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ABSTRACT 

RANKING SINGLE NUCLEOTIDE POLYMORPHISMS WITH SUPPORT 
VECTOR REGRESSION IN CONTINUOUS PHENOTYPES 

 
by 

Seif Shahidain 

 
Support vector machines (SVM) have been used to improve the ranking of single 

nucleotide polymorphisms (SNPs) over traditional chi-square tests in disease case studies 

[2].  In this investigation, ranking SNPs with support vector regression (SVR) was 

compared to the Wald test in predicting continuous phenotypes.  SVR-ranked SNPs 

consistently outperformed the Wald test-ranked SNPs to provide a more accurate 

prediction of the phenotype with fewer SNPs across several methods of prediction. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Genome-wide association studies provide insight into how specific regions of the genome 

affect certain diseases and phenotypes by investigating the differences between 

individuals with certain traits at a genetic level [1-5].  These differences between 

genomes are classified as single nucleotide polymorphisms (SNPs).  Ranking a SNP’s 

effect on the disease is a crucial procedure because it, not only, illuminates genes that 

contribute to expression of a phenotype, but can also predict certain characteristics 

someone will have based on their genome.  The significance of a SNP is usually 

determined by a chi-square test in most cases.  However, when dealing with a continuous 

phenotype, like hemoglobin level, the chi-square test is not as useful and usually the 

likelihood ratio test or Wald test is used to find significant SNPs [1,4]. 

Finding new methods that improve upon the chi-square and Wald tests are crucial 

to enhancing risk prediction and illuminating the regions that cause a certain trait to be 

expressed.  Previous studies showed an improvement in disease prediction by selecting 

significant SNPs with support vector machine (SVM) and random forest methods.  The 

SVM and random forest methods showed an improvement in the ranking of causal 

variants and associated regions over the chi-square test.  This improvement, not only, 

enhanced the accuracy of disease risk prediction, but also reduced the number of SNPs 

necessary for the observed increase in predictive power [2].   

 



!
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1.2 Objective 

The SVM and random forest results were for disease prediction, which requires the 

prediction of two classes: disease and no disease [2].  However, these classifier methods 

cannot be used with continuous phenotypes.  So, a similar method of selecting significant 

SNPs with support vector regression (SVR) was used on data from the Wellcome Trust 

Centre for Human Genetics [6].  Three traits from this dataset were previously analyzed 

with a Bayesian method to predict phenotypes by estimating additive and dominant 

effects of the genotype [3].  These results were compared to the SVR method of selecting 

significant SNPs and predicting phenotypic values with ridge regression, SVR and 

multiclass SVM.  In addition to these three traits, several other phenotypes were also 

analyzed to compare the Wald test selection of significant SNPs to the SVR method.
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CHAPTER 2 

METHODS 

 

2.1 Data 

The data was made publically available by the Wellcome Trust Centre for Human 

Genetics and contains the genotypic and phenotypic data of over 2000 mice.  The data 

includes information on 84 families, with eight large, complex families that included a 

majority of the mice and 76 nuclear families [6].  The pedigree information was included 

as extra variables within the data by including a variable for the mouse’s family and one 

for its parents.  The mice were then randomly divided in half into a training (estimation) 

and test (prediction) dataset based upon their family, with at least one family member 

going into the training dataset.  The average training and test dataset size for ten trials is 

included in Table 2.1.  The three traits that were analyzed were coat color, percentage of 

CD8+ cells (%CD8) and mean cellular hemoglobin (MCH), with the full results included 

in Appendix A, B and C respectively, while the other phenotypes analyzed are included 

in Appendix D. 

 

Table 2.1 Number of Mice in Training and Test Datasets 

Trait Total Number of Mice Training Set Test Set 

Coat Color 1893 965 (5) 928 (5) 

MCH 1591 815 (4) 776 (5) 

%CD8 1521 775 (5) 746 (5) 
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2.2 Significant SNP Selection with Wald Test 

To test for the significance of certain SNPs, PLINK’s implementation of the Wald 

statistic was used since it is asymptotically similar to the likelihood ratio test, the 

preferred method of finding significant SNPs [1,4].  The SNPs with P-values smaller than 

the Bonferroni correction; which is .05 divided by the number of SNPs, were then 

extracted to be used with SVR ranking and for prediction [2]. 

 
Clustering Significant SNPs 

The most significant SNPs from the Wald test were then clustered based on location in 

the genome via k-means clustering.  The k-means objective function finds the clusters, 

Ci, such that the following equation is minimized: 

!! !!!
!

!!!!!

!

!!!
 

where n is the number of clusters, xj is the location of the SNP in the genome and mi is 

the mean value of the cluster, Ci.  The clusters of size 5, 10 and 20 were created and 

following clustering, the most significant SNP in the cluster was extracted for analysis. 

