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ABSTRACT 

DEVELOPMENT OF ADVANCED ALGORITHMS TO DETECT, 
CHARACTERIZE AND FORECAST SOLAR ACTIVITIES  

by 
Yuan Yuan 

Study of the solar activity is an important part of space weather research. It is facing 

serious challenges because of large data volume, which requires application of 

state-of-the-art machine learning and computer vision techniques. This dissertation targets 

at two essential aspects in space weather research: automatic feature detection and 

forecasting of eruptive events. 

 Feature detection includes solar filament detection and solar fibril tracing. A solar 

filament consists of a mass of gas suspended over the chromosphere by magnetic fields and 

seen as a dark, ribbon-shaped feature on the bright solar disk in Hα (Hydrogen-alpha) 

full-disk solar images. In this dissertation, an automatic solar filament detection and 

characterization method is presented. The investigation illustrates that the statistical 

distribution of the Laplacian filter responses of a solar disk contains a special signature 

which can be used to identify the best threshold value for solar filament segmentation. 

Experimental results show that this property holds across different solar images obtained 

by different solar observatories. Evaluation of the proposed method shows that the 

accuracy rate for filament detection is more than 95% as measured by filament number and 

more than 99% as measured by filament area, which indicates that only a small fraction of 

tiny filaments are missing from the detection results. Comparisons indicate that the 

proposed method outperforms a previous method. Based on the proposed filament 

segmentation and characterization method, a filament tracking method is put forward, 
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which is capable of tracking filaments throughout their disk passage. With filament 

tracking, the variation of filaments can be easily recorded. 

Solar fibrils are tiny dark threads of masses in Hα images. It is generally believed 

that fibrils are magnetic field-aligned, primarily due to the reason that the high electrical 

conductivity of the solar atmosphere freezes the ionized mass in magnetic field lines and 

prevents them from diffusing across the lines. In this dissertation, a method that 

automatically segments and models fibrils from Hα images is proposed. Experimental 

results show that the proposed method is very successful to derive traces of most fibrils. 

This is critical for determining the non-potentiality of active regions. 

Solar flares are generated by the sudden and intense release of energy stored in 

solar magnetic fields, which can have a significant impact on the near earth space 

environment (so called space weather). In this dissertation, an automated solar flare 

forecasting method is presented. The proposed method utilizes logistic regression and 

SVM (support vector machine) to forecast the occurrences of solar flares based on 

photospheric magnetic features. Logistic regression is used to derive the probabilities of 

solar flares occurrence, which are then fed to SVM for determining whether a flare will 

occur. Comparisons with existing methods show that there is an improvement in the 

accuracy of X-class solar flare forecasting. It is also found that when sunspot-group 

classification is combined with photospheric magnetic parameters, the performance of 

flare forecasting can be further lifted.  
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CHAPTER 1                  

 INTRODUCTION 

1.1 Overview 

Space weather refers to the conditions in the space environment caused by the Sun that can 

affect the performance and reliability of space-borne and ground-based system as well as 

human life and health [1]. Space weather can significantly impact satellite communications 

and navigation, interrupt the Global Positioning System (GPS), shorten orbital lifetime of 

Earth-orbiting satellites, damage satellites’ electronic components, destroy electric power 

system distribution grids, bring radiation sickness to astronauts, and endanger passengers 

on commercial flights going through polar route [2].  

 To accurately predict space weather, it is required to understand the Sun and 

especially the mechanism of eruptive events on the Sun, like solar flares and Coronal Mass 

Ejections (CMEs). Solar flares are due to the sudden and intense release of energy stored in 

solar magnetic fields [3]. CMEs are the most energetic events in the solar system, during 

which coronal material of mass up to 1610  g is expelled at speeds of several 210  to 310  

kilometers per second from the Sun [1]. CMEs are associated with solar flares and filament 

eruption (whole or part of filament ascends with velocity of several hundred km/s [4]). To 

understand the mechanism of solar flares and solar filaments is of vital importance to solar 

physics.  

Rapid progress of technology makes it possible to establish both space-borne and 

ground-based solar observatories, which provide higher quality and larger quantity of solar 

images than ever before. It brings both hope and challenges. On the one hand, more and 

more data with better quality are readily available; on the other hand, the tools to crunch the 
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data to derive meaningful results from the data are not available. For example, the Global 

High-Resolution H-alpha Network [5] currently collect H-alpha full disk solar images 

from eight different solar observatories across the world, each of which produces dozens of 

images per day. The recently launched satellite SDO (Solar Dynamics Observatory) 

produces 4TB data per day. It is not practical to measure the features (like solar filaments) 

on solar disk manually.  

Primary goal of this study is to develop automated tools that can detect solar 

features (filaments) and predict solar eruptive events (flares) using advanced digital image 

processing and machine learning techniques.  

1.2 Solar Filament Segmentation and Fibril Tracing 

Solar filaments (also called prominence when it appears at the solar limb) are clouds of 

relatively cool and dense gas suspended above the solar photosphere, generally along a 

magnetic neutral line [3]. Researchers are exploring the close relationship between 

erupting filaments and coronal mass ejections (coronal mass ejection is a high speed 

outward ejection of a large volume of magnetized solar plasma [4]) by studying the 

evolution of solar filaments [3, 6-8].  

 There have been several studies targeted to solar filaments detection and 

characterization. An automatic solar filament detection system was firstly developed by 

Gao et al. [9], in which filament detection is accomplished by segmentation using 50% of 

median value of the solar disk followed by region growing. This method is surpassed by 

Shih and Kowalski [10], which utilized localized segmentation and mathematical 

morphology. Bernasconi et al. [11] developed a solar filament segmentation and 

characterization technique which delves into the details of each piece of filament, such as 
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detection the barbs of filament. Qu et al. [12] adopted image enhancement, localized 

segmentation, morphology processing and edge linking for solar filament segmentation. 

Based on the comparison in [12], the method outperforms those proposed before [9, 10]. 

 However, most proposed methods on solar filaments detection are targeted for the 

solar images obtained by a specific solar observatory, and thus it is relatively easier to 

tackle. In this study, a generic solar filament detection and characterization method is 

developed. Here, generic means that the method can be used for solar images obtained by 

different solar observatories with different statistical properties. The method deals with 

three aspects of solar filament segmentation. Firstly, identify the center location and radius 

of solar disks and then segment solar disks from solar images. Secondly, after removing the 

unbalanced luminance of solar disks, segment solar filaments from solar disks. Thirdly, 

characterize the length, location and orientation of each piece of solar filament. 

 Experimental results illustrate that the accuracy measured by filament area is 99% 

and accuracy measured by filament number is 93%. Comparison with existing methods 

also demonstrates the superiority of the proposed method. 

Solar fibrils seen in the Hα central line are threads of mass that appear in abundance 

throughout the field-of-view (FOV) of Hα filtergrams. It is generally believed that fibrils 

are magnetic field-aligned, primarily due to the reason that the high electrical conductivity 

of the solar atmosphere “freezes" the ionized mass in magnetic field lines and prevents 

them from diffusing across the lines. Very recently, [13] tested this common notion for the 

first time by comparing the orientation of fibrils to the azimuth of chromospheric magnetic 

fields obtained by spectropolarimetric measurements of Ca II lines, and found a general 

alignment as well as some discrepancy between the two directions. [13] ascribed the 
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discrepancy to either the difference in formation height or the time lag between the fibril 

and magnetic field measurements. 

A fibril segmentation and modeling method is presented in this dissertation. Since 

it is mostly true that fibrils are oriented along the magnetic field direction theoretically and 

observationally, it would be reasonable to adopt fibrils as a surface tracer of chromospheric 

magnetic fields, which helps in our understanding of the energy storage and release 

mechanism of solar eruptive events. 

 Image processing techniques such as image enhancement, image segmentation, and 

union-find are used to segment fibrils from Hα images. Least squares curve fitting is used 

to model segmented fibrils. Experimental results show that the proposed method is very 

successful in segmentation and modeling of most fibrils, especially major fibrils.  

1.3 Solar Flare Forecasting 

Solar flares are large explosions in the solar atmosphere, which typically release the order 

of 2510  joules of energy [14]. Most Solar flares can be observed as a local brightening in 

the Hα line [1]. According to the peak intensity of soft x-ray emission in the 0.1-0.8 

nanometer band measured by Earth-orbiting satellites, solar flares can be classified into A, 

B, C, M and X classes [1]. Since flares below C class are in general too weak to bring major 

space weather events, most attention is paid to C, M and X-class flares. 

It is believed that solar flares are due to the magnetic reconnection [3, 14-17].  

There are many studies on the correlation between solar flares and solar magnetic 

properties [18-20].  

 Based on the statistical correlation between solar flares and solar magnetic field 

measures, several solar flare forecasting methods have been developed. Georgoulis and 
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Rust [21] developed a method of quantitative forecasting of M-class and X-class flares 

based on a single metric defined as the effective connected magnetic field. Barnes and 

Leka [22] adopted discriminant analysis to perform probabilistic forecasting of solar flares 

from vector magnetic field parameters. Combining the support vector machine (SVM) and 

the K-Nearest Neighbors (KNN), Li et al. [23] developed a flare forecasting model to 

predict whether an M-class flares will occur for each active region within two days. Song et 

al. [24] used the logistic regression as a forecasting model to estimate the probability for 

each active region to produce X-, M- or C-class flares. The comparison made by Song et al. 

[24] demonstrated that the proposed method outperforms those by Solar Data Analysis 

Center (SDAC) and NOAA’s Space Weather Prediction Center (SWPC). However, there 

is a problem with this method, in which the predicted probability of X-class flare is 

underestimated.  

As part of the dissertation, an automatic solar flare forecasting technique is 

presented, which can predict the occurrence of C, M, and X-class solar flares based on 

photospheric magnetic parameters. The method utilizes logistic regression and support 

vector machine (SVM). From an active region, magnetic parameters are extracted, and fed 

to a trained logistic regression model. The output of the logistic regression model (four 

probabilities) is further fed to a trained SVM to get the final forecasting results. 

Experimental results, from a sample of 230 active regions between 1996 and 2005, 

show the accuracies of a 24-hour flare forecast to be 0.86, 0.72, 0.65 and 0.84 respectively 

for the four different classes. Comparison with the method proposed in [24] shows an 

improvement in the accuracy of X-class flare forecasting. 
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1.4 Digital Image Processing 

Most of the information about the Sun used in this study is derived from digital solar 

images obtained by ground-based or airborne solar observatories. In this section, an 

introduction on basic digital image processing is presented to facilitate the understanding 

of the following chapters.   

An image can be represented as a two-dimensional function ( , )f x y , where x  and 

y are spatial coordinates, and the value of f  at a pair of coordinates ( , )x y  is called the 

intensity of the image at that location. When x , y and the value of f are all finite, discrete 

quantities, ( , )f x y  is referred to as a digital image. A digital image is composed of a finite 

number of elements, each of which is located at a particular location and has a value. These 

elements are referred to as pixels. Digital image processing refers to processing a digital 

image by digital computing devices.  

Digital image processing is concerned with the study and the implementation of 

methods for formation, communication, enhancement, and analysis of digital images. 

Digital image processing has been applied to a variety of fields, including astronomy [25] 

(telescopes), geophysics [26] (electromagnetic imaging), medical science [27] (CT, MRI, 

ultrasound imaging, microscopes imaging), mass communication and publishing industry  

[28] (printing, scanning, photocopying), entertainment [29] (special effect in movies, video 

games), security and digital right management [30] (digital watermarking, biometrics) and 

so on. 

Digital image processing is composed of three basic operations, namely point 

operation, local operation and global operation. In point operation, the output intensity of a 

pixel is dependent only on the input intensity of the same pixel. In local operation, the 
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output intensity of a pixel is dependent on the input intensities in the neighborhood of the 

pixel. In global operation, the output value of a pixel depends on all the pixel intensities in 

the input image. 

  

Figure 1.1 Illustration of image rotation. The image on the right panel is the result of 
rotation of 30 degree clockwise. 

 

Basic operations of digital image processing can also be classified into algebraic 

operation, geometric operations and noise filtering. Algebraic operations include addition, 

subtraction, multiplication and division of digital images. Geometric operations mean to 

change spatial relationships between objects within an image. For example image rotation 

shown in Figure 1.1 is one kind of geometric operations of digital image. Noise may be 

introduced during image acquisition (electric noise introduced by digitizer) or transmitting 

(satellite images). Well-known noise filtering techniques includes Gaussian filtering and 

median filtering. 

1.4.1 Image Filtering 

Median filtering belongs to a local operator, which looks at the nearby neighbors of a pixel 

in the input image to determine the output intensity of the pixel. The output intensity of 

each pixel is the median value of its nearby neighbors of the pixel in the input image. The 
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median can be figured out by first sorting all the pixel intensities from the surrounding 

neighborhood and then picking the middle pixel intensity. Figure 1.2 illustrates an example 

of removing artificially introduced salt and pepper noise by median filtering. 

 

             (a) Original image                          (b) Image after median filtering 

Figure 1.2 Illustration of median filtering to remove salt and pepper noise. 

 
Gaussian filtering is another local operation which can be implemented with 

convolution. Given a kernel matrix ( , )g x y , convolution between a digital image  ,f x y  

and  ( , )g x y  is defined as the following equation: 

 

( , ) ( , ) ( , ) ( , )
i j

f x y g x y f i j g x i y j
 

 

      (1.1)

  

Gaussian filtering is the convolution between a digital image  ,f x y and a 

Gaussian kernel matrix. A two-dimensional Gaussian kernel matrix is defined as following 

[29] : 
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2 2

22
2

1
( , )

2

x y

G x y e 






  (1.2)

 

Table 1.1 Discrete Approximation to a 5 5  Gaussian Kernel with 2.5  . 
0.0285 0.0363 0.0393 0.0363 0.0285
0.0363 0.0461 0.0500 0.0461 0.0363
0.0393 0.0500 0.0541 0.0500 0.0393
0.0363 0.0461 0.0500 0.0461 0.0363
0.0285 0.0363 0.0393 0.0363 0.0285

 

 

           (a) Original image                           (b) Image after Gaussian filtering 

Figure 1.3 Illustration of Gaussian filtering.  
 

Table 1.1 illustrates a discrete approximation to a 5 5  Gaussian kernel with 

2.5  . Figure 1.3 illustrates an example of Gaussian filtering, in which the image in the 

left panel is convoluted with the Gaussian kernel shown in Table 1.1 to produce a blurred 

image shown in the right panel.  
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         (a) Sobel operator                                  (b) Roberts operator 

 

         (c) Canny operator                                    (d) LoG operator 

Figure 1.4 Illustration of edge detection by convolution with edge operators. 
.  

