was 850 µm and the initial distance between them was about 910 µm. 

The motion of tracer particles in this case was radially outward from the middle of the 

line joining the centers of the test particles; the distance (d) of a tracer particle shown in 

Figure 2.7 was measured from this point. The velocity of tracer particles as a function of 

the distance (d) is shown along two mutually orthogonal directions. The inline direction 

is parallel to the line joining the centers of the test particles and the perpendicular 

direction is normal to this direction. For a given distance (d), the inline velocity was 

slightly larger.   
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Figure 2.7 The velocity of tracer particles on the air-water interface is plotted as a function 
of the distance (d) from the mid-point of the line joining the centers of the two test particles. 
The diameter of the particles was 850 µm and the initial distance between them was 0.91 
mm. The velocities shown here are at a time 0.033 s after the particles were trapped at the 
interface. The velocities of tracer particles are shown along the directions inline (parallel) and 
perpendicular to the line joining the particles centers.   
 

 Furthermore, the velocity of tracer particles in Figure 2.7 was larger than in 

Figure 2.2 where only one particle was dropped. This implies that the net flow induced at 

the interface (measured using tracer particles) is stronger when two particles were 

dropped. This is due to the fact that each particle creates its own radially outward flow, 

resulting in a net flow which can be approximated as the sum of the flows caused 

individually by the dropped particles. The other features of the induced flow were 

qualitatively similar to that for one particle. 

 After contact with the interface, the two test particles also moved away from each 

other along the line joining their centers. Figure 2.8 shows that the separation velocity 

decreased with increasing time, and decayed to approximately zero for t = 0.2 s; the 

velocities of the two particles were approximately equal in magnitude. The initial 

distance between the particles was varied to study its influence on the velocity of 

separation. Figure 2.9 shows that the relative velocity with which particles separated 

0.033s after contact, decreased with increasing initial distance between them. 
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Furthermore, after some time, particles reversed their direction to come back to cluster 

under the action of attractive lateral capillary forces that arise because of the particles’ 

buoyant weight. The velocity with which they came back however was significantly 

smaller than the velocity with which they dispersed. 
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Figure 2.8 The velocity of two glass particles of diameter 850 µm dropped simultaneously 
onto the air-water interface is shown as a function of time. The initial distance between the 
particles was 1.21 mm. After becoming trapped in the interface, they moved apart 
approximately along the line joining their centers. The magnitude of the velocities of the two 
particles was approximately equal. 
 

 The velocity with which two glass particles of the same size moved apart was 

larger than the velocity with which a tracer particle at the same separation moved away 

when a single glass particle was dropped. This is noteworthy because the larger glass 

particles have a larger mass, and so are expected to move slower and not faster. However, 

they moved apart faster because of a repulsive hydrodynamic force that arises because of 

their motion in the direction normal to the interface (and so also perpendicular to the line 

joining their centers). Specifically, when two particles are dropped onto the interface 

simultaneously, they are pulled downwards into the interface by the vertical components 

of the capillary forces. If the normal velocities are large, they overshoot equilibrium and 

oscillate about the equilibrium height before reaching a state of rest. This motion of 
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particles in the direction perpendicular to the line joining their centers causes the fluid to 

squeeze through the gap in between them giving rise to the repulsive hydrodynamic 

force.  

0

6

12

0 1 2d (mm)

ve
lo

ci
ty

 (m
m

/s
)

 

Figure 2.9 The average velocity with which two glass particles dropped together on the air-
water interface moved apart along the line joining their centers is plotted against the initial 
distance between them. The velocities here are at a time 0.033 s after the particles came in 
contact with the interface. The diameter of particles was 850 µm.  
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Figure 2.10 The velocity of a glass particle already on the air-water interface induced by 
dropping of an identical particle is shown as a function of the initial distance between the 
particles. The diameter of glass particles was 850 µm. The results shown here are at a time 
0.033 s after the particle was trapped on the interface. 
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The case, where a glass particle was dropped near an identical glass particle which was 

already trapped within the interface was also considered (Figure 2.10). In this case, the 

trapped particle moved away along the line joining their centers, but the test particle did 

not move significantly. The particle that is dropped oscillates in the direction normal to 

the interface and thus creates a flow on the interface away from itself. The particle 

already at its equilibrium height moved away because of this flow. The velocity with 

which the trapped particle moved away decreased with increasing distance between the 

particles. Furthermore, the velocity of the glass particle was smaller than that of a tracer 

particle at a similar distance. This is not unexpected because the larger glass particles 

have a larger mass, and hence they move slowly. 

 
2.3 Clusters of Particles 

 
The following discussion is for the case when more than two particles were dropped onto 

a liquid surface. The goal is to determine the dependence of the dispersion velocity of 

particles on the number of particles. In Figure 2.11, the velocities of four glass particles 

dropped together onto an air-water interface as a function of time have been plotted. The 

diameter of these test particles was 650 µm. The particles moved apart approximately 

along radial lines emanating from the center of the cluster. The velocities were different 

because the initial distances between the test particles were not the same and could not be 

controlled in the experiments. The average velocity with which the particles moved apart 

was larger for four particles than for two particles. This shows that the velocity with 

which particles dropped onto a liquid surface move apart depends on the number of 

particles dropped. 
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Figure 2.11 The velocities of four glass particles simultaneously dropped onto an air-water 
interface. The particles moved apart approximately along radial lines emanating from the 
center of the four particles. The diameter of particles was 650 µm. The initial average 
distance between the four particles was around 1.0 mm. 
 

 To further investigate this increase in the average velocity of dispersion on the 

number of particles dropped, the cases where a small number of particles, e.g., 2, 4, 8 or 

16, were dropped simultaneously were considered. In all of these cases, particles moved 

away from the center of the cluster after coming into contact with the interface. Video 

data were analyzed to obtain the average dispersion velocity from their individual 

velocities. The experiment was repeated several times to obtain an average value of the 

dispersion velocity.  

 In Figure 2.12, the average dispersion velocity on the air-water interface is shown 

as a function of the number of particles dropped. The figure shows that the average 

velocity increases with increasing number of particles. The same experiment was 

repeated to study the dispersion of test particles on air-corn oil and air-glycerin interfaces. 

The results for these latter studies also shown in Figure 2.12 are qualitatively similar. The 

spreading behavior of glass powder sprinkled onto the air-water interface was also 

considered. The mean diameter of particles was 18 µm, and the density was 0.6 g/m3. 

This powder was selected to ensure that a significant fraction of test particles would not 
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sink. The number of particles dropped for this case was too large to count; hence the 

amount of powder sprinkled is described in terms of the weight.  
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Figure 2.12 The average velocity with which glass particles moved apart 0.033 s after 
coming in contact with an interface as a function of the number of particles. The case marked 
“1” is for 850 µm glass particles sprinkled on water, “2” is for 650 µm glass particles 
sprinkled on 60% glycerin in water, and “3” is for 650 µm glass particles sprinkled on corn 
oil. 
 

 The time taken by a given amount of powder to disperse into a disk shaped region 

of radius 1 cm is shown in Figure 2.13a. For all of the cases considered, the initial area 

over which the powder was sprinkled was much smaller than of a circle with radius 1 cm. 

The time taken decreased when the amount of powder sprinkled increased which implies 

that the dispersion velocity increases with the amount of powder. For the cluster of the 

maximum weight considered in this figure, the dispersion velocity was ~ 3 cm/s. This 

velocity is several times larger than the velocity with which the larger sized glass 

particles described in Figure 2.2 dispersed. Using the present setup it was not possible to 

simultaneously drop two particles onto the interface (near each other) if their diameters 

were smaller than ~400 µm, and so it became unable to study the spreading behavior of 

two 18 µm sized particles. Particles also dispersed on the corn oil-water interface, but the 
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speed with which particles dispersed was smaller than on the air-water interface (Figure 

2.13b). 

 The radius of the region covered by the sprinkled powder continued to increase 

beyond 1 cm, but the rate of dispersion decreased with time before a steady maximum 

value was reached. In Figure 2.14, the mean radius of the disk shaped region covered by 

the sprinkled powder against the amount of powder sprinkled is plotted. The radius 

increased with increasing amount of powder sprinkled until the expansion was inhibited 

by side walls of the dish.  
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Figure 2.13 The time taken by the powder sprinkled onto the air-water interface to disperse 
to an approximately circular region of radius 1 cm is plotted against the amount of powder 
sprinkled. The area of the region over which the powder was sprinkled was relatively small. 
The average particle size was 18 µm and the density was 0.6 kg/m3.  
        

 It may therefore be concluded that when more particles or a small amount of 

powder is sprinkled onto a liquid surface, each particle contributes to the outward 

dispersion of the cluster. The resulting flow on the interface can be approximated as the 

sum of the flows caused by them individually; therefore the dispersion velocity increases 

with increasing amount of powder sprinkled. 
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Figure 2.14 The final radius of the disk shaped region covered by the glass powder is plotted 
against the amount of powder sprinkled. The average particle size was 18 µm and the density 
was 0.6 kg/m3.  
 

3.4 Velocity Distribution within a Cluster 
 
To further understand the mechanism by which a group of particles sprinkled onto a liquid 

surface disperse, clusters of O (100) particles were created and measured their velocities as a 

function of the distance from the center of the cluster. Initially, the results for mustard seeds 

of approximately 1.1 mm diameter sprinkled onto the air-water interface are described. In 

Figure 2.15, the average velocity of particles at various distances from the cluster center is 

plotted at three different times.  At all three times the average velocity increased with 

increasing distance from the cluster center. In fact, the average velocity at a fixed time 

increased approximately linearly with increasing distance from the cluster center. Therefore, 

particles near the outer periphery of the cluster had the maximum velocity and those near the 

center had the minimum. The average velocity decreased with increasing time as the rate of 

dispersion decreased. Similar results were obtained when 26 mustard seeds were sprinkled 

(Figure 2.15b), except that the data were much noisier and the maximum average velocity 

was smaller. The results for 80 glass beads of diameter 650 µm diameter on 99% glycerin in 

water are shown in Figure 2.15c.   Again, the particle velocity increased with increasing gap 
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(c) 

Figure 2.15 The radial particle velocity is shown as a function of the distance from the 
cluster center at three different times after they were sprinkled. (a) 76 mustard seeds were 
sprinkled onto the water surface. (b) 26 mustard seeds were sprinkled onto the water surface. 
(c) 80 glass spheres of 650 µm diameter were sprinkled onto the surface of 99% glycerin in 
water.  
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from the cluster center, and decreased with increasing time. The average velocity for  
 
this case was smaller because the glycerin viscosity is larger. 
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CHAPTER 3 

DIRECT NUMERICAL SIMULATIONS (DNS) 

 
 In this chapter, the results of direct numerical simulations which were carried out by  

Singh et al. in [39] for the dispersion of particles trapped at a fluid-fluid interface are 

detailed. A discussion of these results is included here in order to validate the 

experimental findings described in Chapter 2. In DNS approach, the details of which 

were described in [16], particles are moved according to the fundamental equations of 

motion of fluids and solid particles without the use of models. The fluid-particle motion 

is resolved by the method of distributed Lagrange multipliers, the interface is moved by 

the method of level sets and the interface conditions are satisfied using the ghost fluid 

method [34-37]. The problem of the motion of a contact line on the surface of a particle is 

modeled using a phenomenological approach in which the contact angle given by the 

Young-Dupré law is prescribed. In this approach, the contact line on the surface of the 

particle is moved to maintain the prescribed value of the contact angle. This may not be 

the case for experiments, especially when the particle velocity is relatively large, if the 

contact angles for the advancing and receding contact lines are different form the value 

given by the Young-Dupré law. The initial positions of the particles in the simulations 

were such that the interface intersected the particles’ surface.  

