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ABSTRACT 

SECURITY SYSTEMS BASED ON GAUSSIAN INTEGERS: ANALYSIS OF 
BASIC OPERATIONS AND TIME COMPLEXITY OF SECRET 

TRANSFORMATIONS 
 

by 
Aleksey Koval 

 
Many security algorithms currently in use rely heavily on integer arithmetic modulo 

prime numbers. Gaussian integers can be used with most security algorithms that are 

formulated for real integers. The aim of this work is to study the benefits of common 

security protocols with Gaussian integers. Although the main contribution of this work is 

to analyze and improve the application of Gaussian integers for various public key (PK) 

algorithms, Gaussian integers were studied in the context of image watermarking as well. 

 The significant benefits of the application of Gaussian integers become apparent 

when they are used with Discrete Logarithm Problem (DLP) based PK algorithms. In 

order to quantify the complexity of the Gaussian integer DLP, it is reduced to two other 

well known problems: DLP for Lucas sequences and the real integer DLP. Additionally, 

a novel exponentiation algorithm for Gaussian integers, called Lucas sequence 

Exponentiation of Gaussian integers (LSEG) is introduced and its performance assessed, 

both analytically and experimentally. The LSEG achieves about 35% theoretical 

improvement in CPU time over real integer exponentiation. Under an implementation 

with the GMP 5.0.1 library, it outperformed the GMP’s "mpz_powm" function (the 

particularly efficient modular exponentiation function that comes with the GMP library) 

by 40% for bit sizes 1000-4000, because of low overhead associated with LSEG. Further 

improvements to real execution time can be easily achieved on multiprocessor or 



multicore platforms. In fact, over 50% improvement is achieved with a parallelized 

implementation of LSEG. All the mentioned improvements do not require any special 

hardware or software and are easy to implement. Furthermore, an efficient way for 

finding generators for DLP based PK algorithms with Gaussian integers is presented. 

In addition to DLP based PK algorithms, applications of Gaussian integers for 

factoring-based PK cryptosystems are considered. Unfortunately, the advantages of 

Gaussian integers for these algorithms are not as clear because the extended order of 

Gaussian integers does not directly come into play. Nevertheless, this dissertation 

describes the Extended Square Root algorithm for Gaussian integers used to extend the 

Rabin Cryptography algorithm into the field of Gaussian integers. The extended Rabin 

Cryptography algorithm with Gaussian integers allows using fewer preset bits that are 

required by the algorithm to guard against various attacks. Additionally, the extension of 

RSA into the domain of Gaussian integers is analyzed. The extended RSA algorithm 

could add security only if breaking the original RSA is not as hard as factoring. Even in 

this case, it is not clear whether the extended algorithm would increase security. 

Finally, the randomness property of the Gaussian integer exponentiation is 

utilized to derive a novel algorithm to rearrange the image pixels to be used for image 

watermarking. The new algorithm is more efficient than the one currently used and it 

provides a degree of cryptoimmunity. The proposed method can be used to enhance most 

picture watermarking algorithms. 



SECURITY SYSTEMS BASED ON GAUSSIAN INTEGERS: ANALYSIS OF 
BASIC OPERATIONS AND TIME COMPLEXITY OF SECRET 

TRANSFORMATIONS 
 

 

 

 

 

 

 

by 
Aleksey Koval 

 

 

 

 

 

 

 

 

A Dissertation  
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Computer Science 
 

Department of Computer Science 
 
 

August 2011 
 



 

 

 

 

 

 

 
 
 
 
 
 
 
 

Copyright © 2011 by Aleksey Koval 
 

ALL RIGHTS RESERVED 
. 



APPROVAL PAGE 

 
SECURITY SYSTEMS BASED ON GAUSSIAN INTEGERS: ANALYSIS OF 

BASIC OPERATIONS AND TIME COMPLEXITY OF SECRET 
TRANSFORMATIONS 

 
Aleksey Koval 

 
 
 
 
 
Dr. Boris Verkhovsky, Dissertation Advisor     Date 
Professor of Computer Science, NJIT 
 
 
 
 
Dr. Frank Shih, Committee Member      Date 
Professor of Computer Science, NJIT 
 
 
 
 
Dr. Cristian Borcea, Committee Member     Date 
Associate Professor of Computer Science, NJIT 
 
 
 
 
Dr. James Geller, Committee Member     Date 
Professor of Computer Science, NJIT 
 
 
 
 
Dr. Joon Sung, Committee Member      Date 
Technical Manager, IBM, AT&T Labs,Middletown, NJ 
 
 



BIOGRAPHICAL SKETCH

Author:	 Aleksey Koval

Degree:	 Doctor of Philosophy

Date:	 August 2011

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2011

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2009

• Master of Science in Applied Statistics,
Rutgers University, New Brunswick, NJ, 1999

• Bachelor of Science in Computer Science,
Kean University, Union, NJ, 1997

• Bachelor of Science in Mathematics,
Kean University, Union, NJ, 1997

Major:	 Computer Science

Presentations and Publications:

A. Koval, F. Y. Shih, and B. S. Verkhovsky, "A Pseudo-Random Pixel Rearrangement
Algorithm Based on Gaussian Integers for Image Watermarking," Journal of
Information Hiding and Multimedia Signal Processing, vol. 2, no. 1, pp. 60-70,
2010.

A. Koval, "On Lucas Sequences Computation," Intl J. of Communications, Network and
System Sciences vol. 2, no. 12, pp. 943-944 2010.

iv



A. Koval, and B. S. Verkhovsky, “On Discrete Logarithm Problem for Gaussian 
Integers,” in International Conference on Information Security and Privacy (ISP-
09), Orlando, Florida, USA, 2009, pp. 79-84. 

A. Koval, and B. Verkhovsky, “Analysis of RSA over Gaussian Integers Algorithm,” in 
Fifth International Conference on Information Technology: New Generations 
(ITNG 2008), Las Vegas, Nevada, USA, 2008, pp. 101-105. 

B. Verkhovsky, and A. Koval, “Cryptosystem Based on Extraction of Square Roots of 
Complex Integers,” in Fifth International Conference on Information Technology: 
New Generations (ITNG 2008), Las Vegas, Nevada, USA, 2008, pp. 1190-1191. 

 v



 

 

 

 

 

 

This dissertation is dedicated to the memory of my father  

Dr. Yevgeniy Aleksandrovich Koval. 

 

 

 vi



 

ACKNOWLEDGMENT 

 

I wish to thank my advisor, Dr. Boris Verkhovsky for all his guidance, dedication, 

patience and support. His sincere curiosity in the unexplored fields of cryptography 

inspired me. His dedication and professionalism helped me overcome all of the obstacles. 

  In addition, I would like to thank the members of my committee Dr. Frank Shih, 

Dr. Cristian Borcea, Dr. James Geller, and Dr. Joon Sung. Dr. James Geller spent a lot of 

his time helping me improve this dissertation. I really appreciate the insightful 

observations of Dr. Christian Borcea that directed my work in the right direction. Also, I 

appreciate Dr. Frank Shih’s teaching and guidance, especially on image related topics. 

Dr. Joon Sung provided great advice, criticism and encouragement.  

 I would like to thank Dr. Dimitri Kanevsky (IBM T.J Watson Research Center) 

for his support and guidance. 

 

 vii



 

TABLE OF CONTENTS 

Chapter Page

1 INTRODUCTION 1

 1.1 Problem Statement…………………………………………………………. 4

 1.2 Survey of References………………………………………………………. 6

 1.3 Overview of Gaussian Integers, Notation and Definitions………………… 14

 1.4 Dissertation Structure……………………………………………………… 22

2 DISCRETE LOGARITHM CRYPTOGRAPHY WITH GAUSSIAN 
INTEGERS………………………………………………………………………...
 

24

 2.1 Gaussian Primes P: |P| is a non-Blum Prime…………………………….… 24

 2.2 Common Cryptography Algorithms Based on Discrete Logarithm…….….. 32

 2.3 Properties of Gaussian Integer Exponentiation………………………….…. 37

 2.4 Discrete Logarithm Complexity for Gaussian Integers…………………….. 42

 2.5 Reducing Gaussian Integer DLP to Lucas Sequences DLP……………….. 47

 2.6 Multiplication of Gaussian Integers vs. Real Integer Multiplication………. 54

 2.7 Computation of Lucas Sequences………………………………………….. 70

 2.8 Exponentiation of Gaussian Integers………………………………………. 72

 2.9 Experimental Results…………………………………………………….…. 82

 2.10 Algorithms for Finding Gaussian Generators…………………………….… 89

 2.11 Chapter Summary…………………………………………………………... 95

3 EXTENSION OF RABIN CRYPTOSYSTEM INTO THE FIELD OF 
GAUSSIAN INTEGERS………………………………………………………….
 

97

 3.1 Restriction of Gaussian Integer Domain…………………………………… 97

 viii



TABLE OF CONTENTS 
(Continued) 

 
Chapter Page

 3.2 Rabin Cryptosystem……………………………………………………...... 97

 3.3 Square Roots Modulo n=pq……………………………………………….. 99

 3.4 Extended Square Root Algorithm mod p………………………………….. 101

 3.5 Extended Square Root Algorithm mod n=pq……………………………... 109

 3.6 Extended Rabin Cryptosystem…………………………………………...... 111

 3.7 Security of the Extended Rabin Cryptosystem……………………………. 112

 3.8 Chapter Summary………………………………………………………….  114

4 ANALYSIS OF RSA ALGORITHM OVER GAUSSIAN INTEGERS………… 115

 4.1 Description of RSA Algorithm over the Field of Gaussian Integers……… 115

 4.2 Cryptanalysis of RSA Algorithm over the Field of Gaussian Integers……. 116

 4.3 Chapter Summary………………………………………………………….. 127

5 A PSEUDO-RANDOM PIXEL REARRANGEMENT ALGORITHM BASED 
ON GAUSSIAN INTEGERS FOR IMAGE WATERMARKING…………....... 
 

129

 5.1 Algorithm Introduction……………………………………………………. 129

 5.2 Proposed Pixel Rearrangement Algorithm………………………………… 131

 5.3 Cryptoimmunity of the Rearrangement Algorithm………………………... 135

 5.4 Comparison to Arnold’s Cat Map Chaos Transformation………………… 138

 5.5 Example in Image Watermarking…………………………………………. 142

 5.6 Chapter Summary…………………………………………………………. 144

6 CONCLUSION…………………………………………………………………... 145

REFERENCES……………………………………………………………………… 149

 ix



 

 

LIST OF TABLES 
 

 
Table 
 

Page

2.1 Discrete Power Table MOD P=3+2i, |P|=13, 1− mod 13 = 5..............................
 

31

2.2  Repeating Norm Example for Prime p=7…….…....…………………………….. 37

2.3 Repeating Norm Example for Prime p=11………………………………………. 38

2.4 Gaussian Integer Exponentiation and Lucas Sequences…………………………. 52

2.5 Summarized Estimates of the Multiplication Running Time Ratio Based on the 
Formula (2.116)………………………………………………………………….. 68

2.6 Summarized Estimates of the Square Running Time Ratio Based on the 
Formula (2.117)…………………………………………………………………..
 

68

2.7 /LSEG SWGT T  Ratio for Various β  and Window Sizes……………………………. 79

2.8 * /LSEG SWGT T  Ratio for Various β  and Window Sizes…………………………… 81

 

 x



 

LIST OF FIGURES 
 
 

Figure 
 

Page

2.1  The ratio of the running time of multiplication of two numbers of the equal size 
vs. the running time of square of a number of the same size. The graph 
represents a typical performance of GMP 5.0.1 library on various platforms........
 

59

2.2 The distribution of optimal multiplication thresholds among various platforms 
for GMP 5.0.1.........................................................................................................
 

61

2.3  The distribution of optimal square thresholds among different platforms and 
counts for GMP 5.0.1..............................................................................................
 

62

2.4 Running time of mod operation versus multiplication using GMP 5.0.1 library 
on AMD Opteron Model 2218 @2.6 GHz Dual core, 8GB of RAM, RHEL 
Linux 4.2 kernel 2.6.9 (64 bit)................................................................................
 

66

2.5 Running time of mod operation divided by the running time of multiplication 
using GMP 5.0.1 library on AMD Opteron Model 2218 @2.6 GHz Dual core, 
8GB of RAM, RHEL Linux 4.2 kernel 2.6.9 (64 bit).............................................
 

66

2.6 The CPU time of SWR,SWG, LSEG and LSEG* for various bit sizes……......... 85

2.7 The ratio of the running time of SWG algorithm over SWR.................................. 86

2.8 The ratio of the CPU time of Algorithm 2.8.1 (LSEG) over SWG........................ 87

2.9 The ratio of the running time of Algorithm 2.8.1 algorithm over SWR................. 87

2.10 The real running time of SWR, SWG, LSEG and LSEG* for various bit 
sizes.........................................................................................................................
 

88

2.11 Ratio of real running time of LSEG* over SWG………………………………… 89

5.1 Image rearranged by Algorithm 5.2.1 and Arnold’s Cat map side-by-side. A is 
the original image, B is the rearranged image by Algorithm 5.2.1, and C1-C7 
are the steps of Arnold’s Cat map rearrangement...................................................
 

141

 

 xi



LIST OF FIGURES 
(Continued) 

 
Figure 
 

Page

5.2 (a) The original Cameraman image, (b) the two most significant bits of Lena as 
the watermark, (c) the rearranged image of Cameraman using Algorithm 5.2.1, 
(d) the watermarked image of the rearranged image using LSB substitution, (e) 
the rearranged back of the preceding watermarked image using Algorithm 5.2.2,
(f) the extracted two bits of LSB (g) the rearranged back of the preceding 
extracted image using Algorithm 5.2.2...................................................................
 

143

   

 xii



CHAPTER 1 

INTRODUCTION 

 

The history of cryptography dates back thousands of years. Over most of this time, it has 

been a history of symmetric cryptography. It appeared obvious that the only way for 

several parties to communicate securely is to share a secret method or a key. It seemed 

that there is no other way because the recipient must have an advantage over 

eavesdropper. Key exchange is the weakest link of symmetric cryptography. The 

challenge of exchanging secret keys securely is magnified when there are many parties 

that need to communicate. 

The revolution in cryptography happened in 1970s when Public Key or 

asymmetric cryptography was introduced. In 1976, Diffie and Hellman published a 

revolutionary paper titled "New Directions in Cryptography" [26], where they introduced 

the concepts of Public Key or asymmetric cryptography. In addition, they introduced the 

method of exchanging keys known as Diffie-Hellman Key Exchange protocol. The 

Diffie-Hellman Key Exchange protocol relies on the difficulty of the discrete logarithm 

problem. Similar techniques were invented earlier by James H. Ellis, Clifford Cocks, and 

Malcolm Williamson at GCHQ but were kept secret until the late 1990s. After this, many 

new Public Key algorithm and techniques were introduced. Most notable of these are 

RSA, Rabin, ElGamal and Elliptic Curve Cryptography (ECC). 

In 1977, the RSA algorithm was by Rivest, Shamir and Adleman at 

MIT. It relies on the difficulty of factoring large numbers, which are products of two 

 invented 1
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large primes. RSA was a great success and currently is the most commonly used Public 

Key Encryption algorithm. 

In 1979, M. O. Rabin introduced a Rabin Cryptosystem, which, as RSA, is based 

on the difficulty of factoring large numbers. Rabin Cryptosystem has some notable 

advantages over RSA; however, it is not as widely used as RSA. 

In 1984, Taher ElGamal introduced the ElGamal algorithm. As the Diffie-

Hellman Key Exchange protocol, it is using the difficulty of the discrete logarithm 

problem. As RSA, ElGamal is currently widely used. 

In 1985, Neal Koblitz and Victor S. Miller introduced Elliptic Curve 

Cryptography (ECC). It uses a special algebraic structure called elliptic curves over finite 

group. ECC is very promising technique because the discrete logarithm problem over 

elliptic curves is more difficult than the same problem over integers. This allows for 

smaller keys which, in turn, increase the efficiency. ECC has been recommended by the 

NSA and seem to have a very bright future. 

Despite apparent advantages of Public Key cryptography, it is not about to replace 

symmetric cryptography. There are many reasons to use symmetric cryptography. The 

most important one is that all known Public Key algorithms are not nearly as efficient as 

symmetric cryptography algorithms. For instance, asymmetric algorithms may work well 

to encrypt emails because a delay of fraction of a second for email is not noticeable. 

However, for real time delay sensitive applications like Voice over IP (VOIP) or Virtual 

Private Networks (VPN) this kind of delay is unacceptable. The practical solution for this 

is to use a Private Key algorithm to distribute a symmetric key and use the symmetric key 

to encrypt and decrypt the messages. For example, the contemporary VPN protocols use 
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Diffie-Hellman Key Exchange protocol (asymmetric) to exchange Triple DES 

(symmetric protocol) keys. 

Efficiency of Public Key algorithms is directly tied to the size of the key. As 

computing power grows, the keys have to grow also. For example, 512-bit keys for RSA 

were considered sufficiently secure. At present, even 1024 bit keys are sometimes 

considered potentially weak. Most companies and individuals use 2048 bit keys for RSA 

now. 

One of the directions of contemporary cryptography research is extending tried-

and-true Public Key Cryptography algorithms such as RSA, ElGamal and Rabin into 

well-studied cyclical groups. The aim is to improve the security of the algorithms by 

introducing more complexity. Improved security would allow for use of smaller keys, in 

turn, improving efficiency. One difficulty is that with increased complexity overhead is 

introduced that may undermine any efficiency improvements. Another difficulty is that as 

the algorithms become more complex it becomes harder to assess their security.  

In this dissertation, the use of Gaussian integers as the underlying field for RSA, 

ElGamal and Rabin algorithms is studied. The extension of the Rabin algorithm into the 

field of Gaussian integers is introduced. 

Gaussian integers are complex numbers with integers as both real and imaginary 

part. Carl Friedrich Gauss introduced the ring of Gaussian integers in 1829 – 1831. He 

formulated many properties of Gaussian integers like properties of factorization and the 

concept of Gaussian Prime. Gauss used them as a tool to prove some theoretical results. 

The properties of Gaussian integers and Gaussian Primes are well known and formulated 

so they are going to be used as facts. 
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1.1 Problem Statement 

Many security algorithms currently in use rely heavily on integer arithmetic modulo 

prime numbers. Gaussian integers can be used with most security algorithms that are 

formulated for real integers. The aim of this work is to study the benefits of common 

security protocols with Gaussian integers. Although the main contribution of this work is 

to analyze and improve the application of Gaussian integers for various public key (PK) 

algorithms, Gaussian integers were studied in the context of image watermarking as well. 

 Among the most widely used PK algorithms are RSA, Diffie-Hellman key 

exchange, ElGamal, and Rabin [58] PK algorithms. Unfortunately, in order to provide a 

required degree of cryptoimmunity, the keys must be very large. Large keys mean lower 

speed of encryption/decryption/authentication. One of the ways to increase speed is to 

consider more complicated fields with larger cyclic groups, e.g., Gaussian integers. Most 

mainstream PKC algorithms fall into two categories: Discrete Logarithm problem (DLP) 

based (e.g., ElGamal or Diffie-Hellman key exchange) and integer factoring based (RSA 

or Rabin). Gaussian integers can be successfully used with all the PK algorithms that are 

formulated for real integers and this work explores the application of Gaussian integers 

for both types of PK algorithms.  

The Gaussian integer modulo prime cyclic group order is much larger then the 

real integer modulo prime order for the same prime. However, larger order does not 

guarantee increased security nor does it mean that the extended PK algorithms would be 

more efficient. The security depends on the complexity of the underlying DLP. 

Unfortunately, assessing complexity of such DLP is usually very hard. One way to do it 

is to reduce the Gaussian integer DLP to another well known problem: DLP for Lucas 
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sequences, which is about twice as hard as the real integer DLP for the same prime. This 

reduction is described in Chapter 2. Another challenge was to perform the exponentiation 

of Gaussian integers faster than the exponentiation of real integers. This goal was 

achieved with a novel exponentiation algorithm for Gaussian integers, which called 

Lucas sequence Exponentiation of Gaussian integers (LSEG). The performance of LSEG 

is assesed both analytically and experimentally. The LSEG achieves about 35% 

theoretical improvement in CPU time over real integer exponentiation. Under an 

implementation with the GMP 5.0.1 library it outperformed the GMP’s "mpz_powm" 

function (the particularly efficient modular exponentiation function that comes with the 

GMP library) by 40% for bit sizes 1000-4000, because of low overhead associated with  

LSEG. Further improvements to real execution time can be easily achived on 

multiprocessor or multicore platforms with parallelizing certain steps in LSEG. All the 

mentioned improvements do not require any special hardware or software and are easy to 

implement. Additionally, an efficient way for finding generators is proposed. It would be 

useful for real-world implementations of DLP based PK algorithms with Gaussian 

integers. 

In addition to DLP based PK algorithms, the applications of Gaussian integers for 

factoring-based PK cryptosystems are considered. Unfortunately, the advantages of 

Gaussian integers for these algorithms are not as clear, because the extended order of 

Gaussian integers does not directly come into play. Nevertheless, the Extended Square 

Root algorithm for Gaussian integers is derived and its validity is proven. Using this 

algorithm, Rabin Cryptography algorithm was extended into the field of Gaussian 

integers. The resulting Extended Rabin Cryptography algorithm allows using fewer 
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preset bits that are required by the algorithm to guard against various attacks. 

Additionally, the extension of RSA into the domain of Gaussian integers is analyzed in-

depth. The analysis, published in [49], yielded several interesting results, e.g., that a 

certain type of Gaussian primes does not offer any advantages over real primes. 

Finally, the randomness property of the Gaussian integer exponentiation is 

utilized to derive a novel algorithm to rearrange the image pixels to be used for image 

watermarking. Currently many image watermarking techniques use Arnold’s cat map to 

rearrange the image pixels as a part of the watermarking algorithm. In the rearrangement 

step, Arnold’s cat map can be replaced with the new algorithm based on Gaussian 

integers, which has the advantages of increased speed and security. Moreover, the new 

algorithm can provide a degree of cryptoimmunity to image watermarking. The proposed 

method can be used with most picture watermarking algorithms to enhance them.  

The techniques and theoretical framework developed and presented in this 

dissertation offer some interesting avenues for further research. Potential uses include 

new cryptography algorithms, primality testing, steganography and cryptanalysis of the 

existing algorithms.   

 

 

1.2 Survey of References 

In 1979, M. O. Rabin in his paper “Digitalized Signatures and Public Key Functions as 

Intractable as Factorization”, [58], introduced a new cryptosystem, later called the Rabin 

Cryptosystem. The Rabin Cryptosystem, as the RSA, is based on the difficulty of 

factoring large numbers. Rabin Cryptosystem has some notable advantages over the 
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RSA, mainly faster encryption. The encryption with Rabin is very simple. If m is a 

message and n=pq is a product of two large primes, then the ciphertext c is c=m2 mod n. 

