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ABSTRACT

ANALYSIS OF MUELLER MATRICES OF METAMATERIALS AND
MULTIFERROICS

by
Paul D. Rogers

The optical spectra of complex materials such as magnetaxztiiel media, magneto-
electric and multiferroic crystals, materials with intrmshirality, and metamaterials are
studied. These media are important both for: (i) their integesiical effects, such as
Negative Index of Refraction (NIR) and impedance matching; ahgdssible device
applications such as switching devices and anti-reflection casatirigroper
characterization of complex materials requires advanced spegiospproaches and
the development of theoretical models for data analysis. Bemiem&x 4 matrix
formalism is used to derive forward models for the optical speat Reflectivity,
Transmission, Rotating Analyzer Ellipsometry (RAE), and MudHatrices (MM). The
forward models incorporate the relative electric permittivépsor ), the relative

magnetic permeability tensonu(), the magneto-electric tensorg (and a'), and the
chirality tensors £ and ¢'). These models can accommodate various crystal symmetries

in both the semi-infinite and thin film configurations. Using non-linkast squares
fitting procedures, the forward models can be fitted against iexg@etal optical spectra
to determine the tensor parameters, which describe the physical proplettiesnaterial.
In the original part of this Thesis, forward models for the MueN&atrix
components of materials with relative magnetic permeabditgdru#1 are studied. 4x4
matrix formalism is used to calculate the complefkection coefficients and the MMs of

dielectric-magnetic materials. For materials witlnidtaneously diagonalizable andp



tensors (with coincident principal axes), analgitutions to the Berreman equation are
derived. For the single layer thin film configuoat, analytic formulas for the complex

reflection and transmission coefficients are detif@ orthorhombic symmetry or higher.

The separation of the magnetic and dielectric doumiions to the optical properties as
well as the ability to distinguish materials exhim negative index of refraction are

demonstrated using simulations of the MM at varyangles of incidence.

Far-infrared spectra of magneto-dielectric ;Bg0:, garnet (DY-IG) were
studied using a combination of transmittance, ctflfgy, and rotating analyzer
ellipsometry. In addition to purely dielectric amthgnetic modes, several hybrid modes
with a mixed magnetic and electric dipole actiwigre observed. Usingx 4 matrix
formalism for materials withu(w) 21, the experimental optical spectra were modeled and
the far-infrared dielectric and magnetic permeapifunctions were determined. The

matching conditionu(w,) (8, =£(w,) (5, for the oscillator strengths,,, explains the

observed vanishing of certain hybrid modesjatn reflectivity.

Electromagnetic wave propagation and the spectraoptical excitations in
complex materials are modeled. Analytical exprassidor the complex reflection
coefficients of materials with cycloidal magnetidering such aREMnO3z; compounds
(RE=rare earth) are derived for both semi-infinite atidn film configurations.
Simulations for the Negative Index of RefractiolRINcondition are given and the effect
of the magneto-electric tensor on NIR is illustdatd=inally, the MMs of various
combinations of material tensor components arestified for the dynamic magneto-

electric and chirality states and methods to dystish their contributions are discussed.
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CHAPTER 1

INTRODUCTION

The objective of this Thesis is the analysis of the opticaltspe¢ complex materials.
Chapters 1-7 presents the review of necessary background maidéigl.material
includes: the magnetic and dielectric properties of matter,iferuttics (including the
magneto-electric effect), metamaterials, 4x4 matrimmédism, matrix methods in optics,
spectroscopic ellipsometry using synchrotron radiation, and optionzatiethods for
non-linear least squares fitting.

The original results presented in Chapter 8 are published in P. BrdRdg D. Kang, T.
Zhou, M. Kotelyanskii, and A. A. Sirenko, Mueller matrices for anisotropic
metamaterials generated using 4x4 matrix formalisfhin Solid Films, 519 (2011)
2688-2673 [1], doi: 10.1016/}.tsf.2010.12.066 and have been presented at the ICSE-V
Conference in May 2010.

The original results presented in Chapter 9 have been accepted for publication:

P. D. Rogersy. J. Choi, E. Standard, T. D. Kang, K. H. Ahn, A. Dudroka, P. Marsik, C.
Bernhard, S. Park, S-W. Cheong, M. Kotelyanskii, and A. A. Sirenkadjusted

oscillator strength matching for hybrid magnetic and electric excitatinoridysFesO;

garnet”, Phys. Rev. B. (2011) [2], arXiv:1101.2675bnd-mat.str-el].

The original results presented in Chapter 10 will be submittegudblication: P. D.
Rogers,M. Kotelyanskii, and A. A. Sirenko, Modeling of electromagnetic wave
propagation and spectra of optical excitations in complex media using 4x4 matrix

formalism.”



The Appendices include original results for the derivation of the Asju®scillator
Strength Matching condition using two different approaches. The ApEsndiso

provide supplementary material applicable to non-linear least sqtitneg and error

analysis.



CHAPTER 2

OVERVIEW OF THE DIELECTRIC AND MAGNETIC PROPERTIES OF
MATTER

2.1 Introduction

This Chapter examines the optical properties of matter when csutgeincident
electromagnetic radiation. In particular, the theory and manteiserning the dielectric
permittivity tensor and the magnetic permeability tensor axgewed. The Chapter
concludes with a discussion of how these tensors enter into Maxweelliations. The
majority of theoretical and analytical background for this Chajpdertaken from

References [3-8].

2.2 Dielectric Properties in an Electromagnetic Field

In the presence of incident electromagnetic radiation, dipole misnaee induced at the

atomic level. The induced dipole momeptis proportional to the local fieldE and the

net effect of all dipole moments is to produce a polarization fieldThis field is defined

as the dipole moment per unit volume. In a linear approximation (niegjetbnlinear
effects) P is proportional toE :

P=gx,E (2.1)
The factor x, is known as the electric susceptibility and is dependent upon the

microscopic nature of the material. The vector fiéldin Eq. (2.1) is the resultant field

inside the material. The displacement vediois defined to be:



D=¢E+P (2.2)

The source ofD is due only to free charges in the system. Its properties will be further
discussed in Sections 1.5 and 1.8. Substituting Eq. (2.1) into Eq. (2.2) gives:

—

D=¢,E+P=¢,E+e.x, E=,(1+ x.)E=E (2.3)
Finally, the relative dielectric constaat is defined to be:

r

£=5=1+y (2.4)
50

The study of the electric susceptibility,  including its tensopprties, and especially
its spectral dependency, reveals the microscopic propertitee ohaterial in question.
This is particularly true with respect to its behavior in thesgmee of incident radiation
in proximity to the dipole resonances. Details will be considerdte next Section. In

the following Sections, the subscript’‘in will be droped ing, to keep the formulas

more compact.

2.3 Elementary Excitations and the Simple Harmonic Oscillator Model

In the presence of incident radiation having frequeagythe electric susceptibility,

itself becomes a function otv.  This is because the incident i@diatteracts with

elementary excitations in the material. The four primary grofigéementary excitations
are: (a) electronic excitations of valence electrons; (b) ionghonon excitations due to
lattice vibrations; (c) free carrier excitations and (dstalfield transitions. For brevity,

the coupled excitations, such as plasmons, are excluded from our idiscuss



Accordingly, a complete description of the dielectric constanteawritten as a sum of
the additive contributions:

£.(0) =1+ X (@) * X (@) + )X 1o(@) * X (@) (2.5)
The frequency-dependent behavior of each of the four contributions tdieteetric
constant can be described using, for example, the Simple Har@sniltator (SHO)
model. Note, however, that these four types of contributions have strqregsiis in

different parts of electromagnetic spectrum. Usually, tiiessionant contributions to the

dielectric function are presented with an “infinite value” of the dielecinstants,, .

2.3.1 Electronic Excitations of Valence Electrons

The polarization vectoP was introduced as the dipole moment per unit volume. An

alternative expression fd? which directly incorporates the electronic dipole moment is:
P=gx,E=Nd= Ny ¥ (2.6)

In Eq. (2.6), N represents the number of atoms per unit voluthés the dipole moment

at the atomic levelq, is the electronic charge, and represents the distance from the

electron to its positively charged nucleus. Eq. (2.6) provides a dmadiection between

the electronic susceptibility and thé vector. In the presence of an external driving

force field, the SHO equation of motion for the valence electron becomes:

622 — d? - —iat
meﬁz‘nlng‘meya”qe%e (2.7)

The first term on the right hand side of Eq. (2.7) is the familiar restoring temoeof an

harmonic oscillator withwy, representing the electron’s natural frequency of motion. The



second term is a damping term and the third term is the external driving fanddevit

incident radiation having frequenay. The solution to Eqg. (2.7) is:

X=— E m— (2.8)

Using Eqg. (2.6),x, can now be directly calculated as:

_ Ng? 1
Xa ()= g,m, (af - o/ —iy) (2:9)

The electronic susceptibility is a complex number and is gledebendent on the
frequency of incident radiatiomw as well as the natural frequency, of the valence

electron’s motion. Stated differently, the electronic suscejpyibd dependent upon the
relationship between the energy of the incident radiation and theahanergy of the
electronic transition. In the case of a free electron, the Scherdeqguation, which
describes its wave function, is an eigenvalue equation and theeegforits only discrete
forms of the wave function with each having an associated discretgyelevel. In other

words, there can be many “natural frequencieg” . A more commsefeeway of
writing Eq. (2.9) is to include all of the natural frequencies in a summation:

_ i
Xel—Zj:ng ~&P —iyw (2.10)

where, P represents a type of oscillator strength or spectral wegFactor. In the far-
infrared (far-IR) part of the spectruny, is expected to be frequency independent and

can often be combined with the first term of Eq. (2.5) to faym which is the high

frequency dielectric constant.



2.3.2 lonic or Phonon Excitations due to Lattice Vibrations
Before the application of an external driving force with freqyemng, it is a useful

exercise to calculate the normal modes of a diatomic lattice crystalline structure.

Consider planes of alternating ions watand v having different massed, and M, ,

respectively. Using a SHO model, wigy s—1 and s+1 as indices of adjacent planes;
and employing the stiffness coefficiest, the equations of motions for the two ions

become:

M, =c(v,, + v,—-2u)
(2.11)
M.V, = C( Usiy + US—ZVS)

To solve Eq. (2.11), it is customary to use a trial solution or ‘ansatz’ forafdac and v
of the formu, =u,é®®“) and v, =v,d**“) | wherea is the lattice constans,is the
index and q is the wave vector. After these substitutions, a set of homogsne
equations are obtained fol andV, which have solutions only if their determinant is set

to zero. This produces a solution fof of the form:

2
1 1 1 1 2

Wf=c|l —+— |+c || —+ - 1- cosga 2.12

(Ml sz \/(Ml sz Mle( Sq) ( )

As can be seen from equation Eq. (2.12), solutfionsw depend upon which sign is

taken in front of the square root as well as vafoeghe lattice wave vectoq. Due to

the periodic nature of the lattice, all availableormation about lattice behavior is in the
first Brillion Zone (“BZ”). Accordingly, we can evaate Eq. (2.12) both in the long

wavelength limit (wherega<<1) as well as at the zone boundary where 7/ a. The

following table illustrates possible valueswfn the assumption oM, >M,,.



Table 2.1. Characteristics of the Lattice Vibrations.

Branch of Square| Long Wavelength | At BZ boundary Description of Name of Mode
Root Limit (qa<<1) (q=r/a) lonic Vibration
w, 1 1 2c lons vi_bratg in . Optical Mode
2l — +— \/— opposite directions (Transverse-TO or]
M, M, M, and are optically | Longitudinal-LO)
active
w 1 1 2 lons vibrate in the | Acoustic Mode
—Cc—0a —_— same direction and
2 M, +M, M, are not optically | (Transverse-TA of
active Longitudinal-LA)

Table 2.1 illustrates four interesting propertiéshe frequency behavior as a function of
the underlying wave vector of the lattice vibratidiirst, the upper branch starts out at
with a finite frequency afj=0 and then descends down to the right until nalfvalue at
the BZ boundary is achieved. Second, the lowerdbratarts out at zero frequency when
g =0 and moves upwards to the right until its final wals achieved at the BZ boundary.
Third, at the BZ boundary, the frequency of thearpgpranch is always greater than the
frequency of the lower branch and an energy gagtxait this point. Fourth, only those
modes whose ions vibrate opposite to one anothérckeiate an oscillating dipole and
therefore become optically active.

The lattice response to an external driving forad mow be analyzed. For these
purposes, atomic polarization is ignored and faosum the rigid ion approximation. The

response of incident radiation is evaluated foriaodhic crystal having chargestq, .

Eq. (2.11) is again used as the base equation diomaogether with an applied
electromagnetic field evaluated at the latticessfte., X = sa). The equations of motion

then become:



Mlus = C( Vort Vs~ 2 Us) tQ Ea gSka_wt)
(2.13)

ska-wt)

M.V, = C( Usy + US—ZVS)— qe'%el(
The ansatz termsi, =u,é*®* ) and v, =v,é**“) are used to solve Eq. (2.13). For

simplification, the lattice and incident wave veastare phase matched and taken in the
long wavelength limit. Accordingly, we set wave tegs q=k =0 for the purposes of

this calculation. A set of homogeneous equatiombiained:

—M,U, =2cv,— 2cu, + g, E,
(2.14)
-w*M,V, = 2cu, - 20/,— 0, E,

We define the reduced mas(S:Mi+Mi; divide the equations in Eq. (2.14) b\,

1 2
and M,, respectively; and identify the terV@ with @}, (the TO phonon atj=0) to
U

produce:

_GE 1
Uy =V, = — 2.15
H aﬁo_wz ( :

Combining Eq. (2.15) with Eqg. (2.6) gives:

N¢f 1
P=Nq, (U~ V)= O;Eowrz — = oXon Eo (2.16)
o

The single phonon contribution to the electric spsibility is given as:

_Ng 1
Xph(Q)) ) EH (’Jrzo_a]2

(2.17)
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In crystals, one should take into account that isé\egenvalues for a}, are possible

(the maximum number of the phonon mode8ss 3, wheres is the number of ions per
primitive cell). After the introduction of a damgirterm in the equations of motion, a

more complete expression far, («) can be written as:

-y N 1 _ Q
- - _ 2.18
Ao Zk: U — 0 —iay, ;mﬁq -’ -iwy, (2.18)

The term @ in the numerator can be interpreted as a type of weggkdittor in the

summation. In this case, it weights the number of moleculetheanlattice that are

vibrating at the various TO phonon frequencies.

2.3.3 Free Carrier Excitations

The analysis of free carrier excitations follows closelydhalysis of the excitations of
the valence electrons with the exception of two important festuirst, in the case of
free carriers, there is no natural restoring force frecqpuercause the free carriers are not
bound to a particular nucleus. Second, the summation afugaenergy levels is not
required as in the case of a valence electron. Accorditigtyanalog to Eq. (2.9) in the

case of free carriers becomes:

el
Xe=—5—— (2.19)
o +iwy
N 2
Where Q? :f;qe* with N, being the free carrier concentration afyg, being the
EeoreM

core

permittivity constant at high frequencies (frequencies alfoye
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2.3.4 Crystal Field Transitions

In the presence of a crystal field (“CF’), the wave funwtief an ion are changed.
Preferred wave function orientations take on lower endaygls and previously

degenerate wave functions are split. This process is kaswmystal field splitting. An

illustration forf orbitals is contained in Fig. 2.1 below.

H= HFJ +HI_5' +H,:~‘..-

g mleiplet
/ e 4

l'“ AE,, = AE . ~10- 1 50cm™

2J+1=17 fold ‘R:;l':ﬂ > ﬁlr.;'::;

Figure 2.1 lllustration of Crystal Field Splitting fdr orbitals.

The crystal field is an inhomogeneous electrostatic electricgrelduced by neighboring
ions in the lattice. In Lanthanides, the Rare EaRIf)(ions are stripped of their
outermost 6 electrons, which leave the optically activieelectrons inside thes@and
shell. This shields thef£lectrons from the direct effect of the crystal field and tke C
effect becomes a perturbation in the Hamiltonian. In Figufle g refers to the
Hamiltonian of the Free lor{.s is the Hamiltonian of the LS coupling akldr to the
CF. The CF effect is significantly smaller than the spin-laititeractions which varies

asZ*, whereZ is the number of electrons. Dipolar transitions can thenrdmstween the
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lower energy and excited crystal field states. Transition ghitibes between the IR-
active CF states is analogous to oscillator strength in classeailytfi3]. Using the
Simple Harmonic Oscillator model, we can now introduce atogous term for crystal

field transitions.

2

o =Zn:w§n T (2.20)

Here, n represents the number of allowed transitions due to crysialsplitting. Note,
that for a “free”RE ion, the center-of-inversion symmetry requires the eledtpgole

oscillator strengthl, to be zero. But in a crystal with tiRE ion in non-centrosymmetric

position, the so-called “forced electic dipole transitions” arewatb between 4
electronic levels due to intermixing betweleand d-orbitals. Still, the magnetic dipole
transitions are expected to be dominant between the crystalefield off electrons for

REions in solids.

2.3.5 Summary
A complete expression for the dielectric constant as a funofidhe frequencyw of
incident radiation can now be obtained by combining Eqs), (@230), (2.18), (2.19) and

(2.20) to produce

2

Qf f
1 2.21
£ (W)= +§ 7 2+|yJ +§ 7 +> . (2.21)

-’ +IC¢)}/k -w? +|wy n cq, -w*- y,w

In Eqg. (2.21), the second term refers to electronic transita the valence electrons,
which can be viewed as being independent of frequendlyeirfar infrared region, the

third term recognizes phonon contribution to the dielectric functite fourth term refers
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to the contribution of free electrons to the dielectric functmich is not applicable in
the case of insulators, and the fifth term refers to crysa fransitions. Eq. (2.21), in
the case of an insulator, can be reduced further by ioomghthe first and second terms

into the high frequency dielectric constant and eliminating thetderm to produce:

2 T2
Er(w)=£m+zk:aﬁok—S;+iwyk+zn:aé—wg—iynw (2.22)
This equation says that for insulators subject to far infreagtion, the major frequency
dependent susceptibility term comes from phonons. Thdatrfisld contribution is
usually an order of magnitude weaker. As can be siendielectric constant is a
complex number. It consists of a real part and an imagppert and can be written as.
& (W) =g(w)+ig,(w) (2.23)
In addition to the SHO model, several alternative Dielectricfam Models can
be applicable to describe complex behavior of the light gapan in solids. Some of
these models have been introduced many decades agovidepempirical means to
model complex interactions between elementary excitations, asjcfor example, the

phonon-phonon and electron-phonon interactions.

2.4 Dielectric Function Models
While the Lorentz, or SHO, model is one of the most popoléwer dielectric function
models have been developed. These include the Sellmei€aamthy models, the Tauc-
Lorentz model, the complex Drude model [4], the Coupladntbnic Oscillator model,

and the Pendry model. The Sellmeier model is used fati¢hectric function in a region,

where the imaginary component of the Lorentz funct&n, is approximately zero. This
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is equivalent to saying that the damping coefficient far fresonance is zergr=0.
The expression for the Sellmeier model is:

B A?
j

T2
In Eq. (2.24),A and B, are parameters to be fitted in a data analysis. This note
most common in the optical glass catalogues for lenses, opbadtives, and optical
antireflective coatings .

The Cauchy model is also used in the same spectral ragjithe Sellmeier model
and is derived as a series expansion of the Sellmeier model:

n= A+/1—|32+A—Ci+... (2.25)

In EQ. (2.25), it should be noted that the formula is writteteims ofn, the refractive
index. Again the letters represent parameters to be fittedsagaiperimental data. For
both the Sellmeier and Cauchy models, the imaginary compasfethe dielectric
function is assumed to be zero.

The Tauc-Lorentz model is used to model the dielectric fumaifoamorphous

materials. The model is built upon the relationship betwgeand the energy bandgap,

E .

g

(EH_EQ)Z

= (2.26)

£ =A

In Eq. (2.26), E, represents the photon energy. The final expressiorgfas quite

complicated as it is derived from the Kramers-Kronig (KKlatiens which will be

discussed later in this section.



15

The Drude model is applicable for free carrier absorpdioth can be viewed as

the SHO model extrapolation to the zero resonance frequency

Q,
E(CU) - 500 (1_(02_—“0}/} (227)

In Eq. (2.27), €, is the high frequency dielectric constant afi is the plasma

frequency.

The Coupled Harmonic Oscillator (CHO) model treats the laremodel as a partial

fraction decomposition [5]:

- a’foi _wz_iwyLoi

5(6‘)) ~ o Il_l a)I?Oi -af _ia)yTOi

In Eqg. (2.28),w,; and «); are the natural frequencies associated with the transverse

(2.28)

optical and longitudinal optical phonons a#g is the dielectric constant far above the

resonances.

The Kramers-Kronig relations describe the coupling betwgemd &, :

207w (@)
& (w) =1+ PI P

0

do'

(2.29)

In Eqg. (2.29),P refers to the Cauchy principal value of the integral. Elgigation says
that if &,(w) is known throughout the entire spectrum, thefw) can be calculated
using the above equations. The Lorentz, CHO, Tauc-torerand Drude models
automatically satisfy the KK relations. Since the Sellmeier angtiamodels assumed

that &, (w) =0, they are not KK compatible [4].
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The Pendry model for the dielectric function is not comnhon |t is widely accepted for

modeling of magnetic succeptibilities in the analysis of metambstehmthe static limit

of w=0, magnetic succeptibility,u(O) is expected to be close to 1, while at the

resonance a Lorentzian oscillator shape is desired. Botlireetents can be achieved

using the following function:

H(w) =1+ = _'izzwz

mo _Ia)ym

(2.29)

where w,,>> y,,. The Pendry model is sometimes known as the Adjusted @scilla

model [6].

2.5 The Dielectric Tensoré (w)
In describing the theory of the dielectric function in Secfidh it was assumed that the

polarization vectorP as defined in Eq. (2.1) was in the direction of the eleéild.

However, this need not be the case in low-symmetry crystasisotropic materials. For

example, a material which has a built-in dipole moment will le vector different

from the direction of an arbitrarily applied field. The samguenent can be applied to the

displacement vectoD and its relationship t&€ as derived in Eq. (2.3)D=Z£E.
Accordingly, a more accurate description £fshould be as a second ranked tensor in
order to reflect the possible anisotropic nature of a mediura. dielectric tensor can

now be written as:

XX é‘xy gxz
E=|l¢e, &, € (2.30)

yX yy yz

zX zy 2z
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The dielectric tensor is a symmetric tensor [7]. It cangfioeg, be diagonalized in a
certain coordinate system and a set of principal @¥esshould be determined. Such a

tensor would have the form:

& 0 O
E=| 0 &, 0 (2.31)
0O 0 ¢

If £,=¢€, =¢&,, the material is said to be isotropic. If the diagl tensor components

are not equal, the material is anisotropic.
The dielectric constant displays certain dispersimgracteristics within a medium and its
value depends on the frequency of the applied.fiatstordingly, the dielectric tensor

should be written with each component being a fonaf frequency:

Ea(W) £4(@) €4(w)
E=|ey(w) e,(w) €,(w) (2.32)
eule) o) e.le)

Eq. (2.31) also becomes a function of frequenay therefore the associated principal
axes will also be frequency dependent. This charatic is called the dispersion of the

axes [7].

2.6 Magnetic Properties in an Electromagnetic Field
A material’'s magnetic properties are highly influed by the magnetic moment of
atoms, which constitute the material on a microsctgvel. The magnetic moment of a

free atom is affected by (a) the spins of its etexs; (b) their orbital angular momentum;
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and (c) induced magnetic moments which serve tatesact changes in magnetic flux in
the system [8]. In addition, in much the same weat an applied electric field can induce
lattice vibrations or phonons, an applied magniic can induce magnetic spin waves
called magnons. Both the magnetic moment and magffents of an applied field are

frequency dependent and will influence a materialagnetic permeability. These effects

can be described in the following equation:
,U(Cl)) :1+ de (C()) +Xsw(a)) (233)
The subscripimd refers to the net effect of magnetic dipole traoss and the subscript

sw refers to the spin wave or magnon contributione Tho magnetic susceptibility

terms will now be described.

2.7 Contributions to Magnetic Susceptibility
2.7.1 Magnetic Dipole Contributions to Magnetic Susceptibility
Quantum mechanics is needed to precisely desdrédbateraction of magnetic moments
and spin waves subject to an externally applidd.fiehe magnetic moment of an atom is

dependent upon the aggregate spin and orbital angudmentum state of its electrons.

With z7=gu,J (with 7 being the magnetic moment of an atomy, the Bohr
magneton,g the Lande factor] being the total of the atom’s orbital and spindag

momenta) andM = Nz (with M being the magnetic moment per unit volume ahd

being the number of atoms per unit volume) the esgion for magnetic susceptibility

has the form:

031| <

ZZ/JON O wJ; (2.34)

Xmagnetic = luO
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Accordingly, the magnetic susceptibility of a makrsubjected to an external field
involves understanding the possible configuratiohs). along with the numbeN, of

atoms that could have such a configuration. Magrstates can change as a result of
absorption or emission of energy quanta in intevactvith an applied field. Quantum
mechanics is used to calculate the probabilitylofxeed transitions between such states.
Hund'’s rules are used to estimate the ground efada ion with many electrons [9]. Rule
#1 states that the electron wave functions shoalérbanged so as to maximigethe
spin angular momentum. This is necessary becaugheoPauli Exclusion Principle,
which prevents electrons with parallel spins frootupying the same orbital. Rule #2
states that given the configuration establishech wiite first rule, the electron wave
functions should be arranged so as to maxirhizthe orbital angular momentum. The
basic principle used in this rule is that electroniting in the same direction are less

likely to run into each other with the result titla¢ Coulomb energy can be minimized.

Hund'’s 3rd rule says that the valueJodan be found using :|L—q if the shell is less
than half full andJ :|L+S{ if the shell is more than half full. The grounatstis then

summarized a$>"'L,. As an example, which we will consider in detailGhapter 8, the

ground state of DY is estimated in Table 2.2 using Hund's rules.

Table 2.2 The ground state of BYusing Hund'’s rules.

Glllhlolrv w3
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Dy** has an outer sheltf®. Sincel =3, the first seven electrons are positioned with
spin up while the remaining two are positioned wathn down. This satisfies rule #1.

Rule #2 is satisfied if the two spin down electracsupy the highesin orbitals. This
, . . 5 : . .
configuration results |nS:§ and L=5 (written as the letter H in spectroscopic

notation). The shell is more than half full o= |g +5{ = 1—25 Accordingly, the symbol for

the ground state of B¥is °*H,,. The ground state for Hb can also be easily

determined using Table 1.1. With one more electnan Dy, its ground state iSl,.

It is interesting to use Hund'’s rules to estimtte crystal field effect on the
electron configuration of transition metal ionsrExample, in a crystal field, the e
ion, which has a 3dshell, splits into 3-fold lower energy orbitalsdan2-fold higher
energy orbitals. The term pairing energy is usedescribe the amount of energy it takes
to have two electrons occupy the same orbitahdfdrystal field energy is less than the
pairing energy then the first five electrons wikcl occupy one orbital. This sixth
electron will then share one lower level orbitattwanother electron. This is known as
the high spin configuration. On the other handhé crystal field energy is higher than
the pairing energy, then all six electrons will wgg the three lower orbitals. This is
known as the low spin configuration. In some casps-flip transitions can occur when
subject to incident radiation [9].

In general terms, Hund’s rules do not say anytlahgut the higher excited magnetic
states. Transitions to these states are governegl@ytum mechanical selection rules.

For example, for the case BE ions, all electric dipole transitions are forbiddgue to
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parity. This applies to the case where the forekel fhas a center of symmetry. However,
if this symmetry requirement is broken, such ashie case of a crystal field in non-
centrosymmetric crystals, then three possible iians are allowed: (i) a forced electric
dipole transition; (i) a magnetic dipole transitjoand (iii) an electric quadrupole
transition [10]. The latter is usually very weaktle far-IR spectral range and have never
been reported in literature. The discrete naturthefelectronic transitions motivates the
use of the SHO model for magnetic dipole trans#ijust as we did in the case of electric
dipole transitions in a crystal field. One modeld&scribe the contribution of magnetic
dipole transitions to magnetic susceptibility is assume that the magnetic dipole
response of a crystal consists of a collection ofehtzian oscillators. Using this
approach, the following equation describes the raagmipole contribution to magnetic
susceptibility [11]:
H(w) =1+ Z# (2.35)
T - -y w

In (2.35), f; is the oscillator strength of a given magnetionesice,w, is the frequency

of a given resonance an is the relaxation rate of that resonance.

2.7.2 Spin Wave Contributions to Magnetic Susceptibility

In Section 2.3.2 elementary excitations due to phomr lattice vibrations were
examined. Natural frequencies for these latticeatibns were calculated using systems
of coupled equations. By setting the determinanthese systems of equations equal to
zero, it was found that only certain frequencies. igenvalues) were permitted. These

eigenvalues correspond to quantized energy lewelshke lattice vibrations. These are
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called phonons. In a similar way, the spin statesi@arest neighbor electrons can
influence one another and form systems of coupteehtons. In a manner similar to
phonons, disturbances in spin alignments can becteg to propagate through a crystal
lattice and would do so with only certain allowesldls of frequency and therefore
energy. These quantized spin waves are called magno

2.7.2.1 Ferromagnetic Magnons. Ferromagnetic magnons deal with the excitation of
spin waves in which all spins are pointing in theng direction. The equations of motion
for the spin wave can be derived by starting whih interaction Hamiltonian for the spin

of the " electron [8]:

U=-2351%,+5.,) (2.36)

Here J is the exchange integral from quantum mechania bép is the angular
momentum of the spin at tip!" site. Using the magnetic moment at fesite to be

H, = g,uBép, Eq. (2.36) can be rearranged as:

n EE[ ;I‘: J(ép_l +ép+l)} (2.37)

The second bracketed term in Eq. (2.37) is calBgWhich is the effective magnetic field

that acts on th@™ spin. Using the principal from mechanics that the of change of
angular momentum equals the torque, the followinffer@ntial equation can be

produced:

d_{):(?](é" x§.+5%5.,) (2.38)
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This time derivative will produce three separateatpns in Cartesian coordinates. As

Kittel points out, for very small excitations it @sumed thaS,* = S and that terms of

the form S*S' can be ignored [8]. Using these assumptions we get

ds;

—-=(298/m)(29 - $.- 8

ds;

—o=(2381)(28- $.- $)) (2.39)

d_S;

dt
The third equation above simply says that theomponent of the spin is a constant that
does not change in time. The first two equatiomsfa system of coupled equations.
Together, these imply that spin will precess aliht z axis and the phase of this
precession will change from tip® to thep+1" electron. An alternative derivation of Eq.
(2.39) can be produced by employing the Pauli spiohange operator [12]. In this

manner, the small change in spin precession wdbagate like a wave through the

lattice. This motivates a solution of the forgj = #™““’and S} = \&™*“Y Inserting

these ansatz into Eq. (2.39) and taking the detemmiof the coupled set of equations to

be zero leads to[8]:
hw=4JS(1- coska) (2.40)
In the long wavelength limit, wherea<< 1, this reduces to the dispersion relationship:
hw0(2JSa)k? (2.41)

It is interesting to note that, in the long wavegnlimit, the frequency of magnons is

proportional to the square of the wave vector, alidr acoustic phonons frequency is
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directly proportional to the wave vector. Thereaigossibility for the two modes to
couple and interfere [13]. Note, however, thatfdreomagnetic magnons, in the absence
of external magnetic field, cannot be studied usamgR spectroscopy due to nearly zero
energy value, which corresponds to the k-vectdaofR light.

2.7.2.2 Antiferromagnetic Magnons. Antiferromagnetic magnon excitations occur
when nearest neighbor ions have opposite spin. drdisring can be visualized with two
equivalent intersecting lattices with each lathie@ing alternating spin. Just as in the case
of a ferromagnetic magnon, three directional eguatof motion can be derived. Also, as
in the case of phonons arising from a diatomiddattthe equations of motion for the
nearest neighbor are coupled. When an externdliSedpplied to the material, Eq. (2.38)

becomes:

= Z(sx5.5x5.) - L5 w) (2:42)

In working through Eq. (2.42), we assume that eirenumbered lattice sites have spin
up and all odd numbered lattice sites have spinnddw addition, we assume that the
external magnetic field is polarized in the direction. In order to reduce the
dimensionality of the analysis, the variab® = S'+i Sis introduced [8]. When
considering nearest neighbor interactions, the axgé integral] becomes negative.

Using this definition ofS", the following set of coupled equations are oladin

ds;, _ 23S/, .. ig /4
dtp - fi (2829+S;P—1+ $P+1)+ hB %D %p

(2.43)
ds;,., -2iJS
dt h

" [
(282p+1+ S;p + $p+ 2) + g:B %ﬁ 1 sz
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Using the ansats;, = ue?? g = \g@vee andB, = Bozé(zpqa"“) and with the

-4JS B _gluBé(qua—aI)

definitions =—— and
‘exch h y h

, EQ. (2.43) produces another set of

coupled equations:

u (a)exch —wt VBbZ ) + V(wexchcoi ka) = 0)
(2.44)

u(a)exchcod ka)) + \/(wexch+ w— y %Z ) = O
Setting the determinant of this system of equatesal to zero produces frequency for
normal modes as follows:

w=yB, + %S ak (2.45)

Eq. (2.45) is an important result. It demonstrdited for the antiferromagnetic case, the
dispersion relationship is linear ik. Resonance is expected to occur when incident

frequencies are near those of the normal modes twéhfrequencyw, . The discrete

nature of normal modes again motivates the useh@fSHO model to describe the
susceptibility contribution of magnons and thedwling equation will be used for this
purpose.
S
- ]
Xmagnon zaﬁ]_a)z_iymw

My

(2.46)

2.7.2.3 Ferrimagnetism and Kaplan-Kittel Modes. In the preceding discussion on
antiferromagnetic modes, it was assumed that tlestyblattices of opposite spins were
equivalent. However, if the two sublattices are identical then it is possible that a net

magnetization appears. Since the sublattices aredawtical in ferrimagnetic materials,



26

such asREiron garnets (see Chapter 9), it is possible ttisir spontaneous
magnetizations will have different temperature dejemcies and, in general, the
magnetism in ferrimagnetics can be quite compliatst a certain temperature one
sublattice can dominate and therefore its magnreiizés most pronounced. The opposite
can be true in a different temperature range. fassible that at a certain temperature,
known as the compensation temperature, the net etiagtion can be reduced to zero
[9].

One group of ferrimagnetic materials is the garnetsich have the chemical
composition:REFe0;2 whereRE is the trivalent Rare Earth atom. These mateesds
also known as Rare Earth Iron GarnetRBfIG. As explained in Blundell [9], the crystal
structure is cubic but the unit cell is complexrdé of the F& ions are on tetrahedral
sites, two are on octahedral sites and th& Rffis are on dodecahedral sites. Kanhgl.

[14] describe the structure for FHE;01, in more detail. The Te01, crystals form a
cubic structure. TH ions with the ground statéF, are in the 24 dodecahedral sites

with the local orthorhombic symmetry 222)DThere are several nonequivalent Tb ions
in each unit cell with the same surrounding field the axes are inclined to each other.

This has the overall effect of producing an averagieic symmetry. Fé ions occupy

two sites: 1@ octahedral sites with th8(C,) symmetry and 2tetrahedral sites with

the 4(S,) symmetry. Below the transition temperatureTgf= 550K , the iron spins are

ordered in a ferrimagnetic structure with the spatigned in the [1 1 1] direction.
Among six possible exchange interactions betweenssip three different magnetic
subsystems, only two dominate. The main magnefjger®xchange interaction is

between Fe in two different sites: spins of Fehia tetrahedral site are antiparallel to
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those of the octahedral site. Another importargranttion is between Tb and Fe in the
tetrahedral site resulting in the Tb spins to bdipanallel to Fe moments in the
tetrahedral sties, and, hence, antiparallel to rtbe magnetic moment of Fe. Below
approximatelyl50K , a rhombohedral distortion of the cubic cell cauee canting of
Tb spins, which is usually described as a “doulnibrella structure.” The symmetry of
the T is lowered from 222(p) tetragonal to 2(§ monoclinic. Note that T8 is not at
the center of inversion, which is important for fh&ure discussion of the selection rules
for the crystal-field transitions.