Convolution with different kernel matrix would produce different effects which is 

valuable in digital image processing. Among the various applications of convolution is 

edge detection. Edge points are located at the coordinates where the gradient magnitudes 

are comparatively large. Edge operators are kernel matrices, when convolution with a 

digital image, are able to enhance the intensities of edge points and suppress the intensities 

of non-edge points. Mostly well-known edge operators are Roberts operator, Sobel 

operator, LoG operator, and Canny operator [29]. Figure 1.4 illustrates the result of edge 

detection by convolution with edge operators. 
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1.4.2 Hough Circle Transform 

Digital image processing is not only able to enhance an image (such as denoising [31]) but 

also able to extract higher-level information from the image. The Hough transform [32] is a 

feature extraction technique used to find a parameterized shape or structure from digital 

image processing. Hough circle transform is used in this study to identify the radius and 

center location of the solar limb in a solar image. A solar limb can be modeled as a circle 

with radius r and center ( , )a b . And thus a solar limb can be described with the parametric 

equations: 

 

cos

sin

x a r

y b r




 
  

 (1.3)

 

When the angle   steps through the 360 degree range, the points ( , )x y  trace the 

solar limb. If the radius r of a solar limb is known, its center location ( , )a b  can be figured 

out by constructing a Hough accumulation matrix. At first, a two-dimensional (2D) Hough 

accumulation matrix, which is of the same dimension as the digital image under 

consideration, is initialized to be all zeros. Edge points are figured out from the given 

image. For each edge point located at (x,y), the value of the corresponding elements of the 

accumulation matrix is increased by one, where the corresponding elements are on the 

perimeter of a circle, whose center location is (x,y) and radius is r . Finally, the element 

with the greatest value in the Hough accumulation matrix is found out, whose location is 

the center location of the circle. The processing is illustrated in Figure 1.5. 
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    (a)                                 (b) 

Figure 1.5 Illustration of the Hough circle identification. 

 
In reality, the radius of the limb of a solar disk in each Hα image is unknown. Let 

the radius be in the range of  ,L RR R . In order to determine the radius accurately, each 

possible radius is enumerated. Therefore, it is needed to construct a three-dimensional (3D) 

Hough accumulation matrix, in which each channel corresponds to an enumerated radius. 

The channel which contains the element of the greatest magnitude of the 3D Hough 

accumulation matrix identifies the radius r , and the location of the element identifies the 

center location ( , )a b . In Figure 1.6, the left panel displays a circle, and the right panel 

displays the channel of the accumulation matrix, containing the element of the highest 

magnitude, as a 3-dimensional mesh surface. 

 

Figure 1.6 Illustration of the accumulation matrix of Hough circle transform. 
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1.5 Machine Learning  

Machine learning [33] is a scientific discipline focused on the design and implementation 

of computer algorithms that allow computer systems to evolve based on data. A machine 

learning algorithm analyzes data to capture the characteristics of the data and thus it can 

make intelligent decisions based on the data [34].  

Machine learning has been applied to various fields, including speech recognition 

[35, 36],  natural language processing [37, 38], computer vision [39], and robotics [40]. 

Machine learning can be categorized into two categories: supervised learning and 

unsupervised learning [41]. In supervised learning, a learning model is established to map 

inputs to desired outputs. For example, support vector machine approximates a function 

mapping an input into a class by looking at input-output relations of the samples in a data 

set. Whereas unsupervised learning is to model a set of data, like clustering [42].  

A supervised learning task usually involves separating data into training and testing 

sets. Each sample in the training set contains one “target value” (i.e. the class labels) and 

“several attributes” (i.e. the features, predictive parameters or observed variables) [43]. In 

this study, two supervised machine learning techniques are adopted for flare forecasting, 

namely logistic regression and support vector machine (SVM). The goal of logistic 

regression is to produce a model (based on the training data) which predicts the 

probabilities of target values of a testing data given only the testing data attributes, whereas 

the goal of SVM is to produce a model which predicts the target values of a testing data.   

1.5.1 Logistic Regression 

The logistic regression [44] is a machine learning technique to model the posterior 

probabilities of K  classes via linear functions in input data, while at the same time 
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ensuring that the sum of the K  posterior probabilities equals one and that each of the K  

posterior probabilities remain in [0,1] . The logistic regression model is presented in terms 

of 1K   log-odds, which has the following form [45]: 
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 The equations above can be transformed into the following equations: 
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By adding the above equations, it can be derived that: 

 

10 1 20 2 ( 1)0 1
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The equation above is equivalent to: 
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 Under the assumption, the following condition must hold: 

 

Pr( 1| ) Pr( 2 | ) Pr( | ) 1G X G X G K X         x x x  (1.8)

  

Equation 1.9 can be derived: 
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 And then, the following equation can be calculated: 
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In summary,   
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Before logistic regression can be used, it has firstly to be trained using training data 

by maximum likelihood [44], using the conditional likelihood of G given X . The 

log-likelihood for N  data samples  , , 1, 2, ,i ig i nx   is 

 

 
1

log Pr( | ; )
N

i i
i

l G g X 
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   x  (1.12)

  

In two-class case ( 2K  ), let 0iy   when 1ig   and 1iy   when 2ig  , the 

log-likelihood above can be written as follows: 
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where  10 1,   , and it is assumed that the inputs ix  include a constant term 1 to 

accommodate the intercept. 
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 To maximize the log-likelihood, set the derivative of the equation to zero as 

follows: 
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Newton-Raphson algorithm can be used to solve the equation above. It can be 

derived that [45]:  
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 (1.15)

  

It seems that 0   is a good starting value for the iteration procedure. Typically 

the iteration procedure converges because the log-likelihood is concave [44, 46]. 

1.5.2 Support Vector Machine 

Given a training set of attributes-label pairs  ,i iyx , 1, 2,...,i l  where n
i Rx  and  

 1, 1iy   , a support vector machine (SVM) model is expressed as the following 

optimization problem [47, 48]: 

  



18 
 

 

, ,
1

1
min

2

( ( ) ) 1
  

0

l
T

i
b

i

T
i i i

i

C

y b
subject to



 






   





w ξ

w w

w x
 (1.16)

 

where the training vectors ix  are mapped into a higher dimensional space by the function 

 . The training of SVM model is to find a linear separating hyperplane with the maximal 

margin in this mapped higher dimensional space. 0C  is a penalty parameter of the error 

term. The solution to the optimization problem above is given by the saddle point of the 

Lagrangian [49]: 
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T T
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i i j

b C y b     
  

         w α ξ β w w w x  (1.17)

 

where ,α β are the Lagrange multipliers. The Lagrangian has to be maximized with respect 

to ,α β  and minimized with respect to , ,bw ξ . The classical Lagrangian duality enables the 

primal problem above to be transformed to its dual problem as following [50]: 

 

     , ,,
max , max min , , , ,

b
W b 

w ξα α β
α β w α ξ β  (1.18)

 

The minimum with respect to , ,bw ξ  of the Lagrangian   is given by the 

following equations: 
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From the above three equations, the dual problem is as follows [50]: 
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The Lagrange multipliers α can be calculated by solving the above equation, and a 

SVM prediction model is given by [51]: 
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Using the theory of kernel method [52], the mapping function   does not need to 

be explicit. A kernel function    , ( )i j i jK  x x x x  can be used throughout the 

equations above. The most widely known kernel functions include the followings [53]: 
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1. Linear kernel function:  , T
i j i jK x x x x   

2. Polynomial kernel function:    , , 0
dT

i j i jK r   x x x x  

3. Radial basis kernel function (RBF):     2
, exp , 0i j i jK     x x x x  

4. Sigmoid kernel function:    , tanh T
i j i jK r x x x x  
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CHAPTER 2  

AUTOMATIC SOLAR FILAMENT SEGMENTATION AND 

CHARACTERIZATION 

2.1 Introduction 

In hydrogen alpha (Hα) full-disk solar images, solar filaments appear as elongated dark 

threads on the brighter solar disk as shown in Figure 2.1. Solar filaments (also called 

prominence when it appears at the solar limb) are clouds of relatively cool and dense gas 

suspended above the solar photosphere, generally along a magnetic neutral line [3]. 

Researchers are exploring the close relationship between erupting filaments and coronal 

mass ejections by studying the evolution of solar filaments [3, 6-8]. The Space Weather 

Research Lab (SWRL) at New Jersey Institute of Technology is currently maintaining a 

global high-resolution Hα network [5] which aims at maintaining a public accessible 

database containing all Hα images from different solar observatories around the world. 

The geographically distributed observatories can perform 24 hours continuous 

observation to eliminate the limitation that one observatory can only observe about eight 

hours a day from sunrise to sunset. Since each of these observatories can produce hundreds 

of Hα full-disk solar images per day, it is a time-consuming and challenging task for 

observers to manually mark and measure features on the Sun, such as filaments. Besides, 

there is no complete and accurate solar filaments catalog available up to now, which is of 

vital importance for researchers on solar physics and space weather. 
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Figure 2.1 An Hα full-disk solar image (Courtesy of BBSO). One of the solar filaments is 
enclosed in a rectangle box. 

 
Several automatic methods of solar filament segmentation have been proposed. 

Gao et al. [9] utilized global thresholding and region growing to segment filaments. Shih 

and Kowalski [10] developed both global and local thresholding combined with 

mathematical morphology to segment solar filaments. Qu et al. [12] developed an adaptive 

thresholding based on edge detection to detect solar filaments. Bernasconi et al. [11] used 

normalization and global thresholding to segment solar filaments. However, all of the 

methods above are designed and tested only on the solar images generated by the Big Bear 

Solar Observatory (BBSO) in California, and thus they may not able to work well on the 

solar images obtained by other solar observatories for the two reasons below. 

First, the solar images produced by different observatories may have different 

properties, such as dynamic range, resolution, and luminance. A method which works fine 

with solar images produced by one observatory may not be suitable for those produced by 

other observatories. For example, Bernasconi et al. [11] selected the value −600 as the 

filament detection threshold for the solar images produced by BBSO, but this is definitely 
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not a good threshold for the solar images produced by Kanzelhöhe Solar Observatory 

(KANZ) in Austria, as illustrated in Figure 2.2. 

Second, to calculate the longitude and latitude of the centroid of a solar filament, 

firstly it is required to know the center and radius of the solar disk in each image. The 

current methods use the center location and radius from the file header associated with 

each solar image. Unfortunately, it is found out that the center location and radius provided 

in the file header are not always very accurate. Furthermore, the format and description of 

the file header used by different observatories are different. For example, to describe the 

horizontal coordinate of the center location, the BBSO uses “CENX” but the KANZ uses 

“CRPIX1” in one image and use “CENTER_X” in another image. Sometimes, some 

images come with no such information at all. For example, one solar image produced by 

the Yunnan Astronomical Observatory (YNAO) in China provides no such information 

about the center location and radius of solar disk.  

To tackle the aforementioned challenges, an adaptive segmentation method is put 

forward for solar filament segmentation and a cascading Hough circle detector for solar 

disk’s center location and radius identification. The rest of the chapter is organized as 

follows. The procedure for solar disk’s center location and radius identification is 

presented in Section 2. The procedure of solar filament segmentation is presented in 

Section 3. The characterization of solar filaments is discussed in Section 4. Section 5 

illustrates the experimental results. Discussion and conclusion are included in the last 

section. 
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                                     (a)                                                     (b) 

 

   
                                      (c)                                                     (d) 

Figure 2.2 Solar images and their corresponding histograms (excluding background). (a) 
An Hα image taken by BBSO on Feb. 9th, 2002, (b) histogram of the solar disk in (a), (c) 
an Hα image taken by KANZ on Feb. 9th, 2002, (d) histogram of the solar disk in (c).  

 

2.2 Identification of Center Location and Radius 

The radii and the center locations of solar disks in Hα images vary from one image to 

another. The variation of the distance between the Earth and the Sun causes the variance of 

the radii. A slight error in telescope tracking contributes to the variance of center locations 

of solar disks.  

It is a difficult task to accurately determine the center coordinates and radii of solar 

disks. The method designed by Denker et al. [54] has been adopted by BBSO in publishing 

Hα solar images. The method is easy to implement; however, it is vulnerable to noise on 
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the limb, especially when there are prominences extended above the limb in the four 

rectangular regions. In this section, a new method is presented which uses image 

smoothing, edge detection [55], and Hough transform [32, 56]. The workflow of the 

proposed solar radius and center identification algorithm is illustrated in Figure 2.3.  The 

algorithm is composed of two major stages as described below. 

 

 

Figure 2.3 Workflow of solar radius and center location identification.  
 

In stage one, first a given image is shrunk to 
1

k
 of its original size. Second, the 

median filter is used to smooth the shrunk image. Third, an edge operator is applied to the 

smoothed image to obtain a gradient map. Fourth, the pixels in the gradient map whose 

intensities are greater than the median value plus three times of the standard deviation of 

pixel values on the filtered map are kept to obtain an edge map. Finally, the Hough circle 

detector is used to identify the solar radius Rinit and center location (Xinit,Yinit) of the shrunk 
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image, in which the radius search is performed within the range from 
1

4
 to 

1

2
  of the 

minimum of width and height of the given image. The underline assumption is that the 

radius of a solar disk is at least 
1

4
 of the width or the height of the given image, whichever 

comes smaller, and the whole disk is enclosed in a given image, meaning that its radius is at 

most 
1

2
 of the width or the height of the given image, whichever comes larger. 

In stage two, first the given image is smoothed using the median filter. Second, an 

edge operator is applied to the smoothed image to produce a gradient map. Third, the pixels 

in the gradient map whose intensities are greater than the median value plus three times of 

the standard deviation of pixel values on the filtered map are kept to obtain an edge map. 

Finally, the Hough circle detector is used to identify the solar radius and center location, in 

which radius search is within the range of [kRinit−k, kRinit+k]. 

Hough circle detector works as follows: A circle with radius R and center location 

(a,b) can be described by the parametric equations: 

 

cos

sin

x a R

y b R




 
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 (2.1)

 

When the angle θ steps from zero to 360º, the points (x,y) form the perimeter of a 

circle. A given edge map Iedge contains the points (x,y) located on the solid circle in Figure 

2.4 (a). Each of these points corresponds to the center of a circle which is illustrated as a 

dotted circle in Figure 2.4 (b). The location where dotted circles pass the most frequently 
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(marked as a solid black dot) or the location of the element whose value is greatest in the 

Hough accumulation matrix is the center location of the circle under investigation.  

