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ABSTRACT 
 

ANALYSIS OF MUELLER MATRICES OF METAMATERIALS AND 
MULTIFERROICS 

 
by 

Paul D. Rogers 
 

 
The optical spectra of complex materials such as magnetic-dielectric media, magneto-

electric and multiferroic crystals, materials with intrinsic chirality, and metamaterials are 

studied.  These media are important both for: (i) their interesting optical effects, such as 

Negative Index of Refraction (NIR) and impedance matching; and (ii) possible device 

applications such as switching devices and anti-reflection coatings. Proper 

characterization of complex materials requires advanced spectroscopic approaches and 

the development of theoretical models for data analysis. Berreman’s 4 4××××  matrix 

formalism is used to derive forward models for the optical spectra of Reflectivity, 

Transmission, Rotating Analyzer Ellipsometry (RAE), and Mueller Matrices (MM).  The 

forward models incorporate the relative electric permittivity tensor (ε ), the relative 

magnetic permeability tensor (µ ), the magneto-electric tensors (α  and 'α ), and the 

chirality tensors (ξ and 'ξ ). These models can accommodate various crystal symmetries 

in both the semi-infinite and thin film configurations. Using non-linear least squares 

fitting procedures, the forward models can be fitted against experimental optical spectra 

to determine the tensor parameters, which describe the physical properties of the material.  

In the original part of this Thesis, forward models for the Mueller Matrix 

components of materials with relative magnetic permeability tensor µ≠1 are studied. 4×4 

matrix formalism is used to calculate the complex reflection coefficients and the MMs of 

dielectric-magnetic materials. For materials with simultaneously diagonalizable ε and µ 



 

 
 

tensors (with coincident principal axes), analytic solutions to the Berreman equation are 

derived.  For the single layer thin film configuration, analytic formulas for the complex 

reflection and transmission coefficients are derived for orthorhombic symmetry or higher. 

The separation of the magnetic and dielectric contributions to the optical properties as 

well as the ability to distinguish materials exhibiting negative index of refraction are 

demonstrated using simulations of the MM at varying angles of incidence.   

Far-infrared spectra of magneto-dielectric Dy3Fe5O12 garnet (DY-IG) were 

studied using a combination of transmittance, reflectivity, and rotating analyzer 

ellipsometry.  In addition to purely dielectric and magnetic modes, several hybrid modes 

with a mixed magnetic and electric dipole activity were observed. Using 4 4×  matrix 

formalism for materials with ( ) 1µ ω ≠ , the experimental optical spectra were modeled and 

the far-infrared dielectric and magnetic permeability functions were determined. The 

matching condition ( ) ( )h e h mS Sµ ω ε ω⋅ = ⋅  for the oscillator strengths ( )e mS  explains the 

observed vanishing of certain hybrid modes at hω  in reflectivity. 

Electromagnetic wave propagation and the spectra of optical excitations in 

complex materials are modeled. Analytical expressions for the complex reflection 

coefficients of materials with cycloidal magnetic ordering such as REMnO3 compounds 

(RE=rare earth) are derived for both semi-infinite and thin film configurations. 

Simulations for the Negative Index of Refraction (NIR) condition are given and the effect 

of the magneto-electric tensor on NIR is illustrated. Finally, the MMs of various 

combinations of material tensor components are illustrated for the dynamic magneto-

electric and chirality states and methods to distinguish their contributions are discussed.   
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CHAPTER 1 

INTRODUCTION 

The objective of this Thesis is the analysis of the optical spectra of complex materials. 

Chapters 1-7 presents the review of necessary background material. This material 

includes: the magnetic and dielectric properties of matter, multiferroics (including the 

magneto-electric effect), metamaterials,  4×4 matrix formalism, matrix methods in optics, 

spectroscopic ellipsometry using synchrotron radiation, and optimization methods for 

non-linear least squares fitting. 

The original results presented in Chapter 8 are published in P. D. Rogers, T. D. Kang, T. 

Zhou, M. Kotelyanskii, and A. A. Sirenko,  “Mueller matrices for anisotropic 

metamaterials generated using 4×4 matrix formalism”, Thin Solid Films, 519 (2011) 

2688-2673 [1], doi: 10.1016/j.tsf.2010.12.066 and have been presented at the ICSE-V 

Conference in May 2010.  

The original results presented in Chapter 9 have been accepted for publication:  

P. D. Rogers, Y. J. Choi, E. Standard, T. D. Kang, K. H. Ahn, A. Dudroka, P. Marsik, C. 

Bernhard, S. Park, S-W. Cheong, M. Kotelyanskii, and A. A.  Sirenko, “Adjusted 

oscillator strength matching for hybrid magnetic and electric excitations in Dy3Fe5O12 

garnet”, Phys. Rev. B. (2011) [2], arXiv:1101.2675v1 [cond-mat.str-el]. 

The original results presented in Chapter 10 will be submitted for publication: P. D. 

Rogers,  M. Kotelyanskii, and A. A.  Sirenko, “Modeling of electromagnetic wave 

propagation and spectra of optical excitations in complex media using 4×4 matrix 

formalism.” 
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The Appendices include original results for the derivation of the Adjusted Oscillator 

Strength Matching condition using two different approaches.  The Appendices also 

provide supplementary material applicable to non-linear least squares fitting and error 

analysis. 
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CHAPTER 2 

OVERVIEW OF THE DIELECTRIC AND MAGNETIC PROPERTIES OF 
MATTER 

2.1  Introduction 

 

This Chapter examines the optical properties of matter when subject to incident 

electromagnetic radiation. In particular, the theory and models concerning the dielectric 

permittivity tensor and the magnetic permeability tensor are reviewed. The Chapter 

concludes with a discussion of how these tensors enter into Maxwell’s equations. The 

majority of theoretical and analytical background for this Chapter is taken from 

References [3-8].  

2.2  Dielectric Properties in an Electromagnetic Field 

In the presence of incident electromagnetic radiation, dipole moments are induced at the 

atomic level. The induced dipole moment p
�

 is proportional to the local field E
�

 and the 

net effect of all dipole moments is to produce a polarization field P
�

.  This field is defined 

as the dipole moment per unit volume. In a linear approximation (neglecting nonlinear 

effects) P
�

 is proportional to E
�

: 

                                               0 eP Eε χ=
� �

                                                 (2.1) 

The factor eχ  is known as the electric susceptibility and is dependent upon the 

microscopic nature of the material. The vector field E
�

 in Eq. (2.1) is the resultant field 

inside the material. The displacement vector D
�

 is defined to be: 
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 0 PD Eε +=
� ��

 (2.2) 

The source of  D
�

 is due only to free charges in the system. Its properties will be further 

discussed in Sections 1.5 and 1.8. Substituting Eq. (2.1) into Eq. (2.2) gives: 

 

 0 0 0 0(1 )e eE P E E= E= ED χ χε ε ε ε ε+= + = +
� � � � � � �

 (2.3) 

 
Finally, the relative dielectric constant rε  is defined to be: 

 
0

1r eχεε
ε

= +=  (2.4) 

The study of the electric susceptibility  including its tensor properties, and especially 

its spectral dependency, reveals the microscopic properties of the material in question. 

This is particularly true with respect to its behavior in the presence of incident radiation 

in proximity to the dipole resonances.  Details will be considered in the next Section. In 

the following Sections, the subscript “r” in will be droped in rε  to keep the formulas 

more compact. 

2.3  Elementary Excitations and the Simple Harmonic Oscillator Model 

In the presence of incident radiation having frequency ,ω  the electric susceptibility  

itself becomes a function of  This is because the incident radiation interacts with 

elementary excitations in the material. The four primary groups of elementary excitations 

are: (a) electronic excitations of valence electrons; (b) ionic or phonon excitations due to 

lattice vibrations; (c) free carrier excitations and (d) crystal field transitions. For brevity, 

the coupled excitations, such as plasmons, are excluded from our discussion. 

eχ

eχ

.ω
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Accordingly, a complete description of the dielectric constant can be written as a sum of 

the additive contributions: 

 ( )) 1 ( ) ( ) ( )(r pel h fc CFω χ ω χ ω χ ωε ω χ= + + + +  (2.5) 

The frequency-dependent behavior of each of the four contributions to the dielectric 

constant can be described using, for example, the Simple Harmonic Oscillator (SHO) 

model. Note, however, that these four types of contributions have strong dispersion in 

different parts of electromagnetic spectrum. Usually, the off-resonant contributions to the 

dielectric function are presented with an “infinite value” of the dielectric constant ε∞ . 

2.3.1  Electronic Excitations of Valence Electrons 

The polarization vector P
�

 was introduced as the dipole moment per unit volume. An 

alternative expression for P
�

 which directly incorporates the electronic dipole moment is: 

 0 el eP Nd N xE qε χ == =
�� � �

 (2.6) 

In Eq. (2.6), N represents the number of atoms per unit volume, d
�

 is the dipole moment 

at the atomic level, eq  is the electronic charge, and x
�

 represents the distance from the 

electron to its positively charged nucleus. Eq. (2.6) provides a direct connection between 

the electronic susceptibility and the x
�

  vector. In the presence of an external driving 

force field, the SHO equation of motion for the valence electron becomes: 

 
2

2
0

2

0
i t

e e ee

dx
x m q E e

dt

x
m m

t
ωω γ −∂ = −−

∂
+

� � ����
 (2.7) 

The first term on the right hand side of Eq. (2.7) is the familiar restoring force term of an 

harmonic oscillator with 0ω  representing the electron’s natural frequency of motion. The 
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second term is a damping term and the third term is the external driving force with the 

incident radiation having frequency  ω.  The solution to Eq. (2.7) is: 

 ( )
0

2 2
0

i te

e

x
q

e
i

E

m
ω

ω ω ωγ
−=

− −
�

�

 (2.8) 

Using Eq.  (2.6), elχ  can now be directly calculated as:  

 ( )
2

2 2
0 0

1

( )
e

el
em

q

i

Nχ ω
ω ω ωε γ

=
− −

 (2.9) 

The electronic susceptibility is a complex number and is clearly dependent on the 

frequency of incident radiation ω  as well as the natural frequency 0ω  of the valence 

electron’s motion. Stated differently, the electronic susceptibility is dependent upon the 

relationship between the energy of the incident radiation and the natural energy of the 

electronic transition. In the case of a free electron, the Schrodinger equation, which 

describes its wave function, is an eigenvalue equation and therefore admits only discrete 

forms of the wave function with each having an associated discrete energy level. In other 

words, there can be many “natural frequencies” . A more comprehensive way of 

writing Eq. (2.9) is to include all of the natural frequencies in a summation: 

 

2

2 2
0 j

j j

j
el i

P
χ

ω ω ωγ
=

− −∑  (2.10) 

where,  jP  represents a type of oscillator strength or spectral weighting factor. In the far-

infrared (far-IR) part of the spectrum, elχ  is expected to be frequency independent and 

can often be combined with the first term of  Eq. (2.5) to form ε∞ , which is the high 

frequency dielectric constant.  

0ω
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2.3.2  Ionic or Phonon Excitations due to Lattice Vibrations 

Before the application of an external driving force with frequency , it is a useful 

exercise to calculate the normal modes of a diatomic lattice in a crystalline structure. 

Consider planes of alternating ions at u  and v  having different masses 1M  and 2M , 

respectively. Using a SHO model, with s, 1s−  and 1s+  as indices of adjacent planes; 

and employing the stiffness coefficient c , the equations of motions for the two ions 

become: 

 

( )

( )

1 1

2 1

2

2

s s s s

s s s s

u c v v u

M v c u u v

M −

+

= + −

= + −

ɺɺ

ɺɺ

 (2.11) 

To solve Eq.  (2.11), it is customary to use a trial solution or ‘ansatz’ for each of u  and v

of the form ( )
0

i sq t
s

auu e ω−=  and ( )
0

i sq t
s

avv e ω−=  , where a  is the lattice constant, s is the 

index and q  is the wave vector. After these substitutions, a set of homogeneous 

equations are obtained for 0u  and 0v  which have solutions only if their determinant is set 

to zero. This produces a solution for 2ω of the form: 

 ( )
2

2

1 2 1 2 1 2

1 1 1 1 2
1 cosc qa

M M M MM
c

M
ω

   
+ ± + − −   =

   
 (2.12) 

As can be seen from equation Eq. (2.12), solutions for  ω  depend upon which sign is 

taken in front of the square root as well as values for the lattice wave vector q . Due to 

the periodic nature of the lattice, all available information about lattice behavior is in the 

first Brillion Zone (“BZ”). Accordingly, we can evaluate Eq. (2.12) both in the long 

wavelength limit (where 1qa << ) as well as at the zone boundary where /q aπ= . The 

following table illustrates possible values of ω in the assumption of  1 2M M> . 

ω
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Table 2.1.  Characteristics of the Lattice Vibrations.  

Branch of Square 
Root 

Long Wavelength 
Limit ( 1qa << ) 

At BZ boundary 
 ( ) 

Description of 
Ionic Vibration 

Name of Mode 

ω+  

1 2

1 1
2c

M M

 
+ 

 
 

2

2c

M
 

Ions vibrate in 
opposite directions 
and are optically 
active 

Optical Mode 
(Transverse-TO or 
Longitudinal-LO) 

ω−  

1 2

1 1

2
a

M M
c q

+
 

1

2c

M
 

Ions vibrate in the 
same direction and 
are not optically 
active 

Acoustic Mode 
 
(Transverse-TA or 
Longitudinal-LA) 

 

Table 2.1 illustrates four interesting properties of the frequency behavior as a function of 

the underlying wave vector of the lattice vibration. First, the upper branch starts out at 

with a finite frequency at q=0 and then descends down to the right until its final value at 

the BZ boundary is achieved. Second, the lower branch starts out at zero frequency when 

0q =  and moves upwards to the right until its final value is achieved at the BZ boundary. 

Third, at the BZ boundary, the frequency of the upper branch is always greater than the 

frequency of the lower branch and an energy gap exists at this point. Fourth, only those 

modes whose ions vibrate opposite to one another will create an oscillating dipole and 

therefore become optically active.  

The lattice response to an external driving force will now be analyzed. For these 

purposes, atomic polarization is ignored and focus is on the rigid ion approximation. The 

response of incident radiation is evaluated for a diatomic crystal having charges  eq± .   

Eq. (2.11) is again used as the base equation of motion together with an applied 

electromagnetic field evaluated at the lattice sites (i.e., x sa= ). The equations of motion 

then become: 

/q aπ=
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( ) ( )

( ) ( )

1 1 0

2 1 0

2

2

i ska t
s s s s e

i ska t
s s s s e

u c v v u q E e

M v c u u v q E

M

e

ω

ω

−
−

−
+

= + − +

= + − −

ɺɺ

ɺɺ

 (2.13) 

The ansatz terms ( )
0

i sq t
s

au eu ω−=  and ( )
0

i sq t
s

av ev ω−=  are used to solve Eq. (2.13). For 

simplification, the lattice and incident wave vectors are phase matched and taken in the 

long wavelength limit. Accordingly, we set wave vectors 0q k= =  for the purposes of 

this calculation. A set of homogeneous equations is obtained: 

 

2
1 0 0 0 0

2
2 0 0 0 0

2 2

2 2

e

e

M u cu q E

M v cu c

v

q E

c

v

ω

ω

− =

−

− +

= − −
 (2.14) 

 

We define the reduced mass  
1 2

1 1

M M
µ = + ; divide the equations in Eq. (2.14) by  1M  

and  2M , respectively; and identify the term 
2c

µ
 with TOω  (the TO phonon at 0q = ) to 

produce: 

 0
0 0 2 2

1e

TO

Eq
u v

µ ω ω
− =

−
 (2.15) 

Combining Eq. (2.15) with Eq. (2.6) gives: 

 ( ) 0
0 0 0 02 2

2 1
e p

O
h

e

T

Nq E
P v EuNq ε

µ
χ

ω ω
=

−
== −  (2.16) 

The single phonon contribution to the electric susceptibility is given as:  

 
2

2 2
0

1
)(h

T

e
p

O

Nq

ε ωµ
χ ω

ω
=

−
 (2.17) 
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In crystals, one should take into account that several eigenvalues for  TOω  are possible 

(the maximum number of the phonon modes is 3 3s− , where s  is the number of ions per 

primitive cell). After the introduction of a damping term in the equations of motion, a 

more complete expression for )(phχ ω can be written as:  

 
2 2

2 2 2 2

1

k k

k k

k k

e
ph

TO kTOk

N q Q

i iµ γ
χ

ω ω ω ωγω ω
=

− −
=

− −∑ ∑  (2.18) 

 
The term  2

kQ   in the numerator can be interpreted as a type of weighting factor in the 

summation. In this case, it weights the number of molecules in the lattice that are 

vibrating at the various TO phonon frequencies.  

 

2.3.3  Free Carrier Excitations  

The analysis of free carrier excitations follows closely the analysis of the excitations of 

the valence electrons with the exception of two important features. First, in the case of 

free carriers, there is no natural restoring force frequency because the free carriers are not 

bound to a particular nucleus. Second, the summation of various energy levels is not 

required as in the case of a valence electron. Accordingly, the analog to Eq. (2.9) in the 

case of free carriers becomes: 

 
2

2

p
fc i

χ
ω ωγ

−Ω
=

+
 (2.19) 

Where 
2

2

*
fc e

p
corem

N q

ε
=Ω  with fcN being the free carrier concentration and coreε  being the 

permittivity constant at high frequencies (frequencies above pΩ ).  
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2.3.4 Crystal Field Transitions 

In the presence of a crystal field (“CF’), the wave functions of an ion are changed. 

Preferred wave function orientations take on lower energy levels and previously 

degenerate wave functions are split. This process is known as crystal field splitting. An 

illustration for f orbitals is contained in Fig. 2.1 below.  

                                                    

Figure 2.1  Illustration of Crystal Field Splitting for f- orbitals.  

 

The crystal field is an inhomogeneous electrostatic electric field produced by neighboring 

ions in the lattice. In Lanthanides, the Rare Earth (RE) ions are stripped of their 

outermost 6s electrons, which leave the optically active 4f electrons inside the 5s and 5p 

shell. This shields the 4f electrons from the direct effect of the crystal field and the CF 

effect becomes a perturbation in the Hamiltonian. In Figure 2.1, HFI refers to the 

Hamiltonian of the Free Ion, HLS is the Hamiltonian of the LS coupling and HCF  to the 

CF. The CF effect is significantly smaller than the spin-lattice interactions which varies 

as Z4, where Z is the number of electrons. Dipolar transitions can then occur between the 



 12

lower energy and excited crystal field states. Transition probabilities between the IR-

active CF states is analogous to oscillator strength in classical theory [3]. Using the 

Simple Harmonic Oscillator model, we can now introduce an analogous term for crystal 

field transitions.  

 

2

2 2
0n

n n
F

n
C i

Tχ
ω ω ωγ

=
− −∑  (2.20) 

Here, n  represents the number of allowed transitions due to crystal field splitting. Note, 

that for a “free” RE ion, the center-of-inversion symmetry requires the electric-dipole 

oscillator strength nT  to be zero. But in a crystal with the RE ion in non-centrosymmetric 

position, the so-called “forced electic dipole transitions” are allowed between 4f 

electronic levels due to intermixing between f and d-orbitals. Still, the magnetic dipole 

transitions are expected to be dominant between the crystal field levels of f electrons for 

RE ions in solids.  

 
2.3.5  Summary   

A complete expression for the dielectric constant as a function of the frequency ω  of 

incident radiation can now be obtained by combining Eqs. (2.5), (2.10), (2.18), (2.19) and 

(2.20) to produce 

2 22 2

2 2 2 2 2 2 2
0 0

( ) 1
j k n

j p
r

TO

k n

j k nj k ni i i

P Q T

i
ε

γ γ
ω

ω ω ω ω ω ω ω ω γω ωγ ω
Ω

+ + +
+ −

= +
− + − + − −∑ ∑ ∑ (2.21) 

In Eq. (2.21), the second term refers to electronic transitions of the valence electrons, 

which can be viewed as being independent of frequency in the far infrared region, the 

third term recognizes phonon contribution to the dielectric function, the fourth term refers 
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to the contribution of free electrons to the dielectric function, which is not applicable in 

the case of insulators, and the fifth term refers to crystal field transitions. Eq. (2.21), in 

the case of an insulator, can be reduced further by combining the first and second terms 

into the high frequency dielectric constant and eliminating the fourth term to produce:  

 

2 2

2 2 2 2
0

( )
nk

r
T

k n

k nk nO i

Q T

i
ω

ω ω ω ω ωγ ω
ε ε

γ∞ + +
− − −+

= ∑ ∑  (2.22) 

This equation says that for insulators subject to far infrared radiation, the major frequency 

dependent susceptibility term comes from phonons. The crystal field contribution is 

usually an order of magnitude weaker. As can be seen, the dielectric constant is a 

complex number. It consists of a real part and an imaginary part and can be written as.  

                                               1 2( ) ( ) ( )r iε ω ε ω ε ω= +                                        (2.23) 

 In addition to the SHO model, several alternative Dielectric Function Models can 

be applicable to describe complex behavior of the light propagation in solids. Some of 

these models have been introduced many decades ago to provide empirical means to 

model complex interactions between elementary excitations, such as, for example, the 

phonon-phonon and electron-phonon interactions.  

2.4  Dielectric Function Models   

While the Lorentz, or SHO, model is one of the most popular, other dielectric function 

models have been developed. These include the Sellmeier and Cauchy models, the Tauc-

Lorentz model, the complex Drude model [4], the Coupled Harmonic Oscillator model, 

and the Pendry model. The Sellmeier model is used for the dielectric function in a region, 

where the imaginary component of the Lorentz function, 2ε  , is approximately zero. This 
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is equivalent to saying that the damping coefficient far from resonance is zero: 0γ = . 

The expression for the Sellmeier model is:  

 
2

1 2 2
0

j

j j

B
A

λ
ε

λ λ
= +

−∑  (2.24) 

In Eq. (2.24), A  and B , are parameters to be fitted in a data analysis. This model is the 

most common in the optical glass catalogues for lenses, optical objectives, and optical 

antireflective coatings .  

 The Cauchy model is also used in the same spectral region as the Sellmeier model 

and is derived as a series expansion of the Sellmeier model:  

 2 4
...

B C
n A

λ λ
= + + +  (2.25) 

In Eq. (2.25), it should be noted that the formula is written in terms of n , the refractive 

index. Again the letters represent parameters to be fitted against experimental data. For 

both the Sellmeier and Cauchy models, the imaginary component of the dielectric 

function is assumed to be zero.  