 

2.3 Support Vector Regression 

Support Vector Regression seeks to find a function, ! ! , that minimizes the deviation, !, 

between labels, yi, of the n training samples, given by !!!!! !! ! !!!!! ! !!! 

where X = !! and xi is the SNP genotype of the i-th data point, within a certain degree of 

accuracy while trying to remain as flat as possible.  For the linear case,  

! ! ! !! ! ! !!!"#$!!! ! !! !! ! !! 
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where ! ! !  denotes the dot product in X and flatness is given by a small value of w; 

usually established by minimizing the length of w, ! ! !!! .  So, the formulation of 

SVR becomes: 

!"#"!"$%! ! ! ! !!! ! !!!!
!

!!!
 

!"#$%&'!!"!
!! ! ! ! ! !! ! !!!
! ! ! !!! ! !! ! !!!!

!! ! !!! !! !!
 

where C > 0 is the tradeoff between the tolerance to deviation and the flatness of f and 

! ! !!
!!!!!!!!!!!!!!!!"! ! ! !!
! ! !!!!!!!"!!"#$%! , known as the !-insensitive loss function.  Lagrange 

multipliers can be applied to the dual formulation to find w and b [7].  For more 

information on solving and implementing SVR refer to [7,8]. 

 
SVR-Ranked SNPs 

The absolute value of the elements in the w-vector, the discriminant from SVR, is used to 

obtain the ranking of SNPs by sorting the entries of the w-vector in descending order [2]. 

The SNPs are then reordered according to the maximum absolute value entries in the 

SVR discriminant. 

 

2.4 Predicting Phenotypes 

In addition to Support Vector Regression, Ridge Regression and Multiclass Support 

Vector Machines were used to predict phenotypes from the top ranked SNPs from the 

Wald Test, clustering results and SVR discriminant.  The accuracy of prediction was 



!
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based upon the correlation between the actual phenotypic value and the value from 

regression/classification.   

 
2.4.1 Ridge Regression 

Linear regression has been shown to have stability issues when the matrix (X’X) is 

singular.  To circumvent these issues; which are caused by the high correlation between 

SNPS, ridge regression is used to adjust to potential linkage disequilibria.  Under ridge 

regression the coefficient vector, ", is:  

! ! !!!! ! !"!!!X’Y 

where X is the SNP training data, Y is the phenotypic value, I is the identity matrix and # 

is the ridge parameter that reduces the effect of highly correlated SNPs [5].  

 
2.4.2 Multiclass Support Vector Machines 

For multiclass phenotypes, multiclass support vector machines were used to predict 

phenotypes.  The following optimization problem is solved for k classes: 

!"#"!"$%! !! !!
!

!!!
! !! !!

!

!!!
 

!"#!!!!!"!!"#!!""!!!!"!!!! !! !
!!!!!" !! ! !!!!! ! !"" ! ! !!!! ! !!!!

!
!!!!!" !! ! !!!!! ! !"" ! ! !!!! ! !!!!

 

where ! !! !! !! ! !!!!!!!"!!! ! !
!!!!!"!!"#$%! is the loss function [7].  For more information on 

solving the Lagrangian of the optimization problem and implementation of multiclass 

SVM refer to [7, 9]. 
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CHAPTER 3 

RESULTS 

 

In the study that describes the SVM method of ranking SNPs, the results showcased that 

the SVM-ranked SNPs consistently outperformed the chi-square ranked SNPs by 

obtaining a more accurate prediction with fewer SNPs [2].  The following results are the 

maximum correlations obtained using the pedigrees of the mice and various values of # 

and C, while further analysis of including and omitting family data as well as other values 

of " and C are available in Appendices A-C.  These results are compared to those in a 

previous study that obtained a maximum correlation between actual and predicted 

phenotypes of .87, .36 and .58 for coat color, mean cellular hemoglobin and percentage 

of CD8+ cells, respectively, by using the Reversible Jump Markov Chain Monte Carlo 

(RJMCMC) to obtain various estimates for values included in the additive and dominance 

genetic model (Model AD) [3].  

 The results of ridge regression with # = 5 are shown in Table 3.1 and Figure 3.1.  

The values of phenotype prediction for one trial with 850 SNPs used are shown in 

Appendix E since prediction deteriorated as the number of SNPs increased to 800. 

 
Table 3.1 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values using Ridge Regression with # = 5 
 

Trait 
 

Wald Test Number of 
SNPs 

SVR Number of 
SNPs 

Coat Color 0.64 (0.02) 235 0.64 (0.02) 110 
MCH 0.39 (0.02) 250 0.39 (0.02) 85 
%CD8 0.46 (0.04) 230 0.64 (0.02) 135 
 



!
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When using SVR for prediction sometimes Wald-test ranked SNPs obtained a 

maximum before the SVR-ranked SNPs, as shown in Table 3.2 with the values of 

tradeoff (C) that result in the highest correlation, for all values of C used consult 

Appendices A-C.  However, Figure 3.2 used SVR with the same C values shown in Table 

3.2 for prediction and confirmed that SVR-ranked SNPs produce higher correlations with 

fewer SNPs. 