The whole process of Hough circle detector can be carried out by first constructing 

a two-dimensional (2D) Hough accumulation matrix, as initialized to be all zeros. For each 

foreground point in the edge map (where  , 1edgeI x y  ), the value of the corresponding 

elements of the accumulation matrix is increased by one, where the elements are on the 

perimeter of a circle whose center location is (x,y) and radius is R. Finally, the element with 

the greatest value in the Hough accumulation matrix is found out, whose location is the 

center location of the circle. 

 

 

    (a)                                 (b) 

Figure 2.4 Illustration of the Hough circle identification. 

 
The radius of the solar disk in each Hα image is a variable. Let the radius be in the 

range of  ,L RR R . In order to determine the radius accurately, each possible radius is 

enumerated. Therefore, it is needed to construct a three-dimensional (3D) Hough 

accumulation matrix, each of its channels corresponds to an enumerated radius. The 

channel which contains the element of the greatest magnitude of the 3D Hough 

accumulation matrix identifies the radius R, and the location of the element identifies the 

center location (x,y). 
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However, due to the following two constraints, direct Hough transform 

implementation is extremely inefficient in solar limb identification: 

1. Memory limitation: The resolution of a Hα image is about 2000 by 2000, and the 

radii of solar disks are in the range from 500 to 1000 (the radius of a solar disk can 

be as small as 409, as one obtained by Catania Astrophysical Observatory (CAO), 

and also can be as large as 918, as one obtained by BBSO). Therefore, a 3D Hough 

accumulation matrix of 2000 rows, 2000 columns, and 1000-500+1≡501 channels 

is needed. If one 32-bit (i.e. 4 bytes) integer is used to represent each element of the 

accumulation matrix, the total memory consumption is 

2000 2000 501 1024 1024 1024 4 7.4        gigabytes, which are too big for 

most mainstream computers. 

2. Computation limitation: Hough transform is applied on bi-level images (edge 

map). The computational complexity of Hough transform is proportional to the 

number of “1”s in the thinned edge map (Note: “0” as background). Supposing that 

one twentieth of the original image pixels are detected as edge points, the number 

of edge points detected would be 2032×2032/20 ≈ 200000. Each of these edge 

points will go through one iteration in the Hough accumulation matrix building up, 

which consumes a lot of time. 

To mitigate the two limitations, a cascading two-stage approach is developed. In 

the first stage, a given image (in which the radius of solar disks is within [ , ]L RR R ) is 

shrunk to 
2

1

k
 of its original size. Let I be the original image of M rows by N columns and 
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its shrunk image be Ir of  
M

k
 rows by 

N

k
 columns. After median filtering and Roberts 

edge operator, Hough transform is used to identify the solar limb in the shrunk image 

whose radius is within ,L RR R

k k
 
  

. Let the radius of the shrunk image detected by the 

Hough transform be RT, so the radius R of the original image should lie within 

 ,T TkR k kR k  .  

In the second stage, the median filtering, Roberts edge detection, edge thinning, 

and Hough transform are performed on the original image I. However, the search of the 

radius is performed within  ,T TkR k kR k  , that saves computational time significantly.  

For example, the resolution of an Hα full-disk solar image produced by BBSO is 

2032 by 2032, in which the radius of solar limb is within [500, 1000]. As aforementioned, 

the direct Hough circle identification needs to construct a Hough matrix consuming around 

seven gigabytes of memory. Using the two-stage Hough circle identification approach, the 

memory consumption is as follows. 

In the first stage, the image is supposed to be shrunk to 
1

25
 of its original size. The 

radius in the shrunk image would be within [100, 200]. It is needed to construct a 3D 

Hough accumulation matrix of size 2032 / 5 407  rows, 2032 / 5 407  columns, and 

200 100 1 101    channels. The memory consumption of the matrix is  

407 407 101 1024 1024 4 63       megabytes.  

In the second stage, suppose the identified radius from the first stage is 180. The 

radius of the solar limb in the original image should be within 

   180 5 5,180 5 5 895,905     . It is needed to construct a 3D Hough accumulation 
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matrix of size 2032 rows, 2032 columns, and 905 895 1 11    channels, which consumes 

2032 2032 11 1024 1024 4 173       megabytes of memory.  

Figure 2.5 and 2.6 illustrate an example of the first and second stages of solar radius 

and center identification procedure, respectively.  

 

       

               (a)     (b)                  (c)    (d) 

 

         (e)                     (f) 

Figure 2.5 An example of the first stage of solar radius and center identification. (a) 
Shrunk image, (b) shrunk image after median filtering, (c) thinned edge map, (d) identified 
solar limb over plotted on the solar image as a blue circle, (e)  a dotted curve on which each 
star mark corresponds to the maximum value of each channel of Hough accumulation 
matrix, (f) the 183rd channel of Hough accumulation matrix shown as an image, in which 
the darkest point (pointed to by an arrow) on the center area illustrates the center location 
of the identified solar disk. 
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               (a)      (b)   (c)               (d) 

 

               (e)      (f) 

Figure 2.6 An example of the second stage of solar limb identification. (a) Original image, 
(b) the image after median filtering, (c) thinned edge map, (d) identified solar limb over 
plotted on the solar image as a  blue circle, (e)  a dotted curve on which each star mark 
corresponds to the maximum value of each channel of Hough accumulation matrix, (f) The 
915th channel of Hough accumulation matrix shown as an image, in which the darkest 
point (pointed to by an arrow) on the center area illustrates the center location of the 
identified solar disk.   

 

2.3 Segmentation of Solar Filament 

2.3.1 Unbalanced Luminance Correction 

When the Sun is observed in hydrogen alpha line, it is noticed that the brightness of the 

disk gradually decreases from its center to its limb (shown as Figure 2.7(a)), which is called 
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limb darkening [57]. After limb darkening removal [54], the background luminance of the 

solar disks in Hα images is still non-uniform; some location is brighter than other location 

(illustrated in Figure 2.7(b)). This may result from (1) clouds in the atmosphere of the 

Earth, which blocks the sunlight at some location, (2) the dusts on the telescope, (3) the 

dusts on the film, or (4) the electronic noise brought in during the film digitization 

procedure. Note that historical Hα images were recorded in traditional 35mm film instead 

of digital camera nowadays.  

 

     

   (a)     (b) 

Figure 2.7 Illustration of unbalanced luminance. (a) An Hα image with limb darkening 
(Courtesy of BBSO), (b) unbalanced luminance on solar disk (Courtesy of YNAO). 

 
 

Let  ,f x y  be an Hα full-disk solar image, which can be viewed as the combined 

effect of true luminance from the Sun  ,h x y  and noise luminance  ,g x y , whose 

relationship can be viewed as ( , ) ( , ) ( , )f x y g x y h x y  . The noise luminance  ,g x y  

can be modeled as a polynomial function. If  ,g x y  is know, the true luminance from the 

Sun  ,h x y  can be obtained as ( , ) ( , ) ( , )h x y f x y g x y  .  
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 ,g x y  can be approximated using a polynomial function. The coefficients of the 

polynomial function can be figured out by minimizing the mean square difference between 

 ,f x y  and  ,g x y  as follows: 

 

      2

1 1

1
, ,

M N

x y

d f x y g x y
MN  

 α  (2.2)

 

Here an example is illustrated by showing the computation of the coefficients of 

 ,g x y  using a third-degree polynomial function. That is: 

 

2 2 3 3 2 2
0 1 2 3 4 5 6 7 8 9( , )g x y x y x y xy x y x y xy                    (2.3)

 

The mean square difference is: 

 

      

    

2

1 1

2
2 2 3 3 2 2

0 1 2 3 4 5 6 7 8 9
1 1

1
, ,

1
,

M N

x y

M N

x y

d f x y g x y
MN

f x y x y x y xy x y x y xy
MN

         

 

 

 

          





α
 (2.4)

 

To calculate α, take partial differentiation of  d α  and set it to be 0. The matrix 

form Hα w can be derived as follows: 
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(2.5)

 

Therefore, α  can be obtained by 1α H w . By taking the difference between 

 ,f x y  and  ,g x y , the luminance corrected image can be obtained. 

2.3.2 Solar Filament Segmentation 

Solar filaments differ in shape and luminance, which makes it difficult to segment them. 

Accordingly, an adaptive solar filament segmentation algorithm, which aims to be 

applicable to solar images produced by different solar observatories, is designed. The 

segmentation technique can be adapted to solar images with different dynamic range and 

statistical properties. The work flow of the proposed adaptive segmentation algorithm is 

illustrated in Figure 2.8 and explained as follows. 
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Figure 2.8 The work flow of solar filament segmentation algorithm. 
 

First, for a given Hα image  ,f x y ,  calculate      , , ,g x y f x y h x y  , which 

is the convolution of   ,f x y  with a high pass Laplacian filter  
1 1 1

, 1 8 1

1 1 1

h x y

 
   
  

.  

Second, calculate the median value medV  and standard deviation stdV  of the set of 

pixels inside the solar disk in  ,f x y . Generate a series of thresholds which are composed 

of arithmetic progression between  3med stdV V  and medV  , as given by: 

3
( 3 ) std

i med std

V
T V V i

S
   , 1, 2,3, ,i S  , S . 

Third, by segmenting  ,f x y  using threshold iT . Region 

   1 ,
,

0 ( , )
i

i
i

f x y T
r x y

f x y T

 
 


 can be obtained, where 0,1, 2,3...,i S , and then difference 

region      1, , ,i i id x y r x y r x y 
 
can be obtained, where  0,1, 2,3..., 1i S  . 

Fourth, calculate 
   

 
, ,

,
i

i
i

d x y g x y
J

d x y
 


, 0,1, 2,3..., 1i S  .  
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Fifth, among the series of  0 1 2 1, , , SJ J J J  , search for the index k  where kJ  is 

maximum and segment  ,f x y  using threshold kT  to obtain the resulting filaments 

candidates map:    
 

1 ,
,

0 ,
k

k

f x y T
m x y

f x y T

  
, where   ,m x y  which is a binary map, with 

‘1’ indicating object and ‘0’ indicating background. Each 8-connected component is 

treated as a filament candidate.  

Sixth, remove those 8-connect components if their areas are less than   times the 

whole area of the solar disk. Let the result be  ,m x y . 

Finally, apply mathematical morphology closing [29] on filament map  ,m x y  

with a disk structuring element  ,n x y , whose radius is P , to connect broken filaments to 

get the final filaments map  ,m x y . 

Figure 2.9 shows an example of filament segmentation. 

 

   

                 (a)                                                                      (b) 
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                                                         (c) 

Figure 2.9 Illustration of filament segmentation. (a) An Hα image taken on Nov. 16th of 
2000 (courtesy of BBSO), (b) filaments found out by the proposed algorithm, (c) a curve 
on which the red circles, denoted as  ,i iT J , are derived by the proposed algorithm in steps 

4. The blue star on the peak of the curve denotes the best threshold value obtained by the 
proposed algorithm. 

 

2.4 Characterization of Solar Filament 

Four properties are used to describe each piece of solar filament, which are computed as 

follows: 

Area: The diameter of the Sun is about 1,392,000 kilometers. Let the radius of the 

solar disk in a given image be R pixels and the total number of pixel of a given filament be 

N. The area of the given filament in square kilometers can be computed by 

 

2
1392000

2
N

R
 
 
 

 (2.6)
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Location: Suppose that the centroid of a filament lies on (x,y) and the center of the 

solar disk lies on  ,c cx y  using the origin on the upper-left corner of each solar image. 

Then convert the centroid location to longitude lon and latitude lat  representation as 

follows [58]: 
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 (2.7)

 

Prior to measuring the length and slope of a filament, a further process is 

performed. First, fill the holes inside each filament using morphological reconstruction 

proposed in [59]. Second, obtain the skeleton of a filament by iterative mathematical 

morphology thinning [29]. At each iteration, the image is firstly thinned by the structure 

element in Figure 2.10 (a) and then by the structure element in Figure 2.10 (b), and 

followed by the remaining six 90o  rotations of the two structure elements. The process is 

repeated in a cyclic fashion until none of the thinning produces any further change. This 

procedure can produce a connected single-pixel width skeleton for each piece of filament. 
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                                 (a)                                             (b) 

Figure 2.10 Structure elements for mathematical morphological thinning. 

 
Length: Since the filament skeleton generally contains a lot of small branches or 

barbs, a robust method is designed based on graph theory to find out the main skeleton by 

removing smaller branches or barbs. First, create a graph (adjacent matrix representation) 

H  for each filament. For each pixel on the skeleton, create a vertex (numbering) 

representing it. Then create an unweighted undirected graph H  which contains all the 

vertices and connectivity of the vertices. If two pixels of the skeleton are 8-connected, 

create an edge connecting the two vertices corresponding to the two pixels. 

After transforming each filament skeleton into a graph, use a graph algorithm to 

find out the main skeleton. The main skeleton is defined as the longest acyclic path which 

connects two vertices. Two algorithms are designed to find out the main skeleton.  

Algorithm 1: find out the all-pairs shortest path between any pairs of vertices using 

the Floyd-Warshall algorithm [60]. The path with maximum length is the main skeleton.  

Algorithm 2: find out all the end vertices. An end vertex is defined as a vertex 

which has only one edge associated with it. Then use Dijkstra's single source shortest path 

algorithm [60] to search for the shortest path between each pair of these end vertices. The 

path with maximum length is the main skeleton. 
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The first algorithm is easy to implement, with time complexity of  3O V , where 

V  is the number of vertices in a graph. The second algorithm is more efficient since its 

time complexity is  2O V E , where E is the number of end vertices and generally VE  .  

Suppose that main skeleton contains Q  vertices. The length of the corresponding 

filament in kilometers is 
1392000

2
Q

R
 
 
 

, where the radius of the solar disk in a given image 

is R  pixels. Figure 2.11 shows an example of main skeleton detection. 

   

                             (a)                         (b)                         (c) 

Figure 2.11 An illustration of main skeleton finding. (a) A piece of filament, (b) skeleton 
with barbs produced by mathematical morphology thinning, (c) the main skeleton. 

 
At first sight, it seems unnecessary to derive the main skeleton. However, after 

removing the barbs, it is a trivial job to figure out the length of a piece of filament. The 

length of a piece of filament is just the total length of the path from one end to another end.  