To decrypt the message, the reverse operation is needed, namely, the receiver has to take 

a square root of c mod n. Rabin showed that the square root mod n operation is equivalent 

to factoring of n. This means that the code can only be broken if the adversary can factor 

n. Thus the Rabin Cryptosystem is proven as secure as factorization.  

As other public key cryptosystems, the Rabin Cryptosystem can be used to 

digitally sign documents. The method for signing documents using public key 

cryptosystems was first described in the seminal paper by R. L. Rivest. A. Shamir, and L. 

Adleman: “A Method for Obtaining Digital Signatures and Public Key Cryptosystems”, 

[59], where the authors introduced the concept of digital signatures.  

In 1985, W. Alexi, B. Chor, O. Goldreich and C. P. Schnorr published 

“RSA/Rabin Functions: Certain Parts are As Hard As the Whole”, [4], where they prove 

that, if one is able to predict the least significant bit of the number m2 mod n (Rabin) or 

the me mod n (RSA) with a probability greater than ½, then it is possible to invert the 

function. This result is important for algorithms that use Rabin or RSA for random 

number generators.  

 Another notable paper on the subject of Rabin algorithm signatures security is 

“Proving Tight Security for Standard Rabin-Williams Signatures”, [13], by Daniel J. 

Bernstein. In this paper, the author proves that any generic attack on standard Rabin 

signatures could be converted into the factorization algorithm, thus proving the security 

of Rabin signatures. 
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 In 2001, A. N. El-Kassar, M. Rizk, N. Mirza, and Y.A. Awad, in a paper titled 

“ElGamal Public-Key Cryptosystem in the Domain of Gaussian Integers” [27] introduced 

an extension of the ElGamal algorithm into the field of Gaussian integers. The extension 

deals with Gaussian integers modulo real Gaussian Primes (primes : mod 4 3p p = ). The 

proposed cryptosystem is, presumably, more secure because the order of a Gaussian 

Prime generator is p2-1 as opposed to p for real integers. This is potentially a huge 

advantage because this allows for the use of smaller primes, which dramatically improves 

the efficiency.  

In 2002, H. Elkamchouchi, K. Elshenawy and H. Shaban introduced the extension 

of the RSA algorithm to the field of Gaussian integers in their paper “Extended RSA 

Cryptosystem and Digital Signature Schemes in the Domain of Gaussian Integers” [30].  

As opposed to the ElGamal extension, the domain of Gaussian Primes is not restricted. 

Consequently, the strength of this algorithm is based on Gaussian integer factoring as 

opposed to real integer factoring. The security of the proposed cryptosystem was not 

proven in this paper. 

In 2004, A. N. El-Kassar, R. A. Haraty and Y.A. Awad in their paper "Modified 

RSA in the Domains of Gaussian Integers and Polynomials Over Finite Fields” [28] 

formulated the extension of RSA into the domain of Gaussian integer modulo real primes 

similar to the domain in [27]. This paper describes a special case of the extended RSA 

algorithm described in [30].  

In 2004, Ramzi A. Haraty, A. N. El-Kassar and Hadi Otrok in their paper "A 

Comparative Study of RSA based Cryptographic Algorithms” [35] tested the reliability 

and security of several RSA extensions described in [28]. The authors found that all 
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algorithms tested to be reliable and probably secure. The running time of Gaussian RSA 

was similar to the original RSA. This paper does not prove the security of Gaussian 

integer RSA.  

In 2004, Ramzi A. Haraty, Hadi Otrok and A. N. El-Kassar in their paper "A 

Comparative Study of ElGamal Based Cryptographic Algorithms" [36]  tested the 

reliability and security of several extensions of the ElGamal algorithm. Among the 

algorithms tested, was an extension of ElGamal into the field of Gaussian integers 

described in [27]. To test the security the Baby-step Giant-step algorithm was used. The 

authors found that the ElGamal algorithm with Gaussian integers was probably stronger 

than the original, because the discrete logarithm took for Gaussian integers took twice as 

long to compute. By no means is this a proof that it is strong, however, it is an indication 

that it could be stronger than the original. 

The paper by Ramzi A. Haraty, Hadi Otrok and A. N. El-Kassar "Attacking 

ElGamal Based Cryptographic Algorithms Using Pollard's Rho Algorithm" [38] is very 

similar to [36]. Here, to test the security the authors enhanced the Pollard's Rho algorithm 

to work with Gaussian integers (the original Pollard's Rho algorithm works with real 

integers). All the analysis and results are essentially the same as in [36]. 

In 2005, Boris S. Verkhovsky and A. Mutovic in their paper "Primality Testing 

Algorithm Using Pythagorean Integers" [66]  introduced a novel use for Gaussian 

integers, namely, primality testing. The algorithms presented improve the performance of 

the Fermat’s original primality test. They are able to detect Carmichael numbers 

(undetectable with the original Fermat’s test) with high probability. The primality test 

introduced in [67] uses quaternions to further improve the probability of detecting 
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Carmichael numbers. The theory and techniques that will be presented in this 

dissertation, together with other ideas presented by Dr. Boris S. Verkhovsky, may allow 

an improvement of the test introduced in [66].  The primality testing with Gaussian 

integers and their variants will not be in the scope of this dissertation, but illustrates the 

practical value of the topic to be explored. 

The paper by Ramzi A. Haraty, A. N. El-Kassar and B. Shibaro "A Comparative 

Study of RSA Based Digital Signature Algorithms" [37] is very similar to [35]. As 

opposed to encryption and decryption in [35], this paper deals with extended RSA digital 

signature schemes. For the most part, it is a report on experiments ran by the authors.  

The paper by Peter Smith “LUC Public Key Encryption: a Secure Alternative to 

RSA” [62], published in 1993, describes the first cryptosystem that is based on Lucas 

sequences, called LUC. LUC uses calculation of Lucas functions as an alternative to real 

integer exponentiation. The paper claims that “while Lucas functions are somewhat more 

complex mathematically than exponentiation, they produce superior ciphers. “ 

Another paper by Peter Smith “Cryptography Without Exponentiation” [63], 

published in 1994, introduced three more algorithms based on Lucas sequences: a Lucas-

function ElGamal PK encryption, a Lucas-function ElGamal digital signature, and a key 

exchange algorithm called LUCDIF (essentially, LUCDIF is the Diffie-Hellman key 

exchange protocol over Lucas sequences).  All three algorithms are based on the 

difficulty of the Discrete Logarithm problem for Lucas functions. The author claims that 

the proposed cryptosystems are stronger, because they are not based on exponentiation 

and, therefore, the subexponential-time algorithms currently known cannot be used 

against them. 
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The paper by Chi-Sung Laih, Fu-Kuan Tu and Wen-Chung Tai “On the Security 

of the Lucas Function” [51], published in 1995, discusses the security of Discrete 

Logarithms for Lucas sequences. The authors raised doubts about the hypothesis that the 

security of the Lucas function is cryptographically stronger than or at least as strong as 

the security of the exponentiation function. They also show that the security of the Lucas 

function is polynomial-time equivalent to the generalized discrete logarithm problems.  

The paper by Arjen K. Lenstra, Daniel Bleichenbacher and Wieb Bosma “Some 

Remarks on Lucas-Based Cryptosystems” [52], published in 1995, discusses the security 

of all Lucas sequence-based cryptosystems. For LUC it describes a chosen ciphertext 

attack, as a result proving that LUC is not stronger than RSA. Additionally, a 

subexponential attack on Discrete Logarithm for Lucas sequences is described.  

The computation of Lucas sequences is a very important subject of this 

dissertation. The first significant paper was published on the subject in 1995 by S.M. Yen 

and C.S. Laih “Fast Algorithms for LUC Digital Signature Computation” [74]. The paper 

describes two efficient algorithms to compute Lucas sequences for LUC cryptographic 

algorithms. The two algorithms are analogous to square-multiply algorithms for real 

integers. Logical extensions of the algorithms published in [74] is represented by the 

work by C.S. Laih and S.Y. Chiou “An Efficient Algorithm for Computing the Luc 

Chain” first published in 1995 ([18]) and later published again in [19]. It describes an 

improvement to  [74] that is achieved by using addition chains for LUC exponentiation. 

Another significant paper that introduces improvements of  [74] by using addition chains 

is the paper by C.T. Wang, C.C. Chang, and C.H. Lin “A Method for Computing Lucas 

Sequences” published in 1999 [68]. Incidentally, quite a few papers have been published 
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on this subject recently, namely [5-9, 56, 57], that do not describe any improvements to 

[68].   

The LUC cryptosystem is based on one of the two Lucas sequences, namely V. 

The computation of both Lucas “sister” sequences is of particular interest. Such an 

algorithm was published in 1996 in the paper “Efficient Computation of Full Lucas 

Sequences" by M. Joye and J. J. Quisquater. The improved algorithm was published in 

[47]. It is utilized as an alternative to the Gaussian integer exponentiation. 

For this discussion, the complexity of the multiplication operation is very 

important. Depending on the integer size, different multiplication methods are 

appropriate. For small bit sizes the naïve multiplication method [44] with complexity of 

 is most efficient. For larger bit sizes the Karatsuba-Ofman [43] multiplication 

algorithm is universally used. As bit sizes increase, multiple levels of the k-way Toom-

Cook multiplication ([21],[44]) could be applied. For extremely large bit sizes, 

algorithms based on Fast Fourier transforms (FFT) such as the Schönhage–Strassen 

algorithm ([60]) and Fürer's algorithm ([31]) become practical. Since FFT algorithms are 

used for very large bit sizes, the FFT algorithms will not be considered in the subsequent 

discussion.  

2( )nΘ

Another important topic is the time complexity of modular reduction. The 

performance relative to multiplication is of particular interest. The “mod” division 

operation is much slower than multiplication. For small to moderate integer sizes, the 

divide-and-conquer algorithm [16] is commonly used for modular division. However, for 

efficient modular exponentiation algorithms the costly mod operation is replaced with the 

Montgomery reduction or REDC() operation ([55]), because it is much more efficient 
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([14]). There are quite a few implementation variations for Montgomery reduction 

analyzed in [46] and [17]. Moreover, there are many papers published with marginal 

improvements to the Montgomery reduction method, most of them through low level 

implementations and specialized hardware (e.g., [1, 11, 20, 23, 29, 39, 71]). The 

performance of the reduction algorithms (either modular division or Montgomery REDC) 

relative to multiplication is of interest in this discussion. In particular, the range from one 

to four multiplications in which all of the contemporary reduction implementations fall is 

considered. 

Steganography is a process of hiding information in a medium in such a manner 

that no one except the anticipated recipient knows of its existence ([61]). A notable 

application of steganography is watermarking of digital images, which is a useful tool for 

identifying the source, creator, owner, distributor, or authorized consumer of a document 

or an image. A way to apply Gaussian integers for image watermarking is described in 

this dissertation. There are many innovative watermarking algorithms and many more get 

published every day (such as recently published [3, 41, 53, 70] ). In many image 

watermarking algorithms, for example in [24, 69, 72, 73], it is required to rearrange the 

pixels as a part of the watermarking process. An algorithm that uses Gaussian integers for 

the rearrangement step is presented in  [48]. 

Gaussian integers and Gaussian primes have a long history and have been studied 

as a mathematical subject. However, only recently they have been used to extend popular 

Public Key cryptography algorithms. The published papers directly related to the 

proposed topic are [27, 28, 30, 35, 36, 38]. The two most common Public Key 

cryptography algorithms RSA and ElGamal have been extended into the field of 
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Gaussian integers ([30] and [27]). An extension of another classic cryptography 

algorithm, Rabin, is presented in this dissertation. Most of the papers published state that 

the extended cryptosystems have advantages over the corresponding real integer 

algorithms. However, none of them prove or carefully analyze these statements. This 

dissertation would close many of the gaps in the subject. 

 

 

1.3 Overview of Gaussian Integers, Notation and Definitions 

Gaussian integer is a complex number a+bi where both a and b are integers: 

 

[ ] { : , }Z i a bi a b= + ∈Z  (1.1)

 

Gaussian integers, with ordinary addition and multiplication of complex numbers, form 

an integral domain, usually written as Z[i].  

In this dissertation, Gaussian integers are denoted with capital letters and real 

integers with lower case letters. Also, vector notation for Gaussian integers is used (i.e., 

G=(a,b)  is equivalent to G=a+bi ). 

 The multiplication of Gaussian integers is a case of complex number 

multiplication. If G=(a,b) and H=(c,d), then 

 

( )( ) ( ) ( ,GH a bi c di ac bd i ad bc ac bd ad bc= + + = − + + = − + )  (1.2)

 

Consequently, 
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2 2 2 2( )( ) (2 ) ( , 2G a bi a bi a b i ab a b ab= + + = − + = − 2 )  (1.3)

 

   

It takes three integer multiplications to multiply two Gaussian integers: 

Algorithm 1.3.1 Multiplication of two Gaussian integers

Given: ( , ,  Gaussian integers )a b ( , )c d

Find: Gaussian integer ( , ) ( , )( , )x y a b c d=  

 

1 ( )(v a b c d );= + +  (1.4)

 

2 ;v ac=  (1.5)

 

3v bd=  (1.6)

 

2 3x v v= −  (1.7)

 

1 2y v v v3= − −  (1.8)

 

Return (x,y) 

 

It takes only two integer multiplications to square a Gaussian integer: 
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Algorithm 1.3.2 Squaring of two Gaussian integers 

Given: ( ,  Gaussian integer )a b

Find: Gaussian integer 2( , ) ( , )x y a b=  

Return ( ) ( ) ( )( )( )2, , ,x y a b a b a b ab ab= = + − +  

 

The addition of Gaussian integers is a case of complex number addition. If 

G=(a,b) and H=(c,d), then 

( ) ( ) ( ) ( ,G H a bi c di a c i b d a c b d+ = + + + = + + + = + + )  (1.9)

 

The norm of a Gaussian integer is the natural number defined as  

2 2| | | | | ( , ) |G a bi a b a b= + = = +  (1.10)

 

It is known that GH G H=  (by the properties of complex numbers). 

All real integers are also Gaussian integers. The multiplication of a Gaussian 

integer by a real number is a case of the Gaussian integer multiplication: 

If G=(a,b) is a Gaussian integer and h is a real integer, then: 

 

( ) ( ) ( ,Gh a bi h ah i bh ah bh= + = + = )

)

 (1.11)

 

or equivalently: 

 

( )( 0) ( , )( ,0) ( ,Gh a bi h i a b h ah bh= + + ⋅ = =  (1.12)
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All real primes can be divided into two subgroups: primes p: p mod 4 = 3 and 

primes p: p mod 4 = 1. The primes p: p mod 4 = 3 will be referred to as Blum primes and 

primes p: p mod 4 = 1 as non-Blum primes. 

The prime elements of Z[i] are also known as Gaussian primes. If P is a Gaussian 

prime it cannot be represented as a product of non-unit Gaussian integers. The unit 

Gaussian integers are 1,-1, i and –i. Real prime numbers p: p mod 4 =3 are also Gaussian 

primes. Real prime numbers p: p mod 4 = 1 are not Gaussian primes since they can be 

represented as a sum of squares (according to the Fermat's theorem on sums of two 

squares) and, consequently, as a product of two Gaussian integers. For instance, 

 2 25 2 1 (2 )(2 )i i= + = + −

 Gaussian primes can be divided into two subgroups. One subgroup consists of 

primes P=(p,0), where p is a real prime and p mod 4=3 or  a real Blum prime. The second 

subgroup consists of primes P=(a,b) where |P| is a real prime and |P| mod 4=1. The 

Gaussian primes P=(p,0) will be referred as Blum Gaussian primes and the Gaussian 

primes P=(a,b) where |P| is a real prime will be referred as non-Blum Gaussian primes. 

 The division of Gaussian integers in this dissertation will be denoted as “DIV”. It 

is analogous to integer division (commonly referred to as “div”). “DIV” operation may be 

defined in several ways. The most common two ways to define it is presented below. If 

G=(a,b) and H=(c,d) are Gaussian integers , then  can be defined as:  DIV G H

1)  

 DIV 
| | | |

ac bd bc adG H i
H H

⎢ ⎥ ⎢+ −
= +

⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (1.13)
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2)  

 DIV round round
| | | |

ac bd bc adG H
H H

⎛ ⎞ ⎛+ −
= +⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

, (1.14)

 

where “round” operation is defined as 

 

0.5 , 0
round( )

0.5 , 0

x x
x

x x

⎧ + ≥⎢ ⎥⎪⎣ ⎦= ⎨
− <⎡ ⎤⎪⎢ ⎥⎩  (1.15)

 

Modular congruence is defined over Gaussian integers in the similar way it is defined for 

real integers. If G=(a,b) and H=(c,d) are Gaussian integers then  

 

( ) MOD  DIV G H G H G= − H  (1.16)

 

To differentiate Gaussian modulo operation from real integer modulo operation the 

notation “MOD” will be used to represent Gaussian modulo operation and “mod” will be 

used for real integer modulo operation.  

Modular congruencies for Gaussian integers have similar properties as modular 

congruencies for real integers. However, there is an important difference: the residues 

modulo Gaussian primes are not unique. In fact, if MOD A B C≡  then , 

 and . Moreover, different ways to define division lead 

to different outcomes of Gaussian modulo operation. Regardless of the way the division 

is defined all the properties of modulo operation hold. When used for cryptography, the 

MOD A Bi C≡

 MOD A Bi≡ − C MOD A B C≡ −
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non-unique outcomes of modulo operation present a problem. However, with consistent 

definitions of division this problem is overcome. 

The G MOD H operation can be greatly simplified when H=(c,0) (or real integer). 

This operation will be defined as follows: 

      

 MOD ( , )MOD ( ,0) mod ( , ) mod ( mod , mod )G H a b c G c a b c a c b= = = = c

c c

e=

, (1.17)

 

where G=(a,b) and H=(c,0) are Gaussian integers;  and  are regular real 

integer “mod” operations. This definition is consistent with the definition of modulo 

operation for Gaussian integers. Note the same “mod” notation is used to represent real 

integer modulo real integer operation and Gaussian integer modulo real integer operation. 

This does not cause inconsistencies because the real integer modulo operation can be 

looked at as a special case of Gaussian integer modulo real integer operation. If G=(a,0) 

and H=(c,0) are Gaussian integers and e=a mod c is a real integer, then  

moda modb

 

 MOD ( ,0) mod ( ,0) modG H a c e a c= = ⇔  (1.18)

 

Below the formal definitions for modular operation on Gaussian integers are presented. 

Definition 1.3.1  MOD Operation on Gaussian integers

If  G and H are Gaussian integer, then  

( ) MOD  DIV G H G H G= − H  (1.19)

Definition 1.3.2  mod Operation on Gaussian integers
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If  G=(a,b) is a Gaussian integer c is a real integer, then  

 

mod ( , ) mod ( mod , mod )G c a b c a c b= = c  (1.20)

 

Note that Blum Gaussian primes are real primes so Definition 1.3.2 also applies. 

 The order for Gaussian integers is defined in the some way it is defined for real 

integers. Below is the formal definition of the order: 

Definition 1.3.3  Order of a Gaussian integers 

If  H is a Gaussian integer, P is a Gaussian prime,  k is a real integer, and k > 1, then k  is 

referred to as the order of H (or ord(H) = k  MOD P)  if Hk+1=H (MOD P) and there is 

no such . :1  and  MOD  mm m k H H P< < =

 

If the Gaussian primes are restricted to Blum Gaussian primes, it is possible to define the 

order in terms of “mod” operation: 

Definition 1.3.4  Order of a Blum Gaussian integers 

If  H is a Gaussian integer, p is a Blum Gaussian prime, k is a real integer , then k is 

referred to as the order of H (or ord(H) = k mod p) if Hk+1=H (mod p) and there is no 

such . :1  and  mod  mm m k H H p< < =

 

 Gaussian integer Discrete Logarithm Problem (DLP) is defined in the similar way 

the real integer DLP is defined. In the subsequent discussion, to differentiate between 
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these two problems, the Gaussian integer DLP will be denoted with “LOG” and the real 

integer DLP with “log”. 

Definition 1.3.5  Gaussian integer discrete logarithm 

If  G  and H are a Gaussian integers, P is a Gaussian Prime, k is a real integer and 

, or  (MOD )kG H P= LOG  (MOD )G H k P= . 

 

For Blum Gaussian primes DLP is defined as follows: 

Definition 1.3.6  Gaussian integer discrete logarithm (Blum Gaussian primes) 

If  G  and H are a Gaussian integers, p is a Blum Gaussian prime, k is a real integer and 

, then  (mod )kG H p= LOG  (mod )G H k p= . 

 

Note that a different notation for Gaussian DLP modulo Blum Gaussian primes is not 

required because it is differentiated by “MOD” vs. “mod” notation.  

 The notion of a generator for Gaussian integers is defined in the same way as for 

real integers. The formal definition is below: 

Definition 1.3.7  Gaussian integer generator (Blum Gaussian primes) 

A Gaussian integer G is a generator for a Blum Gaussian prime p iff 

. 2ord( ) 1 (mod )G p p= −

 

Note that here a generator for non-Blum Gaussian primes is not defined. The reason for 

this is that such generators are not relevant to the subsequent discussion.  
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 It is worth noting that Gaussian integers form a square lattice ([25]). Moreover, 

Gaussian integers are examples of a more general type of numbers: quadratic integers 

([25]).  It is possible to extend the results presented in this dissertation to quadratic 

integers as described in [25]. Specifically, it is possible to use imaginary quadratic 

integers: 

 

[ ] { : ,  and  QNR}r a b r a b r= + ∈Z Z  (1.21)

 

Such generalization would allow for use of all real primes p (not just Blum 

primes) and still have the large order ( 2 1p − ).  In this dissertation, however, only 

Gaussian integers are considered (i.e., [ 1] { 1 : ,  a b a b− = + − ∈Z Z }). In practice, this is 

not a significant restriction since it is very easy to find primes . : mod 4 3p p =

 

 

1.4 Dissertation Structure 

This dissertation contains five main chapters and conclusion. In this chapter, the notation 

and definitions were introduced along with the introduction and the survey of references. 

Chapter 2 is concerned with the Discrete Logarithm Problem (DLP) with Gaussian 

integers and the exponentiation of Gaussian integers.  The main themes of Chapter 2 are 

the properties of the Gaussian integer exponentiation, comparisons of the Gaussian 

integer DLP to the real integer DLP and computational experiments confirming the 

theoretical findings. It is shown that the cryptosystems based on the Gaussian integer 

DLP have advantages over equivalent in security real integer cryptosystems. Moreover, a 
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novel algorithm for the Gaussian integer exponentiation (Algorithm 2.8.1, Lucas 

sequence Exponentiation of Gaussian integers (LSEG)) is introduced and its advantages 

proven theoretically and experimentally.  

 In Chapter 3 and Chapter 4, factoring based cryptosystems with Gaussian integers 

are discussed. In Chapter 3, an extension of Rabin cryptosystem into domain of Gaussian 

integers is introduced and discussed. The extension offers an advantage of using less 

reserved bits required for Rabin cryptosystem. In Chapter 4, various extensions or RSA 

into the field of Gaussian integers are analyzed. Some of the extensions are shown to be 

non-viable and for viable extensions it is hard to quantify any benefits over real integer 

RSA.  