 
Table 3.2 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values using Support Vector Regression 
 

Trait 
 

Tradeoff 
(C) 

Wald Test Number of 
SNPs 

SVR Number of 
SNPs 

Coat Color .0001 0.48 (0.02) 295 0.48 (0.02) 330 
MCH .1 0.39 (0.02) 250 0.39 (0.02) 115 
%CD8 .01 0.64 (0.02) 2000 0.64 (0.01) 955 
 

Multiclass SVM was also used for coat color prediction because coat color is a 

discrete phenotype, so it can be separated into distinct classes, unlike MCH and %CD8; 

which are continuous phenotypes.  When using multiclass SVM, a similar result to SVR 

prediction was observed in coat color prediction using multiclass SVM with C = 5000, 

the Wald test-ranked SNPs and SVR-ranked SNPs both attained a maximum value of .90 

(.02) with 235 and 225 SNPs, respectively, while Figure 3.3 confirms previous results of 

SVR-ranked SNPs having higher correlations with fewer SNPs.  
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A)

 

B) 

 

 

C) 

  

Figure 3.1 The prediction of coat color (A), MCH (B) and %CD8 (C) using ridge 
regression with # = 5 shows SVR-ranked SNPs (red) outperforming Wald Test-ranked 
SNPs (blue) by achieving a maximum correlation, between actual and predicted 
phenotype, with fewer SNPs. 
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Table 3.3 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Clustered SNPs with Multiple Predicting Methods 
 

Trait 
 

Predicting 
Method 

! or C 5 Clusters 10 Clusters 20 Clusters 

Coat Color RR 5 0.39 (0.11) 0.44 (0.08) 0.44 (0.08) 
 SVR .0001 0.30 (0.07) 0.33 (0.07) 0.35 (0.06) 
 Multi-SVM 5000 0.31 (0.19) 0.37 (0.16) 0.37 (0.16) 
MCH RR 5 0.26 (0.03) 0.26 (0.02) 0.27 (0.03) 
 SVR .1 0.25 (0.03) 0.26 (0.02) 0.25 (0.03) 
%CD8 RR 5 0.29 (0.04) 0.33 (0.05) 0.41 (0.04) 
 SVR .01 0.26 (0.04) 0.32 (0.04) 0.40 (0.04) 
 

The accuracy of predicted phenotypes based upon the clustering of SNPs tended 

to be less accurate than those obtained through the Wald test and SVR-ranked SNPs.  The 

correlations of ridge regression, SVR and multiclass SVM using the top Wald test-ranked 

SNPs within 5, 10 and 20 clusters are presented in Table 3.3.  Clustering did not show 

significant improvement over Wald test and SVR-ranked SNPs regardless of predictive 

method used.  

The SVM method decreased progressively in ranking SNPs as the number of 

SNPs taken increased from r to 2r to 5r to the entire SNP genotype, where r is the 

number of SNPs within the Bonferroni correction, as compared to the chi-square test [2].  

Figure 3.4 shows that increasing the number of SNPs taken actually improved the ranking 

of SNPs over the Wald test for all thresholds, however, the improvements according to 

certain thresholds differed across phenotypes. 

 

 

 

 



!

!

11 

 

A) 

 

B) 

 

 

C) 

  

Figure 3.2 The prediction of coat color (A) with C = .0001, MCH (B) with C = .1 and 
%CD8 (C) with C  = .01 using SVR shows SVR-ranked SNPs (red) outperforming Wald 
test-ranked SNPs (blue) by achieving a maximum correlation, between actual and 
predicted phenotype, with fewer SNPs. 
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Figure 3.3 Prediction of coat color by multiclass SVM with C = 5000 shows that SVR-
ranked SNPs (red) outperform Wald test-ranked SNPs (blue) by attaining higher 
correlations with fewer SNPs. 
 

In summary, the results show that the SVR method is able to improve upon the 

Wald test ranking of SNPs and the results of clustering by achieving higher correlations 

with fewer SNPs.  These results are confirmed at various values of # for ridge regression 

and C for SVR and multiclass SVM; which are included in Appendices A-C, while 

similar results are shown for various other phenotypes in Appendix D.  The best results 

obtained by coat color, mean cellular hemoglobin and percentage of CD8+ cells; which 

were .90, .39 and .64, respectively, also coincided with and improved upon the results 

from Model AD; which attained values of .87, .36 and .58, respectively [3]. 
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A) 

 

B) 

 

 

C) 

  

Figure 3.4 The effect of increasing the number of SNPs used in the SVR ranking method 
with r (blue), 2r (red), 5r (green), Wald Test (orange) and SVR method on all SNPs 
(purple).  Prediction of Coat Color (A) with multiclass SVM (C = 5000) and MCH (B) 
and %CD8 (C) with ridge regression (" = 5) showed that the SVR method improves over 
Wald test across all thresholds. 
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CHAPTER 4 

DISCUSSION 

 

The goal of this study was to examine whether the SVR-ranking method is applicable to 

continuous or multiple phenotypes along with a comparison to the Wald Test and 

clustered ranking of SNPs.  The SVR-ranking method consistently achieved higher 

correlations with fewer SNPs as compared to the significant SNPs from the Wald test.   