 To start with, the case of two particles simultaneously released in a fluid-fluid 

interface is described. The particles centers were at a height of 0.95R above the 

undeformed interface. The initial shape of the interface was assumed to be flat and the 

contact line was assumed to be the intersection of the sphere with the flat interface. The 
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latter was then evolved to satisfy the contact angle condition of 120º. As shown in Figure 

3.1, the particles moved downwards under the action of the capillary and gravity forces. 

The motion of particles caused the fluid around them to move downwards and the 

interface to deform. The contact angle on the surface of the particles was held fixed at the 

specified value of 120º. The particles continued to move downwards even after reaching 

the equilibrium height z=0.4. When their centers moved below the equilibrium height, the 

direction of the capillary force reversed and it acted upwards against the direction of 

motion of the particle causing it to decelerate. The maximum velocity attained by the 

particles before deceleration was 7.9 cm/s. The particles reversed their directions for z= 

0.36R.  

 The particles also moved apart laterally because of the repulsive hydrodynamic 

forces. These forces arise since the direction of motion of the particles is perpendicular to 

the line joining their centers and so the fluid is squeezed through the gap between the 

particles. The lateral velocity (tangential to the undeformed interface) of the particles 

reached the maximum value after approximately one complete oscillation of the particles 

about the equilibrium height, and after that the velocity slowly decreased with time. The 

maximum lateral velocity was around 0.77 cm/s. The maximum velocity normal to the 

interface was around 7.9 cm/s, an order of magnitude larger than the lateral velocity. 

After the vertical oscillations of the particles decayed because of the viscous drag and the 

repulsive hydrodynamic forces that result from these oscillations became smaller than the 

attractive capillary forces, the particles reversed directions and started to move towards 

each other. The attractive forces arise because of the deformation of the interface which 

in the gap between the particles is greater than on the sides. (The deformation of the 
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interface gives rise to the vertical capillary force that is required to balance the buoyant 

weight of the particle.) The maximum lateral distance between the particles, before they 

turned around, was 3.5R, i.e., there was an increase of 0.3R from the initial distance 

between the particles. The lateral velocity with which two particles came together 

increased with decreasing distance.  

 It is well known that the magnitude of attractive lateral capillary force between 

two particles depends on their buoyant weights [33, 16]. The deformation of the interface 

due to the particles gives rise to the vertical capillary force which is required for 

balancing the particles buoyant weights. At the same time, since the deformation of the 

interface in the region between the two particles is greater, there is a lateral component of 

the capillary forces on the particles which is attractive and causes the particles to come 

together. It has been already observed that the experiments show that the tendency of 

floating particles to disperse after they were sprinkled onto the interface was greater 

when the area of intersection of the interface and the particle was greater. Moreover, the 

dispersion velocity was larger for the smaller particles. The smaller particles cause a 

smaller deformation of the interface and so the attractive capillary forces between them 

are weaker. This is a consequence of the fact that the capillary forces scale as the radius, 

whereas the buoyant weight scales as the third power of the radius. Hence, the height or 

position within the interface of small particles (for which the buoyant weight is 

negligible) is primarily determined by the contact angle. For example, if the contact angle 

for a small spherical particle is 90º, it floats so that its center is at the undeformed 

interface [33, 16]. 
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 Therefore, the case where the particle density was one half of that of the lower 

liquid and the contact angle 85º was considered. Thus, in equilibrium the particles float 

so that nearly one half of them was above the interface. As before, the particles were 

pulled downwards by the vertical capillary forces leading to vertical oscillations. As a 

result of these oscillations, the two particles moved apart. The amplitude of oscillation 

decreased with increasing time. In this case, since the particles float without causing 

significant deformation of the interface, the attractive lateral capillary forces between them 

were much weaker than in Figure 3.1. The particles continued to move apart as shown in 

Figure 3.3. Simulations were stopped when the distance between the particles was 6.19R.  

  

t=0.02 s    t=0.26 s 

Figure 3.1 Motion of two particles released at the surface. The radius of particles was 0.1 
and the contact angle for the particles was 120º. The initial positions of the particle centers 
were at a height of 0.95R above the undeformed fluid interface. The densities of the particle, 
and the upper and lower fluids were: 1.1, 0.5 and 1.0 g/cm3 and the interfacial tension was 
4.0 dyn/cm. The interface near the particles deformed to meet the contact angle condition and 
the vertical capillary force pulled the particles downwards. Initially, the lateral distance 
between the particles increased. However, as the oscillations normal to the interface decayed 
and the magnitudes of repulsive hydrodynamic forces decreased, the particles came together 
under the action of lateral capillary forces.  

 
 Next is the case in which one particle was already at its equilibrium height within the 

interface and the second one was released at a height of 0.95R above the equilibrium height. 

The latter was pulled downwards by the gravity and capillary forces, while the former 
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approximately maintained its vertical height (Figure 3.4). The particle that was released 

above the equilibrium height oscillated about the equilibrium height before coming to rest, 

but its lateral motion was negligible. However, the particle that was released with its 

center at equilibrium moved away. This result is similar to that observed in experiments. 

The maximum lateral velocity of the particle was about one half of the velocity for the 

case where both of the particles were released at a height of 0.95R above the interface 

(Figure 3.5). 

 It has been observed that the lateral velocity with which particles sprinkled onto a 

liquid surface dispersed increases with increasing number of particles. To study this 

dependence of the lateral dispersion velocity on the number of particles, the next results 

are for the case of four particles (Figure 3.6). The particles were released at a height of 

0.95R above their equilibrium position within the interface. The initial positions of the 

particles formed the vertices of a square with sides 3.2R. The initial distance between the 

neighboring particles was the same as for the two particles case described in Figure S18. 

The particles were pulled downwards towards their equilibrium height where they 

oscillated (about the equilibrium height) before coming to rest. The particles also moved 

apart at the same speed (within numerical errors). Furthermore, the direction of their 

motion was along diagonals through their centers. The maximum lateral velocity of the 

particles was about 2.2 times larger than the velocity for two particles (Figure 3.5). This 

is in agreement with the experimental result that the average velocity with which particles 

moved apart increases with the number of particles dropped. In experiments, the initial 

locations of the four particles could not be controlled (i.e., the particles centers did not 

form the vertices of a square), and so the lateral velocities of the particles with which 

they moved apart were not the same. However, the average velocity for four particles was 
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larger than for two. The above DNS results show that when a particle is released above 

its equilibrium height within the interface the vertical capillary force pulls it downwards 

causing it to accelerate to a relatively large velocity normal to the interface.     Above all, 
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Figure 3.2 The z-coordinate of the particles, obtained from numerical simulation (DNS), is 
shown as a function of time. The parameters are the same as in Figure 3.3. The particle 
oscillated about the equilibrium height before coming to rest. The amplitude of oscillations 
decreased with time. The frequency of oscillation was approximately 16.7 Hz.  
 
since the motion of the particle is inertia dominated, it oscillates several times about its 

equilibrium height before the viscous drag causes its motion to stop. This motion of 

nearby particles in the direction normal to the line joining their centers gives rise to the 

repulsive hydrodynamic forces which cause them to move apart. As the particles velocity 

in the normal direction to the interface decreases, the magnitudes of the repulsive forces 

and the dispersion velocity also decrease. Consequently, after some time when the 

repulsive hydrodynamic forces become smaller than the attractive capillary forces, 

particles begin to come back together. But, if the buoyant weight of particles is 

negligible, as is the case for micron and submicron sized particles, then particles only 

disperse since the attractive capillary forces for them are negligible. 
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t=0.003 s      t=0.005 s 

 

t=0.02 s       t=0.06 s 

 

t=0.32 s 

Figure 3.3 Direct numerical simulation of the motion of two particles released above their 
equilibrium height in the interface. The particle radius was 0.1R and the contact angle was 
85º. The initial height of the two particles was 0.95R above the undeformed fluid interface. 
The initial lateral distance between the particles was 3.2R. The densities of the particle, and 
the upper and lower fluids were: 0.5, 0.1 and 1.0 g/cm3 and the interfacial tension was 10.0 
dyn/cm. The viscosities of the upper and lower fluids were: 0.1 and 1 cP. The interface near 
the particles deformed to meet the contact angle condition. The resulting vertical capillary 
force pulled the particles downwards. The particles motion also caused the interface to 
deform and the waves to develop. The resulting fluid velocity caused the two particles to 
move apart. For the final figure, the distance between the particles was 6.19R. 
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Figure 3.4 The particle on the left was released at its equilibrium height and on the right was 
released at 0.95R above. The parameters are the same as in Figure 3.3 and t=0.002 s. The 
vertical oscillatory motion of the latter particle caused the deformation of the interface. The 
motion also caused the particle released near the equilibrium position to move away. 
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Figure 3.5 The lateral velocity of the particles is shown as a function of time. The parameters 
are the same as in Figure 3.3. The cases shown are: (i) Two particles released together at a 
height of 0.95R above the undeformed interface. The initial distance between the particles 
was 3.2R. (ii) Four particles released together at a height of 0.95R above the undeformed 
interface. The initial positions of the four particles formed the vertices of a square with sides 
3.2R. (iii) One particle released at a height of 0.95R above the undeformed interface, and the 
center of the second one was at the undeformed interface. The horizontal distance between 
the particles was 3.2R. The velocity of the latter particle is shown. The velocity of the 
particle released above the undeformed interface was negligible.  
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t=0.01 s      t=0.02 s 

  

t=0.0.05 s     t=0.191 s 

 

Figure 3.6 Direct numerical simulation of the motion of four particles released above their 
equilibrium height. The radius of the particles is 1 mm and the initial distance between 
centers and the undeformed fluid interface was 0.95R; the lower 0.05R of the particles are 
immersed. The particles were placed on the four vertices of a square with sides 3.2R. The 
contact angle was maintained at 85º. The other parameters are the same as in Figure 3.3. The 
interface near the particles deformed to meet the contact angle condition and the vertical 
capillary force pulled the particles downwards. The particles oscillated about their 
equilibrium height generating waves on the interface. The particle centers were above the 
undeformed interface in (i) and (iii), and below in (ii) and (iv). The lateral hydrodynamic 
forces that arise because of the particles motion normal to the line joining their centers cause 
the particles to move away from each other. The distance between neighboring particles in 
the last figure in the sequence was 6.35R.  
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CHAPTER 4 

FORCE BALANCE AND THE EQUATION OF MOTION OF A PARTICLE 

 
 

This chapter deals with the forces that act on a particle in the direction normal to the 

interface when it comes in contact with the interface. These forces cause the particle to 

move towards its equilibrium position within the interface. The main driving forces for 

this motion are the vertical capillary force and the particle’s buoyant weight. The viscous 

drag resists the particle’s motion. The acceleration of the particle under the action of 

these forces can be written as: 

          st D g
d F F F
d
Vm
t
   , 

 
(4.1) 

 
  

where m is the effective mass of the particle which includes the added mass contribution, 

V is the particle velocity, stF  is the vertical capillary force, DF is the drag, and gF  is the 

gravity force.  