Also as explained in Kanet al.,in addition to phonons and crystal-field excitaipthe
far-IR spectra of ferrimagnetic materials can eithillagnetic excitations related to the
spins of iron and RE ions, such as magnons. An ssicoierrimagnetic mode that
corresponds to the strongest superexchange FetBmadtion falls in a very low-
frequency range. The Fe-Tb ferrimagnetic interacteveals itself in the measured far-IR
spectral range. If one considers only the intesactietween th&®E and the combined Fe

subsystems, then two optical magnetic modes shappedar. One is the Kaplan-Kittel

(KK) mode Q,,, which corresponds to the exchange between twaetiagsubsystems.

Another oneQ, . corresponds to precession of the RE moments iretfeetive field

imposed by the iron magnetization. The zone-cestergies of these modes are:

QM (T) = /]ex,us[ 9eM Tb(T) ~ Op,Me,
(2.47)
QLF = Aex/“lBg Tb'vI Fe
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where 4 is the Bohr magnetonA, is the exchange constang. ., are the

correspondingg factors, M,, is the Tb sublattice magnetization, arM.is the

combined Fe magnetization.

2.7.3 Summary
A complete expression for the magnetic permeglakta function of the frequenay  of

incident radiation can now be obtained:

In the above equation the second term incorporaggmetic dipole transitions and the
third term incorporates the effects of spin wavesmagnons. As with the dielectric

permittivity tensor,u(w) is also a symmetric tensor:

/'IXX O O
g=| 0 u, 0 (2.48)
0 0 W,

As seen in Eq. (2.48) , the magnetic permealolitg material is a complex number. It

consists of a real and imaginary part and can ligewras:

1@ = 14(0) +i4,(@) (2.49)

2.8 Maxwell's Equations
Electromagnetic phenomena in the absence of car@mii charges are described by

Maxwell's equations [15]:

ot T (2.50)
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These are calculated without taking into considenaany induced polarization charges
or currents. An equation for the displacement wedio has already been given in

equation (2.3) ad = £,(1+ x,)E=£E. A completely symmetric equation is available to

describeB, the magnetic induction vector. It is given by:

B=p,(F+M) =0+ x,)A = uH (2.51)

Together with bi-anisotropic tensogs and p', which will be described in more detail
later, Eq. (2.3) and Eq. (2.51) form the constitaitielations for the material.
A complete description of electromagnetic wave pggtion in a complex anisotropic

medium is made possible using Berreman’s matriagop [16]:

[0 'C“”J('f}:iﬁ’[‘f ’:’]ﬁ (2.52)
curl 0 H c\po' U)NH

In Eq. (2.52),curl represents the 3x3 matrix operator. The first matn the right hand

side is a 6x6 matrix called the optical mathk. This matrix contains all of the
information contained in the constitutive relatiommd completely describes the
anisotropic properties of the material includingrality and magneto-electric effects

[17].

2.9 Chapter Summary
In this Chapter we described the properties ofdhand /7 tensors. The symmetry and
optical effects related to the case &f anisotropy andy =1 is rather a “common

knowledge” in the community of the far-IR spectmsg of solid state materials. We

have been described this case in this introduc@itgpter with the goal to present a
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complete picture, define symbols, explain modetsl, @ make a clear link to the optical
properties of magnetic materials. The problem @& light propagation in magnetic
materials withy #1 is already a specialized field that has been dlced of theoretical

and experimental research in the last 10 years. oiiweous conceptual complication

arises from the fact that there is no theoretieltionship between the and iz tensors.

Without an assumption about their dispersion, iimpossible to de-couple the(a)) and

,u(w) complex functions based on a single optical measent of either transmission or

reflectivity spectra. Still, the earlier work usifey-IR and neutron spectroscopies built a
solid foundation to understanding of magnetic malkernn the frequency range below
100 cm', where / #1and £(w) = Const.

In contrast, the properties of the and p' tensors, and especially their frequency
dependence, are far less known theoretically coedptr that for thes and y tensors.
Our knowledge of their symmetries and frequencyeddpnce is practically “terra
incognita”. In recent years there is a tremendoterést regarding the optical properties
of metamaterials and multiferroic crystals. One sawn that the key to understanding of
the magneto-electric coupling and the light propiagain the materials with Negative
Index of Refraction (NIR) and in materials with i@iity is hidden in the non-trivial
relationships between th@ and p' tensors in Eqg. (2.52), which has no obvious
connection to the and i tensors. In the next Chapter we will discuss teegal ideas
about thep and p' tensors, mostly obtained from the specializedditee in the field

of metamaterials and multiferroic materials. Thalgiical and numerical solutions to the

problem of light propagation in a magneto-electmedium with chirality and the
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connection between the “measurable” infrared spemtd thes , 1, o and p' tensors

is the central part of this Thesis.



CHAPTER 3

MULTIFERROICS AND METAMATERIALS

3.1 Introduction
In this chapter, multiferroic materials and metagnats are examined. These materials
are chosen for analysis because they are charmattewith a magnetic permeability,

1#1 and thep and p' tensors, which describe bi-anisotropic behavicay mot be

eqgual to zero.

The study of complex materials is motivated boghtheir interesting physics as
well as for possible device applications. For nfeitbics, a proper understanding of the
origin of both the electric and magnetic order desihe material is of fundamental
importance. In addition, for multiferroic crystalgth certain symmetries, it is possible
for the magneto-electric (ME) effect to occur whmreelectric polarization can be
induced with the application of a magnetic fielddanagnetization can be induced with
the application of an electric field [18]. Phenomersuch as the ME effect suggest that
multiferroic materials can have application for abwswitching devices where, for
example, magnetic memory could be addressed etécaitty [19]. Further, in the
dynamic state, multiferroic materials allow for tpessibility of electromagnons which
enable the transfer of a portion of the spectraghteof magnons to hybridization with
phonons at the same resonant frequeridgtamaterials, on the other hand, are artificial
materials which allow for independent control adattic and magnetic field components
[20]. When their design permits simultaneously tiegadielectric permittivity and

magnetic permeability, it is possible to achievgatee index of refraction (NIR). Under

" Correspondence with A. Cano, European Synchrdamtiation Facility, Grenoble, France
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conditions of NIR, light takes on a ‘left-handdaEhavior and the propagating wave is
refracted to the left of normal in the metamateridiis allows for possibility of novel

optical devices such as cloaking devices whichdbéght around an object.

3.2 Multiferroic Materials and the Magneto-Electric Effect

3.2.1 Definition

The strict definition of a multiferroic material ae that combines any two or more of
the primary ferroic orders in one phase: ferroelecterromagnetic and ferroelastic. The
more common definition, however, is to include oslynultaneously ferroelectric and

ferromagnetic orders. Ferroelectric ordering referthe spontaneous ordering of electric
dipole moments in a material; ferromagnetism reterghe spontaneous ordering of
orbital and spin magnetic moments [19]. Magnetatele coupling is a separate effect
which most often occurs in, but is not restrictednbultiferroic materials. The following

Venn diagram illustrates the relationships amoegeherms [21]:

— Magnetically polarizable

== Farromagnetic
Electrically polarizatle

= Faproalactric

2% Multiferroic

“ Magnetoelectric

Figure 3.1 Relationships among polarization, multiferroic andgnetoelectric effects.
(Source: Ref [21]).
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3.2.2 Background

The possibility for the magneto-electric effect viim®wn in the 1950’s and early 1960’s
through the pioneering work of Landau and Lifsliz2], Dzyaloshinskii [23] and Astrov
[24] . Landau and Lifshitz addressed the possjbitif linear coupling between the
electric and magnetic fields in a medium. Dzyaloskii proved that anti-ferromagnetic
Cr,0O3 had a magnetic symmetry that should theoretialw the ME effect and Astrov
actually showed the effect experimentally in,@y in the following year. Other early
efforts at studying multiferroics and the magndexic effect are covered by O’Dell
(see Ref. [25]). Classification as a multiferromaterial requires that two types of
ordering, ferroelectric and ferromagnetic, coexist the same phase. The term
multiferroic has been attributed to the work of BlaSchmid [26] whose work,
interestingly, was funded by the Swiss Post Offi2zé]. Building on this early work,
multiferroics and the magneto-electric effect aosvriopics of a high level of interest.
There are at least four main reasons for this gtioterest [19, 21]. First, in 2000, Hill
[28] wrote a paper claiming that the conditions foultiferroic materials are actually
quite rare. This challenge spawned a huge intanefgtding new multiferroics. Second,
advances in experimental techniques have incre#fsedavailability of multiferroic
materials for study. Modern methods for crystalvgtoallow for precise control over
crystalline perfection with the result that largeoegh samples for measurement can be
produced [27]. Third, discoveries in 2003 relatitoy bismuth ferrite, BiFeg) and
TbMnO; showed the differing origins of the multiferroidfext. Even at room
temperature Bismuth ferrite is both anti-ferromagnand ferroelectric and, therefore, is

clearly a multiferroic wherein these two order deexStudies of TbMn@again showed
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coincident ferromagnetic and ferroelectric effelotd this time with the ferroelectricity
being caused by the magnetism. Fourth, there @ssilplity for new devices including 4-
state logic systems, new electrical switching tebbgies, and optical recording and

memory devices.

3.2.3 Classification of Multiferroic Materials

The two major categories of multiferroic materiate proper (or Type I) and improper
(or Type Il) ones. The difference in nomenclatwgiates to the origin of the ferroelectric
effect in the material. Before going in to furthdetail regarding the classification, it is
worthwhile to explore the apparent contradictiorhaving coincident ferroelectric and
ferromagnetic orders. Most ferroelectrics are titaors metal oxides with the transition
metal having an emptyd shell. Covalent bonding is formed between the tnegjs-
charged oxygen ions and the anions and catiorderise periodic crystal. The ionic shift
from the centrosymmetric position accounts for piotarization effect. Magnetism, on
the other hand, requires a partially filleghell as a source for the net spin effect in order
to produce a magnetic moment. In general termsodgctricity and ferromagnetism
should therefore be mutually exclusive [29]. Howewas discussed previously, these
coincident orders have been found experimentaligesting that a deeper explanation is
needed for the source of coincident ordering inutifarroic. The two categories of Type

| (proper) and Type |l (improper) address this need

Type | multiferroics are generally good ferroelaxstr but the coupling between
magnetism and ferroelectricity is weak. An examplehis is the perovskite structure
bismuth ferrite, BiFe@ referred to previously. In this structure *Fhas 5 8 electrons

which account for the magnetism. Thé'Bbn has two electrons on the érbital which



36

form a lone pair that moves away from the centromagtnic position in its surrounding
oxygen. This accounts for the ferroelectricity. Taet that these orders arise from two
separate and distinct ions accounts for the reduiteeak coupling between the two
effects of ferroelectricity and magnetism. This Wweeoupling has been observed
experimentally with & showing only a slight anomaly at.,,, the ferromagnetic
transition temperature [30]. Ferroelectricity argsifrom charge ordering and geometric
tilting are also included in the Type | category.

Type Il multiferroics are also referred to as madgnanultiferroics because (i)
ferroelectricity exists only in a magnetically orelé state; and (ii) it is caused by either
spiral or collinear magnetic structures, with tipgra structure being the most common

[19]. In the 1970’s, R. Newnhawt al, proposed that a non-centrosymmetric magnetic

ordering could produce an electric polarizatibn The Figure below, from Ref. [27],
shows atoms symmetric about ‘X’ but the spins atewhich leads to a net polarization.

This effect has been observed in Remanganites Th(Dy)Mn@and Th(Dy)MnrOs. In

P

. ¥ LA B vl > T

Figure 3.2 Non-centrosymmetric magnetic order produces gpolarization.
(Source: Ref. [27]).

TbMnG; below T, =41 K, the magnetic structure is sinusoidal whiebuits in no net

magnetic moment and no ferroelectricity. Howevegloty T,,=28 K, the Mn spins

change to cycloidal order due to magnetic frusirain which competing interactions

between spins preclude simple magnetic order [@9polarization is produced in this
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phase as a result of spin-orbit coupling. The fddion is proportional t@Qx &, where

Q is the wave vector associated with the spiral @rid the spin rotation axis [19]. Upon
application of an external magnetic field in Tb(Dy)LOs , the polarization vector was
seen to rotate by 9(81]. The second group of Type Il multiferroicscisaracterized by
ferroelectricity being induced due to collinear metic ordering. Polarization appears in
these materials as a result of exchange strictewadise the magnetic coupling varies
with atomic positions. An example of this multil@ie is CaCoMnGs which consists of
one dimensional chains of alternating®Cand Mrf* ions. At high temperatures, the
distances between the ions are the same but ateloyweratures, there is asymmetry in
magnetic order which causes a distortion in thedsoAs a result, the material becomes

ferroelectric [19].

3.2.4 Magneto-Electric Effect and Symmetry

The inclusion of the magneto-electric effect inemdors o and p', force a decision

about how to construct the constitutive relatiomsthe complex material. There are two
choices of basis vectors to uié, F|)and (E, B). For the(E, F|) basis, Dzyaloshinskii

obtained the constitutive relations in the follogiform:

a — ~ap ap
DY =¢ Eﬁ+a Hﬁ
(3.1)
a _ ~fBa ap
B =a™E;+ ™" H,

Note that in Eq, (3.1) we use a new notatian,tensor, for the pure magneto-electric
effect. As we will explain in the following, theé tensor is an additive component of the

more generajp and p' tensors. As explained in O’Dell book [25], t(1§, I:|) basis has
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a number of advantages. For a non magneto-elentterial, the constitutive relations
can easily be substituted into Maxwell's Equati(see Eq. (2.50)). The two vectors both
share the same boundary condition that their tar@jeomponents must be continuous.
The Poynting vector is also made up of the crosdymt of these two vectors.

On the other hand, it has been pointed out thatlihsis creates some difficulty. In Eq.
(3.1), B and E are connected through the magneto-electric tekEmwever, Maxwell's
equations already connect these two vectors. &irsituation is forD and H. The
(E, B) basis solves this problem. The constitutive refegim this basis are:
a — ~af af
DY =¢”E, + B7B,

(3.2)
H? = B”E, + "B,

As explained by O’Dell, it is important to note thhese two sets of equations are not
simply different ways of writing the same thing.rFrexample, £ is the permittivity
tensor measured under conditions of consténin Eq. (3.1) while it is measured under
conditions of constanB in Eq. (3.2). Thej tensor has a meaning gi*. This
definition requires an elaborate procedure for vedag of the iz tensor components
based on the measured values of ghéensor.

There has been much debate as to which basis tim ukgcussing the magneto-electric

effect and both are in use in present day liteeatior the remainder of this Thesis, we

have chosen to use tI'(eE, F|) or Dzyaloshinskii basis. This basis is the oneduse

Berreman’s 4x4 matrix formalism which is a powetfubl to analyze wave propagation

in complex media. This formalism will be discussednore detail in the next Chapter.
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The tensorsp and p' will always refer to the(E, I:|) basis. Unless otherwise stated,

the a tensor will also refer to th(eE, H)basis.

Equations describing the magneto-electric effeat lwa derived from the expression for

the free energy of the system [21]:
1 1 1 1
-F(E, H):Ea:ogijEr E +§/Uo/(j HH +q EH +—2:€i EHH +_2iK HEE+...(3.3)
In Eqg. (3.3), a; is the linear magneto-electric coupling tensor, levh8, and y; are
tensors that describe higher order magneto-eleeffiects. To establistP(H;) and
M. (Ej ) , differentiation of F with respect tok; and H; is required:

B
R=a,H, +7”‘Hj H +...

(3.4)
_ yijk
FM, =a, B + B R+
Eerensteiret al. [21] point out that, for thermodynamic reasons, is bounded by the
geometric mean of the diagonalized permittivity @edmeability tensors:
ay < Eolhot 1 (3:5)
a; is an asymmetric second ranked tensor that is @itumof temperatur@. It changes

sign under space inversion or time reversal, aacktbre is invariant under simultaneous

space and time inversion. Note that the wva@erms in Eq. (3.1) are the transpose of each

other. This relationship is true for the staticec(aw:O) but may not necessarily hold at

each frequencyw for the dynamic case [32], where more complicdtadsfers of the

spectral weightings of magnons and phonons areviesio O’Dell has shown that ME
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effect (o # 0) can exist only in material systems that do nateha center of inversion
and no time-inversion symmetry. That means, MEtatysallow a simultaneous presence
of magnetization (that destroys time-reversal) atettric polarization (that obviously
destroys the center of inversion). The role of swtmnis critical in determining which
crystals can display the magneto-electric effectys@l symmetry, for example,

determines the form of each of tee i/, , 5, and y tensors in Eq. (3.3). Neumann’s

principle states that the symmetry elements of gimysical property of a crystal must
include the symmetry elements of the point grouphefcrystal. This principle makes a
clear connection between the physical properties afystal and the material tensor
which describes those properties. The point gro@ipaocrystal is the group of
macroscopic symmetry elements that its structussgsses. A detailed treatment of this
subject is found in Ref. [33]. There are 58 magnptint groups which allow the linear
ME effect (o #0) [18]. O’'Dell presented a simplified and elegaraywto analyze the
possible forms of the magneto-electric tensor, given knowledge of the form of the
electric and magnetic susceptibility tensors. Treatment has been further developed by
H. Schmid and J. Rivera in Refs. [34] and [18]. #ar purpose of illustration, two of the
examples worked through by O’Dell will be presentezte. The first deals with the

symmetry of the magnetic point groupm2 which incorporates the three symmetry
transformations2, , Ey and 2,. mm2 will be recognized as the crystal class associated
with orthorhombic symmetry [33]. The next Figurkustrates O’Dell's explanation for

the form of the electric and magnetic susceptibii@nsors that are consistent with the

three symmetry transformations:
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Figure 3.3. Magnetic and electric susceptibility tensors asded with orthorhombic
symmetry transformations.  (Source:[25]).

In Figure 3.3, the notation is that followed by Nykhe symbole indicates a tensor
element that is allowed by symmetry, while the sgmbindicates a tensor element that
is forbidden. Eachr is taken to be independent unless otherwise irgtichy a joining
line « —¢ . « —o indicates elements of equal magnitude but of appegyn. In Figure 3.3,
the first three tensors are associated with eatiheathree symmetry transformations. The
fourth tensor is the only tensor which is consisteith all three. It is well known that all
orthorhombic crystals have a tensor of this formaing symmetry tables, O’Dell further
explains that the magneto-electric tensors whiehcainsistent with the three symmetry

transformations are:

[J] e e [] e o o [ e
e Odle O«|ls » O] O
e O O\Oe OO O e O O

Figure 3.4 Magneto-electric susceptibility tensors associateth orthorhombic
symmetry transformations. (Source:[25]).

In Figure 3.4, the fourth tensor on the right ie tinly tensor that is consistent will all
three symmetry transformations. Accordingly, thegmeto-electric tensor associated
with crystals of orthorhombic symmetry will not loethorhombic itself but rather will

consists of two independent off-diagonal elements.
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The second example concerns crystals having heahggmmetry which contain all of
the symmetry transformatior®, or 2, together with3, and 3,. Following an analysis

similar to the above, the compatible magneto-aleténsors must be of the form:

([ e o o RN

00 e o o [ =00

o o O O e 00
and

Figure 3.5 Forms of the magneto-electric tensor associatett wexagonal crystal
symmetry. (Source: [25]).

In Figure 3.5, in the second tensor on the ridid,ttvo upper diagonal elements are equal
in magnitude while the two upper off diagonal elatseare equal in magnitude but
opposite in sign. As can be seen in Figure 3.5rethe no tensor which can
simultaneously meet both of these tensor symmetfiesordingly, thelinear magneto-
electric effect in hexagonal crystals is strictyrfidden by symmetry reasons. This
includes the entire class of hexagonal rare earémganites of the fornrREMnO;
(RE=Ho-Lu, Y). In these materials, ferroelectricitypgars below the lattice transition,
which enlarges the unit cell and is induced hyoa-linear coupling to nonpolar lattice
distortions [29]. As further evidence of the nomelar effect for this class of materials,
Fiebiget al reported on the spatial maps of coupled antifeagnetic and ferroelectric
domains in YMn@, obtained by imaging with optical second harmayeoeration. The
coupling originates from an interaction between nedig and electric domain walls,
which leads to a configuration that is dominatedthmy ferroelectromagnetic product of

the order parameters [35]. This has been refeoed ta landmark study in multiferroics
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[21]. Finally, as derived by O'Dell, there are threubic point groups432, 43mand

m3m, whose magneto-electric tensors are symmetrydddi.

3.2.5 Further Work in Multiferroics

The current knowledge of multiferroics and the neigrelectric effect suggests a
number of possible avenues for further work. Theneation between cycloidal ordering
and an induced polarization points to further workhe study of domain walls, magnetic
vortices and spin waves (magnons) [19]. Eerensteial. emphasize the continued
importance of developing a clear understanding agmetic point group symmetries as
these are vital to the analysis and prediction afjneto-electric effects [21]. In addition,
they suggest the investigation of strain as progdia coupling mechanism for
ferroelectric and ferromagnetic effects in a mattibic. The study of dynamical
properties and elementary excitations will alsarbportant. This includes the possibility
of exciting magnons with an applied electric figldich has given rise to the study of the
possibility of electromagnons. Finally, the wholeea of artificial multiferroics is a
possibility by combining materials in multilayers im self organized nano structures.

This is also suggestive of metamaterials which belldescribed next.

3.3. Metamaterials

3.3.1 Introduction
In Greek, the term “meta” means “beyond” and, is #ense, metamaterials are artificial
materials, which are intended to go beyond the lusekectromagnetic properties of

materials at the atomic scale. A metamaterial igrdficial crystal in which man-made
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structures replace the microscopic atoms of namatkrials [6]. A metamaterial has a
lattice constanta much smaller thand, the wavelength of incident radiation. As
fabrication processes have improved, it is posdiinea metamaterial to become almost
indistinguishable from a continuous material. Onk tbe unigque properties of
metamaterials is the simultaneous electric and wtagnresponse to incident
electromagnetic radiation in the near optical regiBor natural materials, magnetic
coupling in this frequency region is very weak withe result that for all practical
purposesu =1. In contrast, metamaterials can have magnetimesgs®s at the optical
frequenciesu(w) #1 , thus creating a possibility for simultaneouslygatgve £ and v .
This condition is required for NIR, which is thesmfor a large number of interesting
electromagnetic effects including left handed bérawransformational optics, and a

variety of non-linear responses [20].

3.3.2 Theoretical Development
The modern era of metamaterials and the study Bfidlusually attributed to the work of
Veselago in 1968 [36] who explored the propertiésnaterials with simultaneously

negatives and 4 . It is useful to examine the nature of

J7.
v I
Re(n)=0,Im{n) =0 =0
il -
1] o
n<0 Re(n)=0,Im(n)= 0

Figure 3.6.Quadrants for analysis efand L.
(Source: Ref. [37]).
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electromagnetic wave propagation in each of thedums in Figure 3.6 [37]. An

oscillating electromagnetic wave incident normailly a medium is described with the

exponential € = ei(n%)jzwhere n:@ with forward propagation in the positiveé
direction. In quadrant 1€ >0 and g >0, with the result than is a real number. The
wave will propagate in the material in an oscitigtifashion. In quadrant Il,£ <Oand
1 >0, with the result than will be a purely imaginary number causing the exqraial
to become negative. This describes a decaying anescent wave, which will not
propagate in the material. In quadrant Bl Oand i <0, with the result thah will be

real and negative. The wave will still propagateaim oscillatory fashion but with a
negative wave vector. This suggests that the plelseity will be opposite to that of the

wave in quadrant |. Finally, in quadrant I\(,>0 and x <0 resulting in the same

outcome as for quadrant Il. The wave in quadranwIV decay exponentially and will
not propagate in the material. This brief overvigeints to the fact that in order for NIR

to occur, bothe and ¢ must be simultaneously negative. In addition, th@nges to the

wave vector result in interesting propagation proge under the NIR condition.

Veselago used energy arguments to explain thatltsineously negativee and p can

only be realized if there is frequency dispersi86]] In the absence of dispersion with

simultaneously negative and i, energy would be negative as given by:
W =¢cB +puH? (3.6)

With dispersion, the energy relation becomes:

H2 (3.7)
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When £ and 4 are simultaneously negative, for Eqg. (3.7) to bsifve, the partial
derivatives need to be positive. This necessaslyuires thate and ¢ depend on

frequency.

3.3.3 Materials Development

It was not until 1999 that Sir John Pendry deviaediethod by which these conditions
could be created artificially using a split ringsoeator (SRR) structure [38]. The
following year, D. R. Smith and colleagues sucadbsiised this structure to create a
composite material in the lab which displayed thedcted negative response functions

[39]. Figure 2.5 below illustrates the SRR struetused by D. R. Smith.

Figure 3.7. SRR structure used to create first NIR conditions
(Source, Ref. [39])

In Figure 3.7, two rings of copper, each havingap,gvere placed one inside the other.
The dimensions were ¢=.8 mm, d=.2 mm and r=1.5nmeidént radiation with a time

varying magnetic field parallel to the axis of tlregs was applied. The induced current
created an additional magnetic field parallel te ihcident field. The gap in the wires
acted as a capacitor thereby setting up an LCitiwduich resonated at approximately

4.85 GHz. The concentric placement of the wiresvadld for additional capacitance and
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ultimately an enhancement of the effect. In the eexpent, D. R. Smithet al
demonstrated simultaneously negative dielectrienigvity and magnetic permeability.
This discovery spawned a great deal of interestvam#t in creating metamaterials which
could demonstrate NIR at higher and higher fregigsndnitially, most of the effort
revolved around reducing the size of the SRR sirast However, due to a kinetic
inductance effect, the SRR resonance frequencyrasatu at small sizes and new
metamaterial structures were required to reachehniffequencies. Various architectures
for metamaterials were developed including pairadoarods, nano-strips and a fishnet
structure which included nano-strips layered oneaitic substrate. The result of this
work was that in a short four year period betwdenkieginning of 2004 and the end of
2007, the demonstrated frequencies for NIR wenmfrbO GHz to 500 THz [40],
practically to the visible range. This exponengabwth has since leveled off due to a
metal’s finite plasma frequency, which ultimatelygoses a limit on the resonance
frequency [20].

With metamaterials, the interesting situation wbgran applied magnetic field may give

rise to polarizationP , and an applied electric field may give rise tnagnetizationM ,
presents some similarities to the magneto-eleceftect in multiferroics. For

metamaterials, this configuration can be descris#ag Maxwell's equations:
D=cE+iéH
(3.8)
B=-ifE+uH
In Eqg. (3.8),¢ is the chirality parameter, which is another addittomponent for the

and p' tensors. It can be shown that the eigenvectattisak for this electromagnetic

wave are left and right circularly polarized lightl]. It has been demonstrated that
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metamaterials built with helical inclusions showosty circular dichroism. This result is

in addition to the numerous other optical effebtt metamaterials are responsible for.

3.3.4 Optical Effects

Two interesting optical effects for metamateriald mow be discussed. Without a doubt,
the most interesting observable for a NIR matasahe left handed behavior of wave
propagation. Instead of radiation being refractethe right of normal in a material, the
wave is refracted left of normal. The wave vectehjch becomes negative under NIR
conditions, now points upwards. Accordingly, theagd velocity is also in the upward

direction. The direction of energy flow, on the @tthand, as given by the Poynting
vector S, remains directed downwards and into the mateFiagrefore, under NIR, the
phase velocity and group velocity are oppositetgated. In the NIR mediunk , E and

H form a left handed coordinate system.

Another property of materials with/ #1is the concept of impedance matching. Here,

impedance is defined aZ:\/Z. Pursuant to the laws of reflection of a magnetic
£

material, when the impedance of the incident medmatches that of the material all
reflection will vanish. In this sense, the matertdelf will become invisible. For
example, if the incident medium is vacuum, thendbedition for impedance matching is

that £ = i inside the material. Given that botls and i are complex functions, it is

quite difficult to engineer a material where bokte treal and imaginary parts of each
response function will exactly match. However, Granko did see this result
experimentally in 2005 [42]. Grigorenko showed tloaita thin film on a substrate, under

the impedance matching condition, only reflectioont the substrate boundary could be
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observed. More recently, the study of transfornmatiptics has developed which uses a

mathematical approach similar to that of generalikéty wherein the response functions

become functions ofr . Using this approach, the conditieff) = u() guarantees that

the wave impedance is equal to the vacuum impedaheeh results in the vanishing

reflection phenomenon [20].

3.4 Summary Comments and Research Direction

Before we proceed to the next Chapter, we shoulonale Eq. (2.52), Eq. (3.4)(a) and

)5 2ls)

the p and p' tensors describe a general effect of the mutuaduhyc coupling between

Eq. (3.8). In Eq. (2.50):

electricity and magnetism. We will limit our furtheonsideration to the case of ME and
chirality contributions too and p' so that these two effects are additive as follows

~ :d+ - b

p=a ’_EFAT (3.9)
p'=a-jl&

One can see that the ME effect is described bgahgplex tensorr , as it was presented

in Eq. (3.1). According to Dzyaloshinskii, the @sponding ME contribution tg'
should be a “transpose” complex tensar:=a". This requirement follows from the
Dzyaloshinsky’s definition ofr in the static case:

_ 0°F
a; =
' OEQH,

(3.10)
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At present, however, this requirement®f= 4" is under depate in literature for optical
frequencies. So, in the following theoretical asaywe won’t implement this restriction
keeping a general notation f@ and p' tensors. In any case, both and @' have the
same sign of their complex parts. The physicalrpretation for this requirement is that
the oscillators ingd and &' should absorb light in the transmission experimeBbth
tensors,f and @, can have both, real and imaginary parts,ss@and p' are NOT

expected to be the complex-conjugate-transposesid other [43].

In contrast toa, the chirality contributioni D,e has its transpose and complex
conjugate counterpart that contributesgo: —i B,eT. For isotropic materials, Georgieva

[41] showed that the chirality parameté&r which originated fromdH /ot and 0E/at
terms in the Maxwell equations, is an odd funcobrw: {~w. In the case of a crystal,

it hard to imagine that the chirality effect workiave a resonant behavior. Here we

propose to use the following model to describedibpersion behavior of chirality

é(w)=af B _:;h_iwy (3.10)

that givesé(0) - 0, &(«) - 0 and can have both a strong enhancement and even a
change of a sign in the vicinity of the resonantemw - w,, .

In the general case of magneto-electric medium \ftinality, the formal description
based on Eq. (2.52) can include an endless nuniilperssible combinations between the

&(w), f(w), p(w) and p'(w) tensors. For simplicity, we will always assumet ttee
same oscillator that appears in several tensdieagame resonant frequenay should

have the same value of the decay paramgtelhis means that the anisotropy of the
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dispersive tensor function&(w), i(w), p(w) and p'(w) can be described by the non-

dispersive tensors of the corresponding oscillatmngths for all excitations. An exact
symmetry of the materials system can, of cours#hdu reduce the number of non-zero

oscillator strengths that describéw), fI(w), p(w) and p'(w) tensors, so some of those

tensors could become equalitoor zero. However, in a real experimental situgtitwe
symmetry is not always known in advance and thé giothe future optical experiments
is exactly opposite: we aim to determine the symynef the material based on the
polarization analysis of the transmitted and reéflddight. Thus, the primary focus of this
Theses is on analysis of the polarization of thicapspectra for materials witfy(w) # 1

, P(w)#0 and p'(w)#0 .

In the following Chapters we will study the follavg possible situations with certain
elementary excitations contributing to the différeamsors.

One of them is an “electromagnon” excitation thataading to our understanding is an

oscillator that appears simultaneously in tliéw) tensor as a magnon and also
contributes toD through its appearance in(w) tensor (the “electro-* part). It is also

possible to imagine its counterpart: an electrjgotii that contributes t@ through its
appearance in th@'(w) tensor. In the following analysis, we will studyetdifference
between these two types of electromagnons.

Another situation can be realized in a material hwia weak ME effect,

((3' =0, 32 0), but with strongly overlapping electric- and maiméipoles iné(w) and

[(w) tensors that form “hybrid modes”. The angularaedgfence of the MM spectra in

metamaterials that is considered in Chapter 8 la¢éongs to this case of a simultaneous
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appearance of the elementary excitations (or rem@s in bothé (w) and j1(w) tensors.

We observed this case in RE-IG crystals and wikspnt their theoretical and

experimental studies in Chapter 9. It is also pmssio imagine a combination of a
magnon[[/(w)il] and a chiral excitatiorE?(a)) ;tO} at the same frequency. We will

call these excitations “chiromagnons”. The corresjilag spectra are analyzed in Chapter
10.
The last case to be consider in this Thesis is existence of the chiral and ME

excitations at the same frequency as a magnoreig ) tensor and chiral excitation in

& tensor.

It is obvious that traditional Transmission or Reflvity measurements won’'t be able
reveal all details for £(w), i(w), p(w) and p'(w) tensors. Even the most advanced
approach, the Muller Matrix ellipsometry, that me&as 16 independent functions of the
4x4 matrix, may not be always helpful due to the eglesh contributions of
£(w), A(w), p(w) and p'(w) tensorsto the observableoptical spectra. In this Thesis,
we will calculate the MM spectra and Poynting vestat the resonance frequencies and
combine these studies with analysis of their angdipendencies. The properties of

semi-infinite crystals will be compared to the thims grown on isotropic substrates.



CHAPTER 4

4x4 MATRIX FORMALISM

4.1 Introduction

The main challenge to the analysis of material& wan-zeros , u, p andp'
tensors is the vast number of possible tensor syrnasdn the bulk crystals and thin
films. The task of obtaining analytical solutiorw fall possible configurations appears
daunting. In this thesis,sample mediuns defined to have isotropic and i tensors but
no magneto-electric activity. Aomplex mediunwill refer to all other possible tensor
symmetries and allowed tensor combinations [34fturately, 4x4 matrix formalism,
as developed by Berreman[16], provides for an ateuand systematic method of
obtaining numerical, and in some cases, analytiatisas for electromagnetic wave
propagation in both simple and complex media. A plete description of
electromagnetic wave propagation in a complex mmdis made possible using
Berreman’s matrix equation in Eg. (2.52). In thisaPter, we analyze a simple medium
in order to illustrate this formalism. In other wisr we chose a medium with isotropic
and U tensors that is also non bi-anisotrop= 0'=0) . 4x4matrix formalism is used
to calculate the complex reflection coefficientsl @oynting Vectors in a semi-infinite
configuration. We also use the resultsdof4matrix formalism to explain the interesting
property of impedance matching at the surface ofagnetic material. The two main

references for this Chapter are Ref. [16] and R&f.

53
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4.2 The Procedure

The Berreman equation describing electromagneti@wwaopagation in a crystal is:
— =i=Ay, (4.1)

where ¢ is a an array of the transverse components ofethetromagnetic wave
[E.H,,E,,—H,]" in the medium. Fig. 3.1 illustrates the refractimfnlight incident in

the x— z plane propagating forward in an anisotropic digiegnagnetic material.

N

n]

Isotropic Incident medium

(non-magnetic)

5 X

Dielectric-Magnetic medium

W, (e.1)

Figure 4.1 Wave vector diagram of refracted waves propagaitirag anisotropic
dielectric-magnetic medium.

