

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

FAST PROGRAM FOR SEQUENCE ALIGNMENT
USING PARTITION FUNCTION POSTERIOR PROBABILITIES

by
Meera Prasad

The key requirements of a good sequence alignment tool are high accuracy and fast

execution. The existing Probalign program is a highly accurate tool for sequence

alignment of both proteins and nucleotides. However, the time for execution is fairly

high. The focus is therefore, to reduce the running time of the existing version of

Probalign, maintaining its current accuracy level.

The thesis conducts a detail analysis of the performance of Probalign to bring

down the running time of the existing code. A modified version of Probalign, Version 1.4

is released. A new program for sequence alignment with faster computation is also

introduced.

FAST PROGRAM FOR SEQUENCE ALIGNMENT
USING PARTITION FUNCTION POSTERIOR PROBABILITIES

by
Meera Prasad

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Bioinformatics

Department of Computer Science

May 2011

 APPROVAL PAGE

FAST PROGRAM FOR SEQUENCE ALIGNMENT
USING PARTITION FUNCTION POSTERIOR PROBABILITIES

Meera Prasad

Dr. Usman Roshan, Thesis Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Zhi Wei, Committee Member Date
Associate Professor of Bioinformatics, NJIT

Dr. Jason T.L. Wang, Committee Member Date
Professor of Bioinformatics and Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Meera Prasad

Degree: 	 Master of Science

Date: 	 May 2011

Undergraduate and Graduate Education:

• Master of Science in Bioinformatics,
New Jersey Institute of Technology, Newark, USA, 2011

• Bachelor of Science in Computer Science,
MG University, Kerala, India, 2007

Major: 	 Bioinformatics

v

This thesis is a dedication to my beloved family.

To my loving husband, without whose constant support and guidance, it would not have
been possible.

To my parents and brother, for their unconditional affection, encouragement and
patience.

To God Almighty for his unbound love and blessings.

vi

ACKNOWLEDGMENT

I am grateful to my advisor, Dr. Usman Roshan, for his constant guidance and support

throughout my master’s study at the New Jersey Institute of Technology. It has been an

invaluable opportunity for me to work at the Bioinformatics Lab under his direction. I

believe that the experience and the exposure I gained will significantly benefit my future

career. Special thanks to my dissertation committee members, Dr Jason Wang and Dr Zhi

Wei for their support and guidance. I also thank the department chair, Dr. Narain Gehani,

and all other faculty members for their encouragement.

This project would not have been a success without the help of System

administrators. I would like to thank Kevin Walsh, Douglas Eadline, Gedaliah Wolosh

and all other people at system administrator for providing service for Kong, AFS and

OSL systems.

I would like to thank my good colleagues and friends for their support in my

studies. I am also grateful to my TA, Wei Wang for his constant support and guidance

from time to time.

Most of all, I am grateful for the constant support, understanding, patience, and

trust of my husband, my parents and my brother without whom none of this work would

have been possible.

Thanks to all for helping me complete this thesis.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..…………………………. 1

1.1 Objective ……............................………………..……………………………... 1

1.2 Background Information …………….…………………………………….…... 1

1.3 Overview of Probalign………….…………………………………………....... 2

2 PROBALIGN V.1.4 ………………………………..………………………………. 4

2.1 Time Profile…………… ..…………………………………………………….. 4

2.2 Method………………… ……...………………………………………………. 4

3 PROBALIGN V.1.5 ………………...……………………………………………… 7

3.1 Time Profile…….. ………………………...………………………………...… 7

3.2 Method………………….…………………………………………………….... 7

4 CONCLUSION……………………………………………………...………….…... 10

4.1 Results…………… .………………………………………………………....… 10

4.2 Discussions……………………. …………………………………………..…... 10

APPENDIX PROGRAM CODE FOR THE MAIN FUNCTION……...…………….. 11

REFERENCES ………………………………………………………………………... 18

viii

LIST OF TABLES

Table Page

2.1 Run Time Comparison of Version1.3 and Version 1.4…………………………. 5

3.1 Run Time Comparison of New Program for Varying Genome Sizes………..…. 8

1

CHAPTER 1

INTRODUCTION

1.1 Objective

The focus of this thesis is to improve the run time performance of Probalign which

constructs maximal expected accuracy sequence alignments. This thesis also presents a

new program for high speed alignment of a short sequence to an entire genome.