 The acceleration term in the above equation in terms of the particle’s vertical 

displacement is, 
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Here s is measured such that s=0 corresponds to the position in which the particle just 

touches the interface. Using this in (4.1),  
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(4.2) 

 

Integrating the above equation with respect to s, from the particle’s initial position (s=0) 

to the present position s 
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(4.3) 

 
where 0V  is the initial velocity of the particle. The left side of this equation gives the 

change in the kinetic energy of the particle, and the terms on the right side respectively 

represent the work done by the vertical capillary, drag and gravity forces. 

 The work done by the vertical capillary force can be written in terms of the 

change in the interfacial energy of the system  

           12 12A   + '
1 1p pA  - 1 1p pA   - 2 2p pA   . (4.4) 

 

Equation (4.4) assumes that the particle is initially immersed in the upper fluid denoted 

by subscript “1” and the total surface area of the particle is denoted by '
1 pA , ip  is the 

surface tension between the ith fluid and the particle, ipA  is the particle’s surface area 

wetted by the ith fluid, 12A  is the decrease in the surface area between the upper and 

lower fluids because of the presence of the particle on the interface, and 12  is the 

interfacial tension between the upper and lower fluids. The energy due to the line tension 

is assumed to be negligible. It is easy to show that when the deformation of the interface 
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because of the presence of the particle is negligible [38] for a spherical particle of radius 

R the above expression reduces to 

  

 st
0

F
s

ds    22
12 1 cosR    

 
(4.5) 

 

where   is the contact angle, as defined by Young’s equation: 
12

2 1cos p p 





 . The 

drag force acting on the particle, and thus also the work done by the drag, depends on the 

particle’s velocity. Assuming that the drag is given by the Stokes’ law, the work done can 

be written as: 

 D
0 0 0

F 6 6 ( ) .
s s s

ds R V ds R V s ds              
 

(4.6) 

 

Here   is the viscosity of the lower fluid and ( )s  is a factor that accounts for the 

dependence of the drag on the fraction s of the particle that is immersed in the lower and 

upper fluids, and the viscosities of the fluids involved. The functional form of ( )s  is not 

known. Also, notice that the velocity V  varies as the particle moves normal to the 

interface. In this work, the Stokes law is used to estimate drag, but other appropriate drag 

laws can also be used. 

 The work done by the gravity force is approximately given by 
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where Q is the particle volume, c  is the effective fluid density which changes with s 

while the particle moves normal to the interface, and p  is the particle density. 

 After substituting (4.5), (4.6) and (4.7) in (4.3),  

              
22
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VV
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 22
12 1 cosR   - 

0
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s

R V s ds    +  p cQ - g s   

                                                                                                                          (4.8) 

The above equation for the particle velocity can be simplified further by assuming that 

the initial kinetic energy of the particle is negligible and using the trapezoidal rule to 

evaluate the integral term. The former is valid for the experiments because the height 

from which particles were dropped was only a few millimeters and the particle size was 

small. Assuming that the drag arises primarily from the portion of the particle immersed 

in the lower liquid, taking the value to be one half, and ( )s =1/2. Then, after 

simplification,  

            
2

2
Vm   22

12 1 cosR    - 6
4

R Vs   +  p cQ - g s  . 

  

 
     (4.9) 

            The next assumption is that the particle floats so that its center is at the 

undeformed interface and the effective mass, m = 34
3 pR  . For this case, 

2


   and s = 

R. The latter assumes that the particle reaches this position for the first time. If the 

particle oscillates about the vertical position, the distance travelled by the particle will be 

larger and so will be the work done by the drag force. Using these approximations in the 

above equation, after simplification,  
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     (4.10) 

 
If the interface between the two fluids does not remain flat, then there is an increase in 

the interfacial area between the two fluids which must be accounted for in expression 

(4.10). Moreover, if a spherical particle floats (in equilibrium) such that its center is not at 

the interface, then 12A  is smaller than 2R . The interfacial energy available for 

conversion to the kinetic energy (a fraction of which is acquired by the particle) is 

smaller for this case. This is consistent with experimental observation that the dispersion 

velocity was larger for the particles that floated such that the contact line was near their 

equator.   

 The solution V  of the above quadratic equation is given by: 
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     (4.11) 

      

Equation (4.11) gives the particle’s velocity after its center reaches the undeformed 

interface for the first time.  

 The equation (4.11) implies that the influence of gravity on the velocity decreases 

with decreasing particle radius. For sufficiently small particles, the velocity increases 

with decreasing radius and with increasing surface tension, and decreases with increasing 

viscosity. For example, for 0.001   Pa.s, 1000.0p   kg/m3, 0.1p c    kg/m3 and 

12 0.07   N/m, the dependence of the particle velocity on the radius is shown in Figure 

4.1. For R=100 µm, V =1.01 m/s, and for R=100 nm, V =23.05 m/s. The figure shows 
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that when R is smaller than 1 mm the velocity increases with decreasing particle radius. 

The latter is an expected result because the capillary force acting on a particle varies 

linearly with the radius whereas the particle’s mass varies as the third power of the 

radius. Therefore, the velocity attained by a particle due to the capillary force increases 

with decreasing particle radius. In the limit R approaching zero, the velocity is given by  

 122
3

V 


                      (4.12) 

This is the maximum velocity that can be attained by a particle under the action of the 

vertical capillary force. For the air-water interface, the maximum velocity attainable 

(under the assumptions stated above) is 46.67 m/s. 

 The above velocity can be used to estimate the time taken to move a particle 

initially touching the interface to a position where its center is at the undeformed 

interface; for R=100 µm, the time taken is of O(10-4) s, and for R=1 µm, it is of O(10-7) s. 

 It is noteworthy that the work done by the drag force is significant only when the 

particle moves over a much longer distance, the fluid viscosity is relatively large, or the 

velocity is sufficiently large; otherwise the decrease in the interfacial energy due to the 

capture of the particle at the interface is mostly converted into the kinetic energy. The 

velocity for this can be obtained from (4.10) by neglecting the drag and gravity terms, 

which gives 

 123 .
2 p

V
R



           (4.13) 

Equation implies that the particle velocity increases with decreasing particle 

radius, and in fact diverges as the radius approaches zero. However, since the work done 

by the drag force increases with increasing particle velocity, the velocity for small 
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particles does not diverge, but is given by the balance of the viscous drag and the vertical 

capillary force. Furthermore, if the fluid viscosity is sufficiently large, the particle 

velocity remains small and the particle does not oscillate before coming to a state of rest. 

Thus, particles sprinkled onto the surface of a very viscous liquid are less likely to 

disperse. 
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Figure 4.1 The velocity of a spherical particle normal to the interface given by equation 
(4.11) is plotted as a function of the particle radius. The parameter values were assumed to 
be: 0.001   Pa.s, 1000.0p   kg/m3, 0.1p c    kg/m3 and 12 0.07   N/m. 

 
 It is reminded that the above analysis assumes that the equilibrium position of the 

particle center is at the undeformed interface and that the interface around the particle is 

flat. If, however, the interface around the particle is not flat, the decrease in the area 

between the upper and lower fluids due to the presence of the particle will be smaller than 

the area of intersection between the particle and the flat interface and the discrepancy 

must be included in equation (4.11). An increase in the interfacial area between the fluids 

due to the deformation of the interface implies that the interfacial energy available to 

drive the motion of the particle is smaller, and thus the maximum velocity attained by the 

particle will be smaller. Furthermore, even if interface around the particles is flat at 

equilibrium, this may not be the case when it reaches this position for the first time 
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because the particle and the fluid velocities are not zero and as a result the interface 

contains waves. The interface can become flat only after both the particle and the fluid 

stop moving. 

 Direct numerical simulations show that the particle oscillates about the 

equilibrium several times before coming to rest (Figure 4.2). This is due to the fact that 

the motion of particle is inertia dominated. Thus, when the particle reaches the 

equilibrium height, its velocity is non-zero, and so it continues to move downwards. 

However, when the particle center moves below the equilibrium height, the vertical 

capillary force changes direction and acts upwards to bring the particle back to the 

equilibrium. The viscous drag acts throughout this process to slow the particle.   

To study the above behavior of the particle motion, equation (4.1) for the motion 

of the particle considered. The approximations stated above are used to simplify (4.1), 

i.e., those used for obtaining (4.10). The surface tension force will be obtained by 

assuming that the particle is spherical and that the contact angle is equal to its equilibrium 

values. The drag force will be assumed to be given by the Stokes formula, as discussed 

above, and the buoyancy force only depends on the particle’s vertical position. Under 

these assumptions, equation (4.1) can be written as 

 

  d
d
Vm
t
    122 sin sinc cR      6 R ( )V s   +  p cQ - g                     (4.14)       

          

Here  c is the angle between the vertical and the contact line on the sphere’s surface and  
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  is the contact angle. 

 

 
Figure 4.2 The z-coordinate of the particle center obtained numerically by solving (4.14) is 
shown as a function of time. The radius of particle is 0.1 cm. Initially, the particle center is at 
z=0.95R (above the interface). The remaining parameters are the same as in Figure 3.3. The 
particle oscillates about the equilibrium position (z=0) before coming to rest. The amplitude 
of oscillations decreases with increasing time. The frequency of oscillation is approximately 
17.9 Hz. 
 