Slope: Slope is defined as the tangent of the angle between the horizontal line and 

the line connecting the two ends of the main skeleton. The angle is illustrated in Figure 

2.12. 
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Figure 2.12 The tangent of angle β is used as slope of the main skeleton. 

 

2.5 Experimental Results 

2.5.1 Dataset 

To test the performance of the proposed methods, a dataset composed of 125 images 

generated by four different solar observatories is established, namely Big Bear Solar 

Observatory in California (BBSO), Kanzelhöhe Solar Observatory in Austria (KANZ), 

Catania Astrophysical Observatory in Italy (OACT), Yunnan Astronomical Observatory in 

China (YNAO). To be representative with respect to different time, the dataset is setup by 

choosing one image per month from January 2000 to May 2010. The dataset can be 

accessed at [61]. 

During the time period from January 2000 to May 2010, there are totally 125 

months. Among the 125 months, Global H-alpha Network has shown that KANZ 

contributed images in 94 months, BBSO contributed images in 89 months, OACT 

contributed images in 78 month, and YNAO contributed images in 14 months. The ratio 
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between the four stations is 94 :89 : 78 :14 , which is approximately 1: 0.95 : 0.83: 0.15 . In 

our dataset, solar images in the dataset are chosen according to this ratio. Among the 125 

images, 44 images are selected from KANZ, 40 from BBSO, 30 from OACT, and 11 from 

YNAO. The ratio between the number of images is 44 : 40 :30 :11 1: 0.9 : 0.7 : 0.25 . 

For each solar image, the solar radius and center location are manually identified, 

the image is cropped to contain only solar disk, and then all solar filaments presented on 

the solar disk are marked. This is for the comparison with automatically identified solar 

filaments. All the hand-marked filament maps and hand-cropped images can be accessed at 

[62]. Figure 2.13 shows a sample of manually cropped image and manually marked solar 

filaments. 

 

 

               (a)             (b)              (c) 

Figure 2.13 Illustration of filament segmentation by hand. (a) An Hα solar image taken on 
March 20, 2010 by Yunnan Astronomical Observatory, (b) manually cropped image 
containing only solar disk, (c) manually marked filament. 

 

2.5.2 Evaluation of Solar Radius and Center Location Identification 

The success of the proposed circle detection largely depends on the quality of edge points 

detected. Good quality means that the detected edge points are located right on the 

boundary of solar limb and there is little noise presence. To measure the quality of the edge 
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points detected, a measurement eQ  is designed which is the ratio between the number of 

edge points located right on the edge boundary and the total number of edge points 

detected.  

Assume that the dimension of a given hydrogen alpha full disk image is M N . 

Firstly, manually identify the radius R and center location (X,Y) of the containing solar 

disk. Then create a binary map with the same dimension as the image of M N , 

containing a circle centered at (X,Y) with radius R. Let the radius of one solar disk be R, and 

the horizontal and vertical location of its center be cx  and cy , respectively. The circle map 

 ,cf x y  is generated as follows: 
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 (2.8)

 

Let the edge map  ,ef x y  be the result of a given image after applying the 

proposed edge detection and edge thinning method. Let  ,ef x y  be a binary map, where “1” 

means edge point and “0” means background. Then the quality measurement eQ  is 

computed as: 
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Experimental results are illustrated in Table 2.1, containing average eQ  on the 125 

images using eight different combinations for edge detection. The eight combinations are 

the permutation of one from the two smoothing filters (Gaussian filter [29] and median 

filter [63, 64]) and the other from the four edge operators (i.e., Roberts operator, Sobel 

operator, LoG operator, and Canny operator [65]). In the table, each row illustrates the 

quality measure of one combination with respect to the change of smoothing filter size. The 

following notations are used: “G” means Gaussian filter, “M” means median filter, “R” 

means Roberts edge operator, “S” means Sobel edge operator, “L” means Log edge 

operator, and “C” means Canny edge operator. Each column corresponds to a different 

filter size, and its deviation is chosen as a half of filter size for Gaussian filter.  

From experiments, the highest quality is 0.74, indicating that the median filter with 

size 35 combined with Roberts operator produces the best edge map for solar limb. 

Therefore, this combination is chosen in the proposed edge detection procedure. Figure 

2.14 illustrates the results of three different edge detection combinations.  

 

Table 2.1 Average Quality of Edge Points 
 5 10 15 20 25 30 35 40 

G/R 0.55 0.25 0.15 0.11 0.09 0.08 0.07 0.06 
G/S 0.50 0.38 0.18 0.12 0.09 0.08 0.07 0.07 
G/L 0.30 0.10 0.03 0.00 0.00 0.00 0.00 0.00 
G/C 0.47 0.37 0.27 0.14 0.10 0.08 0.07 0.07 
M/R 0.62 0.64 0.70 0.67 0.71 0.68 0.74 0.69 
M/S 0.56 0.61 0.63 0.63 0.64 0.64 0.65 0.64 
M/L 0.47 0.59 0.53 0.61 0.51 0.60 0.50 0.59 
M/C 0.55 0.55 0.61 0.57 0.62 0.58 0.62 0.59 
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                            (a)                                                        (b) 

 

                             (c)                                                       (d) 

Figure 2.14 Edge detection results. (a) An Hα full disk image taken on Jan 22, 2001 at 
BBSO, (b) edge detection using Median filter (size 30) with Canny operator, (c) edge 
detection using Gaussian filter (size 5) and Canny operator, (d) edge detection using 
Median filter (size 10) with Roberts operator. 
 

An IDL [66] program called find_limb.pro which can identify the center location 

and radius of the solar disk in an image has been chosen for comparison with the 

performance of the proposed method. The reason for choosing that program is that 

find_limb.pro is a program in the SolarSoftWare (SSW) library [67] within solar physics 
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community. Find_limb.pro uses Sobel edge operator to figure out the edge points, and then 

tries to fit a circle on the derived edge points.   

Suppose the real center location of a solar disk is  1 1,x y , the real radius is 1r , the 

center location and radius figured out from find_limb.pro or the proposed method are 

 2 2,x y  and 2r , 
   2 2

1 2 1 2
1

1

x x y y
err

r

  
  is used to measure the error on center 

location identification, and 1 2
2

1

r r
err

r


  is used to measure the error on radius 

identification. 

For test results using Find_limb.pro, the mean value of 1err  is 0.0201, and standard 

deviation of 1err  is 0.1180; the mean value of 2err  is 0.0120, and standard deviation of 

2err  is 0.0338.  

For test results using our proposed method, the mean value of 1err  is 0.00044, and 

standard deviation of 1err  is 0.00099; the mean value of 2err  is 0.00014, and standard 

deviation of 2err  is 0.00053.  

2.5.3 Solar Filament Segmentation Accuracy Measure 

Figure 2.15 shows an example of solar filament segmentation and characterization. In 

Figure 2.15 (a), the radius and center location are identified, and then the image is cropped 

to produce Figure 2.15 (b). After applying the proposed segmentation method, a binary 

map in Figure 2.15 (c) is obtained, showing solar filaments which are thinned into Figure 
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              (a)                                             (b) 

 

                                              (c)                                           (d) 

 

                                 (e)                         (f) 

Figure 2.15 Illustration of solar filament segmentation. (a) An Hα image taken on January 
20, 2002 by BBSO, (b) cropped to enclose only solar disk, (c) solar filaments segmented, 
(d) skeleton of solar filaments, (e) main skeletons of solar filaments, (f) indexed skeletons 
of solar filaments. 
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2.15 (d). Their main skeletons are identified as shown in Figure 2.15 (e). The 

characterization result is listed in Table 2.2, where the ID number of each filament 

corresponds to the number in Figure 2.15 (f) and the area is calculated for the 

corresponding filaments in Figure 2.15 (c).  

 

Table 2.2 Characterized Solar Filaments 
 Area, Mm2  Longitude, 

degree 
(West 
positive) 

Latitude, 
degree 
(North 
positive) 

Length, Mm Slope, tan β 

1 284.67 -46.34 2.27 3.09 Infinite
2 1100.40 -49.03 -27.79 71.15 -0.02
3 2365.86 -11.10 16.35 157.76 0.11
4 234.43 -7.69 12.68 29.39 9.00
5 1550.13 1.58 26.06 143.84 -0.28
6 399.49 15.52 -35.83 41.76 0.86
7 1715.19 21.81 22.46 122.19 -0.26
8 454.51 33.91 50.01 40.21 0.71
9 119.61 21.46 -4.29 17.01 -2.25

10 447.34 25.41 -13.37 109.81 7.78
11 208.12 40.64 -25.24 21.65 0.33
12 131.57 58.38 42.23 3.09 0.00
13 131.57 57.82 -8.77 24.75 7.50

 

To evaluate the accuracy of the proposed filament segmentation algorithm, the 

filament maps generated by computer is compared with those manually generated. Two 

measures are used. The first measure is number-ratio, which is the ratio between the 

number of filaments marked by hand overlapping with those by the proposed method and 

the total number of filaments marked by hand. The number-ratio shows the percentage of 

the correctly identified number of solar filaments. The second measure is area-ratio, which 

is the ratio between the area of the algorithm-identified solar filaments and the area of the 
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hand-marked solar filaments. The area-ratio shows the percentage of the correctly 

identified area of solar filaments. 

Figure 2.16 illustrates the two measures. Assume that the two red regions are the 

two filaments marked by human, the two blue regions are the two filaments obtained by the 

proposed algorithm, and the yellow region is the overlapping region of a filament by hand 

and by the proposed algorithm. Note that the yellow region is a subset of the red or blue 

region. The number-ratio is 0.5 in this case and the area-ratio is the ratio between the area 

of the yellow region and the total area of the red plus yellow regions. 

 

Figure 2.16 Illustration of filaments marked by hand (red color) and those obtained by the 
proposed algorithm (blue color). The yellow region is the overlapping region of a filament 
both by hand and by the proposed algorithm. 

  

The proposed algorithm can be fine tuned by adjusting several parameters. By 

changing the polynomial surface fitting degree d  and length S  of the series of threshold, 

the accuracy measures would be different. 

In experiment, noise ratio   is set as 0.035 empirically, which means if the number 

of pixels of a filament candidate is less than 0.035 times the length (in number of pixels) of 

the radius of the solar disk, the filament candidates are treated as noise and removed from 
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the result. Morphological closing disk structure element radius P  is set to be one percent 

of the length of the radius of the solar disk.  
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Figure 2.17 Accuracy ratios with respect to different degrees of polynomial surface fitting 
for unbalanced luminance correction. 

 

To measure the effect of the proposed unbalanced luminance correction method on 

the effect of solar filament detection, the degree d  of polynomial surface fitting is varied 

and S  is kept as 20. Figure 2.17 shows that the area-ratio and number-ratio changes 

related to d , where d  equals zero indicating that no luminance correction is used. Results 

show that both area-ratio and number-ratio increase as d  increases from zero to three, and 

then decrease. It is concluded that the third degree polynomial surface fitting works best for 

unbalanced luminance correction. 

To measure the effect of the length of the series of threshold S  on the effect of 

solar filament detection, the length S  is varied. Figure 2.18 shows the area-ratio and 

number-ratio changes with respect to S . Results show that area-ratio does not change 

much, but number-ratio increases as S  increases from 3 to 20. The number-ratio reaches 
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peak at 0.9648 when S  = 20. When S  increases to over 20, number-ratio fluctuates, but 

never over 0.96. This concludes that when S  = 20, the proposed method performs the best. 
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Figure 2.18 The accuracy ratio as a function of the length of the series of threshold.  
 

Table 2.3 shows the performance (measured with filament area ratio and number 

ratio) of the proposed solar filament detection algorithm on Hα solar images obtained by 

four different solar observatories by using previously selected parameters S  = 20 and d  = 

3. The algorithm performs well across the four observatories when measure by area ratio. It 

performs worst on solar images obtained by YNAO when measured by number ratio that is 

much lower than that of other three stations. It indicates that there are many tiny filaments 

are not detected from the solar images obtained by YNAO, which results from the bad 

quality of some of the solar images obtained by YNAO, such as one illustrated in Figure 

2.19. 

Table 2.3 Filament Detection Accuracy on Solar Images from Different Observatories 
Observatory BBSO KANZ OACT YNAO 
Area Ratio 0.9950 0.9964 0.9930 0.9991 

Number Ratio 0.9514 0.9919 0.9717 0.7500 
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Figure 2.19 An Hα solar image obtained by YNAO on September 23, 2009 with bad 
quality.  

 

Also conducted is the comparisons of the proposed solar filament detection 

algorithm on the same set of BBSO data which were used in [12]. The method in [12] was 

shown to outperform the previous two methods in [9, 10]. In experiment, 40 Big Bear Solar 

Observatory Hα images were randomly chosen from 2000 to 2010. The results show that 

the accuracy measured by filament area is 0.9445, and measured by filament number is 

0.8240. Meanwhile, using our proposed method, the accuracy measured by filament area is 

0.9949, and measured by filament number is 0.9342.  

2.5.4 Summary 

Experimental results show that: (1) The accuracy of the proposed automatic filament 

segmentation method is about 99% and 96% measured by area and by number of solar 

filament, respectively. (2) The best solar limb detection method is the combination of 

Median smooth filter and Roberts edge operator. (3) The third degree polynomial surface 

fitting is produces the best result for unbalanced luminance correction. 
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2.6 Application on Filament Tracking 

Solar eruptions (flares, CMEs) are generally accompanied by solar filament (such as 

disappearances) [1]. Filament tracking is vitally important to understand solar activities. In 

this section, an automated filament tracking method is proposed built on the filament 

detection method proposed above. 

 

 

Figure 2.20 Hα solar images of two consecutive dates (Courtesy of KANZ). 
 

Figure 2.20 illustrates Hα solar images of two consecutive dates (Jul. 31st, 2010 and 

Aug. 1st, 2010). Solar filaments presented in these two images (enclosed in red contours) 

are identified using the method presented in the preceding sections.  

The challenge of solar filament tracking lies in two parts: First, a solar filament is 

not a rigid body. The shape of a solar filament is changing constantly. It may shrink, 

expand, and break into several pieces. Second, the movement of a solar filament is not 

regular. In general, a solar filament always moves from east to west due to solar rotation; 

however, it move differentially on the vertical direction [1]. 
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A fuzzy association method for solar filament tracking is described in this section. 

Suppose that each filament can be accurately segmented using the method in the preceding 

sections. Then for each pixel of a filament, its rough location after a specific time can be 

figured out based on solar rotation. By comparing the location of a filament figured out by 

solar rotation and the location derived from observations, the association between two 

filaments can be established.  