For a crystal with isotropic symmetry having pripetli axes parallel to the,y and z

coordinate axes) in Eq. (4.1) is ax 4matrix [16]:
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2 o 2
0 u- N, sin(@,) 0 0
£
Ao £ 0 0 0 4.2)
10 0 0 U '
2 ar 2
0 0 _Ny“sin(@,) 0
U

Inserting Eg. (4.2) into Eq. (4.1) returns four @xasolutions of the form

Y, (z) =y, (O) e'q'Z with |1 =1,2,3or4, two for each of thepand s polarization states.
g, is the angle of incidence Whilp(s) refers to radiation parallel (perpendicular) te th

plane of incidenceq,,and g,.are the eigenvalues associated withnd s polarizations,

respectively and constitute ttecomponents of the wave vectors in the medium. These

are:

qu = ii)\/g\//j— NO2 Sin2 (00)
C

£
(4.3)

MY )
C

u

The positive eigenvalues are associated with tloeftwward propagating waves. Fig. 4.1
shows g,,and q,; for an anisotropic medium. In the case of an ggtr medium, it is
clear from Eq. (4.3) that thea components of both polarized waves are identidaé X

components of the wave vector are also constanalfoof the incident and refracted

waves. The complete wave vectors for each of prend S polarization states can be

written as:
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&

K, {(‘_"j N, sin(6,) ,o%’ﬁ\/ﬂ_MJ

(4.4)

K, =£(C—§) N, sin(6,) ,0,6_(‘:)\/;\/5 _Noz%z(eo)]

The two k vectors in Eq. (4.4) identify the direction of pegation of the waves
associated with each polarization. It is clear thay are identical, which is an important
characteristic of an isotropic medium. We noteHertthat characteristic is true for any
value of the angle of incidence (AOI). This mealat tthe refracted waves in Fig. 4.1
would be superimposed. On the other hand, as willsloown in detail later, for an
anisotropic medium, the twk vectors will not be identical and will thereforeverge as
they propagate forward (downward) into the medidinhis phenomenon is known as
birefringence and is evidenced by two separate daiwpropagating electromagnetic
waves. It is through Eqg. (4.3) (eigenvalues of Begreman equation) that information
about the optical properties of the medium [17kexninto the calculation of the complex
reflection coefficients and, in turn, the Muelleatvx (MM) elements. (Mueller Matrices

will be discussed in detail in the next Chapterg Wbte that thee and i tensors are

important components of the constitutive relatidissussed in Chapter 1.

4.3 Eigenvector Solutions and the Reflectance Matrix

Each eigenvalue solution has an associated eigemva@ie eigenvectors are calculated

by solving:

(Ca-ar|w(0)=0 (4.5)
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In Eg. (4.5), qrepresents the four eigenvalues ands the 4x4identity matrix. The

eigenvector solutions for this isotropic symmetrydolumns) are:

1 0 1 0
Je 0 Je 0
\/ _NZsin(6,)° \/ _N¢ sin(6,)
£ £
0 1 0 1 (4.6)
_ Njsin(6,) o Ng sin(6,)
U U
0 0 -
Ju Ju

In Eq.(4.6), the eigenvectors in columns 1 and #ewsent forward propagating waves
while those in columns three and four represenkwand propagating waves. For an
isotropic medium there is really no neeed to uparsée nomenclature for polarizations.

The eigenvectors in columns one and three are iassoavith theq,, eigenvalue and
represent p polarized radiation. A complete description of thiave involves
multiplication by e»*. Similarly, the eigenvectors in columns two andirfaare
associated with theg, eigenvalue and represergpolarized radiation. A complete

description of this wave also involves multiplicati by e"%*. For a semi-infinite
material, the two eigenvectors representing thevdod propagating waves are used to
calculate the complex reflection coefficients for and S polarized radiation. The
procedure for calculating the complex reflectiorefficients involves matching the
tangential components of the incident and reflecédand H fields to a linear
combination of the two eigenvectors calculatechatdommon interface located at 0

[16],[17]. For a semi-infinite medium, only the tvimrward propagating waves are used
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in these calculations. Using the two eigenvectdutems for the forward propagating

waves taken from Eq.(4.6), tw® matrices are derived:

-1

4011 wlz
S =coY6)| Y Yu
NO NO
4.7)
S=N N
¢I31 ¢I32

The Reflectance matrix, or Jones matrix is theoutated as:

-1
R=(5+3) (s 3 (4.8)
The complex reflection coefficients for the isofmgase are (note there are no off-

diagonal elements):

_ EkzO - N02 qu
" ek, + N,
z0 0 qu
(4.9)
— /’Ikzo - qzs

s ="

/'IkZO + qZS
In Eq. (4.9),k,, =%)N0cos(90)and N, are thez component of the wave vector and index

of refraction in the incident mediunr , and r,, are complex numbers for each

frequency of light. Multiplication by their complezonjugate is required to produce

measureable reflection intensities.
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4.4 The Poynting Vector
The eigenvectors in Eq. (4.6) can also be usedltulkate the Poynting vector for each of

the p and S polarized radiation states. This procedure firqunees recapture of th&

components of theéE and H fields which were originally suppressed in the rBaran
equations in order to reduce fromex6 to a 4x4formalism. By solving the two
algebraic equations associated with the initiar&®gan matrices, for isotropic symmetry

the solutions for thez components are:

e =_HyNosin(60)
‘ £
(4.10)
o= E,N,sin(6,)
’ u

Eqg. (4.10) can be applied to each of theand S polarization states. Since the terms in

5 . 2
Eq. (4.6) recur frequently in this analysis, we imtefcz‘/s—% and

NZ si . . ..
n:\/y—M. First considerp polarization. Here,H, becomes zero and the
&

vector fields are:

EzEx{l,O,

_\/ENO Sin(eo) e?
&n

(4.11)

H = E>< [0,£ ,O] eiqsz
i

The fields in Eq. (4.11) now permit the calculatmfithe Poynting vectorSz%( Ex H*)

applicable top polarization:
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= 1 2 \/E
Sp-§|Ex| [7

* Nysin(8,) o(ﬁ]} (4.12)
£ n

where the asterisks, *, represents the complexugaig operation. From Eq. (4.12), the

tangent of the Poynting vector angle in the med&im

tan(,) =YENoS(%) (4.13)
p 5/7
From Eq. (4.4), the tangent of thk@ector angle in the medium is:
N, sin(6,)
tan(g.) =—2— 2/ 4.14
( k)p \/2,7 ( )

The expressions in Eqg. (4.13) and Eq. (4.14) aeatidal. This analysis points out the
well known observation that for a crystal with regic symmetry, the direction of the
wave vector is identical to that of the energy flasvgiven by the Poynting vector. For

polarization,E, is zero and the fields become:

E=E (0,10¢&

(4.15)
fi- Ey(_i,o,NoLn(ﬁo)J o
Ju H
and the Poynting vector farpolarization is found to be:
- 1 _p |Nosin(¢90)|* | ¢ |
S=ZE, ,0, (4.16)
25| [| b A
From Eq. (4.16), the tangent of the Poynting veatagle fors polarization is:
tan(gé)s = M (4.17)

1S

and from Eq. (4.4), the tangent of theector angle foispolarization is calculated to be:
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tan(6,) = ————* (4.18)

Again, the expressions in Eq. (4.17) and Eq. (4at8)identical. Accordingly, for the

polarized state, the direction of wave propagaiiorihe crystal and the direction of
energy flow are coincident. Furthermore, singgc=+/en7, all four wave vectors and

Poynting Vectors will be coincident.

4.5 Impedance Matching
Complex reflection coefficients stated in this falilem have been used in the study of
media with indefinite permittivity and permeabilitgnsors [44]. These results, obtained

from 4x 4 matrix formalism, also allow for the immediate ays¢ of the intriguing

property of impedance matching. From Eq. (4.9n@mal incidencey,, is zero when

N, =+/&/ 1 . A similar result can be obtained for the polarization. These relationships

are known as the impedance matching condition.rdvides the condition for zero

reflection at normal incidence even though the desli of refraction of the incident
medium(No) and the index of refraction of the materi@) are completely different.
With incidence from vacuum, this condition is said if £ = . Aside from a trivial
case for vacuum, when both and x are unity, this is only possible if the materisl i
magnetic and provides confirmation that the matéaa magnetic permeabilityz1. In

practice, it is difficult to achieve impedance nitgy because both the real and
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imaginary parts of the dielectric and magnetic eemsnust be identical. Evidence of
impedance matching in metamaterials was found lgoBmnkoet al in 2005 [42].
Application of the Berreman’s method to bi-anisptoomedium will be considered in

Chapter 10.



CHAPTER 5

MATRIX METHODS IN OPTICS

5.1 Introduction
This Chapter will introduce matrix methods in optigVe will focus on the Stokes vector,
Jones matrices, Mueller matrices, and the Poinsphere. The majority of theoretical
and analytical background for this Chapter is tat@m the following references [46-

48]

5.2 The Stokes Polarization Parameters
The study of the Stokes polarization parameterbegith the introduction of a pair of

plane waves that are orthogonal to each othepaira in space.
E (1) = B, () cos@t —kz+3,) (5.1)
E,(t) = E, (Y coset —kz+9,) (5.2)
Taking z=0, defining d=9,-9,, and eliminatingat in the equations, gives the
eqguation for the familiar polarization ellipse:

Ex(D) , E;(1) _2E(DE,(Y

2 2 cE cos) = sin®*(d) (5.3)
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We are interested in representing Eq. (5.3) in seohobservablesfor a field of a
monochromatic radiation. This requires that theetohependent terms in Eq. (5.3) be time

averaged to produce:

(EX0) , (E)(D) 2(E(OE()
E02x Egy EOX EOy
where (5.4)

(EE®)=lm2[E()E()d

cosQ) =sin* ()

After integration over the time domain and with sosimple algebraic manipulation, Eq.

(5.4) yields:

2

(B2 +E;) - (B~ B) ~(2E.B,c0s0)) =( 28, &, sing))  (5.5)
Eq. (5.5) is an important equation and is writtertarms of intensities, which are real
observables. All of the equations inside the breclae therefore real and can be
measured in optical experiments. In fact, the gguos inside the brackets are taken to be
the Stokes polarization parameters and are uskxrtothe elements of the Stokes vector
representation of light as follows:
S [Eox*Eoy
s |_|E-g

>7|'s, 7| 28, 5, cosp)

S) | 2E,,E,, sin(d)

(5.6)

S is identified with the total intensity of ligh§ is identified with the amount of that
light that is horizontally or vertically polarized, is identified with the amount of light

that is polarized linearly at angles 845°. S, is identified with the amount of light that

is left or right circularly polarized. In discusgirircular polarization, we will be using

64
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the convention that light is right circularly pdlsed if it is moving clockwise when
looking into the direction of the source of the oming light.

With the definitions in Eq. (5.6), Eq. (5.5) canre&ritten more simply as:

S=5+ 9+ $ (5.7)

Eq. (5.7) is the identity for completely polarizéight. Since unpolarized light has
intensity but no net polarization attributée.(S = S = $=0), Eq. (5.7) can be stated

more generally as the Stokes inequality for antestpolarized and unpolarized light:
28+ 9+ ¢ (5.8)
Eq. (5.8) shows that the intensity of incident tighat least equal to the intensity of the
embedded polarized light and may include unpoldriggt as well.
According to Eq. (5.6), a complete description b€ tpolarization of light can be
understood in terms of the relative amplitudes gdse difference between the
orthogonal elements of light that were first inwodd in Eqg. (5.1) and Eq. (5.2). The
following table gives a useful guide to the dedaoip of the more common polarization

states of light.
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Table 5.1Stokes vectors of various polarization statesgbitl

Polarization Amplitude Phase Total Intensity | Stokes Vector
State Relationship Relationship

Linear E, =0 n/a I, =E2
Horizontally
Polarized Light S=1
(LHP)

o
Rl'o o r R,

Linear E, =0 n/a l, = Egy
Vertically

Polarized Light S=1
(LVP)

|
=

Linear +45° E,=E,=F | 0=0 |, =2E2
Polarized Light
(L +45) S= 1,

Linear —45° Eon =By =B | =180 |, = 2EZ
Polarized Light
(L -45) S= 1,

o rlOoOkFr OFrl o o

|
=

Right Ey =By =E | 0=90° |, = 2E2
Circularly
Polarized Light S=1,
(RCP)

Left Circularly | E,, =E,,=E, | 6=-90° |, =2E¢2
Polarized Light
(LCP) S=1,

O oLk O o Pr|lo

|
=

It was stated earlier that in order to produce $tekes polarization parameters, it was
necessary to go through the time averaging integrgtrocess. However, the same
results can be achieved if we were to focus onapatal amplitudes only. Eq. (5.1) and

Eq. (5.2) can be rewritten as:
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E (t)= E, d“%) = E &
E,(t) = E,d“% = g &

(5.9)
where

Ex = oné5x
B, = Eye”
The Stokes polarization parameters can now beraatdrom:
$=EE+EE
S=EE-EF
S=EE+EE
S =i(EE-EE)

Inserting the identities from Eq. (5.9) into Eq.1®) will be shown to give the familiar

(5.10)

Stokes polarization parameters.

5.3 The Poincare” Sphere
The Poincare” Sphere is a useful visualizatiorhef $tokes polarization parameters. In

discussions of the traditional polarization ellipgee angle of rotationy and the

ellipticity angle y of the ellipse are introduced through the follogvequations:

2E,, By, cosd
tan2y = ————
Y e g
(5.11)
sin 2y = 2k, E,, sind

E2 + E,
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The numerator and denominator terms in Eq. (5.1&)immediately recognizable as

terms in the Stokes vector from Eq. (5.6). In faélog Stokes vector can be rewritten in

terms of §,,¢, x as follows:

1

s=§ COS 2y cos &Y (5.12)
coS2,y'si N2y '

sin 2y

Eq. (5.12) looks very similar to the construct cfpdnere in Cartesian coordinates where:

X=rsindcosy
y =rsindsing (5.13)
z=rcosé

In fact, Eg. (5.12) can be described in spherieains by assigningd=90"-2y and

@=2y . The Poincare” sphere can now be representecelfgltowing diagram:
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Figure 5.1 The Poincare” Sphere
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In interpreting positions on the Poincare” sphiérean be seen that the vector alo8g
will represent light that is horizontally polarize8imilarly, the vector alondS, will

represent light that is polarized at-45°angle, and a vector alorg, will represent light
that is completely right circularly polarized. Othgoints on the surface of the sphere
would represent combinations of various polarizatgiates. Opposite points on the

sphere represent orthogonal states.

5.4 Mueller Matrices
Mueller matrices are useful to describe the int&wacof polarized light with elements
that can change the state of the incident polasizaSpecifically, if S describes the state
of an emergent beam of light, it can be expresseallammear combination of the previous

basis§,, §, S and S, of the incident beam. In terms of matrix algebhds hew vector

can be written as:

m, m, m, M,
m, m, Mm; M,
m, m, m; m,
m41 nllZ n]lS nlA

(5.14)

NN n 0

5.4.1 The Mueller Matrix of a Polarizer

Consider components of an incident be&jand E,. Once the beam emerges from a
polarizer, its new components ag and E'y which are both parallel to the original axes.

With 0< p,, p, <1, the fields can be represented as:
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E =RE
(5.15)
E,=p,E
Using Eq. (5.10) to describe both S &dlit can be shown that:
S pivp, p-f O 0 (S
' 2 _ 12 2+ 2 0 O
L PR KR 2 (5.16)
S| 2 O 0 2p.p, 0 | S
S 0 0 0 20.p, )\ S

For the case of an ideal horizontal polarizer, aeehp, =1and p, =0. Accordingly, the

Mueller matrix becomes:

1100
1100

M=1 (5.17)
2/l0 0 0 0
0000

Similarly, for the case of an ideal vertical pater, we havep, =0and p,6 =1 to

produce the Mueller matrix for an ideal verticalg@er:

(5.18)

<

I

I
o o o o
© o oo
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5.4.2 The Mueller Matrix of a Retarder

Retarders introduce a phase shift between thegotial elements of the incident field.
Consider E,(z t)= €2 E( z and E,(z )= €”? E( 7 }so that a phase shift apis

introduced between the orthogonal components. Agsiimg Eqg. (5.10), it can be shown

that:
$=%
2= 3 (5.19)
S, = S, cosp+ S,sing
S, =-Ssing+ Swsy
Accordingly, the matrix representation for a ret@rdan be written as:
S$) (10 o 0\S
' 01 0 0
Sl, = . 2 (5.20)
S 0 0 cosgp sip| S
S, 0 0 -sing cow)| S,

The Mueller matrix for a quarter wave retardg@=90) from Eq. (5.20) is easily seen to

be:

(5.21)

o o o
o o r o
o o
O L OO



5.4.3 The Mueller Matrix of a Rotator

From mechanics,

we understand

that
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for a rotatedordamate system

E, =E,cosf+E,singd and E, =-E,sind+ E,cosd. Once again, using Eq.(5.10), the

Mueller matrix for a rotator can be derived as:

1 0

0O cosd

M (26) =

O -sin® cos?@
0 0

0 0

in®
sin (5.22)

0 1

The following are Mueller matrices for some ideatrenon optical elements:

/10 0 O
] ) ) 1o ]
’ |r’_' : :’ :’ 0o Caigrtar wene pleba | fest-anis vartical)
1 | ) | ) ) —1
i noooao0 Linear polarizar (Hor Tantal Trarsmiggion | o o
oo a0
1.0 0O O
¢ 1 1 @& 0 1 ]
1 1 1 a0 0o Cayartar wens plabs | ferst-anis horizontal]
E n ] o0 Lirear palarizer [Wartical Transmission 0 —1 o
0 @ o0
Lo ] ]
|I"'_ 1 6 |l" o o
1lo o o o N fask vertic
513 tj IJ t; Linear polanzer (+45° Tranamission) p —1 p |Hefwawe plats (fastads vertical]
\0 o 00 oo -1
10 1 0 o0 Q0
1 o o o 0 L{Oo 1 O o
5 - zer [-457 Tr: - filter [25% T
Z 1 o 1 O [Lireer polarizer [-457 Traremission] ilo o 1 o Atbarweting fitker [25% Trarsmission]
wo ooooon oo 01

Figure 5.2 Mueller Matrices of Ideal Optical ElementSource: [45]).

5.5 Polarization Transformations using Mueller Matrices
Virtually any form of polarization can be createsing the Mueller matrices applicable to
polarizers, retarders and rotators. For examplagunly a rotated polarizer and rotated
retarder, completely elliptically polarized lightart be created having any desired
orientation and ellipticity from any incident beaoh arbitrary polarization [45]. The

Mueller matrix calculus for the transformation of imcident beam with arbitrary Stokes
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vector S through a rotated ideal linear polarizer and sgbsetly through an ideal

nonrated retarder is given by the following maggquation:

S 10 0 0 1 cos?@ sin@ S

S _140 1 0 0 || ®©s®¥  cod & sin@ cogd S (5.23)
S| 2/0 0 cosp sip| sin2 sin@cos26 sin @ S|

S, 0 0 -sing cowp 0 0 0 0\ S,

The first matrix on the RHS is the MM for an idea&in-rotated retarder and the second
matrix on the RHS is that of the MM for a rotatedal linear polarizer. Working through

the matrix algebra produces the following solutionthe Stokes vector of the emergent

beam:
S 1
S| 1 , cos¥
==(§+ 20+ 20 5.24
S Z(SO =00 218 ) cosy $n 20 ( )
S, —-singsin ¥

Eq. (5.24) can be easily identified as being thek&t vector associated with complete
elliptical polarization. By adjusting the rotatiocengle and phase shift parameters,

elliptically polarized light of any orientation amdipticity can be produced.

5.6 Mueller Matrix Formalism for an Ideal Ellipsometer
Ellipsometry is concerned with measuring and anayzhe elliptical polarization of
light. In recent years, the practice has focusethemrmeasurement of the complex index
of refraction as well as the measurement of thekttass of thin films [45]. In general
terms, the set up of an ellipsometer consistslgfé source together with a polarization
state generator (PSG). Together, these constautamulate the incident beam which is

sent towards a sample at a certain angle of inceleihe reflected beam then goes
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through a polarization state analyzer (PSA) and th@o a detector. The PSG consists of
a linear polarizer and retarder. The PSA consibta linear analyzer with an optional

retarder. The Stokes vector and Mueller Matrix falism for this set up is as follows:

S = B RO MR,(O)P,S (5.25)

final nitial

In Eq. (5.25)5,,, and S,,,,, are the initial and final Stokes vectors, respetyi P, and
R,(6) are the Mueller matrices of the first polarizer aatarder through which the initial

beam traversesP, and R,(6)are the Mueller matrices of the second polarizet an

retarder through which the reflected beam traverdésis the Mueller matrix of the
sample itself. It is this quantity that needs tadb&ermined. From the construction of this
Mueller matrix, the electro-optical and magnetoicgitproperties of the sample can be
deduced.

Ellipsometry seeks to relate the amplitude and @haf an incident and reflected

beam[45]. A complex relative amplitude attenuafactor is defined as:
r R /E_ ) . _
p=-" :(—p P je“‘g‘”’ =tany € (5.26)

In Eq. (5.26),R refers to the reflected beam aBdrefers to the incident beam. The
subscriptp ands refer to parallel and perpendicular polarizatioespectively. The term
tany refers to the change in amplitude ratio and then teontainingA refers to the
change in phase. Equation (5.26) can be relatethagooptical constants (k) and
thickness (d) of the sample in the following eqoiati

p=tanwée" = f (nx,d) (5.27)

Eq. (5.27) is known as tifandamental equation of ellipsometry
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Consider an incident bea® = R,(0)P,S,,., - That is, this is a beam incident upon the

sample material after having been transformed byPBG in the ellipsometer. Using the
Stokes vector formalism of Eg. (5.10), the compseof this incident beam can be

derived from:

S,=EE+EE,
= -EE
%:§ﬁ+%&
S, =i(EE, - E,E,)
The Stokes vector for the reflected beam is given a
Sy = R.R+R R|
S=RR.-R.R
oo (5.29)

S, =R.R, + R, R,
S, =i(R,R, -~ R R))

Upon the restatement of the factors in Eq. (5.29) in terms of the appropri&tiection

coefficients, the Mueller matrix which transform®tincident beam into the reflected

beam is given in the following equation [45].

(‘rpp‘2+|rss|2) (|r slz_k p!Lz) 0 0

S, S
" 2 2 g
S :E(MJ‘VA) @pJ+F£) 0 0 > | (5.30)
Sf 2 O 0 rssr ;p+r pE *55 _' (r rss* pl;r rP; )5 S-2
SS . * * * * SS
0 0 I(rssr pp_r p¥) s; r rSS Dlsllr rpp Ss

In Eq. (5.30)R, =r,, and R, = r, and so on. Using the relationships in Eq. (5.2t}

Mueller matrix can also be expressed in terms efstAndard ellipsometric parametgrs

andA:



76

S l+tarfy 1 tady 0 0 So
S, |_rri|1-tarfy 1+ tady 0 0 S, (5.31)
S,| 2 0 0 2tanycosd  2tagsinA || S,
S, 0 0 =2ty sinA 2 tagcosh S,

Eq. (5.31) is applicable for the case where thenmatg permeabilityy is equal to 1. If

the sample were to behave as an ideal polarizes,akpected than=0. That is, there

should be no phase shift for such an optical eléndareover, if¢y =0 and there is no
R,component then no attenuation is expected. Witketitwo constraints, (5.31) reduces

to:

(5.32)

N
© O r
O O Fr B
©O O o o
© O o o

It can easily be seen that Eq. (5.32) is identwdtq. (5.17) which is the Mueller matrix
for an ideal linear polarizer. Similarly, trf ¢ =1 and A = @ then the Mueller matrix in

Eq. (5.31) reduces to:

10 0 0
01 0 0
_ (5.33)
0O 0 coxp sip
0 0 -sing cowp

It can easily be seen that Eq. (5.33) is identicdhe Mueller matrix in Eq. (5.20) which
is that for an ideal compensator or retardart ¢/ =1 confirms there is no attenuation for

the retarder.



77

5.7 Mueller Matrix Formalism for Cross Polarizations - rsp, I'ss
In the case cross polarization occuss, polarizations will be transformed intg
polarizations and vice versa. In this instance Moeller Matrix in Eq. (5.30) needs to be
expanded to include off diagonal terms. The apple®M that includes these terms is

given as [46].

1 2 P 2 2 1 2 Py 2 2 N N * N
oy (Sl st oo ) 2 A B B ) otrae ol Jg
I (Y N PO I (Y QY [ B Y N [ F
zi D(rpprps+r;g$) D(r [;p;s—r;gsp) D(r A o ;p D( ro &’ ps)5 zi
_D(rppr;s-i-rijé s;) —D(I’ Ep*ps_r [ )p -0 rp*ptsf DS)SP D(r *DIK_SE D)asp

(5.34)
In the case where there are no cross polarizaionst the upper right and lower left

guadrants in Eqg. (5.34) will have null entries #mel format can be seen to be identical to

that of the Mueller matrix of the ideal ellipsomegiven in Eq. (5.30) with theS

component being defined, in terms of intensitiedé | - 1.

5.8 The Jones Vector and Jones Matrices
As discussed section 5.4, Mueller Matrices provade excellent formalism for the
analysis of intensities of incoming and emergegttli When it comes to the analysis of
amplitude superposition, it is often better to wke Jones vector and Jones matrix
formalisms. The Jones formalism can only be useith wolarized light. The Jones

column matrix, or the Jones vector, is a columnrimatith two components describing
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the electric field of each of its orthogonal constnts. The Jones vector for elliptically

— EX _ EOXeiJX
E= (Ey} _(Eoye“’y] (5.35)

The intensity is defined as=E'E , with E'representing the conjugate transpose of the

polarized light is as follows:

Jones vector. Accordingly, the intensity of theel®wmector described in Eq. (5.35) is:
. E,
(EE) . |=E.+E,=E (5.36)
y

To obtain a normalization condition we s&f equal to 1. As in the case of the Stokes

vector, various forms of polarization can be déxmdifrom the amplitude and phase
relationships between the orthogonal componentsefones vector. These are given in
the following table:

Table 5.2Jones vector description of polarization stat8su(ce: Ref. [45]).

Polarization Amplitude Phase Total Intensity | Jones Vector
State Relationship Relationship

Linear E,, =0 n/a I, =E2 [1]
Horizontally 0
Polarized Light

(LHP)

Linear E, =0 n/a I, = Egy [O]
Vertically 1
Polarized Light

(LVP)

Linear +45° Eon=Eyy=E | 0=0 l, = 2E2 1(1
Polarized Light ﬁ 1
(L +45)

Linear —45° Eox = Eyy=E | =180 l, = 2E¢ 1(1 ]
Polarized Light Nz
(L -45) V21
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Table 5.2Jones vector description of polarization statesntinued)

Right Eox =Eyy=E | 5=90° |, = 2E2 1 (1 ]
Circularly —-= ..
Polarized Light 2+
(RCP)

Left Circularly | E,, =E, = E, | §=-9¢° |, = 2E2 1 (1 j
Polarized Light -=| _
(LCP) V2l

A Jones matrix can be defined as the matrix ofsfiaming factors that takes an incident

Jones vector into an emergent oBex= JE . In matrix algebra, this can be stated as:

Ex _ jxx J Xy Ex
=] : (5.37)
Ey Jyx J W Ey
For a polarizer, we recall the transformation débns contained in Eq. (5.15), where

0<p,,p, sl
E = RE

E,=pE

Accordingly, the Jones vector and Jones matrixesgrtation of (5.15) can be written as:

Hite
E, 0 p,)|E

An ideal linear horizontal polarizer would hayg =1and p, =0 and the Jones matrix

10
would become(0 OJ' Similarly, an ideal vertical polarizer would haaeJones matrix
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00 _ _ g7z o
of the form . The Jones matrix for a retarder is of the fagrm _ . For
O 1 0 e—|¢/2

example, the Jones matrix for a quarter wave retambuld be:

/1 B ei(lT/2)/2 O s 1 O
JR(Z)_[ 0 22 =€ 0 i (5.39)

Equation (5.39) shows that the Jones matrix carob®plex. Finally, the Jones matrix for

o cosgd singd
a rotation is of the for )

-sind coY

In the original Chapters we will present resultshe Muller matrix calculations.
Our numerical approach allows to produce practcafly desired characteristics of the
bi-anisotropic medium, such as Mueller and Jonegicea, as well as reflectivity and

transmittivity.



CHAPTER 6

FULL MUELLER MATRIX SPECTROSCOPIC ELLIPSOMETRY INT HE FAR
INFRARED USING SYNCHROTRON RADIATION

6.1 Introduction

Spectroscopic ellipsometry (SE) uses changes inpthlarization state of incident,
reflected and transmitted radiation to charactetiiee properties of materials. The term
ellipsometry originates from the observation thabsi materials cause incident
polarizations to become elliptical upon reflectian transmission [45]. The term
spectroscopic addresses the fact that many ofxtieaBons in a material are subject to
dispersion. The study of polarization changes tieguires analysis over a spectral range
of incident frequencies which encompass the exoitatesonance. SE has a number of
advantages for the characterization of materials f4ost importantly, it is a non-
destructive measurement. This is particularly ingratrin the study of materials, such as
multiferroics, which require advanced and time conisig crystal growth techniques.
Under these circumstances, it is clearly advantagdor a single sample to be used
multiple times. SE is highly precise and is capablemeasuring film thickness to
approximately 0.01 nm. In addition, SE is an ext&bnfast measurement tool. In fact,
the combination of precision with speed, has mdfl@i® indispensable tool to the semi-
conductor industry by allowing real time feedbankinsitu fabrication processes. One
disadvantage of SE is that it is an indirect teghaj which requires optical models to

characterize the response functions of the material

81
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The output of a SE measurement can be the ellipsprparametergy and Aand/or a
partial or full Mueller Matrix. Recall that the glsometry parameters are connected to

the Jones matrix componentsandr, through the equation:

rr—" = tanye”® (6.1)

For materials with low crystal symmetry or thatplesy excitations in multiple response
functions, the off-diagonal Jones matrix elemen&g de non-zero. Under these
conditions, a proper characterization of the matas often difficult usingy and A
only. On the other hand, all 16 elements of the IMuéviatrix (MM) are populated,
enabling a more direct connection between SE ougmud complicated crystal

symmetries or response function combinations:

o (IR S S I A B RS BN BT QU 0 M e e

%(‘rpp‘z_ J r’pL) }0’ pLzﬂL Jj _" lH Lz) D( Moo %1 SS)pS D(r of s S) ps
(pp ps sE l) D(r Ep*ps_r *rss )p D( rp*r)fs*r pS)SP lj'( rssp_r*pg SD)
( Fopl ps+ re 1) _D(r Ep*ps_r [ )p _D( rp*pfs*r pS)sp DI‘(I‘ *mrsi‘ p)s sp

(6.2)

Eq. (6.2) points to the need for developing an arpental setup which can measure all
elements of the Mueller Matrix. In this chaptere thet up for a full Mueller Matrix

spectroscopic ellipsometer using far infrared syoirbn radiation is discussed.
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6.2 Experimental Setup
6.2.1 Theory of Operations
As discussed in the previous chapter, Mueller Masriare generated through various
combinations of optical elements in the polarizatistate generator (PSG) and
polarization state analyzer (PSA) stages of apsaineter. Figure 6.1 illustrates how

these combinations influence the MM [4, 45, 47].
b

“ Dotector

P R A

Source

c)

¢ § Ef

Detector

P R A F R R A

Figure 6.1 Relationship between PSG and PSA components anelgments.
(Source: [4]).

As indicate in Figure 6.1, in order to generateléllelements of the MM, both the PSG
and PSA stages of the ellipsometer must contaiarizer and rotating compensator

elements. These elements are illustrated in Fige
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Figure 6.2 Schematics of a full MM ellipsometer with rotatipglarizers and retarders in
the PSG and PSA sections.

Figure 6.2 is the illustration for a full MM ellipsneter recently completed at the
National Synchrotron Light Source (NSLS) at Brookdra National Laboratory (BNL).
Light captured from the synchrotron source is de@d¢hrough an interferometer and then

onto the PSG which consists of a rotating polarazedt compensator combination. This
produces incident light of known polarization adigated by the full Stokes vectos, .
This incident light is then directed at an oblicaregle of incidencef, onto a sample
housed in a cryostat. In SE experimerdtss often chosen to be near the Brewster angle
of the material in order to maximize amplitude quindhse differences betwegn and s

polarization states. Upon emerging from the cryodtae reflected light now has a
different polarization to that of the incident bealn enters the PSA section of the

ellipsometer which also consists of a combinatibrrotating analyzers and retarders.
Light emerging from the PSA stage can also be ifieditwith a full Stokes vectory, ;.
The exiting light is directed to a bolometer whidétects the intensity of the reflected

light. Recall that this intensity is also ti& component ofS, ;. For both the PSG and
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PSA sections of the ellipsometer, given the poksibior losses and dispersion, the

optical elements must be designed specificallyeficient operation in the far infrared.
Isolation of the MM for the samplel}?ISAMPLE, is achieved using the matrix methods

outlined in the previous chapter. Applying matriultiplication, in order, gives:

T

M PSAI\/I samplb/I PS§ incide;1 (63)

o O o Bk

In Eq. (6.3),1 is the intensity measurement obtained in the boilemQIPSGgS form

incident

a 4x1 vector defined ag’. This column vector is seen to represent one qodati

T

o

~

configuration of the PSG. The product|of| M, produces a 1x4 vector defined @s

o O

Similarly, this row vector is seen to represent pagicular configuration of the PSA. If

16 separate intensity measuremerits ,(i,j =1,2,3,4) are taken from 4 independent

combinations ofg’ and a', then the following matrix equation is produced:
lij = dMSAMPLEO-j (6-4)

In Eq. (6.4), theg matrix is composed of the row vectors constitutthg four

independent PSA measurements while thematrix is comprised of column vectors
representing the four independent PSG measurem@lgganE is recovered through
inversion of Eq. (6.4):

M sawpe =0 1o (6.5)
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Both ¢ and o are matrices of rank 4 which emphasizes the indgese of their rows
and columns. As can be seen from Eq. (6.5), itritical that both4 and ocan be
inverted. That isg and g cannot be singular. In addition, they must be wefiditioned
in order for the matrix inversion to be stable.sST&erves to minimize the amplification of
any measurement errors [48]. Essentially the cmmditumber of a matrix is the ratio of
the largest and smallest eigenvalues. A conditiomber close to unity is stable. A
condition number of infinity implies that the matgannot be inverted. Accordingly, it is

essential that PSA and PSG configurations be chosereet these criterion.

ARE cryoslsf

(b)

Figure 6.3 A schematic (a) and (b) a picture of the far-Iipsbmeter at the NSLS
U4IR beam line at BNL.

6.2.2.Far Infrared Synchrotron Radiation

The light source used for the far-IR ellipsometeFigure 6.3 is synchrotron radiation at
the U4IR beam line at BNL. Far infrared (FIR) ispontant for the study of materials,

which demonstrate various low energy excitatioas belong to frequency ranges of 10 -

100 cm' (magnons, ligand-field excitations, and electronmarg) and 100-700 ch
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(optical phonons). Synchrotron radiation is an #&oé source for this purpose not only
for its ability to generate FIR but also for itadiitness. For example, the brightness of
synchrotron radiation at NSLS in the FIR spectage exceeds that of black body
radiation by approximately three orders of magreét{4d]. Synchrotron radiation is the
electric field emitted from charged particles irrcalar accelerators at relativistic
velocity. As shown in Figure 6.4, a synchrotrorhtigource is composed of three main
elements: a particle source (S) with linear acesber (A), a synchrotron which

accelerates the particles and a storage ring.