 The Tauc-Lorentz model is used to model the dielectric function of amorphous 

materials. The model is built upon the relationship between 2ε  and the energy bandgap, 

gE : 

 
( )2

2 2

n g

n

E E
A

E
ε

−
=  (2.26) 

In Eq. (2.26), nE  represents the photon energy. The final expression for 1ε  is quite 

complicated as it is derived from the Kramers-Kronig (KK) relations which will be 

discussed later in this section.  
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 The Drude model is applicable for free carrier absorption and can be viewed as 

the SHO model extrapolation to the zero resonance frequency: 

 
2

2
( ) 1 p

i
ε ω ε

ω ωγ∞

 Ω
= −  − 

 (2.27) 

In Eq. (2.27), ε∞  is the high frequency dielectric constant and pΩ
 
is the plasma 

frequency.   

The Coupled Harmonic Oscillator (CHO) model treats the Lorentz model as a partial 

fraction decomposition [5]: 

 
2 2

2 2
( )

N
LOi LOi

i TOi TOi

i

i

ω ω ωγε ω ε
ω ω ωγ∞

− −=
− −∏  (2.28) 

In Eq. (2.28), TOiω  and LOiω  are the natural frequencies associated with the transverse 

optical and longitudinal optical phonons and ε∞  is the dielectric constant far above the 

resonances.  

 The Kramers-Kronig relations describe the coupling between 1ε  and 2ε : 

 

( ) ( )

( ) ( )

2
1 2 2

0

1
2 2 2

0

' '2
1 '

'

' 12
'

'

P d

P d

ω ε ω
ε ω ω

π ω ω

ε ωωε ω ω
π ω ω

∞

∞

= +
−

−−=
−

∫

∫

 (2.29) 

In Eq. (2.29), P  refers to the Cauchy principal value of the integral. This equation says 

that if ( )2ε ω  is known throughout the entire spectrum, then ( )1ε ω  can be calculated 

using the above equations. The Lorentz, CHO, Tauc-Lorentz , and  Drude models 

automatically satisfy the KK relations. Since the Sellmeier and Cauchy models assumed 

that ( )2 0ε ω = , they are not KK compatible [4].   
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The Pendry model for the dielectric function is not common, but it is widely accepted for 

modeling of magnetic succeptibilities in the analysis of metamaterials. In the static limit 

of  0ω = , magnetic succeptibility ( )0µ  is expected to be close to 1, while at the 

resonance a Lorentzian oscillator shape is desired. Both requirements can be achieved 

using the following function:  

 ( )
2

2 2
0

1 e

m m

A

i

ωµ ω
ω ω ωγ

= +
− −

 (2.29) 

where 0mω >> mγ . The Pendry model is sometimes known as the Adjusted Oscillator 

model [6]. 

2.5  The Dielectric Tensor (((( ))))ε̂ ω  

In describing the theory of the dielectric function in Section 1.2, it was assumed that the 

polarization vector P
�

 as defined in Eq. (2.1) was in the direction of the electric field. 

However, this need not be the case in low-symmetry crystals or anisotropic materials. For 

example, a material which has a built-in dipole moment will have a P
�

 vector different 

from the direction of an arbitrarily applied field. The same argument can be applied to the 

displacement vector D
�

 and its relationship to E
�

  as derived in Eq. (2.3): D Eε= ˆ
� �

. 

Accordingly, a more accurate description of ε  should be as a second ranked tensor in 

order to reflect the possible anisotropic nature of a medium. The dielectric tensor can 

now be written as: 

 ˆ
xx xy xz

yx yy yz

zx zy zz

ε ε ε
ε ε ε ε

ε ε ε

 
 =  
 
 

 (2.30) 
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The dielectric tensor is a symmetric tensor [7]. It can, therefore, be diagonalized in a 

certain coordinate system and a set of principal axes x-y-z should be determined. Such a 

tensor would have the form: 

 

0 0

ˆ 0 0

0 0

xx

yy

zz

ε
ε ε

ε

 
 =  
 
 

 (2.31) 

   

If xx yy zzε ε ε= = , the material is said to be isotropic. If the diagonal tensor components  

are not equal, the material is anisotropic.  

The dielectric constant displays certain dispersion characteristics within a medium and its 

value depends on the frequency of the applied field. Accordingly, the dielectric tensor 

should be written with each component being a function of frequency: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ˆ
xx xy xz

yx yy yz

zx zy zz

ε ω ε ω ε ω
ε ε ω ε ω ε ω

ε ω ε ω ε ω

 
 =  
 
 

 (2.32)  

Eq. (2.31)  also becomes a function of frequency and therefore the associated principal 

axes will also be frequency dependent. This characteristic is called the dispersion of the 

axes [7].  

2.6  Magnetic Properties in an Electromagnetic Field 

A material’s magnetic properties are highly influenced by the magnetic moment of 

atoms, which constitute the material on a microscopic level. The magnetic moment of a 

free atom is affected by (a) the spins of its electrons; (b) their orbital angular momentum; 
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and (c) induced magnetic moments which serve to counteract changes in magnetic flux in 

the system [8]. In addition, in much the same way that an applied electric field can induce 

lattice vibrations or phonons, an applied magnetic field can induce magnetic spin waves 

called magnons. Both the magnetic moment and magnon effects of an applied field are 

frequency dependent and will influence a material’s magnetic permeability. These effects 

can be described in the following equation: 

 ( ) 1 ( ) ( )md swµ ω χ ω χ ω= + +  (2.33) 

The subscript md  refers to the net effect of magnetic dipole transitions and the subscript 

sw refers to the spin wave or magnon contribution. The two magnetic susceptibility 

terms will now be described.  

2.7  Contributions to Magnetic Susceptibility  

2.7.1 Magnetic Dipole Contributions to Magnetic Susceptibility 

Quantum mechanics is needed to precisely describe the interaction of magnetic moments 

and spin waves subject to an externally applied field. The magnetic moment of an atom is 

dependent upon the aggregate spin and orbital angular momentum state of its electrons. 

With BJgµ µ=�
�

 (with µ�  being the magnetic moment of an atom, Bµ  the Bohr 

magneton, g  the Lande factor, J
�

 being the total of the atom’s orbital and spin angular 

momenta) and M Nµ=
� �

 (with M
�

 being the magnetic moment per unit volume and N  

being the number of atoms per unit volume) the expression for magnetic susceptibility 

has the form: 

 0 0magnetic i b i
i

M
N g J

B
χ µ µ µ= =∑�

�

 (2.34) 
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Accordingly, the magnetic susceptibility of a material subjected to an external field 

involves understanding the possible configurations of iJ  along with the number iN  of 

atoms that could have such a configuration.  Magnetic states can change as a result of 

absorption or emission of energy quanta in interaction with an applied field. Quantum 

mechanics is used to calculate the probability of allowed transitions between such states.  

Hund’s rules are used to estimate the ground state of an ion with many electrons [9]. Rule 

#1 states that the electron wave functions should be arranged so as to maximize S, the 

spin angular momentum. This is necessary because of the Pauli Exclusion Principle, 

which prevents electrons with parallel spins from occupying the same orbital. Rule #2 

states that given the configuration established with the first rule, the electron wave 

functions should be arranged so as to maximize L, the orbital angular momentum. The 

basic principle used in this rule is that electrons orbiting in the same direction are less 

likely to run into each other with the result that the Coulomb energy can be minimized. 

Hund’s 3rd rule says that the value of J can be found using J L S= −  if the shell is less 

than half full and J L S= +  if the shell is more than half full. The ground state is then 

summarized as 2 1S
JL+ . As an example, which we will consider in detail in Chapter 8, the 

ground state of Dy3+ is estimated in Table 2.2 using Hund’s rules.  

Table 2.2  The ground state of Dy3+ using Hund’s rules.  

lm  ↑  ↓  

3 •  •  
2 •  •  
1 •   
0 •   
-1 •   
-2 •   
-3 •   
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Dy3+ has an outer shell 94 f . Since 3l = , the first seven electrons are positioned with 

spin up while the remaining two are positioned with spin down. This satisfies rule #1. 

Rule #2 is satisfied if the two spin down electrons occupy the highest lm  orbitals. This 

configuration results in 
5

2
S =  and 5L =  (written as the letter H in spectroscopic 

notation). The shell is more than half full so 
5 15

5
2 2

J = + = . Accordingly, the symbol for 

the ground state of  Dy3+ is 6
15/2H . The ground state for Ho3+ can also be easily 

determined using Table 1.1. With one more electron than Dy3+, its ground state is 5
8I .  

 It is interesting to use Hund’s rules to estimate the crystal field effect on the 

electron configuration of transition metal ions. For example, in a crystal field, the Fe2+ 

ion, which has a 3d6 shell, splits into 3-fold lower energy orbitals and  2-fold higher 

energy orbitals. The term pairing energy is used to describe the amount of energy it takes 

to have two electrons occupy the same orbital. If the crystal field energy is less than the 

pairing energy then the first five electrons will each occupy one orbital. This sixth 

electron will then share one lower level orbital with another electron. This is known as 

the high spin configuration. On the other hand, if the crystal field energy is higher than 

the pairing energy, then all six electrons will occupy the three lower orbitals. This is 

known as the low spin configuration. In some cases, spin-flip transitions can occur when 

subject to incident radiation [9]. 

In general terms, Hund’s rules do not say anything about the higher excited magnetic 

states. Transitions to these states are governed by quantum mechanical selection rules. 

For example, for the case of RE ions, all electric dipole transitions are forbidden due to 
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parity. This applies to the case where the force field has a center of symmetry. However, 

if this symmetry requirement is broken, such as in the case of a crystal field in non-

centrosymmetric crystals, then three possible transitions are allowed: (i) a forced electric 

dipole transition; (ii) a magnetic dipole transition; and (iii) an electric quadrupole 

transition [10]. The latter is usually very weak in the far-IR spectral range and have never 

been reported in literature. The discrete nature of the electronic transitions motivates the 

use of the SHO model for magnetic dipole transitions just as we did in the case of electric 

dipole transitions in a crystal field. One model to describe the contribution of magnetic 

dipole transitions to magnetic susceptibility is to assume that the magnetic dipole 

response of a crystal consists of a collection of Lorentzian oscillators. Using this 

approach, the following equation describes the magnetic dipole contribution to magnetic 

susceptibility [11]:  

 2 2
( ) 1

j j

j

j i

f
µ

γ
ω

ω ω ω
= +

− −∑  (2.35) 

In (2.35), jf  is the oscillator strength of a given magnetic resonance, jω  is the frequency 

of a given resonance and jγ  is the relaxation rate of that resonance.  

 

2.7.2  Spin Wave Contributions to Magnetic Susceptibility 

In Section 2.3.2 elementary excitations due to phonon or lattice vibrations were 

examined. Natural frequencies for these lattice vibrations were calculated using systems 

of coupled equations. By setting the determinant of these systems of equations equal to 

zero, it was found that only certain frequencies (i.e. eigenvalues) were permitted. These 

eigenvalues correspond to quantized energy levels for the lattice vibrations. These are 
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called phonons. In a similar way, the spin states of nearest neighbor electrons can 

influence one another and form systems of coupled equations. In a manner similar to 

phonons, disturbances in spin alignments can be expected to propagate through a crystal 

lattice and would do so with only certain allowed levels of frequency and therefore 

energy. These quantized spin waves are called magnons.  

2.7.2.1 Ferromagnetic Magnons.  Ferromagnetic magnons deal with the excitation of 

spin waves in which all spins are pointing in the same direction. The equations of motion 

for the spin wave can be derived by starting with the interaction Hamiltonian for the spin 

of the pth electron [8]:  

 ( )2U J − += − ⋅ +p p 1 p 1S S S
� � �

 (2.36) 

Here J is the exchange integral from quantum mechanics and pS
�
ℏ is the angular 

momentum of the spin at the pth  site.  Using the magnetic moment at the pth site to be 

Bgµ µ=p pS
��

, Eq. (2.36) can be rearranged as:  

 ( )2

B

J

g
µ

µ − +

  −⋅ +  
  

p p 1 p 1S S
� ��

 (2.37) 

The second bracketed term in Eq. (2.37) is called Bp

�
which is the effective magnetic field 

that acts on the pth spin. Using the principal from mechanics that the rate of change of 

angular momentum equals the torque, the following differential equation can be 

produced:  

 ( )1

2d J

dt − +
 = × + × 
 

p
p p 1 p p

S
S S S S

�
� � � �

ℏ  (2.38) 
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This time derivative will produce three separate equations in Cartesian coordinates. As 

Kittel points out, for very small excitations it is assumed that z
pS S=  and that terms of 

the form x yS S  can be ignored [8]. Using these assumptions we get: 

 

( )( )

( )( )

1 1

1 1

2 / 2

2 / 2

0

x
p y y y

p p p

y
p x x x

p p p

z
p

dS
JS S S S

dt

dS
JS S S S

dt

dS

dt

− +

− +

= − −

= − −

=

ℏ

ℏ  (2.39) 

The third equation above simply says that the z  component of the spin is a constant that 

does not change in time. The first two equations form a system of coupled equations. 

Together, these imply that spin will precess about the z  axis and the phase of this 

precession will change from the pth to the p+1th electron. An alternative derivation of Eq. 

(2.39) can be produced by employing the Pauli spin exchange operator [12]. In this 

manner, the small change in spin precession will propagate like a wave through the 

lattice. This motivates a solution of the form ( )i pka tx
p eS u ω−= and ( )i pka ty

p eS v ω−= . Inserting 

these ansatz into Eq. (2.39) and taking the determinant of the coupled set of equations to 

be zero leads to[8]: 

 ( )1 co4 sJS kaω −=ℏ  (2.40) 

In the long wavelength limit, where ka<< 1, this reduces to the dispersion relationship: 

 2 2)(2JSa kω ≅ℏ  (2.41) 

It is interesting to note that, in the long wavelength limit, the frequency of magnons is 

proportional to the square of the wave vector, while for acoustic phonons frequency is 
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directly proportional to the wave vector. There is a possibility for the two modes to 

couple and interfere [13]. Note, however, that the ferromagnetic magnons, in the absence 

of external magnetic field, cannot be studied using far-IR spectroscopy due to nearly zero 

energy value, which corresponds to the k-vector of far-IR light.  

2.7.2.2 Antiferromagnetic Magnons.  Antiferromagnetic magnon excitations occur 

when nearest neighbor ions have opposite spin. This ordering can be visualized with two 

equivalent intersecting lattices with each lattice having alternating spin. Just as in the case 

of a ferromagnetic magnon, three directional equations of motion can be derived. Also, as 

in the case of phonons arising from a diatomic lattice, the equations of motion for the 

nearest neighbor are coupled. When an external field is applied to the material, Eq. (2.38) 

becomes: 

 ( ) ( )1

2 b
d gJ

dt

µ
− +

 = × + × − × 
 

p
p p 1 p p p ext

S
S S S S S B

�
� � � � � �

ℏ ℏ
 (2.42) 

In working through Eq. (2.42), we assume that all even numbered lattice sites have spin 

up and all odd numbered lattice sites have spin down. In addition, we assume that the 

external magnetic field is polarized in the z  direction. In order to reduce the 

dimensionality of the analysis, the variable i+ = +x yS S S is introduced [8]. When 

considering nearest neighbor interactions, the exchange integral J  becomes negative. 

Using this definition of +S , the following set of coupled equations are obtained: 

 

( )

( )

2

2

2
2 2 1 2 1 2

2 1
2 1 2 2 2 2 1

2
2

2
2

p

p

p
p p p p z

p
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d igiJ
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d igiJ
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µ

µ

+
+ + + +

− +

+
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+ + +

+ +
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 (2.43) 
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Using the ansatz (2
2

)i pka t
pS ue ω−+ = , ((2

2 1
1) )i p k t

p
aeS v ω+ +

+
−=  and ( )2

0z

i pqa t
z B e ω−=B  and with the 

definitions 
4

exch

JS
 ω −=

ℏ
 and 

(2 )i pqa
B

tg e ωµγ
−−=

ℏ
, Eq. (2.43) produces another set of 

coupled equations: 

 

( ) ( )

( ) ( )

0

0

( )) 0cos

c ( ) 0os

z

z

exch exch

exch exch

u B v ka

u ka v B

ω ω γ ω

ω ω ω γ

− + + =

+ − =+

 (2.44) 

Setting the determinant of this system of equations equal to zero produces frequency for 

normal modes as follows: 

 0

2
z

B
JS

akω γ ±=
ℏ

 (2.45) 

Eq. (2.45)  is an important result. It demonstrates that for the antiferromagnetic case, the 

dispersion relationship is linear in k . Resonance is expected to occur when incident 

frequencies are near those of the normal modes with the frequency mω . The discrete 

nature of normal modes again motivates the use of the SHO model to describe the 

susceptibility contribution of magnons and the following equation will be used for this 

purpose. 

 2 2
sw

j
magnon

m m mi

S
χ

ω γω ω
=

− −∑  (2.46)   

   

2.7.2.3 Ferrimagnetism and Kaplan-Kittel Modes.  In the preceding discussion on 

antiferromagnetic modes, it was assumed that the two sublattices of opposite spins were 

equivalent. However, if the two sublattices are not identical then it is possible that a net 

magnetization appears. Since the sublattices are not identical in ferrimagnetic materials, 
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such as RE-iron garnets (see Chapter 9), it is possible that their spontaneous 

magnetizations will have different temperature dependencies and, in general, the 

magnetism in ferrimagnetics can be quite complicated. At a certain temperature one 

sublattice can dominate and therefore its magnetization is most pronounced. The opposite 

can be true in a different temperature range. It is possible that at a certain temperature, 

known as the compensation temperature, the net magnetization can be reduced to zero 

[9].  

One group of ferrimagnetic materials is the garnets which have the chemical 

composition: RE3Fe5O12 where RE is the trivalent Rare Earth atom. These materials are 

also known as Rare Earth Iron Garnets or RE-IG. As explained in Blundell [9], the crystal 

structure is cubic but the unit cell is complex. Three of the Fe3+ ions are on tetrahedral 

sites, two are on octahedral sites and the RE3+ ions are on dodecahedral sites.  Kang et al. 

[14] describe the structure for Tb3Fe5O12 in more detail. The Tb3Fe5O12 crystals form a 

cubic structure. Tb3+ ions with the ground state 7
6F  are in the 24d dodecahedral sites 

with the local orthorhombic symmetry 222(D2). There are several nonequivalent Tb ions 

in each unit cell with the same surrounding field but the axes are inclined to each other. 

This has the overall effect of producing an average cubic symmetry. Fe3+ ions occupy 

two sites: 16a octahedral sites with the ( )33 iC  symmetry and 24c tetrahedral sites with 

the ( )44 S symmetry. Below the transition temperature of 550NT K≈ , the iron spins are 

ordered in a ferrimagnetic structure with the spins aligned in the [1 1 1] direction.  

Among six possible exchange interactions between spins in three different magnetic 

subsystems, only two dominate.  The main magnetic superexchange interaction is 

between Fe in two different sites:  spins of Fe in the tetrahedral site are antiparallel to 
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those of the octahedral site. Another important interaction is between Tb and Fe in the 

tetrahedral site resulting in the Tb spins to be antiparallel to Fe moments in the 

tetrahedral sties, and, hence, antiparallel to the net magnetic moment of Fe. Below 

approximately 150K , a rhombohedral distortion of the cubic cell causes the canting of 

Tb spins, which is usually described as a “double umbrella structure.” The symmetry of 

the Tb3+ is lowered from 222(D2) tetragonal to 2(C2) monoclinic. Note that Tb3+ is not at 

the center of inversion, which is important for the future discussion of the selection rules 

for the crystal-field transitions.  

Also as explained in Kang et al., in addition to phonons and crystal-field excitations, the 

far-IR spectra of ferrimagnetic materials can exhibit magnetic excitations related to the 

spins of iron and RE ions, such as magnons. An acoustic ferrimagnetic mode that 

corresponds to the strongest superexchange Fe-Fe interaction falls in a very low-

frequency range. The Fe-Tb ferrimagnetic interaction reveals itself in the measured far-IR 

spectral range. If one considers only the interaction between the RE and the combined Fe 

subsystems, then two optical magnetic modes should appear. One is the Kaplan-Kittel 

(KK) mode MΩ , which corresponds to the exchange between two magnetic subsystems. 

Another one LFΩ corresponds to precession of the RE moments in the effective field 

imposed by the iron magnetization. The zone-center energies of these modes are:  

 

( ) ( )M ex B Fe Tb Tb Fe

LF ex B Tb Fe

T g M T g M

g M

λ µ

λ µ

Ω = −  

Ω =
 (2.47) 
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where Bµ  is the Bohr magneton, exλ  is the exchange constant, ,Fe Tbg  are the 

corresponding g  factors, TbM  is the Tb sublattice magnetization, and FeM is the 

combined Fe magnetization.  

 
2.7.3  Summary 

 A complete expression for the magnetic permeability as a function of the frequency of 

incident radiation can now be obtained: 

 2 2 2 2
( ) 1

md sw

l m

l ml ml m

SR

i i
µ ω

ω ω ω ω ωγ γ ω
+

− −
= +

− −∑ ∑  (2.48) 

In the above equation the second term incorporates magnetic dipole transitions and the 

third term incorporates the effects of spin waves or magnons. As with the dielectric 

permittivity tensor, ( )µ ω  is also a symmetric tensor: 
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 (2.48) 

 As seen in Eq. (2.48) , the magnetic permeability of a material is a complex number. It 

consists of a real and imaginary part and can be written as:       

 1 2( ) ( ) ( )iµ ω µ ω µ ω= +  (2.49) 

2.8  Maxwell’s Equations  

Electromagnetic phenomena in the absence of currents and charges are described by 

Maxwell’s equations [15]: 
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These are calculated without taking into consideration any induced polarization charges 

or currents. An equation for the displacement vector D
�

 has already been given in 

equation (2.3) as 0(1 )e ED E=ε χ ε= +
�� �

. A completely symmetric equation is available to 

describe B
�

, the magnetic induction vector. It is given by: 

 ( )0 0(1 )mB H M H Hµ µ χ µ= += + =
� � � � �

 (2.51) 

Together with bi-anisotropic  tensors ρ  and 'ρ , which will be described in more detail 

later, Eq. (2.3) and Eq. (2.51) form the constitutive relations for the material.  

A complete description of electromagnetic wave propagation in a complex anisotropic 

medium is made possible using Berreman’s matrix equation [16]: 

ˆ ˆ0 -

ˆ ˆ0 '

curl E E
i

curl cH H

ε ρω
ρ µ

      =               

� �

� �                            (2.52) 

 
In Eq. (2.52), curl  represents the 3×3 matrix operator. The first matrix on the right hand 

side is a 6×6 matrix called the optical matrix M . This matrix contains all of the 

information contained in the constitutive relations and completely describes the 

anisotropic properties of the material including chirality and magneto-electric effects 

[17]. 

2.9 Chapter Summary 

In this Chapter we described the properties of the ε̂  and µ̂  tensors.  The symmetry and 

optical effects related to the case of ε̂  anisotropy and 1µ =  is rather a “common 

knowledge” in the community of the far-IR spectroscopy of solid state materials. We 

have been described this case in this introductory Chapter with the goal to present a 
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complete picture, define symbols, explain models, and to make a clear link to the optical 

properties of magnetic materials. The problem of the light propagation in magnetic 

materials with 1µ ≠  is already a specialized field that has been the focus of theoretical 

and experimental research in the last 10 years. The obvious conceptual complication 

arises from the fact that there is no theoretical relationship between the ε̂  and µ̂  tensors. 