Suppose that there are two solar images 1( , )f x y  and 2( , )f x y  obtained by solar 

observatories at time 1t  and 2t . After the filament segmentation method proposed in the 

preceding sections is applied, there are m filaments segmented from 1( , )f x y  and n 

filaments segmented from 2( , )f x y . The mfilaments segmented from 1( , )f x y  form a set 

1 1 2{ , ,..., }mS    , and the n  filaments segmented from 2( , )f x y  form a set 

2 1 2{ , ,..., }nS    , where i  represents the set of pixels belonging to the i th filament in  

1( , )f x y , and i  represents the set of pixels belonging to the i th filament in  2( , )f x y . For 

the purpose of filament tracking, each pixel of a filament is represented by its latitude x , 

longitude y  and label l  (the numbering of filament to which the pixels belongs).  And 

thus i ( {1, 2,..., }i m ) itself is a set of triples. Assuming that the i th filament in image 

1( , )f x y  is composed of p pixels, then 1 1 1 2 2 2{ , , , , , ,..., , , }i i i i i i i ip ip ipx y l x y l x y l        . 

Similarly, assuming that the i th filament in image 2( , )f x y  is composed of q pixels, then 

1 1 1 2 2 2{ , , , , , ,..., , , }i i i i i i i iq iq iqx y l x y l x y l        . 
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According to differential rotation of the Sun[68], for a pixel at latitude x , its 

angular velocity (change of longitude y ) in degrees per day is described by the following 

equation [69]:  

 

 

2 4sin ( ) sin ( )

14.713 0.0491

2.396 ( 0.188)

1.787 ( 0.253)

A B x C x
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Utilizing the equation above, the new longitude of each pixel can be figured out.  

Thus at time 2t , the m filaments segmented from 1( , )f x y  can be represented by 

1 1 2{ , ,..., }mS       , where 
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 (2.11)

 

where ( )ijx is the angular velocity of the j th pixels of the i th filament segmented from  

1( , )f x y . 

Given 1 1 2{ , ,..., }mS        and 2 1 2{ , ,..., }nS    , the association between the 

filaments in solar images 1( , )f x y  and 2( , )f x y  can be figured out. Assume i th filament of  

1( , )f x y  is composed of p pixels and j th filament of 2( , )f x y  is composed of q  pixels, 
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Figure 2.21 illustrates a procedure which can be used to find out whether the i th filament 

of 1( , )f x y  is associated with the j th filament of 2( , )f x y . 

 

initialize counter δ=0 

 for u from 1 to p 

  for v from 1 to q 

   if the distance between  ,iu iux y   and  ,jv jvx y  is less than a 

threshold ζ 

    increment counter δ by 1 

   endif 

  endfor 

 endfor 

 

Figure 2.21 A procedure for filament association. 
 

If the counter   is greater than 0 after the running of procedure above, then i th 

filament of 1( , )f x y  is associated with the j th filament of 2( , )f x y . The value of counter 

denotes the rate of overlapping between the two filaments. Running the procedure above 

on each pair of the filaments (one from 1( , )f x y  and another from 2( , )f x y ), the 

association between the filaments of 1( , )f x y  and 2( , )f x y can be figured out.  

Let a time series of n solar images be 1( , )f x y , 2 ( , )f x y ,…, ( , )nf x y  obtained at 

time 1t , 2t ,…, nt . For each pair of images ( , )if x y  and 1( , )if x y ( {1, 2,..., 1}i n  ), the 
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method above can be used to find out the association of filaments among them, and thus it 

is trivial to track the filaments during the time from 1t  and nt .  

 Figure 2.22 illustrates the result of filament tracking from Aug 20 to Sep 1 2003. 

The x-axis shows the date information; the y-axis shows the area information (in number of 

pixels). The lines in the figure illustrate the change of areas of filaments with respect to 

time. Different filaments are illustrated using different colors. The numbering on the line 

illustrates the label of the filament on the solar disk at the designated date. As it can be seen, 

filament number 2 on August 28 is split into two filaments (number 2 and number 4) on 

August 29. Filament number 4 and 5 on August 26 merged to filament number 7 on August 

27.  It is also noted that the missing of solar images on August 25 and August 31 does not 

compromise the filament tracking.  

 Figure 2.23 illustrates the result of filament segmentation from August 20 to 

September 1, 2003.  The boundaries of the segmented filament are marked in red color. 

Each filament is also marked with a label (numbering), which corresponds to the label in 

Figure 2.22. By comparing the solar images in Figure 2.23 and the lines in Figure 2.22, the 

filament tracking method is very successful. 
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Figure 2.22 Illustration of filament tracking from Aug. 20 to Sep. 3, 2003.  The figure 
illustrates the change of areas of filaments with respect to time. Each dot in the figure 
represents a filament. The x-coordinate of each dot shows the date of the filament, while 
the y-coordinate of each dot shows the area of the filament. Dots of different dates are 
connected with lines if they belong to the same filament appearing on different dates. The 
number near each dot is the labeling of the corresponding filament, which can be found out 
in Figure 2.23. 
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Figure 2.23 Illustration the results of filament segmentation from Aug. 20 to Sep. 3, 2003. 
12 solar images are illustrated. The boundaries of solar filaments presented in these images 
are over-plotted. A number is assigned to each filament.                                               
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Figure 2.23 (Continued)   
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2.7 Summary 

In this chapter, a solar filament segmentation and characterization algorithm is proposed, 

which aims to automatically detect and characterize solar filaments in Hα solar images 

obtained from different solar observatories. Experimental results on 125 solar images 

captured by four different solar observatories show that the accuracy of the proposed 

method is more than 99% and 96% (as illustrated in Figure 2.18 when S=20) as measured 

by area and by number of solar filaments, respectively. 

For filament characterization (such as heliographic centroid location), the center 

location and radius of the solar disks are identified by using a two-stage Hough circle 

detection algorithm to mitigate the limitation imposed by traditional Hough circle detector. 

Experimental results show that the quality measure of the edge points obtained by median 

filter with Roberts edge operator can reach 74%. 

The accuracy ratio changes as the length of the series of the threshold values S  

changes. On the one hand, increment of S  can make the selected threshold value close to 

the optimal threshold value; on the other hand, when S  becomes too large, the result is 

vulnerable to noise. The idea can be explained by Figure 2.24. When the length S  is 

moderate, the average high pass filter response curve is smooth (shown as the solid curve), 

whose peak is the optimal threshold value. When the length S  is too small, the curve 

(shown as dotted curve) is too smooth to get an accurate threshold value. Conversely, when 

the length S  is too large, the curve (shown as dashed curve) is too rough, and its peak may 

deviate from the real optimal value.  
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Figure 2.24 Illustration of average high pass filter response curve within different regions. 
 

An application of the proposed filament segmentation method to filament tracking 

is illustrated and preliminary results show that the performance is very good. The area 

change of filaments is recorded, and splitting and merging of filaments are also recorded, 

which presents a whole picture of the life span of filaments during a time period.   
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CHAPTER 3  

AUTOMATED TRACING OF CHROMOSPHERIC FIBRIL  

3.1 Introduction 

Our understanding of the energy storage and release mechanism of solar eruptive events is 

strongly dependent on knowledge of their magnetic field configurations. Unfortunately, 

although recent advances in near-infrared spectropolarimetric instrumentation [70-72] and 

broadband imaging spectroscopy with solar radio telescope [73, 74] show great promise, 

current technologies have yet to succeed to a level that makes reliable and routine 

measurements of chromospheric and coronal magnetic fields.  

On the other hand, chromospheric fibrils seen in the Hα central line are threads of 

mass that appear in abundance throughout the field-of-view (FOV) of Hα filtergrams. It is 

generally believed that fibrils are magnetic field-aligned, primarily due to the reason that 

the high electrical conductivity of the solar atmosphere “freezes" the ionized mass in 

magnetic field lines and prevents them from diffusing across the lines. Very recently, [13] 

test this common notion for the first time by comparing the orientation of fibrils to the 

azimuth of chromospheric magnetic fields obtained by spectropolarimetric measurements 

of Ca II lines, and found a general alignment as well as some discrepancy between the two 

directions. [13] ascribe the discrepancy to either the difference in formation height or the 

time lag between the fibril and magnetic field measurements. 

Since it is mostly true that fibrils are oriented along the magnetic field direction 

theoretically and observationally, it would be reasonable to adopt chromospheric fibrils as 

a surface tracer of chromospheric magnetic fields. A method that automatically segments 

fibrils from Hα images and further identifies their orientation is presented. This method is 
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applied to Hα images of active region NOAA 9661 on October 19, 2001 and active region 

NOAA 11092 on August 3, 2010. 

3.2 Segmentation and Modeling of Chromospheric Fibril 

Chromospheric fibrils seen in Hα images are segmented by a threshold-based method, and 

then modeled with polynomial-curves. The fibril tracing steps are as follows: 

First, an Hα image  ,f x y  is smoothed by convolution with a 2-dimensional 

Gaussian filter 

2 2

22
2

1
( , )

2

x y

G x y e 






 , where x  and y  specifies the size of the Gaussian 

filter and    is the standard deviation. The difference image between the original image 

and the smoothed image ( , ) ( , ) ( , )f x y f x y f x y    is figured out. Clearly, the difference 

image ( , )f x y  demonstrates contrast enhancements and thus is better for the fibril 

segmentation in comparison with the original image ( , )f x y . 

Second, the fibrils are segmented from ( , )f x y  with the threshold 

   median ,t f x y  , where median function computes the median value of ( , )f x y  

and 
7

8
  . Since fibrils are dark features over the relatively bright solar disk in Hα images, 

those pixels with brightness below the threshold t  are considered as candidate elements 

constituting fibrils. The result after this step is a binary image  ,k x y  where each pixel is 

either 1 or 0.  

Third, union-find algorithm [75] is used to group adjacent pixels (8-neighbor) in 

 ,k x y  [76] to form fibril candidates. Since small fibril candidates (e.g., the total number 

of pixels is less than 100) tend to appear like dots and hence fail to show orientation, these 



65 
 

 

small fibril candidates are removed from  ,k x y . In addition, sunspots that are presented 

in the segmentation result  ,k x y
 
need to be removed. Different from fibrils, sunspots are 

round structures. A shape descriptor 
4

p
q

a
  is designed, where p  and a  is the 

perimeter and area of a fibril candidate respectively. Because the geometric figure of 

maximum area and given perimeter is a circle. The shape descriptor q  of a disk structure is 

one. And shape descriptor of a structure decreases as the shape of a structure change from a 

round structure to a elongated string-like structure. And thus it is possible to remove 

sunspots by removing those fibril candidates whose shape descriptors are greater than a 

threshold value. It is found out 0.7 is a good threshold value to differentiate sunspots from 

fibrils. The result,  ,k x y , after removing small fibril candidates and sunspots, contains 

fibrils only. The segmented, thread-like fibrils sketch out the basic configuration of the 

chromospheric magnetic field and will be modeled in the next step. 

Next, each fibril is modeled by a  1m  degree polynomial curve ( , )h x β . Suppose 

that a fibril is consists of n  data points  , , 1, 2, ,i ix y i n  , where ix  and iy  is the 

horizontal and vertical coordinates of the  i th data points. Least squares fitting is used to 

find out the m  parameters held in the vector β . The least squares method finds the 

optimum value of β  when the sum, S , of squared residuals is a minimum. A residual, r , 

is defined as the difference between the value predicted by the model and the actual value 

of the vertical coordinates. The minimization problem can be expressed as following [77]: 
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The minimum of the sum of squares is found by setting the gradient to zeros as 

following: 

 

2 ( , )
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i i
i i ij j j j

r r h xS
r r j m

   
 

     
      β   (3.2)

 

Because the polynomial curve ( , )h x β  comprises a linear combination of the 

parameters β , i.e. 

  

 
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m

j j
j

h x x 


β  (3.3)

Letting 
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It can be derived that   
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1 1 1 1

( , )
2 2 ( , ) 2

n n n m
i

i i i ij ij i ik k
i i i kj j

h xS
r y h x X X y X 

    

  
           

   β
β  (3.5)



67 
 

 

Thus if β̂  minimizes S , then 

 

1 1

ˆ2 0
n m

ij i ik k
i k

X y X 
 

    
 

   (3.6)

 

Rearrangement would gives that 

  

1 1 1

ˆ , 1,2, ,
n m n

ij ik k ij i
i k i

X X X y j m
  

     (3.7)

 

Written in matrix notation, the equation above would be  

   

  ˆT TX X β = X y  (3.8)

 

where 1 2[ , , , ]T
ny y yy  . The solution of the equation above yields the optimal parameter 

values   1ˆ 
 T Tβ X X X y .  

Finally, at each particular point of the polynomial curve, evaluating the derivative 

of the curve yields the slope of the tangent and hence the orientation angle with respect to 

the x-axis.  

In the description above, each fibril is modeled as a polynomial function in x to 

simplify the description of the algorithm. In reality, a fibril is modeled as a polynomial 

function in y if it is nearly vertical.   
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3.3 Experimental Results 

The proposed fibrils segmentation and modeling method are applied to two Hα images. 

These two Hα images are obtained by BBSO on October 19, 2001 and Osservatorio 

Astrofisico di Arcetri on August 3, 2010 respectively.  

Figure 3.1 illustrates the segmentation and modeling of fibrils on Hα image 

obtained by BBSO. Panel 1 of Figure 3.1 illustrates the original BBSO Hα image taken at 

16:04 UT on October 19, 2001. Panel 2 illustrates the difference image between the 

enhanced image which is the difference image between original and smoothed image. 

Panel 3 illustrates fibrils candidates after performing image thresholding. Panel 4 

illustrates fibrils after removing small fibrils and sunspots. Panel 5 illustrates the 

second-degree-polynomial modeling of fibrils (red curves), overlaid on the original Hα 

image. Panel 6 illustrates the orientation of the modeled fibrils. The value of orientation 

angle is indicated by the color scale bar.  