 In Chapter 5, a new algorithm, designed to be used with most existing 

watermarking algorithms, is introduced. The new algorithm (Algorithm 5.2.1, Pixel 

rearrangement based on Gaussian integers) is based on the Gaussian integer 

exponentiation. The performance and benefits of this algorithm are discussed and 

compared with the existing algorithms.  

 After each chapter there is a short summary section. The last chapter (Chapter 6) 

is the overall conclusion.  

 



CHAPTER 2 

DISCRETE LOGARITHM CRYPTOGRAPHY WITH GAUSSIAN 

INTEGERS 

 

2.1 Gaussian Primes P: |P| is a non-Blum Prime 

Gaussian primes can be divided into two subgroups. One subgroup consists of primes 

P=(p,0) where p is a real prime and p MOD 4=3 or real Blum primes. The second 

subgroup consists of primes P=(a,b) where |P| is a real prime and |P| MOD 4=1. In this 

work, the first subset of Gaussian primes namely Blum primes is considered. In [27], this 

subset was also used to extend ElGamal algorithm.  

There are good reasons for restricting Gaussian domain. Some of the reasons are 

efficiency and simplicity. The question arises: is there anything missed by considering 

only Blum primes? The answer is that nothing is gained by using non-Blum Gaussian 

primes to extend well-known cryptosystems. The reason for this is that, for non-Blum 

Gaussian primes P, there is one to one mapping between Gaussian integers modulo P and 

real integers modulo |P|. This means that it is easy to switch between the two 

representations. Below is a simple algorithm to convert Gaussian integers modulo P to 

real integers modulo p = |P|. 

Algorithm 2.1.1  Convert Gaussian integer to real integer modulo non-Blum Gaussian 
prime 

Given: G=(a,b) is a Gaussian integer,  

 P a Gaussian prime such that |P| = p is a real prime and p mod 4 =1 

Find: real integer g 

24 
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Step 1. Compute  

 

1 mods p= −  (2.1)

 

such that  

 MOD s P i=  (2.2)

 

Step 2.  

 

mod g a bs p= +  (2.3)

 

 is the corresponding real number. 

Algorithm 2.1.2  Convert Gaussian integer to real integer modulo non-Blum Gaussian 
prime 

Given: g a real integer, 

p a real prime, p mod 4=1 

P a Gaussian prime such that |P| = p  

Find: Gaussian integer G 

Step 1. Compute G=(g,0) MOD P 

 

A lemma introduced below to prove the validity of Algorithm 2.1.1 and Algorithm 2.2.2. 
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Lemma 2.1.1  

If   and  G a bi= + H c di= +  are two Gaussian integers, P is a Gaussian prime, |P|=p is 

a prime such that , mod 4 1p = 1 mods p= − (i.e., MOD s i P= ), ;  ,  

 and k are real integers, then the following facts are true: 

 MOD g a bs p= +

 MOD h c ds p= +

1) 

g MOD P = G and h MOD P = H (2.4) 

2) 

g=h MOD p <=> G=H MOD P (2.5)

3)  

gh MOD P = GH MOD P (2.6)

4)  

g+h MOD P = (G+H) MOD P (2.7)

5)  

gk=h MOD p <=> Gk=H MOD P (2.8)

 

Proof: 

1)  

g MOD P = (a+bs) MOD P= a+bi MOD P = G MOD P (2.9)

 

h MOD P = (c+ds) MOD P= c+di MOD P = H MOD P (2.10)

 

               

2) Given g=h MOD p. 
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a+bs= c+ds   (MOD p)  (2.11)

 

Appling (MOD P) operation to both sides of the equation: 

 

a+bi=c+di  (MOD P)   => G=H (MOD P)  (2.12)

 

To prove the reverse assume that it is given that G=H MOD P. Suppose . modg h p≠

( mod )a bs c ds p+ ≠ +   (2.13)

 

After applying (MOD P) operation to both sides of the equation: 

 (MOD )a bi c di P+ ≠ +  => (MOD )G H P≠ ,  (2.14)

 

which is a contradiction because G=H MOD P. Consequently,  

 

g=h MOD p. (2.15)

 

3)  

2

 MOD ( )( ) MOD 
( ) MOD 

( ) ( ) MOD  MOD 

gh P a bs c ds P
ac bds s bc ad P
ac bd i bc ad P GH P

= + + =

= + + + =
= − + + =

 (2.16)

 

4) 
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 MOD ( ) MOD ( ) MOD 
( ) MOD  MOD 

g h P a bs c ds P a c s b d P
a c i b d P G H P
+ = + + + = + + +

= + + + = +
=

p

 (2.17)

 

   5) Given gk=h mod p, or: 

(a+bs)k = h   (MOD p) (2.18)

 

     Applying (MOD P) operation to both sides of the equation: 

 

(a+bs)k  MOD P = h   MOD P (2.19)

 

((a+bs) MOD P)k  MOD P = h   MOD P (2.20)

 

((a+bi) MOD P)k  MOD P = H   MOD P (2.21)

 

Gk=H MOD P  (2.22)

 

To prove the reverse, assume that it is given that Gk=H MOD P. Suppose , 

then: 

modkg h≠

 

( ) modka bs h p+ ≠  (2.23)

 

Applying (MOD P) operation to both sides of the equation: 
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(  MOD )  MOD  MOD ka bs P P h P+ ≠  (2.24)

 

( )  MOD  MOD ka bi P h P+ ≠  (2.25)

 

MOD kG H P≠ , (2.26)

 

which is a contradiction, thus?  

 

modkg h= p  (2.27)

 

Q.E.D. 

 

Lemma 2.1.1 implies that DLP problem for Gaussian integers modulo non-Blum 

Gaussian primes can be solved using real integers. An example below illustrates this 

point: 

Example 2.1.1  Reduction of the Gaussian integer DLP modulo non-Blum Gaussian 
prime to the real integer DLP 

Given:  P = 3+2i, |P| = p = |3+2i| = 13. 

G = 1+i, 

G k= 1-i MOD (3+2i) 

Find: Need to find k. 

Solution: 

Using Lemma 2.1.1  Gk=H MOD P <=> gk=h MOD p.  
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Table 2.1 below show discrete power Gaussian integer groups MOD P and the 

corresponding real integer group MOD |P|. 

Example 2.1.1 illustrates how DLP problem for Gaussian integers is reduced to 

the real integer DLP problem. This implies that using Gaussian integers modulo non-

Blum Gaussian primes for DLP type cryptosystems does not give any advantages over 

the real integers algorithms. It introduces complexity without any apparent advantages.  

  6k = 9 MOD 13 

However, 8 MOD (3+2i) =-i and 5 MOD (3+2i) =i so set s=5.  

The solution is k = 4. Indeed, (1+i)4 MOD (3+2i) = 1-i.  

For p=13, 1 1 12 mod13p− = − = . There are two square roots of –1 MOD 13: 

5 and 8.  

 

In order to find k, the real integer DLP needs to be solved: 

g = 1+s = 1+5 = 6 (mod 13) 

52 MOD 13=12 and 82mod 13=12 

h = 1-s = 1-5 = -4 = 9 (mod 13) 



 

 

g (G1) [g1] (G2 ) [g2] (G3 ) [g3] (G4) [g4] (G5 ) [g5] (G6 ) [g6] (G7) [g7] (G8 ) [g8

1 (1) [1]

2 (2) [2] (-1+i) [4] (-i) [8] (-2i) [3] (1+i) [6] (-1) [12] (-2) [11] (1-i) [9]

3 (-2i) [3] (1-i) [9] (1) [1]

4 (-1+i) [4] (-2i) [3] (-1) [12] (1-i) [9] (2i) [10] (1) [1]

5 (i) [5] (-1) [12] (-i) [8] (1) [1]

6 (1+i) [6] (2i) [10] (-i) [8] (1-i) [9] (2) [2] (-1) [12] (-1-i) [7] (-2i) [3]

7 (-1-i) [7] (2i) [10] (i) [5] (1-i) [9] (-2) [11] (-1) [12] (1+i) [6] (-2i) [3]

8 (-i) [8] (-1) [12] (i) [5] (1) [1]

9 (1-i) [9] (-2i) [3] (1) [1]

10 (2i) [10] (1-i) [9] (-1) [12] (-2i) [3] (-1+i) [4] (1) [1]

11 (-2) [11] (-1+i) [4] (i) [5] (-2i) [3] (-1-i) [7] (-1) [12] (2) [2] (1-i) [9]

12 (-1) [12] (1) [1]

Table 2.1 Discrete Power Table MOD P=3+2i, |P|=13, 1mod13 5− = 1

1 Gaussian integers are shown in (). The corresponding real integers are shown in []. 
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] (G9 ) [g9] (G10) [g10] (G11) [g11] (G12 ) [g12]

(i) [5] (2i) [10] (-1-i) [7] (1) [1]

(i) [5] (-1+i) [4] (-2) [11] (1) [1]

(-i) [8] (-1+i) [4] (2) [2] (1) [1]

(-i) [8] (2i) [10] (1+i) [6] (1) [1]

 



 

 Table 2.1 illustrates the one to one correspondence between Gaussian integers 

modulo non-Blum Gaussian primes and real integers. It also illustrates that 

exponentiation operation is also equivalent. 

 As it was shown, the Gaussian integers modulo non-Blum Gaussian primes are 

equivalent to real primes as far as DLP problem is concerned. For this reason such primes 

are excluded from the further DLP analysis which focuses on Blum Gaussian primes. 

 

 

2.2 Common Cryptography Algorithms Based on Discrete Logarithm 

Gaussian integers can replace real integers in cryptosystems that are based on the 

difficulty of computing the Discrete Logarithm. Two most common of these 

cryptosystems are the Diffie-Hellman Key Exchange protocol and the ElGamal 

algorithm. 

In 1976, Diffie and Hellman introduced a new key exchange algorithm. This 

algorithm is still widely used.   

Algorithm 2.2.1  The original Diffie-Hellman Key Exchange protocol  

1. Alice and Bob agree to use a prime number p and a generator g. 

2. Alice chooses a secret integer a: 1 < a < p-1, computes  

 

ga mod p (2.28)

 

and sends the result to Bob. 

3. Bob chooses a secret integer b: 1 < b < p-1, computes  
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gb mod p (2.29)

 

and sends the result to Alice. 

4. Alice computes the shared key as follows  

 

k = ( gb mod p)a mod p  (2.30)

 

5. Bob computes the shared key as follows  

 

k = ( ga mod p)b mod p  (2.31)

 

In 1984, Taher ElGamal introduced ElGamal algorithm.  

Algorithm 2.2.2  ElGamal algorithm over the field of real integers  

 

Key generation 

• Alice and Bob agree on a prime p and a generator g. 

• Alice generates a secret integer a: 1 < a < p-1 and computes her private key  

 

ka = ga mod p  (2.32)

 

• Bob generates a secret integer b: 1 < b < p-1 and computes his private key  

 

kb = gb mod p  (2.33)
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Encryption (Bob’s actions) 

• Bob selects a random integer 1 < s < p-1. 

• Given message m: 0 ≤ m ≤ n − 1 Bob computes the ciphertext  

 

( ) modS
ac m k p=   (2.34)

 

• Bob computes hint  

 

modSh g p=  (2.35)

 

• Bob sends both c and h to Alice 

Decryption (Alice’s actions) 

• Alice computes  

 

modam ch p−=  (2.36)

 

 

Extending the Diffie-Hellman Key Exchange protocol is straightforward. The 

extended algorithm is below: 

Algorithm 2.2.3  Diffie-Hellman Key Exchange protocol over the field of Gaussian 
integers 

1. Alice and Bob agree to use a prime number p and a Gaussian integer generator G. 

2. Alice chooses a secret integer a: 1 < a < p2-1, computes  

 

Ga mod p (2.37)
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and sends the result to Bob. 

3. Bob chooses a secret integer b: 1 < b < p2-1, computes  

 

Gb mod p (2.38)

 

and sends the result to Alice. 

4. Alice computes the shared key as follows  

 

K=( Gb mod p)a mod p. (2.39)

 

K is a Gaussian integer. 

5. Bob computes the shared key as follows  

 

K=( Ga mod p)b mod p (2.40)

 

It is also quite easy to extend ElGamal algorithm into the field of Gaussian 

integers. Such an extension is described in [27]: 

Algorithm 2.2.4  ElGamal algorithm over the field of Gaussian integers  

Key generation 

• Alice and Bob agree on a prime p and a Gaussian integer generator G. 

• Alice generates a secret integer a: 1 < a < p2-1 and computes her private key  

 

moda
aK G p= , (2.41)
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Ka is a Gaussian integer. 

• Bob generates a secret integer b: 1<b<p2-1 and computes his private key  

 

modb
bK G p=  (2.42)

 

Kb is a Gaussian integer. 

Encryption (Bob’s actions) 

• Bob selects a random integer 1 < s < p2-1. 

• Given message M , Bob computes the ciphertext  

 

( ) modS
aC M K p=  (2.43)

 

M, Ka and C are Gaussian integers. 

• Bob computes hint  

 

modSH G p=  (2.44)

 

H is a Gaussian integer. 

• Bob sends both C and H to Alice 

Decryption (Alice’s actions) 

• Alice computes  

 
2( ) modp aM CH p−=  (2.45)
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2.3 Properties of Gaussian Integer Exponentiation 

For any two complex numbers A and B it is true that |AB|=|A||B|. Gaussian integer is a 

special kind of complex number so it is true for Gaussian integers also. When a Gaussian 

integer C is multiplied by itself modulo p, in turn, the norm of gets multiplied 

by itself also. This means that 

modC p

mod  ( 1, 2,...)iC p i =  will cycle with a period of 

( )ord modC p

2 4 2 4 2 4 2 4

 as illustrated in examples below. 

Table 2.2  Repeating Norm Example for Prime p=7  

Power: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Norm: 2 4 1 1 1 1 1

(5,5) 
[1]

(0,1) 
[1]

(2,5) 
[1]

(6,0) 
[1]

(2,2) 
[1]

(1,6) 
[2]

(0,5) 
[4]

(3,0) 
[2]

(3,4) 
[4]

(1,1) 
[2]

(2,0) 
[4]

(0,3) 
[2]

(3,3) 
[4]

(6,1) 
[2]

(0,2) 
[4]

(4,0) 
[2]

(1,1) 
[2]

(0,2) 
[4]

(5,2) 
[1]

(0,6) 
[1]

(2,2) 
[1]

(6,0) 
[1]

(2,5) 
[1]

(3,0) 
[2]

(3,3) 
[4]

(1,6) 
[2]

(2,0) 
[4]

(0,4) 
[2]

(3,4) 
[4]

(6,6) 
[2]

(0,5) 
[4]

(4,0) 
[2]

Norm: 3 2 6 4 5 3 2 6 4 5 3 2 6 41 1
(5,5) 
[1]

(0,1) 
[1]

(3,1) 
[3]

(1,6) 
[2]

(4,5) 
[6]

(0,5) 
[4]

(2,1) 
[5]

(3,6) 
[3]

(3,0) 
[2]

(2,3) 
[6]

(3,4) 
[4]

(5,1) 
[5]

(6,3) 
[3]

(1,1) 
[2]

(2,4) 
[6]

(2,0) 
[4]

(4,6) 
[3]

(1,6) 
[2]

(3,2) 
[6]

(0,5) 
[4]

(5,6) 
[5]

(5,5) 
[1]

(0,1) 
[1]

(4,1) 
[3]

(3,0) 
[2]

(5,4) 
[6]

(3,4) 
[4]

(2,6) 
[5]

(1,4) 
[3]

(1,1) 
[2]

(5,3) 
[6]

(2,0) 
[4]
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Table 2.3  Repeating Norm Examples for Prime p=11 

 

Power: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Norm: 2 4 8 5 10 9 7 3 6 1 2 4 8 5 10

(3,2) 
[2]

(5,1) 
[4]

(2,2) 
[8]

(2,10) 
[5]

(8,1) 
[10]

(0,8) 
[9]

(6,2) 
[7]

(3,7) 
[3]

(6,5) 
[6]

(8,5) 
[1]

(3,9) 
[2]

(2,0) 
[4]

(6,4) 
[8]

(10,2) 
[5]

(4,4) 
[10]

(10,1) 
[2]

(0,9) 
[4]

(2,2) 
[8]

(7,0) 
[5]

(4,7) 
[10]

(0,8) 
[9]

(3,3) 
[7]

(5,0) 
[3]

(6,5) 
[6]

(0,1) 
[1]

(10,1
0) [2]

(2,0) 
[4]

(9,2) 
[8]

(0,7) 
[5]

(4,4) 
[10]

Norm: 3 9 5 4 3 9 5 4 3 9 5 41 1 1
(5,8) 
[1]

(5,3) 
[1]

(1,0) 
[1]

(3,4) 
[3]

(4,2) 
[9]

(4,0) 
[5]

(1,5) 
[4]

(5,0) 
[3]

(4,9) 
[9]

(9,10) 
[5]

(9,0) 
[4]

(3,7) 
[3]

(3,0) 
[9]

(9,1) 
[5]

(1,6) 
[4]

(3,6) 
[1]

(6,3) 
[1]

(0,1) 
[1]

(7,8) 
[3]

(7,2) 
[9]

(0,4) 
[5]

(1,6) 
[4]

(6,0) 
[3]

(9,4) 
[9]

(9,1) 
[5]

(0,2) 
[4]

(7,3) 
[3]

(3,0) 
[9]

(10,2) 
[5]

(10,6) 
[4]

 

In addition, Cord(|C|) is a Gaussian integer with norm equal to 1 mod p. In fact, the 

Gaussian integers U: |U| = 1 mod p form a cyclic subgroup with an order (p+1). This 

subgroup will be referred as a Norm 1 subgroup. Moreover, order of any Gaussian integer 

C is a product of ord(|C|) and ord(|U|) where U = Cord(|C|)  mod p. The algorithms for 

finding Gaussian Generators to use for Discrete Logarithm based cryptography are 

derived from this.  The series of theorems below will prove these facts formally. 

Lemma 2.3.1  

If C is a complex number, p is a prime, then  

 

|Cn| = |C|n mod p (2.46)

Proof: 

For any complex number it is true that |Cn| = |C|n , therefore |Cn| = |C|n mod p  

Q.E.D 
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Lemma 2.3.2 

If C is a Gaussian integer, p is a Blum prime  

1) ord(C) mod p is divisible by ord(|C|) mod p 

2) if Cord(|C|)=U mod p,  then |U|=1 mod p 

3) if U=Cord(|C|) mod p,  then ord(C) mod p is divisible by ord(U) mod p 

Proof: 

1) Suppose ord(C) mod p is not divisible by ord(|C|) mod p. This would mean 

that |Cord(C)| mod p is not equal to 1 but Cord(C)= (1,0). This is a contradiction. 

2) |U| must equal to 1 mod p because |Cn| = |C|n mod p and, in this case, 

. ord(| |)n C=

3) If ord(C) mod p is not divisible by ord(U) then Cord(C) would not equal to (1,0) 

so ord(C) must be divisible by ord(U). 

Q.E.D 

 

Lemma 2.3.3 

If U is a Gaussian integer, p is a Blum prime and |U| = 1 mod p  

1) the maximum order of U is (p+1) 

2) ord(U) mod p must divide (p+1) 

Proof:  

1) Any Gaussian integer A taken to the power (p+1) mod p is in the form (c,0). 

In this case, Up+1 mod p could be one of either (1,0) or (-1,0) because 

1modU = p . Since p+1 is divisible by 4 for all Blum primes, U(p+1)/4 is a 
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Gaussian integer of Norm 1 and is a root of degree of Up+1. For (-1,0) all roots of 

degree four have a norm equal to –1 mod p. This means that U(p+1) must equal to 

(1,0) mod p. 

2) If p+1 is not divisible by ord(U) then U(p+1) would not equal to (1,0) so p+1 

must be divisible by ord(U). 

Q.E.D. 

Lemma 2.3.4 

If C is a Gaussian integer, p is a Blum prime then 

 
ord(| |)ord( ) ord(| |)ord( ) modCC C C= p , (2.47)

 

Proof: 

 ord(C) must be divisible by ord(|C|) and ord(U) so  

 

ord(C) = nord(|C|)ord(U), (2.48)

 

where n is an integer. In addition,  

 

Cord(|C|)ord(U) = Uord(U) = (1,0). (2.49)

 

Consequently, n must equal to 1. 

Q.E.D. 

Lemma 2.3.5  The order of Gaussian integers U’ where |U’| = -1 

 



41 

If U is a Gaussian integer, p is a Blum prime and |U’|=-1 mod p  

3) the maximum order of U’ is 2(p+1) 

4) ord(U’) mod p must divide 2(p+1) 

Proof: 

The proof follows directly from Lemma 2.3.3. Note that Gaussian integers U in 

Lemma 2.3.3 are squares of U’ mod p. Therefore, 1) and 2) must be true. 

Q.E.D. 

Corollary 2.3.1 

Let C be a Gaussian integer, p a Blum prime. (p2-1) is divisible by ord(C) mod p. 

Corollary 2.3.2 

 Let G be a Gaussian integer, p a Blum prime.  G is a generator if and only if  

ord(|G|) = p-1 (2.50)

 

and  

ord( ) mod 1U p p= + , (2.51)

 

 

where  

1 modpU G p−= , (2.52) 
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Corollary 2.3.1 validates Algorithm 2.10.1. In Algorithm 2.10.1, all the possible powers 

of G mod p that can possibly equal to (1,0) are tested. If G is a generator, only 

equals to (1,0).  
2( 1) modpG − p

C

 

 

2.4 Discrete Logarithm Complexity for Gaussian Integers 

When using Gaussian integers for Discrete Logarithm based cryptography, an important 

question arises, namely, is it secure? In [38], the Pollard Rho algorithm attack was used 

to asses the security of ElGamal algorithm with Gaussian integers. The results were 

encouraging: it took twice as much time to compute discrete logarithm for Gaussian 

integers. However, these results do not prove that it is secure. In this section, the problem 

of Discrete Logarithm Problem (DLP) for Gaussian integers is analyzed.  

It is clear that DLP for Gaussian integers is at least as hard as DLP for real 

integers, because real integers are a special case of Gaussian integers. Another way of 

stating this is that whenever the DLP for Gaussian integer G modulo p is solved, the real 

integer DLP for the norm of G is also solved. This means that DLP for Gaussian integers 

is at least as hard as DLP for real integers, thus, the Gaussian integer DLP cryptography 

is at least as secure as the analogous real integer DLP cryptography.  

Suppose   

 

modkG p =  (2.53)

 

is given, where G and C are Gaussian integers. k can be represented as  
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k su r= + , (2.54)

 

where u = ord(|G|) mod p, and r = k mod u. If |G| is a real generator, then u equals to p-1. 

In order to find , it is sufficient to find s and r. Since ord(|G|) mod p 

divides p-1 it can be assumed that  

LOG ( ) modG C p

 

1u p= −  (2.55)

 

for any G. 