Initial focus was to improve the performance of Probalign. The existing program

was considerably optimized to bring down the running time. On achieving faster

performance, the author then focused on developing a new application which performs

the sequence alignment of nucleotides much faster than Probalign Version 1.3 using

Smith – Waterman model. The run time of the modified version of Probalign and the

newly introduced program were compared against the original Probalign code.

1.2 Background Information

Protein and nucleotide sequence alignment is a widely employed task in bioinformatics

(Notredame et al., 2002) that helps in detecting functional regions and evolutionary

histories (Durbin et al., 1998). There are many existing alignment tools like ClustalW

(Thompson et al., 1994), Probcons (Do et al., 2005), MAFFT (Katoh et al., 2005). In

terms of accuracy, recent studies show that MAFFT and Probcons are among the top

performing alignment tools (Do et al., 2005; Katoh et al., 2005). Probalign bridges two

important bioinformatic techniques in an effort to produce more accurate multiple

sequence alignment (Roshan and Livesay, 2006). The first approach estimates posterior

probabilities from the partition function of alignments and the second approach computes

2

maximal expected accuracy alignment after applying the probability consistency

transformation of Probcons (Do et al., 2005; Roshan and Livesay, 2006). Probalign was

found to produce statistically significantly better alignments on BaliBASE 3.0,

HOMSTRAD and OXBENCH benchmarks (Roshan and Livesay, 2006).

1.3 Overview of Probalign

Probalign is a sequencing tool that can be used to sequence multiple alignments of

proteins and nucleotides. The program performs global multiple alignment in which each

residue of each sequence needs to be aligned. Partition function methodology is used to

estimate the pair wise posterior probabilities of the residues to align the sequences. This

in turn is used to compute the maximum expected accuracy optimization for multiple

sequences [as discussed in Roshan and Livesay, 2006]. Probalign does not look at all the

alignments but only a subset of suboptimal alignments. This is determined by the

thermodynamic temperature. It is of interest that these suboptimal alignments are

biologically more accurate. In most of the experiments, the suboptimal alignments proved

to be biologically more significant than the most optimal alignment. This was the

underlying motivation for the Probalign approach (Roshan and Livesay, 2006).

Pros and Cons of Probalign

In terms of accuracy, Probalign is found to outperform other existing tools such as

Probcons, MAFFT, MUSCLE and so on. Probalign works better than other existing

methods when it comes to aligning heterogeneous datasets which are extremely long.

3

Also, another advantage is, Probalign does not have to learn model parameters from

training data.

However, in terms of speed, Probalign runs impractically slower than these

existing tools. The larger the length of the sequences that has to be aligned, the slower is

the performance. This leads to the need of a competitive execution time of alignment

computation. The requirement is thus a tool which can align short sequences to an entire

genome accurately with high computation speed.

4

CHAPTER 2

PROBALIGN V.1.4

2.1 Time Profile Analysis

In order to bring down the running time of the existing version of Probalign (Roshan et

al., 2008), it was essential to study the time taken for computation. A time profile of the

various blocks and functions in the code was conducted. This was then executed under

different scenarios. A detailed analysis of this time profile helped to analyze the running

time of the various blocks of code.

2.2 Methodology

The existing code was broken down into several blocks. To begin with, the main

function, Main.cc, was divided into blocks, each consisting of a function that is invoked

for computing the alignment. On time profiling, it was found that one of the functions

DoAlign was taking the largest running time of 309 seconds. This in turn invokes

ComputePostProbs function which is defined in the PostProbs.cc file. For further

analysis, PostProbs.cc file was divided into several blocks. These blocks were then time

profiled. This returned the time taken for memory allocation, initialization of Z matrices,

computation of posterior probabilities for each residue of the sequences and freeing of the

allocated memory. The block that includes the computation of the Z matrices using the

exponentiation function took the largest running time. On further analysis, it was

observed that these exponentiation functions were invoked in within loops. The next step

5

was to set these exponentiation values to variables and thus move them outside from

within these loops. The existing code was then modified to induce this change. The

modified code brought down the running time considerably.

The variable numIterativeRefinementReps determines the number of iterations

required for accurately determining the alignments. The number of iterations could vary

from one to hundreds. The value of the variable was originally specified as a command

line argument. However, the time for the execution of the program was large due to the

number of times the computation was repeated without much improvement in the

accuracy. On analyzing it was found that this variable can be set to one. This brought

down the running time further. The time taken by DoAlign was brought down to 108

seconds.