 

4.1 Increasing the Number of SNPs Selected 

This study analyzed r SNPs in each trial, where r is the number of SNPs with P-values, 

attained from the Wald test, that are within the Bonferroni correction.  As r is increased 

to 2r there was an improvement in the SVM and random forest methods detection of 

Type 1 diabetes-associated regions that deteriorated as the number of SNPs increased to 

5r and 10r [2].  When increasing the number of SNPs selected, MCH prediction 

improved while a slight deterioration was observed in the Coat Color and %CD8 

phenotypes.  However, the SVR method consistently outperformed the Wald test at all 

thresholds; which was not observed previously when comparing the SVM method to the 

chi-square test [2].  This improvement is likely to be due to the size of the datasets used, 

the mouse dataset contained over 12000 SNPs while the human dataset contains over 

500000 SNPs. 
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4.2 Effective Use of Pedigree 

Included in the prediction of phenotypes were the two pedigree variables, family and 

parent number.  With around 84 families and almost double that of parents, a problem 

arose in prediction when several independent family and parent variables in the mouse 

dataset were regressed upon a few dependent variables and vice versa.  So, if the 0, 10, 

30 and 80th family all had a white coat color given a value of 0 and the 5, 6, 40 and 50th 

families all had a black coat color given a value of 9, these phenotypes cannot be 

accurately portrayed with a linear model.  Accordingly, a similar problem arises when a 

given family has a diverse phenotypic makeup.  To account for the effects of pedigree, a 

best linear unbiased prediction was used followed by a remodeling of SNPs with every 

round of RJMCMC calculation [3]. 
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CHAPTER 5 

CONCLUSION 

 

An improvement in ranking SNPs with support vector regression was observed compared 

to that of the selection of significant SNPs by the Wald test with SVR-ranked SNPs 

consistently achieving higher accuracy of phenotype prediction with fewer SNPs.  This 

improvement was seen across all methods of phenotype prediction and the maximum 

correlations observed were higher than those in previous studies. 
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APPENDIX A 

COAT COLOR ANALYSIS 

 

This appendix contains information of the various parameters used in each of the 

prediction methods for coat color with the figures corresponding to the preceding tables. 

 
Table A.1 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Coat Color using Ridge Regression with no Pedigree Included at Various 
Values of # 
 
! Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.52 (.07) 200 0.62 (.02) 85 0.38 (.11) 0.44 (.08) 0.45 (.08) 
.1 0.31 (.09) 105 0.43 (.07) 55 0.39 (.11) 0.44 (.08) 0.45 (.08) 
1 0.58 (.03) 230 0.62 (.02) 85 0.39 (.11) 0.44 (.08) 0.44 (.08) 
5 0.63 (.02) 230 0.64 (.02) 110 0.38 (.11) 0.44 (.08) 0.44 (.08) 
10 0.64 (.02) 235 0.64 (.02) 100 0.39 (.11) 0.44 (.08) 0.44 (.08) 
100 0.56 (.03) 240 0.59 (.02) 105 0.39 (.11) 0.44 (.08) 0.44 (.08) 
 

Table A.2 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Coat Color using Ridge Regression with Pedigree Included at Various Values 
of # 
 
! Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.53 (.07) 200 0.62 (.01) 85 0.38 (.11) 0.44 (.08) 0.44 (.08) 
.1 0.31 (.09) 105 0.43 (.07) 55 0.38 (.11) 0.44 (.08) 0.44 (.07) 
1 0.58 (.03) 230 0.62 (.01) 85 0.39 (.11) 0.44 (.08) 0.44 (.08) 
5 0.64 (.02) 235 0.64 (.02) 110 0.39 (.11) 0.44 (.08) 0.44 (.08) 
10 0.64 (.02) 235 0.64 (.01) 100 0.39 (.11) 0.44 (.08) 0.44 (.08) 
100 0.53 (.02) 240 0.57 (.02) 95 0.40 (.11) 0.44 (.08) 0.44 (.08) 
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A) 

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 

 

Figure A.1 The prediction of coat color using ridge regression without including 
pedigree with # = 0 (A), # = 0.1 (B), # = 1 (C), # = 5 (D), # = 10 (E) and # = 100 (F) 
shows SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue). 
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Table A.3 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Coat Color using Support Vector Regression with Pedigree Included at 
Various Values of C 
 
C Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.53 (.07) 200 0.62 (.01) 85 0.38 (.11) 0.44 (.08) 0.44 (.08) 
.1 0.31 (.09) 105 0.43 (.07) 55 0.38 (.11) 0.44 (.08) 0.44 (.07) 
.01 0.58 (.03) 230 0.62 (.01) 85 0.39 (.11) 0.44 (.08) 0.44 (.08) 
.001 0.64 (.02) 235 0.64 (.02) 110 0.39 (.11) 0.44 (.08) 0.44 (.08) 
.0001 0.64 (.02) 235 0.64 (.01) 100 0.39 (.11) 0.44 (.08) 0.44 (.08) 
.00001 0.53 (.02) 240 0.57 (.02) 95 0.40 (.11) 0.44 (.08) 0.44 (.08) 
 