The problem of finding r is the well known real integer DLP problem:  

 

| |log (| |) modGr C p= , (2.56)

 

Once r is known, s has to be found. Suppose a Gaussian integer D is  

 

1( ) modrD C G p−= , (2.57)

 

and a Gaussian integer U is 

 

ord(| |) modGU G p= , (2.58)

 

According to Lemma 2.3.2, |U|  = |D| = 1 mod p.  In order to find s, it is necessary to find  
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LOG ( ) modUs D p=  (2.59)

 

Both U and D belong to the Norm 1 subgroup, because according to Lemma 2.3.2: 

  

|U|  = |D| = 1 mod p.  (2.60)

 

 

Example 2.4.1  Computing the Gaussian integer DLP in O( )p  

Using  

 

 

 

 

 

Table 2.3, suppose the task is to compute . Here ; (3,4)LOG (9,1) mod11 (3, 4)G = (9,1)C = ; 

; ; 11p = | | mod 3mod11G p = | | mod 5mod11C p = ; ;  1 mod (1,6) mod11G p− =

( )ord mod 5u G p= = . 

First find r:  

 

| | 3log (| |) mod log (5) mod11 3Gr C p= = = , (2.61)
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Now find D and U: 

 

1 3( ) mod (9,1) (1,6) mod11 (5,3) mod11rD C G p−= ⋅ = ⋅ = , (2.62)

 

ord(| |) 5mod (3,4) mod11 (5,8) mod11GU G p= = = , (2.63)

 

Note that: 

 

( ) 2 25,3 5 3 34 1(mod11)D = = + = = , (2.64)

 

and 

( ) 2 25,8 5 8 89 1(mod11)U = = + = = . (2.65)

 

Now find s: 

 

(5,8)LOG ( ) mod LOG (5,3) mod11 2Us D p= = = . (2.66)

 

To find :  (3,4)=LOG (9,1) mod11k

 

2 5 3 13k su r= + = ⋅ + =  (2.67)

 

Indeed, . 13(3,4) mod11 (9,1)=
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The problem (2.66) is different from the real integer DLP. The solution to this 

problem is the key to understanding of how much complexity Gaussian integer extension 

adds to DLP. One way to solve it is to use any general DLP algorithm for a cyclic group, 

such as Baby-step giant-step or Pollard’s Rho algorithm. These algorithms work for any 

cyclic group and their running time is O( )N , where N is the order of this cyclic group. 

According to Lemma 2.3.3, the order of Norm 1 subgroup modulo prime p is p+1. Thus, s 

can be computed in O( 1) O( )p p+ =  operations. Consequently, it is possible to 

compute Gaussian integer discrete logarithm with ( )O p , because the running time for 

solving (2.5.4) is O( 1) O( )p p− = . The combined running time for solving the 

Gaussian integer DLP is  

 

O( 1) O( 1) O( )p p p+ + − = . (2.68)

 

In [36] and [38], Pollard’s Rho Algorithm and Baby-step giant-step were used to 

compute DLP for Gaussian integers. Both algorithms have the average running time of 

O( )n  where n is the order of the cyclic group. For Gaussian integers n=p2-1 ([22]). 

Consequently, the expected running time for DLP attack, as described in [36] and [38], is  

 

2 2O( 1) O( ) O( )p p− = = p . (2.69)
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The complexity of solution of the DLP can be further reduced if the generalized 

BSGS algorithm [64] is applied. The paper demonstrates several enhancements of the 

traditional Shank’s algorithm. 

Currently, the fastest algorithm for real integer Discrete Logarithm runs in sub-

exponential time, which is substantially faster than O( )p .  The apparent question arises: 

is there such an algorithm for the Norm 1 subgroup? The answer to this question is the key 

to understanding of how much complexity Gaussian integer extension adds to DLP.  In the 

next section, this question is addressed.  

 

 

2.5 Reducing Gaussian Integer DLP to Lucas Sequences DLP 

The Gaussian integer exponentiation operation can be represented as a recurrence. This 

representation is useful to derive and prove several formulas. It is useful to illustrate and 

prove properties that are not easily seen with other representations. Let C=(a,b) be a 

Gaussian integer and Ck=(a,b)k=(ak,bk), then 

 

C0 = (1,0) = (a0,b0), (2.70)

 

C1 = (a,b) = (a1,b1), (2.71)

 

C2 = (a2-b2,2ab) = (a2,b2), … Ck = (a,b)k = (ak,bk). (2.72)
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The two dimensions of C are the recurrences ai and bi with an interesting property, 

described in the following theorem: 

Theorem 2.5.1  

Gaussian integer Ck mod p can be represented as a recurrence: 

 

( ) 1 2 1, (2 ,2k
k k k k k kC a b aa C a ab C b− − −= = − − 2 )− . (2.73)

 

where a0=1, a1=a,  b0=0, b1=b.  

Proof: The theorem can be easily proved using the mathematical induction. The 

induction base: 

 

( ) ( )2 2 2
1 0 1, 2 2 , 2C a b ab aa C a ab C b= − = − − 0  (2.74)

 

is a true identity, since a0 = 1, a1 = a, b0 = 0, b1 = b.  

Assume that for r ≤ k, the recurrence is true. The following needs to be proved:  

 

( ) ( )1 2 1, 2 , 2k
k k k k k kC a b aa C a ab C b− − −= = − − 2−  (2.75)

 

Using, 

 

2 2
2 2( , ) (2 ,2 )C a b a C ab= = − , (2.76)
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( ) 2 2,k k
k kC a b C C−= = =  (2.77)

 

( 2 2 2 2 2 2 2 2,k k k ka a b b a b b a− − − −= − + )  (2.78)

 

2 2 2 2k k ka a a b b− −= − =  (2.79)

 

2
2 2(2 ) 2k ka a C b ab− −= − − =  (2.80)

 

2
2 22 2k k ka a b ab C a− − −= − − 2 = . (2.81)

 

( )2 2 2 12 2k k k k ka aa b b C a aa C a− − − −= − − = − 2−  (2.82)

 

( )2
2 2 2 2 2 22 2k k k k kb a b b a a ab b a C− − − −= + = + − =  (2.83)

 

2
2 2 22 2k k ka ab b a b C− − −= + − = . (2.84)

 

2 2 2 12 ( ) 2k k k k ka a b b a b C ab C b− − − −= + − = − 2− . (2.85)

 

Q.E.D. 

 

 



50 

 Using this theorem it is possible to show how to reduce the Gaussian integer DLP 

to the Lucas sequences DLP. The theorem below describes this relationship. 

Theorem 2.5.2  

If C=(a,b) is a Gaussian integer, Ck=(ak,bk), then the sequence a0,a1,…,ak can be 

represented as a standard Lucas sequence ( )2 ,V a C as follows: 

( )2 , 2 ,     0,1,....i iV a C a i= =  (2.86)

 

and the sequence b0,b1,…,bk  relates to the Lucas sequence ( )2 ,U a C as follows: 

 

( ) 12 , ,     0,1,....i iU a C b b i−= = . (2.87)

 

 

Proof: Using mathematical induction: 

1) The theorem is correct for k=0 and k=1: 

 

0
0 01 2a a V a= = ⇒ = = 02

1

b

 (2.88)

 

1
1 1 2 2a a a V a a= = ⇒ = = . (2.89)

 

1
0 00 0 0b U −= ⇒ = = . (2.90)
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1 1
1 1 1b b b V b b1

−= = ⇒ = = . (2.91)

 

2) Assume  and (2 ,| |) 2i iV a C a= 1(2 , )k kU a C b b−= for i k< . 

3) Prove ( )2 , 2k kV a C a=  and ( ) 12 ,kU a C b bk
−= . According to Theorem 2.5.2: 

1 22k k ka a C a− −= − . (2.92)

1 22k k kb b C b− −= − . (2.93)

 

Using the assumption of step 2) of the induction: 

 

( ) ( )1
1 2 1 22 2 , 2k k k k ka aa C a aV a C C V a C−
− − − −= − = − 2 ,  (2.94)

 

( ) ( ) ( )1 22 2 2 , 2 , 2 ,k k k ka aV a C C V a C V a C− −= − =  (2.95)

 

( ) ( )1 2 1 22 2 2 , 2 ,k k k k kb ab C b abU a C b C U a C− − − −= − = −  (2.96)

 

( ) ( ) ( )1
1 22 2 , 2 , 2 ,k k k kb b aU a C C U a C U a C−
− −= − = . (2.97)

 

Q.E.D. 
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In other words, whenever the Gaussian integer C=(a,b) is raised to some power, 

the first dimension contains the Lucas sequence Vk  and the second dimension contains 

the Lucas sequence Uk . The table below illustrates this. 

 

Table 2.4   Gaussian Integer Exponentiation and Lucas Sequences Side-by-side 

Power k: 0 1 2 3 4 5 6 7 8 9 10 11 12
(3,7)k 

mod 19 
(1,0) (3,7) (17,4) (4,17) (7,3) (0,1) (12,3) (15,17) (2,4) (16,7) (18,0) (16,12) (2,15)

2ak mod 
19

2 6 15 8 14 0 5 11 4 13 17 13 4

Vk(6,1) 
mod 19 2 6 15 8 14 0 5 11 4 13 17 13 4

bkb-1  

mod 19
0 1 6 16 14 11 14 16 6 1 0 18 13

Uk(6,1) 
mod 19

0 1 6 16 14 11 14 16 6 1 0 18 13
 

 

The relationship described by Theorem 2.5.2 allows to reduce the Gaussian 

integer DLP to a better-known problem of the Lucas sequences DLP. Two cryptosystems 

based on  DLP for Lucas sequences LUCDIF and LUCELG were introduced in [63].  

These are Diffie-Hellman and ElGamal algorithms formulated with Lucas sequences 

where . The main selling point of “LUC” algorithms was a notion 

that they are not based on exponentiation; therefore, presumably, they are not vulnerable 

to sub-exponential time attacks. However, these assumptions were proven to be wrong. 

Papers [52] and [51] show that sub-exponential time algorithms can be applied to Lucas 

sequences.  

( , )kV P Q 1modQ ≡ p
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On the other hand, Lucas sequences still offer a significant security advantage 

over real integers. The sub-exponential algorithm for Lucas sequences would have to run 

in a group of order p2-1, as opposed the group of order of order p-1 with real integers.  

Another important point to note is that Norm 1 subgroup described in previous 

section contains Lucas sequences  and  with  (according 

to Theorem 2.5.2). Consequently, even though the order of Norm 1 subgroup is p+1, the 

sub-exponential DLP algorithm would have to be applied in a group of order p

( , )kV P Q ( , )kU P Q 1modQ ≡ p

p

2-1. This 

means that the Gaussian integer DLP is substantially harder then the real integer DLP 

(with algorithms currently known). Moreover, when solving the Gaussian integer DLP 

one would have to solve two problems: 

1. The Lucas sequences DLP with 1modQ ≡ (or equivalently the Gaussian integer 

DLP in the Norm 1 subgroup). 

2. The real integer DLP. 

The fact that these two problems seem to be very different, bodes well for 

cryptography algorithms based on the Gaussian integer DLP. A solution of one problem 

may not lead to a solution of the other, thus the Gaussian integers offer additional 

protection.  

When comparing the speed of the algorithms that utilize the DLP over Lucas 

sequences with the corresponding algorithms that utilize Gaussian integers, a strong case 

could be made for Gaussian integers even though this topic is not in scope of this 

dissertation. Nevertheless, the indications are that the Gaussian integer exponentiation is 

not slower than Lucas sequence computation under LUC cryptographic algorithms, but is 
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most likely faster. The actual speed varies greatly with implementation details and the 

choice of exponentiation algorithms.  

The Gaussian integer DLP is a combination of two problems: the well known real 

integer DLP and the DLP over an interesting subgroup of Gaussian integer group: Norm 1 

subgroup. The complexity of Norm 1 subgroup DLP holds the key to the understanding of 

the complexity of the Gaussian integer DLP. The reduction of the Gaussian integer DLP 

to the Lucas sequences DLP allows to assess the security of the Gaussian integer DLP. 

The Norm 1 DLP turned out to be equivalent in security to the Lucas sequences DLP used 

in well-known cryptosystems LUCDIF and LUCELG. LUCDIF and LUCELG are 

thought to be more secure than the corresponding algorithms with real integers. Therefore, 

the algorithms based on the Gaussian integer DLP (such as the one in [27]) are more 

secure. Furthermore, the Gaussian integer DLP contains the real integer DLP, providing 

additional security through diversification. Luckily, algorithms with Gaussian integers are 

efficient and easy to implement. Moreover, they are potentially more efficient than the 

corresponding “LUC” algorithms. Thus, the algorithms based on the Gaussian integer 

DLP offer a great alternative to the real integer DLP or “LUC” algorithms.   

 

 

2.6 Multiplication of Gaussian Integers vs. Real Integer Multiplication 

Since the size of the group of the exponentiation cyclic group of Gaussian integers is 

, it is appropriate to compare the Gaussian integer multiplication modulo p to real 

integer multiplication modulo q, where q is double the size of p. Suppose 

2 1p −

2logn p= ⎡ ⎤⎢ ⎥  
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(or in other words n is the number of binary bits of p). Let  q be the closest prime to p2. In 

that case, the size of q in bits would be approximately 2n or    

 

2log 2q n≈⎡ ⎤⎢ ⎥ . (2.98)

  

  For small n, the naïve multiplication method [44] with complexity of  is 

most efficient. For larger n, the Karatsuba-Ofman [43] multiplication algorithm is 

appropriate with the running time of . For even larger n, the Toom-Cook 3-way 

(or Toom-3) [44] multiplication with the running time  is appropriate. As n 

increases further, multiple levels of the k-way Toom-Cook multiplication with the 

running time 

2( )nΘ

1.585(nΘ )

)1.465(nΘ

( )log(2 1)/logk kn −Ο can be applied ([44]). For extremely large n, the algorithms 

based on the Fast Fourier transforms (FFT) are more efficient.  The Schönhage–Strassen 

algorithm [60] is based on the FFT and runs in ( log log log )n n nΟ . The Fürer's algorithm 

published in [31] is also based on the FFT and offer an even better running time, that is 

. The FFT algorithms have a lot of overhead, and, consequently are used 

for very large n, far larger then the numbers used for public key cryptography. Therefore, 

the FFT algorithms will not be considered in the subsequent discussion. 

log*( log 2 )nn nΟ

 In order to do a theoretical comparison of the Gaussian integer multiplication to 

the real integer multiplication, three cases need to be considered: 

1) The numbers are small enough to warrant the naïve multiplication method. Under this 

assumption, it is clear that the Gaussian integer multiplication time grows slower than 
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the real integer multiplication time. Assuming  is the time it takes to multiply two 

real integers of size n modulo p: 

( )t n

 

3 ( )G Gt t n c n dG= + + . (2.99)

 

where  is the time it takes to multiply two Gaussian integers of size n modulo p, 

is the overhead ( integer additions modulo p), and  is a constant overhead term. 

Gt

Gc Gd

On the other hand: 

(2 ) 4 ( )r rt t n t n c n d= = + + r , (2.100)

 

where  is the time it takes to multiply two real integers of the size 2n modulo q, 

and

rt

rc  rd are the overhead terms associated with the naïve algorithm. Here  is 

smaller then , while and terms are negligible

rc

Gc Gd rd .  

3lim
4

G

n
r

t
t→∞
= . (2.101)

 

This constitutes a maximum of 25% theoretical improvement. Note that the 

assumption that n  is incorrect because, under most implementations, at some 

threshold, the naïve method would be replaced by a more efficient algorithm. There is 

more overhead associated with the Gaussian integer multiplication, therefore, for a 

small n,  will be lower than . 

→∞

rt Gt
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2)  The numbers are sufficiently large to warrant the Karatsuba multiplication, but not 

large enough to warrant the Toom-3 multiplication. In this case,  would be 

represented by the same formula as in 1). Assuming  is the time it takes to 

multiply two real integers of size n modulo p: 

Gt

( )t n

 

3 ( )G Gt t n c n dG= + + . (2.102)

 

where  is the time it takes to multiply two Gaussian integers of size n modulo p, cGt 1 

is the overhead ( integer additions modulo p). 

On the other hand, using the recursive step: 

 

(2 ) 3 ( )r rt t n t n c n d= = + + r

r

. (2.103)

 

where  is the time it takes to multiply two real integers of size 2n modulo q, is the 

overhead associated with the Karatsuba algorithm (it is the time related to the number 

of additions). Here is about twice the size of , while and terms are 

negligible

rt rc

rc Gc Gd rd

.

Since is about twice as large as , it is safe to conclude that, under the Karatsuba 

multiplication, and 

rc Gc

Gc c< lim 1G

n
r

t
t→∞
= .  There is more overhead associated with the 

Gaussian integer multiplication, therefore, for small n,  will be lower than . rt Gt
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3) The numbers are sufficiently large to warrant the Toom-3 multiplication. Under this 

assumption, the real integer multiplication time grows slower than the Gaussian 

integer multiplication. Assuming  is the time it takes to multiply two real integers 

of size n modulo p: 

( )t n

 

3 ( )G Gt t n c n dG= + + . (2.104)

 

where  is the time it takes to multiply two Gaussian integers of size n modulo p, 

is the overhead ( integer additions modulo p), and  is a constant overhead term. 

Gt

Gc Gd

On the other hand: 

 

(2 ) 2.76 ( )r rt t n t n c n d= = + + r . (2.105)

 

where  is the time it takes to multiply two real integers of size 2n modulo q,  and rt rc

 rd are the overhead terms associated with the naïve algorithm.  

3lim 1.087
2.76

G

n
r

t
t→∞
≈ ≈ . (2.106)

 

This means that the Gaussian integer multiplication is about 9% slower under this 

setting. Note that the assumption that  is incorrect because, under most 

implementations, at some threshold, the Toom-3 method would be replaced by more 

efficient algorithm. There is more overhead associated with the Gaussian integer 

multiplication, therefore, for small n  will be lower than . 

n →∞

rt Gt
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 The same arguments apply to squares, even though the squaring is generally faster 

than the multiplication. In theory, the squaring is up to twice as fast as multiplication, 

because the multiplication can be done using two squares: 

 

2 2( ) ( )
4

a b a bab + − −
= . (2.107)

 

 In practice, however, the square is much slower then half of a multiplication. The 

GMP manual [34] states that a square is around 1.5 times faster than a multiplication, if 

the library settings are optimized. Incidentally, the Gaussian integer squaring is also 1.5 

times faster relatively to the Gaussian integer multiplication on all platforms (refer to 

Algorithm 1.3.1 and Algorithm 1.3.2).  Therefore, the relationship between the speed of 

the multiplication and the square is the same for Gaussian integers. 
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Figure 2.1  The ratio of the running time of multiplication of two numbers of the equal 
size vs. the running time of square of a number of the same size. The graph represents a 
typical performance of GMP 5.0.1 library on various platforms. 
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 It is possible that the threshold cutoff size would lie between n and 2n (for 

example the real integer multiplication will be done with the Toom-3 algorithm, but the 

Gaussian integer multiplication will be done under the Karatsuba or the naïve algorithm). 

In this case, the exact thresholds would have to be known in order to compare the two 

multiplications (or squares) correctly. Unfortunately, the exact thresholds at which the 

one multiplication algorithm is more efficient then the other are heavily dependant on the 

architecture and the implementation. The bit count of thresholds varies widely among 

various architectures and implementations.  

 Figure 2.2 and Figure 2.3 show the threshold values for different squaring 

algorithms used by GMP 5.0.1.  The values are compiled during the installation of the 

library. The purpose of this figure is to give a sense for the threshold values. The figures 

show the following: 

1) the thresholds for squares tend to be higher than for multiplications  

2) the thresholds tend to be larger for 64 bit CPUs than for 32 bit CPUs. 
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Figure 2.2 The distribution of optimal multiplication thresholds among various platforms 
for GMP 5.0.1. 
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Figure 2.3 The distribution of optimal square thresholds among different platforms and 
counts for GMP 5.0.1. 

  

Suppose  is the time it takes to multiply two Gaussian integers of size n modulo 

p and  is the time it takes to multiply two real integers of size 2n modulo q. Suppose 

that both multiplications are performed with the same multiplication algorithm that has 

the running time of  

Gt

rt

 

( )nαΟ . (2.108)
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 (i.e., 2α =  for naïve, 1.585α =  for Karatsuba and 1.465α =  for Toom-3 

multiplication). As mentioned before, the FFT multiplication algorithms are not 

considered, so the formula (2.108) is sufficient to describe all applicable multiplication 

algorithms for the analysis.  For simplicity, an assumption can be made that both 

multiplications are performed using the same algorithm, even though, in reality, it is 

possible that the threshold cutoff size would lie between n and 2n (for example the real 

integer multiplication will be done with the Toom-3 algorithm, but the Gaussian integer 

multiplication will be done with the Karatsuba or naïve algorithm). In this case, the exact 

thresholds have to be known to compare the multiplications (or squares) correctly. As 

mentioned above, the exact thresholds at which the one multiplication algorithm is more 

efficient then the other are heavily dependant on the architecture and the implementation. 

Moreover, this assumption would make the real integer exponentiation look slightly 

faster. Therefore, this assumption could be allowed without compromising the proof that 

the Gaussian integer exponentiation is faster. The overhead (lower order operations like 

additions or subtractions) is ignored. Under these assumptions: 

 

3 3lim
(2 ) 2

G

n
r

t n
t n

α

α α→∞
= = . (2.109)

 

The ratio for squares is the same, assuming the real integer square is 2
3 rt : 

( )
2 3lim 2 22

3

G

n
r

s n
s n

α

αα→∞
= = . (2.110)
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where  is the time it takes to multiply two Gaussian integers of size n modulo p and  

is the time it takes to multiply two real integers of size 2n modulo q. 

Gs rs

From (2.109) it is clear that Gt tr<  under the naïve multiplication algorithm, 

 under the Karatsuba multiplication and  under the Toom-3 multiplication. 

As stated before, the cutoff thresholds vary widely it would be an impossible task to 

analyze all the possible combinations of platforms and bit counts. It is obvious with some 

combinations of platforms and bit counts real integer multiplication will be faster, and, 

with many, the Gaussian integer multiplication will be faster.  

Gt t≈ r rGt t>

Fortunately, even though it is hard to answer definitively which multiplication is 

faster, it is possible to say that the Gaussian integer multiplication modulo p is faster. The 

differences between two multiplications are insignificant compared with the advantages 

of the “mod” operation for Gaussian integers. Therefore, the Gaussian integer 

exponentiation turns out to be faster. 

The modulo division operation is much slower than the multiplication. For small 

to moderate integer sizes, the divide-and-conquer division algorithm ([16]) is commonly 

used. The speed of this division algorithm depends on the multiplication algorithm used. 