 A time dependent numerical solution of the above differential equation is shown 

in Figure 4.2.  The parameter values used were the same as for the numerical results 

presented in Figure 3.2. The figure shows that the particle oscillates about the equilibrium 

height several times while the amplitude of the oscillations decays with time because of 

the viscous drag. These results are qualitatively similar to those in Figure 3.2 obtained 

using the DNS approach. But, there are also some differences. The frequency of 

oscillation given by the two approaches differed by about 7% and the rate of decay of 

oscillations was slower for the DNS results. This perhaps is due to the fact that the 

interface is allowed to deform in the DNS approach, but is assumed to be flat in the 

derivation leading to equation (4.14). The interface deforms because of the vertical 

oscillations of the particles. 
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 Equation (4.14) is a linear ODE with variable coefficients. To show that it is 

equivalent to the equation for a spring-dashpot system, equation (4.14) is linearized about 

the equilibrium position, z=0. To do this, the contact angle is assumed to be
2


  , 
2c


   

and ( ) 1/ 2s  . After linearization, it becomes  
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p c- g ZR   = 0.   

 
     (4.15) 

where Z is the particle’s position. The above second order linear ODE is equivalent to a 

spring-dashpot system. Its solution can be written as: 
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The nature of the solution depends on the sign of discriminant D. If the sign is positive, 

then k is real and negative for both of the roots. In this case, the solution decays 

exponentially with time to zero. This is expected to be the case when the fluid viscosity is 

sufficiently large. If the sign of D is negative, then k is complex and so the solution is 

oscillatory. The frequency of oscillation is given by 
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The real parts of both of the roots are negative and so both of the solutions decay 

exponentially to zero. The time constant  of the solution, i.e., the time taken by the 

solution to decay by a factor of 1e , is given by 
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8 2
pR


  

 
     (4.18) 

The time constant decreases with decreasing particle size and with increasing viscosity. 

Therefore, the vertical oscillations of a trapped particle decay faster when the radius is 

smaller and the viscosity is larger. Using the parameter values in Figure 4.1,  for a 

particle of radius 1 mm, the time constant is 0.9 s, and for a 10 µm sized particle it is 

9.0x10-5 s. It is worth to remember that the former estimate of the time constant is smaller 

than for direct numerical simulations for which the interface is allowed to deform. Also 

notice that as R becomes small there is a critical value of R for which D becomes 

positive. For these parameter values, the critical value of R is ~12 nm. The imaginary part 

of the root gives the frequency of oscillation. For the parameter values listed in Figure 

4.1, the frequency of oscillation (ω) in Hz is plotted as a function of the particle radius in 

Figure 4.3. The frequency increases with decreasing particle radius. For R=1 mm, ω = 

51.6 Hz; for R=10 µm, ω =5.2x104 Hz; and for R=100 nm, ω = 5.1x107 Hz.  
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Figure 4.3 The frequency (ω) of oscillation of the solution given by equation (4.16) is plotted 
as a function of the particle radius. The parameter values are the same as in Figure 4.1. 
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CHAPTER 5 

PARTICLE DISPERSION ON FLUID-LIQUID INTERFACES 
 

In this chapter, the dispersion of particles on the fluid-liquid interface is described. In the 

previous chapter it was shown that when small particles, e.g., flour, pollen, etc., come in 

contact with an air-liquid interface, they disperse in a manner that appears explosive. In 

the case of the dispersion on a liquid-liquid interface, it is relatively weaker than on an 

air-liquid interface, and occurred over a longer period of time. This is a consequence of 

the fact that particles became separate while sedimenting through the upper liquid and 

reach the interface over a time interval that lasts for several seconds. The rate of 

dispersion depended on the size of particles, the particle and liquids densities, the 

viscosities of the liquids involved, and the contact angle. For small particles, partial 

pinning and hysteresis of the three-phase contact line on the surface of the particle during 

adsorption on liquid-liquid interfaces is also important. The frequency of oscillation of 

particles about their floating equilibrium increased with decreasing particle size on both 

air-water and liquid-liquid interfaces, and the time taken to reach equilibrium decreased 

with decreasing particle size. These results are in agreement with our analysis. 

 
5.1 Dispersion and Clustering of Two Plastic Beads on  Air-water  Interface 
 

As discussed in the initial chapter, when small particles come in contact with a liquid 

surface they immediately disperse. This relatively-violent phase, which lasts for a short 

period of time (only about one second or less on mobile liquids like water), is usually 

followed by a phase that is dominated by attractive lateral capillary forces during which 
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particles slowly come back to cluster where as once micron- and nano-sized particles are 

dispersed, they may remain dispersed since attractive capillary forces for them are 

insignificant. Small particles may experience other lateral forces, e.g., electrostatic, 

Brownian, etc., which may cause them to cluster or form patterns.  

To illustrate the phenomena described above, let us consider the case of two 

plastic beads as shown in Figure 5.1(a), which were simultaneously dropped onto the 

water surface. The beads first moved apart and then came back together. The former 

phase, which is the primary focus of this chapter, is discussed below. The latter phase is 

due to attractive capillary forces that arise because of the deformation of the interface by 

the trapped beads, as they are heavier than water. More specifically, the floating beads 

experience attractive capillary forces because the interface height between them is 

lowered due to the interfacial tension. Notice that the speed with which the beads 

dispersed was about six times larger than the maximum speed attained during the 

clustering phase. The time duration for which the beads moved apart was about one third 

of the time they took to cluster. As noted in the figure caption, to ensure that these results 

were not influenced by contamination, e.g., surfactant, the experiment was repeated many 

times using the same beads while the water used in the test was changed. 

                                         5.2 Experimental Setup 
 

The liquids used in this study were Millipore water, corn oil and decane. Millipore water 

was used to ensure that contaminants were not present as even when their concentration 

on the air-water interface is very small they might change the interfacial tension and the 

contact angle of the liquid. Furthermore, glass particles were thoroughly rinsed in water 

and then dried for several hours at the temperature of 70º C in an oven to  
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t=0                  t=0.033 s (dispersion)       t=0.367 s                   t = 2.67 s  

               

t = 9.67 s   t = 10.67 s    t = 10.77 s (clustering) 

Figure 5.1(a) Dispersion and clustering of two plastic beads on the air-water interface. The 
diameter of beads was 4.46 mm. The beads were carefully washed in water many times. The 
experiment was repeated more than 30 times with fresh Millipore water, and the Petri dish 
used in the experiment was rinsed with Millipore water every time, to ensure that 
contamination was not a factor and that this behavior of the beads did not change with time.   
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Figure 5.1(b) The gap (D) between the beads and the velocity (v) with which they are 
moving apart after they came in contact with the interface are shown as a function time. The 
gap initially increased as the beads moved apart and then decreased as they clustered under 
the action of lateral capillary forces. The maximum velocity with which the beads moved 
apart was about six times larger than the maximum velocity with which they came together. 
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overcome the influence of any residual moisture which could influence the contact angle 

and hence the position of the three-phase contact line on the particle’s surface. It may be 

noted that water and decane, and water and corn oil, are immiscible, and that the three 

liquids have different densities which resulted in the formation of horizontal liquid layers. 

For example, since decane is less dense than water, the decane was in the upper layer and 

the water in the lower layer. The density of water, corn oil and decane are 1000 kg/m3, 

922 kg/m3 and 726 kg/m3, respectively. The viscosity of water, corn oil and decane are 

1.0 cP, 65.0 cP and 0.92 cP, respectively. The interfacial tension between air-    water 

was 72.4 mN/m, decane-water was 51.2 mN/m, and corn oil-water was 33.2 mN/m.  

The horizontal positions of particles were recorded using a digital video camera 

connected to a Nikon Metallurgical MEC600 microscope and the vertical positions of 

particles using a high-speed camera (Casio Exilim F1) mounted on the side, as shown in 

figure 5.2. The latter positions evolved much more rapidly and therefore a high speed 

camera was needed to resolve the motion. For example, the frequency of oscillation 

during adsorption for the particles investigated in this study was approximately between 

20-120 Hz.   

      The distance between the particles was measured by analyzing the movies frame-

by-frame with a calibrated digital ruler. The particles were released very close to the 

surface of the upper liquid (about 1 mm above the surface). This was done to ensure that 

their speed before touching the interface was small. The vertical and horizontal positions 

of particles were measured as a function of time by analyzing the video recordings. The 

fluid velocity at the interface was measured by tracking small tracer particles trapped on 

the interface.  
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Figure 5.2 Schematic of the experimental setup used to study the dispersion of particles on a 
fluid-liquid interface.  
 

5.3. Transient Motion of Particles During Their Adsorption 
 
As discussed earlier, the analysis and direct numerical simulations show that while 

particles are being trapped on the surface of a mobile liquid they oscillate about their 

equilibrium positions before reaching a state of rest and that this results in a radially-

outward flow on the interface away from the particle which causes tracer and other 

particles on the interface to move away. To investigate these oscillations and the resulting 

interfacial flow, the video recordings of the motion of particles after they came in contact 

with the interface were analyzed. The particle size was varied between approximately 5 

µm and 4 mm. The behavior was investigated for the air-water, oil-water and decane-

water interfaces. The first case which is described is when a single particle comes in 

contact with a fluid-liquid interface which is followed by a discussion of the cases when 

two particles and a cluster of particles come in contact with the interface. 
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   5.3.1 Adsorption of a Single Particle 
 

The motion of a 2 mm spherical plastic bead from the time it came in contact with the 

decane-water interface is shown in figure 5.3. The bead released in the upper liquid 

slowly sedimented to the decane-water interface, and once it came in contact with the 

interface it was pulled downwards by the vertical capillary force. The bead continued to 

move downward even after reaching the equilibrium height. However, when this 

happened the vertical capillary force reversed its direction, and thus after travelling some 

additional distance the direction of bead’s motion also reversed. The bead oscillated three 

times about its equilibrium position before its motion became indiscernible. Since the 

bead overshoots and oscillates about the equilibrium position before stopping, it may be 

concluded that its motion is inertia-dominated and similar to that of an underdamped 

mass-spring-dashpot system. The motion of the bead also caused ring-shaped interfacial 

waves that moved away from the bead and slowly dissipated.   