 
 
Table A.4 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Coat Color using Multiclass SVM with Pedigree Included at Various Values 
of C 
 
C Wald 

Test 
# SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
5000 0.90 (.02) 235 0.90 (.02) 225 0.31 (.19) 0.37 (.16) 0.37 (.16) 
1000 0.86 (.03) 245 0.86 (.03) 340 0.28 (.19) 0.34 (.14) 0.37 (.12) 
500 0.83 (.02) 290 0.82 (.03) 340 0.30 (.18) 0.32 (.16) 0.36 (.12) 
100 0.72 (.02) 245 0.72 (.03) 275 0.30 (.12) 0.29 (.12) 0.31 (.10) 
10 0.59 (.08) 275 0.58 (.07) 290 0.29 (.15) 0.30 (.18) 0.34 (.17) 
1 0.59 (.06) 165 0.59 (.07) 225 0.11 (.13) 0.25 (.13) 0.23 (.14) 
.1 0.50 (.07) 245 0.50 (.10) 205 0.04 (.12) 0.09 (.11) 0.09 (.09) 
.01 0.32 (.08) 305 0.31 (.06) 335 0.04 (.09) -0.00 (.08) 0.03 (.09) 
.001 0.11 (.04) 150 0.12 (.05) 230 0.05 (.09) 0.04 (.10) 0.07 (.06) 
.00001 0.00 (.01) 180 0.00 (.01) 170 -0.01 (.04) -0.01 (.04) -0.01 (.05) 
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A) 

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 

 

Figure A.2 The prediction of coat color using ridge regression including pedigree 
information with # = 0 (A), # = 0.1 (B), # = 1 (C), # = 5 (D), # = 10 (E) and # = 100 (F) 
shows SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by 
achieving a maximum correlation, between actual and predicted phenotype, with fewer 
SNPs. 
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A) 

 

B) 

 

C) 

 

D) 
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Figure A.3 The prediction of coat color using multiclass SVM including pedigree 
information with C = 10 (A), C = 1 (B), C = .1 (C), C = .01 (D), C = .001 (E) and C = 
.00001 (F) shows the improvement in prediction by increasing the trade-off, C. 
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Figure A.4 The prediction of coat color using multiclass SVM including pedigree 
information with C = 5000 (A), C = 1000 (B), C = 500 (C) and C = 100 (D) shows SVR-
ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by achieving a 
maximum correlation, between actual and predicted phenotype, with fewer SNPs. 
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APPENDIX B 

MEAN CELLULAR HEMOGLOBIN ANALYSIS 

 

This appendix contains information of the various parameters used in each of the 

prediction methods for mean cellular hemoglobin with the figures corresponding to the 

preceding tables. 

 
Table B.1 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Mean Cellular Hemoglobin using Ridge Regression with no Pedigree Included 
at Various Values of # 
 
! Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.26 (.07) 115 0.36 (.02) 40 0.21 (.04) 0.23 (.03) 0.23 (.03) 
.1 0.10 (.06) 0 0.29 (.06) 5 0.22 (.03) 0.23 (.03) 0.23 (.03) 
1 0.31 (.03) 265 0.36 (.02) 30 0.22 (.04) 0.23 (.03) 0.23 (.03) 
5 0.36 (.02) 250 0.36 (.02) 55 0.22 (.04) 0.23 (.03) 0.23 (.03) 
10 0.35 (.02) 250 0.36 (.02) 55 0.22 (.03) 0.23 (.03) 0.22 (.03) 
100 0.28 (.04) 260 0.29 (.03) 80 0.22 (.04) 0.23 (.03) 0.23 (.03) 
 

Table B.2 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Mean Cellular Hemoglobin using Ridge Regression with Pedigree Included at 
Various Values of # 
 
! Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.29 (.06) 115 0.38 (.02) 40 0.25 (.03) 0.26 (.02) 0.26 (.02) 
.1 0.14 (.07) 0 0.31 (.07) 10 0.26 (.03) 0.26 (.03) 0.27 (.03) 
1 0.33 (.03) 265 0.38 (.02) 30 0.26 (.03) 0.26 (.03) 0.26 (.03) 
5 0.39 (.02) 250 0.39 (.02) 85 0.26 (.03) 0.26 (.02) 0.27 (.03) 
10 0.38 (.02) 250 0.38 (.02) 105 0.26 (.03) 0.27 (.03) 0.26 (.03) 
100 0.30 (.02) 260 0.30 (.01) 115 0.26 (.03) 0.26 (.02) 0.26 (.03) 
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Figure B.1 The prediction of mean cellular hemoglobin using ridge regression without 
including pedigree with # = 0 (A), # = 0.1 (B), # = 1 (C), # = 5 (D), # = 10 (E) and # = 100 
(F) shows SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by 
achieving a maximum correlation, between actual and predicted phenotype, with fewer 
SNPs. 
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Figure B.2 The prediction of mean cellular hemoglobin using ridge regression including 
pedigree information with # = 0 (A), # = 0.1 (B), # = 1 (C), # = 5 (D), # = 10 (E) and # = 
100 (F) shows SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by 
achieving a maximum correlation, between actual and predicted phenotype, with fewer 
SNPs. 
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Table B.3 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Mean Cellular Hemoglobin using Support Vector Regression with Pedigree 
Included at Various Values of C 
 
C Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.34 (.02) 265 0.35 (.02) 115 0.17 (.03) 0.18 (.02) 0.18 (.02) 
.1 0.39 (.02) 250 0.39 (.02) 115 0.25 (.03) 0.26 (.02) 0.25 (.03) 
.01 0.39 (.03) 260 0.39 (.03) 250 0.25 (.03) 0.26 (.02) 0.26 (.03) 
.001 0.38 (.02) 260 0.38 (.02) 115 0.24 (.03) 0.25 (.02) 0.25 (.02) 
.0001 0.34 (.02) 270 0.34 (.02) 120 0.17 (.03) 0.17 (.02) 0.17 (.02) 
.00001 0.25 (.03) 265 0.25 (.03) 270 0.13 (.02) 0.13 (.02) 0.13 (.02) 
 

A) 

 

B) 

 

C) 

 

D) 

 

Figure B.3 The prediction of mean cellular hemoglobin using support vector regression 
including pedigree information with C = 0 (A), C = .1 (B), C = .01 (C) and C = .001 (D) 
shows SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue). 
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A) 

 

B) 

 

Figure B.4 The prediction of mean cellular hemoglobin using support vector regression 
including pedigree information with C = .0001 (A), C = .00001 (B) shows SVR-ranked 
SNPs (red) outperforming Wald Test-ranked SNPs (blue) by achieving a maximum 
correlation, between actual and predicted phenotype, with fewer SNPs. 
 

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of  Haem Mean corpuscular haemglobin with Support Vector Regression (C = .0001)

Wald's Test
Support Vector Regression

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of  Haem Mean corpuscular haemglobin with Support Vector Regression (C = .00001)

Wald's Test
Support Vector Regression



!

! 28 

APPENDIX C 

PERCENTAGE OF CD8+ CELLS ANALYSIS 

 

This appendix contains information of the various parameters used in each of the 

prediction methods for percentage of CD8+ cells with the figures corresponding to the 

preceding tables. 

 
Table C.1 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for percentage of CD8+ cells using Ridge Regression with no Pedigree Included at 
Various Values of # 
 
! Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.40 (0.04) 100 0.60 (0.02) 110 0.28 (0.04) 0.34 (0.05) 0.41 (0.04) 
.1 0.19 (0.10) 30 0.50 (0.07) 45 0.28 (0.05) 0.33 (0.05) 0.42 (0.04) 
1 0.41 (0.04) 230 0.61 (0.02) 110 0.29 (0.04) 0.33 (0.05) 0.43 (0.04) 
5 0.46 (0.04) 230 0.63 (0.02) 135 0.29 (0.04) 0.33 (0.05) 0.42 (0.04) 
10 0.47 (0.04) 265 0.62 (0.02) 115 0.29 (0.04) 0.33 (0.05) 0.42 (0.04) 
100 0.42 (0.06) 320 0.56 (0.03) 335 0.28 (0.04) 0.33 (0.05) 0.42 (0.04) 
 

Table C.2 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for percentage of CD8+ cells using Ridge Regression with Pedigree Included at 
Various Values of # 
 
! Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.40 (0.04) 100 0.60 (0.02) 110 0.29 (0.04) 0.34 (0.05) 0.43 (0.04) 
1 0.41 (0.06) 95 0.61 (0.02) 110 0.29 (0.04) 0.34 (0.05) 0.43 (0.04) 
5 0.46 (0.04) 230 0.64 (0.02) 135 0.29 (0.04) 0.33 (0.05) 0.41 (0.04) 
10 0.47 (0.04) 265 0.62 (0.02) 135 0.29 (0.04) 0.34 (0.05) 0.42 (0.04) 
100 0.42 (0.05) 320 0.56 (0.03) 335 0.28 (0.05) 0.35 (0.03) 0.41 (0.04) 
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A) 

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 

 

Figure C.1 The prediction of percentage of CD8+ cells using ridge regression without 
including pedigree with # = 0 (A), # = 0.1 (B), # = 1 (C), # = 5 (D), # = 10 (E) and # = 100 
(F) shows SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by 
achieving a maximum correlation, between actual and predicted phenotype, with fewer 
SNPs. 
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A) 

 

B) 

 

C) 

 

D) 

 

 F) 

 