If ( ) cM n Dn= is the multiplication time and  is the division time of an integer of 

size 2n by an integer of size n, then 

( )T n

 

1

1( ) ( ) ( log )
2 1cT n M n n n−< +Ο

−
. (2.111)

 

This translates to  
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2( ) ( log )T n n n n< +Ο  (2.112)

 

for the naïve multiplication, 

 

1.585( ) 2 ( log )T n n n n< +Ο  (2.113)

 

for the Karatsuba multiplication (which agrees with [15]), and to 

 

1.465( ) 2.63 ( log )T n n n n< +Ο  (2.114)

 

for the Toom-3 multiplication. ([16],[40],[34]). In practice, the speed of the division is 

about two to four times slower than the speed of the multiplication for moderately large 

integer sizes (section 16.2.3 of [34],[40]).  
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Figure 2.4  Running time of mod operation versus multiplication using GMP 5.0.1 
library on AMD Opteron Model 2218 @2.6 GHz Dual core, 8GB of RAM, RHEL Linux 
4.2 kernel 2.6.9 (64 bit). 
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Figure 2.5 Running time of mod operation divided by the running time of multiplication 
using GMP 5.0.1 library on AMD Opteron Model 2218 @2.6 GHz Dual core, 8GB of 
RAM, RHEL Linux 4.2 kernel 2.6.9 (64 bit). 
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 In exponentiation algorithms, the costly mod operation is replaced with the 

Montgomery reduction or REDC() operation ([55]), which is more efficient. It is possible 

to implement Montgomery reduction with the Gaussian integer exponentiation also. In 

fact, the Gaussian integer exponentiation still retains its speed advantages with 

Montgomery reduction used in place of mod. The REDC() operation speed varies 

depending on a platform and an implementation from about 1.2 multiplications to two 

multiplications ([14]). With GMP 5.0.1, the average is about 1.5 multiplications.  

 Whether the modulo division or the Montgomery REDC() function is used, the 

speed of the reduction at each multiplication or square step can be expressed as 

 

( ) ( )rR n t nβ= , (2.115)

 

where ( )R n  is the division time of an integer of size 2n by an integer (prime in this case) 

of size n, is the multiplication time of two real integers of size n, and ( )rt n :1 4β β< < is 

some constant. 

 Suppose is the time required for a multiplication with a reduction for Gaussian 

integers and  is the time required for a multiplication with a reduction for real integers.  

GT

rT

 

3 ( ) 2 ( ) 3 ( ) 2 ( ) 3 2lim
(2 ) (2 ) 2 ( ) 2 ( ) 2 (1 )

G r r r

n
r r r r

T t n R n t n t n
T t n R n t n t nα α α

β β
β β→∞

+ + +
= = =

+ + +
. (2.116)

 

For squares, the ratio would be slightly different: 
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2 ( ) 2 ( ) 6 ( ) 6 ( ) 6(1 )lim 2 2 2 ( ) 3*2 ( ) 2 (2 3 )(2 ) (2 )
3

G r r r

n
r r r

r

S t n R n t n t n
S t n t nt n R n

α α α

β β
β β→∞

+ + +
= = =

++ +
. 

(2.117)

 

where  is the time required for a multiplication with a reduction for Gaussian integers 

and  is the time required for a multiplication with a reduction for real integers.  

GS

rS

 

Table 2.5  Summarized Estimates of the Multiplication Running Time Ratio Based on 
the Formula (2.116) 

  

Naïve 

 α=2 

Karatsuba 

α=1.585 

Toom-3 

α=1.465 

Toom-4 

α=1.4037

β=1 0.63 0.83 0.91 0.94 

β=1.2 0.61 0.82 0.89 0.93 

β=1.4 0.60 0.81 0.88 0.91 

β=1.5 0.60 0.80 0.87 0.91 

β=1.7 0.59 0.79 0.86 0.90 

β=2 0.58 0.78 0.85 0.88 

β=2.2 0.58 0.77 0.84 0.87 

β=2.5 0.57 0.76 0.83 0.86 

β=3 0.56 0.75 0.82 0.85 

β=4 0.55 0.73 0.80 0.83 

  

 

 

Table 2.6  Summarized Estimates of the Square Running Time Ratio Based on the 
Formula (2.117) 
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Naïve 

α=2 

Karatsuba 

α=1.585 

Toom-3 

α=1.465 

Toom-4 

α=1.4037

β=1 0.60 0.80 0.87 0.91 

β=1.2 0.59 0.79 0.85 0.89 

β=1.4 0.58 0.77 0.84 0.88 

β=1.5 0.58 0.77 0.84 0.87 

β=1.7 0.57 0.76 0.83 0.86 

β=2 0.56 0.75 0.82 0.85 

β=2.2 0.56 0.74 0.81 0.84 

β=2.5 0.55 0.74 0.80 0.84 

β=3 0.55 0.73 0.79 0.82 

β=4 0.54 0.71 0.78 0.81 

 

As Table 2.5 and Table 2.6 show, the Gaussian integer exponentiation is faster on 

all platforms because the underlying multiplication and square operations (combined with 

Montgomery or modulo reductions) are faster for Gaussian integers. The exact speedup 

would depend on a platform, integer sizes, and the exponentiation algorithm logic (i.e., 

number of multiplications and squares). Realistically, for the integer sizes used for Public 

Key cryptography (1000-4000 bits) the expected speedup is around 20% with Gaussian 

integers. The rational for this is that the estimated speedup ratios for multiplications and 

squares for Montgomery reduction with 1.5β =  and the Karatsuba multiplication are 

0.80 and 0.77, so, regardless of the ratio of multiplications/squares in a particular 

exponentiation algorithm, the combined ratio would be under  0.80 (i.e.,  20%  speedup). 
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2.7 Computation of Lucas Sequences 

Theorem 2.5.1 and Theorem 2.5.2 show the relationship between Gaussian integers and 

Lucas sequences. According to these theorems, it is possible to use one to compute the 

other. In this section, an existing algorithm for computing Lucas sequences is reviewed 

and an improvement is introduced. In [74], the efficient algorithm was published to 

compute Vn for Q=1. Below, this algorithm is extended to compute both Un and Vn by 

using the following relation: 

 

1
2

2
4

k k
k

V PVU
P Q

+ −
=

−
. (2.118)

 

Algorithm 2.7.1 Computation of Lucas Sequences with Q = 1 

Inputs:  , where 
1

0
2

n
i

i
i

k k
−

=

= ∑ 2logn k= ⎡ ⎤⎢ ⎥   

(P, Q = 1) – Lucas sequence parameters 

Outputs: (Vk, Uk)  

1. Vl := 2; Vh := P;  

2. for j=n-1 downto 0 

3.    if (k[j] = 1) 

4.          Vl := Vh * Vl – P; 

5.       Vh := Vh * Vh – 2; 

6.       else 

7.    Vh := Vh * Vl – P; 
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8.       Vl := Vl * Vl – 2; 

9.    endif 

10. endfor 

11. Uk := (2*Vh-P*Vl)/(P*P-4*Q); 

12. return (Vl,Uk) 

 

Note that the number of multiplications in Algorithm 2.8.1 is 22 log k + c⎡ ⎤⎢ ⎥ , where c is a 

small constant. Additionally, the algorithm can be used to compute Un and Vn  modulo 

prime p. 

 The algorithm to compute both Un and Vn  for any P and Q was published in [42] . 

Such an algorithm could be useful for various purposes. As an example, the authors 

suggest using it to compute the order of an elliptic curve. It is useful for cryptosystems 

based on exponentiation of Gaussian integers as will be discussed in subsequent sections. 

The improvement to the algorithm published in [42]  was published in [47]: 

Algorithm 2.7.2  Computation of Lucas Sequences for any P and Q 

Inputs:  , where 
1

0

2
n

i
i

i

k k
−

=

= ∑ 2logn k= ⎡ ⎤⎢ ⎥   

(P, Q) – Lucas sequence parameters 

Outputs: (Vk, Uk)  

1. Vl := 2; Vh := P;  

2. Ql :=1; Qh := 1; 

3. for j=n-1 downto 0 

4. Ql := Ql * Qh; 
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5. if (k[j] = 1) 

6. Qh := Ql * Q; 

7. Vl := Vh * Vl – P * Ql; 

8. Vh := Vh * Vh – 2 * Qh; 

9. else 

10. Qh := Ql; 

11. Vh := Vh * Vl – P * Ql; 

12. Vl := Vl * Vl – 2 * Qh; 

13. endif 

14. endfor 

15. Uk := (2*Vh-P*Vl)/(P*P-4*Q); 

16. return (Vl,Uk) 

 

Note that Algorithm 2.7.2 for Q = 1 or Q = -1 still has same running time as 

Algorithm 2.7.1. The number of multiplications in Algorithm 2.7.2 is 22 log k c+⎡ ⎤⎢ ⎥ , 

where c is a small constant.  

 

 

2.8 Exponentiation of Gaussian Integers 

As shown in the previous sections, the Gaussian integer exponentiation is faster then the 

real integer exponentiation when real integers are replaced with the Gaussian integers. 

However, an even faster exponentiation algorithm for Gaussian integers can be devised. 
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It is based on the relationship between Gaussian integers and Lucas sequences described 

in [50].  

 

Algorithm 2.8.1  Lucas sequence Exponentiation of Gaussian integers (LSEG) 

Inputs:  Gaussian integer ( , )a b

 p – prime such that mod 4 3p =  

 n - exponent 

Output: Gaussian integer ( , ) ( , ) modnx y a b= p  

1. 
1

4: ( , ) mod
p

r a b
+

= p  

2.  1( , ) ( , ) modc d r a b p−=

3.  mod( 1) modn ph r p−=

4.  mod(2( 1))m n p= +

5. if ( )  2 ( , ) (mod )r a b p==

6.                 Compute Lucas sequences ( 2 , 1)mV P c Q= =  and   ( 2 , 1)mU P c Q= =

7. else 

8.                 Compute Lucas sequences   ( 2 , 1)mV P c Q= = −  and   ( 2 , 1)mU P c Q= = −

9. endif       

10. 1 mod
2m

px hV p+
=  

11.  modmy hU c p=

12. return (x,y) 
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 Given a Gaussian integer ( , , prime )a b : mod 4 3p p =  and , 

suppose the aim is compute .  First step is to compute  

2: 0 1n n p< < −

( , ) modna b p

 

1
4( , ) mod

p

r a b
+

= p . (2.119)

 

r would be the square root of | (  if a square root exists. If | (  is QNR (i.e., the 

square root does not exist) modulo p, then 

, ) |a b , ) |a b

( , ) modr a b= − p . Next step is to compute  

 

1( , ) ( , ) modc d r a b p−= . (2.120)

 

It is important to note that ( , ) mod 1 or -1c d p = , because: 

 

2 2 2 2

2( , ) (mod )a b a bc d p
r r r

+⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (2.121)

 

2r is either ( , ) moda b p− or ( , ) moda b p depending on whether | (  is QNR or not. 

 was factored into a product of a real integer r and Gaussian integer , and 

, ) |a b

( , )a b ( , )c d

( , ) mod 1 or -1c d p = : 

 

( , ) ( , ) moda b r c d p= . (2.122)
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To compute the following values have to be computed:  ( , ) modna b p

 

mod( 1) modn pr p−  (2.123)

 

and                 

 

( , ) modnc d p . (2.124)

            

 To compute (2.123) it is possible to use any available real integer exponentiation 

modulo prime algorithm (the order of real integer modulo p is 1p − , so n can be reduced 

modulo ). In order to compute (2.124), the relationship between Gaussian integers 

and Lucas sequences described in algorithm in [50] could be used. To compute (2.124), it 

is enough to compute 

1p −

( )( )2 , ,mV c c d , ( )( )2 , ,mU c c d   and  

( ) ( ) ( ), , , mod
2

n m m
m

Vc d c d U d p⎛ ⎞= = ⎜ ⎟
⎝ ⎠

, (2.125)

 

where  (the order of Lucas sequences with  is  (Lemma 

2.3.3) and with  is 2(

mod(2( 1))m n p= + 1Q = 1p +

1Q = − 1)p +  (Lemma 2.3.5)). and could be efficiently 

computed using any published algorithm to compute Lucas sequences, such as [74] or 

[68]. The algorithms published in [74] and [68] would only compute 

mV mU

( )2 ,1mV c , however, 

they can be easily enhanced to compute ( )2 , 1mV c − , ( )2 , 1mU c −  or ( )2 ,1mU c . Finally 

few more multiplications are needed to get the final answer: 
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( , ) ( , ) (mod )n n na b r c n p= . (2.126)

 

Example 2.8.1  Gaussian integer exponentiation with LSEG Algorithm 

Inputs:  Gaussian integer ( , ) (2,5)a b =

 p = 23 – prime  

 n = 423 – exponent 

Output: Gaussian integer ( , ) ( , ) modnx y a b= p  

1. ( )
23 11

2 2 644: ( , ) mod 2 5 mod 23 6 mod 23 12
p

r a b p
++

= = + = =

=

=

 

2.  1 1( , ) : ( , ) mod 12 (2,5) mod 23 2(2,5) mod 23 (4,10)c d r a b p− −= = = =

3.  mod( 1) 423mod 22 5: mod 12 mod 23 12 mod 23 18n ph r p−= = =

4.  : mod(2( 1)) 423mod 48 39m n p= + =

5. ( )2 ( , ) (mod )r a b p== is true: 212 mod 23 6==  , therefore: 

6.                 Compute 39( 2 , 1) (8,1) 18(mod 23)mV P c Q V= = = =   

7.                 Compute 39( 2 , 1) (8,1) 6(mod 23mU P c Q U )= = = =  

8.  1 mod 18*18*12 mod 23 1
2m

px hV p+
= = =

=

 

9.  mod 18*6*10 mod 23 22my hU c p= =

10. return (x,y) = (1,22) 

The speed advantage of Algorithm 2.8.1 is due to the fact that it does less work. 

Note that the most expensive operations in this algorithm are two real integer 

exponentiations (lines 1 and 3) and one Lucas sequences computation (line 6 or line 8).  
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The speed advantage of Algorithm 2.8.1 would vary depending on the exponentiation 

algorithm used and there are too many variations to consider. To illustrate the speed 

advantage of Algorithm 2.8.1, it can be compared to the sliding window Montgomery 

Gaussian integer exponentiation algorithm, same as the one implemented by GMP ([34] 

section 16.4.2, [54] algorithm 14.85). The exponentiation algorithm modulo prime 

implemented by GMP is a highly efficient implementation and is widely used for 

cryptographic algorithms. Moreover, the sliding window exponentiation algorithm holds 

advantage over many other exponentiation algorithms for average case and random 

exponent ([45], [33]) and, therefore, it is used by GMP library for modular 

exponentiation.  

The sliding window Montgomery reduction exponentiation algorithm for 

Gaussian integers is denoted as SWG (Sliding Window Gaussian). It is the same 

algorithm as the one implemented by GMP, but with real integers replaced with Gaussian 

integers modulo prime : mod 4 3p p = . The prime p is n bits long. Suppose the window 

size is w and the exponent is 2: 0 1e e p< < − . Suppose also that e is such that the number 

of multiplications is 2n
w

 (the best case for sliding window algorithm). This assumption is 

reasonable because mostly random looking exponents are used for cryptographic 

applications. In case this assumption is not true, the SWG algorithm would be even 

slower compared to Algorithm 2.8.1. Suppose is the running time of one 

multiplication of two integers of n bits long and  is the running time of SWG 

algorithm (ignoring lower order operations like additions). For each Gaussian integer 

multiplication, three real integer multiplications  and two Montgomery reduction 

( )rt n

SWGT

( )rt n
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operations REDC() have to be performed. For each Gaussian integer square two real 

integer multiplications  and two Montgomery reduction operations REDC() have to 

be performed. Each REDC() operation has a cost of 

( )rt n

( )rt nβ . The precomputation required 

for the sliding window algorithm could be ignored, it is larger for SWG algorithm, but 

becomes less significant as n grows. Thus: 

 

( ) ( )( ) ( ) ( )( )

( )

22 2 2 3 2

3 22 2 2

SWG r r r r

r

nT n t n t n t n t n
w

nt n
w

β β

ββ

= + + +

+⎛ ⎞= + +⎜ ⎟
⎝ ⎠

=
. (2.127)

 

For Algorithm 2.8.1 the same sliding window exponentiation with Montgomery reduction 

for real integer exponentiation can be used.  Two real integer exponentiations with 

exponents less than half the size of e in bits have to be done. To compute Lucas 

sequences, the algorithm [74] could be used. The size of the exponent for this algorithm 

is approximately one half of the size of e (i.e., n, not 2n) and for each bit one 

multiplication, one square and two REDC() operations are required. It can be assumed 

that the square takes 2
3

 of the time of multiplication. Suppose  is the running time 

of Algorithm 2.8.1, ignoring lower order operations, like additions. As with SWG, 

precomputation required for sliding window algorithm could be ignored, noting that it is 

smaller for Algorithm 2.8.1. Finally: 

LSEGT
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( )22 ( ) ( ) ( ) ( )
3

2 ( ) ( ) ( ) ( )
3

12 ( ) 1.5 2

LSEG r r r r

r r r r

r

nT n t n t n t n t n
w

n t n t n t n t n

nt n
w

β β

β β

ββ

⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞+ + + + =⎜ ⎟
⎝ ⎠

+⎛ ⎞= + +⎜ ⎟
⎝ ⎠

+

. (2.128)

 

Thus the improvement based on various window sizes and values ofβ  could be 

estimated. 

Table 2.7  Ratio for Various /LSEG SWGT T β  and Window Sizes 

 w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8

β=1 0.61 0.69 0.74 0.76 0.78 0.79 0.80 0.81

β=1.2 0.62 0.70 0.75 0.77 0.79 0.81 0.81 0.82

β=1.4 0.63 0.71 0.76 0.78 0.80 0.82 0.82 0.83

β=1.5 0.64 0.72 0.76 0.79 0.81 0.82 0.83 0.84

β=1.7 0.64 0.73 0.77 0.80 0.81 0.83 0.84 0.84

β=2 0.65 0.74 0.78 0.81 0.82 0.84 0.85 0.85

β=2.2 0.66 0.74 0.79 0.81 0.83 0.84 0.85 0.86

β=2.5 0.67 0.75 0.79 0.82 0.84 0.85 0.86 0.87

β=3 0.68 0.76 0.80 0.83 0.85 0.86 0.87 0.88

β=4 0.69 0.77 0.82 0.84 0.86 0.87 0.88 0.89
 

As illustrated by Table 2.7, Algorithm 2.8.1 offers an improvement approximately 18% 

over SWG for the window size relevant to real world cryptography applications (1000-

4000 bits and window size 7). This translates to about 35% theoretic improvement over 
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SWR, but in practice it would be much higher because of low overhead associated with 

Algorithm 2.8.1. Moreover, the real time could be significantly improved if (2.123) and 

(2.124) are computed in parallel.  

 It is easy to estimate the real running time improvement ratio of Algorithm 2.8.1 

(LSEG) implemented with threads that compute (2.123) and (2.124) in parallel. Such 

algorithm shell be denoted as LSEG*. It is easy to see that the computation of (2.123) will 

be faster than the computation of (2.124) (real integer exponentiation is faster than Lucas 

sequence computation for the same prime). Therefore, the running time of LSEG* as 

follows can be estimated as follows: 

 

( )*
2 ( ) ( ) ( ) ( )
3

2 ( ) ( ) ( ) ( )
3

12 ( ) 1.16666 1.5
2

LSEG r r r r

r r r r

r

nT n t n t n t n t n
w

n t n t n t n t n

nt n
w

β β

β β

ββ

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ + + + =⎜ ⎟
⎝ ⎠

+⎛ ⎞= + +⎜ ⎟
⎝ ⎠

+

. (2.129)

 

Thus the improvement based on various window sizes and values ofβ  can be estimated. 
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Table 2.8  Ratio for Various * /LSEG SWGT T β  and Window Sizes 

 w=1 w=2 w=3 w=4 w=5 w=6 w=7 w=8

β=1 0.41 0.49 0.53 0.56 0.57 0.59 0.60 0.60

β=1.2 0.41 0.50 0.54 0.56 0.58 0.59 0.60 0.61

β=1.4 0.42 0.50 0.54 0.57 0.59 0.60 0.61 0.62

β=1.5 0.42 0.51 0.55 0.57 0.59 0.60 0.61 0.62

β=1.7 0.43 0.51 0.55 0.58 0.60 0.61 0.62 0.63

β=2 0.44 0.52 0.56 0.59 0.60 0.62 0.63 0.63

β=2.2 0.44 0.52 0.56 0.59 0.61 0.62 0.63 0.64

β=2.5 0.44 0.53 0.57 0.59 0.61 0.62 0.63 0.64

β=3 0.45 0.53 0.58 0.60 0.62 0.63 0.64 0.65

β=4 0.46 0.54 0.59 0.61 0.63 0.64 0.65 0.66
 

As Table 2.8 shows, the multithreaded version of Algorithm 2.8.1 (LSEG*) offers an 

improvement approximately 39% over SWG for the window size relevant to real world 

cryptography applications (1000-4000 bits and window size 7). This translates to about 

52% theoretic improvement over SWR, but in practice it would be much somewhat lower 

because of the overhead associated with multithreaded programming. Nevertheless, it is a 

great improvement ratio considering this algorithm does not require any special hardware 

or software and can be easily implemented.  

 Most contemporary platforms have multiple processors and/or multiple cores. On 

such platforms the parallel implementation of Algorithm 2.8.1 (LSEG*) is more 

advantageous because with a relatively small added cost associated with multithreading, a 

significant improvement in real running time was achieved. The overhead varies widely 

among platforms and implementations but it tends to be relatively small compared to an 

added benefit in real running time.  
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2.9 Experimental Results 

For the experiments the latest release of GMP library 5.0.1 was used. On each platform, 

the library was installed and the optimization step performed. The language used was C 

compiled it with gcc compiler. The version of gcc did vary across the platforms, 

however, it is not important for this study, because only relative running times on the 

same platform compiled with the same optimization level were of interest. The sliding 

window exponentiation with the Montgomery reduction algorithm for Gaussian integers 

with the optimal sliding window size (SWG) was implemented. The optimal sliding 

window size was calculated for every exponent.   

For real integer exponentiation, mpz_powm function was used that came with 

GMP library. It was implemented using the Sliding Window exponentiation algorithm 

(algorithm 14.85 in [54]) using Montgomery reduction (section 16.4.2 in [34]). This 

algorithm for real integers shall be labeled as SWR (Sliding Window Real). The SWG 

was implemented as efficiently as possible; however, it still has more overhead than 

GMP’s “mpz_powm” function. Some of this overhead is due to the fact that Gaussian 

integer multiplications and squares require extra additions, which was ignored in the 

estimates. Some of this overhead is due to the fact that GMP implementations tend to be 

very efficient because they use low level platform specific techniques to minimize the 

overhead and speedup the calculations. Nevertheless, this implementation of SWG 

overtook SWR for bit sizes above 1000 on all platforms and showed the predicted in 

previous section 20% speed advantage.  