Figure 6.4 Schematic of synchrotron facilit§Bource: [50])

Since a uniform loop of current will not radiatdguhches’ of charged particles are
needed for radiation to occur. After being acceéztan the synchrotron, the bunches are
stored in the storage ring where they circulateoastant velocity that is very close to the
speed of light. Acceleration in the storage ringysadial forces only. Radiation emitted
in the curved parts of the storage ring is allow@aexit through a tube connected to a
diamond window. Facilities such as NSLS-BNL haveero80 such windows were
experiments using this light source can occur dimmelously. NSLS-BNL has multiple
storage rings, which further increase capacity ¥oay, far-IR, and UV parts of the
spectrum. Due to radiation losses, the synchratmast be recharged at regular intervals

with additional bunches of charge. Recharge maggeired periodically from half a day
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to few hours [50]. Relativistic speeds change rh&ure of radiation as seen by an
observer in the laboratory frame. As explained &f.R51], the radiation pattern of a
charged particle moving at relativistic speeds mddes that of a “searchlight” with

radiation is elongated in the direction of motidhis is illustrated in Figure 6.5.

o

P

“Ya

Figure 6.5 Searchlight pattern of emitted radiation from dytron light source.
(Source: [51])

With each revolution, the intense beam momentélalghes through the exit windows in
short pulses. These pulses comprise a broad rdrigegaencies. Accordingly, the result
of synchrotron radiation is an extremely brightreeuunable or simultaneously available
over a wide range of frequencies [51]. As summdrineRef. [50], synchrotron radiation
provides the following properties: high emissiomsley from a small spot, small beam
divergence, large tunable bandwidth, highly pokizadiation (in the plane of motion)
and very short light pulses. The brightness of byoicon radiation allows for
compensation for the reflection and absorptiondsss the polarization components and
in the cryostat windows. The brightness also alldarsthe study of relatively small

single crystals at oblique angles of incidence.
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6.2.3 Polarization Components

The polarization components of the FIR spectroscepiipsometer consist of polarizers
and retarders. A polarizer is an optical elemeat #elects and allows transmission of
one particular state of the light polarization thgh the use of absorption, refraction or
reflection techniques. The ellipsometer in Fig. 6s&s two sets of wire-grid polarizers,
which consist of arrays of parallel Tungsten winesing diameters of 25 microns. The
electromagnetic component vibrating parallel to Wiees is both reflected and also
causes a current to flow in the wire grid. The congnt which is perpendicular to the
wires is allowed to pass through virtually unimpegdéccordingly, the light passing
through the wire grid polarizer is completely paed in the perpendicular state. Figure

6.6 is an illustration of a wire grid polarizer.

T
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Figure 6.6 Wire Grid Polarizer, schematic of operation anchetual image.

As demonstrated in Figure 6.6, with the wire gridiapizer, completely unpolarized light
emerges completely polarized in the vertical diogct

Retarders are very efficient converters of poldiara[52]. It can be shown that light
emerging from an ideal linear polarizer could bewasted into any form of elliptically

polarized light by first going through a non-rothteetarder [45]. Retarders introduce a
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phase shift between the two orthogonal componetgitt. It is this phase shift that
causes the transformation of polarization.
The design of rotating retarders is not straightod in the far-infrared region. It is

imperative that the relative phase shift between th and s polarizations be very

uniform across all wavelengths in the spectral eafidne importance of the retarder for
the successful performance of the spectroscopigsetheter is directly related to the
discussion of matrix conditionality in Section 3.2Since the errors in the measured MM
are proportional to the condition numbersgoénd o, it is imperative that the PSG and
PSA incorporate maximum flexibility to create linaindependent Stokes vectors. In
other words, it is important that the PSG and P&8es be capable of covering the entire
Poincare sphere. However, it is impossible to cdher entire Poincare sphere with
linearly-independent Stokes vectors by only chaggime linear polarization at the input
surface of a stationary retarder [53]. Accordinghe retarder must be able to rotate. This
requirement causes additional challenges for tvasaes. First, when the traditional
single triangular prism retarder is rotated, thera shift in beam direction. Second, in the
FIR, the performance of the retarder is determibgdthe spectral range of the
measurements. For example, materials such as K&®-®nly be used above 400 tm
due to optical phonon absorption. In order to elee any beam shift, the retarders have
been chosen to be of double Fresnel rhomb designufactured with Si. Ultra pure
Silicon is a good choice for the retarder matefitab relatively easy to fabricate and has
a relatively flat real part of the refractive indiexthe far-IR. The retarder is illustrated in

Figure 6.7.



91

Figure 6.7.Design for a silicon double Fresnel rhomb.

As illustrated in Figure 6.7, the retarder usesodnes. For this retarder with index of
refraction of 3.42 and angle &7°, a relative phase shift df12.5is obtained. The four
bounces result in a total relative phase shif90f. As shown in Figure 4.7, a normal
incident beam with linear polarization 45° with respect to the vertical plane will come
out of the retarder with circular polarization letsame direction as the incident beam.
This retarder design will allow for an average srarssion of approximately 30% in the
frequency range between 10 and 450'cifhe importance of the angle and index of

refraction combination is critical to retarder dgsiFigure 6.8 illustrates this dependence.

Figure 6.8.Poincare sphere for a retarder with varying inglickerefraction.
(Source: [53])
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In Figure 6.8, three scenarios for different indiagf refraction are calculated for a

TOPAS Fresnel rhomb with fixed angle 62°: n=1.4 (magenta), n=1.533 (red), and
n=1.7 (blue). The red line indicates the perforneaota true TOPAS retarder in the far
infrared. For purposes of illustration, a lower emdmaterial would “undershoot” the
poles while a higher index material would “overstidbe poles preventing a complete

coverage of the Poincare sphere [53].

6.2.4 Additional Design Features

Two additional design features important to thepprocharacterization of materials will
now be discussed. These features address (i) thpetature dependence of crystal
symmetry, and (ii) the anisotropic characteristitmaterials. First, a cryostat is required
to produce the low temperature ranges where eteatiili magnetic order parameters are
found in multiferroic materials. The temperaturependence of phase transitions in
materials is an important input to their properrelaterization. For example, as described
in Ref [29], many of the rare-earth manganitesn,Os, show four sequential

temperature dependent magnetic transitions: incamuarate sinusoidal ordering of Mn

spins at T, =42- 45K, commensurate antiferromagnetic ordering of Mnnspat
T,=38-41K, re-entrance back into the incommensurate statg at20- 25K, and

finally an ordering of rare-earth spins beldyw<10K. The spectroscopic ellipsometer

illustrated in Figure 4.3, uses an ARS optical etbsycle cryostat that can produce a
temperature range between 4.2 K and 450 K. Sectird,physical properties of
anisotropic material vary with direction. Accordingit is important to be able to rotate

anisotropic samples in order to produce independeeasurements for the proper
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characterization of optical constants. The spectpis ellipsometer uses rotatable
sample holder and a variabg-26 configuration of the samplpositioning systen

manufactured by Huber.

6.3 Fitting Experimental Results to a Model
The output of the optical measurements taken whik $pectroscopic ellipsome
consists either of the MM or other optical specreflectivity, transmission orotating
analyzer #ipsometry (RAE), for example. The output data, and « itself, tell us
nothing about the response functions or other niadggoroperties such as film thickne
In order to isolate these properties, the outptd daust be fitted against an optical mc
appropriate to the material under consideratiore data fitting process is illustrated

Figure 6.9.

Fitting Model Parameters to Experimental Data

Model > Xl I U
fla|=s—"T32—— ey ) y
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Figure 6.9Fitting Model Parameters to Experimental L.
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As described in Figure 6.9, the analysis begink wieé MM output data. In the next step,
optical models are created, which can include fdasdor reflection and transmission,
for example. These formulas are supplemented Viiéh dispersion relations that are
being used to describe the response functions laid resonances. The third step is a
non-linear least squares fitting process wherebiniial parameter vector is chosen for
input into the model. For the example in Figure, Gitere are six parameters which
represent, in this case, the Lorentzian dispensiodels for each of and y functions.
These six parameters constitute an initial paranvetetor defined as X. With this initial

parameter vector, a calculation of the total legsiares error using the model output and
experimental data is undertaken. This least squares is defined asy’. A non-linear
least squares algorithm is then used to calculateva parameter vector, which may
reduce this value of”. The algorithm stops when a certain stopping riiteis reached.
The stopping criterion could be when a maximum nermdif iterations is reached or
when x* ceases to change by a certain amount. The resthle afon-linear least squares

fitting program is a final parameter vector X whicitinimizes the fit between the model
and the experimental data. The algorithm used rofteh for non-linear least squares
fitting is the Levenberg Marquardt algorithm. Thigorithm is described in detail in the

following Chapter.



CHAPTER 7

OPTIMIZATION METHODS FOR NON-LINEAR LEAST SQUARES F ITTING

7.1 Introduction
This chapter explores optimization techniques usefit experimental data to a user-
defined non-linear model. Key references for thigpter are Ref. [54-58]. Non-linear
models are based upon an algorithm containing abeuraf distinct parameters, each
designed to represent an actual physical charstiteof the material being investigated.
As an example, Figure 7.1 illustrates the reflafgtispectra of non-magnetic material in a

semi-infinite configuration at normal incidence.

REFLECTIVITY DATA
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Figure 7.1 Reflectivity spectra of material in semi-infinitonfiguration at normal
incidence.

In Figure 7.1, the reflectivity spectra is cleaglyminated with the shape of a Lorentzian
oscillator at 60 wavenumbers. From optics, we knibat the complex reflection

coefficient for this configuration is given by:

95
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Je(e) 1 )

and the intensities in Figure 7.1 are calculatedRasrxr". In Eq. (7.1), £(w) is the

complex valued dielectric permittivity. As discuds@ previous chapters, this function

can be modeled as a Lorentzian oscillator congistirfour independent parameters:

EERCHE S (7.2)

AN F i,

In Eq. (7.2),X, is the oscillator strength,; X; is the natural frequency of oscillation,

a); %, is the damping coefficient; ang| is the dielectric permittivity measured far away
from the resonant frequency. Accordingly, the mften intensities that are seen in
Figure 5.1 are the result of choosing an apprapi¥at[ X, X, %, %] for input in to Eq.

(7.2), which can then be inserted into Eqg. (7.10hwvthis result being multiplied its
complex conjugate to produce the necessary reaflectitensities at each point in the
frequency spectrum. This is clearly a non-linearbfgm. The factorw representing the
frequency of incident radiation is the dependemntatde in this problem. In optics, the
dependent variable could also be angle of incid¢ACH) or the thickness of a thin film,
for example. In general terms, a model can con$i®l parameters. Since most fitting
techniques involve extensive use of matrix andoreglgebra, it is useful to think of the
N parameters as forming a vector in thd dimensional parameter space:

X=(%, %, %.....4 ). X describes the complete set of parameters. Usingvalgebra,

we can describe the output of a given model forithexperimental data point in the

form:
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Y@, (6, %, %% )= Y, %) (7.3)
The output of this model is then calculated actbesange of a given experimental input
variable, @), wherei represents thé&h data point. For each set of modeled physical
parameters and for each independent data pointntakel can produce an output value
y(«y,X) which can be compared to the experimentally olesevalue,y, . A function f,
is introduced to describe the difference, or resliderror, between these two values:
f. =y —¥(w,X). This error is illustrated in Figure 7.2 where abitrary set of initial
parametersx, =[14,1,80,5 is chosen as a possible solution to fit the réflgg spectra
in Figure 7.1.
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Figure 7.2Initial solution X, (green) compared against experimental data (blue).

In Figure 7.2, it can clearly be seen thxgtis not a good fit against the experimental data.

For example, the resonance appears at 80 fon the trial solution, whereas the

resonance in the experimental data occurs at 68 @ime goal of this non-linear least
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squares fitting problem is to find consistentlyteethoices forX, which can ultimately
minimize the cumulative error of. across all data points. The nomenclature, ‘nosalin

least squares fitting’ , originates from that fdwdt, in order to avoid the difficulties of its
sign, the error function is simply squared and teemmed. In other words, the goal of
this optimization is to find the set of parameters, which minimize the following
function:

2

F(%) = x2(%) zizm:[yi =Y (% %, % % ))J :Ezm:(fi(y()) (7.4)

23 g 2T

F(X) is known as the objective function. It is also Wmoas the y*(X) or Chi-Square

functional. It calculates the square of the diffee between the actual experimental

value at a given data point and its modeled vahgethen sums these up across all data
points. g; is the standard deviation of tHeexperimental data point.

For non-linear models, the task of finding a minimualue for the objective function can
only be done through iterative techniques. The idel® start with a certain parameter

vector and calculate the value of the objectivecfiom. A step is taken in parameter

space, h, to produce a new parameter veckorh, which reduces the value of the
objective function. The iteration stops when thgeotive function ceases to change
within a certain level of tolerance. Generally dpeg, there are four methods to achieve
this minimization: (i) the grid search method; @iscent methods; (iii) Gauss Newton
methods; and (iv) hybrid methods. Each of thes¢haus will be discussed in this

chapter.
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7.2 Optimization Methods

7.2.1 Grid Search Method
For an objective function whose parameters arehigiily correlated, the grid search

technique represents a straightforward way of figda minimum. The procedure starts
with the first parameter and its value is adjustedementally until a minimum iry? is

found. The first parameter is then set to this @and the process is repeated for each of
the other parameters. An important factor in timethod is the choice of step in
parameter space. Increments need to be small ertouggtcurately locate the minimum
yet large enough to allow for acceptable calcutattone. This approach has the
advantage of simplicity. Again, for parameters vahace not highly correlated, it allows a
minimum to be reached with successive iterations.tli2 other hand, for parameters
which are correlated, the procedure requires rsbtgn iteration of a single parameter but
of all correlated parameters. This has the redufiaveasing exponentially the number of
calculations. It also requires some user insigtat which of the variables are correlated.
For a model with many different parameters, suclinaight is often difficulta priori.
The fallback would be to undertake a grid searclerehevery parameter is iterated
against every other parameter. While still concalipfua simple approach, it is
computationally inefficient. More efficient methots/olve the use of derivatives of the
objective function inN dimensional parameter space.

7.2.2 Derivatives of the Objective Function

Just as in the case of minimization problems innghva single parameter, the use of
derivatives of the objective function is criticad bptimization techniques involving

multi-dimensional parameters. From Eq. (7.4), liolws that:
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oF 4 of

— ()= f()— (X 7.5

aXj() ?:1 '()axj() (7.5)
The matrix containing the first partial derivativafsthe function components is called the

Jacobian:(J (X)), ::i(io. With this definition, Eq. (7.5) can be restassd
X.

]
F'X)=J(X" f(R (7.6)
Similarly, the matrix of second derivatives whichdalled the Hessian df(X). From

Eq. (7.5), the Hessian is:

=3 LIl ® ()

?f
o~ 2| o e (7.7)

0x0

Again, using the definition of the Jacobian matkx, (7.7) can be restated as:
Fr(R=3R" X3+ f(3 (X (7.8)
i=1

Certain numerical methods use a quadratic modeh&objective function near a
minimum point and, as described below, the Hessighe objective function is used to
calculate the appropriate step in this regionait be seen from Eg. (7.8) that the Hessian
is composed of two parts, namely, the product ef Jacobian matrices and a second
term, which contains a more complicated summatiotin® residual error function with
its second derivatives. The second term presenthallenge to the optimization
technique when these second derivatives are ndalbla However, it is argued in Ref.
[55], that ignoring this second term is acceptahlanany cases. Certainly, when the
second derivative terms are small compared to itee term, the second term can be

easily dropped from the analysis. It is also argtleat, in practice, the second term
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should be small because the second derivativesnaitplied by the residual error
function, f.. Since this represents a random measurementiersarm should cancel out

when summed over all of the data points. Finatlys iargued that the inclusion of the
second derivative term can, in fact, be destahgizn the event that there are a number
of outlier points which outweigh compensating psiof opposite sign. Accordingly, for
the techniques discussed in this chapter, the &edsom Eq. (7.7) will always be

approximated as:

g—f (x) =3 XY (7.9)
R

7.2.3 Descent Methods

The descent method is a general minimization teglniwhich seeks to find a
perturbation step in the direction of steepest ¢gdn in the objective function. It is one
of the most dependable techniques when the paramettor is far from the minimum
point. It is a highly convergent algorithm. It is@aan extremely valuable technique when
there is a large number of parameters to be modéedsider the variation of the
objective function starting from an initial positicx and proceeding in the direction of

h which reduces the value of the objective functive assume thaF(X) can be

described in terms of a Taylor series expansion:

F(x+ah) OF(X)+JdH F(R (7.10)

Since F(x+dh)< F(X), we see from Eq. (7.10) that is in a descent direction if

h'F'(X)<0. In fact, it can be shown that the direction tfepest descent is in a
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direction opposite that of the gradient of the obye function,i.e. —F '(X) . A step in this

direction is the basis of steepest descent or gmaanethods in minimization problems.

From Eq. (7.6), in terms of the Jacobian, the timecof steepest descent is given by
-J(X)' f(X) . A step in this direction of siz& is taken. The scalad can be determined

through various line search techniques.

Obtaining the Jacobian involves calculating thetigladerivative of the objective
function with respect to each of its parametersefegry «). If analytical formulas for

these partial derivatives are not available themumerical method to approximate the

derivative is used:

J(X) :a)(z :XZ(XJ'“LAXJ')_XZ()S)

o A (7.12)

In Eq. (7.11), thehx; term is usually provided as a user defined inptih@teginning of
the optimization routine and is applicable to evpgrameter. The calculation of the
Jacobian involves an iterative procedure. Afterghgial derivative is calculated for one
parameter, that parameter is replaced iby its original value (iex;, not x; +Ax ) and

the routine goes onto the evaluation of the padiggivative of the next parameter. At the
end of the calculationJ(X) will be a matrix of size r(data, m where ndata is the
number of data points amax is the number of variables to be fitted.

This procedure represents a significant improvensnicompared to the grid search
method for two major reasons. First, a step indihection of steepest descent guarantees
that X is proceeding in a direction which lowers the vabfethe objective function.

Second, the step is a more direct route towardsmiaation. All of the parameters are
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updated simultaneously. After a given step, theligrd is recalculated and another step
is taken in the direction of the new steepest désadggain, the size of the step is a
critical decision in this optimization routine. Fekample, if the step size is too large,

then it is possible to ‘overshoot’ the locatiorntloedé minimum. One strategy is to continue
travelling along the gradient in small steps until begins to increase at which point the

gradient is recomputed and a new direction is sbughmajor disadvantage of the

descent method is that it becomes an inefficiggardhm near the minimum. The reason
for this is due to the fact that at a minimum p,oih( 7() should vanish with the result that
steps are almost zero. This is particularly truethe case of local minima which

correspond to a long flat valleys in parameter sjad.

While the method of steepest descent is robust,theaninimum point, convergence can
become much faster when the objective functiontmEamodeled as a quadratic formula.

These techniques will be discussed in the nexiosect

7.2.4 The Gauss Newton Method
In the Gauss Newton method, it is assumed thataeanimum point, the residual error

function f (X)can be based on a linear approximation in the beigiood of X in the
form of:
f(x+h) Of(X+ IR h (7.12)

Inserting this expression into Eq. (7.4) providesapansion fo- (7() given by:

F(x+ﬁ):%fo+hTJTf+% HJrJt (7.13)
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In Eq. (7.13), it can be seen that the approximafimr the objective function now

contains as a quadratic term as its third terma Atinimum point, the derivative of Eq.

(7.13) with respect tth must be zero and the Gauss Newton shgpis given by:
A" Dh,=-T f (7.14)
In Eq. (7.14), the term)’J is the approximation for the Hessian gf which was

discussed in Section 7.2.3,, the Gauss Newton step, is obtained through matrix

inversion methods. This method is also sometimédsdc#he Inverse Hessian method.

The advantage of this method is thaf (k) does behave in linear fashion, then this
method has a quick and accurate convergence tamianom point. The approximation
that x° behaves in a parabolic manner around the minimues d@wroduce errors into

the calculation but these errors are reduced thrgugcessive iterations in the routine. A
clear advantage of the Gauss Newton method is theatstep size is automatically
calculated in the routine.

In summary, when no strong assumptions can be rabdet the behavior of the

objective function, then the descent methods arst mppropriate. These methods will
guarantee a step in a direction which reduces ahge\of the objective function. On the
other hand, when a quadratic model can be assuaondtid objective function, then a

step derived from the Gauss Newton formula seta gpick convergence to a minimum
point. Hybrid methods have been developed to stitize best of both methods. The

Levenberg Marquardt method is one of the most pluvef these hybrid methods.
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7.2.5 Hybrid Methods

As stated above, while the Gauss Newton methodigeevior rapid convergence near a
minimum where a quadratic model represents a ggpdogimation of the objective
function, it cannot be relied on to approach thisimum from a point outside the region.
Similarly, while the descent method is excellengpproaching a minimum point from
far away, it is a poor technique for convergencar e minimum. Hybrid methods
combine aspects of both the descent and Gauss Nem&ihods. The Levenberg
Marquardt optimization technique is the best knawmong the hybrid methods. The
Levenberg Marquardt (“LM”) method is powerful besaut combines both of the above
minimization strategies through a self adjustingoathm described in the following

eguation:

(J"J+ANh, =-J" f (7.15)
In Eq. (7.15),1 is the identity matrix. The LM algorithm works dlows. If a step in a
given direction does not reduce the valugafthen) is increased. For large values of
A, Eq. (7.15) reduces to:

B D—% F (%), (7.16)

which represents a small step in the steepest nlesaection. If a step results in a
reduction in the value of°, thend is decreased. For small values &f Eq.(7.15)

reduces to:

3" Hh O-J f, (7.17)
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which is immediately recognizable from Eq. (7.14)the step calculated in the Gauss

Newton method. The LM method proceeds iterativalygating the stefhn upon each
iteration. The algorithm concludes when user defie®pping criteria are met. These

stopping criteria could be a maximum number ofiiens or the difference of successive
x° being less than a certain amount.

It is important to note that there is no non-linkzast squares fitting algorithm, which
guarantees finding a global minimum. Therefore,levthie LM technique will converge
to a minimum point, this point may not be the glob@nimum. That is, the LM
technique could find a local minimum and concludehat point when the stopping
criteria are met. In this context, the initial otmiof the parameter vector is important in
finding a global minimum. In addition, given itsgpninence in all of the above formulas,
the calculation of the Jacobian function is criticathe efficient performance of the LM
algorithm. It is best if analytical expressions d¢enfound for the Jacobian function. In
the absence of such analytical formulas, the Jaoowill need to be calculated from a
finite difference method in a user supplied funatidVith an efficiently designed LM
algorithm, a large number of parameters can bedfitt a short time. In addition, the LM
algorithm can be easily adapted to fit a numbedifierent data sets against the same

model. In this case, Eqg. (7.4) becomes:

N

F(X):XZ(X):lzi(yu W (L (X %, %o ))j (7.18)

=1 i=1 g,

In Eq. (7.18), the indekprovides for a summation over the number of dade
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7.3 Simulation Using the Levenberg Marquardt Algorthm
The Levenberg Marquardt technique was used to tledbest fit parameters for the
reflectivity example given in Section 6.1. The siation uses 100 data points for
frequency between 0 and 100 wavenumbers. The LNintgae converged in 22
iterations with an elapsed time of 0.2830 secoits.results for each iteration in the LM
routine are given in Table 7.1.

Table 7.1.Results of Levenberg Marquardt fitting routine.

Iteration X X, X, X, A /\’2

0 14.00 1.00 80.00 5.00 .001 0.7558

1 17.98 0.37 81.74 6.43 .0001 0.7448

2 18.60 0.18 80.96 9.86 .00001 0.7132

3 18.34 0.53 71.72 3.02 .000001 0.7132
4 18.34 0.53 71.72 3.02 .00001 0.7132

5 18.34 3.85 71.72 3.02 .0001 0.5867

6 16.44 3.85 64.82 3.00 .00001 0.5867

7 17.22 3.35 64.82 3.00 .0001 0.5180

8 17.22 3.35 58.40 1.70 .00001 0.5180

9 17.22 3.35 58.40 1.70 .0001 0.5180

10 16.67 3.61 58.40 1.70 .001 0.5145

11 17.23 3.15 63.12 1.34 .0001 0.4509

12 17.23 3.16 57.69 1.03 .00001 0.4509
13 17.23 3.16 57.69 1.03 .0001 0.4509

14 17.23 3.16 57.69 1.03 .001 0.4509

15 16.84 3.81 59.66 9.86 .01 0.3511

16 16.84 2.38 59.51 3.59 .0001 0.1192

17 17.23 2.38 59.51 3.59 .001 0.1192

18 17.23 1.92 60.50 7.51 .0001 0.1070

19 17.04 2.00 60.10 1.35 .00001 0.0020

20 17.00 2.00 60.00 1.31 .000001 7.4510
21 17.00 2.00 60.00 1.30 .0000001 8.11"10
22 17.00 2.00 60.00 1.30 .0000000% 2.45°10

The results of Table 7.1 illustrate the converggmroeess in the LM fitting mechanism.
As can be seen from the table, the routine didhrethe correct solution for the
parameters,X=[17,2,60,1.3, by the 21 iteration. In contrast to the grid search
methods, each step in the LM method involves agham all of the parameters thereby

producing a more direct path to a minimum pointr Each parameter, the path to
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convergence usually involves a process of oversigpoand undershooting before

reaching its final value. Interestingly, this presés not the same for each parameter. For
example,X, is overshooting in theBand 4" iterations, whilex, is undershooting for the

same iterations. This is a consequence of the acaohlculation at a particular point in
parameter space. With each iteration, the valutebbjective function either stays the
same or is reduced. The ‘quarterback’ of the erititieg routine is the parametet .
This parameter directly influences the type ofirfgt algorithm that dominates in the
hybrid approachA is initially seeded with a value of 0.001. Gensralbeaking, larger
values of A are indicative of the routine pursuing a descegtthiod type of search while
the smaller values are indicative of the Gauss Newpproach. As can be seen from the
Table, during the last few iterations, the valuedofs continually decreased indicating
that the routine is in an area where the objechivection is near a minimum which
behaves in a parabolic manner.

Figure 7.3 illustrates that the fitted parametersdpce reflectivity results which are

virtually identical to that of the experimental aat
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Figure 7.3 Reflectivity results for fitted parameters. Tlesults are virtually identical to
the experimental data in Figure 74> =2.54x 10",

The Levenberg Marquardt algorithm can be adjustedcreate a descent method
approach. Recall that the descent method is cleaized with higher values of with

the results that small steps are made in the diedaention. This approach is recreated in
the LM algorithm by setting the intitial value dfto a higher value such as 0.10 which is
two orders of magnitude higher than the same stapiarameter in the LM algorithm.
The second adjustment is to constrdifrom changing in order that a constant step size
can be maintained. When these adjustments were m#mEk over 1000 iterations and
4.67 seconds for the algorithm to converge. Talf2ebélow illustrates the last iterations

of the descent method.



Table 7.2Simulation of the Descent method.
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Iteration

X X X3 X, X
0 14.00 1.00 80.00 5.00 .01 0.9693
990 16.9997 1.9999 60.0000 1.3000 .01 0.9678
991 16.9997 1.9999 60.0000 1.3000 .01 0.7812
992 16.9997 1.9999 60.0000 1.3000 .01 0.6306
993 16.9998 1.9999 60.0000 1.3000 .01 0.5090
994 16.9998 1.9999 60.0000 1.3000 .01 0.4109
995 16.9998 1.9999 60.0000 1.3000 .01 0.3316
996 16.9999 1.9999 60.0000 1.3000 .01 0.2677
997 16.9999 1.9999 60.0000 1.3000 .01 0.2161
998 16.9999 1.9999 60.0000 1.3000 .01 0.1744
999 16.9999 1.9999 60.0000 1.3000 .01 0.1408
1000 16.9999 1.9999 60.0000 1.3000 .01 0.1137
1001 16.9999 1.9999 60.0000 1.3000 .01 9.173 10"
1002 16.9999 1.9999 60.0000 1.3000 .01 7.405 197
1003 16.9999 1.9999 60.0000 1.3000 .01 5.977 107
1004 16.9999 1.9999 60.0000 1.3000 .01 4.824 10"
1005 16.9999 1.9999 60.0000 1.3000 .01 3.894 19°

In Table 7.2, note that the value bfs constant for all of the iterations. This accsuioir

the much longer convergence compared to the LM odeth

7.4 Error Analysis
As explained in Ref. [59], a way to visualize thibject of error analysis is illustrated in

Figure 7.4.

Figure 7.4 Error analysis for a two dimensional {isource: [59]).
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For the purposes of illustration, we consider articap experiment such as the
measurement of the reflectivity spectra as disaugseviously. Assume that only two

parametersA and d (instead of the four in the previous section) aredeled. For
example,A could representx,, the oscillator strength and could representx;, the

natural frequency. Consider each of the other taraipeters as being set to a constant. If
the experiment is repeated many times, the fitththe two parameters would result in

some distribution of the fitted parameters. Eagbeeixnent would also result in its own
value of x°. Figure 6.4 presents a plot of these results. Bathepresents thg” result

of an individual experiment. After many experimeran ellipse could be drawn around
all of the data points that would enclose 95% efdhta for the case of ar2distribution.

In Figure 7.4, the height and width of the elligserespond to the correlated error for the
two parameters. The uncorrelated error is givethbyheight and width of the ellipse at
At and ¢d. The degree of correlation between the two pararsés indicated by the tilt of
the ellipse [54]. In fact, if the two parametersrev@ot correlated at all, the axes of the
ellipse would be parallel to the coordinate axasthe ellipse would be symmetric about
the two axes. In the extreme case where the twanpeters were very highly correlated
the ellipse would be long and narrow and wouldofelthe relationd =tA, wheret is a
constant [59].

The values for standard error of the paramefey,are obtained directly from the results

of the Levenberg Marquardt fitting algorithnar, :( djj) where @ is the Hessian
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matrix as defined in Eq. (7.9% is also known at the curvature matrix and its iseds
also known as C, the covariance matrix [55].
To illustrate the error analysis in the reflectexample, we again use LM to fit the four

Lorentzian parameters. We begin with a set of ewpartal data as illustrated in Figure
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Figure 7.5 Simulated experimental data used in LM error asialy

The simulated data in Figure 7.5 were calculatedalking the data in Figure 7.1 and
applying up to a randomt20% change to each of the 100 data points. The LMVh§itti
algorithm was then used to fit the four parametising the following objective function

[59]:

P = (0= 1 Z"’:(YFY(L(&’&)&--% ))J | (7.19)

-m-1= g
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Where N is the number of data pointsyis the number of fitted variables amg is

assumed to equal .005 for each data point. The satia starting vector was used as in
the previous cases. The algorithm converged in1J.&&conds using 58 iterations. The

final parameter vector was calculated toXe[16.5016,2.2914,59.6532,1.67.. Figure

7.6 is a plot of the fitted results versus the $atad experimental data.

REFLECTIVITY DATA
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Figure 7.6 Fitted results (green) versus simulated experiatelata (blue).
The final covariance matrix was calculated to be:
0.1983 0.0083 0.0243 -0.0057
0.0083 0.0275 -0.0307 0.0243
0.0243 -0.0307 0.0548 -0.0185
-0.0057 0.0243 -0.0185 0.0723
The square root of the diagonal terms in the cawag matrix gives the standard error of

the estimate for each parameter. The error barstWor standard deviations (95%
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probability) are then:x =16.50% 0.89, X, =2.201* 0.33,x,=59.653+ 0.46 and

X, =1.672+ 0.53i. Note that the solution for the unadjusted d&ta[l7,2,60,1.3 is

contained within the error estimates for each patam



CHAPTER 8

MUELLER MATRICES OF ANISOTROPIC METAMATERIALS GENER ATED
USING 4x4MATRIX FORMALISM

8.1 Introduction

The original results presented in this Chaptepatgished in P. D. Rogers, T. D.
Kang, T. Zhou, M. Kotelyanskii, and A. A. SirenktMueller matrices for anisotropic
metamaterials generated using 4x4 matrix formalisimin Solid Films,519 2668
(2011) doi: 10.1016/j.tsf.2010.12.066 [1] and hbeen presented at the ICSE-V
Conference in May 2010.

Magnetically active materials in general and meti@mals in particular comprise
important classes of materials both from a thecaéperspective as well as for possible
device applications. The study of metamaterialsbezs of interest since the late 1960’s

when Veselago first explored the propertiessoftropic materials having simultaneous
negative values of¢ and i [36]. In this Chapter, we have used the Muelletiik
(MM) formalism for theoretical study of the opticgbroperties of anisotropic
metamaterials in the frequency range close to thgnetic resonances, whergw) # 1.
Forward MM models that match the symmetry of planatamaterials are calculated by
treating their behavior as a continuous anisotrdprtfilm. Our results focus on recently
published studies pertaining to artificially crehtglanar metamaterials [6], which use
oscillator models for the diagonal components ef 4éhand i tensors [38, 60]. It will
be shown that the MM formalism is useful in the lgsia of the separation of the
dielectric and magnetic contributions to the optpr@perties of a material including the

important case of the negative index of refraction.

115
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The calculation of a forward model for the MM compats of a dielectric-magnetic
material is critical to the analysis of experiméntiata obtained from full MM
spectroscopic ellipsometry. Through an iterativenatical comparison of the forward
model against experimental data, the optical ptasepf a dielectric-magnetic material
can be analyzed. Specifically, dispersion modetsttie relative dielectric permittivity
tensore and the relative magnetic permeability tengocan be developedix 4 matrix
formalism [16] provides a powerful and systematietmod to calculate the complex
reflection coefficients and the MMs of dielectriagnetic materials having both arbitrary

crystal symmetry and magnetic permeability tepsgd. For a sample whose principal

axes are coincident with the laboratory systent, ltha simultaneously diagonalizatde

and p tensors (with coincident principal axes), and haracterized by orthorhombic

crystal symmetry or higher, exact analytical solus for allowed electromagnetic wave
propagation in a dielectric-magnetic medium aredpoed. For a non-depolarizing
medium, forward MM models are determined directtgni the complex reflection
coefficients. Although the optical properties ohan-depolarizing medium can be also
analyzed using the Jones Matrices (JM), the MM @ggr has an advantage for
experimental systems with imperfect, and hence,oldeging optical elements. In
addition, the investigated sample itself may introel depolarization, as in the case of
surface plasmon propagation in metal hole arrag$. [@n this paper, we demonstrate
how the angle of incidence dependence of the afiahal elementd!,, and M,, of the
MM exhibit asymmetric results when materials haviregative index of refraction are

simulated. The MM approach can be used to deterithiease effects experimentally.

Alternatively, measurements at variable angles mdidence of the ellipsometry
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parametersd andA (in which the sign ofA is resolved)[17, 62] may be applicable to

non-depolarizing anisotropic metamaterials.

8.2 4x4 Matrix Formalism
The procedures for using Berremamnds< 4matrix formalism were outlined for the
isotropic case in Chapter 3. In this Chapter, we use thkenique to calculate the
complex reflection coefficients for asnisotropic magnetic material in both the semi-

infinite and thin film configurations. For a crybktaith orthorhombic symmetry having
principal axes parallel to the,y and z coordinate axes) in Eq. (4.1) is adx 4matrix

[16]:

2 i 2
0 4, - N,"sin(@,) 0 0
£ZZ

- | Ey 0 0 0
A= (8.1)

0 0 0 U

2 o1 2
0 0 £, - N, sin(@,) 0
M,

a,,and g,are the eigenvalues associated witand spolarizations, respectively and

constitute thez components of the wave vectors in the medium. These

N,?sin’(8
qu :%)\/?xx\/:uyy_o—(O) (82)

&

zz
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N,%sin?(8
O :%)\//’Txx\/g yy_olu—(O) (83)

The xcomponent of the wave vector is constant for alth@f incident and refracted
waves. It is through these equations (eigenvahfeshe Berreman equation) that
information about the anisotropic optical propertad the medium [17] enters into the
calculation of the complex reflection coefficiengmd, in turn, MM elements. For

example, the anisotropie or x tensors and the consequent differences betwgemd

g,.are responsible for the two refracted waves showfigure 3.1.

8.3 Analytic Formulas
One of the key benefits of usingx 4 matrix formalism to calculate complex reflection
and transmission coefficients is that proceduresifatching electromagnetic boundary
conditions are automatically built in to the methagen both incident and, in the case of
thin films, substrate media are isotropic and nm@gnetic. For each polarization state
there are two eigenvectors representing forward lzaekward propagating waves. In

4x 4 matrix formalism, the complex reflection coeffits r  (w) and r(«w) and the
complex transmission coefficients, (w) and t,(«) are calculated from the eigenvectors

of Eqg. (4.1) via the solution of simultaneous baanydvalue equations relating to the
continuity of the electric and magnetic fields la tmedia interface(s). For semi-infinite
samples, backward propagating waves are not coesidd-or thin film samples,

retention of the two backward propagating wavessgential to the proper calculation of

the complex reflection and transmission coefficgesd well as the MM elements. In this
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section, the cross polarization termg(w) , r,,(w) ,t,(w) and t_(w) vanish because the

principal axes of the crystal correspond to thetatory coordinate axes.