Figure 3.2 illustrates the segmentation and modeling of fibrils on Hα image 

obtained by Osservatorio Astrofisico di Arcetri. Panel 1 of Figure 3.2 illustrates the 

original Hα image taken on August 3, 2010. Panel 2 illustrates the difference image 

between the enhanced image which is the difference image between original and smoothed 

image. Panel 3 illustrates fibrils candidates after performing image thresholding. Panel 4 

illustrates fibrils after removing small fibrils and sunspots. Panel 5 illustrates the 

third-degree-polynomial modeling of fibrils (red curves), overlaid on the original Hα 

image. Panel 6 illustrates the orientation of the modeled fibrils. The value of orientation 

angle is indicated by the color scale bar. 
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 It can be seen that most fibrils are segmented correctly. All major fibrils are 

presented in the segmentation result, although some thinner fibrils are undetected. 

Second-degree-polynomial curves are used for modeling the fibrils in Figure 3.1 but 

third-degree-polynomial curves are used in Figure 3.2. Because fibrils in Figure 3.1 is 

shorter and smoother, third-degree-polynomial modeling would cause oscillations; while 

first-degree-polynomial modeling, which produces straight lines, would not capture the 

shapes of most fibrils. For fibrils in Figure 3.2, third-degree-polynomial modeling 

produces the best results. 

3.4 Summary 

A fibril segmentation and modeling method is presented in this chapter. Since it is mostly 

true that fibrils are oriented along the magnetic field direction theoretically and 

observationally, it would be reasonable to adopt fibrils as a surface tracer of chromospheric 

magnetic fields, which helps in our understanding of the energy storage and release 

mechanism of solar eruptive events. 

 Image processing techniques such as image enhancement, image segmentation, and 

union-find are used to segment fibrils from Hα images. Least squares curve fitting is used 

to model segmented fibrils. Experimental results show that the proposed method is very 

successful in segmentation and modeling of most fibrils, especially major fibrils.  

For future research, the least square fitting of fibrils can be improved by 

introducing optimization mechanism to search for a good balance between smoothness 

(low order polynomial fitting) and accuracy (high order polynomial fitting, but can cause 

oscillations). 
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Figure 3.1 Segmentation and modeling of Hα fibrils. Panel 1: the original BBSO Hα image 
obtained on October 19, 2001; Panel 2: the difference image between the original and a 
smoothed image; Panel 3: the segmented fibril candidates after image thresholding; Panel 
4: the same as Panel 3, except that the segmented pieces shown in Panel 3 are grouped with 
the union-find algorithm and small groups and sunspots are removed from the image; Panel 
5: the second-degree-polynomial modeling of fibrils (red curves), overlaid on the original 
Hα image; Panel 6: the orientation of fibrils. The value of orientation angle is indicated by 
the color scale bar. The field-of-view (FOV) is 240 240 , corresponding to 174 174  

Mm. 
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Figure 3.2 Segmentation and modeling of Hα fibrils. Panel 1: the original Hα image 
obtained by Osservatorio Astrofisico di Arcetri on August 3, 2010; Panel 2: the difference 
image between the original and a smoothed image; Panel 3: the segmented fibril candidates 
after image thresholding; Panel 4: the same as Panel 3, except that the segmented pieces 
shown in Panel 3 are grouped with the union-find algorithm and small groups and sunspots 
are removed from the image; Panel 5: the third-degree-polynomial modeling of fibrils (red 
curves), overlaid on the original Hα image; Panel 6: the orientation of fibrils. The value of 
orientation angle is indicated by the color scale bar.  
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CHAPTER 4  

AUTOMATED FLARE FORECASTING  

USING A STATISTICAL LEARNING TECHNIQUE 

4.1 Introduction 

The sudden and intense release of energy stored in solar magnetic fields generates solar 

flares [78], which can have a significant impact on the near earth space environment (so 

called space weather). The development of fully automatic programs to detect [79, 80] and 

forecast flares is regarded as one of the most important tasks to process the large amount of 

data accurately and efficiently. 

At present, a number of different flare forecasting approaches and systems have 

been developed based on photospheric magnetic field observations or sunspot-group 

characteristics. For instance, “Theophrastus,” a system developed by the Space Weather 

Prediction Center of NOAA, is mainly based on the correlation between solar flare 

production and sunspot-group classification [81]. At Big Bear Solar Observatory, 

Gallagher et al. [82] used the historical average of flare numbers according to the McIntosh 

classification to develop a solar flare prediction system which estimated the probabilities 

for each active region to produce C-, M-, or X-class flares. Barnes and Leka [83] adopted 

discriminant analysis to accomplish solar flare forecasting within 24 hours using a large 

combination of vector magnetic field measurements obtained by the University of Hawaii 

Imaging Vector Magnetograph. Li et al. [84]  proposed a solar flare forecasting method 

based on support vector machines in which the sunspot area, the sunspot magnetic class, 

the McIntosh class of the sunspot group and the 10 cm solar radio flux were chosen as 

precursors. Georgoulis and Rust [85] defined a new measurement called the effective 
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connected magnetic field, and their experimental results, based on 298 active regions 

during a 10 year period of solar cycle 23, showed that this measure was an efficient 

flare-forecasting criterion. Qahwaji and Colak [86] put forward a short-term solar flare 

prediction method using machine learning and sunspot associations, in which the authors 

had compared the performance of the proposed method with two other machine learning 

algorithms. 

Different from the approaches mentioned above, Wheatland [87] designed a 

Bayesian approach to solar flare prediction in which only the statistics of flare events was 

used as predictors; however, this approach has not been tested on a large data set. 

In this chapter, a new method is put forward for the automatic forecasting of the 

occurrence of solar flares over 24 hours following the time when a magnetogram is 

presented. The method is a continuation and extension of the method proposed by Song et 

al. [24], which has some limitations in forecasting X-class flares. The proposed method is 

split into two cascading steps. In the first step, logistic regression is used to map three 

magnetic parameters of each active region into four probabilities; support vector machine 

classifier is then utilized to map the four probabilities onto a binary label which is the final 

output. Experimental results illustrate that the proposed method performs better for X-class 

flare forecasting. 

The chapter is organized as follows. The definitions of the predictive variables (i.e., 

three magnetic parameters) used in this study are introduced in Section 4.2. The proposed 

flare forecasting method is described in Section 4.3. Experimental results are shown in 

Section 4.4. Finally, a conclusion is drawn in Section 4.5. 
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4.2 Data Description 

4.2.1 Predictive Variables 

To be consistent with the work of Song et al. [24], the same predictive variables are used. 

The predictive variables of Song et al. [24] are composed of: 

1. Total unsigned magnetic flux, fluxT , which is the integration of pixel intensity over 

the area of an active region, 

 

flux ZT B dxdy   (4.1)

 

where Bz is the pixel intensity of MDI magnetograms. 

2.  Length of the strong-gradient magnetic polarity inversion line, gpiL , which was first 

studied by Falconer et al. [88] as a measure to predict coronal mass ejections. Jing 

et al. [20] illustrated the correlation between gpiL  and flare productivity of active 

regions. As illustrated in Song et al. [24], gpiL  is the total number of pixels on 

which the gradient zB  is greater than a threshold, which is 50G 1Mm  as 

chosen by Song et al. [24]. The definition of zB   is as follows: 

 

1/222

z z
z

dB dB
B

dx dy

         
    

 (4.2)
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3. Total magnetic energy dissipation, dissE , proposed by Abramenko et al. [89], was 

also studied by (Jing et al.[20]; Song et al.[24]) in exploring its correlation between 

flare productivity of active regions. According to Abramenko et al.[89], 

 

2 22

dissE 4 2z z z zdB dB dB dB
dxdy

dx dy dx dy

             
      

  (4.3)

 

      where the integration is performed over the area of an active region.  

These parameters are chosen because: (1) all three can be derived from the 

line-of-sight magnetograms; and (2) all three moderately correlate with the flare 

productivity of active regions and show their forecasting utility in the previous study by 

Jing et al. [20] and Song et al. [24]. 

4.2.2 Data Collection 

The three magnetic parameters introduced above were derived from the magnetograms 

produced by the Michelson Doppler Imager (MDI), which is an instrument onboard the 

Solar and Heliospheric Observatory (SOHO). 

This study uses the same dataset as what was used by Song et al. [24], which 

focuses on active regions between 1996 and 2005. It covers almost the entire solar cycle 23 

which peaked in 2001. A total of 230 sample active regions were selected using the 

following criteria: (1) the center location of an active region is close to the solar disk center 

(within ±40 degrees in longitude and ±40 degrees in latitude); (2) the MDI full disk 

magnetograms are available; (3) since an active region may appear on the solar surface for 
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a few days, it is treated as a different sample on different dates; (4) the first magnetogram 

of the 15 magnetograms taken by MDI each day is chosen. 

4.2.3 Correlation between Magnetic Parameters and Flare Productivity 

Using the same criteria as [24], active regions are categorized into four levels according to 

the most powerful flare they produced: an active region is classified as level-0 if it is 

flaring-quiet or only produces A and/or B class flares; an active region is classified as 

level-1 if it produces at least one C-class flare but no M- or X- class flares; Level-2 

corresponds to those active regions which produce at least one M-class flare but no X-class 

flares; Level-3 corresponds to those active regions which produce at least one X class flare. 

Figures 4.1, 4.2 and 4.3 illustrate the histograms of the length of the strong gradient 

inversion line, total unsigned flux and energy dissipation. Please note the values are scaled 

to 0 and 1, and the unit is shown below each graph. The height of a bar denotes the number 

of samples whose corresponding parameters are within some range. Within each range, 

different colored bars are used to differentiate the samples into different levels. 

For example, the height of the blue bar in Figure 4.3 within range 0 and 0.1 is 39, 

meaning that there are 39 level 0 samples whose energy dissipation is within the range 0 

and 3.78×108 erg cm−3. As it can be seen, the blue bars (which correspond to level 0 

samples) are mainly distributed in the lower ranges, and their heights decrease as the values 

increase. The red bars (which correspond to level 3 samples) can reach higher ranges, 

which coincide with our observations that samples with higher values of these parameters 

are more likely to produce X-class flares. 
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Figure 4.1 Histogram of the first parameter for the four different levels. 
 

 

Figure 4.2 Histogram of the second parameter for the four different levels. 
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Figure 4.3 Histogram of the third parameter for the four different levels. 

 

Table 4.1 Mean Value and Standard Deviation of Predictive Parameters 

Active 
Region 
Level 

Number 
of Active 
Regions 

 gpiL  

(Mm) 

 fluxT  

(1022 Mx) 

 dissE  

(108 erg  cm-3 ) 
Mean Deviation Mean Deviation Mean Deviation

3 34 118.74 79.88 7.02 3.15 15.38 7.76 
2 68 64.28 46.79 5.03 2.72 10.58 5.59 
1 65 62.12 46.61 4.95 2.86 10.47 5.88 
0 63 10.84 15.19 1.72 1.19 3.67 2.58 

 

For the 230 active regions in the dataset, the correlations between magnetic 

parameters and flare productivity are summarized in Table 4.1. Table 4.1 shows that the 

mean value of the length of the strong-gradient magnetic polarity inversion line of the 34 

level-3 active regions is 118.74, which is much larger than that of the 68 level-2 active 

regions (64.28). The mean value of the length of the strong-gradient magnetic polarity 

inversion line of 68 level-2 active regions is 64.28, which is slightly larger than that of the 

65 level-1 active regions (62.12). The mean value of the length of the strong-gradient 

magnetic polarity inversion line of 63 level-0 active regions is 10.84, which is much less 
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than that of other levels of active regions. For total unsigned magnetic flux and total 

magnetic energy dissipation, the same kind of trend follows. However, since the deviation 

is large (almost half of the mean values), it is impossible to do precise flare forecasting 

based on those parameters. 

Based on the correlations described above, statistical and machine learning 

methods are utilized to perform flare forecasting. 

4.3 Forecasting Method 

In previous studies, there are mainly two types of flare forecasting methods. The first type 

is based on pattern recognition, such as a Support Vector Machine-based (SVM-based) 

method [23]. During this kind of analysis, some predictive parameters of a given active 

region are extracted, and then the predictive parameters are fed into a trained classifier. The 

output of the classifier (usually a label indicating which class of flare is likely to occur) is 

the final forecasting result. The disadvantage of this type is that the output is only a label, 

which does not provide information on how much confidence can be placed on each 

forecast. For example (see Figure 4.4), both sample A and sample B will be classified as 

the same class, but obviously it is more confident to believe that B belongs to this class than 

A, because A is on the boundary. However, because the output of SVM is only a label, that 

kind of information is not presented. 

The second type is based on probability analysis, such as ordinal logistic 

regression[24]. During this kind of analysis, some predictive parameters of a given active 

region are extracted, and then those predictive parameters are fed into a trained statistical 

model, and the output of the model is the probability that a flare event will occur. Of course, 

using a threshold value (generally 0.5), the probability can be converted into a binary 
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forecast. However, it is not an easy job to choose a good threshold value, and the de facto 

standard threshold (0.5) is not always the best, as illustrated in [24], where the authors 

chose 0.25 as the threshold for X-class flare prediction. 

In this study, the proposed method is split into two steps (see Figure 4.5). In the first 

step, ordinal logistic regression is utilized to map the input (three predictive parameters of a 

given active region) to four outputs (the probabilities of the given active region belonging 

to each of the four levels). Secondly, the four outputs are fed into a support vector machine; 

the output of the support vector machine tells whether the given active region belongs to 

one level or not. 

 

Figure 4.4 An illustration of the support vector machine classifier. 

 

 

Figure 4.5 The workflow diagram of the proposed forecasting system. 



81 
 

 

Generally, the first step is enough for a flare forecasting system. The purpose of the 

second step is three fold. First, it is hard to assess the performance of the first step since the 

outputs are probabilities instead of a definite answer. Secondly, users sometimes want a 

definite answer instead of a probability. Thirdly, the outputs of the second step can be used 

to compare with other research whose outputs are only binary labels. 

4.3.1  Probability Prediction Using Ordinal Logistic Regression 

Used for Bernoulli-distributed dependent variables, logistic regression is a generalized 

linear model that uses the logit as its link function [90]. One common application of 

logistic regression is to estimate the probability of the occurrence of an event from 

predictive variables. Logistic regression is used to map predictive variables into 

probabilities of the occurrence of flares by [24, 91]. The comparison made by [24] shows 

that their forecasting results are better than those of the Solar Data Analysis Center and 

NOAA’s Space Weather Prediction Center, which illustrates the usefulness of logistic 

regression in flaring probability estimation. 

Suppose that the data in a dataset belong to L ordered levels and ( )P D g  is the 

probability that an event which belongs to level g would occur given predictive variables 

X, then, according to [92], 

 

     

   
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Given a training dataset composed of predictive variables and response category 

pairs, the parameters , 1,2,3,...,g g L  and   in the above equation can be calculated 

using maximum likelihood estimation [93]. 