Without an assumption about their dispersion, it is impossible to de-couple the ( )ε ω and 

( )µ ω  complex functions based on a single optical measurement of either transmission or 

reflectivity spectra. Still, the earlier work using far-IR and neutron spectroscopies built a 

solid foundation to understanding of magnetic materials in the frequency range below 

100 cm-1, where 1µ ≠ and ( ) Constε ω ≈ .  

In contrast, the properties of the ρ  and 'ρ  tensors, and especially their frequency 

dependence, are far less known theoretically compared to that for the ε  and µ  tensors. 

Our knowledge of their symmetries and frequency dependence is practically “terra 

incognita”. In recent years there is a tremendous interest regarding the optical properties 

of metamaterials and multiferroic crystals. One can say that the key to understanding of 

the magneto-electric coupling and the light propagation in the materials with Negative 

Index of Refraction (NIR) and in materials with chirality is hidden in the non-trivial 

relationships between the ρ  and 'ρ  tensors in Eq. (2.52), which has no obvious 

connection to the ε  and µ  tensors. In the next Chapter we will discuss the general ideas 

about the ρ  and 'ρ  tensors, mostly obtained from the specialized literature in the field 

of metamaterials and multiferroic materials. The analytical and numerical solutions to the 

problem of light propagation in a magneto-electric medium with chirality and the 
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connection between the “measurable” infrared spectra and the ε  , µ , ρ   and 'ρ  tensors 

is the central part of this Thesis. 
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CHAPTER 3 

MULTIFERROICS AND METAMATERIALS 

3.1 Introduction 

In this chapter, multiferroic materials and metamaterials are examined. These materials 

are chosen for analysis because they are characterized with a magnetic permeability, 

1µ ≠  and the ρ   and 'ρ  tensors, which describe bi-anisotropic behavior, may not be 

equal to zero.  

 The study of complex materials is motivated both by their interesting physics as 

well as for possible device applications. For multiferroics, a proper understanding of the 

origin of both the electric and magnetic order inside the material is of fundamental 

importance. In addition, for multiferroic crystals with certain symmetries, it is possible 

for the magneto-electric (ME) effect to occur whereby electric polarization can be 

induced with the application of a magnetic field; and magnetization can be induced with 

the application of an electric field [18]. Phenomenon such as the ME effect suggest that 

multiferroic materials can have application for novel switching devices where, for 

example, magnetic memory could be addressed electronically [19]. Further, in the 

dynamic state, multiferroic materials allow for the possibility of electromagnons which 

enable the transfer of a portion of the spectral weight of magnons to hybridization with 

phonons at the same resonant frequency*. Metamaterials, on the other hand, are artificial 

materials which allow for independent control of electric and magnetic field components 

[20]. When their design permits simultaneously negative dielectric permittivity and 

magnetic permeability, it is possible to achieve negative index of refraction (NIR). Under
                                                 
* Correspondence with A. Cano, European Synchrotron Radiation Facility, Grenoble, France 
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 conditions of NIR, light takes on a ‘left-handed’ behavior and the propagating wave is 

refracted to the left of normal in the metamaterial. This allows for possibility of novel 

optical devices such as cloaking devices which ‘bend’ light around an object.  

3.2  Multiferroic Materials and the Magneto-Electric Effect 

3.2.1 Definition 

The strict definition of a multiferroic material is one that combines any two or more of 

the primary ferroic orders in one phase: ferroelectric, ferromagnetic and ferroelastic. The 

more common definition, however, is to include only simultaneously ferroelectric and 

ferromagnetic orders. Ferroelectric ordering refers to the spontaneous ordering of electric 

dipole moments in a material; ferromagnetism refers to the spontaneous ordering of 

orbital and spin magnetic moments [19]. Magneto-electric coupling is a separate effect 

which most often occurs in, but is not restricted to, multiferroic materials.  The following 

Venn diagram illustrates the relationships among these terms [21]:  

 

Figure 3.1 Relationships among polarization, multiferroic and magneto-electric effects.                                           
(Source: Ref [21]). 
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3.2.2 Background 

The possibility for the magneto-electric effect was known in the 1950’s and early 1960’s 

through the pioneering work of Landau and Lifshitz [22], Dzyaloshinskii [23] and Astrov 

[24] . Landau and Lifshitz addressed the possibility of linear coupling between the 

electric and magnetic fields in a medium. Dzyaloshinskii proved that anti-ferromagnetic 

Cr2O3 had a magnetic symmetry that should theoretically allow the ME effect and Astrov 

actually showed the effect experimentally in Cr2O3 in the following year. Other early 

efforts at studying multiferroics and the magneto-electric effect are covered by O’Dell 

(see Ref. [25]).  Classification as a multiferroic material requires that two types of 

ordering, ferroelectric and ferromagnetic, coexist in the same phase. The term 

multiferroic has been attributed to the work of Hans Schmid [26] whose work, 

interestingly, was funded by the Swiss Post Office [27]. Building on this early work, 

multiferroics and the magneto-electric effect are now topics of a high level of interest. 

There are at least four main reasons for this strong interest [19, 21]. First, in 2000, Hill 

[28] wrote a paper claiming that the conditions for multiferroic materials are actually 

quite rare. This challenge spawned a huge interest in finding new multiferroics. Second, 

advances in experimental techniques have increased the availability of multiferroic 

materials for study. Modern methods for crystal growth allow for precise control over 

crystalline perfection with the result that large enough samples for measurement can be 

produced [27]. Third, discoveries in 2003 relating to bismuth ferrite, BiFeO3, and 

TbMnO3 showed the differing origins of the multiferroic effect. Even at room 

temperature Bismuth ferrite is both anti-ferromagnetic and ferroelectric and, therefore, is 

clearly a multiferroic wherein these two order coexist. Studies of TbMnO3 again showed 
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coincident ferromagnetic and ferroelectric effects but this time with the ferroelectricity 

being caused by the magnetism. Fourth, there is a possibility for new devices including 4-

state logic systems, new electrical switching technologies, and optical recording and 

memory devices.   

3.2.3 Classification of Multiferroic Materials 

The two major categories of multiferroic materials are proper (or Type I) and improper 

(or Type II) ones. The difference in nomenclature relates to the origin of the ferroelectric 

effect in the material. Before going in to further detail regarding the classification, it is 

worthwhile to explore the apparent contradiction in having coincident ferroelectric and 

ferromagnetic orders. Most ferroelectrics are transition metal oxides with the transition 

metal having an emptyd shell. Covalent bonding is formed between the negatively-

charged oxygen ions and the anions and cations inside the periodic crystal. The ionic shift 

from the centrosymmetric position accounts for the polarization effect. Magnetism, on 

the other hand, requires a partially filled d shell as a source for the net spin effect in order 

to produce a magnetic moment. In general terms, ferroelectricity and ferromagnetism 

should therefore be mutually exclusive [29]. However, as discussed previously, these 

coincident orders have been found experimentally suggesting that a deeper explanation is 

needed for the source of coincident ordering in a multiferroic. The two categories of Type 

I (proper) and Type II (improper) address this need.  

Type I multiferroics are generally good ferroelectrics but the coupling between 

magnetism and ferroelectricity is weak. An example of this is the perovskite structure 

bismuth ferrite, BiFeO3, referred to previously. In this structure, Fe3+ has 5 3d electrons 

which account for the magnetism. The Bi3+ ion has two electrons on the 6s orbital which 
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form a lone pair that moves away from the centrosymmetric position in its surrounding 

oxygen. This accounts for the ferroelectricity. The fact that these orders arise from two 

separate and distinct ions accounts for the resultant weak coupling between the two 

effects of ferroelectricity and magnetism. This weak coupling has been observed 

experimentally with ε  showing only a slight anomaly at FMT , the ferromagnetic 

transition temperature [30]. Ferroelectricity arising from charge ordering and geometric 

tilting are also included in the Type I category.  

Type II multiferroics are also referred to as magnetic multiferroics because (i) 

ferroelectricity exists only in a magnetically ordered state; and (ii) it is caused by either 

spiral or collinear magnetic structures, with the spiral structure being the most common 

[19]. In the 1970’s, R. Newnham et al., proposed that a non-centrosymmetric magnetic 

ordering could produce an electric polarization P
�

. The Figure below, from Ref. [27], 

shows atoms symmetric about ‘x’ but the spins are not which leads to a net polarization. 

This effect has been observed in the RE-manganites Tb(Dy)MnO3 and Tb(Dy)Mn2O5. In  

Figure 3.2 Non-centrosymmetric magnetic order produces a net polarization. 
                  (Source: Ref. [27]). 
 

TbMnO3 below 1NT =41 K, the magnetic structure is sinusoidal which results in no net 

magnetic moment and no ferroelectricity. However, below 2NT =28 K, the Mn spins 

change to cycloidal order due to magnetic frustration in which competing interactions 

between spins preclude simple magnetic order [29]. A polarization is produced in this 
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phase as a result of spin-orbit coupling. The polarization is proportional to Q e×
� �

, where 

Q
�

 is the wave vector associated with the spiral and e
�

 is the spin rotation axis [19]. Upon 

application of an external magnetic field in Tb(Dy)Mn2O5 , the polarization vector was 

seen to rotate by 90o [31]. The second group of Type II multiferroics is characterized by 

ferroelectricity being induced due to collinear magnetic ordering. Polarization appears in 

these materials as a result of exchange striction because the magnetic coupling varies 

with atomic positions. An example of this multiferroic is Ca3CoMnO6 which consists of 

one dimensional chains of alternating Co2+ and Mn4+ ions. At high temperatures, the 

distances between the ions are the same but at low temperatures, there is asymmetry in 

magnetic order which causes a distortion in the bonds. As a result, the material becomes 

ferroelectric [19].  

3.2.4 Magneto-Electric Effect and Symmetry 

The inclusion of the magneto-electric effect into tensors ρ  and 'ρ , force a decision 

about how to construct the constitutive relations for the complex material. There are two 

choices of basis vectors to use: ( ),E H
� �

and ( ),E B
� �

. For the ( ),E H
� �

 
basis, Dzyaloshinskii 

obtained the constitutive relations in the following form:  

 

D E H

B E H

α αβ αβ
β β

α βα αβ
β β

ε α

α µ

= +

= +
 (3.1) 

Note that in Eq, (3.1) we use a new notation, α̂  tensor, for the pure magneto-electric 

effect. As we will explain in the following, the α̂  tensor is an additive component of the 

more general ρ  and 'ρ  tensors. As explained in O’Dell book [25], the ( ),E H
� �

 basis has 
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a number of advantages. For a non magneto-electric material, the constitutive relations 

can easily be substituted into Maxwell’s Equations (see Eq. (2.50)). The two vectors both 

share the same boundary condition that their tangential components must be continuous. 

The Poynting vector is also made up of the cross product of these two vectors.  

On the other hand, it has been pointed out that this basis creates some difficulty. In Eq. 

(3.1), B
�

 and E
�

 are connected through the magneto-electric tensor. However, Maxwell’s 

equations already connect these two vectors.  Similar situation is for D
�

 and H
�

. The 

( ),E B
� �

basis solves this problem. The constitutive relations in this basis are:  

 

D E B

H E B

α αβ αβ
β β

α βα αβ
β β

ε β

β µ

= +

= + ɶ
 (3.2) 

As explained by O’Dell, it is important to note that these two sets of equations are not 

simply different ways of writing the same thing. For example, αβε  is the permittivity 

tensor measured under conditions of constant H
�

 in Eq. (3.1) while it is measured under 

conditions of constant B
�

 in Eq. (3.2).  The µɶ  tensor has a meaning of 1µ̂− . This 

definition requires an elaborate procedure for recovering of the µ̂  tensor components 

based on the measured values of the µɶ  tensor.  

There has been much debate as to which basis to use in discussing the magneto-electric 

effect and both are in use in present day literature. For the remainder of this Thesis, we 

have chosen to use the ( ),E H
� �

 or Dzyaloshinskii basis. This basis is the one used in 

Berreman’s 4×4 matrix formalism which is a powerful tool to analyze wave propagation 

in complex media. This formalism will be discussed in more detail in the next Chapter. 
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The tensors ρ  and 'ρ  will always refer to the ( ),E H
� �

 basis.  Unless otherwise stated, 

the α  tensor will also refer to the ( ),E H
� �

basis.  

Equations describing the magneto-electric effect can be derived from the expression for 

the free energy F of the system [21]: 

 0 0

1 1 1 1
( , ) ...

2 2 2 2ij i j ij i j ij i j ijk i j k ijk i j kF E H E E H H E H E H H H E Eε ε µ µ α β γ− = + + + + + (3.3) 

In Eq. (3.3), ijα
 
is the linear magneto-electric coupling tensor, while ijkβ and ijkγ are 

tensors that describe higher order magneto-electric effects. To establish ( )i jP H
 
and 

( )i jM E , differentiation of F with respect to iE and jH is required: 

 

0

...
2

....
2

ijk
i ij j j k

ijk
i ji j j k

P H H H

M E E E

β
α

γ
µ α

= + +

= + +

 (3.4) 

Eerenstein et al. [21] point out that, for thermodynamic reasons, ijα
 
is bounded by the 

geometric mean of the diagonalized permittivity and permeability tensors:  

 2
0 0ij ii jjα ε µ ε µ≤  (3.5) 

ijα
 
is an asymmetric second ranked tensor that is a function of temperature T. It changes 

sign under space inversion or time reversal, and therefore is invariant under simultaneous 

space and time inversion. Note that the two α  terms in Eq. (3.1) are the transpose of each 

other. This relationship is true for the static case ( )0ω =  but may not necessarily hold at 

each frequency ω  for the dynamic case [32], where more complicated transfers of the 

spectral weightings of magnons and phonons are involved.  O’Dell has shown that ME 
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effect ( 0α ≠ ) can exist only in material systems that do not have a center of inversion 

and no time-inversion symmetry. That means, ME crystals allow a simultaneous presence 

of magnetization (that destroys time-reversal) and electric polarization (that obviously 

destroys the center of inversion). The role of symmetry is critical in determining which 

crystals can display the magneto-electric effect. Crystal symmetry, for example, 

determines the form of each of the ε , µ ,α , β , and γ  tensors in Eq. (3.3). Neumann’s 

principle states that the symmetry elements of any physical property of a crystal must 

include the symmetry elements of the point group of the crystal. This principle makes a 

clear connection between the physical properties of a crystal and the material tensor 

which describes those properties. The point group of a crystal is the group of 

macroscopic symmetry elements that its structure possesses. A detailed treatment of this 

subject is found in Ref. [33]. There are 58 magnetic point groups which allow the linear 

ME effect ( 0α ≠ ) [18]. O’Dell presented a simplified and elegant way to analyze the 

possible forms of the magneto-electric tensor, α , given knowledge of the form of the 

electric and magnetic susceptibility tensors. This treatment has been further developed by 

H. Schmid and J. Rivera in Refs. [34] and [18]. For the purpose of illustration, two of the 

examples worked through by O’Dell will be presented here. The first deals with the 

symmetry of the magnetic point group mm2 which incorporates the three symmetry 

transformations 2x , 2y and 2z . mm2 will be recognized as the crystal class associated 

with orthorhombic symmetry [33]. The next Figure illustrates O’Dell’s explanation for 

the form of the electric and magnetic susceptibility tensors that are consistent with the 

three symmetry transformations:   
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• ⋅ • 
 ⋅ • ⋅ 
 • ⋅ •  ,

• • ⋅ 
 • • ⋅ 
 ⋅ ⋅ •   and 

• ⋅ ⋅ 
 ⋅ • • 
 ⋅ • • 

• ⋅ ⋅ 
 ⇒ ⋅ • ⋅ 
 ⋅ ⋅ •   

Figure 3.3. Magnetic and electric susceptibility tensors associated with orthorhombic 
symmetry transformations.  (Source:[25]). 
 
In Figure 3.3, the notation is that followed by Nye. The symbol •  indicates a tensor 

element that is allowed by symmetry, while the symbol ⋅  indicates a tensor element that 

is forbidden. Each •  is taken to be independent unless otherwise indicated by a joining 

line •−• . •−�  indicates elements of equal magnitude but of opposite sign. In Figure 3.3, 

the first three tensors are associated with each of the three symmetry transformations. The 

fourth tensor is the only tensor which is consistent with all three. It is well known that all 

orthorhombic crystals have a tensor of this form. Using symmetry tables, O’Dell further 

explains that the magneto-electric tensors which are consistent with the three symmetry 

transformations are:  

 

⋅ • • 
 • ⋅ ⋅ 
 • ⋅ ⋅ 

⋅ • ⋅ 
 • ⋅ • 
 ⋅ • ⋅ 

• • ⋅ 
 • • ⋅ 
 ⋅ ⋅ • 

⋅ • ⋅ 
 ⇒ • ⋅ ⋅ 
 ⋅ ⋅ ⋅   

Figure 3.4 Magneto-electric susceptibility tensors associated with orthorhombic 
symmetry transformations. (Source:[25]). 
 

In Figure 3.4, the fourth tensor on the right is the only tensor that is consistent will all 

three symmetry transformations. Accordingly, the magneto-electric tensor associated 

with crystals of orthorhombic symmetry will not be orthorhombic itself but rather will 

consists of two independent off-diagonal elements.  
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The second example concerns crystals having hexagonal symmetry which contain all of 

the symmetry transformations 2z  or 2z  together with 3z  and 3z . Following an analysis 

similar to the above, the compatible magneto-electric tensors must be of the form:  

⋅ ⋅ • 
 ⋅ ⋅ • 
 • • ⋅   and 

• • ⋅ 
 • ⋅ 
 ⋅ ⋅ • 

�

 

⋅ ⋅ ⋅ 
 ⇒ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅   

Figure 3.5 Forms of the magneto-electric tensor associated with hexagonal crystal 
symmetry.  (Source: [25]). 
  

In Figure 3.5, in the second tensor on the right, the two upper diagonal elements are equal 

in magnitude while the two upper off diagonal elements are equal in magnitude but 

opposite in sign. As can be seen in Figure 3.5, there is no tensor which can 

simultaneously meet both of these tensor symmetries. Accordingly, the linear magneto-

electric effect in hexagonal crystals is strictly forbidden by symmetry reasons. This 

includes the entire class of hexagonal rare earth manganites of the form REMnO3 

(RE=Ho-Lu, Y). In these materials, ferroelectricity appears below the lattice transition, 

which enlarges the unit cell and is induced by a non-linear coupling to nonpolar lattice 

distortions [29]. As further evidence of the non-linear effect for this class of materials, 

Fiebig et al. reported on the spatial maps of coupled antiferromagnetic and ferroelectric 

domains in YMnO3, obtained by imaging with optical second harmonic generation. The 

coupling originates from an interaction between magnetic and electric domain walls, 

which leads to a configuration that is dominated by the ferroelectromagnetic product of 

the order parameters [35]. This has been referred to as a landmark study in multiferroics 
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[21]. Finally, as derived by O’Dell, there are three cubic point groups, 432, 43mand 

3m m, whose magneto-electric tensors are symmetry forbidden.  

3.2.5 Further Work in Multiferroics  

The current knowledge of multiferroics and the magneto-electric effect suggests a 

number of possible avenues for further work. The connection between cycloidal ordering 

and an induced polarization points to further work in the study of domain walls, magnetic 

vortices and spin waves (magnons) [19].  Eerenstein et al. emphasize the continued 

importance of developing a clear understanding of magnetic point group symmetries as 

these are vital to the analysis and prediction of magneto-electric effects [21]. In addition, 

they suggest the investigation of strain as providing a coupling mechanism for 

ferroelectric and ferromagnetic effects in a multiferroic. The study of dynamical 

properties and elementary excitations will also be important. This includes the possibility 

of exciting magnons with an applied electric field which has given rise to the study of the 

possibility of electromagnons. Finally, the whole area of artificial multiferroics is a 

possibility by combining materials in multilayers or in self organized nano structures. 

This is also suggestive of metamaterials which will be described next.  

3.3. Metamaterials 

3.3.1 Introduction  

In Greek, the term “meta” means “beyond” and, in this sense, metamaterials are artificial 

materials, which are intended to go beyond the usual  electromagnetic properties of 

materials at the atomic scale. A metamaterial is an artificial crystal in which man-made 
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structures replace the microscopic atoms of natural materials [6]. A metamaterial has a 

lattice constant a  much smaller than λ , the wavelength of incident radiation. As 

fabrication processes have improved, it is possible for a metamaterial to become almost 

indistinguishable from a continuous material. One of the unique properties of 

metamaterials is the simultaneous electric and magnetic response to incident 

electromagnetic radiation in the near optical region. For natural materials,  magnetic 

coupling in this frequency region is very weak with the result that for all practical 

purposes 1µ = . In contrast, metamaterials can have magnetic resonances at the optical 

frequencies ( ) 1µ ω ≠  , thus creating a possibility for simultaneously negative ε and µ . 

This condition is required for NIR, which is the basis for a large number of interesting 

electromagnetic effects including left handed behavior, transformational optics, and a 

variety of  non-linear responses [20].  

3.3.2 Theoretical Development 

The modern era of metamaterials and the study of NIR is usually attributed to the work of 

Veselago in 1968 [36] who explored the properties of materials with simultaneously 

negative ε and µ . It is useful to examine the nature of  

 

Figure 3.6. Quadrants for analysis of ε and µ. 
 (Source: Ref. [37]). 
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electromagnetic wave propagation in each of the quadrants in Figure 3.6 [37]. An 

oscillating electromagnetic wave incident normally on a medium is described with the 

exponential 
i n z

ikz ce e
ω 

 
 = where n εµ=  with forward propagation in the positive z

direction. In quadrant I, 0ε >  and 0µ > , with the result that n  is a real number. The 

wave will propagate in the material in an oscillating fashion. In quadrant II,  0ε < and 

0µ > , with the result that n  will be a purely imaginary number causing the exponential 

to become negative. This describes a decaying or evanescent wave, which will not 

propagate in the material. In quadrant III, 0ε < and 0µ < , with the result that n  will be 

real and negative. The wave will still propagate in an oscillatory fashion but with a 

negative wave vector. This suggests that the phase velocity will be opposite to that of the 

wave in quadrant I. Finally, in quadrant IV, 0ε >  and 0µ <  resulting in the same 

outcome as for quadrant II. The wave in quadrant IV will decay exponentially and will 

not propagate in the material. This brief overview points to the fact that in order for NIR 

to occur, both ε  and µ  must be simultaneously negative. In addition, the changes to the 

wave vector result in interesting propagation properties under the NIR condition.  