The scorez_matrix in the file Matrix.h was updated to the values of +5/-4 match-

mismatch score. This matrix was then used in the ReadMatrix.cc file. Thus, the total run

time of Probalign was reduced to 15 seconds. The values for temperature, gap open and

gap extend was set to 7, 26 and 5 respectively as command line arguments while

executing the code. This is the new version introduced; Probalign V.1.4.

Table 2.1 Run Time Comparison of Version1.3 and Version 1.4

VERSION MAIN DOALIGN
POSTERIOR

PROBABILITY
CONSISTENCY

TRANSFORMATION
FINAL

ALIGNMENT
ITERATIONS

PROBALIGN
1.3

290 290 186 26 5 1

PROBALIGN
1.4

15 15 8 3 2 1

PROBALIGN
1.3

493 493 278 25 190 100

PROBALIGN
1.4

115 115 10 2 103 100

Table 2.1 provides the running time for each of the function block. The run time under

two different scenarios; when numIterativeRefinementReps =1 and later when set to 100,

6

is also specified in the table. The running time, in seconds, of the various functions that

are invoked in the Main are compared. It can be seen that Probalign Version 1.4 has an

execution speed much faster than Version 1.3. Version 1.4 of Probalign can align

sequences of both proteins and nucleotides using the pair wise posterior probability

methodology. The accuracy of the alignment was not compromised and still remains the

same.

7

CHAPTER 3

PROBALIGN V.1.5

3.1 Time Profile Analysis

The focus of this module was to further bring down the run time of the newly modified

version of Probalign. This program is quite fast when compared to its previous version.

However, a faster code to align sequences of nucleotides was of interest. The goal is to

use the same pairwise posterior probability methodology for calculating the suboptimal

alignments. Time profiling of Version 1.4 gave a clear picture about the functions which

took maximum amount of time for execution. This helped in determining the key

functions which were required for sequence alignments. The other functions where then

omitted.

3.2 Method and Modifications

The new code is written in C instead of C++ to bring down the run time overhead of

invoking objects of different classes. There is considerable improvement in running time

when coding in C. The objective of the new code is to align nucleotide sequences; hence

the requirement of invoking different classes is omitted.

The main function is SRAlign.c which contains one function invoke to

ComputePostProbs(). PostProbs.c which contains ComputePostProbs has the same

functionality as the C++ file in Version 1.4. The functionality of the main file is divided

8

into input, fragmentation, probability computation, recurrence, traceback and output

blocks.

The inputs to the main function are two files; the first input file is a read file and

the second one is a large genome file. The genome can be of varying length. It could vary

from 5 million to 50 million or more. The next block is fragmentation, where the entire

genome is broken into 1 million long fragments and the calls to ComputePostProbs(),

recurrences, tracebacks, alignments of each fragment with the short read and mean

posterior probabilities are calculated for each of these fragments.

The focus now moves onto the posterior probability computation block. A

function call is made to PostProbs.c that computes the probability matrix used for

alignment. On time profiling, it was found that the memory allocation and de-allocation

consisted of the major running time. In order to decrease this time, the Z matrices, used in

PostProbs.c, are allocated in the main function before the fragmentation process takes

place. This way the memory for Z matrices are allocated only once and the allocated

memory is freed only one. This saves a lot of computation time. The same memory space

is being reused for every fragment.

Next, the recurrence and traceback of each of these fragment with the short

sequence is computed. A simple dynamic program, the Smith – Waterman model, is used

for recurrence and traceback. The mean posterior probability of these alignments is then

calculated. The alignment with the largest mean posterior probability is returned as the

output. Along with this output, the position of the alignment of the short sequence to the

entire genome and the largest mean posterior probability are also returned.

9

Table 3.1 Run Time Comparison of New Program for Varying Genome Sizes

GENOME
LENGTH

INITIALIZATION
MEMORY

ALLOCATION
COMPUTATION

MEMORY
DEALLOCATION

MAIN

1 Million 0 4 0 2 7
2 Million 0 8 0 4 13
5 Million 0 14 0 14 35

Table 3.1 provides the running time of the blocks in seconds. The table shows the

run time of the blocks in PostProbs.c, for both the reverse partition functions and forward

partition function. The table clearly shows that the new program is much faster than the

existing programs with the same level of accuracy in the alignments.

10

CHAPTER 4

CONCLUSION

4.1 Results

From the run time values, we can conclude that the new code is faster than all the existing

versions of Probalign. This program is two times faster than the previous version of

Probalign; Version 1.4.