A similar behavior was observed for a plastic bead released above the air-water 

interface (Figure 5.4) and a mustard seed released above the decane-water interface 

(Figure 5.5). Notice that since the mustard seed was hydrophobic its floating height was 

relatively greater than that of the plastic bead. The behavior of a lighter plastic bead (less 

dense than the loitr liquid) shown in Figure 5.6, which rose to the air-water interface, was 

also similar. Notice that the frequency of oscillation for these cases was 20 Hz or larger, 

and therefore a high speed camera was needed to see and analyze them. 
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t = 0.0066 s (going down)            t = 0.01 s (going down)       t = 0.0633 s (coming up) 

       

t = 0.066 s (coming up)                 t= 0.0866 s (highest position)       t = 0.09 s (again going down) 

        

t = 0.1 s (going down)                  t = 0.1133 s (going down)             t = 0.126 s (coming up) 

Figure 5.3 Trapping of a spherical plastic bead of 2 mm diameter on the decane-water 
interface. The bead oscillated about its equilibrium position before its motion stopped. The 
sequence shows the phenomenon from the time the bead touched the interface to the time it 
reached the equilibrium position.  
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t=0 s (going down)                        t=0.0066 s (going down)              t=0.01 s (going down) 

       

t=0.037 s (lowest height)             t=0.047 s (going up)                    t=0.06 s (going down) 

 

t=0.073 s (going up) 

Figure 5.4 Trapping of a plastic bead of 2 mm diameter on the air-water interface. The bead 
oscillated about equilibrium before its motion stopped. Notice that the equilibrium floating 
height of the bead is lower than in Figure 8 for the decane-water interface.  
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t= 0.0066 s (going down)                    t = 0.0133 s (going down)                     t= 0.0466 s (going up) 

                    

t=0.0566 s (top position)                      t = 0.0233 s (again going down)            t=0.066 s (going up) 

 
Figure 5.5 Trapping of a mustard seed of 1.36 mm diameter on the decane-water interface. 
The mustard seed oscillated about equilibrium before its motion ceased. 
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t=0 (going up)                   t= 0.0166 s (going up)          t=0.02 s (going down)         t=0.027 s 

    

t=0.04 s (going up)    t=0.0633 s (going down) 

 
Figure 5.6 Trapping of a plastic bead of 2 mm diameter on the air-water interface. The bead 
was released below the water surface. It rose to the air-water interface and oscillated about 
the equilibrium position before its motion ceased.  
 

The photographs shown in Figures 5.3 to 5.6 were taken from high-speed movies 

of particles undergoing adsorption at the fluid-liquid interfaces. These movies were also 

analyzed frame-by-frame to obtain the dimensionless distance of the center of particles 

(Z/R) from the undeformed interface as a function of time. The latter results for a 650 µm 

glass bead are shown in Figure 5.7 for the air-water and decane-water interfaces. Figure 

5.7a shows that the equilibrium height of the center of the particle relative to the 

undeformed interface is lower on the air-water interface. This can be also seen in Figure 

5.7b which shows that the particle floats on the decane-water interface such that a smaller 

fraction of it is immersed in the water, whereas on the air-water interface a larger fraction 

of its lower surface is immersed in the water. This is expected since for the same floating 

height the buoyant weight of the particle on the air-water interface is larger, and thus to 
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balance its weight it is more immersed in the lower liquid. The angle of the three-phase 

contact line on the particle’s surface is another important parameter, but its value is not 

known to us.  

It is noteworthy that even after the vertical oscillations of the particle subsided, its 

floating height on the decane-water interface slowly decreased before reaching a constant 

value. This is due to the partial pinning of the contact line on the particle’s surface and 

the contact angle hysteresis (Figure 5.7a). This issue is discussed below in more detail. 

Also notice that the amplitude of oscillation of the particle was larger on the decane-

water interface. This is because the densities of decane and water are closer than the 

densities of air and water, hence the restoring buoyant force resulting from a 

displacement away from the equilibrium position is smaller for decane and water.  
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Figure 5.7(a) Trapping of a 650 µm glass particle on the air-water and decane-water 

interfaces. The dimensionless vertical positions (Z/R) as a function of time. Here Z is 

measured from the undeformed interface.  
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(b) 

Figure  5.7(b)  The contact lines on the air-water and decane-water interfaces for the particle. 
 

When the diameter of glass particles in the experiments was approximately 650 

µm or larger, a significant fraction of the sprinkled particles were not captured on the 

corn oil-water interface and those that were captured did not disperse. This was also the 

case for millimeter-sized mustard seeds and plastic beads. Smaller glass particles were 

captured, and as discussed below, after they were captured they dispersed on the 

interface. The vertical motion of these particles during their trapping is not discussed 

because the present experimental setup did not allow to  monitor their motion normal to 

the interface because of their small size.  

      Figure 5.8 shows the vertical motion of glass particles with diameter between 580 

µm and 2 mm, and of a 1.45 mm mustard seed, and of 2.0 and 3.75 mm plastic beads. 

The floating height depends on the densities of the particle and the liquids, and on the 

contact angle. For glass particles of the same type, the floating height increased with 
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decreasing diameter, and the time taken to reach equilibrium decreased with decreasing 

diameter. The floating height on the decane-water interface of particles smaller than 

approximately 1 mm decreased slowly before reaching a constant value. This was not the 

case for the same particles on the air-water interface. It could be due to the fact that when 

a particle smaller than 1 mm moved downward in the decane-water interface, the three-

phase contact line became partially pinned on the particle’s surface increasing the contact 

angle above the equilibrium value. This in turn increased the vertical capillary force 

making the net vertical force on the particle zero even though the particle was above its 

equilibrium height. As the contact line slowly moved downward on the particle’s surface, 

the contact angle was reduced and the particle moved downward.  
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Figure 5.8(a) The dimensionless vertical positions (Z/R) as a function of time after the 
particles come in contact with the air-water interface. 
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Figure 5.8(b) The dimensionless vertical positions (Z/R) as a function of time after the 
particles come in contact with the decane-water interface. 
 

 A comparison of the two cases described in Figure 5.8a also shows that the time 

taken by the particle to oscillate once about the equilibrium height, i.e., the inverse of 

which is the frequency of oscillation, is larger on the decane-water interface. Since the 

effective interfacial viscosity is larger when the upper fluid is decane and the interfacial 

tension and the buoyant weight of the particle for the decane-water interface are both 

smaller than the corresponding values for the air-water interface, the experimental result 

for the frequency of oscillation is consistent with the analysis according to which the 

frequency decreases with decreasing interfacial tension, decreasing buoyant weight and 

increasing viscosity. 

The dependence of the frequency of oscillation of glass particles on the air-water 

and decane-water interfaces on their diameter was also investigated. These results are 

shown in Figure 5.9. For both interfaces, the frequency increased with decreasing particle 
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size. The frequency of oscillation was larger on the air-water interface than of the same 

particle on the decane-water interface. These results are in agreement with the analytical 

results.  
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Figure 5.9 The frequency of oscillation of spherical glass particles on the decane-water and 
air-water interfaces versus the particle diameter. The parameter values in Eq. (7) are assumed 
to be: 2600.0p   kg/m3 and 1600p c    kg/m3; for the air-water interface 0.001    

Pa.s, 12 72.4   mN/m; and for the decane-water interface 0.001    Pa.s, 12 51.2   
mN/m. 
 

         5.4   Flow Induced on the Interface 
 

To investigate the fluid motion induced at the interface due to the adsorption of a test 

particle, the interface was seeded with 100 µm sized tracer glass particles. The tracer 

particles were small compared to the test particle so that they did not significantly 

influence the fluid motion caused by the test particle. The velocity of tracer particles 

decreased with increasing distance from the test particle (Figure 5.10) and also decreased 

with time (Figure 5.11). The total distance traveled away from the test particle depended 

on its initial distance from the test particle. From Figures 5.8 and 5.11 it can be  noted 

that even after the vertical oscillations of a 580 mm particle subsided at t = ~0.03 s, tracer 
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particles on the interface continued to move apart for t < ~0.22 s. This shows that the 

flow induced at the interface by a test particle persists even after the particle attains 

vertical equilibrium.  

The same trend for interfacial fluid velocity was observed when two identical test 

particles were dropped simultaneously onto the air-water interface, but the velocity was 

almost double that of when a single glass particle was dropped.  
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Figure 5.10 The velocity of tracer particles on the air-water interface is plotted as a function 
of the distance (d) from the center of a test glass particle. The velocity distribution plotted 
here is at a time 0.033 s after the particle was trapped at the interface. The data were taken for 
3 different particles of the same approximate diameter of 550µm.  
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Figure 5.11 The velocity of a tracer particle on the air-water interface initially at a distance 
of 2.31 mm from a glass test particle of diameter 550 µm is shown as a function of time. The 
velocity became negligibly small at t = ~0.24 s.  
 

5.5   Simultaneous Adsorption of Two Particles 
 

Two particles released simultaneously and near each other above a fluid-liquid interface 

were trapped at the interface by the same mechanism by which a single particle was 

trapped. Specifically, they were pulled into the interface and oscillated vertically several 

times before the amplitude of oscillation became negligibly small (Figure 5.12). In 

addition, the particles moved apart from each other along the line joining their centers. 

 Figure 5.12a shows the adsorption of two mustard seeds of the same approximate 

size on the decane-water interface. After they touched the interface, they were pulled 

inwards by the vertical capillary force which was followed by vertical oscillations about 

their equilibrium positions. During this time they also started to move apart because of 

the hydrodynamic force and the interfacial flow resulting from the particles motion 

normal to the interface. The oscillations decayed after some time, but the particles 

continued to move apart because of the induced interfacial flow.  
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 After the particles stopped moving apart, they clustered back together under the 

action of lateral capillarity forces which arise because of the deformation of interface 

caused by the particles. The behavior of two mustard seeds released onto the air-water 

interface, as shown in Fig.5.12b, was qualitatively similar, except that the velocity with 

which they moved apart and their maximum separation were larger than on the decane-  

 

                        

t=0.0033 s (in decane)                      t=0.0099 s (touching interface)       t=0.0132 s  

                         

 t=0.0165 s (minimum point)           t=0.0198 s (going up)                 t=0.0396 s 

                         

t=0.0429 s (moving apart)               t=0.1833 s (maximum separation)   t = 0.4166 s (cluster) 

Figure 5.12 (a) A sequence of photographs showing the trapping, dispersion and 

clustering of two mustard seeds on decane-water interface. 
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t=0                         t=0.0033 s (going down)                t=0.01 s (minimum height) 

                              

t=0.0166 s (going up)                     t=0.02 s                               t=0.0233 s (maximum height) 

                                    

t=0.03 s (moving apart)                  t=0.0533 s                   t=0.266 s (maximum separation)  

 

t = 0.8366 s (cluster) 

Figure 5.12 (b) A sequence of photographs showing the trapping, dispersion and clustering 
of two mustard seeds on fluid-liquid interfaces air-water interface.  
 
water interface. It may also be noticed that in both cases although the particles started to 

move apart immediately after they came in contact with the interface, this became 

apparent only after approximately one vertical oscillation.  

The gap between the particles for the above two cases is shown as a function of 

time in Figure 5.13. It may be noted that the particles reached their maximum lateral 

velocity shortly after they came in contact with the interface. The figure also shows that 
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the velocity with which they initially moved apart was larger than the velocity with which 

they later approached each other. This implies that the forces that cause the initial 

dispersion are stronger than the attractive lateral capillary forces that arise because of 

their buoyant weight. 