8.3.1 Semi-Infinite Sample
For a semi-infinite material, the two eigenvectorpresenting the forward propagating

waves are used to calculate the complex reflectioefficients forp andspolarized

radiation. The procedure for calculating the compteflection coefficients involves
matching the tangential components of the inciderd reflected E and H fields to a
linear combination of the two eigenvectors caladaat the common interface located at

z=0 [16, 17]. The complex reflection coefficients are:

— gxka - NO2 qu

8.4
PP gxxkzo + NO2 qu ( )

k -
rss = )uxx 20 qzs . (85)
/'Ixxkzo + qzs

In Eq. (8.4) and Eq. (8.5), the complex reflectamefficients are expressed as functions
of the zcomponents of the incident and refracted wave veatdich themselves take
into account the anisotropic characteristics of tmedium. Complex reflection
coefficients stated in this formalism have beerdusehe study of media with indefinite

permittivity and permeability tensors [44].
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8.3.2 Thin Film Sample
For a single layer thin film material, all four emvectors and eigenvalues are used in the
calculation of both the complex reflection and smraission coefficients. Both incident

and substrate media are assumed to be isotropic;magnetic materials. The

o w
components of the incident and substrate wave meaee k,, =— N,cos(d,) and
c

K,, :%) N, cos(8,), respectively. The thin film has thicknesisand is described by

and u tensors each having orthorhombic symmetry. Wenassthat thes and u

tensors can be simultaneously diagonalized and baweident principal axes. Higher
symmetries can easily be derived from the orthofioroase. The crystal is aligned such
that its principal axes are coincident with theolabory axes. Light is again incident in
the Xx— z plane (see Fig. 6.1%1x 4 matrix formalism matches the tangential components

of the electric and magnetic field vectorszat 0 and z = dto produce two generalized

field vectorsy (0) andy (d), respectively. A thin film layer matrik is utilized to relate

the fields inside the anisotropic film of thicknekat its two boundaries [17].

(d)=Lw(0) (8.6)

L is a 4x 4matrix calculated from the eigenvalues and eigetovecof the A matrix

according to:

L(d)=P*K(d* ¢* (8.7)
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In Eq. (8.7), ¥ is composed of the fouA eigenvectors as columns whilk is a
diagonal matrix given byK, =€%¢ with g representing the four eigenvalues Af
After some algebra relating the incident and rédécwaves, the complex reflection
coefficients for a thin film can be calculated. ingar process allows for the calculation
of the complex transmission coefficients [16, 1d%ing these procedures, we derived

analytic expressions for bothand s polarizations.

The complex reflection and transmission coeffi@dot p polarized radiation are:

NN
d,,€0s@,,d )(EZ Ky _No kij + i{ N, £,Ky kZZ]Sin(qp d)
0

r - N2 £xx N0 N2
N N quz2 K

g,, c0S(, d)[2 +—2 k ]— { £uo 22Jsm(q d)

P O N2 z ‘gxx NO N2 P
(8.8)
t - 2k20qu

pp N N NN, o, k

cos@, d) —2 k, +—2 k i 2 szozzsm d

qu (qu {NO ? N2 2] [ £xx NON2 J (qu )

The complex reflection and transmission coeffisdnt s polarized radiation are:

2
0,:C0S(@,d ) Ko = k) + (25 ~ Ko Kot ; sin(q .d)

XX

r
SS

2
qzscos(qzsd)( kf) + k2) - { qZS + k@ kZ'u x; Sin(q zg)
U

XX

(8.9)
2kzO qzs

2
0,05, Y K, + K,) - i{f{zs + ko ko ; sin(q,d)

XX

ss
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The formulas are functions of the optical properiié the film material as well as the
characteristics of both incident and substrate emdetir example, in a vacuum-thin film-
vacuum configuration, the first terms in the nun@raf each of the complex reflection
coefficients become zero. This simpler form is aagtlle to many experimental
configurations and will be used in the analysiplahar metamaterials below.

In order to verify the accuracy of our analyticalpeessions, we have calculated the
complex reflection and transmission coefficientstfe cases of the semi-infinite sample,
and a single layer film on a semi-infinite subsraising both our numerical
implementation of thetx 4matrix algorithm and the analytical expression&q (4.9),
Eq. (8.5), Eq. (8.8) and Eq. (8.9). We found tlnat tesults coincide within the rounding
errors of the 4x4matrix algorithm. This analysis was performed forvariety of
conditions including negative permittivity and peability values, which are expected to

be observed in metamaterials.

8.4. Mueller matrices of a planar metamaterial

For the sample symmetry and the experimental cordtgpns assumed in this paper, the
off diagonal elements of the 2x2 Jones matrix @me.zFor non-depolarizing materials,
there are well established formulas to transforexdbnes matrix to a full MM [17] and

Eq. (8.10) is the transformation formula applicabteen the off diagonal Jones matrix

elements are both zero.
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%(|rpp|2 +|rss|2) %(|r sz I 312) 0 0

1 2 2 1 2 2

E(|rpp| B ) E(|r ppl +k sl ) 0 0 (8.10)
0 0 U (rppr;‘) D(r ob *SS)
0 0 ~0r,rs) O

rSS

The MM of a dielectric-magnetic material is proddickom its complex reflection

coefficients which are, in turn, calculated fromfitequency dependest and i tensors.

Accordingly, to produce a MM, accurate complexeefilon formulas appropriate to the
orientation of the crystal must be available. Imiadn, models for the dielectric and
magnetic functions of the material are requiredifgut into these reflection formulas.
Eq. (8.10) illustrates that, for our configuratiotmere will be eight non-zero MM
elements. However, only four of these terms arepeddent. Procedures for calculating
the forward model of a MM for a planar metamatenidl now be discussed.

To date, there have been relatively few spectrascsiudies of metamaterials which
analyze their reflection properties using obliqugles of incidence. Driscoét al. have
done one such study using a planar array of splitetesonators (SRRs) [6]. Reflection
and transmission intensities were recorded forsthgle spolarization at varying angles
of incidence. These results were fitted using thesiel equations to model the optical
properties of the metamaterial as though it behaged continuous anisotropic thin film
crystal.

These results are important to our study of MMsabse the frequency dependent

models of the material’'s and x tensors together with our Eqg. (8.8) and Eq. (8.9)

enable the calculation of predictive MMs of thisupdr metamaterial. In the Driscoll
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experimental configuration, the&e and x tensors have the following anisotropic

symmetry:

() 0 0O
gw= 0 ¢,(w) O
0 0 1
10 0
Hw =0 1 0 (8.11)
0 0 p,(w)

The tensors are described by the SHO oscillatoretifod £ and Pendry’s model fou

shown in Eq. (8.12).

2
AW,

W —w,S Fiwy,

En(w)=¢

AW
0)2 _a)m02 +ia)ym (812)

to () =1

In the formula for thes tensor, &; is the static dielectric constant aagjis the plasma

frequency.A, and A are oscillator amplitudes. The formula for tpetensor is modified

from the traditional Lorentzian model in that thguare of the frequency of incident

radiation (w) enters the numerator and(0) is forced to be equal to 1 [6, 38, 60]. The

£,,(w) response was not analyzed in the Driscoll paper.

The general formulas for thin films derived usihg 4 matrix formalism are used

to calculate the complex reflection and transmissooefficients for this fabricated

material. The experiment performed by Drisctllal. is set up such that both incident

and substrate medium are vacuum withaxis parallel tos polarized radiation. In this
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configuration, the complex reflection coefficiefits p and s polarized radiation in Eq.

(8.8) and Eq. (8.9) reduce to the following:

i qu kmg yy] H
S| -2 Isin(g,d)
2 ( K€,y - P

Fop =

2\ k£

z20% yy zp

cos@,,d )—i(qu +k20‘gyy] sin@,,d)

' k
TG S gin, d)
2 kzOl'Iyy zs

r =

Ss

i k
cos@,d )—I[ Oes 4 “aoHlyy

sin@,.d)
2 kzOluyy zs ] qz

(8.13)

In Eq. (8.13),0,,(w)and g,s(w) have the same definitions as in Eq.(8.2) and &®) (
except for the interchange of theand y axes to accommodate the experimental setup.
k,, is the zcomponent of the free space wave vector.

Due to the complexity of the analysis using thesked approach, Driscokt al. [6]
constrained themselves to study only thepolarization incident at the sampléx 4
matrix formalism and full MM measurement should@allmore complete analysis of the
sample properties using incident light of linead aliptical polarizations. In order to
develop a forward model and analyze the measursn@nMMs at oblique angles of

incidence, assumptions about the permittivity aadr@ability along other directions are

required. Specifically, assumptions about El"ysg(a)) response are necessary in order to

illustrate how 4x 4matrix formalism could have been used to prediet MM for this
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metamaterial. Asymmetries in the SRR fabricationwvieen thex andy axis suggest that

g, (w)# ¢, (w). For purposes of illustration only, we assumé tha natural resonance

of the &,, (w) oscillation is 15 GHz as compared to 19.9 GHztler,, (w) oscillation.

We assume all other fitted parameters are identidsing these parameters, the

frequency dependesy, (w), ¢,,(w)and u,,(w) values are calculated and are then input

into Eq. (8.13) to produce the complex reflectiaef@icients. Eqg. (8.10) is then used to
transform the complex reflection coefficients iV elements. Given the coincidence
of the principal axes of the metamaterial with thkoratory system, the off diagonal
Jones matrix elements will vanish and there willdmdy 8 non-zero elements of the

predicted MM. These elements are illustrated in 8idj.
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Figure 8.1 The Mueller Matrix components of a planar metamaltén the proximity of
the resonant feature at 14 GHz for two AQOI. Dotied 6, =0°. Solid line g, =40 .
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4x4 matrix formalism was used for the systematicwdation of the complex reflection
coefficients. Driscollet al. found that ther,, coefficient, when calculated in conjunction

with the fitted oscillator models, produced a gogualitative fit with s polarized
experimental reflectivity data [6]. The simulatd®l components, generated from tke
and i tensors, contain additional critical informatidooat the anisotropic dielectric and
magnetic properties of the metamaterial. Actualegxpental MM data should allow for
the extraction of the anisotropic oscillator partere through non-linear fitting

procedures.

8.5. Separation of Dielectric and Magnetic Contrilations
For proper characterization of materials whose raagreffects have non-negligible
influence on their optical properties, it is img@ort to be able to separate dielectric and

magnetic contributions. Spectroscopic experimengsally provide values for the
complex refractive indexn=./gu at different frequencies, which do not contain any
direct information as to whether it & or ¢ which is responsible for a particular feature

observed in the spectrum. The difference in thexgbaf the various MM components in
response to whethee or g is changing can separate dielectric and magnetic
contributions. For metamaterials, this informati®wrucial for their design.

This discrimination is indeed possible by perforggMM measurements made at varying
angles of incidence. To illustrate this point, wed®l conditions where the index of

refraction of a dielectric-magnetic material rensagonstant but its inputs (and y) are

varied. Specifically, we model a hypothetical casésotropic £ and ¢ where each are
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allowed to vary between 1 and 6, but their prodifct &, is held constant at 6. We

simulate a given material compositioa () and compare it to another material whose

values fore and y are interchanged. For example, Fig. 8.2 showstligavalues of the

diagonal MM elements are identical for both mater@aracterized by (3, 2) and (2, 3),

respectively. However, this degeneracy is remaviedn the off-diagonal MM elements

are analyzed over varying angles of incidence (AQOI)
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Figure 8.2 Dielectric and magnetic contributions in the diagloand off-diagonal MM
components as functions of AOI. Differe(m,y) combinations illustrate the difference in
response of b and My, compared to vk and Mss. For example, the (2, 3) combination

(black dotted line, online dotted green) and the2{3combination (black squares, online
solid yellow line) are degenerate for;Mand M3 but have opposite signs for;Mand

M3a.
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It is evident in Fig. 8.3 that the MM response it pff-diagonal elements is the same in
magnitude, but is either positive or negative deljpgnon whether it iss or x4 that is
changing. The (2,3) material has positive off-dizgoelements while the (3,2) material
has negative off-diagonal elements. Moreovergas & Fig. 8.3, when we introduce the
“left handed” [36] material with negative permiitiy and permeability, but keeping

&u =6, the M, and M,, components respond in opposite directions.
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Figure 8.3 Dielectric and magnetic contributions in the diagloand off-diagonal MM
components as functions of AOI. Differe(m,y) combinations illustrate the difference in

response of Wy compared to My, when “left handedness” is introduced via negative
values fore and i . The (-2,-3) combination (black ,x“, online red“)xand the (2, 3)
combination (black dotted line, online solid grde®) are degenerate for,Mand M3

but have opposite signs forsM In addition, the (-2, -3) combination and tha, (-2)
combination (black ,0“ online blue ,0“) are degeae for M and M3 but have
opposite signs for both Mand M.
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For example, while the (-2,-3) material has diadgaarad off-diagonal MM elements
identical in magnitude to the (+2, +3) materiak #ign of M,, becomes negative. It is
also interesting to note that the off-diagonal M&égponses for two left handed materials
can be distinguished. For example, the signs oMhe and M, components respond in
opposite directions for the (-2,-3) material as pared to the (-3,-2) material. The
difference in the angular response betwd&&pand M, is an indication of the material
being “left handed”. This observation is extremiefyportant as it is happening in the thin
film sample where the study of such MM measuremantsarying AOl may be the only
way to identify the anomalous properties of theametterial comprising the film. In the

above cases for both right handed and left hand&édrrals, the ability to distinguisk

andu vanishes at normal incidence. However, the contresveen the magnetic and

electric contributions is at maximum for AOIs tlae close or even exceed the Brewster

angle of ~68 that corresponds ton = J6 . Given that there are only 4 independent MM

elements to measure, varying the AOI contributesitical degree of freedom to the
proper characterization o€ and g tensors. Fig. 8.3 also shows the interesting
impedance matching condition discussed in SectionNVBen £ = i, there is zero
reflection at normal incidence.

The simple examples considered above can, of cobesanalyzed using the alternative
approach of the Jones Matrices. Switching betweaslralric and magnetic contributions
as well as between the positive and negative valtitsese contributions does naturally

cause changes i and A dependencies. However, the behavior of thesgseletric
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parameters is more complex, and not as illustratisecompared to switching signs in the
off-diagonal Mueller Matrix components.

Since real metamaterial samples are usually apgictrone should not always expect to
see such well pronounced and easily understandsdfaets in real experimental data.

However, the fact that the angular dependenciéseoMM elements respond differently

to dielectric and magnetic contributions, as wslt@the positive and negative values of

& and u , should allow for the ability to distinguish thed#ferent situations while

extractinge and ¢ by non-linear fitting of the experimental data.

8.6. Summary

We have presented an analytical approach for tay sif dielectric-magnetic materials
using 4x 4matrix formalism. Wave vectors in a dielectric-matio medium are derived
directly from the eigenvalue solutions of the Baram equation. We utilized the wave
vector approach to derive analytic formulas for ¢henplex reflection and transmission

coefficients of thin films whose& and g tensors both have an orthorhombic symmetry.
Any other system that has simultaneously diagoable € and g tensors (with

coincident principal axes) can be reduced to tagedy rotations of the reference frame.
We have demonstrated how these calculations cadupeothe full MM of a non-
depolarizing material. Forward models for the axtiMM elements of a planar
metamaterial were calculated. The separation ofrthgnetic and dielectric contributions
to the optical properties of an anisotropic mateaa well as identification of negative

refractive index in a thin film, are possible usthg MM approach at varying AOI.
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The following original results have been presermtetthis Chapter:

formulae for the complex reflection and transmissmoefficients have been
derived for materials withg#1 in the thin film configuration having

orthorhombic symmetry or higher. These formulaeiporate the case of non-
vacuum incident and substrate media.

the behavior of Mueller matrix components for anglametamaterial in proximity
to resonance have been illustrated at varying AOI.

for the first time, the separation of dielectricdamagnetic contributions in the
optical spectra of a magnetic material has besmomstrated by performing MM
simulations at varying AOI

for the first time, the identification of the Nega Index of Refraction condition
in the optical spectra of a magnetic material ligstrated by performing MM

simulations at varying AOI.



CHAPTER 9

ADJUSTED OSCILLATOR STRENGTH MATCHING FOR HYBRID
MAGNETIC AND ELECTRIC EXCITATIONS IN DY  3FEsO12 GARNET

The original results presented in this Chaptepatgished in:

P. D. Rogersy. J. Choi, E. Standard, T. D. Kang, K. H. Ahn,Budroka, P. Marsik, C.
Bernhard, S. Park, S-W. Cheong, M. Kotelyanskid AnA. Sirenko, Phys. Rev. B,
(2011). arXiv:1101.2675v[cond-mat.str-el].[2]

9.1 Introduction

Far-infrared (IR) spectra of the optical modes imagmetic materials have recently
attracted a lot of attention, especially with regp& the multiferroic effect and

electromagnons [63-65However, no universal mechanisms have been proptsed
explain the occurrence of electromagnons and tlw®naganying magneto-dielectric
effect [30, 66]. One challenge to theoretical modeling is its depand on empirical data

obtained with a single optical technique, suchrassimittance, which, as we will see in
this paper, cannot always unambiguously distinguishween electric and magnetic
excitations. As we show in this Chapter, a comlmatof several complementary
techniques, such as transmittance and reflectivdy,the measurements of both the

complex dielectric functione(w) and the magnetic permeability(«) spectra can

improve understanding of the coupling between magramd electric excitations [67].
The quantitative interpretation of the optical speaequires an adequate modeling

approach for light propagation in magneto-dielectmystals withu(w)#1. We applied

Berreman’s 4x4 matrix formalism [16] for the nuneatiand analytic analysis of

133
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experimental data for transmittance, reflectivignd rotating analyzer ellipsometry
(RAE) in DwFe0O;, garnet (Dy-IG). Through the combination of thesptical
techniques, we determined whether an IR-active mads (i) entirely of dielectric
origin, (ii) entirely of magnetic origin, or (iija hybrid with a mixed electric- and
magnetic dipole activity. In this paper, we showattthe magnetic components of the
hybrid modes are not negligibly weak and can reisulh complete cancellation of the
mode in reflectivity. The observed vanishing oftam hybrid modes is explained in
terms of the adjusted oscillator strength matci{i®@SM) condition, which has some
similarities to the impedance matching phenomenanetamaterials [42]. We also show
that the RAE data, in addition to being consistsith the results of normal incidence
reflectivity, illustrate that the AOSM condition igpplicable for varying angles of

incidence.

9.2 Material Preparation
The high-temperature flux growth technique wasagd to produce bulk crystals of Dy-
IG (DysFesO12). A sample with a (0 0 1) surface, a cross secticra of 5x5 mf
thickness of 0.55 mm, and a 3° offset between sippsides was used for the optical
experiments. Transmittance spectra with resolutibf.3 cm® were measured between
13 and 100 ci at the National Synchrotron Light Source, Brool¢ravNational
Laboratory, at the U4IR beamline equipped with akr IR spectrometer, and a LHe-
pumped bolometer. The RAE and reflectivity measemeswere carried out at Fribourg
University using a Hg lamp in the spectral rangevieen 45 and 100 cirwith resolution

of 0.7 cm'. The RAE experimental setup is similar to thatciieed in Ref. [68].
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Temperature and magnetic field dependencies faicstalues of £0,H,T) and

X(0,H,T) were measured using an LCR meter at 44 kHz ar@U[3 magnetometer.

9.3 Results and Analysis

Dy-IG, as well as otheREIG (RE=Ho, Tb), is a ferrimagnetic material with a huge
magnetostriction, which is related to the comboranf a strong anisotropy of the crystal
field of theRE®* ions and a strong and anisotropic superexchangeition betweeRE
and iron [69-72]. Although there are no literatueports that Dy-IG is multiferroic,
recently two related compounds, antiferromagnaticaderrite DyFeQand Th-1G, were
shown to be multiferroic and magneto-dielectric,[73]. We found a magneto-dielectric
effect in a weak external magnetic fiettl of about 2 kOe. We also observed two

indications of the ferromagnetic ordering of DyrepatTc =16 K: (i) the sharp minimum
in the temperature derivative of magnetic suscéyibdy/0T at Tc [Fig. 9.1(a)] and (ii)

the temperature dependence of the exchange restRmode frequencies, which will

be discussed below. The quasi-static value of tbkearic constants(0) of Dy-IG has

anomalies in the temperature and external magfietit dependencies [Fig. 9.1(b,c)].
£(0,T) has a peak aic =16 K that can be explained by the local electalapzation due

to anti-ferroelectric lattice ordering. The lattercurs in the same temperature range as
the ferromagnetic ordering of the Dy spins belowKL6The anti-ferroelectric lattice
ordering does not create a global electric poléioma but affects the spin and lattice
dynamics at the microscopic scale. Using RAE wendbthat the soft optical modes at
Q=146 cm' and 595 cnl, which are associated primarily with Dy and oxygen

displacements, contribute to the changes(0,T) through the Lyddane-Sachs-Teller
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relationship:£(0,T)~Q™(T) [see Figure 9.1(b)]. The magneto-dielectric effaddy-IG

reveals itself in the variation ofg(0,H) for H<10 kOe [Fig. 9.1(c)].
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Figure 9.1(a) Temperature dependence of the static magsesiceptibility (red curve,
left scale) and its derivative (blue curve, rigltle) for a DyFe0;, single crystal.
Ferromagnetic ordering of BYyoccurs affc =16 K. (b) Temperature dependence of the
static dielectric constant &t=0 (solid red line) antH=10 kOe (blue dashed line). Black
squares represent the temperature dependence sifttaptical phonon frequency at 146
cm* measured with RAE. (c) Magnetic field dependencéhefstatic dielectric constant

atT=5K. Inall graph€ ||[L00]and4 || [0 1 1].
The appearance of anti-ferroelectric ordering anDyaDy ferromagnetic interaction
motivates us to re-visit the far-IR optical speaifdDy-IG. REIGs have been studied in

Refs. [14, 75-77]. It was shown that below 80 “¢cntransmission spectra in
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polycrystallineREIGs are dominated by boRE** single ion electronic transitions and
Kaplan-Kittel (KK) modes, which were attributed nmagnetic dipoles [14, 78].Figure
9.2(a,b) shows a transmittance spectrum ofFByD;, at T = 5 K, and the transmittance
intensity map. In addition to the optical phonorBatcni' [see Ref. [79]], a number of
crystal field (CF) lines of DY at 20, 52, 72, and 87 ¢hare observed fof > 16 K. At
low temperature$<16 K, however, the number of absorption lineseases. The ligand
field (LF) and KK modes appear at 13, 22, 29, 48,59.5, 73, 78, 87, 91, and 98tm
for T=5 K. In a simplified model for two-spin ferrimagmesystems, likdRE-Fe, a single

exchange-type KK mode is expected with the frequenic w,, . The LF modeaw

corresponds to precession of the’Dyioments in the effective field imposed by the iron
magnetization due to the superexchange interadteiween Fe an@®E The latter is
modified by the ferromagnetic interaction betweey? Tspins at low temperature. The
zone-center frequencies of these collective exeitatof Dy and F&" spins are: [75, 76,

78]

a, (T) :/]Fe—DyluB[gDyM Fe” OreM DS(T)]

(9.1)
a{F (T) = gDyluB |:/1Fe— DylvI Fe+A Dy D)J\/l D)(T)]’

where £, is the Bohr magneton‘]F&Dyis the exchange constant between Fe and Dy ions,

ADy_Dyis the ferromagnetic exchange constagy, =2 and g,,, are the corresponding
g-factors, M, (T) is the Dy-sublattice magnetization, aM., is the combined Fe

magnetization. The LF and KK modes can be distsiged based on the temperature

dependence of their frequencies [see Eq. (9.1)].TRo16 K, the KK modesa, (T)

exhibit softening due to increase bf, (T). Figure 9.2(a,b) shows three KK modes at
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43, 51, and 59.5 ¢ that can be explained by the double umbrellacatre for Dy*
spins and by the strongly anisotropic and tempegadependent superexchange
interaction between DY and F&" ions. The temperature-induced variation of the LF

mode frequencies below 16 K is also proportionaMg, (T) [see Eq. (9.1)], but it has

an opposite sign compared to that for KK modes. ) indicates a phase transition at
Tc=16 K with appearance of the long range orderinQy#&pins.

According to the simplified model for collinear Byand F&" spins, the KK and LF
modes were viewed as pure magnons [75, 76]. Hawéwar spectral proximity to the
phonon at 81 cih and modification of the LF due to local electrilarization should
result in a hybrid electric- and magnetic-dipoléhaty. In the following, we will prove
this suggestion using a combination of severalcapttechniques: transmittance and
reflectivity at normal incidence, and RAE. The terthF” and “hybrid” will be applied
interchangeably to the same modes. The first t&fers to the origin of the IR-active
excitation as described above, while the latteresponds to the mixed dipole activity of

the mode in the optical spectra.
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Figure 9.2 (a) Far-IR transmission spectrum for azbg0O;, single crystal measured at
T=5 K. The light propagation is along the [0 O 1}edtion. Arrows indicate the
frequencies of the IR modes. (b) Transmission rgpemperature and light frequency.
The blue (dark) color corresponds to stronger giisor and red (light) color indicates
high transmission. The horizontal green line repmés the ferromagnetic transition
temperaturélc =16 K. The white dots represent the phonon atr8t. The black dots
show the KK and LF excitations.

Figure 9.3(a,b) compares the transmittamgeo) and reflectivityRy(w) spectra of the
same Dy-IG sample as in Figure 9Tqw) and R{w) have been measuredTa8 K and

9 K, respectively, at near-normal incidences., the angle of incidence (AOI) is close to
zero. RAE measurements were taken for the samelsatip-8 K and AOI=75 deg. The

results of the RAE measurements are shown in terfrtbe real part of the pseudo-
dielectric function(&,(«), [Fig. 9.3(c)]. Modes of three kinds can be idied in Fig.

9.3(a,b,c): (i) The phonon at 81 ¢mwhich is obviously an electric dipole, has a
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conventional Lorentz shape in tH&(w) and RAE spectra. The phonon is also strong in
T{w); (i) The KK mode at 59.5 cthhas an inverted Lorentz shape in bothRe) and
RAE spectra. As shown below, this shape is typicalmagnetic dipoles. (iii) The LF
modes at 73, 78, and 91 ¢nare as strong as the phononTigw), but practically
invisible in both theR{(w) and RAE spectra. Th&y(w) andRy(w) spectra, both measured
for the same sample and at the same AOI, can lmmcied by suggesting that the LF
modes in Dy-IG possess a hybride., magnetic- and electric-dipole activity. This
suggestion can be qualitatively understood basedveselago’s approach for light
propagation in an isotropic, semi-infinite mediumthw pu(w)#1. Here a simple

replacement of the refractive index is used: foeskel's reflection coefficient,

N(w) - J&(@) ! u(w) ; while in transmittancen(w) — /£(w) u(w) [36]. These formulas
explain that a magnetic mode has an inverted shaplee reflectivity spectrum since
n(w) ~y1/ (@) in the vicinity of the mode where(w)=const. They also naturally
account for the suppression of the mode featutharreflectivity spectrum for a hybrid,

i.e., magnetic-dielectric mode, where the magnetic dieectric components tend to

cancel each other (see Appendix C for further tgtai
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Figure 9.3 Optical spectra of a RFFe0,, single crystal. (a) Transmission spectrum at
AOI=0, T=8 K. (b) Absolute far-IR reflectivity at AOI=0[=9 K. (c) Rotating analyzer

ellipsometry (RAE) data for pseudo dielectric fdont(el(w» at AOI=75 deg,T=8 K.
In (a,b,c), the blue diamonds are experimental dath the red solid curves represent

results of the fit. Electric (d) and magnetic $akceptibilities as determined from the fit
results. Magnetic, electric, and hybrid modes aaeked withm, e, andh, respectively.

In order to properly analyze the experimental dat&ig. 9.3(a,b,c), we developed an
exact numeric method (see Ref. [1] for details)icvlis based on Berreman'’s 4x4 matrix

formalism.[1, 16] Our method incorporates the éxgmometry of the measured Dy-1G

sample with average thicknedgs0.55 mm, multiple reflections, variable AOI's, and
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possible magnetic and electric anisotropies. Tpaese functions of Dy-1Gs(w) and
1(w), were modeled using a set of Lorentz oscillators:

N S w 2

e(w)=¢, +
; a)j,eoz _w2 _ij,ew

(9.2)
u Sj mwj mO2
(W) =y, +y —"k

i=1 Wi mo

-0 -y, W
Here £ is the infinite-frequency value of the dielectrienttion, y, U1, S is the
oscillator strengthyem) is the damping constant, ard, ,,, is the resonance frequency.

Although the response functions of Dy-1G can bprinciple anisotropic, the comparison
of the reflectivity and ellipsometric data taken different AOI do not reveal any
anisotropy within the accuracy of the data. Therldymodes in this model have non-

zero electric and magnetic oscillator strengfsandS, at the same resonant frequency

@, = Wy o thus creating a contribution to bo#(a) and (). The electric and
magnetic damping constants for the hybrid modesaasemed to be the sampe=y...
The results of the fit using 4x4 matrix formalisar Ry(w), Ts(w), and(a‘l(a))> are shown

in Figs. 9.3(a,b,c) with solid curves. The correxpng values ofS and S, are
summarized in Table 9.1 and the real parts of iekedric function and the magnetic
permeability are shown in Figure 9.3(d,e). Notd tbaDy-1G, & andS, are not large

enough to modify significantly the background valwé £, 017 and x, 01. Hence, both

&(w) and K(@) are positive everywhere in the vicinity of the Hgbmode frequencies

[see Fig. 9.3(d,e)]. Thus, the natural occurresfaenegative index of refraction does not
take place at the spectral range dominated by ylheichmodes that might otherwise

occur if their damping were sufficiently low.
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TABLE 9.1. The values of parameters of optical phonon atr@t (e), magnetic KK
mode at 59.5 cth (m), and three hybrid mode#)(at 73 crt, 78 cm* and 91 cnit
obtained from the analysis of the combination &f ttansmission, RAE and reflectivity
measurements.

Wo, CM™* S Sh Type
59.5 - 0.0019 m
73 0.036 0.0021 h
78 0.035 0.0022 h
81 0.077 - e
91 0.032 0.0010 h

Certain analytical formulas can be obtained whadsist in describing the
measuredTyw), Rs{(w) , and RAE spectra. Consider two electric and me#g
oscillators that are separated on the energy scaléhave comparable values gty .

If the backside reflection is not strong, the radfothe amplitudes of the modes in the

reflectivity spectra at their respective resonanaes related toaRss(w)/aw‘wq mo @S

follows:

OR,/0Wl,e _ _H. S. We (9.3)
a&s/awlwrro goo Sma)nﬁ) ’

where S,<<¢,. u, and ¢, are determined at the frequencies shifted frayy, by at
least 3y, ,,. Note that the negative sign corresponds to theriad Lorentzian shape at

the magnetic resonance. If the thickness of thepkamh is optimized to prevent
saturation of the transmitted intensity at the neswe, then the following relationship for
transmission amplitudes of the magnetic- and etegtodes can be obtained:

AT, (e S W 9.4)
AT €, S, Wy

m

where AT, =T(Wy 40) ~ T(W¢ 5o 23y ). In the case of hybrid modes with a mixed

electric- and magnetic dipole activity, Eq. (9.3)daEq. (9.4) indicate that the
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contribution of the dielectric and magnetic ostdrs to the transmission spectra is

additive with an adjusted oscillator strength (AGS)= 1, [0S + ¢, 0S,, while their total
contribution to reflectivity is subtractive with Aof s, =(u, 05 -¢, 0S)/4’ . Here,

the relevant magnetic or dielectric oscillator sgth is multiplied by its constitutive
response function complement. For the general oasespectrum with several hybrid
modes, a complete cancellation in reflectivity measents is possible for each mode if

the adjusted oscillator strength matching condif(@@SM) occurs:u(w,) (8, = £(w,) S,

These results are consistent with the aforemerdidfeselago approach (see Appendix
C). In our experiment, the AOSM condition is reatl for the hybrid modes at 73 and 78
cmi’ that are not visible in either normal-incidencBestivity or RAE experiments. The

hybrid mode contribution taiR,(w,)/ dw is negligible and th&y(w) spectrum looks

essentially featureless around the resonance fnetese Analysis of RAE spectra taken

at AOI=75 shows that the AOSM conditiop(w,) (8, = £(w,) (S, is valid across a wide

range of AQIs, even close to the Brewster anglef{7#6r ¢, =17 and x, =1).

9.4 Conclusions
In conclusion, the rare occurrence of the AOSM aword for hybrid modes was studied
in Dy-IG. The proximity of the DY LF exchange resonances (73 and 78'cto the
frequency of the lowest optical phonon (81 Ymocal electric polarization, and the non-
collinear spin structure for the Dy-Fe magneticteys are responsible for the mode
hybridization. The AOSM condition is used to expléhe almost complete cancellation

of the hybrid modes in the reflectivity spectra l@hiemaining strong in the transmission
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spectra. One of the possible applications of theSMCcondition is for the design of

antireflective coatings in the far-IR spectral ranging magnetic- and metamaterials.

9.5 Chapter Summary
The following original results were presented iis tBhapter:

» for the first time, Adjusted Oscillator Strength@8) formulas for a magneto-
electric material have been derived for reflectiothe semi-infinite configuration
and reflection and transmission in the thin filnmisguration.

» using the AOS formulas, the proper ratio of thee 9 dielectric and magnetic
excitations in the optical spectra can be calcdlate

» for the first time, hybrid magnetic and dielectnodes in the optical spectra of a
multiferroic material have been identified

» for the first time, the Adjusted Oscillator Streimg¥latching (AOSM) condition
has been derived which completely explains the \dehaf the hybrid modes in

the optical spectra of Dy-IG.



Chapter 10
MODELING OF ELECTROMAGNETIC WAVE PROPAGATION AND

SPECTRA OF OPTICAL EXCITATIONS IN COMPLEX MEDIA US| NG 4x4
MATRIX FORMALISM

10.1 Introduction

10.1.1 Motivation

Optical spectra of complex materials, such as magglectric (ME) and multiferroic
crystals, materials with intrinsic or artificial icality, and metamaterials, are in the focus
of modern experimental and theoretical studies. ddramon feature of these complex
materials is that their optical properties cannetdescribed only with 8x 3 dielectric

susceptibility tensoi(w) . By analogy withbi-axial dielectrics, the complex materials

can reveal a so-calldal-anisotropicoptical behavior in a form of the fascinating effe
such as nonreciprocal light propagation, negatindex of refraction (NIR), and
polarization plane rotation. These exotic optida¢mpomena usually occur in a relatively
narrow part of the optical spectrum. For examphe NIR effect could occur in
metamaterials or multiferroics only in the GHz adHzZl spectral ranges, but above a
certain frequency such materials behave as norneghlsnor dielectrics and, hence, a

simple £(w) function could perfectly describe their opticabperties in, for example, the

visible part of the spectrum. Note also that tharsotropic optical phenomena, such as
magneto-electric and chirality effects, are notumlly exclusive and can coexist in the
same or different parts of the optical spectrume Tgroper description of the bi-

anisotropic optical effects in complex materialguiees an adequate theoretical

description and advanced experimental spectroscapproaches. Calculations of the

146
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optical spectra and polarization for complex anisotropic materials are particularly
important at the resonance with the related eleamgnéxcitations, such as, g.,
electromagnons in magneto-electric materials.