The application of ordinal logistic regression to flare forecasting is as follows:  

1. Training: The training data contain several samples; each sample is composed 

of three photospheric magnetic features of an active region and the level of the 

given active region. 

2. Forecasting: Using the ordinal logistic regression model, for a given active 

region, at first, figure out its three photospheric magnetic features, and then 

feed these three variables into the model. The output of the model contains four 

elements, which correspond to the probabilities that the given active region 

belongs to level 0, 1, 2, or 3. 

4.3.2 Binary Forecasting Using Support Vector Machines 

An SVM is a supervised learning method used for classification[47], whose principle is to 

minimize the structural risk [94]. An SVM tries to find a plane in an n-dimensional space 

that separates input data into two classes. The larger the distance from the plane to the two 

different classes of data points in the n-dimensional space, the smaller the classification 

error [48]. 

Given training vectors , 1,2,...,d
iX R i n   in two classes labeled by a vector 

ny R  where  1,1 , 1, 2,...,iy i n   . The training of a support vector machine is 

equivalent to solving the following optimization problem [95]: 
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where e is a vector of all ones, C > 0 is the upper bound, Q is an n by n positive 

semi-definite matrix,  ,ij i j i jQ y y K x x , and    ,
dT

i j i jK   x x x y is the kernel 

function. The decision function is: 

 

   
1

,
n

i i i
i

f y K b


 x α x x  (4.6)

 

The prediction of any test data x is    sign 1,1f  x . 

For flare forecasting, the training and forecasting procedures of a support vector 

machine are as follows: 

1. Training: The training data contain several samples; each sample is composed of 

four probabilities (the output of ordinal logistic regression) and one label (–1 or 1). 

If a given active region indeed belongs to one level, the label is 1; otherwise, the 

label is –1. 

2. Forecasting: Given an active region, at first, figure out its three photospheric 

magnetic features. Then feed these three variables into the ordinal logistic model to 

generate the output which contains four probabilities. Finally, feed the four 

probabilities into the support vector machine trained above. If the output of the 

support vector machine is 1, the estimation is that the given active region belongs to 
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one level; otherwise, it does not. 

4.4 Experimental Results 

The proposed flare forecasting method is implemented in MATLAB [96], which contains a 

procedure to fit a logistic regression model. The implementation also utilizes LIBSVM 

[97], which is a software package for support vector classification. The parameters adopted 

for LIBSVM are as follows: nu-Support Vector Classification of polynomial kernel 

   3
, 0.01 T

i j i jK x x x y . 

Four different trained SVM classifiers are used to perform yes/no forecasting for 

four different levels. The outputs of the first step (four probabilities) and the corresponding 

labels are sent to the four SVM classifiers to train them in the second step. The training 

procedures are almost the same for the four SVM classifiers except that different labels are 

used, i.e., when training a level-n SVM classifier, the four probabilities and a label which 

indicates whether the given sample belongs to level-n are fed into the SVM classifier, 

where n = 0, 1, 2 or 3. Alternatively, a multiclass SVM classifier can be used. In that way, 

only one multi-class SVM classifier is needed instead of four different binary SVM 

classifiers. 

Leave-One-Out cross-validation is used to assess the prediction performance. For 

230 samples, during each test case, 229 samples are used for training, and the remaining 

one is used for testing. If the predicted result is the same as the observation, it is positive; 

otherwise, it is negative. The process is repeated 230 times. Different samples are used for 

training and testing each time. 
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To assess the performance of the proposed method, seven measurements are used, 

which are correctness, true positive, true negative, weighted true rate, positive accuracy, 

negative accuracy, and weighted accuracy. All these seven measurements can be derived 

from the contingency table of the experiment. For a given contingency table like Table 4.2, 

the seven measurements are as follows: 

1. correctness = (a + d)/(a + b + c + d); 

2. true positive = a/(a + b); 

3. true negative = d/(c + d); 

4. weighted true rate = a/(a+b) ∗(a+c)/(a+b+c+d)+d/(c+d) ∗ (b+d)/(a+b+c+d); 

5. positive accuracy = a/(a + c); 

6. negative accuracy= d/(b + d); 

7. weighted accuracy = a/(a+c) ∗ (a+c)/(a+b+c+d)+d/(b+d) ∗ (b+d)/(a+b+c+d). 

Table 4.2 A Sample Contingency Table 

  Observation Positive Observation Negative 

Forecasting Positive a b 

Forecasting Negative c d 

 

To compare the performance of the proposed method with the 

Logistic-Regression-based method [24] and SVM-based method [84], experiments are 

performed on the same dataset and the experimental results are illustrated in Figures 4.6, 

4.7, 4.8 and 4.9. These four figures contain not only the contingency tables of each 

experiment, but also bar charts to illustrate the seven measures derived from contingency 

tables to help compare the performances of the three different flare forecasting methods. 

Please note, among the seven measures, positive accuracy is the most important measure in 

flare forecasting in that a miss (forecasting no flare, but flares occur) is worse than a false 

alarm (forecasting the occurrence of a flare, but it does not occur). The higher the values of 

positive accuracy, the fewer events are missed. 
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Figures 4.6, 4.7, 4.8 and 4.9 show the forecasting results for levels zero, one, two 

and three respectively, e.g., for level zero forecasting, all these 230 active regions in the 

dataset are classified into two groups according to whether they belong to level zero, and 

then the forecasting models are trained, and then tested. 

Predicting the occurrence of X-class flares is the most important task of flare 

forecasting. As it can be seen from panel (a) in Figure 4.9, the Logistic-Regression-based 

method does not work well for forecasting X-class flares. Only 1 of the 34 X-class flares is 

forecasted correctly. At the same time, the SVM-based method and the proposed method 

can correctly forecast 7 of the 34 X-class flares, which is an improvement over the 

Logistic-Regression-based method. From Figure 4.8, it can also be noticed that the 

proposed method outperforms the other two methods on level two (M-class flares) 

forecasting. 

The experimental results also show that the proposed flare forecasting method 

outperforms the SVM-based method on level one and level three forecasting. However, the 

proposed method is surpassed by the SVM-based method on level two forecasting, but the 

difference is very small. The performances of these two methods on level zero forecasting 

are almost the same. 
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Observation 

Positive 
Observation 

Negative 
Forecasting Positive 52 28 
Forecasting Negative 11 139 

(a) Contingency table of logistic-regression-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 46 16 
Forecasting Negative 17 151 

(b) Contingency table of SVM-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 45 14 
Forecasting Negative 18 153 

(c) Contingency table of proposed method 

 

(d) Comparison of methods 

Figure 4.6 Experimental results on level zero. 
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Observation 

Positive 
Observation 

Negative 
Forecasting Positive 17 7 
Forecasting Negative 48 158 

(a) Contingency table of logistic-regression-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 12 16 
Forecasting Negative 53 149 

(b) Contingency table of SVM-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 9 8 
Forecasting Negative 56 157 

(c) Contingency table of proposed method 

 

(d) Comparison of methods 

Figure 4.7 Experimental results on level one. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LR 0.76 0.71 0.77 0.75 0.26 0.96 0.76

SVM 0.7 0.43 0.74 0.65 0.18 0.9 0.7

LR+SVM 0.72 0.53 0.74 0.67 0.14 0.95 0.72

Correctness
True

Positive
True

Negative
Weighted
True Rate

Positive
Precision

Negative
Precision

Weighted
Precision



89 
 

 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 10 2 
Forecasting Negative 58 160 

(a) Contingency table of logistic-regression-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 9 14 
Forecasting Negative 59 148 

(b) Contingency table of SVM-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 15 27 
Forecasting Negative 53 135 

(c) Contingency table of proposed method 

 

(d) Comparison of methods 

Figure 4.8 Experimental results on level two. 
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Observation 

Positive 
Observation 

Negative 
Forecasting Positive 1 0 
Forecasting Negative 33 196 

(a) Contingency table of logistic-regression-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 7 12 
Forecasting Negative 27 184 

(b) Contingency table of SVM-based method 

  
Observation 

Positive 
Observation 

Negative 
Forecasting Positive 7 9 
Forecasting Negative 27 187 

(c) Contingency table of proposed method 

 

(d) Comparison of methods 

Figure 4.9 Experimental results on level three. 
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4.5 Summary 

In this chapter, a solar flare prediction method based on ordinal logistic regression and a 

support vector machine is proposed. For 230 active regions between 1996 and 2005, their 

magnetic parameters ( gpiL , fluxT , dissE ) are extracted from SOHO/MDI magnetograms and 

used for training. The experimental results can be summarized as follows: 

1. The proposed method is a valid flare forecasting method, which performs almost 

equally well with the SVM-based method. 

2. Although comparison shows that the positive accuracy of the proposed method is 

better than that of the Logistic-Regression-based method on X-class flare 

forecasting, the true positive rate (0.44) and positive accuracy (0.21) are still very 

low, meaning that it may fail to predict some occurrences of the X-class flares. 

3. Since the proposed method is split into two cascading steps, one extra advantage of 

the proposed method over the SVM-based method is that it provide with 

confidence of the forecasting results. For example, when both of these two methods 

classify one active region into level three, it can derive the confidence level by 

examining the output of the first step. The output of the first step (the output of 

logistic regression) contains four probabilities (the four probabilities that a given 

active region belongs to the four levels). The higher the fourth probability, the more 

confidence can be put on the forecast results of X-class flares (corresponding to 

level three). 

So far, the prediction model is limited to those magnetic parameters obtained only 

through SOHO/MDI magnetograms. There are several other physical parameters (such as 

magnetic free-energy, electric current and helicity injections) that can be used, and from 
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which it can be anticipated that the performance of the method can be improved. Similar to 

some other machine learning techniques, the proposed method is scalable with regard to 

accepting new parameters. In the future, after deriving several new magnetic parameters 

from vector magnetograms from the Solar Dynamic Observatory and Hinode, the new 

values should help to improve the performance of the proposed forecasting method. In 

addition, incorporating measures such as sunspot structure [98] and topology of solar 

magnetic fields [99] may also improve the performance of the proposed forecasting 

method. 
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CHAPTER 5  

SOLAR FLARE FORECASTING USING SUNSPOT-GROUP CLASSIFICATION 

AND PHOTOSPHERIC MAGNETIC PARAMETERS 

5.1 Introduction 

Sunspots appear as dark spots on solar disks (illustrated in Figure 5.1) because they are 

cooler than its surroundings. Spots generally appear in pairs or groups, and thus 

astronomers classify them into different categories (sunspot-group classification). There 

are mainly two kinds of sunspot-group classification, namely McIntosh classification and 

Mount Wilson classification. McIntosh classification [100] is composed of a three-letter 

code which describes the class of sunspot group (single, pair and complex), penumbral 

development of the largest spot, and compactness of the group. The Mount Wilson 

classification [101] is used to describe the magnetic field structure. It seems that 

sunspot-groups, which are highly complex in appearance and magnetic, tend to give rise to 

solar flares [102]. 

Sunspot-group characteristics have long been used in solar flare forecasting and are 

still used extensively. Contarino et al. [103] studied sunspot-group parameters (i.e., Zrich 

class, magnetic configuration, area, morphology of the penumbra), and then performed a 

flare forecasting campaign based on the results. They claimed that the results obtained by 

comparing the flare forecasting probability with the number of flares that have actually 

occurred are quite encouraging. Kasper and Balasubramaniam [104] found that the 

penumbral area, umbral area and irradiance showed promise as possible parameters for 

predicting solar flares, particularly M-class flares. Qahwaji and Colak [86] compare the 

performances of several machine learning algorithm on flare forecasting using 
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classification of sunspot groups and solar cycle data. They found out that Support Vector 

Machines provide the best performance for predicting whether a classified sunspot group is 

going to flare. 

 

Figure 5.1 Illustration of a sunspot-group (enclosed in a black rectangle box) on Sep 23, 
2000 (Courtesy of BBSO). 

 

On the other hand, photospheric magnetic parameters derived from line-of-sight 

magnetograms are becoming more and more popular in solar flare forecasting. Jing et al. 

[20] studied the mean value of spatial magnetic gradients at strong-gradient magnetic 

neutral lines, the length of strong-gradient magnetic neutral lines and the total magnetic 

energy. They found that there exist statistical correlations between the three parameters of 

magnetic fields and the flare productivity of solar active regions. Yuan et al. [91] proposed 
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a cascading forecasting approach using total unsigned magnetic flux, length of the 

strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. 

Experimental results show that photospheric parameters are indeed can be used a precursor 

for solar flare forecasting. 

In this study, aiming to improve the solar flare forecasting performance in the 

previous study conducted by Song et al. [24], both sunspot-groups classification and 

photospheric magnetic parameters are utilized. The solar flare forecasting is viewed as a 

classification problem in machine learning field. Given a testing sample, logistic 

regression is used to classify the sample to either a flaring sample or a non-flaring sample. 

5.2 Dataset 

To be consistent with the study conducted by Song et al. [24], the same dataset was used in 

this study. The dataset contains 230 samples from the year 1998 to 2005. Each sample is a 

pair of values describing the properties of an active region. A sample is composed of a 

label SG  indicating the classification of the sunspot-groups within the active region, a 

number fluxT  indicating the total unsigned magnetic flux within the active region, a number 

gnlL  indicating the length of the strong gradient polarity neutral line and a label F  

indicating the level of the active region. According to the number and classes of flares 

produced by an active region, the level of an active region is defined as following: Level-0 

if it produces no flares or only A-class and (or) B-class flares; Level-1 if it produces at least 

one C-class flare but no M- or X- class flares; Level-2 corresponds to those active regions 

which produce at least one M-class flare but no X-class flares; Level-3 corresponds to 

those active regions which produce at least one X class flare. 
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The classifications of the sunspot-groups SG  are extracted from the solar region 

summary [105] compiled by Space Weather Prediction Center of National Oceanic and 

Atmospheric Administration (NOAA). The magnetic parameters fluxT and gnlL  are derived 

from the magnetograms produced by the Michelson Doppler Imager (MDI), which is an 

instrument onboard the Solar and Heliospheric Observatory (SOHO). The flaring label F  

is derived from NOAA log of solar activity [106]. 

As mentioned in [24], the active regions used in the study were selected using the 

following criteria: (1) the center location of an active region is close to the solar disk center 

(within ±40 degrees in longitude and ±40 degrees in latitude); (2) the MDI full disk 

magnetograms are available; (3) since an active region may appear on the solar surface for 

a few days, it is treated as a different sample on different dates; (4) the magnetogram 

obtained at middle of each day by SOHO/MDI is chosen.  