Veselago used energy arguments to explain that simultaneously negative ε  and µ  can 

only be realized if there is frequency dispersion [36]. In the absence of dispersion with 

simultaneously negative ε  and µ , energy would be negative as given by: 

 2 2W E Hε µ= +  (3.6) 

With dispersion, the energy relation becomes:  
 

 
( ) ( )2 2W E H
εω µω
ω ω

∂ ∂
= +

∂ ∂
 (3.7) 
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When ε  and µ  are simultaneously negative, for Eq. (3.7) to be positive, the partial 

derivatives need to be positive. This necessarily requires that ε  and µ  depend on 

frequency.  

3.3.3 Materials Development  

It was not until 1999 that Sir John Pendry devised a method by which these conditions 

could be created artificially using a split ring resonator (SRR) structure [38]. The 

following year, D. R. Smith and colleagues successfully used this structure to create a 

composite material in the lab which displayed the predicted negative response functions 

[39]. Figure 2.5 below illustrates the SRR structure used by D. R. Smith. 

 

 

Figure 3.7. SRR structure used to create first NIR conditions. 
                 (Source, Ref. [39]) 
 

In Figure 3.7, two rings of copper, each having a gap, were placed one inside the other. 

The dimensions were c=.8 mm, d=.2 mm and r=1.5mm. Incident radiation with a time 

varying magnetic field parallel to the axis of the rings was applied. The induced current 

created an additional magnetic field parallel to the incident field. The gap in the wires 

acted as a capacitor thereby setting up an LC circuit which resonated at approximately 

4.85 GHz. The concentric placement of the wires allowed for additional capacitance and 
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ultimately an enhancement of the effect. In the experiment, D. R. Smith et al. 

demonstrated simultaneously negative dielectric permittivity and magnetic permeability.  

This discovery spawned a great deal of interest and work in creating metamaterials which 

could demonstrate NIR at higher and higher frequencies. Initially, most of the effort 

revolved around reducing the size of the SRR structures. However, due to a kinetic 

inductance effect, the SRR resonance frequency saturates at small sizes and new 

metamaterial structures were required to reach higher frequencies. Various architectures 

for metamaterials were developed including paired nano-rods, nano-strips and a fishnet 

structure which included nano-strips layered on a metallic substrate. The result of this 

work was that in a short four year period between the beginning of 2004 and the end of 

2007, the demonstrated frequencies for NIR went from 10 GHz to 500 THz [40], 

practically to the visible range. This exponential growth has since leveled off due to a 

metal’s finite plasma frequency, which ultimately imposes a limit on the resonance 

frequency [20].  

With metamaterials, the interesting situation whereby an applied magnetic field may give 

rise to polarization, P
�

, and an applied electric field may give rise to a magnetization, M
�

, 

presents some similarities to the magneto-electric effect in multiferroics. For 

metamaterials, this configuration can be described using Maxwell’s equations:  

 

D E i H

B i E H

ε ξ

ξ µ

= +

= − +

� � �

� � �
 (3.8) 

In Eq. (3.8), ξ  is the chirality parameter, which is another additive component for the ̂ρ  

and ˆ 'ρ  tensors.  It can be shown that the eigenvector solutions for this electromagnetic 

wave are left and right circularly polarized light [41]. It has been demonstrated that 
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metamaterials built with helical inclusions show strong circular dichroism. This result is 

in addition to the numerous other optical effects that metamaterials are responsible for.  

3.3.4 Optical Effects  

Two interesting optical effects for metamaterials will now be discussed. Without a doubt, 

the most interesting observable for a NIR material is the left handed behavior of wave 

propagation. Instead of radiation being refracted to the right of normal in a material, the 

wave is refracted left of normal. The wave vector, which becomes negative under NIR 

conditions, now points upwards. Accordingly, the phase velocity is also in the upward 

direction. The direction of energy flow, on the other hand, as given by the Poynting 

vector S
�

, remains directed downwards and into the material. Therefore, under NIR, the 

phase velocity and group velocity are oppositely directed. In the NIR medium, k
�

, E
�

and 

H
�

 form a left handed coordinate system.  

Another property of materials with 1µ ≠ is the concept of impedance matching. Here, 

impedance is defined as Z
µ
ε

= . Pursuant to the laws of reflection of a magnetic 

material, when the impedance of the incident medium matches that of the material all 

reflection will vanish. In this sense, the material itself will become invisible. For 

example, if the incident medium is vacuum, then the condition for impedance matching is 

that ε µ=  inside the material. Given that both  ε and µ  are complex functions, it is 

quite difficult to engineer a material where both the real and imaginary parts of each 

response function will exactly match. However, Grigorenko did see this result 

experimentally in 2005 [42]. Grigorenko showed that for a thin film on a substrate, under 

the impedance matching condition, only reflection from the substrate boundary could be 
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observed. More recently, the study of transformation optics has developed which uses a 

mathematical approach similar to that of general relativity wherein the response functions 

become functions of  r
�

. Using this approach, the condition ( ) ( )r rε µ=� �
 guarantees that 

the wave impedance is equal to the vacuum impedance which results in the vanishing 

reflection phenomenon [20].  

3.4 Summary Comments and Research Direction 

Before we proceed to the next Chapter, we should reconcile Eq. (2.52), Eq. (3.4)(a) and 

Eq. (3.8). In Eq. (2.50):  

 

ˆ ˆ

ˆ ˆ'

D E

B H

ε ρ
ρ µ

    
=           

� �

� �

 

the ρ̂  and ˆ 'ρ  tensors describe a general effect of the mutual dynamic coupling between 

electricity and magnetism. We will limit our further consideration to the case of ME and 

chirality contributions to ̂ρ  and ˆ 'ρ   so that these two effects are additive as follows 

 
ˆˆ ˆ

ˆˆ ˆ' ' T

j

j

ρ α ξ
ρ α ξ

= + ⋅

= − ⋅
 (3.9) 

One can see that the ME effect is described by the complex tensor ̂α , as it was presented 

in Eq. (3.1). According to Dzyaloshinskii, the corresponding ME contribution to ̂ 'ρ  

should be a “transpose” complex tensor: ˆ ˆ' Tα α= . This requirement follows from the 

Dzyaloshinsky’s definition of ̂α  in the static case: 

    
2

ij
i j

F

E H
α ∂=

∂ ∂
      (3.10) 
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At present, however, this requirement of ˆ ˆ' Tα α=  is under depate in literature for optical 

frequencies. So, in the following theoretical analysis we won’t implement this restriction 

keeping a general notation for ρ̂  and ˆ 'ρ   tensors. In any case, both α̂  and ˆ 'α  have the 

same sign of their complex parts. The physical interpretation for this requirement is that 

the oscillators in ̂α  and ˆ 'α  should absorb light in the transmission experiments. Both 

tensors, ξ̂  and α̂ , can have both, real and imaginary parts, so ρ̂  and ˆ 'ρ  are  NOT 

expected to be the complex-conjugate-transpose for each other [43].  

 In contrast to ̂α , the chirality contribution ˆi ξ⋅   has its transpose and complex 

conjugate counterpart that contributes to ˆ 'ρ : ˆTi ξ− ⋅ . For isotropic materials, Georgieva 

[41] showed that the chirality parameter ξ , which originated from H t∂ ∂
�

 and  E t∂ ∂
�

 

terms in the Maxwell equations, is an odd function of ω : ξ ~ω . In the case of a crystal, 

it hard to imagine that the chirality effect won’t have a resonant behavior. Here we 

propose to use the following model to describe the dispersion behavior of chirality  

 ( ) 2
2 2

0

ch

ch ch

A

i
ξ ω ω

ω ω ωγ
= ⋅

− −
 (3.10) 

that gives (0) 0ξ →  , ( ) 0ξ ∞ →  and can have both a strong enhancement and even a 

change of a sign in the vicinity of the resonance when 0chω ω→ . 

In the general case of magneto-electric medium with chirality, the formal description 

based on Eq. (2.52) can include an endless number of possible combinations between the 

ˆ ˆˆ( ), ( ), ( )  ε ω µ ω ρ ω  and ˆ '( )ρ ω   tensors. For simplicity, we will always assume that the 

same oscillator that appears in several tensors at the same resonant frequency 0ω  should 

have the same value of the decay parameter γ . This means that the anisotropy of the 
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dispersive tensor functions ˆ ˆˆ( ), ( ), ( )  ε ω µ ω ρ ω  and ˆ '( )ρ ω  can be described by the non-

dispersive tensors of the corresponding oscillator strengths for all excitations. An exact 

symmetry of the materials system can, of course, further reduce the number of non-zero 

oscillator strengths that describe ˆ ˆˆ( ), ( ), ( )  ε ω µ ω ρ ω  and ˆ '( )ρ ω   tensors, so some of those 

tensors could become equal to 1̂  or zero. However, in a real experimental situation, the 

symmetry is not always known in advance and the goal of the future optical experiments 

is exactly opposite: we aim to determine the symmetry of the material based on the 

polarization analysis of the transmitted and reflected light. Thus, the primary focus of this 

Theses is on analysis of the polarization of the optical spectra for materials with ˆ ( ) 1µ ω ≠  

,  ˆ ( ) 0ρ ω ≠  and  ˆ '( ) 0ρ ω ≠  .  

In the following Chapters we will study the following possible situations with certain 

elementary excitations contributing to the different tensors.  

One of them is an “electromagnon” excitation that according to our understanding is an 

oscillator that appears simultaneously in the ˆ ( )µ ω  tensor as a magnon and also 

contributes to D
�

 through its appearance in ˆ ( )α ω  tensor (the “electro-“ part).  It is also 

possible to imagine its counterpart: an electric dipole that contributes to B
�

 through its 

appearance in the ̂'( )α ω  tensor. In the following analysis, we will study the difference 

between these two types of electromagnons. 

Another situation can be realized in a material with a weak ME effect,        

( )ˆˆ 0, 0  α ξ= = , but with strongly overlapping electric- and magnetic dipoles in ˆ( )ε ω  and 

ˆ ( )µ ω  tensors that form “hybrid modes”.  The angular dependence of the MM spectra in 

metamaterials that is considered in Chapter 8 also belongs to this case of a simultaneous 
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appearance of the elementary excitations (or resonances) in both ̂ ( )ε ω  and ˆ ( )µ ω  tensors. 

We observed this case in RE-IG crystals and will present their theoretical and 

experimental studies in Chapter 9. It is also possible to imagine a combination of a 

magnon [ ]ˆ( ) 1µ ω ≠  and a chiral excitation ˆ( ) 0ξ ω ≠   at the same frequency. We will 

call these excitations “chiromagnons”. The corresponding spectra are analyzed in Chapter 

10.  

The last case to be consider in this Thesis is a coexistence of the chiral and ME 

excitations at the same frequency as a magnon in the ˆ ( )α ω  tensor and chiral excitation in 

ξ̂  tensor. 

It is obvious that traditional Transmission or Reflectivity measurements won’t be able 

reveal all details for  ̂ ˆˆ( ), ( ), ( )  ε ω µ ω ρ ω  and ˆ '( )ρ ω  tensors. Even the most advanced 

approach, the Muller Matrix ellipsometry, that measures 16 independent functions of the 

4 4×  matrix, may not be always helpful due to the entangled contributions of 

ˆ ˆˆ( ), ( ), ( )  ε ω µ ω ρ ω  and ˆ '( )ρ ω  tensors to the observable optical spectra. In this Thesis, 

we will calculate the MM spectra and Poynting vectors, at the resonance frequencies and 

combine these studies with analysis of their angular dependencies. The properties of 

semi-infinite crystals will be compared to the thin films grown on isotropic substrates.  
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CHAPTER 4 

4×4 MATRIX FORMALISM 

4.1 Introduction 

The main challenge to the analysis of materials with non-zero ε  , µ , ρ   and 'ρ  

tensors is the vast number of possible tensor symmetries in the bulk crystals and thin 

films. The task of obtaining analytical solutions for all possible configurations appears 

daunting. In this thesis, a simple medium is defined to have isotropic ε  and µ  tensors but 

no magneto-electric activity. A complex medium will refer to all other possible tensor 

symmetries and allowed tensor combinations [34]. Fortunately, 4 4×  matrix formalism, 

as developed by Berreman[16], provides for an accurate and systematic method of 

obtaining numerical, and in some cases, analytic solutions for electromagnetic wave 

propagation in both simple and complex media. A complete description of 

electromagnetic wave propagation in a complex medium is made possible using 

Berreman’s matrix equation in Eq. (2.52). In this Chapter, we analyze a simple medium 

in order to illustrate this formalism. In other words, we chose a medium with isotropic ε  

and µ  tensors that is also non bi-anisotropic ( ' 0ρ ρ= = ) . 4 4× matrix formalism is used 

to calculate the complex reflection coefficients and Poynting Vectors in a semi-infinite 

configuration. We also use the results of 4 4× matrix formalism to explain the interesting 

property of impedance matching at the surface of a magnetic material. The two main 

references for this Chapter are Ref. [16] and Ref. [17].  
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4.2 The Procedure  

The Berreman equation describing electromagnetic wave propagation in a crystal is: 

                                                    
,

d
i

dz c

ψ ω ψ= ∆ɶ                                                    (4.1) 

where ψ  is a an array of the transverse components of the electromagnetic wave 

[ , , , ]Tx y y xE H E H−  in the medium. Fig. 3.1 illustrates the refraction of light incident in 

the x z−  plane propagating forward in an anisotropic dielectric-magnetic material.  

 

Figure 4.1 Wave vector diagram of refracted waves propagating in an anisotropic 
dielectric-magnetic medium.  
 
For a crystal with isotropic symmetry having principal axes parallel to the x , y  and z

coordinate axes, ∆ɶ  in Eq. (4.1) is a 4 4× matrix [16]: 
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2 2
0 0

2 2
0 0

sin( )
0 0 0

0 0 0

0 0 0

sin( )
0 0 0

N

N

θµ
ε

ε
µ

θε
µ

∆ =

 − 
 
 
 
 
 

− 
 

ɶ

    

 (4.2) 

 

Inserting Eq. (4.2) into Eq. (4.1) returns four exact solutions of the form 

( ) ( )0 l
l l

iq z
z eψ ψ=

 
with 1,2,3l = or4 , two for each of the p and s polarization states. 

0θ  is the angle of incidence while ( )p s  refers to radiation parallel (perpendicular) to the 

plane of incidence. zpq and zsq are the eigenvalues associated with p and s polarizations, 

respectively and constitute the zcomponents of the wave vectors in the medium. These 

are: 

                                           

( )

( )

2 2
0 0

2 2
0 0

sin

sin

zp

zs

N
q

c

N
q

c

θω ε µ
ε

θω µ ε
µ

= ± −

= ± −

 (4.3) 

       

The positive eigenvalues are associated with the two forward propagating waves. Fig. 4.1 

shows zpq and zsq  for an anisotropic medium. In the case of an isotropic medium, it is 

clear from Eq. (4.3) that the zcomponents of both polarized waves are identical. The x

components of the wave vector are also constant for all of the incident and refracted 

waves. The complete wave vectors for each of the p and s polarization states can be 

written as:   
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( ) ( )

( ) ( )

2 2
0 0

0 0

2 2
0 0

0 0

sin
sin ,0,

sin
sin ,0,

p

s

N
k N

c c

N
k N

c c

θω ωθ ε µ
ε

θω ωθ µ ε
µ

   = −    

   = −    

�

�

 (4.4)  

The two k vectors in Eq. (4.4) identify the direction of propagation of the waves 

associated with each polarization. It is clear that they are identical, which is an important 

characteristic of an isotropic medium. We note further that characteristic is true for any 

value of the angle of incidence (AOI). This means that the refracted waves in Fig. 4.1 

would be superimposed. On the other hand, as will be shown in detail later, for an 

anisotropic medium, the two k  vectors will not be identical and will therefore diverge as 

they propagate forward (downward) into the medium. This phenomenon is known as 

birefringence and is evidenced by two separate forward propagating electromagnetic 

waves.  It is through Eq. (4.3) (eigenvalues of the Berreman equation) that information 

about the optical properties of the medium [17] enters into the calculation of the complex 

reflection coefficients and, in turn, the Mueller Matrix (MM) elements. (Mueller Matrices 

will be discussed in detail in the next Chapter.) We note that the ε  and µ  tensors are 

important components of the constitutive relations discussed in Chapter 1.  

4.3 Eigenvector Solutions and the Reflectance Matrix 

 
Each eigenvalue solution has an associated eigenvector. The eigenvectors are calculated 

by solving:  

 ( )0 0qI
c

ω ∆ − Ψ = 
 
ɶ  (4.5) 
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In Eq. (4.5), q represents the four eigenvalues and I  is the 4 4× identity matrix. The 

eigenvector solutions for this isotropic symmetry (in columns) are:  

 

 

( ) ( )

( ) ( )

2 22 2
0 0 0 0

2 22 2
0 0 0 0

1 0 1 0

0 0
sin sin

0 1 0 1

sin sin

0 0

N N

N N

ε ε

θ θ
µ µ

ε ε

θ θ
ε ε

µ µ
µ µ

 
 
 −
 
 − −
 
 
 
 
 − −
 

−  
 

 (4.6) 

In Eq.(4.6), the eigenvectors in columns 1 and 2 represent forward propagating waves 

while those in columns three and four represent backward propagating waves. For an 

isotropic medium there is really no neeed to use separate nomenclature for polarizations. 

The eigenvectors in columns one and three are associated with the zpq
 
eigenvalue and 

represent p  polarized radiation. A complete description of this wave involves 

multiplication by zpiq ze± . Similarly, the eigenvectors in columns two and four are 

associated with the zsq eigenvalue and represent spolarized radiation. A complete 

description of this wave also involves multiplication by zsiq ze± . For a semi-infinite 

material, the two eigenvectors representing the forward propagating waves are used to 

calculate the complex reflection coefficients for p  and s polarized radiation. The 

procedure for calculating the complex reflection coefficients involves matching the 

tangential components of the incident and reflected E
�

 and H
�

 fields to a linear 

combination of the two eigenvectors calculated at the common interface located at 0z =

[16],[17]. For a semi-infinite medium, only the two forward propagating waves are used 
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in these calculations. Using the two eigenvector solutions for the forward propagating 

waves taken from Eq.(4.6), two S  matrices are derived:  

 

( )

1

11 12

1 0 41 42

0 0

21 22

0 02

31 32

cosS

N N

N NS

ψ ψ
θ ψ ψ

ψ ψ

ψ ψ

−
 
 =  
 
 

 
 =  
 
 

 (4.7) 

The Reflectance matrix, or Jones matrix is then calculated as:  

 ( ) ( )1

1 2 2 1R S S S S
−= + −  (4.8) 

The complex reflection coefficients for the isotropic case are (note there are no off-

diagonal elements):
 

2
0 0

2
0 0

0

0

z zp
pp

z zp

z zs

z zs
ss

k N q
r

k N q

k q

k q
r

ε
ε

µ
µ

−
=

+

−=
+

              (4.9) 

In Eq. (4.9), ( )0 0 0coszk N
c

ω θ= and 0N  are the z component of the wave vector and index 

of refraction in the incident medium. ppr  and ssr   are complex numbers for each 

frequency of light. Multiplication by their complex conjugate is required to produce 

measureable reflection intensities.  
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4.4 The Poynting Vector 

The eigenvectors in Eq. (4.6) can also be used to calculate the Poynting vector for each of 

the p  and s polarized radiation states. This procedure first requires recapture of the z  

components of the E
�

and H
�

 fields which were originally suppressed in the Berreman 

equations in order to reduce from a 6 6×  to a 4 4× formalism. By solving the two 

algebraic equations associated with the initial Berreman matrices, for isotropic symmetry 

the solutions for the z  components are:  

 

( )

( )

0 0

0 0

sin

sin

y
z

y
z

H N
E

E N
H

θ
ε

θ
µ

= −

=

 (4.10) 

Eq. (4.10) can be applied to each of the p  and s polarization states. Since the terms in 

Eq. (4.6) recur frequently in this analysis, we define 
( )22

0 0sinN θ
ς ε

µ
= −

 
and 

( )22
0 0sinN θ

η µ
ε

= − . First consider p  polarization. Here, zH  becomes zero and the 

vector fields are:  

 

( )0 0sin
1,0,

0, ,0

zp

zp

iq z

x

iq z

x

N
E E e

H E e

ε θ
εη

ε
η

 −
=  

 
 

 
=   

 

�

�

 (4.11)  

The fields in Eq. (4.11) now permit the calculation of the Poynting vector, ( )*1

2
S E H= ×
� � �

applicable to p  polarization: 
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( )2 *

2 0 0sin1
,0,

2p x

N
S E

θε ε
η ε η

  
 =      

�
 (4.12) 

                                                            

  
where the asterisks, *, represents the complex conjugate operation. From Eq. (4.12), the 

tangent of the Poynting vector angle in the medium is:  

 ( ) ( )0 0sin
tan

S p

Nε θ
θ

εη
=�  (4.13) 

From Eq. (4.4), the tangent of the k vector angle in the medium is:  
 

 ( ) ( )0 0sin
tan

k p

N θ
θ

εη
=�  (4.14) 

The expressions in Eq. (4.13) and Eq. (4.14) are identical. This analysis points out the 

well known observation that for a crystal with isotropic symmetry, the direction of the 

wave vector is identical to that of the energy flow as given by the Poynting vector. For s

polarization, zE  is zero and the fields become:  

 

( )

( )0 0

0,1,0

sin
,0,

zs

zs

iq z
y

iq z
y

E E e

N
H E e

θς
µµ

=

 
= −  

 

�

�

 (4.15) 

and the Poynting vector for spolarization is found to be:  

 
( ) **

2 0 0sin1
,0,

2 y

N
S E

θ ς
µ µ

 
 =
 
 

�
 (4.16) 

From Eq. (4.16), the tangent of the Poynting vector angle for s polarization is:  

 ( ) ( )0 0sin
tan

S s

Nµ θ
θ

µς
=�  (4.17) 

and from Eq. (4.4), the tangent of the k vector angle for spolarization is calculated to be:  
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 ( ) ( )0 0sin
tan

k s

N θ
θ

µς
=�  (4.18) 

Again, the expressions in Eq. (4.17) and Eq. (4.18) are identical. Accordingly, for the s

polarized state, the direction of wave propagation in the crystal and the direction of 

energy flow are coincident. Furthermore, since µς εη= , all four wave vectors and 

Poynting Vectors will be coincident.  

4.5  Impedance Matching 

Complex reflection coefficients stated in this formalism have been used in the study of 

media with indefinite permittivity and permeability tensors [44]. These results, obtained 

from 4 4×  matrix formalism, also allow for the immediate analysis of the intriguing 

property of impedance matching. From Eq. (4.9), at normal incidence, ppr  is zero when 

0 /N ε µ= . A similar result can be obtained for the  s polarization. These relationships 

are known as the impedance matching condition. It provides the condition for zero 

reflection at normal incidence even though the indices of refraction of the incident 

medium ( )0N
 
and the index of refraction of the material (εµ ) are completely different. 