Recently, spectra of electromagnons in TbMn@ultiferroic crystals have been
discovered by Pimenoet al [63]. Similar electromagnon excitations have beéso
observed in other related multiferroic oxides, uathg REMnO; and REMn,Os (RE =
rare earths) [64, 80-82].The polarization selectides analysis for the transmission
optical configuration suggested that this electrgnoe mode is excited by an electric
field of light, in contrast to antiferromagneticsomance (AFMR) that can be excited by
the magnetic field only. However, the polarizatenmalysis of the electromagnon spectra
has been always restricted by the experimental gggrwith the normal light incidence
on the sample surface. The limitations of this apph revealed themselves recently by
failing to explain the experimentally-observed s@ggion of electromagnons in
reflectivity measurements of GdMpO[83]. As we will see in the following,
electromagnons in uniaxial crystals are not oggicalctive in a back-reflection
configuration, while transmission technique applkohne is not capable to differentiate
between pure magnetic- and electric dipoles andpofse, cannot distinguish them from
electromagnon-type of excitations. As we demorsstimtthis Chapter, the most suitable
theoretical representation of bi-anisotropic pheapancan be done with the help of the
Jones and/or Mueller Matrices. Correspondingly, thest efficient experimental
technique for the experimental studies of compleatamals is Mueller Matrix

Spectroscopic Ellipsometry (MMSE) that can be el in both reflection and



148

transmission configurations with variable azimutiiadjle and variable angle of incidence
(AQI).

The primary goal of this Chapter is to appi4 Berreman’s matrix formalism to
calculate polarization of the optical spectra imptex materials. We illustrate our results
with examples of Mueller Matrix calculations foretlfar-infrared spectral range, which is
mostly interesting for spectra of electromagnonintiferroic materials. Nevertheless,
these calculations are also easily applicablediverse group of bi-anisotropic materials,
such as metamaterials and chiral structures. Guitseshould provide a foundation for
building the adequate forward models that can leel urs the experimental data analysis
obtained with MMSE and other spectroscopic techesgusuch as Rotating Analyzer
Ellipsometry, Generalized Ellipsometry, and Trarssiun Polarimetry.

10.1.2. Modeling Approach

Models for electromagnetic wave propagation in adiom@ require solutions to
Maxwell’'s equations. These solutions, in turn, depepon the proper characterization of
the electromagnetic properties of the medium. Asigifofer explains in a theatrical
analogy, if Maxwell's equations are a play withricéate plots, then the medium is the
stage in which the electromagnetic processes tiakoe j34]. The stage is described by a

set of equations which are known as the mediunmstitoitive relations:

10(1)

In Eq. (10.1),D is the dielectric displacemenB is the magnetic inductiont is the
primary electric field vectorH is the primary magnetic field vectoé, is the dielectric

permittivity tensor, 7 is the magnetic permeability tensor, agdand p' are the bi-
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anisotropic tensors. Each tensor is associated avitique physical property of the
medium and can be described by:a3 matrix [33]. Further, the physical properties of
the medium, which the tensors represent, are dfemuency-dependent and must be
described by a set of dispersion equations. Varinathematical models including the
simple harmonic oscillator (SHO) and coupled hanmarscillator (CHO) models are
usually used for these dispersion relationshipeméof these models will be considered
below. In this paper, simple mediunis defined to have isotropi€ and /1 tensors but
no bi-anisotropic activity. Acomplex mediunwill refer to all other possible tensor
symmetries and allowed tensor combinations [34].d&@ot consider the effects of non-
linearity nor spatial dispersion in this paper. Tdmnbination of Maxwell's equations,
boundary conditions, the constitutive relationg] #ime dispersion relations are required
to derive a proper solution for electromagnetic @apropagation and to model
excitations in the optical spectra.

In contrast to£ and /7 tensors, the bi-anisotropic tensgesand p' are less known and
their properties require clarification. In this gapve will consider two major additive

contributions top and o': the magneto-electric effect and chirality, sa:itha
(10.2)

One can see that the ME contribution is descrilyeth®& complex tensadr , and chirality
is represented by tensctf” . Both tensorsf and &, are complex and can have both real
and imaginary parts. Accordinglyp and p' are not expected to be the complex-

conjugate-transpose for each other [43].
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According to Dzyaloshinskii, the corresponding MEntribution to p' should be a
“transpose” tensor:@'=a". This requirement follows from the Dzyaloshinsky’s
definition of & in the static case:

_ 0°F
a; =
' OE0H,

(10.3)

At present, however, this requirementdf= 4" for optical frequencies is under debate
in the literature [32]. In the following theoreticanalysis we won’'t implement
Dzyaloshinskii's restriction and keep a generahtion for thep and p' tensors. In any
case, both and @' have the same sign of their complex parts, sotheabscillators in
both & and &' should absorb light in the transmission experimehensorsy and g
change sign under space inversion and time invergi@ration, remaining unchanged if
both operations are applied simultaneously. Thagp@rty results in the requirement that

@ =a'=0 in materials with the center of inversion or wittme-reversal symmetry (see

Refs. [18, 25] for more detail). In contrastdq the chirality termj [ has its transpose-
complex conjugate counterpati] quT that contributes tgo'. For isotropic materials,
Georgieva [41] showed that the chirality parame&tewhich originates from théH/at

and aE/at terms in the Maxwell equations, scales proportigria w which requires its
disappearance at zero frequenéy0) - 0. In the case of a crystal, we assume that the
chirality effect can also have a resonant behawdod should diminish at high
frequencies$(«) - 0.

The main challenge to the analysis of bi-anisotromiaterials is a vast number of

possible tensor symmetries in the bulk crystals #ma films. The task of obtaining
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analytical solutions for all possible configuratsioappears daunting. Fortunatelyx 4

matrix formalism, as developed by Berreman [16]ovmies for an accurate and
systematic method of obtaining numerical, and imeacases, analytic solutions for
electromagnetic wave propagation in both simple andhplex media. A complete
description of electromagnetic wave propagatioa complex medium is made possible

using Berreman’s matrix equation [16]:

[O 'C“”]E]ﬂﬁ’(f ?)('ﬂ (10.4)
curl 0 H clpo' U)NH

In Eq. (2.52),curl represents the 3x3 matrix operator. The first main the right hand
side is a 6x6 matrix called the optical matkix This matrix contains all information
about the constitutive relations and completelycdbss the anisotropic properties of the
material [17]. Eq. (2.52) can be reduced to therdman equation which describes
electromagnetic wave propagation in a crystal:

¥ Yhy (10.5)
dz c

In Eq. (10.5),¥ is an array of the transverse components of thetrelmagnetic wave

[E,. H,,E,,—H,]" in the medium and is an eigenvector/of whereA is a 4x 4matrix

constructed from the components of the 7,0 and p' tensors. Eq. (10.5) is at the

heart of 4x 4matrix formalism. The eigenvalue and eigenvectdutgmns to Eq. (10.5)
represent wave vectors and the transverse comoktite propagating electromagnetic

waves, respectively. These solutions are uniquleg@rystal symmetries and constitutive

relations incorporated into thematrix.
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In this paper, five different configurations of stgl symmetry and constitutive tensors
will be examined. They are presented in increasirtgr of complexity. The five cases
have been selected to illustrate both the appiinatif 4x 4matrix formalism as well as
aspects of electromagnetic wave propagation.

Case 1 examines a medium with anisotropi@and & tensors only(o = p'=0). This
case is applicable, for example, to a system witterter of inversion or with time-
reverse invariance. We consider this as the baseaeour analysis because it illustrates
how the eigenvalues of th& matrix are evident not only in the eigenvectorscdbing

the electromagnetic waves but also in the comp#ération coefficientsk vectors and
Poynting vectors associated with each polarizati@ase 1 illustrates how birefringence
is contained in the non-degenerate eigenvalueisnkibf theA matrix.

Case 2 examines isotropcand 7 tensors. We have presented this simple medium case
second because it is an immediate consequencesaf CaWe use Case 2 to compare
results obtained usingx 4matrix formalism to the Veselago approach for malker
having magnetic permeability # 1[36].

Case 3 introduces magneto-electric tensors int@tiadysis by examining the case of a
multiferroic material with uniaxiaE and & tensors and magneto-electric tensors having
only one off-diagonal element. The results of thisalysis permit the interesting
observation of irreversibility in electro-magnet@ve propagation in magneto-electric
crystals [25].

In Case 4, the analysis of isotropic iz, o and o' tensors is presented. Solutions for

this symmetry are more mathematically complicatehgared to the first three cases yet
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still permit analytic solutions. Case 4 illustratesv anisotropy can be introduced into an

isotropic crystal through the magneto-electric effe

Finally, Case 5 analyzes anisotropic 7, © and p' tensors, all in orthorhombic

symmetry. Case 5 illustrates how tide matrix can be constructed for such a set of
complicated constitutive relations. Case 5 will Hlastrated using results of our
numerical analysis. A simulation tool that covegfiectivity geometry for semi-infinite
bi-anisotropic material is available in Ref. [84].

In Section 10.2, each of the five cases is analyzdlde semi-infinite configuration. The

analysis follows the flowchart fodx4matrix formalism outlined in Fig. 1. This

procedure begins with tHé matrix which enables th& matrix to be calculated along

with its eigenvalues and eigenvectors. From theeriglues, thek vectors can be

immediately determined which, in turn, allow foetanalysis of possible birefringence in
the medium. The eigenvectors, together with thegeatial boundary conditions o&
and H for non-magnetic incident media, provide for thduson of the complex

reflection coefficients. Finally, when thecomponents ofE and H are recovered, the
Poynting Vector is returned, which can then be camneg to the wave vector for analysis

of possible divergence between the direction ofitbee fronts and energy flow.
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M, the optical matrix

)
. /Ej\

Wave vector,k /

\l/ rpp rps rs,p lss

EigenvectorsY

birefringence tss tps tsp tss

Recapture of Fand H

l

¢ N Poynting Vector, S

Wave vector,k

Fig. 10.1.Flowchart for steps idx 4matrix formalism.

In Section 10.3, the procedure is applied to the fim configuration for Cases 1 and 3,
where the method takes into account interfereraa the multiply reflected waves at the
surface boundaries. The analysis of bi-anisotrepaterials in thin film configuration

also allows for the calculation of the complex smamssion coefficients assuming a non-
magnetic substrate. In Section 10.4, the needifpedsion models for proper modeling
of the response functions is examined. For CasehB;h incorporates the magneto-
electric effect, the implications of dispersion Weave propagation and Negative Index of

Refraction (NIR) are discussed. In Section 10.6,itikeresting case of hybrid modes,,
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electric and magnetic excitations at the same sgdnequency, is examined for variable
angle of light incidence. Using the complex refi@atand transmission formulas derived
in previous Sections, together with the dispersimadels, the condition called the
Adjusted Oscillator Strength Matching is discusdgdder this condition, we show that
the hybrid modes can disappear in the Reflectisjigctra but still remain strong in the
transmission spectra [2]. Finally, in Section 1@, simulate electric, magnetic, hybrid
and electromagnon modes in the Reflectivity spedltzeller Matrices (MM) are used to
illustrate these simulations in both the frequeaog AOI domains. Full MM analysis
allows for the possibility of distinguishing betweenany of the electric, magnetic and
magneto-electric effects. Simulations such as thskeuld assist in the proper
characterization of material constitutive relatiémough fitting of experimental data.

In recent literature, both Berreman#x4 matrix formalism as calculation tool and
Mueller Matrices as an analytical tool for opticapectra have been employed.
Konstantinovaet al. have used4x 4 matrix formalism to analyze a number of crystal
characteristics including optical activity [85, 8@Jlayerhoferet al. have recently used
this approach to calculate the reflection coeffitseof non-magnetic crystals with mono-
clinic symmetry [87]. Georgieva et al. have usesl Berreman method in the analysis of
chirality including the calculation of the Poyntingector [41] for optically active
materials. Bahaet al. [88-92] and Arteaga&t al. [93-97] have both employed Mueller
Matrices extensively in the study of chiral matkstidhe work in this Chapter is unique
because it considers the most general case ofatgysomprised of the various
constitutive tensors in anisotropic symmetries sTdmnalysis is made possible through the

combination of4x 4matrix formalism and the use of Mueller Matrices.
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10.2 Semi-Infinite Configuration

10.2.1 Case 1 - Orthorhombicg and 1 Tensors; (o= p'=0)

The case of a material having orthorhombiand & tensors will now be examined. It is
assumed that this crystal has principal axes g hrtlthe X,y and zcoordinate axes

which form a right hand system with theaxis pointing downwards and theaxis

pointing to the right. Radiation is incident in the-z plane. This configuration is

illustrated in Fig. 2 [1].

N

0

Isotropic Incident medium

(non-magnetic)

> X
Dielectric-Magnetic medium

LR
\\ \\‘ (E ' l"l')

Fig. 10.2.Wave vector diagram for incident and refracted egapropagating in a
complex medium.

We further assume that the and /7 tensors can be simultaneously diagonalized in the

same X-y -zcoordinate system. In crystals, the principal af@sé and j tensors
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rarely coincide. Accordingly, this symmetry reatipa is mostly applicable to

metamaterials. With no magneto-electric activityg optical matrixM becomes:

e, 0 0 O 0 O
0O g 0 O 0 O
0O 0 ¢, 0 O O
: (10.6)
O 0 0 4, 0O O
0 0 0 0 uy, O
O 0 0 O 0 u,
and theA is a4x 4matrix calculated to be [16]:
2 o} 2
0 u,- N,"sin(g,) 0 0
- | €y 0 0 0
A= (20.7)
0 0 0 U,
2 o} 2
0 0 - N,"sin(G,) 0

Inserting Eq. (10.6) and Eqg. (10.7) into Eqg. (3umes four exact solutions of the form

Y, (z) =y, (O) ed%with |1 =1,2,3or 4, two for each of thepand s polarization states.
g, is the angle of incidence (AOI) Whilp(s) refers to radiation parallel (perpendicular)

to the plane of incidenceq,, and g,.are the eigenvalues associated wiptand s

polarizations, respectively and constitute theomponents of the wave vectors in the

medium. These are:



158

w N,?sin?(6,)
=+ Je e S
qu C xx\/luyy c

zz

(10.8)

2 ain2
qzszig\/ﬂxx\/g)’y_ NO il (00)
C

Hz,
Given the zcomponents of the wave vector in Eq. (D.1), the cotaphave vectors for

each of thep and s polarization states can be written as:

K, :[(%)) N, sin(6,) ,0,%)\/57”\/yyy—'\|025i—n2(90)J

&

zz

. w . w N,%sin*(6,
ks ([Ej NO Sln(HO) ,013 :uxx\/gyy_OTz(o)}

The two kvectors in Eqg. (10.9) identify the direction of pagmation of the waves

(10.9)

associated with each polarization. It is clear thainfin normal AOI, the twk vectors
will not be identical and will therefore diverge tiey propagate forward (downward)
into the medium. This phenomenon is known as birefriogeand is evidenced by two
separate forward propagating electromagnetic waves.

The eigenvector solutions (in columns) are:
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1 0 1 0
£ £

XX 0 _ XX 0

NZsin(6,) NZsin(6,)
v £ Hy = £
0 1 0 1
\/ _Njsin(6,) \/ _Njsin(6,)
yy yy
0 Hy, 0 _ Hy,
/'IXX /'IXX
(10.10)

In Eqg. (10.10), the eigenvectors in columns 1 andofesent forward propagating waves
while those in columns three and four represent backwaopagating waves. The

eigenvectors in columns one and three are associatibddthe g,, eigenvalue and
represent p polarized radiation. A complete description of this vevainvolves

multiplication by €™**. Similarly, the eigenvectors in columns two and foue a

associated with theg,, eigenvalue and represerstpolarized radiation. A complete

description of this wave also involves multiplication ley/. For a semi-infinite
material, the two eigenvectors representing the faiymopagating waves are used to
calculate the complex reflection coefficients fgr and s polarized radiation. The
procedure for calculating the complex reflection fioents involves matching the
tangential components of the incident and reflecdnd H fields to a linear
combination of the two eigenvectors calculated atcthramon interface located at=0

[16, 17]. The complex reflection coefficients are:
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— gxxkzo - NO2 qu

r,=——m——— 10.11
i gxxkzo + N02 qu ( )

roo = Hoon = Ges (10.12)
:uxxki) + qzs

In Eq. (4.9) and Eq. (8.5k,, =2 N, cos(@o) is the zcomponent of the wave vector and
c

N, is the index of refraction in the incident medium. Engenvectors in Eqg. (10.10) can
also be used to calculate the Poynting vector foh @h¢he p andspolarized radiation

states. This procedure first requires recapture oktt@mponents of th& andH fields
which were originally suppressed in the Berreman #&gus in order to reduce from a
6X%6 to a 4x4formalism. By solving the two algebraic equations assediatith the
initial Berreman matrices, for orthorhombic symmetryge tBolutions for thez

components are:

_—— H,N,sin(6,)
’ £ZZ
(10.13)
o= E, N, sin(6,)
’ My

Eq. (10.13) can be applied to each of thandspolarization states. Since the terms in
_Nzsin(6,)
/'IZZ

Eq. (10.10) recur frequently in this analysis, wefire c:\/gyy and

NZsin(8
n :\/,uyy —0—(") . First considerp polarization. Here,H, becomes zero and the

zz

vector fields are:
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- Ex(l,o,_ gxxNosm(Ho)]équz

&A1
(10.14)

H = EX[O’\/§ ,oj g%

The fields in Eq. (10.14) now permit the calculatiof the Poynting vector,

S= (Ex H*)applicable top polarization:

‘2 No Sin(go) ,O,[ 5xx j*\] (1015)

€ 7

zZ

N |~

S, =§|EXIZHJ,§

where the asterisks, *, represents the complexugaig operation. From Eq. (10.15), the

tangent of the Poynting vector angle in the medsim

N, sin( g,
tan(Hé) = ¥ oSin(6) (10.16)
P &1
From Eq. (10.9), the tangent of tkeector angle in the medium is:
N, sin(6,
tan(6, ) = Nosin(6) (10.17)

N

While the expressions in Eq. (10.16) and Eq. (10.&re similar, a comparison shows
that if £, # £,,they are not identical. This analysis points oet\rell known observation
that for a crystal with orthorhombic symmetry, ttheection of the wave vector is not
identical to that of the energy flow as given bg fhoynting vector. Fospolarization,

E, is zero and the fields become:
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- Ey (011’ 0) éqzsz

; (10.18)
H=E|- S o, N, sin(6,) s
\/ /'IXX /'IZZ
and the Poynting vector fapolarization is found to be:
N,

_—\ g [Nosin( )| o,| <! (10.19)

1, N

From Eq. (10.19), the tangent of the Poynting veatmle fors polarization is:
Mo No Sin(eo)

tan(6;) = , (10.20)

and from Eg. (10.9), the tangent of th@ector angle forspolarization is calculated to

be:

tan(a) —M.

kls \/F)O(C

(10.21)

Again, while the expressions in Eq. (10.21) and @§.20) are similar, a comparison

shows that ify  # u,,they are not identical. Accordingly, ttepolarized state will also
experience a divergence between the direction gkvpaopagation in the crystal and the
direction of energy flow. In summary, a crystaltwitrthorhombicé and iz tensors will
give rise to four unique vectors: one unickigector for each polarization and one unique

Svector for each polarization, neither of which éncident with its corresponding wave

vector. These four vectors are simulated in Fy3(b) for an imaginary material with

diagonal tensor components=(4,6,8 and ¢=(1,2,3.
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10.2.2 Case 2-Isotropieand iz Tensors (o = p'=0)

Case 2 deals with a simple medium described byogimt £ and iz tensors. Thev

matrix for isotropic symmetry is given by:

(10.22)

O OO0 OO M
O o0 oo mo
O oo ™Moo
o oX oo o
oX oo oo
X oo o oo

Conclusions regarding this symmetry are immediatelgilable from the previous case
by settinge, =¢,=€,,=¢ and u, =y, =u,,= . Akey result is the degeneracy of

the eigenvalues:

Q,, = C—;\/g,u— N,? sin?(6,)
(10.23)

w —
=— -N 6,
s C\/E,u b SN ( 0)

According to Eq. (10.23), for an isotropic crystdiere will be no birefringence that
existed for the orthorhombic symmetry of Case lthBslectromagnetic waves will, of
course, follow identical paths. In addition, froAgs. (10.16), (10.17), (10.20) and
(10.21) it is clear that the direction of energgwlis also identical to the direction of
wave propagation. This configuration is simulatadFig. 10.3(a) for a material with

diagonal tensor components:=(4,4,4and ¢=(2,2,2), where all four vectors are

coincident.
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Fig. 10.3Wave vectork and Poynting vectoSS in for various symmetries and tensor
combinations given in the table below. Unless atie indicated, diagonal tensor

components are giverk for pand s polarizations are solid green and solid red lines,
respectively. S for pand s polarizations are dotted green and dotted red lines

respectively.

Plot

~

~

Symmetry E u 0 o)
(@) Case 2 (4,4,4) (2.2.2) - -
(b) Case 1 (4,6,8) (1,2,3) - -
() Case 3 (4,4,5) (2,2,3) Pry =3 Py =3
(d) Case 3 (4,4,4) (2,2,2) Pry =3 Py =3

This case also illustrates how Veselago’'s apprdachmaterials withy#1 is

automatically incorporated into the results us#wg4matrix formalism via the solution
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of Maxwell's equations. For radiation normally ident from vacuum, Eq. (8.5) reduces

Jies
[ =% (10.24)

to:

_n-n
n+n,

For a non-magnetic material, Fresnel’s reflectioefficient is given by:rg

where n=+/¢ [51]. However, for a semi-infinite isotropic magicematerial, Veselago

explained thatn should not be replaced b&a but rather by\/e/ u =1/zwhere z is

the wave impedance [36, 37]. The formula for thidection coefficient then becomes:

rSS:ZZ—;Zl. This expression is identical to Eq. (10.24) whishderived using4x 4
Lt 4

matrix formalism.

10.2.3Case 3-Anisotropicé andjiz Tensors; Off-diagonal Magneto-Electric Tensors

In Case 3, we introduce the magneto-electric effeevhich a polarization® may be
induced by the application of magnetic figftl, and a magnetizatioM may be induced
from the application of electric fielcE [18]. There is much debate surrounding the
theoretical explanation of these coupling mechasisihe effect is modeled through the
magneto-electric tensorg and o', which couple the response functions of a magneto-
electric material. In the case of zero chiralitf {0), p=a and p'=a'. As we

mentioned in Introduction, in the static cage, is the transpose af . For the dynamic

case, this relationship does not necessarily 82§l We note that other variables can be
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used to describe magneto-electric tensors in EheB() basis [18, 32]. In this paper we
use the €, H) basis because is the most convenient for thefdesalism. Crystal
symmetry plays a critical role in correctly defigitheM matrix for magneto-electric and
multiferroic materials. For example, the requirettbat o = a # 0 infers a simultaneous
absence of both center of inversion and the timerse invariance. In symmetry terms,
these constraints limit the number of possible neignpoint groups to 58 where the
magneto-electric effect is possible [25].

Recent theoretical studies have included derivatminmagneto-electric symmetries for
spiral magnetic ordering. It has been shown that mtagneto-electric tensor for a
cycloidal distribution, such as found RMnO3; compoundsR=rare earth), has only one

non-zero elementp, [32]. For hexagonal crystals of HoMa{11], the £ and iz tensors
are uniaxial [33]. For th& tensor we uses,, =¢, =&, and¢,, =& ; for the iz tensor

we useu, =, =M, and u,, = u . For this configuration, th&l matrix for cycloidal

magnetic ordering becomes:

& 0 0 0 p O

0 & 0 O O O

0O 0 g O O O (10.25)
0O 0 0 g, O OFf '

p' 0 0 0 u O

0 0 0 0 0 gy

and its associated matrix is calculated to be:
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NZsin(8
P’ o~ ° ( 0) 0 0
£
p
£ 0 0
D P (10.26)
0 0 0 m
. 2
0 0 - NZsin(6,) 0
Hy

Inserting theA matrix in Eq. (10.26) into the Berreman equatiore(§q. (10.5)) returns

the following four eigenvalue solutions:

2c

w NZ sin(00)2
= — E ——
qZ c \//’ID( O /Jp

4e N2 sin(6,)*
=£{p+p'—\/(p—,0')2+4£DND——D ~ () }

p

€p

4e N2 sin(6,)*
ql=£[p+p'+\/(,o—p')2+4‘gmluD —L(O)J

(10.27)

In Eq. (10.27), gq,and g,are associated withp polarized radiation and at normal
incidence @,=0), these wave vectors reduce to exactly thoseatem Ref. [32].q,and

g, represent forward and backward propagating waesgpectively. The wave vectors
g, and g,are associated witlspolarized radiation and are similar in form to thos

derived for s polarization in Case 1. Hegg =¢, as required to model uniaxial
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symmetry. With these derivations for tr&omponents, the complete description of the

wave vectors for both polarization states is:

&, £

. w . w NZsin(8,)*
k, = (E) Nosm(eo),o,z uu\/[gm—ou—p(o)]

As is evident in Eq. (10.28), this magneto-eleatrigstal will display birefringence as the

(10.28)

two wave vectors will diverge in the direction ofopagation (see Fig. 10.3(c)). Of
course, this result is expected for a uniaxial talydHowever, even if we had assumed
isotropic £ and j tensors (which were not birefringent in Case 8)can be seen from

Eq. (10.28), the birefringence would still have hée effect due to the presence of the

magneto-electric  tensors  (see  Fig.  10.3(d)). Witlthe  definition
. 4e,NZ sin(8,)? _ _ _
q,= \/(p—p )2 +ae 1, - £,Ny sin(6) , the associated eigenvectors (in columns) are:
p
1 0 1 0
| 28, 0 | 2&, 0
p-p+a, p-p-q,
0 1 0 1 (10.29)
_ NZsin(6,)° _ N7 sin(6,)
C Hy H
0 0 -
JHs JH,
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In Eqg. (10.29), the first column is the eigenveassociated withy, while the second
and fourth columns are associated with. Their complete descriptions require
multiplication by €**and e"*, respectively. The third column is associated vgftand
its complete description requires multiplication &y**. As stated earlierg, ,are thez
components of the wave vectors of the forward pgapag waves whileq, ,are thez

components of the wave vectors of the backwardagating waves. The eigenvectors in
columns one and three are influenced by the magglettric effect. The forward
propagating eigenvectors when combined with thgeatial boundary conditions fdg
and H return the complex reflection coefficients whichkaaip the Jones matrix:

2&, COS(QO) ~ No(p “p+ Ga)

0
26, coq6,)+Ny(p-p+q,)

NS sin(é?o)2

NO\/'LTDCOS(QO)_\/ /Jp
No/, cos(6,) +\/£D _Ngsin(8,)”

Hy

£, (10.30)

As will be discussed later, with proper dispersielations for thes, 1 and p tensors,
the reflectivity spectra for this crystal can bagiated using Eq. (10.30).

The presence of three distinct eigenvalues Aomatrix gives rise to the interesting
phenomenon of the irreversibility of the polarized wave propagation. The wave
propagation associated with wave vectgrsand g, is irreversible because they represent
different phase velocities [32]. The same path nalt be followed for each the forward

and backward propagating waves. On the other hagnénd g, are clearly reversible
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because the electro-magnetic effect is not picketbu spolarized incident radiation. It
also shows that optical reflectivity spectra meadufor s polarized radiation not
sensitive to magneto-electric excitations. As pasly explained, thes polarized
eigenvalues are entirely consistent with those a§eC1 for after adjusting for uniaxial
symmetry.

As in the previous two cases, througk 4matrix formalism, comparisons can be made

between the direction of propagation and the dwacof energy flow. For this crystal

symmetry, the formulas for the recapture of theomponents ofE and H vectors are

identical to those in Eq. (10.13) derived in Cas&Ve restrict our analysis to the wave

influenced by the magneto-electric effect. For tlge eigenvalue, the complete

expressions foE and H are:

E=E 110’—2‘95|\'I0 sin(6,) iz
g,(p-p+a,)
(10.31)
H = E, (01?# ’ 0} d%?
pP—p*q,
and the associated Poynting vector is calculatdx to
| * 2N, sin(6,) *
§, = £ o SIM% ,o,[ o J (10.32)
(o-p+a) & p-p+a,
From Eq. (10.32), the tangent of the S vector amgtee medium is:
tan(g,) = 22No SiN(6) (10.33)
&,(p-p+aq,)

Similarly, from Eq. (10.28), the tangent of thedctor angle in the medium is:



171

_ 2N, sin(6,)
tan(6, ) —m (10.34)

Again, while Eqg. (10.33) and Eg. (10.34) are simihaform, they are not identical. As a
result, there will be a divergence between thectlve of wave propagatiok and the
direction of energy flowS. As was shown in Case 1, for tis@olarization state, th&
and Svectors are also not coincident. This configuratisimulated in Fig. 10.3(c) for a
material with diagonal tensors:=(4,4,5and ¢ =(2,2,3and p,, =3. Again, all four
vectors are distinct.

Finally, in addition to deriving the properties lofefringence and irreversibility4 x 4

matrix formalism allows for the derivation of cent@nergy constraints pertaining to the

magneto-electric crystal. From Eg. (10.27), it che shown that the backward
propagating wave,q,, becomes zero at normal incidence whem = £, 4. Under this

constraint, this wave will not propagate inside thgstal as the only remaining non-zero

component of this wave vector is in tlkélirection.

10.2.4.Case 4-Isotropict and i Tensors; Isotropic Magneto-Electric Tensors

In Case 4, the constitutive relationships are desdrby simultaneously diagonalized
isotropic tensors. While this configuration is nsirictly allowed given symmetry
constraints, for certain multiferroic crystals gmalycrystalline materials, the anisotropy
is small and the crystal can be effectively modelsihg the isotropic assumption. The

corresponding optical matriM is:



e 0 0 p O O
0O € 0 0 p O
0O 0 ¢€ 0 0 p
00 0 g 0 0O
0 p' 0 0 u O
0 0 p' 0 0 u
The associated matrix is:
0 _ UNy’sin(,)’ o - PNy’ sin@, ¥
&L~ po' &L~ po'
- & 0 0
A=
0' 0 0
0 o p'NiZsin@,} . eNsin@,y
& - pp' &l - pp'

which has the following four eigenvalue solutions:

=%

qzl, z3

2

ﬁ)\/Zg,u—(p2 +p%)+(p-p)K-2N?sin’(6))

D JZEu—<p2+p'2>—(p—p->K—zN:st(eo)
72,24 T — c

2
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(10.35)

(10.36)

(10.37)

Using Eg. (10.37),K =./(p+p')’ -4gu. The two k vectors in the medium are

(C—UNOsin(eo),O,qzl) and (C—UNOsin(HO),O,qZZJ. For p=pthe wave vectors are
C C

identical and there will be no birefringence. Hoeeor o # o , which is possible in the

dynamic case and/or in the medium with chirality, # q,, and there will be two

refracted waves with the direction of each wavea@enfluenced by the combination of

thes, Y, p and p' parameters. This material is bi-anisotropic andaleh similar to a



173

birefringent one. Fop # p , the magneto-electric tensors introduce birefnmgeeven in
the presence of isotropi€ and /7. In Eq. (10.37), the positive signs indicate fomiva

propagating waves while the negative signs indibaiekward propagating waves. Note
that the phase is identical for both forward andckiard propagating waves.

Reversibility for this configuration is expected, @urse, given that all tensors are

isotropic. Forp # o, the eigenvector squtior($EX, H,, Ey,—HX]T), in columns, for the

A matrix are:
1 1 1 1
-c=Lqg, cLag, & Uqg, - & Ug,
wu[ =M +QNSsin*(6,) ] [ ZM+ QNS sin’(6,)] e[ 2 Q+ MNE sir(8,) | [ = Q- MN sirf(6,) |
2c=q, -2 q, -2&¢q, 2€ g
W[EM +QNsin®(6,)]  w[EM+QN;sin*(6,)]  [ZQ+ MNSsi?(6,)| [ = Qr MN sirf(6))]
L L v Yy
2u 2u u u
(10.38)
where
Z=pp'-eu
K=y(p+p") -4eu
L=p*p-K (10.39)
M=-p+p+K
Q=p-p +K
U=p+p+K

As can be seen in Eq. (10.38), there are fourngisgigenvector solutions. The first two

columns of Eq. (10.38) are associated with tieeigenvalue and their complete

description requires multiplication bgf%=*. The last two columns are associated with the

q,,eigenvalue and their complete description requiresltiplication by "%,
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Completing the reflection calculation usidigx 4matrix formalism returns four complex

reflection coefficients:

__ 20,0,K+2K’K(op =)= k- ) 9,(0-p* K)* g,Cp+p* K]
20,0, K+ 2k’ Koo e+ k(e + 1] a,(0-p* K)* g0+ p K]

pp

_ 2k, {~0,0K= q,0K= (0, q,)[p(o+p")- 25}
20,,0,,K+ 2k’ K(-pp*+ )+ K (e + 1) g, (0= p* K)+ g (-p+p'+K)]

ps

= 2{ =00 K= 00" K+ (0= a)[ 0 (0 + )= 2211
P 20,0, K+ 2k Koo+ au)+ ke +u) gulo-p* K+ g 0o+ p% K)

__20,0,K+2k’K(gp-gu)+ k- p) gulo-p*+ K+ g,(p+p* K
20,0, K+ 2k KCpo )+ e+ u)(qu(p-p+ K) +a,(-p+ 0+ K)) (10 40)

Ss

Compared to the previous cases, we see that thdiagfbnal Jones matrix elements are

occupied. As expected, ip and p' are identically zero, the off-diagonal elements
vanish andr , and r reduce to previously calculated results for fheand s polarized
reflection coefficients for a non magneto-electsemi-infinite medium [1]. For this

symmetry, the formulas for recapture of theomponents o and H vectors are more

complicated than for the previous cases and aendiy:

Eo+H
E, = Nosin(eo)(ul
po — €
(10.41)
H,o +Ee€
H, =-N,sin(6,) P TEE
po - &
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We again note that the solutions in Eqg. (10.41) lmarapplied to both eigenvectors. For

purposes of illustration, we will analyze propagatiassociated with the,, eigenvalue

only. For g, , the electromagnetic fields in the medium are:

ey xle-aa, Nosin(a) S (2070 o
w[(p,o —e,u)M +QN§sm2(90)} w[(p,o —5/,1) M + Ql\ﬁsmz(eo)]
Aot I-C(pp'—fﬂ) La N, sin(@,) .+021(Lp'—2£u)- s
2 aau[(,o,o —£/.1)M +QN§sm2(¢90)] a)/,z[(p,o —5/,1) M + Ql\gsmz(eo)]
(10.42)

The yand z component terms in Eq. (10.42) are dependent tipoangle of incidence

g,. Therefore, it is interesting to note that evernatmal incidence, the eigenvector

solutions will have bottxand y components for each & and H . Accordingly, while

still vibrating in the x-y plane, the magneto-eteceffect causes the eigenvector to be
rotated off the principal axes as it propagate® itite material. This suggests that
modeling of bi-anisotropic activity can be implerteshusing planar thin film layers each
having different values for the response functi@msbrs. This is different from

orthorhombic & and iz (Case 1), for example, where the eigenvectors irema the

principal axes only (see Eq. (10.10). For gener@l,Ahe calculation of the Poynting

gty

vector, S== Ex H , is a complicated algebraic expression and propeteling requires

N

a numerical approach. Analytically, it can be shawat at normal incidenceg( =0),

both thek and Svectors are parallel with propagation along #hexis only, as expected
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for this trivial case. Numerical simulations shthat for variable AOI, the two Poynting
vectors are coincident with the two vectors. We ascribe this to the isotropic symmetry
assumption for theptensor. We simulate this material having diagoresors:
e=(4,4,9and £=(2,2,2 and p=(2.5,2.5,2.5. Fig. 10.4(a) illustrates that all four
vectors are coincident. However, if the medium fsrad, it can be shown that
birefringence will result.

Finally, it should be noted that at normal incideng, and g,, vanish whenpp =é&u.