     From Figures 5.12 and 5.13, note that the time interval for which the particles 

oscillated vertically after coming in contact with a fluid-liquid interface was several times 

smaller than the time interval for which they moved apart. Thus, the interfacial flow 

caused by the particles persisted, and continued to move nearby particles apart, even after 

their vertical oscillations become indiscernible. 
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Figure 5.13 The gap (D) between two mustard seeds is shown as a function time after they 
came in contact with the air-water and water-decane interfaces. The diameter of mustard 
seeds was ~ 1.3 mm. The maximum gap and the maximum velocity were larger on the air-
water interface. 
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5.6  Adsorption of Particle Clusters 
 

In this section, the dispersion of small clusters of particles is described when they come 

in contact with the corn oil-water and decane-water interfaces. Glass particles of diameter 

ranging from 5 to 120 µm were used in this study. Particles were sprinkled onto the 

surface of the upper liquid where they were allowed to cluster, and then were pushed 

downward making them sediment to the liquid-liquid interface.  

Figure 5.14 shows dispersion of 45 µm glass spheres on the corn oil-water 

interface. Notice that since the velocities with which the particles of the cluster 

sedimented were different, they did not reach the interface at the same approximate time, 

but instead over a period of time which lasted for a few seconds (also Figures 5.15-5.16). 

This situation is different from the case when particles are sprinkled through the air onto 

a liquid surface where all of the particles reach the interface within a relatively short time 

interval. The moment particles came in contact with the interface of corn oil and water, 

they dispersed radially-outward into an approximately disk-shaped region. Since particles 

sedimenting through the corn oil took several seconds to reach the interface, the 

dispersion process on the interface continued for a longer time duration than on the air-

water interface. Besides, the speed with which particles dispersed was smaller than on the 

air-water interface because of the higher viscosity of the corn oil-water interface and also 

because all of the particles did not reach the interface at the same approximate time. 

Particles already trapped on the interface remained dispersed until additional particles 

continued to sediment onto the interface.  

Shortly after all of the particles were captured at the interface, they started to 

cluster under the action of lateral capillary forces. The speed with which particles 

clustered was smaller than the speed which they dispersed.  
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      Furthermore, the packing density of particles within a cluster decreased with 

decreasing particle size. This is because the strength of capillary forces decreases with 

decreasing particle size and so particles do not pack tightly leaving many void spaces 

within the cluster. The smaller-sized particles disperse more readily, but since their size is 

smaller it is difficult to observe them individually. Moreover, the smaller-sized particles 

took a longer period of time to reach the interface and thus the time interval over which 

they sedimented onto the interface was longer. It was also observed that when more 

particles reached the interface together, the dispersion speed and the radius of the area 

into which they spread were larger as each particle contributed to the outward dispersion 

of the cluster and hence the resulting flow on the interface was stronger. 

 

              

t=10 s                        t=12 s                   t=23 s                            t=0 s     

Figure 5.14 Dispersion of 45 µm glass spheres on the corn oil-water interface. The figure 
shows that particles reach the interface over a time period and that they disperse violently as 
they come in contact with the interface. The particles trapped on the interface are in focus 
and those above the interface are out of focus. Initially, particles are above the interface, at 
t=10 s some of the particles have reached the interface, and at t= 23 s most of the particles are 
trapped at the interface. 
 

Figure 5.18 shows dispersion of glass particles on the decane-water interface. As 

the viscosity of decane is an order of magnitude smaller than that of corn oil, particles 

sedimented relatively quickly and all of the particles reached the interface within a 

relatively shorter interval of time. As a result, the velocity with which they dispersed after 

coming in contact with the interface was larger. After dispersive forces subsided, 

particles clustered under the action of lateral capillary forces. 
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t=1 s            t= 2 s        t=4 s 

Figure 5.15 Dispersion of 120 µm glass spheres on the corn oil-water interface. Only a few 
particles (those in focus) have reached the interface and dispersed. Particles continued to 
disperse on the interface as they came in contact with the interface. 
 

     

t=0 s           t= 18 s       t= 24 s 

     

t= 28 s                        t= 230 s       t=874 s 

Figure 5.16 Dispersion of 20 µm glass spheres on the corn oil-water interface. The figure 
shows that particles disperse as they come in contact with the interface. After all of the 
particles were trapped on the interface and the dispersive forces subsided, the particles 
clustered under the action of lateral capillary forces. The cluster is rather porous as capillary 
forces are relatively weaker. 
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t= 0 s            t= 11 s       t = 18 s     

     

t = 48 s          t = 130 s     t = 168 s 

Figure 5.17 Dispersion of 5-8 µm glass spheres on the corn oil-water interface. Particles 
disperse as they reach the interface.  
 

       

t=0 s            t= 0.033 s       t=0.066 s               t= 0.099 s 

 

Figure 5.18 Dispersion of 45 µm glass spheres on the decane-water interface. In the first 
photograph most of the particles are on the decane surface, but the camera focus is on the 
decane-water interface which makes them out of focus. Subsequently, they became visible as 
they reached the decane-water interface where they were dispersed. 
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CHAPTER 6 
BREAKUP OF PARTICLE CLUMPS ON LIQUID SURFACES 

 
 
 
This chapter describes and explains the mechanism for the breakup of clumps of particles 

on liquid surfaces. Although it is known that clumps of some powdered materials breakup 

and disperse on liquid surfaces to form particle monolayers, the mechanism by which this 

happens is not entirely understood. It is shown in this chapter that a floating clump breaks 

up because when particles on its outer periphery come in contact with the liquid surface 

they are pulled into the interface by the vertical component of capillary force overcoming 

the cohesive forces which keep them attached and then these particles move away. In 

some cases, the clump itself is broken into smaller pieces and then these smaller pieces 

break apart by the aforementioned mechanism. The newly adsorbed particles move away 

from the clump, and each other, because when particles are adsorbed on a liquid surface 

they cause a flow on the interface away from themselves. This flow may also cause the 

newly exposed particles on the outer periphery of the clump to break away. Interestingly, 

when many particles are asymmetrically broken apart from a clump, the clump itself is 

pushed in the opposite direction by the flow due to the newly adsorbed particles. Since 

millimeter sized clumps can breakup and spread on a liquid surface within a few seconds, 

their behavior appears to be similar to that of some liquid drops which can spontaneously 

disperse on solid surfaces. However, if the capillary force is not large enough to 

overcome the cohesive force holding the clump together, the clump may not breakup. 
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When a clump of particles is placed on a liquid surface the particles near the outer 

periphery of the clump are broken apart first by the capillary force which pulls them into 

the interface. This, of course, can happen only when the capillary force is large enough to 

overcome the cohesive force which keeps the clump intact. The detached particles move 

radially outward from the clump because of the lateral interfacial flow that is induced by 

these newly adsorbed particles and those that are subsequently broken apart from the 

clump. The speed at which particles break apart is faster at first since the number of 

particles being broken apart per unit time is greater, and then decreases as the clump size 

decreases with time. The mechanism by which a clump spreads on a liquid surface is 

similar to that by which a pinch of powder sprinkled onto the liquid surface disperses 

except that for the latter the cohesive forces are negligible and so the powder disperses 

immediately.  

                6.1 Experimental Setup 
 
 

In experiments, millimeter sized particle clumps were isolated and then dropped gently 

onto an air-liquid interface using a spatula or they were placed in an upper liquid through 

which they sedimented to a liquid-liquid interface. The clumps were dried for several 

hours in an oven to eliminate the influence of any residual moisture. Millipore water was 

used in this study to eliminate contaminants which can influence the interfacial 

properties. 

The entire phenomenon of a clump breaking up into individual particles or 

smaller clumps and their subsequent radially outward motion on the interface away from 

the clump was recorded using a high-speed camera (Casio Exilim F1) and a Nikon 

Metallurgical MEC600 microscope (Figure 6.1).  The high speed camera enabled 
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recording up to 1200 fps (frames per second). The high speed videos were used to study 

the fast transient motion of particles breaking away from the clump. The microscope 

which allowed for a magnification of up to 500X was used to investigate the particle 

scale details of the breakup. The recording speed for the microscope was 30 fps. The 

video recordings were later analyzed frame-by-frame to understand the mechanism for 

the clumps breakup.  

 

 
 

Figure 6.1 Schematic of the experimental setup used to study the spreading of a solid clump 
on a fluid-liquid or liquid-liquid interface. 
 

6.2 Adsorption of a Single Particle on an Air-Liquid Interface 

 

It was shown in [39] that when a particle comes in contact with a fluid-liquid interface 

the vertical component of capillary force pulls it inwards to its equilibrium position 

within the interface. The motion of the particle during adsorption is inertia dominated, 

and so it overshoots the equilibrium height (Figure 6.2). This is normally the case for 

micron and large sized particles on the surface of mobile liquids like water. For example, 

Figure 5.4 shows the adsorption of 2 mm plastic bead dropped gently on a water surface 
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in a Petri dish. The bead traveled downward below its equilibrium height and then 

reversed direction under the action of the capillary force. Although the viscous drag 

causes the particle to slow down, its magnitude is not large enough to stop the particle 

completely and consequently the momentum of the particle carries it below the 

equilibrium height. Notice that when the particle moves below its equilibrium height, the 

capillary force reverses its direction and acts in the same direction as the drag. Hence, 

after moving down some additional distance, the particle reverses its direction, leading to 

several oscillations and interfacial waves before the particle comes to rest. This behavior 

of the particle is similar to that of underdamped mass-spring-dashpot systems. 

The balance among the particle’s buoyant weight, the vertical capillary force, and 

any other vertical force acting on the particles determines its equilibrium position in the 

interface. The capillary force acts to bring the particle to its equilibrium position, but 

when the capillary force is not large enough to overcome these forces acting vertically the 

particle is not trapped in the interface. This is normally the case for millimeter- and 

larger-sized particles that are heavier than the liquid below. Micron- and nano-sized 

particles, on the other hand, for which the buoyant weight is negligible compared to the 

capillary force, are readily trapped at the interface. Furthermore, the vertical capillary and 

pressure forces must also overcome the momentum of the particle, which it possesses 

before coming in contact with the liquid surface. Owing to the fact that the capillary force 

acting on a particle varies linearly with the particle size, and the buoyant weight and the 

momentum vary as the third power of the particle radius, smaller particles are more 

readily captured at the interface.   



 

 

 

78    

 
Figure 6.2 Adsorption of a particle at an interface. (First two pictures) When the particle 
comes in contact with the interface it is pulled inwards by the interfacial force. The particle 
oscillates about the equilibrium height within the interface before these oscillations induce a 
flow on the interface that causes small tracer particles to move away. Our experiments show 
that tracer particles remain trapped at the interface and move away from the test particle with 
a velocity which is an order of magnitude smaller that the test particle’s maximum velocity 
normal to the interface. 
 