Figure C.2 The prediction of percentage of CD8+ cells using ridge regression including 
pedigree with # = 0 (A), # = 1 (B), # = 5 (C), # = 10 (D) and # = 100 (E) shows SVR-
ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by achieving a 
maximum correlation, between actual and predicted phenotype, with fewer SNPs. 
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Table C.3 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for percentage of CD8+ cells using Support Vector Regression with Pedigree 
Included at Various Values of C 
 
C Wald Test # SVR # 5 Clusters 10 

Clusters 
20 

Clusters 
0 0.55 (.03) 2030 0.57 (.03) 445 0.07 (.02) 0.09 (.03) 0.12 (.03) 
.01 0.64 (.02) 2000 0.64 (.01) 955 0.26 (.04) 0.32 (.04) 0.40 (.04) 
.001 0.63 (.02) 2090 0.63 (.02) 2090 0.14 (.04) 0.21 (.04) 0.30 (.05) 
.0001 0.55 (.03) 2030 0.57 (.03) 730 0.07 (.02) 0.08 (.02) 0.11 (.02) 
 

A) 

 

B) 

 

C) 

 

D) 

 

Figure C.3 The prediction of percentage of CD8+ cells using support vector regression 
including pedigree with C = 0 (A), C = .01 (B), C = .001 (C) and C = .0001 (D) shows 
SVR-ranked SNPs (red) outperforming Wald Test-ranked SNPs (blue) by achieving a 
maximum correlation, between actual and predicted phenotype, with fewer SNPs. 
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APPENDIX D 

ANALYSIS OF OTHER PHENOTYPES 

 

Confirmation of the SVR-method improvement was performed on other phenotypes that 

were available [6].  The other phenotypes were showcased that very few SNPs or no 

SNPs within the Bonferroni correction, a minimum of the 25 SNPs with the highest p-

value was chosen, no visible improvement was observed. 

Table D.1 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Biochemical Phenotypes using Ridge Regression with Pedigree Included at # 
= 5 
 

Phenotype Max SNPs Wald Test # SVR # 
Albumin 25 (1) 0.20 (0.01) 25 0.20 (0.01) 15 
ALP 716 (108) 0.51 (0.02) 370 0.54 (0.02) 80 
ALT 25 (0) 0.31 (0.03) 0 0.29 (0.04) 0 
AST 25 (0) 0.24 (0.02) 0 0.23 (0.03) 0 
Calcium 25 (0) 0.23 (0.02) 5 0.24 (0.01) 0 
Chloride 25 (0) 0.26 (0.01) 15 0.25 (0.02) 15 
Creatinine 25 (0) 0.21 (0.03) 0 0.20 (0.02) 0 
Glucose 25 (0) 0.11 (0.04) 20 0.11 (0.04) 20 
HDL 312 (81) 0.42 (0.02) 80 0.44 (0.02) 80 
LDL 40 (14) 0.30 (0.03) 50 0.31 (0.03) 35 
Phosphorous 25 (0) 0.15 (0.04) 20 0.15 (0.04) 5 
Potassium 25 (0) 0.09 (0.15) 5 0.12 (0.10) 0 
Sodium 25 (0) 0.21 (0.03) 5 0.21 (0.03) 0 
Tot.Cholesterol 67 (23) 0.36 (0.02) 95 0.36 (0.02) 30 
Tot.Protein 25 (0) 0.12 (0.04) 20 0.12 (0.04) 20 
Triglycerides 25 (0) 0.14 (0.05) 20 0.14 (0.05) 15 
Urea 264 (72) 0.27 (0.03) 200 0.28 (0.04) 70 
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D) 
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F) 

 

Figure D.1 The prediction of Albumin (A), ALP (B), ALT (C), AST (D), Calcium (E), 
and Chloride (F) using ridge regression including pedigree with # = 5. 
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F) 

 

Figure D.2 The prediction of Creatinine (A), Glucose (B), HDL (C), LDL (D), 
Phosphorus (E) and Potassium (F) using ridge regression including pedigree with # = 5. 
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Figure D.3 The prediction of Sodium (A), Tot.Cholesterol (B), Tot.Protein (C), 
Triglycerides (D) and Urea (E) using ridge regression including pedigree with # = 5. 
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Table D.2 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Immunological Phenotypes using Ridge Regression with Pedigree Included at 
# = 5 
 

Phenotype Max SNPs Wald Test # SVR # 
B220Median 103 (35) 0.29 (0.04) 165 0.29 (0.03) 85 
CD4XGeoMean 474 (128) 0.58 (0.02) 190 0.59 (0.02) 115 
CD4YGeoMean 25 (0) 0.20 (0.03) 20 0.20 (0.03) 5 
CD4inCD3XGeoMean 530 (103) 0.58 (0.01) 165 0.60 (0.02) 95 
CD4inCD3YGeoMean 25 (0) 0.20 (0.04) 20 0.20 (0.04) 15 
CD8XGeoMean 25 (0) 0.18 (0.03) 20 0.18 (0.03) 15 
CD8YGeoMean 32 (11) 0.32 (0.02) 45 0.32 (0.02) 30 
CD8inCD3XGeoMean 27 (5) 0.18 (0.06) 5 0.18 (0.05) 15 
CD8inCD3YGeoMean 32 (13) 0.31 (0.02) 40 0.31 (0.02) 50 
PctB220 327 (44) 0.43 (0.01) 310 0.44 (0.02) 170 
PctCD3 260 (114) 0.40 (0.02) 215 0.42 (0.01) 115 
PctCD4 179 (56) 0.34 (0.02) 220 0.36 (0.02) 80 
PctCD4inCD3 1284 (223) 0.42 (0.04) 110 0.59 (0.02) 75 
PctCD8inCD3 1563 (206) 0.43 (0.02) 155 0.63 (0.02) 90 
 