This condition results in the fascinating outcombeveby the wave vector will not
penetrate the medium and will continue along #exis only. This condition, derived
using 4x 4matrix formalism, is consistent with the thermodyneally derived limitation
that the square of the magneto-electric suscejpyibitust be less than the geometric
mean of the diagonalizeél and i tensors [21, 98]. We note further that the ctodi

00 =&u is identical to the condition in Case 3 which vaasived using a completely

different symmetry for thed tensor. This configuration is modeled in Fig. 16)4or a

material with diagonal tensors:=(4,4,4) and #=(2,2,2 andp = (\@\@\/?3) .
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Figure. 10.4Wave vectork and Poynting vectoS in for various symmetries and tensor
combinations given in the table below. Unless otle indicated, diagonal tensor

components are giverk for pand spolarizations are solid green and solid red lines,
respectively. S for pand spolarizations are dotted green and dotted red lines
respectively.

~ PN ~ 4

Plot Symmetry I3 U o P

(@) Case 4 (4,4,4) (2,2,2) (2.5,2.5,2)5) (2.5,29,2
(b) Case 4 (4,4,4) (2,2,2) (\/g,\/g’\@) (\/g,\/g’@)
(c) Caseb (4,6,8) (3,4,5) (1,2,3) (1,2,3)
(d) Case 1 (-4,-6,-8) (-1,-2,-3) - -
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10.2.5 Case 5-Anisotropicé and iz Tensors; Anisotropic Magneto-Electric Tensors
In Case 5, the configuration of anisotrop&, i and magneto-electric tensors is

examined. Orthorhombic symmetry, which is apprdpri@r crystals belonging to the
222 point group, is chosen for each tensor [25, B3 M matrix for this configuration

is:

“ ' (10.43)
lO'XX 0 /'IXX O 0
0O p " 0 0 Uy, 0
0O 0 p, 0 0 4,
and its associatedl matrix is calculated as:
2 A~ 2 2 A5 2
0 /jyy _ /'IZZNO S|n(€0') p'yy _ IOZZNO S|n60') 0
gzzluzz_ IO zp 7z & g z_zlo gz 7z
- | &, 0 0 ~Prx
A= (10.44)
P 0 0 Hix
1 2 A5 2 2 A5 2
0 yy_p 7z NO Sln(Ho) £yy—£ZZNO Slneol) 0
3 H z_zp gz 7z

gzyuzz_pzp' zz

In Eq. (10.44), it can be seen that all directiomponents of each tensor enter into fhe
matrix. With 12 different variables entering inteetcalculation, the analytic solution for
the wave vectors is quite complicated. Accordingtys is an example of a configuration
which requires numerical analysis for proper mouglirhis configuration is simulated in
Fig. 10.4(c) for a material with diagonal tensofs- (4, 6, 8) and (4 = (3, 4, 5) and p = (1, 2,39 )

As expected, all four vectors are distinct.
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We again note that the conditien,,= p,p' ,causes the solutions for this symmetry to

diverge. In this case, singularities will occurtire denominators in the first and fourth

rows of Eq. (10.44) and no solutions for the Detnrare possible.

10.3 Thin Film Configuration

The analytical procedures for thin films usidg 4matrix formalism are identical to
those of the semi-infinite configuration up to teculation of the complex reflection
and transmission coefficients. In the following lgmes, we restrict our work to a single
layer thin film structure with the thicknesis For this configuration, both forward and
backward propagating wavese(, all four eigenvectors) are needed to satisfy the
electromagnetic boundary conditions at both top laotlom interfaces. The tangential

components of the electric and magnetic field vesctwe matched aa=0 and z=d to
produce two generalized field vectogs(0) and ¢/(d), respectively. A thin film layer

matrix L is utilized to relate the fields inside the filrhthicknessd at its two boundaries

[16, 17]:

w(d) = L(0) (10.45)

L is a 4x4matrix calculated from the eigenvalues and eigetovscof the A matrix
according to:

L(d)=P* K(d)* ¢ (10.46)

In Eq. (8.7), ¥ is composed of the fouAeigenvectors as columns whilé is a

diagonal matrix given b, =€ with q representing the four eigenvalues/of After
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some algebra relating the incident and reflectedvewathe complex reflection and

transmission coefficients for a thin film can bécatated.

10.3.1 Case 1- Anisotropi€ and 7 Tensors; No Magneto-Electric Activity
Analytic expressions for the case of orthorhomiEicand iz for both pand s

polarizations have been given in Ref. [1]. Forpmses of comparison to other material
symmetries, the equations are reproduced herecdimplex reflection and transmission

coefficients forp polarized radiation are:

NN
d,, cos@,d )[Ez Ky _No k2j+ i{ 0 2qu _ gxxkzokZZJSin(qp d)
0

r _ N2 gxx NO NZ
PP N N NoN,& ¢ Kk k
cos@@,d) —2 k,+—2k, |- i P4 XD 2 gin
qu (qu )( N0 ? NZ 2) ( gxx NO NZ (qp d)
(10.47)
t — 2kzoqu
PP N N NoNz(f £ Kk
cos@, d) —2 k,+—2 k, |-i Py T2 gin(, d
qu (qu {NO ? N2 2) ( gxx N0N2 (qu )

The complex reflection and transmission coeffigdot s polarized radiation are:

2

q .
qzscos(qzsd)( kﬂ - k2)+ (luzs - k@ k?ﬁ[ x; Sln(q zg)

XX

2

r
SS
qzscos(qzsd)( kf) + k2) - (;}s + k@ kﬂu x} Sin(q zg)

XX

(10.48)

t — 2kZOqZS

SS q2

qzscos(qzsd)( kﬂ + k?_)_ IL =+ k k?/j x} Sin(q zg)
y7i

XX
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In Eq. (8.8) and Eqg. (8.9),, and g,.have the same definitions as derived in Case 1 for

the semi-infinite configuration (see Eq. (10.9)).k20:%)N0cos(90) and

K,, =“N cos(e) are the zcomponents of the incident and substrate wave k&cto
c

respectively.

10.3.2Case 3-Anisotropics and i Tensors; Off-Diagonal Magneto-Electric Tensors

In this section, we will analyze the thin film colap reflection and transmission
coefficients of the crystal discussed in Case Feftion 10.2. This work permits the
interesting analysis of the impact of the magnéteotac tensor on reflection and
transmission. A priori, we would expect that the magneto-electric tensould affect
only the p polarization terms since it is only this wave veattich has been influenced
by the magneto-electric effect for this symmetrge(€£q. (10.27)). Using the above
procedures fodx 4matrix formalism, the complex reflection coefficierare calculated

to be:

o 20 15 k- o) e i 2, o of MLk © 4

A e e e D U B ral Y

qzscos(clzsdx kﬁ - kZ) (2 - k k# J Sin(q zg)
2

r =

SS

+ Ko kolt .}sin(q )
(10.49)

qzs Cos(qzsdx kﬁ + kZ) (z

XX

The formulas for the complex transmission coeffitseare:
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4w

t = 2e ankzo
pp

90 cod @ al ™k Mo i@ )Mok oMoy Vain( @ g dl- 2f NN Eukoky -,.(Q )

anCO{Zand)[Nokzﬁ,\Lkzz}ﬁ;(p p)[Mka N)kpjsm(“qa% 2{ e Ty S > 34
tss: 2kzoqzz

qzs Cos(qzsd )( kﬁ + kZ) - (ZZS + kzokzzﬂxxjsm(qzsd)

(10.50)

As expected, the magneto-electric tensors affety tre ppolarization terms. The

equations forandtare the same as for Case 1 sincegpelarization is not affected.

4£DN§sin(Ho)2. t s

In Eg. (10.49) and Eg. (10.50)q, = \/(,0—,0')2+4£D,uu—

p
interesting to note that it is only, and not the entire eigenvalue expressiongo(see
Eq. (10.27), that enters into the argument forttlgwnometric functions in both the thin

film reflection and transmission coefficients. i), the magneto-electric terms enter as

the middle terms of each of the numerator and démetor in Eq. (10.49) and for

transmission they enter in the middle term of teeaininator int . If o= p', it can be

seen thatc—dqa:ZqZp, where g, is as defined in Case 1 for the semi-infinite
c

configuration. Under this condition, the magneteegic terms vanish and,, and t |

reduce to the identical expressions derived in Qafe thin films (see Eq. (8.8) and Eq.
(8.9)). We note further that this scenario is asosistent with the fact that the magneto-
electric effect for hexagonal manganites is forbidor symmetry reasons for the static

case [35]. Eq. (10.49) and Eq. (10.50) , which suoodate variable AOI, should be of



183

significant use to experimentalists in the analydishe reflectivity spectra of magneto-
electric thin film materials and should also assisthe proper characterization of the
magneto-electric tensor and in the study of elecdgnons. We note that if the
experiment is designed as a vacuum-thin film-vacwamfiguration, then the first term
in the numerators for both reflection polarizatiorsish and the formulas are further

simplified:

2
w w | g ([ w
—qg.cod —ag.d|-i 2 _+g . k,|sin—aq.d
an {Zcqa ) [Isogxx XX Z)J {Zcqaj

i qz kzO:u xxj 1
—| —=&——-—2"Xsin(q,d)
2 ( kzO:uxx q

r - pAS)

cos@l,d )| s+ Kokl |sin(q, d)
2\ k u

2077 xx zs

: qzzp (W W N W
I(kzof —exka]sm(chad]—lC(p—p)sm(z(:oad)
.

pp

(10.51)

10.4 Dispersion Models fore and u
In order to simulate the response functions inagcal spectra (for exampIeRS(w) and
Ts(a))), assumptions must be made about the models dématiescribe their frequency

dependent excitations. A common approach is to indde excitations using a

combination of Lorentzian oscillators. We first sader models fo€ and j:
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N S w2
w)=¢,+ Lanr i
JZ;‘ (C‘)j,eo2 -’ _ij,ew)
M S w2
() =1+ Lm”~).mo (10.52)

j=1 (a)j,mo2 _ajz_iyj,mw) ’

where ¢, is the infinite-frequency of the dielectric furati S,  is the corresponding
mode oscillator strengthy, = is the damping constant, ang, .is the resonance

frequency. Poles in the Lorentzian formulas are &isown as modes for the response

functions. We note in Eq. (10.52) that for metamale the model for magnetic
permeability is adjusted from the Lorentzian modalthe replacement aﬁfo with o?

in the numerator. This is known as the Pendry maddl it ensures that the static value
for the magnetic permeability is unity. For multif@cs, this condition is not applicable
and we use the SHO model. Other dispersion modelading the Coupled Harmonic
Oscillator (CHO) model [5] can be used to desctiteeresponse functions.

With the above dispersion formulas, expressiongdtiected and transmitted intensities
can be obtained by multiplying the complex formutgstheir complex conjugate. For

example, for thin films polarization:

Rs(w) = rssx rs;
(10.53)
T, (w) =t xt,

S

It is clear from the foregoing analysis that theensities in Eq. (10.53) are functions of
E, 1, pand p'.
However, even before the simulation step, from dispersion formulas alone, it is

possible to make conclusions about two interestipiical effects possible for complex
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media: (i) the inverted Lorentzian shape in reflést for a pure magnetic dipole
excitation; and (ii) the phenomenon of negativeeindf refraction (NIR).
As explained in Ref. [2], the shape of the respdnsetion of a pure magnetic dipole is

best understood by using the Veselago approactemess in Section 10.2.2, where
n - &/l u. Itis assumed that the natural frequency of tlagmetic dipole is far from
dielectric resonance so that the dielectric fumctian be treated as a constagt, That
is, we assumeS, =0. The expression for reflection using the Veselagproach

becomes [2]:
_ ~ £.S.w’° _ &, Sw)
R.(w) = f{\/em (@ A+S)-aF - iyw)] f{\/em (wrﬁ-wz‘iyid)} (10.54)

where f (x) =|(1- x)/(1+ x)|2. The negative sign in Eq. (10.54) correspondbednverted

Lorentzian shape of a pure magnetic dipole withadjusted oscillator strength (AOS)

S, = S, [, . As is evident from the equation, a pole in thieetfve dielectric function

measured, for example, in RAE experiments, is ethiffrom «w,, appearing at the

longitudinal frequencyw, = w, /1+S,, . Note that this frequency shift is small due to

S, < u, for magnetic modes. As will be discussed later, itheerted shape of the
magnetic dipole response is responsible for théigbaor complete cancellation of an
electric mode in reflectivity when both excitatiomscur at the same frequency.

If the background dielectric function is not toode, it is possible for botls and ¢ to
become simultaneously negative in the frequencgtspeThis is the condition for NIR

which causes materials to become ‘left handed’.[3Ble NIR phenomenon has been
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observed experimentally [39]. The consequenceisfdbndition to the direction of wave

propagation and the direction of energy flow canabalyzed qualitatively usingx 4
matrix formalism. In Case 1, the vector componémitshe k vector (see Eq. (10.9)) and

the Poynting vectorS (see Eq. (10.15) and Eq. (10.19)) were derived.eoh of these
vectors, both thexand zcomponents are positive indicating that the wavecation and
the direction of energy flow are downward and t® tight in the medium (recall that the
positive zaxis is downward). However, both of these equatidmsnge where - —¢
and 4 - —u . For the wave vectors, while thecomponent remains positive, the
component becomes negative. This indicates thatditestion of the wave fronts is
upward and to the right in the material. For theyRimg vectors, thexcomponent

becomes negative while thecomponent remains positive. This indicates thectiva of

energy flow is downward to the left in the materitthe opposite directions fdtand S

as well as their propagation in the third quadrainthe material is now a common
understanding for NIR [44]. The qualitative resulsing 4x 4matrix formalism further
suggest that under conditions of NIR, for crystalth orthorhombic symmetry, thé&
and Svectors should diverge as they propagate in theiumedn the left handed
configuration. Fig. 10.4(d) simulates this configtimn for a material with the negative
value of the response functions to those of SectibnA: 52(—4,—6,—8)and
u=(-1-2-3.

The implications of the dispersion relations to tmagneto-electric case studied in
Section Il. C will now be explored. As explainedtiat section, a complete description

of the ppolarized eigenvector required multiplication Bf*. This expression can be
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rewritten in terms of k, the xcomponent of the incident wave vector:

) iw a2 c? 4g,,k>
ﬁ(p+pl)z ?C (p_p) +4£XX#XX_ET z
2c # i

e e . The square root term can be recognizedgasas

defined in Case 3. Consider the case wheand i are real andp and p' are modeled

as chiral complex conjugates. The sign @f will determine the nature of wave
propagation in the magneto-electric crystal. gbr-0, the wave will propagate into the
material with sinusoidal amplitude; fag’ <0 the wave will decay exponentially and

form an evanescent solution. Following a similaalgsis to that for indefinite media

outlined in Ref. [44], there will be a value fég that makesg, =0which is denoted as

k., the cut-off wave vector. This cut off wave vectohich separates propagating waves

from decaying waves, can be calculated kgs.:z—aé /%\/(p—p')2+4£xx,uxx. Since

anisotropic dispersion relations permit the comtiames of £ and/or i to have differing
signs, various cases for propagation need to benieea. For example, i€, x> 0and
£l £,,>0, then propagation will occur only K, <k_. On the other had, ife u,, >0
and e /¢&,,<0, there will always be propagation. Ferpolarized radiation, the cut off

conditions will be identical to those in Ref. [44)jon adjustment for uniaxial symmetry.

The cut-off analysis can assist in the derivatbrthe condition for NIR in the magneto-
electric crystal examined in Case 3. Recent studese suggested that this type of
magnetic ordering may result in NIR [32]. We comsidhe case where the damping
constants for the response functions are suffilgiesthall such that all four responses

become negative in the same frequency range. Frpn{1B.28), it can be seen that if
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E—-—E, U->-u,p-—-pand p' - —p', the zcomponent of the wave vector will
become negative ik, <k . From Eq. (10.32), it can be seen that this saomelition
causes the sign of thecomponent of the Poynting vector to become negalihese
changes cause the wave vector to propagate upwdrtbdahe right in the material while
the direction of energy flow will be downward and the left. Accordingly, when
k, <k., we expect that NIR can be produced in the mageleitiric crystal.

As explained in Eq. (10.2)p and p'may have contributions from both magneto-electric

and chiral effects. As explained by Cano, the mamekectric tensor takes on a chiral

character for Case 3 [32]. In order to illustrdte tnfluence of the chirality on NIR, a
material with diagonal tensors =(-4,-4,-5and p=(-3,-3-4 and =3 is
examined. For these inputg? =10.4 indicating that the wave should propagate without
decay in the material. As simulated in Fig. 10.5(@ magneto-electric material displays
NIR. However, if pis changed by only one unit tedi, q> =-17.6and the cut-off
condition is met. As illustrated in Fig. 10.5(d)etp polarized wave no longer enters the

medium while thes polarized wave remains unaffected by the magnetctdt effect. In
summary, for proper study of NIR in chiral magneteetric materials, the interaction of
all four response functions must be examined.

The effects of chirality can also be examined fa isotropic symmetry in Case 4. Fig.
10.5(c) shows the expected results for the waveoveand Poynting vectors for isotropic
£ and i tensors. When a sufficiently large chiral parameseintroduced, thes
polarized wave demonstrates NIR while thpe polarized wave remain propagating

downward and to the right.
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Figure. 10.5Wave vectork and Poynting vectoS§ in for various symmetries and tensor
combinations given in the table below. Unless atie indicated, diagonal tensor

components are giverk for pand s polarizations are solid green and solid red lines,
respectively. S for pand s polarizations are dotted green and dotted red lines

respectively.

~

Plot Symmetry £ 7, D D'
€)) Case 3 (-4,-4,-5) (-3,-3,-4) | p,, =3i P, =3
(b) Case 3 (-4,-4,-5) (-3,-3,-4) P, = 4i P, = -4
(c) Case 4 (2,2,2) (1.1,12.1,1.1) - -

(d) Case 4 (2,2,2) (1.1,1.1,1.1)  (4i,4i,40) (-4l ~4)
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10.5 Hybrid Modes and Adjusted Oscillator StrengthMatching (AOSM)

A rare occurrence of coincident electric and magnetsonances is possible in, for
example, magneto-electric materials, where ligaeld-excitations occur in RE-IG [10].
We recently observed this effect and have explaiheding the concept of the AOSM
condition [2]. The condition for the matching haseh derived for the case of isotrogic
and iz tensors at AOI=0. Below, we expand the theoretieagtment of the AOSM effect
for AOI # 0 and for the case of anisotropicand /7 tensors.

As discussed in the previous section, the Lorentpiefiles of magnetic and electric
dipole excitations have opposing shapes in theegiflity spectra. A hybrid mode is

produced if these modes appear at the same freguemc We do not consider the
magneto-electric effect in the analysis of hybriddes: o= 0'=0. For hybrid modes,

there is the interesting possibility for partial@mplete cancelation of the excitation in

the R(w) and RAE spectra. This motivates the analysishefderivative for

OR (@)
ow
each mode. Conceptually, for electric and magnetades with the same damping
coefficient, if their derivatives are identical aftopposite sign, then cancellation should

result. This analysis will be undertaken for batmsinfinite and thin film configurations

at normal incidence.

10.5.1 Semi-infinite Configuration and Hybrid Modes

IR, ()

From Eq. (10.53), the following partial derivatiggpansion is used fGT:
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"=\ 9 dw Oy dw o dw Ay dw

% - (a_rssﬁ . %sa_ﬁ’] . rss(‘lssa_‘f ; ‘lsp_”] (10.55)
w

Eq. (8.5) provides the formula fag.and the Lorentzian oscillator models found in Eq.
(10.52) are used for the response functioaand p. The samey;, apply to both

response functions. When these expressions argaedsato Eq. (10.55), the following

exact derivative can be calculated:

ZFC% =rss(wh)*[ a(%_)lﬂ(%)J(Z;% +iyhj(aesl(wh))[#(wh)sew(w Smgzz:&ﬂ(m 56)
”SS(“’“)U e(%_)lﬂ(%)J(Z:n +iy“j(a§(w“)){#(wh)se”(wh) S%B

In Eq. (10.56), ther® terms are part of the expressions %rféand % respectively.
em g /,1

The superscript Sl refers to the semi-infinite egunfation. In Eq. (10.56), we define the

Sl
bracketed terms,u(aw,)S, +&(w,) %M

, as the Adjusted Oscillator Strength
ac' (@)

(AOS) for reflection,S,. At normal incidenceq?' (w,) = -a; (w,) and S, is:
Sc(w) =(4(w,) s-€(wy) S) (10.57)

Eq. (10.57) suggests that the two modes shouldetanaeflection. The condition for

complete cancellation is:

S.&(w,) = Sp(w,) (10.58)
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We define Eg. (10.58) as the Adjusted Oscillatoei®ith Matching (AOSM) condition.
More detail about AOSM and its application to thpical spectra of DY-IG are available
in Ref. [2]. When the AOSM condition is satisfidthe electric and magnetic modes
interact in such a way as to have no net impacthenbackground Reflectivity at that
point in the spectrum. In other words, the Refiattispectra should appear essentially

featureless aty,. This outcome is also consistent with the oppaddpe of each mode in

the Reflectivity spectra. Note that we have madassumptions in deriving Eq. (10.56)
and the AOSM condition is therefore exact. Furtlemen to establish the AOSM
condition perfectly, both the real and imaginarynponents in Eqg. (10.58) must be
identical. It is quite improbable to find a magnetectric sample where the real and

imaginary parts of(w) and u(w) will satisfy simultaneously Eq. (10.58). Howevire
AOSM calculation using only real components willffee to result in significant

damping of the hybrid modes in Reflectivity even B.&(w,) = Sp(w,). Note that the

AOSM condition has three major similarities to ffleenomenon of impedance matching
in metamaterials [42]. First, both effects requine presence of a magnetic response.
Second, in both effects, reflection due to the maslesliminated. For impedance
matching, all reflection is eliminated. For AOSMetcontribution to reflection from the
hybrid mode is eliminated although there will sbhik a background reflection from the

presence of other higher-frequency excitations tbhatribute tos_ and y, . Third, both

effects are described by an exact matching of #a& and imaginary parts in their
equations. For impedance matching, the complexedainpedances of the incident and
material media must match exactly. For AOSM, thmglex valued adjusted oscillator

strengths must match exactly.
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Using Eq. (8.5), the AOSM condition at a variabl®lAcan be derived. Using a similar

expansion procedure to that above, we get:

Or, 200, cog6,) _2sint(6,)

: 3"‘2(5’0)[coS(é’o)+\/£(%)—Sinz(é’o)J2 {ﬂ(%)se_[ (wh) WJ Sﬂ}

H(aw)
(10.59)

From Eqg. (10.59), it can easily be seen that the&sMQ-ondition for variable AOI will
be:

[ o(e _Zsinz(é?o)
u(amse-[ (w)-22712) jsm (10.60)

At normal incidence this expression reduces toftheula in Eq. (10.58), as expected.
Eq. (10.60) is important to the characterizationmafterials withy #1 since the AOSM
condition may not always occur at normal incider®eAOIl where the AOSM condition
is not met, the above equations provide express@mOS in reflection which will also
assist in the proper characterization throughoeitA®! domain.

Also using Eg. (8.5), the AOSM condition at normraidence (AOI=0) can be

expressed for an anisotropic material. Since theailecomponents which enter intQ

are u, and¢,  , the AOSM condition becomes:

yy?

Sn (@) = St (@) (10.61)
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The foregoing analysis relating the AOSM conditiamd the tendency toward
cancellation of modes in Reflectivity can be alamlgatively understood based on
Veselago’s approach for light propagation in artrgguc, semi-infinite medium with

H(w) 1. This approach was discussed previously and iegévsimple replacement of

the refractive index: for Fresnel’s reflection dumént, n(w) - &(w)/ u(w) [36, 37].
Using the Lorentzian formulas in Eq. (10.52), ihdse shown that the hybrid resonance

can be described with an AOS in reflectiorSok (1, I3 -¢€, 0S) /42 [2].

10.5.2 Thin Film Configuration and Hybrid Modes
For the case of coincident natural frequenciegtiermagnetic and dielectric oscillators

in thin films, the partial derivative expansions feflectivity and transmission are:

dR, or
dw

(S,)*+r(S)

(10.62)
s g 2 () t(S)

dw

where S, and S; are given by:

2 _ar(a) o) g8 (@)
s =240 () () g vefo) 551

(10.63)

T

__2w,_a;(w) v elw) & n(@h)
s=-2 )| 0) se(a) S

In Eq. (10.63), the bracketed terms are the Adju€dscillator Strengths for thin film

reflection and transmissior;and S;. As in the semi-infinite case, the terms are
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components of the reflection and transmission @oefft derivatives with respect to the

response functions. Her&F denotes the thin film configuration. For materiaish non-

Re T
negligible film thickness ™ (“h) ang a$(%)

R are negative and positive, respectively,
a’ (@) ac (@)

with absolute value approximately equal to 1. THeSM condition for thin films is

therefore:

(10.64)

The a ratio term is retained in EQ.(10.64) because @&, while close to -1, is

.
dependent on film thickness. The fact that M term is positive at hybrid

ag ()
resonance sets up the interesting result that wiyleid modes in reflection tend to
cancel, in transmission they are additive. Thiglitace conclusion can also be
understood qualitatively based on Veselago who estgg that if light propagation in

transmission is mainly driven by exponential deaagl the extinction coefficient_(w)
becomes a function of(w) Ck(w) . Using the expansion outlined in Ref. [2], the ADS
transmission isS; = U, + § &, with the two factors inS; being additive. Since most

experiments in Transmission are carried out at abintidence, we do not consider the
variable AOI case for the thin film configuration.
The expressions fog, and S; allow for analysis of the interesting case of glmodes

which cancel or disappear in reflectivity but remairong in transmission combining the

magnetic and electric oscillator strengths. Thescabkere hybrid mode magnetic and
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electric dipole contributions completely cancelréflection (S, =0) but add toS; in

transmission requires the solution of the followsnguultaneous equation:

Rre
@)srelan) S04 o
(10.65)
an ()
/,I(%)Se"'f(a)h) Sna;r (Cl)h)_ s
For Zigzgz‘l’ Zr}gzhg:l' p(@)=1and £()=¢., Eq. (10.65) has the

approximate solution:S, D%and S, Dzi. The key implication of Eq. (10.65) to
£

00

experimentalists is that experimental data for bR#flectivity and Transmission are

needed for proper characterization of a hybrid mode

10.6 Mueller Matrix Simulations

Based on the foregoing analysis, electric, magnhtibrid, electromagnon and chirality
excitations in the optical spectra can be simulat€de Mueller Matrices of a chiral
multiferroic crystal in 222 point group symmetrye¢s Case 4) in a semi-infinite
configuration are modeled. The material is assuteetiave two main oscillators: a
magnetic dipole mode at 60 &nand an electric mode at 80 ¢mA hybrid mode at 70
cm’ is modeled to illustrate the AOSM condition. Indéin, a number of scenarios

addressing electromagnons and chirality are andlyzeboth the frequency and AOI
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domains. For the and i tensors, the Lorentzian models described in E@.5@) are

used. For electromagnon activity and chirality, wse the following models.

(10.66)

) =3

5 (W =~ 0"~ )

In Eqg. (10.66), f, . are prefactors which are modeled as either O drh&. model for
chirality follows a Pendry approach so that theistealue is 0.S;is the chiral oscillator
strength,a, is the chiral natural frequency andlis the chiral damping coefficient.

Figure 10.6 illustrates the MM of the two main distors at normal incidence. Only the
diagonal MM elements are populated due to the alesehcross polarization terms. The
Reflectivity spectra can be seen in M11 where thposite Lorentzian shapes of the

magnetic and electric dipoles are evident.
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Figure. 10.6A0I=0. MM of electric and magnetic excitationsdftand 60 cm. £, =10
,S,=0.2 and S, =0.016¢ . Only diagonal elements are populated dube@bsence of

cross polarization terms. The opposite Lorentziaapss of the magnetic and electric
oscillators are evident in M11.

Figure 10.7 illustrates a hybrid mode with coincdelectric excitation € with

S, =0.2 and magnetic excitatioom) with S, =0.016¢ at 70 cnt (green). Withe, =10,

an initial observation would suggest that the AOSbhdition should only be met if

S, =0.02. It must be remembered, however that the coupbiocurs with the actual
a(cq]) at the hybrid frequency which is approximately8B0in this case. Accordingly,

S,, must be less than 0.02 for perfect matching to odtiith S =0.016€, the oscillator
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strengths meet the AOSM condition. The hybrid mad@0 cnT disappears in the MM

spectra.
M11 M12 M13 M14
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Figure 10.7 AOI=0. Two main electric and magnetic excitatiaats80 and 60 cfh
(blue). ¢,=10,5=0.2 and S,=0.0166 . Two main excitations together with

coincident electric excitation el with S, =0.2and magnetic excitation mf with
S, =0.016¢ at 70 cl (green). Oscillator strengths meet the AOSM coodit The
hybrid mode at 70 cthdisappears in the MM spectra.

Figure 10.8 illustrates the effect of electromagnon the MM spectra in the frequency
domain. In addition to the two main oscillatorsu@), a electromagnon excitation is
added to the magnetic oscillatonén) at 60 crit (green). This results in a non-zefo

tensor. Off diagonal elements of the MM become patpd due to presence of cross

polarization terms. Electromagnons result in visipeaks at the two resonances in M14
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and M41. These peaks exist because both the resssah £ and i are incorporated

into the equation foer . It should be noted that M14 and M41 have oppasias. This

observation is important in distinguishing dynamiagneto-electric activity from chiral

activity.
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Figure 10.8 AOI=45. Electric and magnetic excitations at 8@ &0 cm (blue). &, =10
,S,=0.2 andS, =0.016¢€ . Two main oscillators together with a magredectromagnon

(men) (green). Inmem a(w) = ,/&(w) ¢(w) . Certain off diagonal elements of the MM

are populated due to the presence of cross pdianz@&rms. The electromagnon results
in peaks at the two resonances in M14 and M41.

Figure 10.9 illustrates the effect of chiral adiivon the MM spectra in the frequency

domain. An oblique angle is used to better anatheechirality. In addition to the two
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main oscillators (blue), chiral excitations are edido the electric oscillator at 80 ¢m
and magnetic oscillator at 60 ¢nfgreen). Off diagonal elements of the MM become
populated due to presence of cross polarizatiangeChiral excitations result in visible
peaks at the two resonances in M14 and M41. Iinjgortant to note that the peaks in

M14 and M41 are not inverted as in the case oélbéetro-magnon spectra.

M11 M12 M13 M14
0.6 1 1 0.2
0.4 A " !] 00— 0 —a o—h : u
0.2 1 1 -0.2
60 80 100 60 80 100 60 80 100 60 80 100
Wavenumber (cm™1) Wavenumber (cm™1) Wavenumber (cm™1) Wavenumber (cm™1)
M21 M22 M23 M24
! 0.4 ! !
0l y 0.3 0 0F———),
0.2
-1 -1 -1
60 80 100 60 80 100 60 80 100 60 80 100
Wavenumber (cm'l) Wavenumber (cm'l) Wavenumber (cm'l) Wavenumber (cm'l)
M31 M32 M33 M34
1 1 0 1
0 v 0 -0.2 _ﬂ,ﬂ/L 02 N
-1 -1 -0.4 -1
60 80 100 60 80 100 60 80 100 60 80 100
Wavenumber (cm'l) Wavenumber (cm'l) Wavenumber (cm'l) Wavenumber (cm'l)
M41 M42 M43 M44
0.2 1 1
0
A A N n A
0 A u 0 \ 04— 02 A H
0.2 -1 -1 -0.4
60 80 100 60 80 100 60 80 100 60 80 100
Wavenumber (cm'l) Wavenumber (cm'l) Wavenumber (cm'l) Wavenumber (cm'l)

Figure 10.9 AOI=45". Electric and magnetic excitations at 80 and 60" ¢blue).
£,=10,5=0.2 and S, =0.016¢ . Two main oscillators together with chiratieations

at 60 and 80 cth (green) each having, =0.2. Off diagonal elements of the MM are

populated due to the presence of cross polarizégions. The chiral excitations result in
peaks at the two resonances in M14 and M41.

Figure 10.10 illustrates the MM of the two mainotfee and magnetic excitations at 80
and 60 cnt in the AOI domain. These coincident excitations areasured at 60 ¢m

(green) and 80 cth(blue). Off diagonal elements are non-zero atingnAO! because of
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differences between  andr. We note that M34 results in opposite signs faheaf

the two resonances.

M11 M12 «10° M13 «10° M14
1 / ‘ 2 2
0 ’ 0 0
| | |
-1 0.4 -4 2
0 50 0 50 0 50 0 50
AOI (degrees) AOI (degrees) AOI (degrees) AOI (degrees)
M21 M22 x 10° M23 x 10° M24
1
O[ | J 2 2
0.2 \_/‘ O’ i Ol
-0.4 -1 -2 2
0 50 0 50 0 50 0 50
AOI (degrees) AOI (degrees) AOI (degrees) AOI (degrees)
X 10'3 M31 X 10'3 M32 M33 M34
1 0.5
2 \ ‘ ‘
0 0 e~
-2‘ ) -1 -0.5‘ ‘
0 50 0 50 0 50 0 50
AOI (degrees) AOQI (degrees) AOI (degrees) AOI (degrees)
«10° M4l < 10° M42 M43 M44
2 2 0.5 _/_J 1
0 0 0 0\ 7 ‘
-2‘ 2 0.5 ‘ 1
0 50 0 50 0 50 0 50
AOI (degrees) AOI (degrees) AOI (degrees) AOI (degrees)

Figure 10.10MM of coincident electric and magnetic excitati@i80 and 60 crhin the
AOI domain.&, =10 S, =0.2 andS_ =0.016¢ . Simulated @60 cm' and

»=80 cni'. Off diagonal elements M12 and M34 become popdlatevarying AOI
because of differences betweep  and

Line Description Excitation Measured at
Frequency
Green Magnetic at 60 cfmh 60 cmit
Electric at 80 crit
Blue Magnetic at 60 cmh 80 cmit
Electric at 80 crit

Figure 10.11 illustrates the effect of electromagh@n the MM spectra in the AOI
domain. In addition to the two main oscillatorseatomagnon excitations are added:

(eem) (blue) and hen) (green). Since the analysis is done in the A@hdin, it is
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critical to identify the frequency with which therailation takes place. We have chosen
the two resonance frequencies of 60 cand 80 crit for analysis. This configuration
produces four separate curvegemsimulated at the two resonances archsimulated at
the two resonances. All off diagonal elements ef MM are populated due to presence
of cross polarization terms. This figure suggelsét it is possible to distinguish between
amemandeemexcitation through the analysis of M14 or M34ta tifferent resonance
frequencies. For both M14 and M34, tmemmeasured at 60 ¢h(thick green) has the
opposite sign to theemmeasured at 80 cin(dotted blue). As in the case of electro-

magnon activity in the frequency domain, we seeérathat M14 and M41 are inverted.
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Figure 10.11 MM of electric and magnetic excitations at 80 &#@tm* (&, =10,
S, =0.2 and S, =0.016¢ ) in the AOI domain together with an eleatestromagnon
(eem) (blue) and a magneto-electromagnonmef) (green). For eem
a'(w)=e(w)u(w) . For mem a(w)=c(w)u(w). Al 16 MM elements are
populated when the electromagnons are active. ©hsilplity of distinguishing between

eemandmemis suggested through the asymmetric shapes infM3&emandmem
Line Description Excitation Measured at
Frequency
Thick green mem 60 cmi'
Thin green mem 80 cni'
Solid blue eem 60 cmi'
Dotted blue eem 80 cni'

Figure 10.12 illustrates the effect of chiral eatdns in the MM spectra in the AOI

domain. To the main magnetic and electric oscitigtohiral excitations witls, =0.20

are added at each of 60 and 80 wave numbers. Figm1B.9, we use the two
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frequencies which produce maximum amplitude forahieal oscillators in M14. This is
61.5 cni for the chiral oscillator with natural frequency@® cm'® and 83.5 cn for the
chrial oscillator with natural frequency of 80 ¢m These combinations result in the
simulation of four separate curves. When the cleixaitations are active, all 16 elements
of the MM are populated. This figure also suggdhbts possibility of using M24 to
distinguish between the two chiral excitations.M84, the chiral excitation at 60 ¢m
and measured at 61.5 ¢nfthick green) is of opposite sign to the chiratieation at 80
and measured at 83.5 ¢m(dotted blue) for low angles of incidence. Astlie case of
chiral activity in the frequency domain, we seeiadhat M14 and M41 are of the same
sign and not inverted. Accordingly, in both theginency and AOI domains, it is possible
to distinguish between the magneto-electric andatityi effects by examing the

relationship between M14 and M41.