It was shown in [39] that particles dropped onto a liquid surface disperse initially 

due to the fact that when a particle comes in contact with the surface the vertical capillary 

force pulls it into the interface causing it to accelerate to a relatively large velocity 

normal to the interface. The maximum velocity increases with decreasing particle size; 

for nanometer-sized particles, e.g., viruses and proteins, the velocity on an air-water 

interface can be as large as ~47 m/s. The vertical motion of the particle gives rise to a 

lateral flow on the interface away from the particle. The lateral flow was measured in 

[39] for particles ranging in size from a few micrometers to a few millimeters. The 

magnitude of flow on the interface decreased with increasing distance from the particle 

and decayed to zero shortly after the particle was adsorbed. Furthermore, it was also 

shown in [39] that the lateral flow velocity in both experiments and direct numerical 

simulations increased with the number of particles simultaneously adsorbed at the 

interface. 

6.3 Breakup of particle clumps on fluid-liquid surfaces 

 

To understand the mechanism by which clumps of particles break up on liquid surfaces, 

clumps were gently placed on placid liquid surfaces and recorded their breaking up using 
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a high-speed camera and a microscope, as shown in Figure 2. The focus of this work is to 

study the clumps of materials that break up when they are placed on a liquid surface, and 

not those that remain intact on liquid surfaces. The contact angle of the particles of a 

clump with the fluids involved and the cohesive force among the particles which must be 

overcome by the capillary force appear to be the two key factors in determining whether 

or not the clump breaks up. For example, clumps of Teflon powder on water remained 

intact for several hours, the time duration for which they were monitored, as it is 

hydrophobic and the cohesive forces are relatively larger. 

The breaking up of the clumps of different  materials including glass, carbon, 

nano-sized aluminum oxide, nano-sized calcium phosphate particles was studied on a 

water surface, and those of glass particles were studied for different particle sizes and on 

both air-water and corn oil-water interfaces. In the study, the size of particles used to 

form the clumps as well as the size of the clumps was varied which was between 

approximately 1-5 mm. For most cases, the moment the clump came in contact with the 

interface it started to lose particles from the periphery and g progressed towards the 

center. Eventually, the entire clump was dispersed. The clumps of silicon dioxide and 

titanium oxide particles were only partially captured on a water surface in the sense that 

after coming in contact with the water surface some of their particles were broken away 

from the clump and captured on the interface, but a large part of the clump sedimented to 

the bottom of the Petri dish.  

It is noteworthy that clumps containing ~ 10-30 particles can breakup almost 

instantly when they come in contact with an air-liquid or liquid-liquid interface. Figure 4 

shows the breakup of a small clump of 4 µm glass particles on the corn oil-water 
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interface. Notice that the clump (agglomerate) remained intact on the upper liquid, but 

the moment it came in contact with the interface the forces causing dispersion caused it to 

break apart. The clump broke up because it was pulled into the interface by the vertical 

capillary force accelerating it to a relatively-large velocity in the direction normal to the 

interface. The resulting viscous and shearing forces that act on the clump can overcame 

the weak cohesive forces holding the clump particles together. Larger clumps, on the 

other hand, do not break apart immediately, but start to lose particles from their outer 

periphery as described above. 

   

  
t=0 s        t=0.033 s 
Figure 6.3. Breakup and dispersion of an agglomerate of glass spheres on the interface of 
corn oil and water, looking down from above (500x mag.). The size of glass particles was ~4 
µm. (left) An agglomerate sedimented through corn oil and was captured at the interface. 
(right) After coming in contact with the interface it breaks apart explosively dispersing 
radially-outward into an approximately circular region. Notice that some of the particles 
remained agglomerated.  

 

The behavior of two different clumps of the same material varied as the cohesive 

forces for them vary. For example, sometimes the broken pieces were not individual 

particles but smaller clumps or even into two or more clumps of comparable sizes 

because of the structural faults in the clump. These smaller clumps broke up subsequently 

by the aforementioned mechanism. However, some of the very small clumps of 

approximately 2-5 particles remained intact for several minutes and some did not breakup 

completely for several minutes. This perhaps was due to the fact that the cohesive forces 
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for these small clumps (agglomerate) were relatively larger. Their behavior could not be 

monitored for longer time durations as particles started to cluster under lateral capillary 

forces [15, 16, 40].  

6.4 Breakup on Air-Water Interface 

Figure 6.5 shows the breakup of a clump of glass particles (Soda-lime-borosilicate glass 

Bubbles, 3M Scotchlite Glass) and of corn starch on a water surface. The clumps were 

dropped from a height of approximately 2 mm onto the water surface in a Petri dish. In 

both cases, as soon as the clumps touched the water surface, the particles on the outer 

periphery of the bottom portion of the clump started to race radially outward from the 

clumps which made the clump lose mass with time. As a result, the height of the clump 

decreased with time. The clump of glass particles shown in Figure 6.5a broke up 

completely into a monolayer on the water surface after 7.2 s. The clump of corn starch 

shown in Figure 6.5b, on the other hand, broke up in about 0.3 s. The speed with which 

the corn starch particles moved away from the clump was also larger. In both cases, a 

significant fraction of the particles up to 10-20% were not trapped on the air-water 

interface. These particles slowly settled to the bottom of the Petri dish. 

 Figure 6.6a shows the breakup of a clump of glass particles obtained using a 

camera mounted above the water surface. The same particles were used in Figure 6.5a. 

The figure shows that the clump started to lose particles from the outer periphery before 

breaking into smaller clumps. These smaller clumps along with the main clump 

subsequently broke up to form a monolayer of particles on the water surface. The 

phenomenon took about 13.8 s  to complete. This time is slightly smaller than the time in 

Figure 6.5a where the clump size was smaller. 
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                 t = 0   t = 2.9 s    t =4.8 s 
 

   
             t = 5.7 s   t = 6.5 s   t = 7.2 s 
(a)  

  

   
                 t = 0                                 t = 0.23 s                              t = 0.253 s                               
 

 
           t = 0.289 s  
(b) 

Figure 6.4.  A sequence of photographs showing a side view of the breakup of the clumps of 
particles on an air-water interface. The first photographs show the clumps shortly after they 
came in contact with the water surface and the final photographs show the monolayer of 
particles formed because of their breakup. The photographs were taken at 300 fps. (a) A 1.3 
mm clump of 10-170 µm glass particles (scale bar = 1 mm); (b) a 1.6 mm clump of corn 
starch. The size of particles is 28-160 µm (scale bar = 1 mm). 
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The time in which the clumps of approximately equal sizes broke apart was of the 

same order, but varied slightly. This variation is expected since the compositions of 

clumps vary. The time in which the clumps broke up in our experiments increased with 

increasing clump size. 

 

               
                     t = 0 s                   t = 0.003 s                  t = 0.03 s 

   
                     t = 0.2 s 

     
                    t = 13.8 s  

                  t =8.8 s 
 

                t =12.5     

   (a) 
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t = 0 t = 0.034 s t = 0.067 s 

   
t = 0.134 s t = 1.67 s t = 4.0 s 

 

  

t = 11.34 s   
    (b) 
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t = 0 
 

t = 1 s t = 1.033 s 
 

 

 
 
 

 

 

 

 

t = 2 s t = 12 s. 
 

t = 21 s 

(c) 
 
Figure 6.5 A sequence of photographs taken using a camera mounted above showing the 
breakup of the clumps of glass and carbon particles on an air-water interface. The clump 
loses particles from all of the sides, but not uniformly. The photographs were taken at 300 
fps. After the clump breaks up completely, its particles form a monolayer on the water 
surface. (a) A 3.66 mm clump of 10-170 µm glass particles; (b) A 4.92 mm clump of 12-50 
µm glass particles. (c) A 1.54 mm clump of 65-110 µm carbon particles. Scale bar = 1 mm. 
 

  Figure 6.5b shows the breakup of a clump of 12-50 µm hollow glass particles 

(Potters Q-CEL 300 - Sodium Silicate, Sodium Borate) and Figure 6.5 (c) of a clump of 

65-110 µm carbon particles on an air-water interface. Again, the moment the clumps 

touched the water surface the particles on its outer periphery of the clump raced to move 

away radially, overcoming the cohesive forces. Notice that in addition to individual 

particles some of the broken pieces were smaller clumps. These smaller clumps 

subsequently broke up by the same mechanism. The clump of 12-50 µm hollow glass 

particles was broke up into a monolayer in 11.34 s. Also, even though the initial clump 
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size was larger, the time taken to breakup was smaller than in Figure 6.5 (a). This is due 

to the fact that the average size of particles in Figure 6.5 (b) is larger and the clumps of 

smaller particles break apart more quickly.  

To understand the mechanism at particle scales by which clumps break up, a 

magnification of 25X was used to observe individual particles. The size of the clump 

used in this study was ~ 1mm to ensure that the entire clump was visible under the 

microscope (Figure 6.6 (a)). The breakup mechanism was similar to that for the 

millimeter size clumps of Figure 6.6, except that it broke up relatively faster. Also, since 

the speed of recording for the microscope was only 30 fps, the rapid motion of the 

particles caused streak lines to form which was in fact helpful in interpreting their 

trajectories. This did not happen in Figure 6.6 for which the recording speed was ten 

times larger. Notice that the clump broke up into smaller clumps and then these smaller 

clumps broke up by losing particles from their periphery. After their breakup from the 

clump, particles moved away from each other (Figure 6.6 (b)). The average separation 

between particles was around two times the diameter. Some of the smaller clumps, 

however, did not break up completely. This perhaps was due to the fact that the cohesive 

force keeping them intact were too strong to be overcome by the capillary force.  
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              t = 0 s                                     t = 0.033 s                                     t = 0.1 s 

             
               t = 0.3 s                                       t = 0.33 s                                       t = 2.67 s                   

        
              t = 4.67 s            
 (a) 
 

   
 
 (b) 
 
Figure 6.6  A sequence of photographs showing the breakup of a small clump of 10-170 µm 
glass particles on an air-water interface. The photographs were taken at 30 fps and a 
magnification of 25X. (a) The clump initially breaks up and its particles disperse radially 
outward relatively violently. The streak lines form because the recording speed is only 30 fps.  
The small clusters which broke away from the primary clump also broke up with time. The 
spatula used to drop the clump is also visible in the first four photographs. Scale bar = 0.5 
mm. (b) The picture shows that particles are away from each other soon after they disperse 
breaking from the clump. The photographs were taken at 30 fps and a magnification of 200X.     
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Another interesting feature of the breakup was that the ejection of particles in a 

direction from the clump propelled the clump in the opposite direction. The first 

photograph in Figure 6.7 shows a clump of 10-170 µm glass particles just after it was 

placed on the air-water interface. The second photograph in the sequence shows the 

ejection of particles at high speeds from the upper surface of the clump. This, as the third 

photograph shows, causes the clump to move in the downward direction. The clump 

stopped moving when particles were ejected more uniformly from its periphery or the 

ejection of particles stopped.  