Two versions of Algorithm 2.8.1 were implemented. Both versions used 

“mpz_powm” function for real integer exponentiation and the algorithm published in [74] 
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for Lucas sequences computations. The first version (LSEG) executed the steps of 

Algorithm 2.8.1 sequentially. For small bit sizes (500-2500 bits) it performed better than 

predicted, relative to the implementation of SWG. This is due to the fact that it has much 

less overhead than SWG, and the estimates in Table 2.5 are biased towards SWG (make 

SWG look faster). For really high bit sizes (>4000) the experimental results confirm the 

estimates in Table 2.5 (show 15% speedup), but for the bit sizes that are practical for 

cryptography the results show improvement of 40-20%, which is much better than 

predicted 18%.  

The second version of Algorithm 2.8.1 (LSEG*) was implemented using threads 

to process real integer exponentiation and Lucas sequences computation in parallel. As 

Figure 2.6 demonstrates, the CPU time needed for LSEG* is slightly higher than the CPU 

time needed for LSEG. However, the difference is very small. It is due to the overhead 

associated with threads. On the other hand, the reduction in real time is very significant 

as Figure 2.10 demonstrates. The achieved improvements are in line with the estimates in 

Table 2.8. Similar results were achieved on all platforms. 

 The experiments were performed for bit sizes varying from 100 to 11500 bits. For 

each bit size, a random prime : mod 4 3p p =  of bit size n and prime q of bit size from 

2n-1 to 2n were generated. The CPU performance varied widely among the platforms, so 

the number of trials N was calibrated for each platform, so one could differentiate 

between the performance of the algorithm for lower bit sizes and it would finish in a 

reasonable amount of time for high bit sizes. For each bit size the following numbers 

were randomly generated: 

1) N Gaussian integers ( , ) : 0 , 1a b a b p< < −  
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2) N exponents  2: 0 1e e p< < −

3) N real integers    : 0 1c c q< < −

For each of the N Gaussian integers (  were computed using SWG, LSEG and 

LSEG

, ) modea b p

*.  Additionally, for each of the N integers c, was computed using SWR. 

For each algorithm, the total CPU time was recorded. 

modec q

 The platforms used vary widely in architecture and computing power. Below is 

the list of them: 

1) Lenovo T400 Laptop, Intel Core2 Duo CPU T9400 @2.53GHz with 3GB of 

RAM, Cygwin under Windows XP OS (32 bit). 

2) AMD Opteron Model 2218 @2.6 GHz Dual core, 8GB of RAM, RHEL Linux 

4.2 kernel 2.6.9 (64 bit). 

3) SunOS 5.10,  sun4u, Ultra-4, two UltraSPARC-II @ 296MHz processors, 1 GB 

of RAM (64 bit) 

As expected, the nominal running time varied widely among platforms, but the relative 

running times among the algorithms remained consistent. Below are the graphs of the 

results from the platform 2). For the sake of brevity the graphs for other platforms 

weren’t included, because they are very similar. 
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Figure 2.6 The CPU time of SWR,SWG, LSEG and LSEG* for various bit sizes.
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Figure 2.7 The ratio of the running time of SWG algorithm over SWR.
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Figure 2.8 The ratio of the CPU time of Algorithm 2.8.1 (LSEG) over SWG.
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Figure 2.9  The ratio of the running time of Algorithm 2.8.1 algorithm over SWR. 
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Figure 2.10  The real running time of SWR, SWG, LSEG and LSEG* for various bit 
sizes. 
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Figure 2.11  Ratio of real running time of LSEG* over SWG. 

 

The experimental results confirm the estimates from Table 2.5, Table 2.6 , Table 2.7 and 

Table 2.8. 

 

 

2.10 Algorithms for Finding Gaussian Generators 

 

Algorithm 2.2.3 and Algorithm 2.2.4 necessitate a way to find Gaussian integer 

generators. A common algorithm based on general cyclic group properties is described 

below:  

 

 

Algorithm 2.10.1  Simple Algorithm for finding Gaussian Generators 
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1. Factor p2-1: 

 
1 22

1 21 ( ) ( ) ...( ) kee e
kp f f f− =  (2.130)

 

2. Select a G=(a,b) such that ,  and  0a > 0b > 2 2 (mod )a b p≠

3. For each factor fi of p2-1, compute  

 
2 1

modi

p
f

iB G p
−

=  (2.131)

 

If any of Bi=(1,0) mod p then G is not a generator, then go to Step 2. Otherwise, 

G is a generator. 

 

 Algorithm 2.10.1 is a straightforward extension of the most common algorithm 

for finding real integer generators and is based on Lagrange’s Theorem in the 

mathematics of group theory. It tests all the divisors of the largest period of a candidate to 

determine if it is a generator. Using the theoretical framework presented in Sections 2.3 

and 2.5, it was possible to design an improved algorithm to find Gaussian integer 

generators for a given prime. 

 

 

 

Algorithm 2.10.2  Norm Algorithm for finding Gaussian Generators 
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1. Factor  1
2

p −  into k1 factors: 

 

1 2

11 2
1 ( ) ( ) ...( )

2
kee e

k
p f f f 1
−

=  (2.132)

 

2. Factor   into k2( 1)p + 2 factors:: 

 

1 2

21 22( 1) ( ) ( ) ...( ) kee e
kp h h h+ = 2  (2.133)

 

3. Select a G=(a,b) such that ,  and  0a > 0b > 2 2 (mod )a b p≠

4. 
1

4: ( , ) mod
p

r a b
+

= p

p

 

5. If go to Step 4. 2 | ( , ) | modr a b=

6. For each factor fi  of 1
2

p −  compute  

 

( )
1

, modi

p
f

ib a b
−

= p

)

p

 (2.134)

 

If any of b i= 1 mod p then G is not a generator, go to Step 3.  

7.  ( )21( , ) ( , ) modc d r a b p−=

8. For each factor hi of 2(p+1) compute Lucas sequence values .  ( 2 , 1
ihV P c Q= =

If any of  then G is not a generator, go to Step 3.  Otherwise, G is a 

generator. 

2 mod
ihV =
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 The relative efficiency of the algorithms would vary somewhat with the type of 

exponentiation algorithm used. However, it is clear that Algorithm 2.10.2 is much more 

efficient than Algorithm 2.10.1, as shown below.  

 Algorithm 2.10.1 performs the exponentiation of Gaussian integers. This means 

that it is possible to use similar time complexity analysis that was done is Section 2.8 for 

the SWG (Sliding Window Gaussian) algorithm. There are differences, however. In the 

analysis for (2.127), it was reasonable to assume that every exponent would be of 

average bit size 2n, where n is the bit size of prime p. For Algorithm 2.10.1, on the other 

hand, the exponent sizes would be different. 

SWGT

 Suppose size(x) stands for the size of integer x in bits (e.g., size(p)=n), then the 

sum of sizes of the factors of p2-1 from (2.130) is  

 

( ) ( )2

1
size size 1 2

k

i
i

f p n
=

= − =∑  (2.135)

 

The size of each exponent of if  used in (2.131) is  

 

( )
2 1size 2 size i

i

p n f
f

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
. (2.136)

 

 

The total number of multiplications and squares performed by Algorithm 2.10.1 is 
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( ) ( )

( ) ( )

( ) ( )

Algorithm2.3.1
1

3 22 ( ) 2 2

3 22 2 2 2

3 21 2 2 2

k

i r
i

r

r

T n size f t n
w

kn n t n
w

k nt n
w

ββ

ββ

ββ

=

+⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
+⎛ ⎞= − + + =⎜ ⎟

⎝ ⎠
+⎛ ⎞= − + +⎜ ⎟

⎝ ⎠

∑ =

, (2.137)

 

where n = size(p), - time to multiply two real integer of size n, k – number of prime 

factors of  as in (2.130), w – sliding window size, and the cost of the modular 

reduction is 

( )rt n

2 1p −

( )rt nβ . 

 The running time complexity analysis for of Algorithm 2.10.2 is similar to the 

time complexity analysis of LSEG. As with Algorithm 2.10.1, the size of the exponent is 

different. In contrast with Algorithm 2.10.1, Algorithm 2.10.2 factors  in parts. It 

factors 

2 1p −

1
2

p −  in Step 2 and ( )2 1p +  in Step 3. It is worth noting that 

 

( ) ( )

( )( )

( )

1 2

1 1

2

size size

1size size 2 1
2

size 1 2

k k

i i
i i

f h

p p

n n p n

= =

+ =

−⎛ ⎞= + +⎜ ⎟
⎝ ⎠

= + = − =

∑ ∑

=  (2.138) 

 

The purpose of this discussion is to show that Algorithm 2.10.2 is faster than Algorithm 

2.10.1. Because real integer exponentiation is much faster than Lucas sequences 

computation, it is permissible to presume, for simplicity, that real integer exponentiation 

has the same time complexity as Lucas sequences computation. Subsequently,  

 



94 

 

( )

( )

( )

( )

1

2

Algorithm2.3.2

1

1

1

2

2 ( ) ( ) 2 ( )
3

2( ) ( ) ( ) 2 ( )
3

2( ) ( ) ( ) 2 ( )
3

5( ) 2
3

51 ( ) 2
3

1 ( )

r r r

k

i r r r
i

k

i r r r
i

r

r

r

T n t n t n t n

n size f t n t n t n

n size h t n t n t n

nt n

n k t n

n k t n

β

β

β

β

β

=

=

⎛ ⎞< + + +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞+ − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞+ − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

+ −

∑

∑

+

=

( )

5 2
3

5( ) 2 1
3rnt n k

β

β

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

, (2.139) 

 

From this inequality, it follows that: 

 

Algorithm2.3.2

Algorithm2.3.1

5 2
3

3 22 2 2

T
T

w

β

ββ

+
<

+⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 (2.140) 

 

 From (2.140) it is clear that Algorithm 2.10.2 is always more than twice as fast as 

Algorithm 2.10.1, regardless of  or w β  (both  and w β  have to be greater than 0, of 

course). In reality though, Algorithm 2.10.2 is even faster, because the real integer 

exponentiation is much faster than the Lucas sequences computation for the same prime. 

(For simplicity, it was assumed that the real integer exponentiation had the same speed as 
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the Lucas sequences computation. This made the estimate for the speed of Algorithm 

2.10.2  appear higher.)  

 To find a real generator for p, p-1 has to be factored. To find a Gaussian 

Generator, both p-1 and p+1 have to be factored. One could argue that for large p it may 

be too hard to factor p-1 and p+1. Fortunately, for discrete logarithm based algorithms, 

very large prime factor of p-1 and p+1 are desired in order to protect against various 

attacks. If both p-1 and p+1 have large prime factors (close to the the bitsize of prime p), 

then factoring is easy. 

 

 

2.11 Chapter Summary 

In this chapter it was shown that there are no benefits to using non-Blum Gaussian primes 

in DLP-based Public Key (PK) cryptography algorithms because there is one-to-one 

relationship between Gaussian integers modulo non-Blum Gaussian primes and real 

integers. Consequently, the Gaussian integers considered for PK cryptosystems should be 

limited to primes , where p is a prime and ( ,0)P p= mod 4 3p = . This restriction allows 

for efficient implementation of MOD operation used for PK cryptosystems. 

 In Chapter 2, the properties of the Gaussian integer exponentiation are analyzed 

in-depth. Based on these properties, an improved algorithm to find a Gaussian integer 

generator is described (Algorithm 2.10.2, Norm Algorithm for finding Gaussian 

Generators). The speed of Algorithm 2.10.2 was compared to the speed of Algorithm 

2.10.1 (Simple Algorithm for finding Gaussian Generators). It was proven that Algorithm 

2.10.2 is always faster than Algorithm 2.10.1. Additionally, it was demonstrated that the 
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discrete logarithm for Gaussian integers can be computed by decomposing the Gaussian 

integer group into two subgroups and computing the discrete logarithm in each subgroup.  

 In Section 2.5, it was proven that the Gaussian integer DLP is equivalent to a 

combination of the Lucas sequences DLP and the real integer DLP. This fact means that 

the Gaussian integer DLP is harder than the real integer DLP, consequently, the PK 

cryptosystems based on Gaussian integers exponentiation modulo prime p that is n bits 

long is equivalent in security to a real integer PK DLP based cryptosystems modulo 

prime q which is 2n bits long.  

 Finally, based on the proof of the security of the Gaussian integer DLP in Section 

2.5, the exponentiation of Gaussian integers modulo prime p were compared to the 

exponentiation of real integers modulo prime q, where q is twice the size of p. Firstly, it 

was shown (both theoretically and experimentally) that under such settings the 

multiplication of Gaussian integers modulo p is about 20% for the bit range currently 

used for PK cryptosystems (1500+ bits). Secondly, a novel exponentiation algorithm for 

Gaussian integers was introduced in Section 2.8: Algorithm 2.8.1, Lucas sequence 

Exponentiation of Gaussian integers (LSEG).  It improves the speed by additional 18% 

(on top of 20% which results in about 34% over real integer exponentiation).  Moreover, 

some steps of the LSEG algorithm could be run in parallel (such version of LSEG 

algorithm was denoted as LSEG*). LSEG* offers about 52% theoretical improvement 

over real integer exponentiation.  

 Section 2.9 describes the experiments performed on various computing platforms 

to validate the theoretical results described in Section 2.8. All the theoretical results were 

confirmed experimentally. 

 



 

CHAPTER 3 

EXTENSION OF RABIN CRYPTOSYSTEM INTO THE FIELD OF 

GAUSSIAN INTEGERS 

 

 

3.1 Restriction of Gaussian Integer Domain 

To extend the Rabin algorithm, a subset of Z[i], as described in [27], is considered, 

namely, real primes p: p mod 4=3 or real Blum primes. This allows for the use of modulo 

(mod) operation as defined in Definition 1.3.2. The overhead of this mod operation is 

minimal. 

The rationale for the restriction of the domain is that the use of Gaussian primes 

 (or non-Blum Gaussian primes) leads to a less secure and 

inefficient algorithm. This point is discussed in-depth in Section 2.1. 

( , ) :| | mod 4 1P a b P= =

 

 

3.2 Rabin Cryptosystem 

Rabin Cryptosystem was proposed in 1979 by Michael O. Rabin. The high level 

description of the algorithm is below: 

Algorithm 3.2.1  Original Rabin Cryptosystem 

Key generation 

Alice selects two distinct primes p and q and calculate n=pq. She publishes n as a 

public key. 

Encryption 

97 
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 Given message m: 0 ≤ m ≤ n − 1, Bob computes the ciphertext  

 

2 modc m n= . (3.1)

 

Decryption 

Given ciphertext c Alice computes square roots of c mod n using private keys p 

and q. Most of the time there are four square roots of c mod n. Very rarely there 

are two square roots of c mod n. Now Alice needs to determine which of the roots 

corresponds to the original message. 

 

Rabin Algorithm is sometimes referred to as a version of RSA algorithm. The 

security of this cryptosystem is based on the difficulty of the factorization problem. 

However, Rabin has many advantages over RSA. The encryption is much faster than 

RSA’s, while the decryption speed is comparable with RSA’s. It is proven to be as strong 

as factoring. If there are two square roots of c: x and y such that , then there are 

non-trivial factors of n by computing GCD(x+y,n). 

x n y≠ −

Ironically, this fact is also a major disadvantage of Rabin cryptosystem. It is easy 

to factor n if the two square roots of c: x and y such that x n y≠ −  are known. Using one 

of Rabin signature schemes or by some other means, Bob can ask Alice to decrypt 

ciphertext c and obtain the second root y with a probability ½. This is known as a chosen 

ciphertext attack. Another difficulty of Rabin cryptosystem is that Alice needs to figure 

out which square root corresponds to the message. 

 



99 

Both shortcomings of the Rabin can be addressed by adding redundant bits to the 

end of every message. One can also use zeros or any preset string of bits. These bits 

allow Alice to identify the correct square root. In addition, returning only the root 

corresponding to the encrypted message protects against the chosen ciphertext attack. 

There is still a possibility that even with redundancy, the Rabin machine would return an 

incorrect root. However, if enough redundant bits are used, the probability of this 

happening is very small. It is widely suggested that 64 bits is sufficient number of 

redundant bits [54]. In this case, the probability of an error is 2-64. 

 

 

3.3 Square Roots Modulo n=pq 

The decryption step requires Alice to take square root modulo n=pq. It is a three steps 

process: 

1)  take square root c mod p. There are two square roots : x1 and x2, where x2=p-x1

2) take square root c mod q. There are two square roots : y1 and y2 where y2=q-y1 

3) get four square roots m1,m2,m3,m4 of c (mod n) using Chinese Remainder 

Theorem (CRT) on pairs (x1,y1), (x1,y2), (x2,y1) and (x2,y2) 

 

1 1
1 1 1( mod ) ( mod )   (mod )m x q q p y p p q n− −= + . (3.2)

 

1 1
2 1 2( mod ) ( mod )   (mod )m x q q p y p p q n− −= + . (3.3)
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1 1
3 2 1( mod ) ( mod )   (mod )m x q q p y p p q n− −= + . (3.4)

 

1 1
4 2 2( mod ) ( mod )   (mod )m x q q p y p p q n− −= + . (3.5)

 

q (q-1 mod p)  (mod n) and p (p-1 mod q) (mod n) can be precomputed at the time of key 

generation.  

Another way to compute it is to find a and b satisfying ap + bq = 1, using the 

extended GCD algorithm. Then: 

 

1 1 1     (mod )m apx bqy n= + . (3.6)

 

2 1 1     (mod )m apx bqy n= − . (3.7)

  

3 1 1   (mod )m m n m n= − = − . (3.8)

 

 4 2 2   (mod )m m n m n= − = − . (3.9)

 

If primes p and q are Blum primes ( mod 4 3p =  and ), then the square 

roots from steps 1) and 2) are easy to compute: 

mod 4 3q =

 

1
4

1 2mod ,  
p

1x c p x p
+

= = x− , (3.10)
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1
4

1 2mod ,  
p

y c p y p y
+

= = 1− . (3.11)

 

 

For non-Blum primes ( mod 4 1p =  and mod 4 1q = ) it is harder to compute the 

square roots. Even though it is possible to use non-Blum primes, it is much more 

practical to use Blum primes for the Rabin cryptosystem.   

 

 

3.4 Extended Square Root Algorithm mod p 

To extend the Rabin Cryptosystem to the domain of Gaussian integers, the square root 

algorithm was developed. As was already mentioned in Section 2.1, only the subset of 

Gaussian primes is considered: real primes p such that mod 4 3p =  (Blum primes). The 

algorithm is below:  

Algorithm 3.4.1  Extended Square root algorithm mod p 

Given:  H=c+di=(c,d) – Gaussian integer 

 p  – real Blum prime 

Computing:  S=(a,b) square root of H mod p  

 

 (1) if (d = 0)                

 (2)  x:= c(p+1)/4 (mod p);              

 (3)  if (x2=c) (mod p)     // square root of c exists         

 (4)   return { (x,0), (-x,0) };            
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 (5)  else        // square root of c doesn’t exist       

 (6)   return { (0,x), (0,-x) };            

 (7)  endif                

 (8) else                 

 (9)                   n:=|(c,d)| (p+1)/4 (mod p);            

(10)  if   (mod p)          // square root of |H| doesn’t exist    2( | ( , ) |n c d≠ )

(11)   return {};        // no square roots of H exists            

(12)  else               

(13)   t:= 2-1(c+n) (mod p);          

(14)   x:=t (p+1)/4 (mod p);          

(15)   if (x2=t) (mod p)    // square root of t exists         

(16)    a:=x;              

(17)    b:=(2a)-1d  (mod p);              

(18)    return {(a,b), (-a,-b)};           

(19)   else         // square root of t doesn’t exist       

(20)    b:=x;              

(21)    a:=(2b)-1d  (mod p);              

(22)    return {(a,b), (-a,-b)};           

(23)   endif               

(24)  endif                

(25) endif                

Note that 2-1 mod p is simply 1
2

p +  , since  
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12 1 1 (m
2

p p pod )+
= + = . (3.12)

 

A few simple theorems are needed to prove the validity of the algorithm and show 

how it was derived. 

  

Theorem 3.4.1 

H has a square root if and only if |H| has a square root (mod p) 

Proof: 

Suppose G: ord(G)=p2-1 is a generator and  H=Gk mod p.  

⇒  It is known that H has a square root and the aim is to prove that |H| has a square root. 

If H has a square root S and H=Gk mod p then k is divisible by 2. Looking at 

| | modH p : 

 

| | | | | | modk kH G G= = p . (3.13) 

 

Since k is divisible by 2, the square root of |H| exists and equals |G|k/2.   

⇐  It is known that |H| has a square root and the aim is to prove that H has a square root. 

Since the square root of |H| exists, then k is divisible by 2. From this directly follows 

that square root of H exists. 

Q.E.D. 
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Theorem 3.4.2 

If H=(c,0)  then: 

 1) H always has a square root S. 

 2) If a2=c mod p, then (a,0) and (-a,0) are the square roots of H. 

 3) If c does not have a square root, then (0,b), (0,-b) are the square roots of H, and     

 

2 modb c= − p

)

. (3.14)

 

 Proof: 

1)    It is true that  

 

2| | | ( ,0) |  (modH c c p= = . (3.15)

 

This implies that the square root of |H| exists and equals to c. According to 

Theorem 3.4.1, square root of H must exist also. 

2) It is given than that H=(c,0) and c has a square root. From 1) it follows that 

there is a square root S=(a,b) of H mod p.  

 

H=(c,0)=(a2-b2, 2ab) and 2ab=0  (mod p) (3.16)

 

From the identity 

 

2ab = 0 mod p (3.17)

 



105 

follows that a or b must be 0. In addition, it is known that c= a2-b2 and c has a 

square root.  

Suppose a=0 mod p, then c=-b2.  From this follows that c does not have a 

square root. This is a contradiction because it is known that c has a square 

root. Consequently, the only possibility is that b=0 mod p and c=a2 mod p, 

thus (a,0) and (-a,0) are the only two square roots of H. 

3) It is given that H=(c,0) and c does not have a square root. From 1) it follows 

that there is a square root S=(a,b) of H mod p.  

 

H=(c,0)=(a2-b2, 2ab) and 2ab=0  (mod p). (3.18)

 

From 2ab = 0 mod p follows that a or b must be 0. In addition, it is 

known that c= a2-b2 and c does not have a square root. Suppose b=0 mod p, 

then  

 

c=a2 mod p. (3.19)

 

Therefore, c has a square root a mod p. This is a contradiction because it is 

known that c does not have a square root. Consequently, the only possibility is 

that a=0 mod p and c=-b2 mod p. Thus (0,b) and (0,-b) are the only two 

square roots of H. 

Q.E.D    
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Theorem 3.4.3 

If H=(c,d),  and r and –r are square roots of |H| mod p, then:  0 modd ≠ p

1) There are exactly two square roots of H mod p:  S1=(a,b), S2=(-a,-b).  

   Neither a, nor b is 0.  

2) Either 

 

1 1{ 2 ( )  and (2 )  (mod )}a c r b a d− −= + = p . (3.20)

 

      or 

 

1 1{ 2 ( )  and (2 )   (mod )}b c r a b d− −= − + = p

p

)p

. (3.21)

 

Proof: 

Since square roots of |H| exist, the square root S1=(a,b) of H mod p exists (Theorem 

3.4.1).  