With incidence from vacuum, this condition is satisfied if ε µ= . Aside from a trivial 

case for vacuum, when both ε  and µ  are unity, this is only possible if the material is 

magnetic and provides confirmation that the material has magnetic permeability 1µ ≠ . In 

practice, it is difficult to achieve impedance matching because both the real and 
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imaginary parts of the dielectric and magnetic tensors must be identical. Evidence of 

impedance matching in metamaterials was found by Grigorenko et al. in 2005 [42]. 

Application of the Berreman’s method to bi-anisotropic medium will be considered in 

Chapter 10. 
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CHAPTER 5 

MATRIX METHODS IN OPTICS 

5.1 Introduction 

This Chapter will introduce matrix methods in optics. We will focus on the Stokes vector, 

Jones matrices, Mueller matrices, and the Poincare sphere. The majority of theoretical 

and analytical background for this Chapter is taken form the following references [46-

48]: 

5.2 The Stokes Polarization Parameters 

The study of the Stokes polarization parameters begins with the introduction of a pair of 

plane waves that are orthogonal to each other at a point in space.  

 0( ) ( )cos( )x x xt kzE t E t δω= − +  (5.1) 

 0( ) ( )cos( )y y yt kzE t E t δω= − +  (5.2) 

Taking 0z = , defining y xδ δ δ= − , and eliminating tω  in the equations, gives the 

equation for the familiar polarization ellipse: 

 
22

2 2
0 0 0 0

2cos(
( ) 2 ( ) ( ))

) ( )
( y x yx

x y x y

E t E t E tE t

E E
si

E E
nδ δ+ − =  (5.3) 
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We are interested in representing Eq. (5.3) in terms of observables for a field of a 

monochromatic radiation. This requires that the time dependent terms in Eq. (5.3) be time 

averaged to produce:   

 

2 2

2 2
0 0 0 0

0

2) sin ( )
( ) ( ) 2 ( ) ( )

cos(

1
( ) ( ) lim ( ) ( )

x y x y

x y x y

T

x y x y
T

wh

E t E t E t E t

E E E E

E t E t E t E t d
T

e

t

er  

δ δ

→∞

+ −

=

=

∫

 (5.4) 

After integration over the time domain and with some simple algebraic manipulation, Eq. 

(5.4) yields: 

 ( ) ( ) ( ) ( )22 22 2 2 2
0 0 0 0 0 0 0

2

02 cos( 2 sin() )x y x y x y x yE E E E E E E Eδ δ+ − − − =  (5.5) 

Eq. (5.5) is an important equation and is written in terms of intensities, which are real 

observables. All of the equations inside the brackets are therefore real and can be 

measured in optical experiments.  In fact, the equations inside the brackets are taken to be 

the Stokes polarization parameters and are used to form the elements of the Stokes vector 

representation of light as follows: 

 

2 2
0 00

2 2
0 01

2 0 0

3 0 0

2 cos(

2 si

)

)n(

x y

x y

x y

x y

E ES

E ES
S

S E E

S E E

δ
δ

 + 
   −  = =   
        

 (5.6) 

0S  is identified with the total intensity of light. 1S  is identified with the amount of that 

light that is horizontally or vertically polarized. 2S  is identified with the amount of light 

that is polarized linearly at angles of 45o± . 3S  is identified with the amount of light that 

is left or right circularly polarized. In discussing circular polarization, we will be using 
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the convention that light is right circularly polarized if it is moving clockwise when 

looking into the direction of the source of the oncoming light.  

With the definitions in Eq. (5.6), Eq. (5.5) can be rewritten more simply as: 

 

 2 2 2 2
0 1 2 3S S S S= + +  (5.7) 

 
Eq. (5.7) is the identity for completely polarized light. Since unpolarized light has 

intensity but no net polarization attributes (i.e. 1 2 3 0S S S= = = ), Eq. (5.7) can be stated 

more generally as the Stokes inequality for any state of polarized and unpolarized light: 

 2 2 2 2
0 1 2 3S S S S≥ + +  (5.8) 

Eq. (5.8) shows that the intensity of incident light is at least equal to the intensity of the 

embedded polarized light and may include unpolarized light as well.  

According to Eq. (5.6), a complete description of the polarization of light can be 

understood in terms of the relative amplitudes and phase difference between the 

orthogonal elements of light that were first introduced in Eq. (5.1) and Eq. (5.2). The 

following table gives a useful guide to the description of the more common polarization 

states of light.  
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Table 5.1 Stokes vectors of various polarization states of light.  

Polarization 
State 

Amplitude 
Relationship 

Phase 
Relationship 

Total Intensity Stokes Vector 

Linear 
Horizontally 
Polarized Light 
(LHP) 

0 0yE =  n/a 2
0 0xI E=  

0

1

1

0

0

S I

 
 
 =
 
 
 

 

Linear 
Vertically 
Polarized Light 
(LVP) 

0 0xE =  n/a 2
0 0yI E=  

0

1

1

0

0

S I

 
 − =
 
 
 

 

Linear 045+
Polarized Light 
(L +45) 

0 0 0x yE E E= =  0δ =  2
0 02I E=  

0

1

0

1

0

S I

 
 
 =
 
 
 

 

Linear 045−
Polarized Light 
(L -45) 

 0180δ =   

0

1

0

1

0

S I

 
 
 =
 −
 
 

 

Right 
Circularly 
Polarized Light 
(RCP) 

 090δ =   

0

1

0

0

1

S I

 
 
 =
 
 
 

 

Left Circularly 
Polarized Light 
(LCP) 

 090δ = −   

0

1

0

0

1

S I

 
 
 =
 
 − 

 

 

It was stated earlier that in order to produce the Stokes polarization parameters, it was 

necessary to go through the time averaging integration process. However, the same 

results can be achieved if we were to focus on real optical amplitudes only. Eq. (5.1) and 

Eq. (5.2) can be rewritten as:  

0 0 0x yE E E= = 2
0 02I E=

0 0 0x yE E E= = 2
0 02I E=

0 0 0x yE E E= = 2
0 02I E=
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( )

( )

0

0

0

0

( )

( )

x

y

y

x

t t

t

i i
x x x

i i
y y y

i
x x

i

y y

t

E t E e E e

E t E e E e

where

E E e

E E e

ω δ ω

ω δ ω

δ

δ

+

+

= =

= =

=

=

 (5.9) 

The Stokes polarization parameters can now be obtained from: 

 

( )

* *
0

* *
1

* *
2

* *
3

x x y y

x x y y

x y y x

x y y x

S E E E E

S E E E E

S E E E E

S i E E E E

= +

= −

= +

= −

 (5.10) 

Inserting the identities from Eq. (5.9) into Eq. (5.10) will be shown to give the familiar 

Stokes polarization parameters.  

5.3 The Poincare´ Sphere  

The Poincare´ Sphere is a useful visualization of the Stokes polarization parameters. In 

discussions of the traditional polarization ellipse, the angle of rotation ψ  and the 

ellipticity angle χ  of the ellipse are introduced through the following equations: 

 

0 0

2 2
0 0

0 0

2 2
0 0

2 cos

2 sin
sin 2

tan 2 x y

x y

x y

x y

E E

E E

E E

E E

δ
ψ

δ
χ

=
−

=
+

 (5.11) 
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The numerator and denominator terms in Eq. (5.11) are immediately recognizable as 

terms in the Stokes vector from Eq. (5.6). In fact, the Stokes vector can be rewritten in 

terms of 0 ,,S ψ χ as follows:  

 0

cos2

si

1

cos2

cos n

in

2 2

s 2

S S
χ ψ
χ ψ

ψ

 
 
 =
 
 
 

 (5.12) 

Eq. (5.12) looks very similar to the construct of a sphere in Cartesian coordinates where:  

 

 

cos

sin sin

s

n

co

six

r

r

y r

z

θ φ
θ φ
θ

=
=

=
 (5.13) 

 
In fact, Eq. (5.12) can be described in spherical terms by assigning 0 290θ χ= −  and 

2φ ψ= . The Poincare´ sphere can now be represented by the following diagram: 

 

Figure 5.1 The Poincare´ Sphere  

  

  

  

 

 

 

2π − ⋅Ψ

2γ



 69

In interpreting positions on the Poincare´ sphere, it can be seen that the vector along 1S  

will represent light that is horizontally polarized. Similarly, the vector along 2S  will 

represent light that is polarized at a 045+ angle, and a vector along 3S will represent light 

that is completely right circularly polarized. Other points on the surface of the sphere 

would represent combinations of various polarization states. Opposite points on the 

sphere represent orthogonal states. 

5.4 Mueller Matrices 

Mueller matrices are useful to describe the interaction of polarized light with elements 

that can change the state of the incident polarization. Specifically, if 'S describes the state 

of an emergent beam of light, it can be expressed as a linear combination of the previous 

basis 0 1 2, ,S S S and 3S of the incident beam. In terms of matrix algebra, this new vector 

can be written as: 

 

 

'
0 011 12 13 14
'
1 121 22 23 24

'
31 32 33 34 22

'
41 42 43 44 33

S Sm m m m

S Sm m m m

m m m m SS
m m m m SS

    
    
    =    
          

 (5.14) 

 
5.4.1 The Mueller Matrix of a Polarizer 

Consider components of an incident beam xE and yE . Once the beam emerges from a 

polarizer, its new components are '
xE  and '

yE which are both parallel to the original axes. 

With ,0 1x yp p≤ ≤ , the fields can be represented as: 
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'

'

xx x

y y y

E p E

E p E

=

=
 (5.15) 

Using Eq. (5.10) to describe both S and 'S , it can be shown that: 

 

 

' 2 2 2 2
0 0

' 2 2 2 2
1 1

'
22

'
33

0 0

0 01
0 0 2 02

0 0 0 2

x y x y

x y x y

x y

x y

S Sp p p p

S Sp p p p

p p SS
p p SS

   + −  
    − +    =    
           

 (5.16) 

 
For the case of an ideal horizontal polarizer, we have 1xp = and 0yp = . Accordingly, the 

Mueller matrix becomes: 

 

1 1 0 0

1 1 0 01

0 0 0 02

0 0 0 0

M

 
 
 =
 
 
 

 (5.17) 

Similarly, for the case of an ideal vertical polarizer, we have 0xp = and 1yp =  to 

produce the Mueller matrix for an ideal vertical polarizer: 

 

 

1 1 0 0

1 1 0 01

0 0 0 02

0 0 0 0

M

− 
 − =
 
 
 

 (5.18) 
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5.4.2 The Mueller Matrix of a Retarder 

 Retarders introduce a phase shift between the orthogonal elements of the incident field. 

Consider /2' ( , ) ( , )i
x xE z t e E z tφ+= and /2' ( , ) ( , )i

y yE z t e E z tφ−= so that a phase shift of φ is 

introduced between the orthogonal components. Again using Eq. (5.10), it can be shown 

that: 

 

'
0 0

'
1 1

'
2 2 3

'
3 2 3

sin

sin c

cos

os

S

S S

S S

S

S S S

S φ φ
φ φ
+

= +

=

=

−

=

 (5.19) 

Accordingly, the matrix representation for a retarder can be written as: 

 

 

'
0 0

'
1 1

'
22

'
33

1 0 0 0

0 1 0 0

0 0 cos sin

0 0 sin cos

S S

S S

SS

SS

φ φ
φ φ

    
    
    =    
       −   

 (5.20) 

 
The Mueller matrix for a quarter wave retarder ( 090φ = ) from Eq. (5.20) is easily seen to 

be:  

 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 
 
 
 
 − 

 (5.21) 
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5.4.3 The Mueller Matrix of a Rotator 

From mechanics, we understand that for a rotated coordinate system 

' cos sinyx xE EE θ θ+=
 
and ' sin cosx yyE E Eθ θ+= − . Once again, using Eq.(5.10), the 

Mueller matrix for a rotator can be derived as: 

 

1 0 0 0

0 cos 2 sin 2 0
)

0 sin 2 cos 2 0

0 0 0 1

(2M
θ θ

θ
θ θ

 
 
 =
 −
 
 

 (5.22) 

The following are Mueller matrices for some ideal common optical elements: 

 

Figure 5.2 Mueller Matrices of Ideal Optical Elements. (Source: [45]). 

5.5  Polarization Transformations using Mueller Matrices 

Virtually any form of polarization can be created using the Mueller matrices applicable to 

polarizers, retarders and rotators. For example, using only a rotated polarizer and rotated 

retarder, completely elliptically polarized light can be created having any desired 

orientation and ellipticity from any incident beam of arbitrary polarization [45]. The 

Mueller matrix calculus for the transformation of an incident beam with arbitrary Stokes 
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vector S through a rotated ideal linear polarizer and subsequently through an ideal 

nonrated retarder is given by the following matrix equation: 

 

0

2
1

2

'
0

'
1

'
2

'
3

2

3

1 0 0 0 1 cos 2 sin 2 0

0 1 0 0 c 2 cosos 2 cos sin 2 01

0

2

cos0 cos sin sin 2 sin 2 sin 2 02

0 0 sin cos 0

2

0 0 0

S S

S S

SS

SS

θ θ
θ θ θ θ

φ φ θ θ θ θ
φ φ

     
     
     =     
        −    

(5.23) 

The first matrix on the RHS is the MM for an ideal non-rotated retarder and the second 

matrix on the RHS is that of the MM for a rotated ideal linear polarizer. Working through 

the matrix algebra produces the following solution for the Stokes vector of the emergent 

beam: 

 ( )

'
0

'
1

'
2

'
3

0 1 22 2
cos s

1

cos 21

2 in 2

sin sin 2

S cos S s

S

S
S

S
in

S

θ
θ θ

φ θ
φ θ

= + +

−

   
   
   
   
   
    

 (5.24) 

Eq. (5.24) can be easily identified as being the Stokes vector associated with complete 

elliptical polarization. By adjusting the rotation angle and phase shift parameters, 

elliptically polarized light of any orientation and ellipticity can be produced.  

5.6  Mueller Matrix Formalism for an Ideal Ellipsometer 

Ellipsometry is concerned with measuring and analyzing the elliptical polarization of 

light. In recent years, the practice has focused on the measurement of the complex index 

of refraction as well as the measurement of the thickness of thin films [45]. In general 

terms, the set up of an ellipsometer consists of a light source together with a polarization 

state generator (PSG). Together, these constitute to formulate the incident beam which is 

sent towards a sample at a certain angle of incidence. The reflected beam then goes 
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through a polarization state analyzer (PSA) and then onto a detector. The PSG consists of 

a linear polarizer and retarder. The PSA consists of a linear analyzer with an optional 

retarder. The Stokes vector and Mueller Matrix formalism for this set up is as follows: 

 )( ( ) initifinal alθ θ= 2 2 1 1S P R MR P S  (5.25) 

In Eq. (5.25), initialS and finalS  are the initial and final Stokes vectors, respectively. 1P  and 

( )θ1R are the Mueller matrices of the first polarizer and retarder through which the initial 

beam traverses. 2P  and ( )θ2R are the Mueller matrices of the second polarizer and 

retarder through which the reflected beam traverses. M  is the Mueller matrix of the 

sample itself. It is this quantity that needs to be determined. From the construction of this 

Mueller matrix, the electro-optical and magneto-optical properties of the sample can be 

deduced.  

Ellipsometry seeks to relate the amplitude and phase of an incident and reflected 

beam[45]. A complex relative amplitude attenuation factor is defined as: 

 ( ) t n
/

a
/pp i i

ss

e e
r

r
β αρ ψ− ∆ 

= = = 
 

p p

s s

R E

R E
ɶ  (5.26) 

In Eq. (5.26), R refers to the reflected beam and E refers to the incident beam. The 

subscripts p and s refer to parallel and perpendicular polarizations, respectively. The term 

tanψ  refers to the change in amplitude ratio and the term containing ∆  refers to the 

change in phase. Equation (5.26) can be related to the optical constants (n,κ ) and 

thickness (d) of the sample in the following equation:  

 tan ( , , )ie f n dρ ψ κ∆= =ɶ  (5.27) 

Eq. (5.27) is known as the fundamental equation of ellipsometry.  
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Consider an incident beam ' =S ( ) initialθ1 1R P S . That is, this is a beam incident upon the 

sample material after having been transformed by the PSG in the ellipsometer. Using the 

Stokes vector formalism of  Eq. (5.10), the components of this incident beam can be 

derived from: 

 

' * *
0

' * *
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' * *
2

' * *
3 ( )

s p

s p

p s

p si

=

=

=

+

−

=

+

−

s p

s p

s p

s p

S E E E E

S E E E E

S E E E E

S E E E E

 (5.28) 

The Stokes vector for the reflected beam is given as: 

 

'' * *
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'' * *
1

'' * *
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3 )(
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p p s

p p si

=

=

= +

=
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−

S R R R R

S R R R R

S R R R R

S R R R R

 (5.29) 

Upon the restatement of the R  factors in Eq. (5.29) in terms of the appropriate reflection 

coefficients, the Mueller matrix which transforms the incident beam into the reflected 

beam is given in the following equation [45].  

 

 

( ) ( )
( ) ( )

( )
( )

2 22 2

2 22 2

* * * *

* * *
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0 0

'''
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*
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    
    
 − +   =     
    + − −

   
    − + 

S S

SS

SS

SS

(5.30) 

In Eq. (5.30) p ppR r=  and s ssR r=  and so on. Using the relationships in Eq. (5.26), this 

Mueller matrix can also be expressed in terms of the standard ellipsometric parameters ψ  

and ∆ : 
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'' '2 2
0 0

''' 2 2*
11

'''
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1 tan 1 tan 0 0

1 t
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an 1 tan 0 0
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0 0 2 ta tai 2s nn n

s s

cos

c

r r

os

ψ ψ
ψ ψ
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    − +    =    
        −  
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∆ ∆ 

S S

SS

SS

SS

 (5.31) 

Eq. (5.31) is applicable for the case where the magnetic permeability µ  is equal to 1. If 

the sample were to behave as an ideal polarizer, it is expected that ∆ =0. That is, there 

should be no phase shift for such an optical element. Moreover, if ψ =0 and there is no 

pR component then no attenuation is expected. With these two constraints, (5.31) reduces 

to: 

 

1 1 0 0

1 1 0 01
0 0 0 02

0 0 0 0

 
 
 
 
 
 

 (5.32) 

 
It can easily be seen that Eq. (5.32) is identical to Eq. (5.17) which is the Mueller matrix 

for an ideal linear polarizer. Similarly, if 2tan 1ψ =  and φ∆ =  then the Mueller matrix in 

Eq. (5.31) reduces to:  

 

1 0 0 0

0 1 0 0

0 0 cos sin

0 0 sin cos

φ φ
φ φ

 
 
 
 
 − 

 (5.33) 

 
It can easily be seen that Eq. (5.33) is identical to the Mueller matrix in Eq. (5.20) which 

is that for an ideal compensator or retarder. 2tan 1ψ =  confirms there is no attenuation for 

the retarder. 
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5.7  Mueller Matrix Formalism for Cross Polarizations - rsp, rps 

In the case cross polarization occurs, s polarizations will be transformed into p  

polarizations and vice versa. In this instance, the Mueller Matrix in Eq. (5.30) needs to be 

expanded to include off diagonal terms. The applicable MM that includes these terms is 

given as [46]. 
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 (5.34) 

In the case where there are no cross polarization terms, the upper right and lower left 

quadrants in Eq. (5.34) will have null entries and the format can be seen to be identical to 

that of the Mueller matrix of the ideal ellipsometer given in Eq. (5.30) with the '
1S

component being defined, in terms of intensities, to be pI - sI .  

5.8  The Jones Vector and Jones Matrices 

As discussed section 5.4, Mueller Matrices provide an excellent formalism for the 

analysis of intensities of incoming and emergent light. When it comes to the analysis of 

amplitude superposition, it is often better to use the Jones vector and Jones matrix 

formalisms. The Jones formalism can only be used with polarized light. The Jones 

column matrix, or the Jones vector, is a column matrix with two components describing 
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the electric field of each of its orthogonal constituents. The Jones vector for elliptically 

polarized light is as follows: 
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E E

E

e

E δ

δ

  
 = =      

E  (5.35) 

The intensity is defined as †=I E E , with †E representing the conjugate transpose of the 

Jones vector. Accordingly, the intensity of the Jones vector described in Eq. (5.35) is: 

 )( * * 2 2 2
0 0 0x

y
y

x

y x

E
E E E E E

E

 
= + = 

 
 (5.36) 

To obtain a normalization condition we set 2
0E  equal to 1. As in the case of the Stokes 

vector, various forms of polarization can be described from the amplitude and phase 

relationships between the orthogonal components of the Jones vector. These are given in 

the following table: 

Table 5.2 Jones vector description of polarization states. (Source: Ref. [45]).  

Polarization 
State 

Amplitude 
Relationship 

Phase 
Relationship 

Total Intensity Jones Vector 

Linear 
Horizontally 
Polarized Light 
(LHP) 

 n/a  1

0

 
 
 

 

Linear 
Vertically 
Polarized Light 
(LVP) 

 n/a  0

1

 
 
 

 

Linear 
Polarized Light 
(L +45) 

   11

12

 
 
 

 

Linear 
Polarized Light 
(L -45) 

   11

12

 
 − 

 

 
 

0 0yE = 2
0 0xI E=

0 0xE = 2
0 0yI E=

045+ 0 0 0x yE E E= = 0δ = 2
0 02I E=

045− 0 0 0x yE E E= = 0180δ = 2
0 02I E=
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Table 5.2 Jones vector description of polarization states. (continued) 
Right 
Circularly 
Polarized Light 
(RCP) 

   11

2 i

 
 + 

 

Left Circularly 
Polarized Light 
(LCP) 

   11

2 i

 
 − 

 

 

A Jones matrix can be defined as the matrix of transforming factors that takes an incident 

Jones vector into an emergent one, ' =E JE . In matrix algebra, this can be stated as: 

 

 
'

'

xx xy
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yy y
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    
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 (5.37) 

For a polarizer, we recall the transformation definitions contained in Eq. (5.15), where 

: 
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y y y

E p E

E p E

=

=
 

Accordingly, the Jones vector and Jones matrix representation of (5.15) can be written as: 
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0
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y

x x
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E Ep

p EE

    
=         

 (5.38) 

 
An ideal linear horizontal polarizer would have 1xp = and 0yp =  and the Jones matrix 

would become 
1 0

0 0

 
 
 

. Similarly, an ideal vertical polarizer would have a Jones matrix 

0 0 0x yE E E= = 090δ = 2
0 02I E=

0 0 0x yE E E= = 090δ = − 2
0 02I E=

,0 1x yp p≤ ≤
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of the form 
0 0

0 1

 
 
 

. The Jones matrix for a retarder is of the form 
/2

/2

0

0

i

i

e

e

φ

φ−

 
 
 

. For 

example, the Jones matrix for a quarter wave retarder would be: 
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( /
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1 00
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ie

π
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  =
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 


J  (5.39) 

 
Equation (5.39) shows that the Jones matrix can be complex. Finally, the Jones matrix for 

a rotation is of the form 
cos sin

sin cos

θ θ
θ θ

 
 − 

.  