 
A) 

 

B) 

 

Figure D.4 The prediction of B220Median (A) and CD4XGeoMean (B) using ridge 
regression including pedigree with # = 5. 
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Figure D.5 The prediction of CD4YGeoMean (A), CD4inCD3XGeoMean (B), 
CD4inCD3YGeoMean (C), CD8XGeoMean (D), CD8YGeoMean (E) and PctB220 (F) 
using ridge regression including pedigree with # = 5. 

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of Imm.CD4YGeoMean with Ridge Regression (Lambda = 5)

Wald's Test
Support Vector Regression

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of  Imm CD4Intensity with Ridge Regression (Lambda = 5)

Wald's Test
Support Vector Regression

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of Imm.CD4inCD3YGeoMean with Ridge Regression (Lambda = 5)

Wald's Test
Support Vector Regression

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of Imm.CD8XGeoMean with Ridge Regression (Lambda = 5)

Wald's Test
Support Vector Regression

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of Imm.CD8YGeoMean with Ridge Regression (Lambda = 5)

Wald's Test
Support Vector Regression

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of SNPS

C
or

re
la

tio
n

Prediction of  Imm %B220+ with Ridge Regression (Lambda = 5)

Wald's Test
Support Vector Regression



!

!

38 

 
 
 
 
A) 

 

B) 

 

C) 

 

D) 

 

Figure D.6 The prediction of PctCD3 (A), PctCD4 (B), PctCD4inCD3 (C) and 
PctCD8inCD3 (D) using ridge regression including pedigree with # = 5. 
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Table D.3 Maximum Correlation (and Standard Deviation) between Actual and Predicted 
Values for Hematological Phenotypes using Ridge Regression with Pedigree Included at 
# = 5 
 

Phenotype Max SNPs Wald Test # SVR # 
ALYabs 25 (0) 0.09 (0.03) 15 0.09 (0.03) 5 
BASabs 25 (0) 0.09 (0.04) 20 0.09 (0.04) 20 
HCT 25 (0) 0.10 (0.03) 15 0.11 (0.04) 0 
HGB 25 (1) 0.15 (0.03) 20 0.15 (0.02) 5 
LICabs 25 (0) 0.11 (0.02) 0 0.10 (0.02) 15 
LYMabs 86 (47) 0.33 (0.02) 85 0.33 (0.02) 25 
MCHC 147 (49) 0.38 (0.03) 155 0.39 (0.02) 45 
MCV 602 (121) 0.38 (0.03) 275 0.46 (0.02) 145 
MONabs 25 (0) 0.21 (0.02) 20 0.21 (0.02) 20 
MPV 54 (14) 0.35 (0.02) 45 0.35 (0.02) 10 
NEUabs 40 (16) 0.21 (0.04) 55 0.22 (0.04) 10 
PCT 25 (0) 0.13 (0.02) 20 0.13 (0.02) 15 
PLT 25 (0) 0.18 (0.02) 20 0.19 (0.02) 10 
RBC 26 (3) 0.15 (0.02) 15 0.14 (0.02) 20 
RDW 172 (46) 0.43 (0.02) 195 0.45 (0.02) 70 
WBC 74 (39) 0.30 (0.02) 90 0.30 (0.02) 60 
 
 
A) 

 

B) 

 

Figure D.7 The prediction of ALYabs (A) and BASabs (B) using ridge regression 
including pedigree with # = 5. 
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Figure D.8 The prediction of HCT (A), HGB (B), LICabs (C), LYMabs (D), MCHC (E) 
and MCV (F) using ridge regression including pedigree with # = 5. 
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Figure D.9 The prediction of MONabs (A), MPV (B), NEUabs (C), PCT (D), PLT (E) 
and RBC (F) using ridge regression including pedigree with # = 5. 
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Figure D.10 The prediction of RDW (A) and WBC (B) using ridge regression including 
pedigree with # = 5. 
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APPENDIX E 

RIDGE REGRESSION RESULTS 

 

The following table contains the prediction values of the first 25 individuals of one trial 

of the MCH phenotype with 850 SNPs selected for ridge regression.  The first 25 

individuals illustrate the immense difference between predicted and actual phenotype that 

causes the correlation to deteriorate past 800 SNPs. 

Table E.1 Actual and Predicted Values of Phenotypes with Ridge Regression 
 

Actual Phenotype Predicted Phenotype 
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