 

2 2 2
1 ( , 2 ) modS a b ab H= − = . (3.22)

 

S2=(-a,-b) is also a square root of H because  

 

2 2 2 2
2 ( , ) ( , 2 )  (modS a b a b ab H= − − = − = . (3.23)
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1 1{ 2 ( )  and (2 )   (mod )}b c r a b d− −= − + = p

b

. (3.24)

         

2d a=  and 0d ≠  (mod p) (3.25)

 

implies that neither a, nor b is 0. Moreover, 1 2| | |S S |=  must also equal to 

or  (mod p). It is known that  2 2r a b= + 2r a b= − − 2

p

2

 

2 2 moda b c− = . (3.26)

 

If , then  2r a b= +

 

1 1 2 2 2 2 22 ( ) 2 ( )  (mod )c r a b a b a p− −+ = − + + = . (3.27)

 

2  (mod )a p b is a or –a. For either a or –a  find b using 2d a= :    

   

1(2 )  (mod )b a d p−= . (3.28)

            

If  , then  2r a b= − − 2

 

1 1 2 2 2 2 22 ( ) 2 ( )  (mod )c r a b a b b p− −− + = − − − − = . (3.29)
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2  (mod )b p b is b or –b. For either b or –b find a using 2d a= :    

  

1(2 )  (mod )a b d p−= . (3.30)

                   

Each of the possibilities 2r a b2= +  or 2r a b2= − −  (mod p) yields two square 

roots. Also note that only one of 12 ( )c r− +  or  12 ( )c r−− +  exists because 

 and   are opposites of each other. Consequently, there are 

exactly two square roots of H. 

12 ( )c r− + 12 ( )c r−− +

Q.E.D  

 

Note that on lines (17) and (21) of Algorithm 3.4.1 the modular inverse (2a)-1d  or 

(2b)-1d  (mod p) is needed. Before this the condition needs to be checked to make sure 

that neither a nor b equals to 0 mod p. Fortunately, this is easy to do. If S is in the form of 

(a,0) or (0,b), then H=S2 must be in the form of (c,0). This means that the only condition 

needed to be checked is: if d=0 mod p. If d=0 mod p, then Theorem 3.4.2 is applied to 

compute the Gaussian square roots of H=(c,0). Only one square root of a real integer is 

needed to do it. Lines (1)-(8) of Algorithm 3.4.1 handle to the case when d=0 mod p. 

 The rest of the algorithm (lines (8) to (25)) corresponds to the more general case 

when . The square root of |H| mod p is taken on lines (13) and (14). 

According to Theorem 3.4.1, the execution can stop if there is no square root of 

0 modd ≠ p

modH p  ( lines (10) and (12)). Otherwise, it must be true that the Gaussian square roots 

of H exist and Theorem 3.4.3 is used to compute them. 
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 The most computationally expensive operations in Algorithm 3.4.1 are the real 

integer square root operations. If H is in the form of (a,0), only one real integer square 

root operation is required. Otherwise, two real integer square root operations and one 

modular inverse operation are required. 

  

 

3.5 Extended Square Root Algorithm mod n=pq 

The algorithm for finding square roots modulo n= pq can be constructed by using 

Algorithm 3.4.1 together with CRT (Chinese Remainder Theorem). 

Algorithm 3.5.1  Extended Square root algorithm mod n=pq 

Given:    p, q    - real Blum primes 

 n=pq   - product of p and q 

 H=(c,d)   mod n  - Gaussian integer 

Find:   All Si=(ai,bi) : Si
2=H   (mod n) 

 

Step 1. Find the square root Sp=(ap,bp) of H (mod p) using Algorithm 3.4.1. If Sp does not 

exist stop, there is no square root (mod n) for H. 

Step 2. Find the square root Sq=(aq,bq) of H (mod q) using Algorithm 3.4.1. If Sq does not 

exist then stop, there is no square root (mod n) for H. 

Step 3. Reconstruct all different Si using CRT in the following way: 

 S1=(a1,b1) , where    

a1=ap  q (q-1 mod p) + aq  p (p-1 mod q) (mod n) (3.31)
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b1=bp  q (q-1 mod p) + bq  p (p-1 mod q) (mod n) (3.32)

   

 S2=(a2,b2), where  

a2=-ap  q (q-1 mod p) + aq  p (p-1 mod q) (mod n) (3.33)

  

b2=-bp  q (q-1 mod p) + bq  p (p-1 mod q) (mod n) (3.34)

 

 S3=(a3,b3) , where     

a3=-ap  q (q-1 mod p) - aq  p (p-1 mod q) (mod n) (3.35)

 

b3=-bp  q (q-1 mod p) - bq  p (p-1 mod q) (mod n) (3.36)

 

 S4=(a4,b4), where 

a4=ap  q (q-1 mod p) - aq  p (p-1 mod q) (mod n) (3.37)

    

b4=bp  q (q-1 mod p) - bq  p (p-1 mod q) (mod n). (3.38)

 

   q (q-1 mod p)   (mod n) (3.39)

 

  and 

p (p-1 mod q)  (mod n) (3.40)

 

can be precomputed. 
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There could be at most four distinct Si but it is possible to have one or two distinct 

Si. Another way to compute it is to find a and b satisfying  

ap  + bq = 1,   (3.41)

 

using the extended GCD algorithm: 

S1 = (ap Sp + bq Sq)       (mod n) (3.42)

 

S2 = (ap Sp - bq Sq)   (mod n) (3.43)

 

S3=- S1    (mod n) (3.44)

 

S4= -S2                   (mod n). (3.45)

 

 

3.6 Extended Rabin Cryptosystem 

Using the extended square root algorithm (Algorithm 3.5.1) the following algorithm can 

be formulated:  

 

Algorithm 3.6.1  Extended Rabin Cryptosystem 

Key generation 

Alice selects two distinct primes p and q and calculates n=pq. She publishes n as 

a public key. 
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Encryption 

Given message ( )1 2,M m m= : 1 20 ,m m n 1≤ ≤ − , Bob computes the ciphertext   

 

( ) ( )( )2 2 2
1 2 1 2 1 2, mod mod ,2 moC c c M n m m n m m n= = = − d

) 2S

 (3.46)

 

and sends C to Alice. 

Decryption 

Given the ciphertext C Alice computes the square roots of C mod n using private 

keys p and q and Algorithm 3.5.1. Most of the time there are four square roots of 

C mod n. Very rarely there are two square roots of C mod n. Now Alice needs to 

determine which of the roots corresponds to the original message. 

 

To use the original Rabin algorithm Bob would have to break the large messages 

into blocks m1,m2,..mL such that 0 ≤ mi ≤ n − 1. With Algorithm 3.6.1, Bob would need to 

do the same thing. The only difference is that Bob would send two blocks at the time. 

 

 

3.7 Security of the Extended Rabin Cryptosystem 

It is clear that the Extended Rabin Algorithm (Algorithm 3.6.1) is as secure as the 

original Rabin algorithm (Algorithm 3.2.1).  If the adversary can compute find two 

square roots of such that 1 1 1 2 2 2: ( , ) and ( ,C S a b S a b= = 1S ≠ −  he/she can find non-

trivial factors of n by computing  
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( )1 2gcd ,a a n+ , (3.47)

 

( )1 2gcd ,b b n+ , (3.48)

 

( )1 2gcd ,a a n−  (3.49)

 

or 

 

( )1 2gcd ,b b n−  (3.50)

 

1 2a a−  and 1 2b b−  here are absolute values. 

The Extended Rabin Algorithm, as the original, is vulnerable to a chosen 

ciphertext attack. In addition, there is still a problem of selecting the correct square root. 

As with the Original Rabin Algorithm, both problems can be addressed by adding preset 

bits to the end of every message. With Algorithm 3.6.1 the message M consists of two 

blocks m1 and m2. The redundant bits could be added to m1, m2 or both m1 and m2. The 

advantage of the Extended Rabin Algorithm is that only half as many bits per block are 

needed as with the Original Rabin Algorithm to achieve the same probability of returning 

the correct square root. For example, to achieve the probability of an error of 2-64, 32 

redundant bits per block are required. With the original 64 bits are required. 

 When the Rabin algorithm is used with redundant bits, the proof of equivalency to 

factoring is no longer valid. This means that Rabin Cryptosystem with redundant bits 
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may be easier to break than factoring. If this is the case, then Gaussian integers offer 

enhanced security because the order of Gaussian integers mod p is p2-1 as opposed to p-1 

with real integers. The order of Gaussian integers mod n=pq is  

 

lcm(p2-1,q2-1), (3.51)

 

as opposed to  

 

lcm(p-1,q-1) (3.52)

 

with real numbers. Moreover, the fact that there are less redundant bits is also likely to 

increase security. 

 

 

 

3.8 Chapter Summary 

In this chapter, an extension of the Rabin cryptosystem into the field of Gaussian integers 

was formulated. The extended cryptosystem employs a new square root algorithm for 

Gaussian integers, which is presented in Section 3.4 and proven. The Extended Rabin 

cryptosystem is at least as secure as the original Rabin Cryptosystem. When used with 

redundant bits, it offers the advantage of using less number of bits. 

 



 

CHAPTER 4 

ANALYSIS OF RSA ALGORITHM OVER GAUSSIAN INTEGERS 

 

 

4.1 Description of RSA Algorithm over the Field of Gaussian Integers 

RSA is a widely used algorithm based on the difficulty of factoring a product of two 

primes. The original RSA algorithm over the field of real integers is presented below: 

Algorithm 4.1.1 Original RSA algorithm 

Key Generation: Generate two large distinct real primes p and q. Compute n=pq. 

Compute ( ) ( 1)( 1)n p qϕ = − − . Select a random integer e such that 1 ( )e nϕ< <  and 

gcd( , ( )) 1e nϕ = . Compute . The pair n and e is the public key, and d is 

the private key. 

1: mod (d e nϕ−= )

Encryption: Given a message m (represented as a real integer) compute the ciphertext 

. : modec m n=

Decryption: Compute the original message . :  mod dm c n=

 

In [30],  RSA was extended into the field of Gaussian integers. It is presented 

below: 
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Algorithm 4.1.2  RSA algorithm with Gaussian integers 

Key Generation: Generate two large Gaussian primes P and Q. Compute N=PQ. 

Compute ( ) ( ) ( )N P Qϕ ϕ ϕ= . Select a random integer e such that 1 (e N )ϕ< <  and 

gcd( , ( )) 1e Nϕ = . Compute . Pair N and e is a public key, and d is the 

private key. 

1 mod ( )d e Nϕ−=

Encryption: Given a message M (represented as a Gaussian integer) compute cipher text 

.  MOD eC M N=

Decryption: Compute the original message MOD dM C N= . 

 

 

4.2 Cryptanalysis of RSA Algorithm over the Field of Gaussian Integers 

Algorithm 4.1.2 is the same as in [30]. The notation was converted and a special system 

introduced in [30] to avoid negative integers was omitted. 

Suppose N=PQ, where P and Q are Gaussian primes. N is a public key known to 

everybody. If one can factor N, the cryptosystem is broken and it is possible to read all 

the messages. There are three possibilities: 

1) P=(p,0)  and |Q| mod 4=1 where p is a real Blum prime 

2) |P| mod 4=1 and |Q| mod 4=1 

3) P=(p,0)  and Q=(q,0) where p and q are real Blum primes. 

 

The first possibility is clearly not secure. If P=(p,0)  and Q=(a,b) then N=(ap,bp). 

To determine the factors of N one needs to find gcd( , )ap bp p= , where gcd( , ) 1a b = , 

because Q is a Gaussian prime. 
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Example 4.2.1  RSA with Gaussian primes of mixed type (small numbers) 

 P=(23,0), Q=(9,4),  

N=PQ=(23,0)(9,4)=(207,92) 

gcd(207,92) = 23 

 

Example 4.2.2  RSA with Gaussian primes of mixed type (larger numbers) 

P=(2895188484894600915775463803,0), Q=(51325165669337,1615288995535) 

N=PQ=(148596028631172174525224275802904110508611, 

4676566099649898433587640061946621119605) 

gcd(148596028631172174525224275802904110508611, 

4676566099649898433587640061946621119605)=  

=289518848489460091577546380 

 

It takes a fraction of a second to compute the factor of N in large prime example. 

Consequently, this combination of Gaussian primes should never be used in Algorithm 

4.1.2. 

In case 2), both P=(a,b) and Q=(c,d) are non-Blum Gaussian primes. The one-to-

one relationship between real primes and non-Blum Gaussian primes could be used. If in 

Algorithm 4.1.2 both P and Q are non-Blum Gaussian primes, then, after converting the 

Gaussian integers into real integers, the resulting algorithm is the original RSA algorithm 
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over real integers. For the examples below the numerical examples from [30] were 

considered to illustrate the point. 

 

Example 4.2.3  RSA with non-Blum Gaussian primes 

The original example from [30] has the following: 

Key generation: Suppose P=(533,162) and Q=(17,10)    (4.1) 

N=PQ=(7441,8084).         (4.2) 

( ) (| | 1)(| | 1) (310333-1)(389-1)=120408816N P Qϕ = − − =    (4.3)  

Select e = 56852657.        (4.4) 

1 -1mod ( ) 56852657 mod  120408816d e Nϕ−= = = 98072417  (4.5) 

The public key is N = (7441,8084); e = 56852657 

Encryption:  

 Suppose a plaintext M = (0,999) 

    (4.6) 
56852657MOD (0,999)  MOD (7441,8084)

(-1530,2765)

eC M N= =
=

=

Decryption: 

     (4.7) 98072417 MOD ( 1530,2765) (0,999)dM C N= = − =

To get the equivalent of real integer RSA protocol the numerical representation of I has 

to be computed. If  , then N a bi= + 0 (mod )a bi N+ = , where 1: modi ab N−= − . For 

this example,  or 7441+8084i. (7441,8084)N =

1  (-7441)8084 120712096*83312011
90868181 (mod  120719537)

i −= =
=

=
    (4.8) 
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To get the equivalent real integer RSA protocol the numerical representation of I has to 

be computed. If  , then N a bi= + 0 (mod )a bi N+ = , where 1: modi ab N−= − .  

For this example N=(7441,8084) or 7441+8084i. 

     (4.9) 
1  (-7441)8084 120712096*83312011

90868181 (mod  120719537)
i −= =
=

=

The equivalent real integer RSA protocol: 

Key generation: Set  p = |P| = |(533,162)| = 310333,              (4.10) 

         q = |Q| = |(17,10)| = 389              (4.11) 

n = |N| = |P||Q| = pq = |(7441,8084)| = 120719537.            (4.12) 

( ) (| |) ( ) (| | 1)(| | 1) ( 1)( 1)
(310333-1)(389 -1) 120408816
n N N P Q p qϕ ϕ ϕ= = = − − = − −

= =
=

            (4.13) 

Using the same keys e and d: 

 e = 56852657                  (4.14) 

1 -1mod ( ) 56852657 mod  120408816d e Nϕ−= = = 98072417           (4.15) 

Here the public key is n = 120719537; e = 56852657 

Encryption:  

 With the Gaussian integer protocol, the message is M = (0,999) = 999i. 

 Convert M to m as follows: 

999 999*90868181 116940532 mod  120719537m i= = =            (4.16) 

 In the Gaussian integer protocol: 

              (4.17) 
56852657

 MOD 
(0,999)  MO  (7441,8084) (-1530,2765)

eC M N
D

= =

= =

 There are several ways to get the corresponding c: 

1) Convert C to c using the conversion algorithm (Algorithm 2.1.1): 
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                       (4.18) 
 1530 2765 1530 2765*90868181
33162438(mod  120719537)

c i= − + = − + =
=

2) Use the integer exponentiation algorithm: 

                     (4.19) 
56852657

mod
116940532 33162438 (mod 120719537)

ec m n= =

= =

           Note that 33162438 MOD (7441,8084) = (-1530,2765)             (4.20) 

Decryption: 

 With the Gaussian integer protocol the message is: 

                (4.21) 98072417 MOD ( 1530,2765) (0,999)dM C N= = − =

 As with cipher text c, there are several ways to get the corresponding m: 

1) Convert M to m using the conversion algorithm (Algorithm 2.1.1): 

   m = 999i = 999*90868181 = 116940532 (mod 120719537)         (4.22) 

2) Use the integer exponentiation algorithm: 

                     (4.23) 
98072417

mod
33162438 116940532 (mod 120719537)

dm c n= =

= =

 Note that 116940532 MOD (7441,8084) = (0,999)              (4.24) 

 

From Example 4.2.3 several facts are clear: 

• If the adversary can break real integer RSA then he/she automatically can 

automatically break the corresponding Gaussian integer RSA. Consequently, 

when two non-Blum Gaussian primes are used for Algorithm 4.1.2 there is no 

added security. 

• Note that the cipher text with Gaussian RSA and the corresponding real integer 

RSA has the same number of digits (-1530+2765i vs. 33162438). This is not 

 



121 

surprising because the one-to-one relationship implies that on average the number 

of digits in Gaussian integers and the corresponding real integers would be the 

same. The argument that Gaussian integer RSA packs more information is wrong. 

In fact, if any of the message representation schemes are used (like redundancy) 

the amount of information packed into each message would be less with Gaussian 

RSA. 

• There is no need for “domain of validity” concept as described in [30]. The 

Gaussian integer modulo operation, if defined carefully, is not ambiguous. 

Negative values represent information. In fact, if the “domain of validity” is used, 

less information is packed into each message. 

 

It was demonstrated that, if two non-Blum Gaussian primes are used in Algorithm 

4.1.2, then there is one-to-one correspondence to real integer RSA. From this, one could 

derive a conclusion that the security of Gaussian integer RSA with two non-Blum primes 

is the same as with real integer RSA. However, this may not be the correct conclusion. In 

fact, it is likely that Gaussian integer RSA is less secure than the corresponding real 

integer RSA.  

The reason for this is that the problem of representing n=pq (p and q are large 

primes) as a sum of two integer squares is a hard problem when factors p and q are large 

and unknown. If n can be represented as 2n a b2= +  and 2n c d 2= +  where c n  and 

, then n can be factored easily by doing the following:  

a≠ −

c n b≠ −

1) Multiply a+bi by c+di modulo n 
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( )( )  (mod )a bi c di e fi n+ + = +  (4.25)

 

2) Compute gcd(e,f). gcd(e,f) would equal to either p or q. 

If representing n as a sum of two squares were an easy problem, then the factoring 

of n would be an easy problem also. By using Algorithm 4.1.2 with two non-Blum 

Gaussian primes, a partial solution to the factoring problem is given away and, possibly, 

the entire solution. 

The method described above is a generalization of a method for factorization used 

by Fermat. It is based on an idea that, if there are known two integers x and y so that 

2 2 (mod )x y≡ n

( )

 holds, then it can be used for factoring of n=pq.  Details of the algorithm 

and proof are provided in [32] . 

Now the case when Blum Gaussian primes are used in Algorithm 4.1.2 is 

discussed. When primes P = (p,0) and Q = (q,0) (p and q are Blum real primes) are used 

in Algorithm 4.1.2, it becomes: 

Algorithm 4.2.1  RSA algorithm with Gaussian integers and Blum Gaussian primes 

Key Generation: Generate two large real primes p and q. Compute n=pq. 

Compute . Select a random integer e such that 12 2( ) ( 1)( 1)n p qϕ = − − e nϕ< <  and 

gcd( , ( )) 1e nϕ = . Compute . Pair n and e is a public key, and d is the 

private key. 

1 mod ( )d e nϕ−=

Encryption: Given a message 1 2( , )M m m= , where 11 m n≤ <  and , compute 

cipher text . Here “mod” operation on a Gaussian integer is as follows: if 

G=(a,b), then  

21 m n≤ <

:  mod eC M n=
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mod ( , ) mod ( mod , mod )G n a b n a n b= = n  (4.26)

 

Decryption: Compute the original message mod dM C n= .  

 

This algorithm is described in [28] and it is very similar to real integer RSA. 

However, there are differences. In Algorithm 4.2.1, e and d range from 1 to 

, as opposed to 2 2( ) ( 1)( 1)n p qϕ = − − ( ) ( 1)( 1)n p qϕ = − −  in Algorithm 4.1.1. The order 

of a Gaussian integer modulo n = pq (p and q are Blum real primes) is much larger than 

the order of a real integer modulo n. In fact, 

 

2 2ord( ) mod lcm( 1, 1)G n p q≤ − −  (4.27)

 

as opposed to  

 

ord( ) mod lcm( 1, 1)g n p q≤ − −  (4.28)

 

where G is a Gaussian integer, g is a real integer.  

The primes p and q could be selected such that ord(G) mod n would equal to  

 

2 2( 1)( 1
24

p q )− −  (4.29)

 

However, larger order does not necessarily mean greater security for the RSA. 
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Currently, RSA is not proven to be as secure as factoring, although many 

scientists believe that it is likely the case. If it is the case, then Algorithm 4.2.1 is as 

secure as Algorithm 4.1.2. On the other hand, if breaking the RSA is not as hard as 

factoring, then it is possible that Gaussian integers add security to the RSA.  

At first glance, it seems that the message in Algorithm 4.2.1 packs more 

information than the message in Algorithm 4.1.2. However, it is incorrect. Sending one 

message with Algorithm 4.2.1 is equivalent to sending two messages with Algorithm 

4.1.1 as far as network bandwidth is concerned. Moreover, it takes longer to encrypt a 

Gaussian integer message than to encrypt two real integer messages. In Algorithm 4.2.1, 

in order to encrypt or decrypt, the following operation has to be performed: 

 

Gk mod n, (4.30)

 

where G=(a,b) is a Gaussian integer, and 2 21 ( 1)(k p q 1)< < − − . 

It takes three real integer multiplications and several real integer additions to do 

one the Gaussian integer multiplication.  It takes two real integer multiplications and 

several real integer additions to do one the Gaussian integer square. The integer 

multiplication is much more time consuming than the integer addition so the additions 

will be ignored in the subsequent analysis.  When using the square-and-multiply 

algorithm to perform Gaussian exponentiation, the average running time is 

 

2 2

1 2
( 1)( 13.5 log

2m
p qt t )− −

=  (4.31)
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where tm is the time required for multiplication of two real integers. 

To encrypt or decrypt a message with the real integer RSA the following operation has to 

be performed: 

 

gm mod n , (4.32)

 

where g is a real integer and 1 ( 1)(m p q 1)< < − −  

The time required to perform two integer exponentiation operations is: 

 

2 2
( 1)( 13 log

2m
p qt t )− −

=  (4.33)

 

No additions are necessary for real integer exponentiation operation. Clearly, . It 

takes less time to encrypt or decrypt two real integer messages than one Gaussian integer 

message. Consequently, Algorithm 4.2.1 does not have any advantages as far as 

encryption or decryption time of a given amount of data is concerned. The example 

below demonstrates this point. 