 In the original Chapters we will present results of the Muller matrix calculations. 

Our numerical approach allows to produce practically any desired characteristics of the 

bi-anisotropic medium, such as Mueller and Jones matrices, as well as reflectivity and 

transmittivity. 
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CHAPTER 6 

FULL MUELLER MATRIX SPECTROSCOPIC ELLIPSOMETRY IN T HE FAR 
INFRARED USING SYNCHROTRON RADIATION 

6.1 Introduction 

Spectroscopic ellipsometry (SE) uses changes in the polarization state of incident, 

reflected and transmitted radiation to characterize the properties of materials. The term 

ellipsometry originates from the observation that most materials cause incident 

polarizations to become elliptical upon reflection or transmission [45]. The term 

spectroscopic addresses the fact that many of the excitations in a material are subject to 

dispersion. The study of polarization changes then requires analysis over a spectral range 

of incident frequencies which encompass the excitation resonance. SE has a number of 

advantages for the characterization of materials [4]. Most importantly, it is a non-

destructive measurement. This is particularly important in the study of materials, such as 

multiferroics, which require advanced and time consuming crystal growth techniques. 

Under these circumstances, it is clearly advantageous for a single sample to be used 

multiple times. SE is highly precise and is capable of measuring film thickness to 

approximately 0.01 nm. In addition, SE is an extremely fast measurement tool. In fact, 

the combination of precision with speed, has made SE an indispensable tool to the semi-

conductor industry by allowing real time feedback in insitu fabrication processes. One 

disadvantage of SE is that it is an indirect technique, which requires optical models to 

characterize the response functions of the material.  
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The output of a SE measurement can be the ellipsometry parameters ψ  and ∆ and/or a 

partial or full Mueller Matrix. Recall that the ellipsometry parameters are connected to 

the Jones matrix components sr and pr  
through the equation:  

 tanp i

s

r
e

r
ψ ∆=  (6.1) 

For materials with low crystal symmetry or that display excitations in multiple response 

functions, the off-diagonal Jones matrix elements can be non-zero. Under these 

conditions, a proper characterization of the material is often difficult using ψ  and ∆  

only. On the other hand, all 16 elements of the Mueller Matrix (MM) are populated, 

enabling a more direct connection between SE output and complicated crystal 

symmetries or response function combinations:  
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 (6.2) 

 

Eq. (6.2) points to the need for developing an experimental setup which can measure all 

elements of the Mueller Matrix. In this chapter, the set up for a full Mueller Matrix 

spectroscopic ellipsometer using far infrared synchrotron radiation is discussed.  
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6.2 Experimental Setup 

6.2.1 Theory of Operations 

As discussed in the previous chapter, Mueller Matrices are generated through various 

combinations of optical elements in the polarization state generator (PSG) and 

polarization state analyzer (PSA) stages of an ellipsometer. Figure 6.1 illustrates how 

these combinations influence the MM [4, 45, 47].  

 

 

 

Figure 6.1  Relationship between PSG and PSA components and MM elements. 
(Source: [4]). 

 

As indicate in Figure 6.1, in order to generate all 16 elements of the MM, both the PSG 

and PSA stages of the ellipsometer must contain polarizer and rotating compensator 

elements. These elements are illustrated in Figure 6.2.  
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Figure 6.2 Schematics of a full MM ellipsometer with rotating polarizers and retarders in 
the PSG and PSA sections.  
 
 
Figure 6.2 is the illustration for a full MM ellipsometer recently completed at the 

National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). 

Light captured from the synchrotron source is directed through an interferometer and then 

onto the PSG which consists of a rotating polarizer and compensator combination. This 

produces incident light of known polarization as indicated by the full Stokes vector, INS . 

This incident light is then directed at an oblique angle of incidence, θ , onto a sample 

housed in a cryostat. In SE experiments, θ  is often chosen to be near the Brewster angle 

of the material in order to maximize amplitude and phase differences between p  and s

polarization states. Upon emerging from the cryostat, the reflected light now has a 

different polarization to that of the incident beam. It enters the PSA section of the 

ellipsometer which also consists of a combination of rotating analyzers and retarders. 

Light emerging from the PSA stage can also be identified with a full Stokes vector, OUTS . 

The exiting light is directed to a bolometer which detects the intensity of the reflected 

light. Recall that this intensity is also the 0S  component of OUTS .  For both the PSG and 
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PSA sections of the ellipsometer, given the possibility for losses and dispersion, the 

optical elements must be designed specifically for efficient operation in the far infrared.  

Isolation of the MM for the sample, ̂ SAMPLEM , is achieved using the matrix methods 

outlined in the previous chapter. Applying matrix multiplication, in order, gives:  

 

1

0 ˆ ˆ ˆ ;
0

0

T

PSA sample PSG incidentI M M M S

 
 
 =
 
 
 

�
 (6.3) 

In Eq. (6.3), I  is the intensity measurement obtained in the bolometer. ˆ
PSG incidentM S
�

 form 

a 4×1 vector defined as jσ . This column vector is seen to represent one particular 

configuration of the PSG. The product of 

1

0 ˆ
0

0

T

PSAM

 
 
 
 
 
 

 produces a 1×4 vector defined as iαɶ . 

Similarly, this row vector is seen to represent one particular configuration of the PSA. If 

16 separate intensity measurements (,i jI , , 1, 2,3,4i j = ) are taken from 4 independent 

combinations of jσ and iα , then the following matrix equation is produced: 

 ˆ j
ij i SAMPLEI Mα σ= ɶ  (6.4) 

In Eq. (6.4), the αɶ  matrix is composed of the row vectors constituting the four 

independent PSA measurements while the σ  matrix is comprised of column vectors 

representing the four independent PSG measurements. ˆ
SAMPLEM  is recovered through 

inversion of Eq. (6.4): 

 1 1ˆ
SAMPLEM Iα σ− −= ɶ  (6.5) 
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Both αɶ  and σ  are matrices of rank 4 which emphasizes the independence of their rows 

and columns. As can be seen from Eq. (6.5), it is critical that both αɶ  and σ can be 

inverted. That is, αɶ  and σ  cannot be singular. In addition, they must be well conditioned 

in order for the matrix inversion to be stable. This serves to minimize the amplification of 

any measurement errors [48]. Essentially the condition number of a matrix is the ratio of 

the largest and smallest eigenvalues. A condition number close to unity is stable. A 

condition number of infinity implies that the matrix cannot be inverted. Accordingly, it is 

essential that PSA and PSG configurations be chosen to meet these criterion.  

   

6.2.2. Far Infrared Synchrotron Radiation  

The light source used for the far-IR ellipsometer in Figure 6.3 is synchrotron radiation at 

the U4IR beam line at BNL. Far infrared (FIR) is important for the study of materials, 

which demonstrate various low energy excitations that belong to frequency ranges of 10 - 

100 cm-1 (magnons, ligand-field excitations, and electromagnons) and 100-700 cm-1 

 
(b) 

 
Figure 6.3 A schematic (a) and (b) a picture of the far-IR ellipsometer at the NSLS 
U4IR beam line at BNL. 
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(optical phonons). Synchrotron radiation is an excellent source for this purpose not only 

for its ability to generate FIR but also for its brightness. For example, the brightness of 

synchrotron radiation at NSLS in the FIR spectral range exceeds that of black body 

radiation by approximately three orders of magnitude [49]. Synchrotron radiation is the 

electric field emitted from charged particles in circular accelerators at relativistic 

velocity. As shown in Figure 6.4, a synchrotron light source is composed of three main 

elements: a particle source (S) with linear accelerator (A), a synchrotron which 

accelerates the particles and a storage ring.  

 

Figure 6.4  Schematic of synchrotron facility. (Source: [50]) 

Since a uniform loop of current will not radiate, “bunches’ of charged particles are 

needed for radiation to occur. After being accelerated in the synchrotron, the bunches are 

stored in the storage ring where they circulate at constant velocity that is very close to the 

speed of light. Acceleration in the storage ring is by radial forces only. Radiation emitted 

in the curved parts of the storage ring is allowed to exit through a tube connected to a 

diamond window. Facilities such as NSLS-BNL have over 30 such windows were 

experiments using this light source can occur simultaneously. NSLS-BNL has multiple 

storage rings, which further increase capacity for x-ray, far-IR, and UV parts of the 

spectrum. Due to radiation losses, the synchrotron must be recharged at regular intervals 

with additional bunches of charge. Recharge may be required periodically from half a day 
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to few hours [50].  Relativistic speeds change the nature of radiation as seen by an 

observer in the laboratory frame. As explained in Ref. [51], the radiation pattern of a 

charged particle moving at relativistic speeds resembles that of a “searchlight” with 

radiation is elongated in the direction of motion. This is illustrated in Figure 6.5. 

 

 

Figure 6.5 Searchlight pattern of emitted radiation from synchrotron light source. 
(Source: [51]) 

 

With each revolution, the intense beam momentarily flashes through the exit windows in  

short pulses. These pulses comprise a broad range of frequencies. Accordingly, the result 

of synchrotron radiation is an extremely bright source tunable or simultaneously available 

over a wide range of frequencies [51]. As summarized in Ref. [50], synchrotron radiation 

provides the following properties: high emission density from a small spot, small beam 

divergence, large tunable bandwidth, highly polarized radiation (in the plane of motion) 

and very short light pulses. The brightness of synchrotron radiation allows for 

compensation for the reflection and absorption losses in the polarization components and 

in the cryostat windows. The brightness also allows for the study of relatively small 

single crystals at oblique angles of incidence.  
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6.2.3 Polarization Components   

The polarization components of the FIR spectroscopic ellipsometer consist of polarizers 

and retarders. A polarizer is an optical element that selects and allows transmission of 

one particular state of the light polarization through the use of absorption, refraction or 

reflection techniques. The ellipsometer in Fig. 6.3 uses two sets of wire-grid polarizers, 

which consist of arrays of parallel Tungsten wires having diameters of 25 microns. The 

electromagnetic component vibrating parallel to the wires is both reflected and also 

causes a current to flow in the wire grid. The component which is perpendicular to the 

wires is allowed to pass through virtually unimpeded. Accordingly, the light passing 

through the wire grid polarizer is completely polarized in the perpendicular state. Figure 

6.6 is an illustration of a wire grid polarizer.  

 

  

Figure 6.6  Wire Grid Polarizer, schematic of operation and an actual image.  

As demonstrated in Figure 6.6, with the wire grid polarizer, completely unpolarized  light 

emerges completely polarized in the vertical direction.  

Retarders are very efficient converters of polarization [52]. It can be shown  that light 

emerging from an ideal linear polarizer could be converted into any form of elliptically 

polarized light by first going through a non-rotated retarder [45]. Retarders introduce a 
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phase shift between the two orthogonal components of light. It is this phase shift that 

causes the transformation of polarization.  

The design of rotating retarders is not straightforward in the far-infrared region. It is 

imperative that the relative phase shift between the p  and s polarizations be very 

uniform across all wavelengths in the spectral range. The importance of the retarder for 

the successful performance of the spectroscopic ellipsometer is directly related to the 

discussion of matrix conditionality in Section 5.2.1. Since the errors in the measured MM 

are proportional to the condition numbers of αɶ and σ , it is imperative that the PSG and 

PSA incorporate maximum flexibility to create linearly independent Stokes vectors. In 

other words, it is important that the PSG and PSA stages be capable of covering the entire 

Poincare sphere. However, it is impossible to cover the entire Poincare sphere with 

linearly-independent Stokes vectors by only changing the linear polarization at the input 

surface of a stationary retarder [53]. Accordingly, the retarder must be able to rotate. This 

requirement causes additional challenges for two reasons. First, when the traditional 

single triangular prism retarder is rotated, there is a shift in beam direction. Second, in the 

FIR, the performance of the retarder is determined by the spectral range of the 

measurements. For example, materials such as KRS-5 can only be used above 400 cm-1 

due to optical phonon absorption. In order to eliminate any beam shift, the retarders have 

been chosen to be of double Fresnel rhomb design manufactured with Si. Ultra pure 

Silicon is a good choice for the retarder material. It is relatively easy to fabricate and has 

a relatively flat real part of the refractive index in the far-IR. The retarder is illustrated in 

Figure 6.7. 
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Figure 6.7. Design for a silicon double Fresnel rhomb.  

As illustrated in Figure 6.7, the retarder uses 4 bounces. For this retarder with index of 

refraction of 3.42 and angle of 27o , a relative phase shift of 112.5o is obtained. The four 

bounces result in a total relative phase shift of 90o . As shown in Figure 4.7, a normal 

incident beam with linear polarization at 45o
 with respect to the vertical plane will come 

out of the retarder with circular polarization in the same direction as the incident beam. 

This retarder design will allow for an average transmission of approximately 30% in the 

frequency range between 10 and 450 cm-1. The importance of the angle and index of 

refraction combination is critical to retarder design. Figure 6.8 illustrates this dependence.  

 

Figure 6.8. Poincare sphere for a retarder with varying indices of refraction. 
(Source: [53]) 
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In Figure 6.8, three scenarios for different indices of refraction are calculated for a 

TOPAS Fresnel rhomb with fixed angle of 52o : n=1.4 (magenta), n=1.533 (red), and 

n=1.7 (blue). The red line indicates the performance of a true TOPAS retarder in the far 

infrared. For purposes of illustration, a lower index material would “undershoot” the 

poles while a higher index material would “overshoot” the poles preventing a complete 

coverage of the Poincare sphere [53]. 

6.2.4 Additional Design Features 

Two additional design features important to the proper characterization of materials will 

now be discussed. These features address (i) the temperature dependence of crystal 

symmetry, and (ii) the anisotropic characteristics of materials. First, a cryostat is required 

to produce the low temperature ranges where electric and magnetic order parameters are 

found in multiferroic materials.  The temperature dependence of phase transitions in 

materials is an important input to their proper characterization. For example, as described 

in Ref [29], many of the rare-earth manganites RMn2O5, show four sequential 

temperature dependent magnetic transitions: incommensurate sinusoidal ordering of Mn 

spins at 1 42 45T K= − , commensurate antiferromagnetic ordering of Mn spins at 

2 38 41T K= − , re-entrance back into the incommensurate state at 3 20 25T K= − , and 

finally an ordering of rare-earth spins below 4 10T K≤ . The spectroscopic ellipsometer 

illustrated in Figure 4.3, uses an ARS optical closed-cycle cryostat that can produce a 

temperature range between 4.2 K and 450 K. Second, the physical properties of 

anisotropic material vary with direction. Accordingly, it is important to be able to rotate 

anisotropic samples in order to produce independent measurements for the proper 



 

characterization of optical constants. The spectroscopic ellipsometer uses a 

sample holder and a variable 

manufactured by Huber.  

6.3 Fitting Experimental Re

The output of the optical measurements taken with the spectroscopic ellipsometer 

consists either of the MM or other optical spectra: 

analyzer ellipsometry (RAE), for example. The output data, in and o

nothing about the response functions or other materials properties such as film thickness. 

In order to isolate these properties, the output data must be fitted against an optical model 

appropriate to the material under consideration. The 

Figure 6.9.  

Figure 6.9 Fitting Model Parameters to Experimental Data

 

characterization of optical constants. The spectroscopic ellipsometer uses a 

sample holder and a variable 2θ θ−  configuration of the sample positioning system 

Fitting Experimental Results to a Model 

The output of the optical measurements taken with the spectroscopic ellipsometer 

consists either of the MM or other optical spectra: reflectivity, transmission or 

llipsometry (RAE), for example. The output data, in and of itself, tell us 

nothing about the response functions or other materials properties such as film thickness. 

In order to isolate these properties, the output data must be fitted against an optical model 

appropriate to the material under consideration. The data fitting process is illustrated in 

 

Fitting Model Parameters to Experimental Data. 
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characterization of optical constants. The spectroscopic ellipsometer uses a rotatable 

positioning system 

The output of the optical measurements taken with the spectroscopic ellipsometer 

eflectivity, transmission or rotating 

f itself, tell us 

nothing about the response functions or other materials properties such as film thickness. 

In order to isolate these properties, the output data must be fitted against an optical model 

data fitting process is illustrated in 
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As described in Figure 6.9, the analysis begins with the MM output data. In the next step, 

optical models are created, which can include formulas for reflection and transmission, 

for example. These formulas are supplemented with the dispersion relations that are 

being used to describe the response functions and their resonances. The third step is a 

non-linear least squares fitting process whereby an initial parameter vector is chosen for 

input into the model. For the example in Figure 6.9, there are six parameters which 

represent, in this case, the Lorentzian dispersion models for each of ε  and µ  functions. 

These six parameters constitute an initial parameter vector defined as X. With this initial 

parameter vector, a calculation of the total least squares error using the model output and 

experimental data is undertaken. This least squares error is defined as 2χ . A non-linear 

least squares algorithm is then used to calculate a new parameter vector, which may 

reduce this value of 2χ . The algorithm stops when a certain stopping criterion is reached. 

The stopping criterion could be when a maximum number of iterations is reached or 

when 2χ  ceases to change by a certain amount. The result of the non-linear least squares 

fitting program is a final parameter vector X which minimizes the fit between the model 

and the experimental data. The algorithm used most often for non-linear least squares 

fitting is the Levenberg Marquardt algorithm. This algorithm is described in detail in the 

following Chapter.  
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CHAPTER 7 

OPTIMIZATION METHODS FOR NON-LINEAR LEAST SQUARES F ITTING 

7.1 Introduction 

This chapter explores optimization techniques used to fit experimental data to a user-

defined non-linear model. Key references for this chapter are Ref. [54-58]. Non-linear 

models are based upon an algorithm containing a number of distinct parameters, each 

designed to represent an actual physical characteristic of the material being investigated. 

As an example, Figure 7.1 illustrates the reflectivity spectra of non-magnetic material in a 

semi-infinite configuration at normal incidence. 

 

Figure 7.1 Reflectivity spectra of material in semi-infinite configuration at normal 
incidence.  
 
In Figure 7.1, the reflectivity spectra is clearly dominated with the shape of a Lorentzian 

oscillator at 60 wavenumbers. From optics, we know that the complex reflection 

coefficient for this configuration is given by:     
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and the intensities in Figure 7.1 are calculated as *R r r= × .  In Eq. (7.1),  ( )ε ω
 
is the 

complex valued dielectric permittivity. As discussed in previous chapters, this function 

can be modeled as a Lorentzian oscillator consisting of four independent parameters:  
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In Eq. (7.2), 2x  is the oscillator strength, eS ; 3x
 
is the natural frequency of oscillation, 

0ω ; 4x  is the damping coefficient; and 1x  
is the dielectric permittivity measured far away 

from the resonant frequency. Accordingly, the reflection intensities that are seen in 

Figure 5.1 are the result of choosing an appropriate 1 2 3 4[ , , , ]x x x x x=�  for input in to Eq. 

(7.2), which can then be inserted into Eq. (7.1) with this result being multiplied its 

complex conjugate to produce the necessary reflection intensities at each point in the 

frequency spectrum. This is clearly a non-linear problem. The factor ω  representing the 

frequency of incident radiation is the dependent variable in this problem. In optics, the 

dependent variable could also be angle of incidence (AOI) or the thickness of a thin film, 

for example.   In general terms, a model can consist of N  parameters. Since most fitting 

techniques involve extensive use of matrix and vector algebra, it is useful to think of the 

N  parameters as forming a vector in the N  dimensional parameter space: 

1 2 3( , , ..... )Nx x x x x=� . x
�

 describes the complete set of parameters. Using vector algebra, 

we can describe the output of a given model for the ith experimental data point in the 

form:  
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 1 2 3( , ( , , .... )) ( , )i N iy x x x x y xω ω= �
 (7.3) 

The output of this model is then calculated across the range of a given experimental input 

variable, iω , where i represents the ith data point. For each set of modeled physical 

parameters and for each independent data point, the model can produce an output value 

( , )iy xω �
 which can be compared to the experimentally observed value, iy . A function if  

is introduced to describe the difference, or residual error, between these two values: 

( , )i i if y y xω= − �
. This error is illustrated in Figure 7.2 where an arbitrary set of initial 

parameters 0 [14,1,80,5]x =  is chosen as a possible solution to fit the reflectivity spectra 

in Figure 7.1.  

 

Figure 7.2 Initial solution 0x (green) compared against experimental data (blue). 

In Figure 7.2, it can clearly be seen that 0x  is not a good fit against the experimental data. 

For example, the resonance appears at 80 cm-1 for the trial solution, whereas the 

resonance in the experimental data occurs at 60 cm-1. The goal of this non-linear least 
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squares fitting problem is to find consistently better choices for x
�

, which can ultimately 

minimize the cumulative error of if  across all data points. The nomenclature, ‘non-linear 

least squares fitting’ , originates from that fact that, in order to avoid the difficulties of its 

sign, the error function is simply squared and then summed. In other words, the goal of 

this optimization is to find the set of parameters, x
�

, which minimize the following 

function: 

 ( )
2 2

2 1 2 3

1 1

( , ( , , ... ))1 1
( ) ( ) ( )

2 2

m m
i i M

i
i ii

y y t x x x x
F x x f xχ

σ= =

 −= = = 
 

∑ ∑
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 (7.4) 

( )F x
�

 is known as the objective function. It is also known as the 2( )xχ �
 or Chi-Square 

functional. It calculates the square of the difference between the actual experimental 

value at a given data point and its modeled value and then sums these up across all data 

points. iσ  is the standard deviation of the ith experimental data point. 

For non-linear models, the task of finding a minimum value for the objective function can 

only be done through iterative techniques. The idea is to start with a certain parameter 

vector and calculate the value of the objective function.  A step is taken in parameter 

space, h
�

, to produce a new parameter vector,x h+
��

, which reduces the value of the 

objective function. The iteration stops when the objective function ceases to change 

within a certain level of tolerance. Generally speaking, there are four methods to achieve 

this minimization: (i) the grid search method; (ii) descent methods; (iii) Gauss Newton 

methods; and (iv) hybrid methods.  Each of these methods will be discussed in this 

chapter.  
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7.2 Optimization Methods 

7.2.1 Grid Search Method 

For an objective function whose parameters are not highly correlated, the grid search 

technique represents a straightforward way of finding a minimum. The procedure starts 

with the first parameter and its value is adjusted incrementally until a minimum in 2χ  is 

found. The first parameter is then set to this value and the process is repeated for each of 

the other parameters.  An important factor in this method is the choice of step in 

parameter space. Increments need to be small enough to accurately locate the minimum 

yet large enough to allow for acceptable calculation time. This approach has the 

advantage of simplicity. Again, for parameters which are not highly correlated, it allows a 

minimum to be reached with successive iterations. On the other hand, for parameters 

which are correlated, the procedure requires not just an iteration of a single parameter but 

of all correlated parameters. This has the result of increasing exponentially the number of 

calculations. It also requires some user insight into which of the variables are correlated. 

For a model with many different parameters, such an insight is often difficult a priori. 