4.2 Discussion

The program uses most of the techniques for reducing the run time. Coding in C instead

of C++ reduced the run time over head considerably. The genome is fragmented into 1

million sized fragments. ComputePostProb function along with the other funcationalities

is then invoked for each of these fragments. PostProbs.c is called as many times as the

number of these fragments. If Z matrices were allocated memory in this file, then malloc

is invoked a number of times, which increases the execution speed. Hence, these memory

allocations were moved to main function. Malloc in invoked for each of these Z matrices

just once and the same memory space is then reused for alignment calculation for each of

the fragments. This brings down the run time further. Also, the use of the simple Smith –

Waterman model further reduces the run time.

This program is a fast and accurate program for aligning short sequences to a long

genome. This thesis work can further be extended to aligning protein sequences and that

would be the focus for expanding this research work.

11

APPENDIX

PROGRAM CODE FOR THE MAIN FUNCTION

This is the code for the main function that invokes the function, ComputePostProbs, in
the PostProbs.c file.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "ctype.h"
#include "PostProbs.c"

typedef struct
{
 char monomers[26]; /* amino or nucleic acid order */
 float matrix[676]; /* entries of the score matix, 26*26=676 */
} score_matrix;

float TEMPERATURE = 7;
float GAPOPEN = 26;
float GAPEXT = 5;
argument_decl argument;

char bases[26]= "ABCDGHKMNRSTUVWXY";
int subst_index[26];
float sub_matrix[26][26];
float scorez_matrix[26][26];

// Specifies scoring matrices and their structure
///
score_matrix nuc_simple =
{

"ABCDGHKMNRSTUVWXY",
{

5,
0, 0,
-4, 0, 5,
0, 0, 0, 0,
-4, 0, -4, 0, 5,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 5,
-4, 0, -4, 0, -4, 0, 0, 0, 0, 0, 0, 5, 5,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0
}

};

12

inline void read_matrix(score_matrix matrx)
{
 int i, j, basecount,position=0;

basecount = 17;

 for (i = 0; i < basecount; i++)
subst_index[i] = -1;

 for (i = 0; i < basecount; i++)
subst_index[bases[i] - 'A'] = i;

 if (TRACE == 1)
printf("\nbases read: %d\n", basecount);

 for (i = 0; i < basecount; i++)
for (j = 0; j <= i; j++)
{

sub_matrix[i][j]=matrx.matrix[position++];
sub_matrix[j][i] = sub_matrix[i][j];
scorez_matrix[i][j]= exp(sub_matrix[i][j]*argument.beta);
scorez_matrix[j][i] = exp(sub_matrix[j][i]*argument.beta);

}

}

//
//intialize the arguments (default values)
//
void init_arguments()
{
 float gap_open = -4, gap_ext = -0.25;
 int le;

 le =4;
 argument.N = 1;
 strcpy(argument.input, "tempin");
 argument.matrix = le;
 argument.gapopen = GAPOPEN;
 argument.gapext = GAPEXT;
 argument.T = TEMPERATURE;
 argument.beta = 1.0 / TEMPERATURE;
 argument.opt = 'P';

 read_matrix(nuc_simple);
 //now override the gapopen and gapext
 if (argument.gapopen != 0.0 || argument.gapext != 0.00)

 {
 gap_open = -argument.gapopen;
 gap_ext = -argument.gapext;
 }

 argument.gapopen = gap_open;
 argument.gapext = gap_ext;
 argument.opt = 'P';
} //end of init
//
//main : Code written by Meera Prasad, September 2010
//

13

int main (int argc, char* argv[])
{

FILE *input1, *input2;
char *rFile = "";
char *gFile = "";
long rFileLen, gFileLen;
char *rThisPtr, *gThisPtr;
char *sequence1 = "";
char *sequence2 = "";
char *temp = "";
int i = 0;
int j = 0;
float *postptr = 0;
int seq1len, seq2len;
int firstcounter;
int secondcounter;
char *firstalign = "", *secondalign = "", *finalFirstAlign="",