Table 5.1 illustrates a few samples from the constructed dataset, where 

sunspot-group classification is chosen from Mount Wilson Sunspot-group classification 

[101]. Totally, there are eight different classes of sunspot-groups. According to Taylor  

[101], the definition of Mount Wilson Sunspot-group classification is as follows: 

Alpha: A unipolar sunspot group. 

Beta: A sunspot group having both positive and negative magnetic polarities 

(bipolar), with a simple and distinct division between the polarities. 

Gamma: A complex active region in which the positive and negative polarities are 

so irregularly distributed as to prevent classification as a bipolar group. 

Beta-gamma: A sunspot group that is bipolar but which is sufficiently complex that 

no single, continuous line can be drawn between spots of opposite polarities. 
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Delta: A qualifier to magnetic classes (see below) indicating that umbrae separated 

by less than 2 degrees within one penumbra have opposite polarity. 

Beta-Delta: A sunspot group of general beta magnetic classification but containing 

one (or more) delta spot(s). 

Beta-Gamma-Delta: A sunspot group of beta-gamma magnetic classification but 

containing one (or more) delta spot(s). 

Gamma-Delta: A sunspot group of gamma magnetic classification but containing 

one (or more) delta spot(s). 

Table 5.1 A Few Samples from Dataset 
Date F  SG  gnlL  (403.0 Mm) fluxT

( 231.44 10 Mx) 
17/01/2005 0 Beta 0 0.0083
04/11/1998 1 Beta-Gamma 0.1687 0.2831
25/04/2001 2 Beta-Gamma-Delta 0.2333 0.7455
07/11/2004 3 Beta-Gamma-Delta 0.2184 0.2925

 

Total unsigned magnetic flux fluxT  [20] and the length of the strong gradient 

polarity neutral line gnlL  [24] were defined in the previous chapter. 

Figure 5.2 illustrates NOAA active region 0239 on Dec 31, 2002. Left panel shows 

the region itself. Middle panel shows the magnetic polarity inversion lines (blue lines) 

over-plotted on the smoothed region. Right panel shows the strong magnetic polarity 

inversion lines (blue lines) over-plotted on the smoothed region. To figure out magnetic 

polarity inversion line, the MDI magnetogram is firstly smoothed with a Gaussian filter 

with the standard deviation 10 and of size 30 by 30. And then contour lines at height zeros 

are find out (illustrated in middle panel). At last, the contour lines with strong gradient are 
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kept (illustrated in right panel). The length of the strong gradient magnetic polarity 

inversion line are figured out as gnlL . 

   

Figure 5.2 Illustrations of the active region NOAA 0239 on Dec. 31, 2002. 
 

Figure 5.3 to Figure 5.6 illustrate scatter plots of some samples in our dataset 

grouped according to the sunspot-group classification. These scatter plots illustrate that the 

rate of flaring is different for samples belonging to different sunspot-group. It can be seen 

that samples in some sunspot-groups are more likely to produce strong flares. For example, 

Figure 5.3 contains data samples of Alpha sunspot-group. All those data samples are 

level-0 samples. Most data samples are level-2 and level-3 samples in Figure 5.6, which 

contains data samples of Beta-Gamma-Delta sunspot-group. The phenomena indicate that 

sunspot-group classification indeed provides another distinctive character of a data sample 

for flare-forecasting. This additional information may help us improve the flare forecasting 

performance. 
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Figure 5.3 Scatter plot of data samples of Alpha sunspot-group. 

 

Figure 5.4 Scatter plot of data samples of Beta sunspot-group. 
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Figure 5.5 Scatter plot of data samples of Beta-Gamma sunspot-group. 

 

 

Figure 5.6 Scatter plot of data samples of Beta-Gamma-Delta sunspot-group. 
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5.3 Experimental Results 

Logistic regression, as introduced in chapter one, is used to perform flare forecasting in this 

study. Three experiments were conducted. In the experiments, samples in the dataset were 

divided into two groups. In the first experiment, those samples which belong to level-0 

were put into one group, and all other samples were put into another group. This 

experiment was designed to test the performance on predicting whether a given active 

region would produce class C-above (inclusive) flares. In the second experiment, those 

samples which belong to level-0 and level-1 were put into one group, and all other samples 

were put into another group. This experiment was designed to test the performance on 

predicting whether a given active region would produce class M-above (inclusive) flares. 

In the third experiment, those samples which belong to level-0, level-1 and level-2 were 

put into one group, and all other samples were put into another group. This experiment was 

designed to test the performance on predicting whether a given active region would 

produce X-class flares. 

As introduced above, each data sample in the dataset contains three predictive 

parameters, namely, sunspot-groups classification SG , total unsigned magnetic flux fluxT  

and length of strong gradient polarity neutral line gnlL . In each experiment, seven tests are 

conducted to study the performance on different combinations of predictive parameters. 

The seven combinations are illustrated in Table 5.2. As shown in Table 5.2, each of first 

three combinations contains only one predictive parameter. The fourth combination to 

sixth combination each contains two predictive parameters. The seventh combination 

contains all the three predictive parameters. 
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Table 5.2 Seven Combinations of Predictive Parameters 
Combination #  Predictive Parameters  

1 fluxT
 

2 gnlL  

3 SG  
4 ,flux gnlT L  

5 ,flux ST G , 

6 ,gnl SL G , 

7 , ,flux gnl ST L G  

 

Three metrics, namely accuracy, precision and recall [107], are used for evaluating 

the correctness of the flare forecasting method. Accuracy is a metric that computes the 

fraction of testing samples for which the forecasting are correct. Recall is computed as the 

fraction of correctly forecasted samples among all samples that actually produce flares, 

while precision is the fraction of correctly forecasted samples among those that the 

algorithm believes to belong to flaring samples. Recall can be seen as a measure of 

completeness, while precision is a measure of exactness. 

 

number of correctly forecasted flaring samples + 

number of correctly forecasted non-flaring samples 
accuracy

total number of samples
  

(5.1)

 

number of correctly forecasted flaring samples
recall

total number of flaring samples
  (5.2)

 

number of correctly forecasted flaring samples 
precision

total number of forecasted flaring samples
  (5.3)
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  In settings where the goal of a machine learning method is prediction and one 

want to estimate how accurately a predictive model will perform in practice, 

cross-validation can be used [108, 109]. In this study, Leave-One-Out cross-validation 

[110, 111] is used for assessing how the proposed method will perform in practice. 

Because there are 230 samples in total, 230 iterations of training and testing need to be 

conducted. At each iteration, a distinct sample was chosen as a testing sample, the 

remaining 229 samples were used as training samples to train a logistic model.  The testing 

sample was used to test the trained logistic model. Accuracy, precision and recall were 

figured out based on the results of 230 iterations.  

Experimental results from the three experiments are illustrated in Figure 5.7, Figure 

5.8 and Figure 5.9. For each combination of predictive parameters, three columns are 

drawn to represent the performance of flaring prediction measured by accuracy, recall and 

precision using color blue, red and green.  

Figure 5.7 shows that the fourth combination (with predictive parameters ,flux gnlT L ) 

achieves the highest score measured with accuracy (0.8522), recall (0.8982) and precision 

(0.8982), while almost all other combinations perform quite well except the third 

combination (with predictive parameter sunspot-group classification SG  alone). The 

results show that the proposed method is very successful in class C-above (inclusive) flares 

forecasting in general. 

Figure 5.8 shows that the sixth combination (with predictive parameters ,gnl SL G ) 

achieves the highest score measured with accuracy (0.6913), recall (0.5588), while the 

third combination (with predictive parameter sunspot-group classification SG  alone) 

achieves the highest score measured with precision (0.7027).   
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Figure 5.9 shows that the fifth combination (with predictive parameters ,flux ST G ) 

achieves the highest score measured with accuracy (0.8565), precision (0.5714), while the 

fourth combination (with predictive parameters ,flux gnlT L ) and seventh combination (with 

predictive parameters , ,flux gnl ST L G ) achieves the highest score measured with recall 

(0.2353). It is noted that, for the third combination (with predictive parameter 

sunspot-group classification SG  alone), the performance is very bad that the recall is zero 

and the precision cannot be derived because total number of forecasted flaring samples is 

zero. 

 

Figure 5.7 Accuracy, recall and precision of class C-above (inclusive) flare forecasting 
with seven different combinations of predictive parameters. 
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Figure 5.8 Accuracy, recall and precision of class M-above (inclusive) flare forecasting 
with seven different combinations of predictive parameters. 

 

 

Figure 5.9 Accuracy, recall and precision of X-class flare forecasting with seven different 
combinations of predictive parameters. 
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5.4 Summary 

A flare forecasting method using both photospheric magnetic parameters and 

sunspot-group classification is presented in this chapter. Photospheric magnetic parameters 

are quantitive measurement of the magnetic fields of an active region. On the contrary, 

sunspot-groups classification is qualitative description of the magnetic configurations of 

the sunspot-group of an active region. 

From the experimental results, it can be concluded that: (1) The overall 

performance of flare forecasting method is best on class C-above (inclusive) flare 

forecasting, but worst on X-class flare forecasting. (2) Sunspot-group classification alone 

is not a very good predictive parameter in flare forecasting. For X-class flare forecasting, it 

failed to make a single correct forecasting. (3) Although different combinations of the 

predictive parameters, except the combination that using sunspot-group classification 

alone, achieve similar scores in flare forecasting, the seventh combination (using 

predictive parameters , ,flux gnl ST L G ) is most reliable in flare forecasting. (4) The presented 

method is not very applicable in X-class flare forecasting. Both recall and precision for 

X-class flare forecasting are very low, which means there will be false alarms and misses in 

practice. 

As mentioned in the previous chapter, the prediction model is limited to those 

magnetic parameters obtained only through SOHO/MDI magnetograms. The key to 

predict solar flares lies in obtaining an accurate and complete picture of the structure of the 

magnetic field of the Sun [1, 16, 17]. In the future, after deriving several new magnetic 

parameters (such as magnetic free-energy [19], electric current [112] and helicity 

injections [18]) from vector magnetograms from the Solar Dynamic Observatory and 
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Hinode, the new values should help to improve the performance of the proposed 

forecasting method.  
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

 

In this dissertation, advanced algorithms are designed and implemented for solar filament 

detection, solar fibril tracing and solar flare prediction. These algorithms can be used for 

automatic processing of solar data to derive valuable information in the field of space 

weather research.  

  In filament detection, image enhancement, edge detection, segmentation, 

morphological operation and Hough transform are applied, which aims to automatically 

detect and characterize solar filaments in Hα solar images obtained from different solar 

observatories. Experimental results on 125 solar images captured by four different solar 

observatories show that the accuracy of the proposed method is more than 99% and 96% 

measured by area and by number of solar filaments, respectively. For filament 

characterization (such as heliographic centroid location), the center location and radius of 

the solar disks is identified using a two-stage Hough circle detection algorithm to mitigate 

the limitation imposed by traditional Hough circle detector. Experimental results show that 

the quality measure of the edge points obtained by median filter with Roberts edge operator 

can reach 74%. An application of the proposed filament segmentation method to filament 

tracking is illustrated. Preliminary results show the performance is very good. The area 

change of filaments are recorded, splitting and merging of filaments are also recorded, 

which presents a whole picture of the life span of filaments during a time period.  

However, the proposed filament segmentation method is not very successful to 

detect filaments within active regions, where the brightness is much higher than average 
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brightness of solar disks. In the future, the method can be improved by adopting local 

thresholding and region growing. 

A fibril tracing method is presented. Image processing techniques such as image 

enhancement, image segmentation, and union-find are used to segment fibrils from Hα 

images. Least squares curve fitting is used to model segmented fibrils. Experimental 

results show that the proposed method is very successful in segmentation and modeling of 

most fibrils, especially major fibrils. For future research, the least square fitting of fibrils 

can be improved by introducing optimization mechanism to search for a good balance 

between smoothness (low order polynomial fitting) and accuracy (high order polynomial 

fitting, but can cause oscillations). 

In flare forecasting, logistic regression and support vector machine is used to 

predict solar flares based on properties of magnetic fields derived from SOHO/MDI 

magnetograms. To mitigate the limitations of logistic regression and support vector 

machine, a two-step prediction scheme is proposed which combines the forecasting 

probabilities of logistic regression and support vector machine. Experimental results 

illustrate that proposed method is a valid flare forecasting method, which performs almost 

equally well with the SVM-based method. Since the proposed method is split into two 

cascading steps, one extra advantage of the proposed method over the SVM-based method 

is that it provides confidence level of the forecasting results. It is also illustrated that the 

performance of flare forecasting can be improved by incorporation sunspot-group 

classification.  

So far, the prediction model is limited to those magnetic parameters obtained only 

through SOHO/MDI magnetograms. There are several other physical parameters (such as 
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magnetic free-energy [19], electric current [112] and helicity injections [18]) that can be 

used, and from which it can be anticipated that the performance of the method can be 

improved. Similar to some other machine learning techniques, the proposed method is 

scalable with regard to accepting new parameters. In the future, after deriving several new 

magnetic parameters from vector magnetograms obtained by the Solar Dynamic 

Observatory and Hinode, the new values should help to improve the performance of the 

proposed forecasting method. 

This dissertation presents several applications of computer science in solar physics. 

The proposed techniques, such as cascading Hough circle detector, adaptive image 

segmentation and statistical learning for prediction, can be applied to a broad range of 

fields. For example, the proposed techniques can be used to segment a region-of-interest 

from an X-ray computed tomography (CT), and predict the probability of the occurrence of 

a certain cancer based on some properties derived from the region-of-interest. The 

proposed techniques can also be used to trace the flow of the radioactive matters escaping 

from the Japan's Fukushima nuclear plant base on images obtained by sensors on satellites. 

In addition, the proposed techniques can be used to trace the flow of industrial sewage in 

contaminated rivers from images obtained by satellites.    

The advancement and widespread of digital imaging techniques bring us images of 

higher resolution, quality and volume. It becomes very time-consuming to process those 

digital images. New technologies such as high performance computing (HPC) [113, 114], 

grid computing [115, 116] and cloud computing [117-119] can be utilized to significantly 

accelerate computing. In addition, GPU (graphics processing unit) computing [120, 121] is 
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rising in the field of digital image processing to help in vector manipulation. In the future, 

the proposed method can be modified and optimized to utilize those new technologies.   
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