The fallback would be to undertake a grid search where every parameter is iterated 

against every other parameter. While still conceptually a simple approach, it is 

computationally inefficient. More efficient methods involve the use of derivatives of the 

objective function in N dimensional parameter space.  

7.2.2  Derivatives of the Objective Function 

Just as in the case of minimization problems involving a single parameter, the use of 

derivatives of the objective function is critical to optimization techniques involving 

multi-dimensional parameters. From Eq. (7.4), it follows that:  
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The matrix containing the first partial derivatives of the function components is called the 

Jacobian: ( ( )) ( )i
ij

j

f
J x x

x

∂=
∂

� �
.  With this definition, Eq. (7.5) can be restated as: 

 '( ) ( ) ( )TF x J x f x=� � �
 (7.6) 

Similarly, the matrix of second derivatives which is called the Hessian of ( )F x
�

. From 

Eq. (7.5), the Hessian is: 
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Again, using the definition of the Jacobian matrix, Eq. (7.7) can be restated as: 
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 (7.8) 

 Certain numerical methods use a quadratic model for the objective function near a 

minimum point and, as described below, the Hessian of the objective function is used to 

calculate the appropriate step in this region. It can be seen from Eq. (7.8) that the Hessian 

is composed of two parts, namely, the product of the Jacobian matrices and a second 

term, which contains a more complicated summation of the residual error function with 

its second derivatives. The second term presents a challenge to the optimization 

technique when these second derivatives are not available. However, it is argued in Ref. 

[55], that ignoring this second term is acceptable in many cases. Certainly, when the 

second derivative terms are small compared to the first term, the second term can be 

easily dropped from the analysis. It is also argued that, in practice, the second term 
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should be small because the second derivatives are multiplied by the residual error 

function, if . Since this represents a random measurement error its sum should cancel out 

when summed over all of the data points. Finally, it is argued that the inclusion of the 

second derivative term can, in fact, be destabilizing in the event that there are a number 

of outlier points which outweigh compensating points of opposite sign. Accordingly, for 

the techniques discussed in this chapter, the Hessian from Eq. (7.7) will always be  

approximated as:  
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7.2.3  Descent Methods 

The descent method is a general minimization technique which seeks to find a 

perturbation step in the direction of steepest reduction in the objective function. It is one 

of the most dependable techniques when the parameter vector is far from the minimum 

point. It is a highly convergent algorithm. It is also an extremely valuable technique when 

there is a large number of parameters to be modeled. Consider the variation of the 

objective function starting from an initial position x
�

 and proceeding in the direction of 

h
�

 which reduces the value of the objective function. We assume that ( )F x
�

 can be 

described in terms of a Taylor series expansion: 

 

 ( ) ( ) '( )TF x h F x h F xα δ+ ≅ +
�� � �⌣

 (7.10) 

 

Since ( ) ( )F x h F xδ+ <
�� �

, we see from Eq. (7.10) that h
�

 is in a descent direction if 

'( ) 0Th F x <� .  In fact, it can be shown that the direction of steepest descent is in a 
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direction opposite that of the gradient of the objective function, i.e. '( )F x− �
. A step in this 

direction is the basis of steepest descent or gradient methods in minimization problems. 

From Eq. (7.6), in terms of the Jacobian, the direction of steepest descent is given by 

( ) ( )TJ x f x− � �
. A step in this direction of size α⌣  is taken. The scalar δ  can be determined 

through various line search techniques.  

Obtaining the Jacobian involves calculating the partial derivative of the objective 

function with respect to each of its parameters for every iω . If analytical formulas for 

these partial derivatives are not available then a numerical method to approximate the 

derivative is used:  

 ( ) ( ) ( )2 22
j j j

j
j j

x x x
J x

x x

χ χχ + ∆ −∂= =
∂ ∆

�
 (7.11) 

In Eq. (7.11), the jx∆
 
term is usually provided as a user defined input at the beginning of 

the optimization routine and is applicable to every parameter. The calculation of the 

Jacobian involves an iterative procedure. After the partial derivative is calculated for one 

parameter, that parameter is replaced in x
�

 by its original value (ie. jx , not j jx x+ ∆ ) and 

the routine goes onto the evaluation of the partial derivative of the next parameter. At the 

end of the calculation ( )J x
�

will be a matrix of size (ndata, mx) where ndata is the 

number of data points and mx is the number of variables to be fitted.  

This procedure represents a significant improvement as compared to the grid search 

method for two major reasons. First, a step in the direction of steepest descent guarantees 

that x
�

 is proceeding in a direction which lowers the value of the objective function. 

Second, the step is a more direct route towards minimization. All of the parameters are 
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updated simultaneously. After a given step, the gradient is recalculated and another step 

is taken in the direction of the new steepest descent. Again, the size of the step is a 

critical decision in this optimization routine. For example, if the step size is too large, 

then it is possible to ‘overshoot’ the location of the minimum. One strategy is to continue 

travelling along the gradient in small steps until 2χ  begins to increase at which point the 

gradient is recomputed and a new direction is sought. A major disadvantage of the 

descent method is that it becomes an inefficient algorithm near the minimum. The reason 

for this is due to the fact that at a minimum point, ( )J x
�

should vanish with the result that 

steps are almost zero. This is particularly true in the case of local minima which 

correspond to a long flat valleys in parameter space [54].  

While the method of steepest descent is robust, near the minimum point, convergence can 

become much faster when the objective function can be modeled as a quadratic formula. 

These techniques will be discussed in the next section. 

7.2.4 The Gauss Newton Method 

In the Gauss Newton method, it is assumed that near a minimum point, the residual error 

function ( )f x
�

can be based on a linear approximation in the neighborhood of x
�

 in the 

form of: 

 ( ) ( ) ( )f x h f x J x h+ ≅ +
� �� � �

 (7.12) 

Inserting this expression into Eq. (7.4) provides an expansion for ( )F x
�

 given by: 

 
1 1

( )
2 2

T T T T TF x h f f h J f h J Jh+ = + +
��

 (7.13)  
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In Eq. (7.13), it can be seen that the approximation for the objective function now 

contains as a quadratic term as its third term. At a minimum point, the derivative of Eq. 

(7.13) with respect to h
�

 must be zero and the Gauss Newton step, gnh  is given by: 

 ( )T T
gnJ J h J f= −  (7.14) 

In Eq. (7.14), the term TJ J  is the approximation for the Hessian of 2χ  which was 

discussed in Section 7.2.2. gnh , the Gauss Newton step, is obtained through matrix 

inversion methods. This method is also sometimes called the Inverse Hessian method. 

The advantage of this method is that if( )f x
�

 does behave in linear fashion, then this 

method has a quick and accurate convergence to a minimum point. The approximation 

that 2χ  behaves in a parabolic manner around the minimum does introduce errors into 

the calculation but these errors are reduced through successive iterations in the routine. A 

clear advantage of the Gauss Newton method is that the step size is automatically 

calculated in the routine.  

In summary, when no strong assumptions can be made about the behavior of the 

objective function, then the descent methods are most appropriate. These methods will 

guarantee a step in a direction which reduces the value of the objective function. On the 

other hand, when a quadratic model can be assumed for the objective function, then a 

step derived from the Gauss Newton formula sets up a quick convergence to a minimum 

point. Hybrid methods have been developed to utilize the best of both methods. The 

Levenberg Marquardt method is one of the most powerful of these hybrid methods.  

 



 105

7.2.5 Hybrid Methods 

As stated above, while the Gauss Newton method provides for rapid convergence near a 

minimum where a quadratic model represents a good approximation of the objective 

function, it cannot be relied on to approach this minimum from a point outside the region. 

Similarly, while the descent method is excellent at approaching a minimum point from 

far away, it is a poor technique for convergence near the minimum. Hybrid methods 

combine aspects of both the descent and Gauss Newton methods. The Levenberg 

Marquardt optimization technique is the best known among the hybrid methods. The 

Levenberg Marquardt (“LM”) method is powerful because it combines both of the above 

minimization strategies through a self adjusting algorithm described in the following 

equation:  

 ( )T T
lmJ J I h J fλ+ = −  (7.15)  

In Eq. (7.15), I  is the identity matrix. The LM algorithm works as follows. If a step in a 

given direction does not reduce the value of2χ , thenλ  is increased. For large values of 

λ , Eq. (7.15) reduces to:  

 '1
( ),lmh F x

λ
≅ −  (7.16)  

which represents a small step in the steepest descent direction. If a step results in a 

reduction in the value of2χ , thenλ  is decreased. For small values of λ , Eq.(7.15) 

reduces to:  

 ( ) ,T T
lmJ J h J f≅ −  (7.17)  
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which is immediately recognizable from Eq. (7.14) as the step calculated in the Gauss 

Newton method. The LM method proceeds iteratively, updating the step h
�

 upon each 

iteration. The algorithm concludes when user defined stopping criteria are met. These 

stopping criteria could be a maximum number of iterations or the difference of successive

2χ  being less than a certain amount.  

It is important to note that there is no non-linear least squares fitting algorithm, which 

guarantees finding a global minimum. Therefore, while the LM technique will converge 

to a minimum point, this point may not be the global minimum. That is, the LM 

technique could find a local minimum and conclude at that point when the stopping 

criteria are met. In this context, the initial choice of the parameter vector is important in 

finding a global minimum. In addition, given its prominence in all of the above formulas, 

the calculation of the Jacobian function is critical to the efficient performance of the LM 

algorithm. It is best if analytical expressions can be found for the Jacobian function. In 

the absence of such analytical formulas, the Jacobian will need to be calculated from a 

finite difference method in a user supplied function. With an efficiently designed LM 

algorithm, a large number of parameters can be fitted in a short time. In addition, the LM 

algorithm can be easily adapted to fit a number of different data sets against the same 

model. In this case, Eq. (7.4) becomes:  

 

2

2 1 2 3

1 1

( , ( , , ... ))1
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2

d m
il l i M

l i il

y y t x x x x
F x xχ

σ= =

 −= =  
 

∑∑
� �

 (7.18) 

In Eq. (7.18), the index l provides for a summation over the number of data sets d .  
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7.3 Simulation Using the Levenberg Marquardt Algorithm 

The Levenberg Marquardt technique was used to find the best fit parameters for the 

reflectivity example given in Section 6.1. The simulation uses 100 data points for 

frequency between 0 and 100 wavenumbers. The LM technique converged in 22 

iterations with an elapsed time of 0.2830 seconds. The results for each iteration in the LM 

routine are given in Table 7.1. 

Table 7.1. Results of Levenberg Marquardt fitting routine.  

Iteration 
1x  2x  3x  4x  λ  2χ  

0 14.00 1.00 80.00 5.00 .001 0.7558 
1 17.98 0.37 81.74 6.43 .0001 0.7448 
2 18.60 0.18 80.96 9.86 .00001 0.7132 
3 18.34 0.53 71.72 3.02 .000001 0.7132 
4 18.34 0.53 71.72 3.02 .00001 0.7132 
5 18.34 3.85 71.72 3.02 .0001 0.5867 
6 16.44 3.85 64.82 3.00 .00001 0.5867 
7 17.22 3.35 64.82 3.00 .0001 0.5180 
8 17.22 3.35 58.40 1.70 .00001 0.5180 
9 17.22 3.35 58.40 1.70 .0001 0.5180 
10 16.67 3.61 58.40 1.70 .001 0.5145 
11 17.23 3.15 63.12 1.34 .0001 0.4509 
12 17.23 3.16 57.69 1.03 .00001 0.4509 
13 17.23 3.16 57.69 1.03 .0001 0.4509 
14 17.23 3.16 57.69 1.03 .001 0.4509 
15 16.84 3.81 59.66 9.86 .01 0.3511 
16 16.84 2.38 59.51 3.59 .0001 0.1192 
17 17.23 2.38 59.51 3.59 .001 0.1192 
18 17.23 1.92 60.50 7.51 .0001 0.1070 
19 17.04 2.00 60.10 1.35 .00001 0.0020 
20 17.00 2.00 60.00 1.31 .000001 7.45 10-6 
21 17.00 2.00 60.00 1.30 .0000001 8.11 10-11 
22 17.00 2.00 60.00 1.30 .00000001 2.45 10-19 
 

The results of Table 7.1 illustrate the convergence process in the LM fitting mechanism. 

As can be seen from the table, the routine did reach the correct solution for the 

parameters, [17,2,60,1.3]x =� ,  by the 21st iteration.  In contrast to the grid search 

methods, each step in the LM method involves a change in all of the parameters thereby 

producing a more direct path to a minimum point. For each parameter, the path to 
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convergence usually involves a process of overshooting and undershooting before 

reaching its final value. Interestingly, this process is not the same for each parameter. For 

example, 1x  is overshooting in the 3rd and 4th iterations, while 3x  is undershooting for the 

same iterations. This is a consequence of the Jacobian calculation at a particular point in 

parameter space. With each iteration, the value of the objective function either stays the 

same or is reduced. The ‘quarterback’ of the entire fitting routine is the parameter λ . 

This parameter directly influences the type of fitting algorithm that dominates in the 

hybrid approach. λ  is initially seeded with a value of 0.001. Generally speaking, larger 

values of  λ  are indicative of the routine pursuing a descent method type of search while 

the smaller values are indicative of the Gauss Newton approach. As can be seen from the 

Table, during the last few iterations, the value of λ  is continually decreased indicating 

that the routine is in an area where the objective function is near a minimum which 

behaves in a parabolic manner.    

Figure 7.3 illustrates that the fitted parameters produce reflectivity results which are 

virtually identical to that of the experimental data.  
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Figure 7.3  Reflectivity results for fitted parameters. The results are virtually identical to 
the experimental data in Figure 7.1. 2 192.54 10χ −= × .  
 
The Levenberg Marquardt algorithm can be adjusted to create a descent method 

approach. Recall that the descent method is characterized with higher values of λ with 

the results that small steps are made in the descent direction. This approach is recreated in 

the LM algorithm by setting the intitial value of λ to a higher value such as 0.10 which is 

two orders of magnitude higher than the same starting parameter in the LM algorithm. 

The second adjustment is to constrain λ from changing in order that a constant step size 

can be maintained. When these adjustments were made it took over 1000 iterations and 

4.67 seconds for the algorithm to converge. Table 7.2 below illustrates the last iterations 

of the descent method.  
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Table 7.2 Simulation of the Descent method.  

Iteration 
1x  2x  3x  4x  λ  2χ  

0 14.00 1.00 80.00 5.00 .01 0.9693 
       
       
990 16.9997 1.9999 60.0000 1.3000 .01 0.9678 
991 16.9997 1.9999 60.0000 1.3000 .01 0.7812 
992 16.9997 1.9999 60.0000 1.3000 .01 0.6306 
993 16.9998 1.9999 60.0000 1.3000 .01 0.5090 
994 16.9998 1.9999 60.0000 1.3000 .01 0.4109 
995 16.9998 1.9999 60.0000 1.3000 .01 0.3316 
996 16.9999 1.9999 60.0000 1.3000 .01 0.2677 
997 16.9999 1.9999 60.0000 1.3000 .01 0.2161 
998 16.9999 1.9999 60.0000 1.3000 .01 0.1744 
999 16.9999 1.9999 60.0000 1.3000 .01 0.1408 
1000 16.9999 1.9999 60.0000 1.3000 .01 0.1137 
1001 16.9999 1.9999 60.0000 1.3000 .01 9.173  10-11 
1002 16.9999 1.9999 60.0000 1.3000 .01 7.405  10-11 
1003 16.9999 1.9999 60.0000 1.3000 .01 5.977 10-11 
1004 16.9999 1.9999 60.0000 1.3000 .01 4.824  10-11 
1005 16.9999 1.9999 60.0000 1.3000 .01 3.894  10-11 
 

In Table 7.2, note that the value of λ is constant for all of the iterations. This accounts for 

the much longer convergence compared to the LM method.  

7.4 Error Analysis 

As explained in Ref. [59], a way to visualize the subject of error analysis is illustrated in 

Figure 7.4.  

 

Figure 7.4 Error analysis for a two dimensional fit. (Source: [59]). 
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For the purposes of illustration, we consider an optical experiment such as the 

measurement of the reflectivity spectra as discussed previously. Assume that only two 

parameters, A and d (instead of the four in the previous section) are modeled. For 

example, A could represent 2x , the oscillator strength and d could represent 3x , the 

natural frequency. Consider each of the other two parameters as being set to a constant. If 

the experiment is repeated many times, the fitting of the two parameters would result in 

some distribution of the fitted parameters. Each experiment would also result in its own 

value of 2χ . Figure 6.4 presents a plot of these results. Each dot represents the 2χ  result 

of an individual experiment. After many experiments, an ellipse could be drawn around 

all of the data points that would enclose 95% of the data for the case of a 2σ  distribution.  

In Figure 7.4, the height and width of the ellipse correspond to the correlated error for the 

two parameters. The uncorrelated error is given by the height and width of the ellipse at 

Af and df.  The degree of correlation between the two parameters is indicated by the tilt of 

the ellipse [54]. In fact, if the two parameters were not correlated at all, the axes of the 

ellipse would be parallel to the coordinate axes and the ellipse would be symmetric about 

the two axes. In the extreme case where the two parameters were very highly correlated 

the ellipse would be long and narrow and would follow the relation d tA= , where t  is a 

constant [59]. 

The values for standard error of the parameter, jσ , are obtained directly from the results 

of the Levenberg Marquardt fitting algorithm: ( ) 1

j jjσ α
−

= ⌣
 where α⌣  is the Hessian 
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matrix as defined in Eq. (7.9). α⌣  is also known at the curvature matrix and its inverse is 

also known as C, the covariance matrix [55]. 

To illustrate the error analysis in the reflection example, we again use LM to fit the four 

Lorentzian parameters. We begin with a set of experimental data as illustrated in Figure 

7.5. 

 

Figure 7.5 Simulated experimental data used in LM error analysis.  

 
The simulated data in Figure 7.5 were calculated by taking the data in Figure 7.1 and 

applying up to a random 20%±  change to each of the 100 data points. The LM fitting 

algorithm was then used to fit the four parameters using the following objective function 

[59]: 
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Where N  is the number of data points, mis the number of fitted variables and iσ  is 

assumed to equal .005 for each data point. The same initial starting vector was used as in 

the previous cases. The algorithm converged in 0.8917 seconds using 58 iterations. The 

final parameter vector was calculated to be [16.5016,2.2914,59.6532,1.6723]x =� . Figure 

7.6 is a plot of the fitted results versus the simulated experimental data.  

 

Figure 7.6  Fitted results (green) versus simulated experimental data (blue).  

The final covariance matrix was calculated to  be:  

    0.1983    0.0083    0.0243   -0.0057 

    0.0083    0.0275   -0.0307    0.0243 

    0.0243   -0.0307    0.0548   -0.0185 

   -0.0057    0.0243   -0.0185    0.0723 

The square root of the diagonal terms in the covariance matrix gives the standard error of 

the estimate for each parameter. The error bars for two standard deviations (95% 
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probability) are then: 1 16.501 0.891x = ± , 2 2.201 0.331x = ± , 3 59.653 0.468x = ±  and 

4 1.672 0.538x = ± . Note that the solution for the unadjusted data [17,2,60,1.3]x =�  is 

contained within the error estimates for each parameter. 
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CHAPTER 8 

MUELLER MATRICES OF ANISOTROPIC METAMATERIALS GENER ATED 
USING  4 4× MATRIX FORMALISM 

8.1 Introduction 

 The original results presented in this Chapter are published in P. D. Rogers, T. D. 
Kang, T. Zhou, M. Kotelyanskii, and A. A. Sirenko,  “Mueller matrices for anisotropic 
metamaterials generated using 4×4 matrix formalism”, Thin Solid Films, 519, 2668   
(2011) doi: 10.1016/j.tsf.2010.12.066 [1] and have been presented at the ICSE-V 
Conference in May 2010.  
 
 Magnetically active materials in general and metamaterials in particular comprise 

important classes of materials both from a theoretical perspective as well as for possible 

device applications. The study of metamaterials has been of interest since the late 1960’s 

when Veselago first explored the properties of isotropic materials having simultaneous 

negative values of  ε  and µ   [36]. In this Chapter, we have used the Mueller Matrix 

(MM) formalism for theoretical study of the optical properties of anisotropic 

metamaterials in the frequency range close to the magnetic resonances, where ( ) 1µ ω ≠ . 

Forward MM models that match the symmetry of planar metamaterials are calculated by 

treating their behavior as a continuous anisotropic thin film. Our results focus on recently 

published studies pertaining to artificially created planar metamaterials [6], which use 

oscillator models for the diagonal components of the ε  and µ  tensors [38, 60].  It will 

be shown that the MM formalism is useful in the analysis of the separation of the 

dielectric and magnetic contributions to the optical properties of a material including the 

important case of the negative index of refraction. 
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The calculation of a forward model for the MM components of a dielectric-magnetic 

material is critical to the analysis of experimental data obtained from full MM 

spectroscopic ellipsometry. Through an iterative numerical comparison of the forward 

model against experimental data, the optical properties of a dielectric-magnetic material 

can be analyzed. Specifically, dispersion models for the relative dielectric permittivity 

tensor ε  and the relative magnetic permeability tensor µ  can be developed. 4 4×  matrix 

formalism [16] provides a powerful and systematic method to calculate the complex 

reflection coefficients and the MMs of dielectric-magnetic materials having both arbitrary 

crystal symmetry and magnetic permeability tensor1µ ≠ . For a sample whose principal 

axes are coincident with the laboratory system, that has simultaneously diagonalizable ε  

and µ  tensors (with coincident principal axes), and is characterized by orthorhombic 

crystal symmetry or higher, exact analytical solutions for allowed electromagnetic wave 

propagation in a dielectric-magnetic medium are produced.  For a non-depolarizing 

medium, forward MM models are determined directly from the complex reflection 

coefficients. Although the optical properties of a non-depolarizing medium can be also 

analyzed using the Jones Matrices (JM), the MM approach has an advantage for 

experimental systems with imperfect, and hence, depolarizing optical elements. In 

addition, the investigated sample itself may introduce depolarization, as in the case of 

surface plasmon propagation in metal hole arrays [61].  In this paper, we demonstrate 

how the angle of incidence dependence of the off-diagonal elements 12M  and 34M  of the 

MM exhibit asymmetric results when materials having negative index of refraction are 

simulated. The MM approach can be used to determine these effects experimentally. 

Alternatively, measurements at variable angles of incidence of the ellipsometry 
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parameters Ψ  and ∆  (in which the sign of ∆  is resolved)  [17, 62] may be applicable to 

non-depolarizing anisotropic metamaterials.   