*finalSecondAlign="";
int lencounter1, lencounter2;
float **V;
int **T;
float p1, p2, p3;

 long double **Ze = NULL;
long double **Zf = NULL;
long double **Zm = NULL;
long double **Zm_rev = NULL;
int count, fragment = 0;
int seqcount = 0;
int templen = 1000000;
int size, tracker = -1, point = 0, startpos = 0;
float calculatedProb = 0.0;
float largestCalcProb = -1.0;

if(argc != 3)
 {

printf("Please verify input file, program requires input file as
parameter.\n");

return 1;
 }
 input1 = fopen(argv[1], "r");

input2 = fopen(argv[2], "r");
 if(input1 == NULL || input2 == NULL)
 {
 perror("Error reading file");

}
 else
 {

printf("\nReading file %s, %s ", argv[1], argv[2]);
fseek(input1, 0L, SEEK_END);
fseek(input2, 0L, SEEK_END);
rFileLen = ftell(input1);
gFileLen = ftell(input2);
printf("\n");
rewind(input1);
rewind(input2);
rFile = malloc((rFileLen+1) * sizeof(char));
gFile = malloc((gFileLen+1) * sizeof(char));
sequence1 = malloc((rFileLen+1) * sizeof(char));
sequence2 = malloc((gFileLen+1) * sizeof(char));

if(rFile == NULL || gFile == NULL)

14

{
printf("\n Insufficient memory to read file.\n");
return 0;

}
fread(rFile, rFileLen, 1, input1);
fread(gFile, gFileLen, 1, input2);
fclose(input1);
fclose(input2);

}

//processing read File
rThisPtr = rFile;
while (*rThisPtr)
{

if(*rThisPtr == '>')
{

while(*rThisPtr != '\n')
{

*rThisPtr++;
}

}
else if(*rThisPtr == '\n')
{

}
else
{

sequence1[i] = *rThisPtr;
i++;

}
*rThisPtr++;

}
free(rFile);
gThisPtr = gFile;
while (*gThisPtr)
{

if(*gThisPtr == '>')
{

while(*gThisPtr != '\n')
{

*gThisPtr++;
}

}
else if(*gThisPtr == '\n')
{

}
else
{

sequence2[j] = *gThisPtr;
j++;

}
*gThisPtr++;

}
free(gFile);

sequence1[i] = '\0';
sequence2[j] = '\0';

seq1len = strlen(sequence1);

15

 seq2len = strlen(sequence2);

//allocation
T=(int **)malloc((seq1len+1) * sizeof(int*));
V=(float **)malloc((seq1len+1) * sizeof(float*));

for(i=0;i<(seq1len+1); i++)
{

T[i] = malloc((templen+1) * sizeof(int));
V[i] = malloc((templen+1) * sizeof(float));

}

//initializing arguments
init_arguments();
// allocation
firstalign = malloc((templen+1) * sizeof(char));
secondalign = malloc((templen+1) * sizeof(char));
finalFirstAlign = malloc((templen+1) * sizeof(char));
finalSecondAlign = malloc((templen+1) * sizeof(char));

//Define Zm, Ze, and Zf here and allocate space for them
Ze = (long double **)malloc(2 * sizeof(long double));
Zf = (long double **)malloc(2 * sizeof(long double));
Zm = (long double **)malloc((templen+1) * sizeof(long double));
Zm_rev = (long double **)malloc(2 * sizeof(long double));

for(i=0; i<=1; i++)
{

Ze[i] = malloc((seq1len + 1) * sizeof(long double));
Zf[i] = malloc((seq1len + 1) * sizeof(long double));
Zm_rev[i] = malloc((seq1len + 1) * sizeof(long double));

}
for(i=0; i<=templen; i++)
{

Zm[i] = malloc((seq1len + 1) * sizeof(long double));
}

temp = malloc((templen + 1) * sizeof(char));

// split the genome into fragments and pass each fragment
while(seqcount < seq2len)
{

fragment++;
printf("\nfragment %d\n",fragment);
count = 0;
while(count < templen && seqcount < seq2len)
{

temp[count++] = sequence2[seqcount++];
}
temp[count++]='\0';
size = strlen(temp);
init_arguments();
postptr = ComputePostProbs(&argument, sequence1, seq1len, temp, size,

Ze, Zf, Zm, Zm_rev);
assert(postptr);

// initialization
calculatedProb = 0; startpos = 0;

 for(i=0;i < (seq1len+1); i++)
 {
 V[i][0] = 0;

16

 T[i][0] = 2;
 }
 for(j=0; j < (size+1); j++)
 {
 V[0][j] = 0;
 T[0][j] = 0;
 }

//recurrence
 for(i=1; i<=seq1len; i++)