 
 
 
 
 

                  
t = 0    t = 0.06 s   t = 0.13 s 
 

 
t = 0.33 s 

Figure 6.7. A sequence of photographs showing the motion of a clump of 10-170 µm glass 
particles on an air-water interface due to the non uniform ejection of particles. The second 
photograph shows that the ejection of particles from the upper surface of the clump.  The 
clump experiences a thrust in the downward direction which causes it to move in the 
downward direction. The clump stopped moving after particles were ejected uniformly from 
all sides. Scale bar = 1 mm. 
 

Clump moves 
downward due to the 
ejection of particle  

Particles being ejected from the 
clump 
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6.5 Breakup on Corn Oil-Water Interface 

The breakup of a clump of glass particles on a corn oil-water interface is described next. 

Experiments were conducted in a Petri dish which was filled with water at the bottom and 

corn oil on the top. A millimeter size clump was dropped on the corn oil surface. The 

clump settled without breaking through the corn oil to the corn oil–water interface. The 

microscope was used to record its breakup at the interface. The recording speed was 30 

fps and the magnification 25X.  

Figure 6.8 shows that the moment the clump came in contact with the interface 

particles from its outer periphery started moving radially outward violently, as was the 

case on an air-water interface. The clump broke into smaller pieces before disintegrating 

completely. These smaller clumps continued to lose particles and completely broke up 

into a monolayer at 25 s.  

However, some of the smaller pieces of the clump did not remain trapped at the 

interface and sedimented to the bottom to the Petri dish. This perhaps is due the fact that 

the interfacial tension of 33.2 mN/m for the corn oil-water interface is smaller than that of 

an air-water interface. Also, the speed with which particles dispersed on the corn oil-

water interface was slower than on an air-water interface and the time taken by the 

clumps to breakup was larger than on an air-water interface. For example, a 3.66 mm 

clump broke up in 13.8 s on an air-water interface, and a 1.86 mm clump, even though 

smaller, took 25 s to break up on a corn oil-water interface. The motion of particles on 

the corn-oil water interface is slower because its effective fluid viscosity is larger than of 

the air-water interface. 
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                     t = 0                   t = 0.33 s t = 2 s 

   
t = 3 s t = 4 s t = 4.46 s 

   
t = 5.33 s t = 6.67 s t = 25 s 

 
Figure 6.8. A sequence of photographs showing the breakup a clump of 10-170 µm glass 
particles on the corn oil-water interface. The size of the clump is around 1.86 mm. The clump 
dropped on the corn oil surface settled through it to reach the corn oil-water interface and 
dispersed violently at the interface. The clump loses particles from all of the sides, and breaks 
into smaller clumps before breaking up completely to form a monolayer on the interface. The 
photographs were taken at 30 fps. Scale bar = 0.5 mm.  
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CHAPTER 7 
CONCLUSIONS 

 

It is shown that when a particle comes in contact with a liquid surface it is pulled into the 

interface towards its equilibrium height by the vertical capillary force and that during this 

process the particle can accelerate to a relatively large velocity normal to the interface. 

For example, a particle of radius 100 µm sprinkled onto the water surface may attain a 

velocity of the order of 1 m/s. The maximum velocity on an air-water interface, which 

increases with decreasing particle size, can be as large as ~47 m/s. It is also shown that a 

particle being adsorbed oscillates about its equilibrium height before coming to rest under 

viscous drag. These oscillations of the particle cause the fluid around it to move away 

which in our experiments was measured using smaller tracer particles that were present 

on the liquid surface.  

When two or more particles are dropped simultaneously onto the surface their 

motion in the direction normal to the interface (and to the line joining their centers) gives 

rise to the strong repulsive hydrodynamic forces which cause them to move apart. The 

velocity with which particles move apart increases with increasing number of particles. 

Also, smaller sized particles disperse more readily because the importance of interfacial 

forces increases with decreasing particle radius. An analysis of the particle’s equation for 

the vertical motion is used to determine the dependence of the velocity on the factors 

such as the fluid viscosity, the change in the interfacial energy due to the adsorption of 

the particle, the particle radius and the buoyant weight. The viscous drag causes the 

oscillatory motion of particles about their equilibrium heights to decay with time, and 

thus the repulsive hydrodynamic forces that arise because of this motion also decrease 
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with time. As a result, after reaching a maximum value, the velocity with which particles 

move apart decreases with time. Furthermore, if the buoyant weight of particles is not 

negligible, e.g., 200 µm sized sand particles used in Figure 1, they also experience 

attractive lateral capillary forces that arise because of the deformation of the interface. 

Although these attractive lateral forces are relatively weaker, after the repulsive 

hydrodynamic forces become smaller they cause particles to come back to cluster. The 

velocity with which particles come back to cluster however is much smaller. Micron and 

nano sized particles, on the other hand, remain dispersed since for them the attractive 

capillary forces are negligible. 

Experiments also show that when particles come in contact with a liquid-liquid 

interface they spontaneously disperse as they do on the air-liquid interface. Specifically, 

experiments were conducted in which glass and other particles with diameter ranging 

from 5 µm to 4 mm were sprinkled onto a liquid-liquid interface. The upper liquid in 

these studies was decane or corn oil and the lower liquid was water. Particles sedimented 

through the upper liquid onto the interface where they dispersed while remaining trapped 

at the interface. All of the particles mentioned above were captured and dispersed on the 

decane-water interface. However, on the corn oil-water interface, only glass particles 

smaller than ~650 µm dispersed; larger glass and plastic particles and mustard seeds did 

not disperse. In fact, a significant fraction of these latter particles was not even captured 

at the interface. This perhaps is due to a smaller interfacial tension of the corn oil-water 

interface. 

When the upper fluid was a liquid, and not a gas, particles sedimented to the 

interface slowly due to the higher viscosity of the upper liquid, and did not reach the 
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interface around the same approximate time. Since particles reached the interface over an 

interval of time, the dispersion occurred over a longer time interval and was relatively 

weaker than for the case when the upper fluid was a gas. The rate of dispersion on the 

corn oil-water interface was weaker than on the decane-water interface as the corn oil 

viscosity is smaller than the decane viscosity.   

The frequency of vertical oscillation of a particle increased with decreasing 

particle size on both air-liquid and liquid-liquid interfaces. The frequency on the decane-

water interface was slightly smaller than on the air-water interface. For a ~500 µm 

particle the frequency on the decane-water interface was around 100 Hz. The results for 

the frequency of particles between 500 µm and 3.0 mm diameter were in agreement with 

our analytical result for the frequency given by Eq. 4.17.  Our experimental technique did 

not allow us to measure the frequency of particles that were smaller than ~500 µm. This 

agreement is noteworthy since the only parameters contained in Eq. 4.17 are the 

properties of the fluids and the particle, i.e., it contains no adjustable parameters. 

Experiments have also shown that for small particles the partial pinning of the 

contact line on the particle’s surface is important. When this happened the particle did not 

oscillate vertically about its equilibrium floating height, but instead about a height that 

was higher while continuing to slowly move downward in the interface as the contact line 

receded downward on its surface. The pinning of the contact line occurred only when the 

particle size was small, and since our present experimental setup did not allow us to study 

the motion of particles smaller than ~500 µm in the normal direction to the interface, this 

issue will be investigated in a future study. 
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After the forces causing dispersion subsided, particles clustered under the action 

of lateral capillary forces. For the two-particle case, the time taken to cluster was about 

three times larger than the time taken by them to move apart and the maximum velocity 

for the latter was about six times larger, indicating that the forces causing dispersion are 

stronger than those causing clustering. Similarly, a cluster of particles dispersed with a 

relatively-larger speed than the speed with which its particles clustered. 

The experiment was conducted to study the mechanism by which clumps of 

particles loosely held together by weak cohesive forces break up when they come in 

contact with a fluid-liquid interface. It is shown that when a clump comes in contact with 

a liquid surface the particles located at its outer periphery are pulled into the interface by 

the capillary force overcoming the cohesive forces which keep them attached with the 

clump. The clump continues to lose particles from its outer periphery progressing 

towards the center. The detached particles move radially outward from the clump because 

of the lateral interfacial flow that is induced by the newly adsorbed particles and those 

that are subsequently broken apart from the clump. The speed at which particles break 

apart is faster at first since the number of particles being broken apart per unit time is 

greater, and then decreases as the clump size decreases with time. In some cases, the 

clump itself is broken into smaller pieces and then these smaller pieces break apart by the 

aforementioned mechanism. Also, clumps containing approximately 10-30 particles can 

break up almost instantly when they come in contact with a liquid surface. 

The newly adsorbed particles move away from the clump, and each other, because 

when particles are adsorbed on a liquid surface they cause a flow on the interface away 

from themselves. Consequently, the initial distance between particles of the monolayer 



 

 

 

95    

formed due to the breakup of a clump is several times the particle diameter. After the 

flow due to the particles adsorption subsides, they cluster under the action of lateral 

capillary forces to form monloayers in which particles touch each other. The clumps used 

in this study contained particles of size 4 to 170 µm, and the clump size was between 1 to 

5 mm. 

The flow induced on the interface may also cause additional particles to detach 

from the clump. The important role that the flow on the interface plays can be seen when 

many particles asymmetrically break from the clump. In this case the clump moves in the 

opposite direction of that in which the newly detached particles moved away from the 

clump. This process of particles breaking away from the clump continues until all the 

particles break away to form a monolayer of particles on the liquid surface.  

A millimeter sized clump can break up and spread on a liquid surface in a few 

seconds and thus it appears that clumps of some materials can spontaneously spread on a 

liquid surface, just like some drops can spread on some solid surfaces. The mechanism by 

which a clump spreads on a liquid surface is similar to that by which a pinch of powder 

sprinkled onto the liquid surface disperses except that for the latter the cohesive forces 

are negligible and so the powder disperses immediately. More specifically, in the latter 

case, since the particles are not attached to each other, they all come in contact with the 

liquid surface at almost the same time and so disperse explosively. In the former case, not 

all of the particles come in direct contact immediately with the liquid surface. Thus, only 

those particles that come in contact with the liquid surface are broken away from the 

clump and disperse, and also only when the capillary force is large enough to overcome 

the cohesive force holding particles together. The process continues as the new layers of 
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particles come in contact with the interface. Consequently, a clump spreads on a liquid 

surface relatively slowly. 
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