206

M11 M12 M13 M14
1 0.5
[ 7 ‘ 0.2 0.2’ *
- e
0 0 pg 0 = = O/
~~~~~~~ ‘ 0.2 0.2 S
-1 -0.5
0 50 0 50 0 50 0 50
AOI (degrees) AOI (degrees) AOI (degrees) AOI (degrees)
M21 M22 M23 M24
0.5 1 0.2
’ ‘ / 0.2] o= -
d
0 e o Ot O™
TS 2 ‘ -0.4
-0.5 -1 -0.2
50 0 50 0 50 0 50
AOI (degrees) AOQI (degrees) AOI (degrees) AOI (degrees)
M31 M32 M33 M34
0.2
o.zT ‘ 0.2 *
Ly
Oz O —N 0 ~——
NS
-0.2 ‘ -0.2& l
-0.2
0 50 0 50 0 50
AOI (degrees) AOI (degrees) AOI (degrees)
M41 M42 M43 M44
0.2 T ﬁ 0.2 _om=—mes 0.2 ﬁ
A
0 o 0 0 "7
0.2 ~——— -1 -0.2 0.2 4
0 50 0 50 0 50
AOI (degrees) AOI (degrees) AOI (degrees) AOI (degrees)

Figure 10.12 MM of electric and magnetic excitations at 80 &@ cm® (&, =10,
S.=0.2 and S, =0.016¢ ) in the AOI domain together with chiral eatibns at 60 crh
and 80 crit . S, =0.20, y, =2. Note that all 16 MM elements are populaté@émchiral
excitations are active.

Line Description Wrg Measured at
Frequency
Thick green 60 ci 61.5 cni
Thin green 60 ci 83.5 cnt
Solid blue 80 cni 61.5 cnt
Dotted blue 80 cih 83.5 cnt

10.7 Chapter Summary
In this Chapter, we have used 4 matrix formalism to analyze electromagnetic wave

propagation and the optical spectra of complex mede have demonstrated that a

complete description requires the calculation geevalues and eigenvectors of the
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matrix using all four response functions. We hasedu5 cases to describe the interesting
optical effects when additional components are dddehe optical matrix. These effects
include birefringence, non-reciprocity, divergemetween the wave vector and Poynting
vector, NIR, opposing Lorentzian shapes for magnatid dielectric excitations, and
AOSM. For REMnOs; compounds with cycloidal magnetic order (havinf) digonal
magneto-electric tensors in the dynamic state)féhewing results have been derived

analytically for the first time:

» the eigenvectors fop ands polarizations

» the complex reflection coefficients fop and s polarizations for the
semi-infinite case

» the Poynting Vector folp ands polarizations

» proof of birefringence for thep polarization state but not for the
polarization state

+ the complex reflection and transmission coeffigeror p and s
polarizations for the thin film case

» the cutoff wave vector which separates propagatiages from decaying

waves in the medium for both right handed andHaftded conditions

For a multiferroic material with anisotropi€, 7, pand p' tensors, theA matrix has
been derived. In addition, we have shown how aNukller Matrix analysis assists in
the proper characterization of the material progerof such media. For example,

although the effects of electro-electromagnonsraagneto-electromagnons are difficult
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to distinguish in the reflectivity spectra, it i®gsible to distinguish them using full
Mueller Matrix analysis over varying AOIl. We have@aderived the AOSM condition at
varying AOI. These derivations will assist in theacacterization of metamaterials and

multiferroic materials.



CHAPTER 11

THESIS SUMMARY

After a review of background material in Chapterg, lthe following original results

were presented in Chapters 8-10.

formulae for the complex reflection and transmissioefficients have been derived
for materials withg #1 in the thin film configuration having orthorhomisgmmetry
or higher. These formulae incorporate the caseonfwvacuum incident and substrate
media.

the behavior of Mueller matrix components for anplametamaterial in proximity to
resonance has been illustrated at varying AOI.

for the first time, the separation of dielectridanagnetic contributions in the optical
spectra of a magnetic material has been demossdtray performing MM
simulations at varying AOI

for the first time, the identification of the Nepet Index of Refraction condition in
the optical spectra of thin films withu#1 is illustrated by performing MM
simulations at varying AOI.

for the first time, Adjusted Oscillator Strength@8) formulas for a multiferroic
material have been derived for reflection in thenismfinite configuration and
reflection and transmission in the thin film configtion.

for the first time, the Adjusted Oscillator StremgWatching (AOSM) condition
U(w,) 08, = £(w,) 0S, has been applied to explain the behavior of theitlymodes in

the optical spectra of Dy-IG.
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For REMNnO3; compounds with cycloidal magnetic order (having diigonal magneto-
electric tensors in the dynamic state) the follaywasults are derived analytically for the

first time:

the eigenvectors fop ands polarizations

» the complex reflection coefficients fop and s polarizations for the semi-infinite
case having oblique angles of incidence

» the Poynting Vector fop and spolarizations

» proof of birefringence for the polarization state but not for trspolarization state

» the complex reflection and transmission coeffigefur p and s polarizations for
the thin film configuration having oblique angldsmcidence

* the cutoff wave vector which separates propagatiages from decaying waves in
the medium for both right handed and left handedlitmns

For a multiferroic material with anisotropic, 1, pand p' tensors, the Del matrix has

been derived.



APPENDIX A

ERROR ANALYSIS FOR DY-IG REFLECTIVITY FIT

A.1 Fitting Procedures
The experimental results for the Reflectivity spgdbr Dy-IG are illustrated in Figure

A.l.

REFLECTIVITY DATA
0.5 T T T T

experimental

0.48 4

0.46 - 4

0.44

0.42

SS

0.4

0.38

0.36 4

0.34 B

0.32 B

0.3 | | | | | | | | |
50 55 60 65 70 75 80 85 90 95 100

Wavenumber

Figure A.1 Experimental results for Reflectivity for Dy-IG.
The fitting for this spectra was done using the dmberg Marquardt fitting
algorithm. In order to determine an initial paraemevector for the fitting process, we

developed a program which simulates the reflegtsjitectra for a given set of
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parameters. This simulation program also returng @alue for the objective function.

Accordingly, determining an initial parameter vectwas essentially a ‘by hand’
procedure. For the majority of the fitting processconstrained optimization techniques
were used. By this we mean that all parameters alerered to ‘float’ until convergence.
However, later in the fitting procedure, it was @&gary to constrain certain parameters
within specified upper and lower bounds. For exanjl is now understood that the
magnetic and dielectric oscillators for a hybrid daoare additive in transmission.
Therefore, the total value of the Adjusted OsaltaBtrength (AOS) for transmission
could not exceed its actual experimentally deteeahimalue. Accordingly, upper bounds
for the oscillator strengths of the magnetic andleditric oscillators were required.
Another example is that the damping parameter éohef the magnetic and dielectric
oscillators needed to be roughly the same for aithybode in order to correctly model
the lifetime of the excitation. A function callech'eck_bounds’ was created to ensure that
targeted parameters stayed within pre-specifieddinthis was called by the LM parent
program ‘mrgmin’. The disadvantage of this apprgoabbwever, as compared to
unconstrained optimization, is that for any giveonstrained parameter, its partial
derivative approached zero as it neared or exceiéslepper or lower bound. This made
convergence slow since the step in parameter spaaeportional to the Jacobian. In
addition, it made inversion of the Hessian mordidift. The inverse of the Hessian
provides the covariance matrix which, in turn, pdeg the standard errors of the

parameters. As a result, it was necessary to usardination of the constrained and
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unconstrained optimization procedures to propedycudate the error bars for the

parameters.

A.2. Error Analysis for Main Magnetic and Dielectric Oscillators
The error bars for the magnetic oscillator at 5916 and the dielectric oscillator at 81.3
cm™* were determined using the analytical procedureudised previously. The dielectric
oscillator strength for the hybrid mode at 73.5%cwas fixed at 0.0400 (ie. ix=0 for this
parameter which indicates that this parameter tstade fitted). Subject to this single
condition, the unconstrained optimization procedwas used. The objective function

was calculated according to the formula:

(i) = )(Q(f) _ i(y[ —y(ti,(xl,zQ,xB...xM))] (A1)

1
N-m-15 o,
In (A.1), Nis 209 which is the number of data points an 68 which is the number of
parameters to be fittedz, was taken to be .0005 for all data points. For rtragnetic
oscillator strengthS_, the process returne@l0017+ 0.000. For the dielectric oscillator
strength, S,, the process returne@l0988t 0.014. The error bars represent the standard
error. When all parameters were subject to thepeumand lower bounds$, returned

0.0018and S, returned0.0873. Using the same proportionality as for the una@msed

results, we finalized the error bars for the maignaiscillator strength to be

0.0018+ 0.000and for the dielectric oscillaton.0873t 0.012.
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A.3. Error Analysis for Hybrid Modes
The error analysis for the hybrid modes must take account that these oscillators are
essentially acting as coupled oscillators. For pleposes of illustration, the hybrid
oscillator at 73.5 crhis analyzed. Witts, fixed at 0.0400S, is returned asn035+ .000¢
. In doing this analysis, it was necessary to faheedamping parameters to be the same

for both oscillators. With these values f&, and S,, the total adjusted oscillator strength

matching condition is exceeded which cannot repitezgohysically realizable condition.
However, the result is still useful to provide podtionality for the error bar irg,. The
constrained optimization results returned .002590r Using the same proportionality as
for the unconstrained case, the error bar for tlagmatic oscillator strength becomes:
.0025+ .000¢. We expect that the AOSM condition will also appdythe error bars in a
hybrid mode since:

H(S+AS)-£(S+A 9=(1 S& J+(r Sav B0 (A2)
Under unconstrained optimization, we found thatrdte® of the error bars for the hybrid
modes is virtually the same as the ratio of theupaters which suggests that the rule in
(A.2) is followed for both the parameters and tleemors. Using this approach, the results

for the magnetic oscillator strength ar@400+ .009.

A.4. The Impact of Random Errors
We adjusted the experimental data for random etvgrapplying up to at10%change

for every data point. The results of this processlaustrated in Figure A.2.
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Figure A.2 Random errors applied to experimental data.
At first glance, the Figure A.2. looks like it reients a linear relationship between
reflection and frequency with positive slope. Pagters were fitted with the LM fitting

algorithm with the results shown in Figure A.3.
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REFLECTVITY Fit
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Figure A.3 Results of fitting experimental results with randerror.

The magnetic oscillator strength was calculatedeaa.0015+ 0.000and the dielectric
oscillator strength was calculated to 6©919+ .019!. Note that the range of outcomes
includes that of the non-randomized case. The dvews for the dielectric case are

slightly higher than for the non-randomized case.



APPENDIX B

MATLAB SCRIPTS USED IN LEVENBERG MARQUARDT FITTING

ALGORITHM

B.1 Pseudo-Code and Numerical Implementation of Lenberg Marquardt Method

Pseudo-code for the LM implementation consistshef gteps outlined in the following

table [55]:

Table B.1 Pseudo Code for Levenberg Marquardt Implementation

1.
2.

3.

Choose starting parameter vectgr, Initialize A =.001.

Calculate y*(X) .
Solve Eq. (7.15) foh,, . Evaluatex®(X+Hh, ).

If x*(X+ ﬁm) > x¥*(¥) then decreasd by a factor of 10. This sends the step back
in the direction of steepest descent. Repeat step 3

If x*(x+h,) < x*(X) then increasel by a factor of 10. This sends the step in
the direction of the Gauss Newton step for quidavergence. Repeat step 3.

Cease iterating when user defined stopping criggeamet.

We have implemented this code using a number ofalddtinctions. Table B.2 gives an

explanation of each of the functions.

B.2 List of Matlab Scripts Used in Fitting

Table B.2 below provides a list of Matlab scripsed in fitting.
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Table B.2 Matlab scripts used in Levenberg Marquardt Impletaon.

1

Matlab Script

Functionality

2

Main_MM_to_Eps_Mu_Isotropic
Main_MM_to_Eps_Mu_Anisotropic

Loads Mueller
across a frequency spectrum.

Using LM method, calculates
and pusing isotropic
anisotropic models.

Creates a data file of calculat
gand u.

fit_exact_Mueller_to_Eps_Mu_ISOTROPIC

fit_exact_Mueller_to_Eps_Mu_ANISOTRORPI

Called by #1. Calculates th
residual error functionf, .

~
-

fit. Eps_Mu_to_Parameters ISOTROPIC

fit. Eps_Mu_to_Parameters_ ANISOTROPIC

Called by #2. Calculates th
residual error functionf, .

funcsv2(fun,x0,0mega,y,cf)

Required function in LM

implementation [55].

For fun defined as #3 or #
calculates initial values @
residual error function.

mrgminv5_bounded(alamda,ix, mx,ndata,fun,
opts, sig,thetal,y, cf,Ib,ub)

xBnplements major steps of LN
method as outlined in Tab
B.1.

mrqcofv5(fun,sig,ndata,x,ix,mx,opts,omega,y,

cQalled by #6. Returns Hessi;
and Jacobian matrices
addition to residual error vecto

Matrix data

and

9%
o

e

e

4
f

v
e

an
in
r.

jacobianv5(fun,f,x,mx,ix,mfit,opts,omega,y,cf)

Called by #7. Calculates th
Jacobian matrix for paramete
to be fitted.

e
rs

gaussjmatlabv2(alpha,dx,alamda)

Called by #6. Calculates ne
step in LM method.

Xt

10

check _bounds(x,lb,ub)

Called by #6. Checks th
current iteration ofXis within
user defined bounds and adju

At

sts

vector if required.




APPENDIX C

ADJUSTED OSCILLATOR STRENGTH MATCHING FOR HYBRID
MAGNETIC AND ELECTRIC EXCITATIONS IN DY  3FEsO12 GARNET

Expressions for the Adjusted Oscillator StrengttO8) and the Adjusted Oscillator
Strength Matching (AOSM) condition are developed faaterials with 1. V. G.
Veselago’s results for semi-infinite magnetic miader[36, 37] together with analytic
expressions obtained by the authors in Ref. [1]used in this treatment. A Lorentzian
oscillator model is used in the formulas belowrfagnetic and dielectric excitations. For
a single hybrid excitation, the dielectric and metgncontributions are given in Eq. (9.2),
whereN=M =1, @, =w,=w,, andy, =y, =y .

The semi-infinite case for normal incident radiat{®\OI=0) is examined first. Based on

Veselago’s work, it is assumed that teepolarized reflection intensityR (w) is a

function of \/e(w)/ 1(w) [36, 37]. Then, in the proximity of a resonance with a singl

hybrid mode
S.@,’
) () Sk’
”°°+(a4f—w2—iyw) (C.2)

f \/‘5_°°+ (,umSe—f:m S“)whz =f \/‘5_°°+—SR(‘)hZ
U, (@) -0 -iyw) K, (@} -d’=ip) |
where f (x) =|(1- x)/(1+ x)|2. The expansion in Eq. (C.1) is justified singe< y, for the

magnetic modes (see Table 9.1). In general, theichyesonance can be described with

an AOS in reflection: s, =(u, 0S-¢,08)/12. We have also derived a similar

expression forS; by analyzing the derivative of the exact compleftection coefficient
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with respect to frequency for the thin film confrgtion, which will be described below.
The AOSM condition,S ¢, = S, , is immediately apparent from Eq. (C.1). Undes thi

condition, the hybrid mode disappears from reflegti and reflectivity becomes a
function of ¢, and i, only: R (w,) = f(«/em /ym)|$“£o°= o
For a pure magnetic dipole @at=w,,, Eg. (C.1) can be approximated f§ =0and

[, =1 as:

([ esar ) ([ _eser
R“(“’)'fwg‘” (afqo(1+sm>—af—iyw>} fwg‘” (a&—af—iyw)}' (€2

The negative sign in Eqg. (C.2) corresponds to tiveried Lorentzian shape of a pure

magnetic dipole with AOSS, = S, (&, . For hybrid modes, this inverted shape provides
for the partial or complete cancellation of thecaie and magnetic components at
resonance. As is evident from Eg. (C.2), a poletha effective dielectric function

measured, for example, in RAE experiments, is ethifrom «,,, appearing at the
longitudinal frequencyy , = w,, Q/1+ S, . Note that this frequency shift is small due to

S, <<u,for magnetic modes.

If light propagation in transmission is mainly\dsn by exponential decay and the

extinction coefficient, according to Veselagn,(w) becomes a function of the product
&(w) u(w) :
— - Sea“h2 h2
(W) =F(Je(@ uw) )| =F| || &, +——5—— |D 4, +—S“LL
A ( (@t )) [\/( (mj—af—nyw)}[ J]

(of - -iyw)

_ (S0 + S ) | S: [y
_F[\/gmgzm+ @~ iy +0 |=F £°°+(a4f—wz—iyw)'

(C.3)
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For strong absorption at the hybrid mode, when care neglect multiple reflections,
F(y)=‘(l—r2)t(y)‘2 where y=./els , t(y):exp(iﬁ)ydj, and r is the complex
c

reflection coefficient. We note that at,, the reflection intensit;R(w) as described by
Eq. (C.1) does not change significantly. As one saa from Eq. (C.3), the AOS in
transmission isS; = S, + S &, . In contrast toS,, the magnetic and electric oscillator
strengths inS; are additive. Note that the contribution of the metgc oscillator strength
in S, is “enhanced” byeg,. The expressions fog, and S, allow for analysis of the
interesting case of hybrid modes which can canceisappear in reflectivity but remain
strong in transmission. Note that the exact aralgxpression foiF (y) in the general
case of multiple reflections is complicated and v discussed below.

A complete analysis of thin film reflectivity drtransmission must involve the

reflection from the backside of the sample, whigpehds on the thickness. The

opposing shapes of the Lorentzian profile of thegmedic and electric excitations

motivate the calculation o*.@ Rss(w“) and dTSS(wh).

The two total derivatives require
ow dw

partial derivative expansion of the response famstias well as those ef and t_, the

ss!

complex reflection and transmission coefficient&or a magnetic thin film whose

principal axes are coincident with the laboratorstem, r_andt_ are given by [1]:
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2
qzscos(qzsd )( kﬁ - kZ) + (223 - k k?/u x; Sin(q zg)
rSS=

2
qzscos(qzsd)( kﬂ + k?)_ (EZS + kﬂ ki;[ x; Sin(q zg)

XX

, (C.4)
— 2kZO qzs

tss™ (¢ _
qzscos(qzsd )( kﬁ + kz) - | £ + kﬂ kz:u X; Sln(q zg)
y7i

XX

wherek,,, g,.and k,,are thezcomponents of the wave vector in the incident, fthn

and substrate media, respectively. At hybrid resoeathe following expressions for the

two total derivatives are obtained:

d& * * dT * x
=S5 [, +r and —== Ot +t C.5
da) SS |:$2 SSE% dw SS [& SSEQ ( )

where S,and S, are given by:

2 o (@) R
= u(me(m(“(“’")g () S‘"a:*w(wh)]
(C.6)

T

s=-24 gt la) ) see(o) sl

a; (a,)

The foura terms are components of the partial derivativethefcomplex reflection and
transmission coefficients taken with respect to twe response functions. Analytic

solutions for these terms can be obtained staftiogn r, and t,. For the material

Rre T
parameters of D§re;0,, sample with the thickness of 0.55 mAH () and a:‘(w“)
ar (@) al(w)

are negative and positive, respectively, with altgolvalue equal to 1 (see FIG. C.1).

When these values are inserted into Eq. (9.A6)upper and lower bracketed terms can
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be identified with theS, and S; terms discussed in the Veselago qualitative aisalys

above. These results are also consistent with ub&asction and addition of the AOS

components in reflectivity and transmission, retipely.

1
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=
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Fig. C.1 Variability of the ratio of aterms with thin film thicknessd . ¢, =15.85,

Ree T
S, =0.100, S, =0.006% and w, =78cm™, ag—(%) is the bottom solid red IineM is
a; (c) a; ()

the top blue dashed line. For the ;Bg&0O;, sample with thicknessl =0.55mm, the
opposite signs of these two ratios account forghigtraction of AOS contributions in
reflectivity and the addition of the AOS contrilarts in transmission.

The case where hybrid mode magnetic and eleatpole contributions

completely cancel in reflectionS{=0) but add to S, in transmission requires the

solution of the following simultaneous equation:

(C.7)
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R T
For the case of the fitted parameters for Dy-wz -1, an (@) =1, 4(w,)=1and

T

a;" (w) a; (a,)

£(w,)=¢,, EQ. (C.7) has the approximate solutiqn]% and S, Dzsf :

[



APPENDIX D

DERIVATION OF ADJUSTED OSCILLATOR STRENGTH MATCHING
CONDITION USING DERIVATIVE APPROACH

D.1 Introduction

Berreman’s 4x4 matrix formalism can be used to yaealkhe optical properties of a
crystal with z#1. This technique can always return numerical sohgiwhich describe

wave propagation in the material. However, for marygtal symmetries, including those
of orthorhombic and higher, closed form solutiomsthe complex reflection coefficients
of a semi-infinite material and the complex reflectand transmission coefficients of a
thin film can be obtained. These formulas are apaite for the case where the principal

axes of the crystal are coincident with the lalbmwataxes. From these formulas,

expressions for the derivatives with respectt@f R (w)and T(w) can be calculated.

R.(w)and T (w) are the Reflection and Transmission intensitiespectively.

Focus is on the derivative calculations for twosmaes. First, while it is possible
to obtain exact analytical expressions for the dempeflection and transmission
coefficients, analytical expressions f&,(w)and T, (w) are more difficult to obtain.
Second, for materials withu#1, an examination of the variation of intensity twit

respect to the frequency of incident radiation giwaportant information regarding the
interaction between the magnetic and dielectricllatars used in modeling optical
properties. The derivative approach allows for thieresting property of Adjusted

Oscillator Strength (AOS) for each of the magnetitd dielectric oscillators to be
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identified. In turn, AOS gives rise to the fascingtcase of Adjusted Oscillator Strength
Matching (AOSM) for hybrid modes. When the AOSM diion is fulfilled, the hybrid
modes can be completely cancelled in the Reflecsipectra but are additive in the

Transmission spectra.

D.2. Key Results From 4x4 Matrix Formalism

For readability, key results from Berreman’s 4x4tnmaormalism are included to make

this Appendix self consisteng},,and g,.are the eigenvalues associated wiiland s

polarizations, respectively and constitute theomponents of the wave vectors in the

medium. These are:

2 ~iA2
O == fxx\/uw—w (D.1)
c £,
N 2sin?(8
O, = %)\/luixx\/g yy_olu—(O) (DZ)

For a semi-infinite medium, the complex reflectamefficients are determined to be:

— gxxkzO - NO2 qu

r,= D.3
PP Exxkzo + NO2 qu ( )
Atk P (D.4)

luxxkzo + qzs

where N, is the index of refraction of the incident mediunt&,, is the zcomponent of

the incident wave vector. In the case of thin filmtlke complex reflection and

transmission coefficients are calculated using dvedrix formalism to be:
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N NoN, Q" &, Kok
qucos(qud)(;|2 ky——2 k2]+ i{ oMol £k, Zz)sin(qu)
0

r — N2 gxx NO NZ
pp N,N,q,.>
qZp Cos(qud {NZ kﬂ +& kﬂ]_ I( 0 ZqZp + gXXkZOkZZJSin(Qp d)
NO N2 £xx ND NZ
(D.5)
t - 2kzoqu
pp N N [(NoN,a, & Kk k, ) .
and
2
qzscos(qzsd)( kﬂ - kZ) + I (12;_ kﬁ kZ'L[ X; Sin(q zg)
(= XX
SS q 2
qzscos(qzsdx kf) + k?_) - —=—+ k kﬂl’[ X; Sin(q zg)
(D.6)
t — 2kZOQZS
SS

2
qZSCOS(qZSdX kﬂ+ kZ)_ [(jjs + kﬁ kzl'l x} Sin(q zg)

XX

where N, is the index of refraction of the substrate medamd k , is the zcomponent of

the wave vector in the substrate.

D.3 Approach to the Calculation of Derivatives ofR (w)and T ().
Magnetic and dielectric excitations are modeletl@entzian oscillators:

N S w 2
sw)=¢, + Le 710,
JZ; (& = W, " 1Y )

M S w 2

p(a) =1+
JZ; (& = W o =1 @)

(D.7)
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where ¢_is the infinite-frequency of the dielectric funatioS , is the corresponding
mode oscillator strengthy, . is the damping constant, aribem is the resonance
frequency.

R.(w) and T (w)are the spolarized reflection and transmission intensities,

respectively. Both are real valued functions ofrthesociated complex coefficients:

Ra(®) = r(@)xr )
(D.8)

To(@) = ty(@) xt fe)

The asterisk in (D.8) indicates the complex conjeggeration. Expressions fe%%

andde—C(:)) will be developed in parallel.

From (D.8), the derivative chain rule for completiables is used to obtain:

aRSS(a)) _ rss(w)* arss(a)) +rss(w)arsia))*
Jw ow ow
(D.9)
0T (w) —t (o) ot (w) rt () ot (o)
Jw ow Jw

In (D.9), r,and tare functions ofe and ¢ and ¢ and x, in turn, are functions ofv.

. d dT, . . . .
Accordingly, the formulas for% and # require expansion in partial

derivatives. The following expressions are usetthis analysis:



229

dR,_, (9.0 Or.ou), (or.Qe or gu)
dw *0¢ dw 0y dw) =\ 0 dw Oy dw
(D.10)

dT, _, (9t 9¢ , dt.op), (0t,de , ot o)
dw *0fdw oy dw) |0 dw oy dw

For both semi-infinite and thin film configuratignthe procedure to calculate these
derivatives begins with analytical expressionsfgandt... From these expressions, the
required partial derivatives can be calculatets fiossible for some simplifications to be
obtained in (D.10) if the response functions aralyed at magnetic and dielectric

resonance.

D.4 Semi-infinite configuration — separate modes
For the semi-infinite case, thepolarized eigenvalueg,, is given in Eq. (D.2) and the
general equation for thepolarized complex reflection coefficient is givenkq. (D.4).
For simplification, an isotropic material is moe@l using one magnetic and one

dielectric Lorentzian oscillator whose natural fiegcies are separated by at leagt 3

In addition, only normally incident radiation is nsidered.%is analyzed at each of

magnetic and dielectric resonance with the tela?qisand S—Zbeing considered first. At

. Je . . . . oy .
magnetic resonance, the ter%qg) is negligible. At dielectric resonance, the teiaﬁls

negligible. At each of their respective resonanties derivatives can be approximated by

the following real valued expressions:
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de 25w,
do) V.

(D.11)

d 250
dw Vi

dr,| _ 'u(w )O,eRs. (@,)

de ko 8(&)80)

(D.12)
drSS -— 8(0)
dul, \ #(@n)

where thea terms are defined as:

afe =T (D.13)

e+ o]
In Eq. (D.13), the terms associated with the diele¢magnetic) oscillator are given by
the upper (lower) sign. Thsl (meaning semi-infinite) subscript in Eq. (D.12)used to
distinguish this term from its thin film counterpavhich will be discussed below. Note
that the expressions far’™> and o are of opposite sign. It is this factor which aacis
for the differing Lorentzian profiles for magnetend dielectric excitations in the

Reflection spectra. Inserting Eq. (D.11) and Eqld)into Eq. (D.10) produces:
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R 2l V) e g L [V s
dw aw, Ve 5( e0) 5((4)@)
(D.14)
drR, 2w \ 5(5‘) ) g(a) )
—= O-—=r 2 gt (wO)Sm +1, —mapﬁg(wo)sm
Wl S ule,) " o) "

We are motivated to find the ratio of these twoivddives. For modes with

similar y, ., it is evident that the ratio of the size of theciations at magnetic and

. . . . . . d
dielectric resonance is directly proportional tce thatio of %calculated at each

resonance. When the imaginary components in Ed.4jCare small compared to their

real counterparts, the ratio of these derivatiasle approximated as:

@, )1(,) a (@ s S g )y 0.15)
(. )e(w,) an (@) S ¥e

If it is further assumed that: (i, =y, =y; and (ii) the first term in the bracket can be

approximated by the ratio of the background respduectlons# then a good first
by

order approximation of the ratio of the derivatiatshe two resonances is given by:

dR,

A0k, Hoo S, 0% (@) @y (D.16)
& gbg Sm arl:SI (wmo) wmo

dw|,

It is important to note in Eq. (D.16), that theioas not simply proportional to the ratio
of oscillator strengths but rather to the ratiotlod oscillator strengthadjustedby their

constitutive complement. This is an important obaton. It suggests that even when
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S, <<S,, the impact of the magnetic oscillator in Reflentcan be brought to the same
order as that of the dielectric oscillator as aultesf its multiplication bye,;. The role of

this adjustment becomes even more apparent whesideoation is given to hybrid

modes.

D.5. Semi-infinite configuration - hybrid modes
The interesting case of coincident natural freqiesndor the magnetic and

dielectric oscillators is now examined. This ceseeferred to as the hybrid mode. The

u

OIware negligible at magnetic and dielectric resonance

assumption that Z—Zand

respectively, can no longer be made given cointidesonances. The partial derivative

expansion requires a second term and becomes:

dR,| 2w, 1 . .
dw|% O yh2 ﬂ(%)g(%) (rssSl + rssSA )’ (D17)
where,
s v e(g) I (@)
S. ae (a)h) :u(wh) Se g(a)h) O'RS' (a)h) $n (D18)

In Eq.(D.18), the bracketed term is identified las Net Adjusted Oscillator strength for
reflection and we define this term &s. At hybrid frequencya? (w,) =-af(w,) and S,
can be further reduced to:

S (@) =(u(w) §-£(w) §)- (D.19)
In Eg. (D.19), the two components are identifiedtlas Adjusted Oscillator Strengths

(AOS) for the individual modes. The term(a,)S, is identified as the AOS of the
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dielectric oscillator. The terna(ay,) S, is identified as the AOS of the magnetic oscillator

This equation also suggests that the AOS for theribuiting modes tend to cancel in

Reflection. This motivates examination of the iat#ing case when the AOS for the two

modes are exactly matched. In this cagea,—s =0 and occurs when the adjusted

dw%

oscillator strengths satisfy the simple conditioB;e(w,)= Su(w,). We define this

condition as Adjusted Oscillator Strength Match{A@®SM). Notwithstanding that there
are two oscillators active ag , when AOSM is satisfied, they interact in suchayas to

have no net impact on the background reflectivitihat point in the spectra. Note that in
deriving Eq. (D.19), no assumptions have been nwu®ut the relationship of the
imaginary and real components in the equation.ttherowords, to establish the AOSM
condition perfectly, both the real and imaginarynponents in Eq. (D.19) must be

identical.

D.6. Thin film configuration — separate modes
The general equations for the complex reflectiod &mansmission coefficients fos
polarized radiation incident upon a thin film ofdknessd are given in Eq. (D.6). As for
the semi-infinite case, an isotropic material isdeled using one magnetic and one
dielectric Lorentzian oscillator whose natural fiegcies are separated by at leagt 3
Radiation is again incident normally. Both expressi in (D.9) and (D.10) will be

developed in parallel. Since the same Lorentziasilla®r models will be used, the

analysis forda—Z) and 3—5) is identical to the semi-infinite case. Analytidatmulas for
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the other derivatives are more complicated thasehaf the semi-infinite case and are

given below:

(D.20)

arSS(w):\/EaRrr %:\/EGT
ou u" ou \pu "

where the expressions farare calculated as:

_ +2(\Jeu + Ade (¢ - ) 5 2feu Cog 4\ [summo]+i &+ )Sih d\[eurm)
Z(Z@Co{ ﬁ@nw} ~iE+pu )Sivﬁ ﬂ@nw})z

afr

em

(D.21)
o i(2d@(€+/,1)ano{ Z]I\/@nw}+ e - Adeumo )Sivﬁ ﬂ\/@nw})

i (Zi\/ECos{ Zi@nw]+ E+u )SirE E@Hw})z

em

In the above equations, the subsctipt (meaning thin film) is used to distinguish it from
its semi-infinite counterpart. In Eqg. (D.21), ternassociated with the dielectric

(magnetic) oscillator follow the upper (lower) ssgn

As in the semi-infinite case, we are again motid atie examlnec%s at each

resonance in order to estimate a ratio of the@izxcitations in the Reflectivity spectra.
With the exception of the terms, an expression identical in form to the sirfimite

case is obtained:
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(D.22)
dR, D—Zwm" I 8( m") at (a) )Sm r (wm") atr ( )S -
@l | 7 Julw,) " o) 0"

When the imaginary components in (D.22) are snaihmared to their real counterparts

and we make similar assumptions as for the senmiiiefcase concerning the, £,,and

U,y Parameters, the first order approximation to thie 1@ these derivatives becomes:

dR,

Dl (oo S, 02 (W) @ (D.23)
dR, Eng S A" (‘Umo) @,

dw o

Ree
In (D.23), the%term is again negative. It is through this factwattthe opposite
ay |

slopes of the magnetic and dielectric resonanc&eitectivity are incorporated into the
thin film configuration. Eq. (D.23) also shows tliae AOS phenomenon is present for

thin films. This again motivates an analysis of ithteresting case of hybrid modes.

D.7. Thin film configuration — hybrid modes

The case of coincident natural frequencies fornfagnetic and dielectric oscillators in
thin films is now examined. The partial derivatiezpansions for Reflection and

Transmission for thin films are:
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G on(8)+rs)
(D.24)

des * *

% Dtss (S&) + tss( %)

where S,and S, are given by:
__2 (@) ( ) O (wh)J
S Taeay MW S ) S

(D.25)

T

_ 2w ai(w) v el < Tn(eh)
2Ty Jﬂ(%)d%)(#(%)% (o) Smﬂ!(wh)}

In Eq. (D.25), the bracketed terms can be recognae the contributions the Net

Adjusted Oscillator Strength for Reflection and Agmission and can be defined for thin

R
films as S,and S; . At hybrid resonance, Whilg% is a negative term, it is no longer
a.”\aw,

identically equivalent to -1 under all circumstasi@d will be retained in the following

expressions. The AOSM condition for thin filmshetefore:

ay (@)
S, =- T D.26
Hla) S =-e(@n) Sy (D.26)
T
At hybrid resonance, while th%% term is positive, it is not identically equivaldnt
ae a)h

unity and will also be retained. The fact that ttaster ratio is positive sets up the
interesting result that while the modes in refl@etiend to cancel, in transmission the
AOS for each mode is additive. We note again thatassumptions regarding the

relationship between the real and imaginary comptsnavere made in deriving Eg.
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(D.26). Accordingly, to establish AOSM perfectlyth the real and imaginary parts must
match. The condition for AOSM in Reflectivity andiditive modes in Transmission
requires the solution of a simultaneous equaticssufne that the Transmission spectra
for a material can be fitted using a dielectricilkstor strength ofS,, . At hybrid
frequency, this result could also be obtained thhoa combination of one magnetic and
one dielectric oscillator. Using the expressiamsAOS derived above, the simultaneous

eguation can be written down as:

()5, +£(e) 8,05 (=0

e

(D.27)

ul@)s.+e(w,) sﬂj% = Sun

e

Eq. (D.27) has the solution:

=) (a; O (wh)J

(D.28)

Eq. (D.28) describes the coupling condition in drity mode. It will produce a result

where we clearly see a mode in transmission witbillator strength S, but no

al(w,)
agt (a,)

commensurate mode in Reflectivity. For thesBgO; fitted parameters,

e
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.
m(a)“)-~~1,,u(a&)=1and £(w,)=¢,. Eq. (D.28) can be simplified toS, D%and

S, D%. These simplified equations were used in thenfittof the Reflection and
é‘bg

Transmission spectra for BFg;sO1owith g #1.
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