{
for(j=1; j<=size; j++)
{

p1 = V[i-1][j-1] + postptr[(i) * (size + 1) + (j)];
p2 = V[i-1][j];
p3 = V[i][j-1];

if(p1>=p2 && p1>=p3)
{

V[i][j]=p1;
T[i][j]=1; startpos = j;
//assign current probability
calculatedProb = calculatedProb + (postptr[(i) *

(size + 1) + (j)]);
}

 else if(p2>=p1 && p2>=p3)
{

V[i][j]=p2;
T[i][j]=2;

}
 else

{
V[i][j]=p3;
T[i][j]=0;

}
}

}

//traceback
calculatedProb = calculatedProb/seq1len;
firstcounter = seq1len;
secondcounter = size;
lencounter1 = size;
lencounter2 = size;
while(firstcounter != 0 || secondcounter != 0)
{

if(T[firstcounter][secondcounter] == 1)
{

firstalign[lencounter1-1] = sequence1[firstcounter-1];
secondalign[lencounter2-1] = temp[secondcounter-1];
firstcounter--;
secondcounter--;

}
else if(T[firstcounter][secondcounter] == 2)
{

firstalign[lencounter1-1] = sequence1[firstcounter-1];
secondalign[lencounter2-1] = '-';
firstcounter--;

}
else

17

{
firstalign[lencounter1-1] = '-';
secondalign[lencounter2-1] = temp[secondcounter-1];
secondcounter--;

}
lencounter1--;
lencounter2--;

}
firstalign[size+1] = '\0';
secondalign[size+1] = '\0';

//among my fragments, calculate larger mean prob
if(largestCalcProb <= calculatedProb)
{

tracker = (fragment-1) * size + startpos - seq1len;
point = fragment;
largestCalcProb = calculatedProb;
strcpy(finalFirstAlign, firstalign);
strcpy(finalSecondAlign, secondalign);

}

} // while ends here

 printf("\nFragment number %d\n", point);
printf("Position of alignment %d\n", tracker);
printf("Largest Mean Posterior Prob # %f\n", largestCalcProb);

//deallocate all memory space
free(Zf[0]);
free(Ze[0]);
free(Zf[1]);
free(Ze[1]);
free(Zm_rev[0]);
free(Zm_rev[1]);

 free(Zm);
free(sequence1);
free(sequence2);
free(temp);

for(i=0; i<(seq1len+1);i++)
{

free(V[i]);
}

for(i=0; i<(seq1len+1);i++)
{

free(T[i]);
}

// freeing memory space
if(postptr)

free(postptr);

free(firstalign);
free(secondalign);

free(finalFirstAlign);
free(finalSecondAlign);
return(0);

}

 18

REFERENCES

Bahr,A. et al. (2001) BAliBASE (Benchmark Alignment dataBASE): enhancements for
repeats, transmembrane sequences and circular permutations. Nucleic Acids Res, 29,
323-326.

Do,C.B. et al. (2005) ProbCons: Probabilistic consistency-based multiple sequence
alignment. Genome Res, 15, 330-340.

Durbin,R. et al. (1998) Biological sequence analysis: Probabilistic Models of Proteins
and Nucleic Acids. Cambridge University Press, Cambridge, United Kingdom.

Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res, 32, 1792-1797.

Karlin,S. and Altschul,S.F. (1990) Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proc. Natl. Acad.
Sci. U.S.A, 87, 2264-2268.

Katoh,K. et al. (2005) MAFFT version 5: improvement in accuracy of multiple sequence
alignment. Nucleic Acids Research, 33, 511 -518.

Notredame,C. (2002) Recent progress in multiple sequence alignment: a survey.
Pharmacogenomics, 3, 131-144.

Roshan,U. et al. Searching for evolutionary distant RNA homologs within genomic
sequences using partition function posterior probabilities. BMC Bioinformatics, 9,
61-61.

Roshan,U. and Livesay,D.R. (2006) Probalign: multiple sequence alignment using
partition function posterior probabilities. Bioinformatics, 22, 2715 -2721.

Thompson,J.D. et al. (1994) CLUSTAL W: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res, 22, 4673-4680.

Thompson,J.D. et al. (1999) BAliBASE: a benchmark alignment database for the
evaluation of multiple alignment programs. Bioinformatics, 15, 87 -88.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Probalign V.1.4
	Chapter 3: Probalign V.1.5
	Chapter 4: Conclusion
	Appendix: Program Code for the Main Function
	References

	List of Tables