1t t> 2

 

Example 4.2.4  Algorithm 4.2.1 vs. Algorithm 4.1.1  

Key generation: Suppose p=251, q=263 

n = pq = 66013                 (4.34) 

2 2 2 2( ) ( 1)( 1) (251 -1)(263 -1)=4357584000n p qϕ = − − =             (4.35) 

Choose e = 56852657, then 
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1 -1mod ( ) 56852657 mod  4357584000d e Nϕ−= = = 1716163793           (4.36) 

The public key is n = 66013;e = 56852657 

Encryption:  

Let message M = (m1,m2) = (55555,44444) 

            (4.37) 
56852657

1 2( , )  mod (55555,44444)  mod 66013 =
= (31754,12046)

eC c c M n= = =

Decryption: 

             (4.38) 
1716163793

 MOD 
(31754,12046) mod 66013 (55555,44444)

dM C N= =

= =

The corresponding real integer RSA: 

Key generation: p=251, q=263 

n = pq = 66013 

( ) ( 1)( 1) (251-1)(263-1) 65500n p qϕ = − − = =              (4.39) 

To get e, reduce e mod ( )nϕ or mod 65500: 

e = 56852657 mod 65500 = 64157               (4.40) 

To get d, reduce d mod ( )nϕ or mod 65500: 

d = 1716163793 mod 65500 = 63793               (4.41) 

Note that 63793*64157=1 mod 65500 

The public key is n = 66013; e = 64157 

Encryption:  

In the corresponding Gaussian RSA, the message was M=(m1,m2)=(55555,44444) 

Encrypt m1 and m2 separately as follows: 

              (4.42) 64157
1 1 mod 55555 mod 66013 61927ec m n= = =
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              (4.43) 64157
2 2 mod 44444 mod 66013 22993ec m n= = =

Decryption: 

Decrypt m1 and m2 separately as follows: 

              (4.44) 63793
1 1 mod 61927 mod 66013 55555dm m n= = =

              (4.45) 63793
2 2 mod 22993 mod 66013 44444dm m n= = =

 

Example 4.2.4 illustrates that Algorithm 4.2.1 and Algorithm 4.1.1 have 

approximately the same performance when encrypting and decrypting the same amount 

of data.  In fact, as was proved before, the original RSA over real integers would be 

slightly faster.  

The extension of RSA the algorithm into the field of Gaussian integers 

(Algorithm 4.2.1) is viable only if real primes : mod 4 3p p =  are used (Algorithm 4.2.1). 

The extended algorithm could add security only if breaking the original RSA is not as 

hard as factoring. Even in this case, it is not clear whether the extended algorithm would 

increase security. The Gaussian integer RSA is slightly less efficient than the original; 

therefore, the original real integer RSA is more practical. 

 

 

 

4.3 Chapter Summary 

In this chapter, it is shown that the extension of the RSA algorithm into the field of 

Gaussian integers is viable only when real primes p: p mod 4 = 3 are used. The extended 

algorithm could add security only if breaking original RSA is not as hard as factoring. 
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Even in this case, it is not clear if the extended algorithm would increase security. The 

Gaussian integer RSA is slightly less efficient than the original; therefore, the original 

real integer RSA may be more practical. 

 



 

CHAPTER 5 

A PSEUDO-RANDOM PIXEL REARRANGEMENT ALGORITHM BASED 

ON GAUSSIAN INTEGERS FOR IMAGE WATERMARKING 

 

5.1 Algorithm Introduction 

Steganography is a process of hiding information in a medium in such a manner that no 

one except the anticipated recipient knows of its existence ([61]). The history of 

steganography can be traced back to around 440 B.C.E, where the Greek historian 

Herodotus described in his writings about two events: one used wax to cover secret 

messages, and the other used shaved heads. With the explosion of internet as a carrier for 

various digital media, many new directions of this state-of-the-art emerged.  

A notable application of steganography is watermarking of digital images, which 

is a useful tool for identifying the source, creator, owner, distributor, or authorized 

consumer of a document or an image. It has become very easy nowadays to copy or 

distribute digital images (whether copyrighted or not). A watermark is a pattern of bits 

inserted into a digital media for copyright protection ([12]). There are two kinds of 

watermarks: visible and hidden. A good visible watermark must be difficult for an 

unauthorized person to remove and can resist falsification. Since it is relatively easy to 

embed a pattern or a logo into a host image, the authorized person must make sure the 

visible watermark was indeed the one inserted by the author. In contrast, a hidden 

watermark is embedded into a host image by some sophisticated algorithm and is 

invisible to the naked eye. It could, however, be extracted by a computer.  

129 
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There are many innovating watermarking algorithms and many more get 

published every day (such as recently published [3, 41, 53, 70] ). In many image 

watermarking algorithms, for example in [24, 69, 72, 73], it is required to rearrange the 

pixels as a part of watermarking process. Randomness is desired during this step. 

 Modular arithmetic and, specifically, the integer exponentiation modulo prime 

numbers are widely used in modern cryptographic algorithms. One important property of 

integer exponentiation modulo prime is that it generates a sequence of integers that looks 

very much like a sequence of random numbers. This is a property that is desirable for 

pixel rearrangement algorithms. In this dissertation, the rearrangement step of 

watermarking algorithms is revisited and a different universal method for doing it is 

described. It is easy to replace rearrangement step in  [24, 69, 72, 73] with the method 

described in this chapter. Moreover, this method can be used with most picture 

watermarking algorithms to enhance them.  

One can look at Gaussian integers as an extension of real integers into two 

dimensions. They exhibit similar properties as regular integers but have some notable 

differences, that could be exploited in various fields, such as cryptography [27, 28, 30, 

65]. One important difference is that they have a larger order for the same prime size, 

which provides the increased security.  

In [69, 72], Arnold’s cat map ([10]) was used to rearrange pixels for improving 

the performance of watermarking techniques. Here a replacement is described, namely, a 

novel pixel rearrangement algorithm based on Gaussian integers, to rearrange pixels in an 

image. It is demonstrated that the new algorithm is superior to Arnold’s cat map in both 

time complexity and security. This technique is not a watermarking algorithm by itself 
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but rather a universal enhancement to any existing watermarking algorithms. The 

technique tends to increase robustness to noise by uniformly distributing noise 

throughout the image. The increase in robustness depends on the watermarking algorithm 

enhanced by the technique. 

 

 

5.2 Proposed Pixel Rearrangement Algorithm 

In this section the algorithms for pixel rearrangement are introduced and their 

computational complexity analyzed.  

Algorithm 5.2.1  Pixel rearrangement based on Gaussian integers 

Given: Image I = (x, y) of size m × n; 

Output: Image ( , )I x y′ ′= ′

n

 of size m × n; 

 

1. Generate a prime and max( , )p m> mod 4 3p = . 

2. Find a Gaussian integer generator ( , ) modG a b p= , using Algorithm 2.10.1 or 

Algorithm 2.10.2.  

3. Generate a random number s, such that 20 1s p< < − . 

4.          (5.1) ( , ) : mods
x yS s s G= = p

5. while (  or ) xs m> ys n>

6.   : modS SG p=

7. end-while  

8.  1 2( , ) :C c c S= =
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9. for i=1 to m 

10.                for j=1 to n 

11.   { } { }1 2' , : ,I c c I i j=                    (5.2) 

12.                      (5.3) : modC CG p=

13.                    while or1c m>   2c m>

14.     : modC CG p=                   (5.4) 

15.                   end-while 

16.              end-for 

17. end-for 

 

Note that the last value of 1 2( , )C c c= needs to be saved in order to rearrange back the 

pixels. Without the value of C, pixels could be rearranged back; however, it would 

require additional computation. 

 

Algorithm 5.2.2  Reverse of Algorithm 5.2.1 

1.                       (5.5) :rC C=

2. for i=m downto 1 

3.                             for j=n downto 1 

4.     { } { }1 2, : ' ,I i j I c c=       (5.6) 

5.           (5.7) 1: mor rC C G−= d p

6.                                            while ( or1c m>  ) 2c m>
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7.                       (5.8) 1: mor rC C G−= d p

8.                                            end-while 

9.                             end-for 

10. end-for 

 

The time complexity of Algorithm 5.2.1 and Algorithm 5.2.2 can be defined in 

terms of p. The most computationally expensive operations of the algorithm are (5.1), 

(5.7)  and (5.8). Suppose that u is the time spent to multiply two integers of size p. 

Assuming the square-and-multiply algorithm is used for exponentiation and Algorithm 

1.3.1 is used to multiply two Gaussian integers, the time complexity of (5.1) is 

approximately: 

 

2
2 23.5 log ( 1) 7 logu p u− ≈ p  . (5.9)

 

Because the order of Gaussian integers is 2 1p − , in Step 4 of Algorithm 5.2.1, 2 1p −  

multiplications are performed. Therefore, the number of multiplications required is: 

 

( )( ) ( )2 23 1 3u p upΟ − = Ο . (5.10)

 

The total time complexity of Algorithm 5.2.1 is: 

 

( )( ) ( )2 2
23 1 7 logu p u p upΟ − + = Ο  (5.11)
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The complexity of integer multiplication u depends on the size of p. For small p, 

the most efficient algorithm is the naïve multiplication with time complexity of , 

where  is the size of p in bits. For a larger p, the multiplication algorithm in 

[43] is faster than the naïve method. The time complexity of the Karatsuba multiplication 

is . For an even larger p, the Toom-Cook (or Toom-3) algorithm is more 

efficient with a time complexity of  [44]. The thresholds for the size of p vary 

widely with implementation details. However, it is reasonable to assume that most 

images would not be sufficiently large for the Toom-Cook or Karatsuba multiplication. 

Therefore, it can be assumed that the naïve multiplication method can be used and (5.11) 

becomes: 

2( )lΟ

2logl = p

)

1.585(3 )lΟ

1.465(nΟ

 

( ) ( )22
2logup p p⎡ ⎤Ο = Ο⎣ ⎦ . (5.12)

 

This is the time complexity of Algorithm 5.2.1. The time complexity for Algorithm 5.2.2 

is the same. 

To minimize the time complexity, it is reasonable to select p close to . If 

p is selected in such a way, then the time complexity in terms of image size is 

max( , )m n

 

( ) ( )( ){ }2

2max , log max ,m n m n⎡ ⎤Ο ⎣ ⎦ . (5.13)

 

The rearrangement algorithm described above is universal and can be used for 

many purposes. It can be applied for image watermarking as follows: 
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Algorithm 5.2.3  Watermarking with pixel rearrangement based on Gaussian integers 

1. Rearrange the image using Algorithm 5.2.1; 

2. Apply the desired watermarking technique to the resulting rearranged image 

from Step 1; 

3. Apply Algorithm 5.2.2 to the resulting image from Step 2. 

 

Algorithm 5.2.4  Extraction of the watermark applied with Algorithm 5.2.3 

1. Rearrange the image using Algorithm 5.2.1. 

2. Extract the watermark using the watermarking extraction technique in 

Algorithm 5.2.2. 

 

Note that in Algorithm 5.2.2, depending on watermarking technique, it may be 

possible to extract watermark and perform rearrangement on the watermark rather than 

on the image. 

 

 

5.3  Cryptoimmunity of the Rearrangement Algorithm 

From the properties of Gaussian integer group, it can be estimated how hard it is for an 

adversary to obtain the original image from the rearranged one. The less an adversary 

knows about the algorithm and parameters, the harder it is to determine the original 

arrangement. It is reasonable to look at the following three cases: 
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Case 1. The adversary knows nothing about the rearrangement algorithm used, but he/she 

suspects that some kind of an algorithm has been used. In this case, it is extremely hard 

for an adversary to figure out the original arrangement because there are too many 

possibilities. That is, there are  possible permutations; where n is the number of pixels 

in the image.  

!n

 

Case 2. The adversary knows that Algorithm 5.2.1 was used, but he/she does not know 

the parameters such as prime p, generator G, or private key s. In this case, the number of 

possible permutations for an image I of size m × n is: 

 

( ) ( )2 21 1p pϕ⎡ ⎤− −⎣ ⎦ , (5.14)

 

whereϕ  is the Euler’s totient function ([2]).  

The formula  (5.14) does not include the complexity of guessing p. The reason for 

this is that it is too computationally expensive to use a large p (refer to (5.12)). For 

efficiency, p should be close to the image size. The prime p in (5.14) can be selected in 

such a way that ( )2 1pϕ − is maximized. To do this, one can select a prime with large 

prime divisors of p + 1 and 1p − . For example,  

 

1 11p s q+ =  (5.15)

 

and   
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2 21p s q− = , (5.16)

 

where and are small integers, and and are primes close to p in size. In this case: 1s 2s 1q 2q

 

( ) ( )( )( )2
1 2 1 21 1 1 ( )( 1)(p p p s s q qϕ ϕ ϕ− = − + = − −1)

)

 (5.17)

 

and 

 

( )( ) ( )2 2
1 2 1 21 ( 1)( 1) ( ) (p q q q q pο ϕ ο ο ο− = − − = =  (5.18)

 

Consequently, the approximate computational complexity of (5.14) is: 

 

( ) ( )( ) ( )( )42 2 41 1 ( ) max ,p p p mο ϕ ο ο⎡ ⎤− − = =⎣ ⎦ n  (5.19)

 

Case 3. The adversary knows Algorithm 5.2.1 used, prime p, and a generator G. In this 

case, the number of possible permutations is limited to  

 

2 1p − .  (5.20)

 

While it may be unreasonable to assume that the adversary would not know 

Algorithm 5.2.1, there is no reason to make a prime p and a generator G known. 

Therefore, case 2 may be the most reasonable security estimate. 
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If increased protection is desired, Algorithm 5.2.1 could be applied several times 

on the same image. Suppose that Algorithm 5.2.1 was applied t times on image I of size 

m × n. In this case, the number of possible permutations is: 

 

( )( )4max , tm nο , (5.21)

 

while the time to compute the  rearranged image would still be reasonable and be on the 

same order in terms of image size: 

 

( ) ( ){ } ( ) ( ){ }2 2
2 2max , log max , max , log max ,t m n m n m n m nΟ = Ο⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (5.22)

 

Therefore, one can achieve the desired level of security by increasing the time it takes to 

rearrange the image somewhat. Multiple rearrangements could provide a desirable and 

practical tradeoff. 

 

 

5.4 Comparison to Arnold’s Cat Map Chaos Transformation 

The Arnold’s cat map transformation variation used in [69] is defined as: 

 

1 1
mod ,

1
x x

N
y l l y
′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.23)
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where N is the width of the square image. The possible values of l in (5.23) are 

. Therefore, the number of the transformations required is O(N). It is 

reasonable to assume that N is small enough to call for the naïve multiplication 

algorithms. Thus, the multiplication time complexity is 

:1 2l l N< < −

 

2
2(log )NΟ , (5.24)

 

and it has to be performed for every pixel (i.e., N2 times). Therefore, the time complexity 

of Arnold’s Cat Map is: 

 

3 2
2( logN NΟ )

n

. (5.25)

 

Formula (5.25) should be compared with (5.13), assuming max( , )N m≈ . It is obvious 

that the computational complexity of Algorithm 5.2.1 described by (5.13) is much better 

than that of Arnold’s Cat map described by (5.25). 

As far as security, it is obvious that there are only ο  possible permutations 

because  . It is much smaller than 

( )N

:1 2l l N< < − ( )( )4ο max ,m n  for Algorithm 5.2.1.  

Another important advantage of Algorithm 5.2.1 is that the transformed image 

does not have any visible patterns. After rearrangement with this the algorithm, the 

resulting image looks like random noise. The transformation with Arnold’s Cat map, on 

the other hand, preserves visible patterns. Figure 5.1 clearly illustrates this point. At 

every step of Arnold’s Cat map transformation, C1-C7 patterns are clearly visible. The 
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image B, on the other hand, looks like random noise. Consequently, Algorithm 5.2.1, 

when used for watermarking, is far superior to Arnold’s Cat map in terms of security and 

computational time. 
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A C1 B

C2 C4 C3

C4 C7 C6

 

 

Figure 5.1  Image rearranged by Algorithm 5.2.1 and Arnold’s Cat map side-by-side. A 
is the original image, B is the rearranged image by Algorithm 5.2.1, and C1-C7 are the 
steps of Arnold’s Cat map rearrangement. 
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5.5  Example in Image Watermarking 

Algorithm 5.2.1 can be used with general watermarking techniques. The following 

example illustrates its use of applying LSB substitution for watermark. Even though this 

technique does not provide a robust watermark, the use of rearrangement does improve 

the security by making the watermark virtually undetectable. When pixel rearrangement 

is used and the adversary looks at the last two bits of the watermarked image, all he/she 

sees is random noise. The only way to see the watermark is to rearrange the pixels. 

Figure 5.2 illustrates the advantages of using the rearrangement algorithm for 

image watermarking. In Figure 5.2, (a) is the original Cameraman image, (b) is the two 

most significant bits of the Lena image to used as the watermark, (c) is the rearranged 

image of Cameraman using Algorithm 5.2.1, (d) is the watermarked image of the 

rearranged image using LSB substitution, (e) is the rearranged back of the preceding 

watermarked image using Algorithm 5.2.2, (f) is the extracted two bits of LSB, and (g) is 

the rearranged back of the preceding extracted image using Algorithm 5.2.2. Note that 

image (g) is exactly the same as the original watermark (b). 

 If the watermarking is performed without rearrangement, then the hidden 

watermark is easily detectible. By using the proposed algorithms, it is impossible to see 

the original watermark in image (f), which is random noise just like images (c) and (d). It 

is fairly difficult for the adversary to extract the original watermark, even though her/she 

knows that the watermark is hidden there. With sequential applications of Algorithm 

5.2.1, the security could be enhanced to an arbitrary level, making watermark practically 

impossible to reconstruct for the adversary. 
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           (a)       (b)    (c) 

     
      (d)       (e)     (f)        

 
      (g) 

 

Figure 5.2 (a) The original Cameraman image, (b) the two most significant bits of Lena 
as the watermark, (c) the rearranged image of Cameraman using Algorithm 5.2.1, (d) the 
watermarked image of the rearranged image using LSB substitution, (e) the rearranged 
back of the preceding watermarked image using Algorithm 5.2.2, (f) the extracted two 
bits of LSB (g) the rearranged back of the preceding extracted image using Algorithm 
5.2.2. 
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5.6 Chapter Summary 

In this chapter, a new method of rearranging image pixels for watermarking based on the 

properties of Gaussian integers is described. It results in a random-looking image 

transformation that significantly improves the security of the embedded watermark. 

Moreover, it is much faster when compared to Arnold cat map. The proposed algorithm is 

an easy-to-implement practical technique that would enhance the security of any 

watermarking algorithm. It is flexible enough to offer variable levels of security.

 



 

CHAPTER 6 

CONCLUSION 

 

The application of Gaussian integers for DLP based public key cryptosystems was 

discussed. It was demonstrated that cryptosystems that are based on non-Blum Gaussian 

primes (primes  is a prime) are equivalent to real integer cryptosystems 

modulo  (Algorithm 2.1.1 and Algorithm 2.1.2). Therefore, such cryptosystems do 

not offer any advantages over real integer cryptosystems. On the other hand, the 

cryptosystems based on Blum Gaussian primes (primes

( , ) :| |P a b P=

| P |

( , 0)P p= : p is a prime) offer a 

longer cycle. 

It was shown that the Gaussian integer DLP is substantially harder then the real 

integer DLP. Moreover, when solving the Gaussian integer DLP, one is required to solve 

two problems: 

1) Lucas Sequences DLP with 1modQ p≡ (Theorem 2.5.2). 

2) Real integer DLP. 

The fact that these two problems seem to be very different, bodes very well for 

cryptography algorithms based on the Gaussian integer DLP. The solution of one 

problem may not lead to the solution of the other, so Gaussian integers offer additional 

protection.  

 In addition to allowing for assessing the complexity of the Gaussian integer DLP, 

Theorem 2.5.2 is the basis for Algorithm 2.8.1 (Lucas sequence Exponentiation of 

Gaussian integers (LSEG)). The LSEG algorithm achieves about 35% theoretical 

improvement in CPU time over real integer exponentiation. Under an implementation 
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with GMP 5.0.1 library it outperformed the GMP’s "mpz_powm" function (the 

particularly efficient modular exponentiation function that comes with GMP library) by 

40% for bit sizes 1000-4000, because of low overhead associated with LSEG. Moreover, 

some steps of the LSEG algorithm could be run in parallel (such version of the LSEG 

algorithm was denoted as LSEG*). LSEG* offers about 50% improvement over real 

integer exponentiation. 

 In this dissertation, the properties of Gaussian integers under modular 

multiplication and exponentiation were explored. Specifically, the order of Gaussian 

integers and its relationship to their norm was analyzed. Based on the relationship 

between the order and the norm, an efficient and practical algorithm to find generators for 

the Gaussian integer DLP cryptosystems was designed, namely, Algorithm 2.10.2. 

In addition to DLP based cryptosystems, the factoring based cryptosystems with 

Gaussian integers were considered (i.e., RSA and Rabin). The Extended Square Root 

algorithm for Gaussian integers was derived and its validity proved. Using this algorithm 

the Rabin Cryptography algorithm was extended into the field of Gaussian integers. The 

resulting Extended Rabin Cryptography algorithm requires only half as many redundant 

bits as the original.  

The analysis was performed on the extension of RSA into the domain of Gaussian 

integers. It yielded several interesting results, namely, that Gaussian primes 

do not offer any immediately tangible advantages over real primes and 

that the viability of Gaussian integer RSA is questionable. 

( , ), 0P a b b= ≠

Finally, a novel algorithm to rearrange the image pixels for image watermarking 

was derived. The new algorithm is much more efficient than Arnold’s Cat map and it 
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provides a degree of cryptoimmunity to the watermarks. The proposed method can be 

used with most picture watermarking algorithms to enhance them.  

The work presented in this dissertation can be extended in many directions 

including: 

1. Improving the running time of LSEG (Algorithm 2.8.1 ) 

2. Improving the performance of extended Rabin cryptosystem 

3. Improving the security of the pixel rearrangement algorithm (Algorithm 

5.2.1) 

There are many other ways to extend research, but the abovementioned points seem to be 

the most promising. 

 Any improvement to the LSEG algorithm would mean an improvement in the 

running time of the Gaussian integer DLP based cryptosystems. Arguably, there is a lot 

of room for improvement. The slowest operation in the algorithm is the computation of 

Lucas sequences. Any improvement to the computation time of Lucas sequences would 

improve the performance of LSEG. The analysis in this dissertation used the algorithm 

published in [74]. It is analogous to square-multiply exponentiation for real integers. The 

algorithms published in [18] and [68] improve the running time of [74], however, it can 

probably be improved further. Moreover, any improvement to real integer exponentiation 

algorithms would improve the performance of LSEG. 

 The extended Rabin cryptosystem with Gaussian integers is not faster than real 

integer for the same amount of data. It is likely that the increase in number of dimensions 

in this case could be beneficial i.e., the extended Rabin algorithm with quaternions could 
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be faster than the original, provided that the square root for quaternions can be done with 

less than four integer exponentiations. 

 In all probability, the pixel rearrangement algorithm (Algorithm 5.2.1) can be 

modified to provide for greater cryptoimmunity with the same or almost the same 

efficiency.  
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