8.2  4×4 Matrix Formalism     

The procedures for using Berreman’s 4 4× matrix formalism were outlined for the 

isotropic case in Chapter 3. In this Chapter, we use the technique to calculate the 

complex reflection coefficients for an anisotropic magnetic material in both the semi-

infinite and thin film configurations. For a crystal with orthorhombic symmetry having 

principal axes parallel to the x , y  and zcoordinate axes, ∆ɶ  in Eq. (4.1) is a 4 4× matrix 

[16]: 
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 (8.1) 

 

zpq and zsq are the eigenvalues associated with p and spolarizations, respectively and 

constitute the zcomponents of the wave vectors in the medium. These are: 

 

( )2 2
0 0sin θω ε µ

ε
= −zp xx yy

zz

N
q

c
 (8.2) 
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( )2 2
0 0sin θω µ ε

µ
= −zs xx yy

zz

N
q

c
 (8.3) 

The x component of the wave vector is constant for all of the incident and refracted 

waves.  It is through these equations (eigenvalues of the Berreman equation) that 

information about the anisotropic optical properties of the medium [17] enters into the 

calculation of the complex reflection coefficients and, in turn, MM elements. For 

example, the anisotropic ε  or µ  tensors and the consequent differences between zpq and 

zsq are responsible for the two refracted waves shown in Figure 3.1.  

8.3 Analytic Formulas 

One of the key benefits of using 4 4×  matrix formalism to calculate complex reflection 

and transmission coefficients is that procedures for matching electromagnetic boundary 

conditions are automatically built in to the method when both incident and,  in the case of 

thin films, substrate media are  isotropic and non-magnetic. For each polarization state 

there are two eigenvectors representing forward and backward propagating waves. In 

4 4×  matrix formalism, the complex reflection coefficients ( )ωppr  and ( )ωssr  and the 

complex transmission coefficients ( )ωppt and ( )ωsst  are calculated from the eigenvectors 

of Eq. (4.1) via the solution of simultaneous boundary value equations relating to the 

continuity of the electric and magnetic fields at the media interface(s). For semi-infinite 

samples, backward propagating waves are not considered. For thin film samples, 

retention of the two backward propagating waves is essential to the proper calculation of 

the complex reflection and transmission coefficients as well as the MM elements. In this 
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section, the cross polarization terms ( )psr ω , ( )spr ω , ( )pst ω and ( )spt ω  vanish because the 

principal axes of the crystal correspond to the laboratory coordinate axes.  

8.3.1  Semi-Infinite Sample 

For a semi-infinite material, the two eigenvectors representing the forward propagating 

waves are used to calculate the complex reflection coefficients forp andspolarized 

radiation. The procedure for calculating the complex reflection coefficients involves 

matching the tangential components of the incident and reflected E and H fields to a 

linear combination of the two eigenvectors calculated at the common interface located at 

0z =  [16, 17]. The complex reflection coefficients are: 

 

2
0 0

2
0 0

ε
ε

−
=

+
xx z zp

pp
xx z zp

k N q
r

k N q
              (8.4) 

 

0

0

µ
µ

−=
+

xx z zs

xx z zs
ss

k q

k q
r .   (8.5) 

 

In Eq. (8.4) and Eq. (8.5), the complex reflection coefficients are expressed as functions 

of the zcomponents of the incident and refracted wave vectors which themselves take 

into account the anisotropic characteristics of the medium. Complex reflection 

coefficients stated in this formalism have been used in the study of media with indefinite 

permittivity and permeability tensors [44].  
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8.3.2  Thin Film Sample 

For a single layer thin film material, all four eigenvectors and eigenvalues are used in the 

calculation of both the complex reflection and transmission coefficients. Both incident 

and substrate media are assumed to be isotropic, non-magnetic materials. The z

components of the incident and substrate wave vectors are ( )0 0 0cos
ω θ=zk N
c

 and 

( )2 2 2cos
ω θ=zk N
c

, respectively. The thin film has thickness d and is described by ε  

and µ  tensors each having orthorhombic symmetry. We assume that the ε  and µ  

tensors can be simultaneously diagonalized and have coincident principal axes. Higher 

symmetries can easily be derived from the orthorhombic case. The crystal is aligned such 

that its principal axes are coincident with the laboratory axes. Light is again incident in 

the −x z plane (see Fig. 6.1). 4 4×  matrix formalism matches the tangential components 

of the electric and magnetic field vectors at 0z =  and z d= to produce two generalized 

field vectors ( )0ψ and ( )dψ , respectively. A thin film layer matrix L is utilized to relate 

the fields inside the anisotropic film of thickness d at its two boundaries [17]. 

 

( ) (0)d Lψ ψ=  (8.6) 

 
L is a 4 4× matrix calculated from the eigenvalues and eigenvectors of the ∆ɶ  matrix 

according to: 

 
1( ) * ( )*L d K dΨ Ψɶ ɶ −

=  (8.7) 
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In  Eq. (8.7), Ψɶ  is composed of the four ∆ɶ  eigenvectors as columns while K  is a 

diagonal matrix given by liq d
llK e=  with lq  representing the four eigenvalues of ∆ɶ .  

After some algebra relating the incident and reflected waves, the complex reflection 

coefficients for a thin film can be calculated. A similar process allows for the calculation 

of the complex transmission coefficients [16, 17]. Using these procedures, we derived 

analytic expressions for both p and s polarizations.  

The complex reflection and transmission coefficients for p polarized radiation are:  
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The complex reflection and transmission coefficients for s polarized radiation are: 
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The formulas are functions of the optical properties of the film material as well as the 

characteristics of both incident and substrate media. For example, in a vacuum-thin film-

vacuum configuration, the first terms in the numerator of each of the complex reflection 

coefficients become zero. This simpler form is applicable to many experimental 

configurations and will be used in the analysis of planar metamaterials below.  

In order to verify the accuracy of our analytical expressions, we have calculated the 

complex reflection and transmission coefficients for the cases of the semi-infinite sample, 

and a single layer film on a semi-infinite substrate using both our numerical 

implementation of the 4 4× matrix algorithm and the analytical expressions in Eq. (4.9), 

Eq. (8.5), Eq. (8.8) and Eq. (8.9). We found that the results coincide within the rounding 

errors of the 4 4× matrix algorithm. This analysis was performed for a variety of 

conditions including negative permittivity and permeability values, which are expected to 

be observed in metamaterials.  

8.4.  Mueller matrices of a planar metamaterial 

 

For the sample symmetry and the experimental configurations assumed in this paper, the 

off diagonal elements of the 2×2 Jones matrix are zero. For non-depolarizing materials, 

there are well established formulas to transform the Jones matrix to a full MM [17] and 

Eq. (8.10) is the transformation formula applicable when the off diagonal Jones matrix 

elements are both zero.  
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            (8.10) 

 

The MM of a dielectric-magnetic material is produced from its complex reflection 

coefficients which are, in turn, calculated from its frequency dependent ε  and µ  tensors. 

Accordingly, to produce a MM, accurate complex reflection formulas appropriate to the 

orientation of the crystal must be available. In addition, models for the dielectric and 

magnetic functions of the material are required for input into these reflection formulas. 

Eq. (8.10) illustrates that, for our configuration, there will be eight non-zero MM 

elements. However, only four of these terms are independent.  Procedures for calculating 

the forward model of a MM for a planar metamaterial will now be discussed.  

To date, there have been relatively few spectroscopic studies of metamaterials which 

analyze their reflection properties using oblique angles of incidence. Driscoll et al. have 

done one such study using a planar array of split-ring resonators (SRRs) [6]. Reflection 

and transmission intensities were recorded for the single spolarization at varying angles 

of incidence. These results were fitted using the Fresnel equations to model the optical 

properties of the metamaterial as though it behaved as a continuous anisotropic thin film 

crystal.   

These results are important to our study of MMs because the frequency dependent 

models of the material’s ε  and µ  tensors together with our Eq. (8.8) and Eq. (8.9) 

enable the calculation of predictive MMs of this planar metamaterial. In the Driscoll 
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experimental configuration, the ε  and µ  tensors have the following anisotropic 

symmetry:  
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The tensors are described by the SHO oscillator model for ε  and Pendry’s model for µ  

shown in Eq. (8.12).  
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In the formula for the ε  tensor, sε  is the static dielectric constant and pω is the plasma 

frequency. eA  and mA are oscillator amplitudes. The formula for the µ  tensor is modified 

from the traditional Lorentzian model in that the square of the frequency of incident 

radiation (ω ) enters the numerator and µ (0) is forced to be equal to 1 [6, 38, 60].  The 

( )yyε ω  response was not analyzed in the Driscoll paper. 

 The general formulas for thin films derived using 4 4× matrix formalism are used 

to calculate the complex reflection and transmission coefficients for this fabricated 

material. The experiment performed by Driscoll et al. is set up such that both incident 

and substrate medium are vacuum with x  axis parallel to s polarized radiation. In this 
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configuration, the complex reflection coefficients for p and s polarized radiation in Eq. 

(8.8) and Eq. (8.9) reduce to the following:  
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In Eq. (8.13), ( )zpq ω and ( )zsq ω  have the same definitions as in Eq.(8.2) and Eq. (8.3) 

except for the interchange of the x  and y  axes to accommodate the experimental setup. 

0zk  is the zcomponent of the free space wave vector.  

Due to the complexity of the analysis using the Fresnel approach, Driscoll et al. [6] 

constrained themselves to study only the s polarization incident at the sample. 4 4×  

matrix formalism and full MM measurement should allow more complete analysis of the 

sample properties using incident light of linear and elliptical polarizations. In order to 

develop a forward model and analyze the measurements of MMs at oblique angles of 

incidence, assumptions about the permittivity and permeability along other directions are 

required. Specifically, assumptions about the ( )yyε ω  response are necessary in order to 

illustrate how 4 4× matrix formalism could have been used to predict the MM for this 
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metamaterial. Asymmetries in the SRR fabrication between the x  andy  axis suggest that

( ) ( )yy xxε ω ε ω≠ .  For purposes of illustration only, we assume that the natural resonance 

of the ( )yyε ω  oscillation is 15 GHz as compared to 19.9 GHz for the ( )xxε ω oscillation. 

We assume all other fitted parameters are identical. Using these parameters, the 

frequency dependent ( )xxε ω , ( )yyε ω and ( )zzµ ω
 
values are calculated and are then input 

into Eq. (8.13) to produce the complex reflection coefficients. Eq. (8.10) is then used to 

transform the complex reflection coefficients into MM elements. Given the coincidence 

of the principal axes of the metamaterial with the laboratory system, the off diagonal 

Jones matrix elements will vanish and there will be only 8 non-zero elements of the 

predicted MM. These elements are illustrated in Fig. 8.1.  

 

Figure 8.1 The Mueller Matrix components of a planar metamaterial in the proximity of 
the resonant feature at 14 GHz for two AOI. Dotted line 0 0oθ = . Solid line 0 40oθ = . 



127 
 

4×4 matrix formalism was used for the systematic calculation of the complex reflection 

coefficients. Driscoll et al. found that the ssr  coefficient, when calculated in conjunction 

with the fitted oscillator models, produced a good qualitative fit with s polarized 

experimental reflectivity data [6].  The simulated MM components, generated from the ε  

and µ  tensors, contain additional critical information about the anisotropic dielectric and 

magnetic properties of the metamaterial. Actual experimental MM data should allow for 

the extraction of the anisotropic oscillator parameters through non-linear fitting 

procedures.    

8.5.  Separation of Dielectric and Magnetic Contributions 

For proper characterization of materials whose magnetic effects have non-negligible 

influence on their optical properties, it is important to be able to separate dielectric and 

magnetic contributions. Spectroscopic experiments usually provide values for the 

complex refractive index n εµ=  at different frequencies, which do not contain any 

direct information as to whether it is ε  or µ  which is responsible for a particular feature 

observed in the spectrum. The difference in the change of the various MM components in 

response to whether ε  or µ  is changing can separate dielectric and magnetic 

contributions. For metamaterials, this information is crucial for their design.  

This discrimination is indeed possible by performing MM measurements made at varying 

angles of incidence. To illustrate this point, we model conditions where the index of 

refraction of a dielectric-magnetic material remains constant but its inputs (ε  and µ ) are 

varied. Specifically, we model a hypothetical case of isotropic ε  and µ  where each are 
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allowed to vary between 1 and 6, but their product,2n εµ= , is held constant at 6. We 

simulate a given material composition (ε , µ ) and compare it to another material whose 

values for ε  and µ  are interchanged.  For example, Fig. 8.2 shows that the values of the 

diagonal MM elements are identical for both materials characterized by (3, 2) and (2, 3), 

respectively.  However, this degeneracy is removed when the off-diagonal MM elements 

are analyzed over varying angles of incidence (AOI).  

 

Figure 8.2 Dielectric and magnetic contributions in the diagonal and off-diagonal MM 
components as functions of AOI. Different ( ),ε µ combinations illustrate the difference in 

response of M12 and M34 compared to M11 and M33. For example, the (2, 3) combination 
(black dotted line, online dotted green) and the (3, 2) combination (black squares, online 
solid yellow line) are degenerate for M11 and M33 but have opposite signs for M12 and 
M34.  
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It is evident in Fig. 8.3 that the MM response of the off-diagonal elements is the same in 

magnitude, but is either positive or negative depending on whether it is ε  or µ  that is 

changing. The (2,3) material has positive off-diagonal elements while the (3,2) material 

has negative off-diagonal elements.  Moreover, as seen in Fig. 8.3, when we introduce the 

“left handed” [36] material with negative permittivity and permeability, but keeping 

6εµ = , the 12M  and 34M  components respond in opposite directions.  

 

Figure 8.3 Dielectric and magnetic contributions in the diagonal and off-diagonal MM 
components as functions of AOI. Different ( ),ε µ combinations illustrate the difference in 

response of M12 compared to M34 when “left handedness” is introduced via negative 
values for ε  and µ . The (-2,-3) combination (black „x“, online red „x“) and the (2, 3) 
combination (black dotted line, online solid green line) are degenerate for M11 and M33 

but have opposite signs for M34.  In addition, the (-2, -3) combination and the (-3, -2) 
combination (black „o“, online blue „o“) are degenerate for M11 and M33 but have 
opposite signs for both M12 and M34.  
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For example, while the (-2,-3) material has diagonal and off-diagonal MM elements 

identical in magnitude to the (+2, +3) material, the sign of 34M  becomes negative. It is 

also interesting to note that the off-diagonal MM responses for two left handed materials 

can be distinguished. For example, the signs of the 12M  and 34M  components respond in 

opposite directions for the (-2,-3) material as compared to the (-3,-2) material. The 

difference in the angular response between 12M and 34M  is an indication of the material 

being “left handed”. This observation is extremely important as it is happening in the thin 

film sample where the study of such MM measurements at varying AOI may be the only 

way to identify the anomalous properties of the metamaterial comprising the film. In the 

above cases for both right handed and left handed materials, the ability to distinguish ε  

andµ  vanishes at normal incidence. However, the contrast between the magnetic and 

electric contributions is at maximum for AOIs that are close or even exceed the Brewster 

angle of ~68° that corresponds to   6n =  . Given that there are only 4 independent MM 

elements to measure, varying the AOI contributes a critical degree of freedom to the 

proper characterization of ε  and µ  tensors.  Fig. 8.3 also shows the interesting 

impedance matching condition discussed in Section 3. When ε µ= , there is zero 

reflection at normal incidence.  

The simple examples considered above can, of course, be analyzed using the alternative 

approach of the Jones Matrices. Switching between dielectric and magnetic contributions 

as well as between the positive and negative values of these contributions does naturally 

cause changes in Ψ  and ∆  dependencies.  However, the behavior of these ellipsometric 
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parameters is more complex, and not as illustrative, as compared to switching signs in the 

off-diagonal Mueller Matrix components. 

Since real metamaterial samples are usually anisotropic, one should not always expect to 

see such well pronounced and easily understandable effects in real experimental data. 

However, the fact that the angular dependencies of the MM elements respond differently 

to dielectric and magnetic contributions, as well as to the positive and negative values of 

ε  and µ  , should allow for the ability to distinguish these different situations while 

extracting ε  and µ  by  non-linear fitting of the experimental data.   

                        8.6.  Summary 

 

We have presented an analytical approach for the study of dielectric-magnetic materials 

using 4 4× matrix formalism. Wave vectors in a dielectric-magnetic medium are derived 

directly from the eigenvalue solutions of the Berreman equation. We utilized the wave 

vector approach to derive analytic formulas for the complex reflection and transmission 

coefficients of thin films whose εεεε  and µµµµ  tensors both have an orthorhombic symmetry. 

Any other system that has simultaneously diagonalizable εεεε  and µµµµ  tensors (with 

coincident principal axes) can be reduced to this case by rotations of the reference frame.  

We have demonstrated how these calculations can produce the full MM of a non-

depolarizing material. Forward models for the active MM elements of a planar 

metamaterial were calculated. The separation of the magnetic and dielectric contributions 

to the optical properties of an anisotropic material, as well as identification of negative 

refractive index in a thin film, are possible using the MM approach at varying AOI.  
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The following original results have been presented in this Chapter:  

• formulae for the complex reflection and transmission coefficients have been 

derived for materials with 1µ ≠≠≠≠  in the thin film configuration having 

orthorhombic symmetry or higher. These formulae incorporate the case of non-

vacuum incident and substrate media. 

• the behavior of Mueller matrix components for a planar metamaterial in proximity 

to resonance have been illustrated at varying AOI. 

• for the first time, the separation of dielectric and magnetic contributions in the 

optical spectra of a magnetic material  has  been demonstrated by performing MM 

simulations at varying AOI 

• for the first time, the identification of the Negative Index of Refraction condition 

in the optical spectra of a magnetic material is illustrated by performing MM 

simulations at varying AOI. 
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CHAPTER 9 

ADJUSTED OSCILLATOR STRENGTH MATCHING FOR HYBRID 
MAGNETIC AND ELECTRIC EXCITATIONS IN DY 3FE5O12 GARNET 

The original results presented in this Chapter are published in:   

P. D. Rogers, Y. J. Choi, E. Standard, T. D. Kang, K. H. Ahn, A. Dudroka, P. Marsik, C. 
Bernhard, S. Park, S-W. Cheong, M. Kotelyanskii, and A. A.  Sirenko, Phys. Rev. B, 
(2011).  arXiv:1101.2675v1 [cond-mat.str-el].[2] 

9.1 Introduction 

 
Far-infrared (IR) spectra of the optical modes in magnetic materials have recently 

attracted a lot of attention, especially with respect to the multiferroic effect and 

electromagnons [63-65]. However, no universal mechanisms have been proposed to 

explain the occurrence of electromagnons and the accompanying magneto-dielectric 

effect [30, 66].   One challenge to theoretical modeling is its dependence on empirical data 

obtained with a single optical technique, such as transmittance, which, as we will see in 

this paper, cannot always unambiguously distinguish between electric and magnetic 

excitations. As we show in this Chapter, a combination of several complementary 

techniques, such as transmittance and reflectivity, for the measurements of both the 

complex dielectric function ( )ε ω  and the magnetic permeability ( )µ ω  spectra can 

improve understanding of the coupling between magnetic and electric excitations [67]. 

The quantitative interpretation of the optical spectra requires an adequate modeling 

approach for light propagation in magneto-dielectric crystals with ( ) 1µ ω ≠ . We applied 

Berreman’s 4×4 matrix formalism [16] for the numerical and analytic analysis of 
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experimental data for transmittance, reflectivity, and rotating analyzer ellipsometry 

(RAE) in Dy3Fe5O12 garnet (Dy-IG). Through the combination of these optical 

techniques, we determined whether an IR-active mode was (i) entirely of dielectric 

origin, (ii) entirely of magnetic origin, or (iii) a hybrid with a mixed electric- and 

magnetic dipole activity. In this paper, we show that the magnetic components of the 

hybrid modes are not negligibly weak and can result in a complete cancellation of the 

mode in reflectivity.  The observed vanishing of certain hybrid modes is explained in 

terms of the adjusted oscillator strength matching (AOSM) condition, which has some 

similarities to the impedance matching phenomenon in metamaterials [42]. We also show 

that the RAE data, in addition to being consistent with the results of normal incidence 

reflectivity, illustrate that the AOSM condition is applicable for varying angles of 

incidence. 

9.2   Material Preparation 

The high-temperature flux growth technique was utilized to produce bulk crystals of Dy-

IG (Dy3Fe5O12). A sample with a (0 0 1) surface, a cross section area of  5×5 mm2,  

thickness of  0.55 mm, and a 3° offset between opposite sides was used for the optical 

experiments. Transmittance spectra with resolution of 0.3 cm-1 were measured between 

13 and 100 cm-1 at the National Synchrotron Light Source, Brookhaven National 

Laboratory, at the U4IR beamline equipped with a Bruker IR spectrometer, and a LHe-

pumped bolometer. The RAE and reflectivity measurements were carried out at Fribourg 

University using a Hg lamp in the spectral range between 45 and 100 cm-1 with resolution 

of 0.7 cm-1. The RAE experimental setup is similar to that described in Ref. [68]. 
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Temperature and magnetic field dependencies for static values of (0, , )H Tε  and

(0, , )H Tχ  were measured using an LCR meter at 44 kHz and a SQUID magnetometer. 

9.3  Results and Analysis 

Dy-IG, as well as other RE-IG (RE=Ho, Tb), is a ferrimagnetic material with a huge 

magnetostriction, which is related to the combination of a strong anisotropy of the crystal 

field of the RE3+ ions and a strong and anisotropic superexchange interaction between RE 

and iron [69-72]. Although there are no literature reports that Dy-IG is multiferroic, 

recently two related compounds, antiferromagnetic orthoferrite DyFeO3 and Tb-IG, were 

shown to be multiferroic and magneto-dielectric [73, 74]. We found a magneto-dielectric 

effect in a weak external magnetic field H of about 2 kOe. We also observed two 

indications of the ferromagnetic ordering of Dy spins at TC =16 K: (i) the sharp minimum 

in the temperature derivative of magnetic susceptibility Tχ∂ ∂ at TC  [Fig. 9.1(a)] and (ii) 

the temperature dependence of the exchange resonance IR mode frequencies, which will 

be discussed below. The quasi-static value of the dielectric constant (0)ε  of Dy-IG has 

anomalies in the temperature and external magnetic field dependencies [Fig. 9.1(b,c)]. 

(0, )Tε  has a peak at TC =16 K that can be explained by the local electric polarization due 

to anti-ferroelectric lattice ordering. The latter occurs in the same temperature range as 

the ferromagnetic ordering of the Dy spins below 16 K. The anti-ferroelectric lattice 

ordering does not create a global electric polarization, but affects the spin and lattice 

dynamics at the microscopic scale. Using RAE we found that the soft optical modes at 

Ω ≈146 cm-1 and 595 cm-1, which are associated primarily with Dy and oxygen 

displacements, contribute to the changes in (0, )Tε  through the Lyddane-Sachs-Teller 
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relationship: (0, )Tε ~ 2( )T−Ω  [see Figure 9.1(b)]. The magneto-dielectric effect in Dy-IG 

reveals itself in the variation of (0, )Hε  for H<10 kOe [Fig. 9.1(c)].  

  

Figure  9.1 (a) Temperature dependence of the static magnetic susceptibility (red curve, 
left scale) and its derivative (blue curve, right scale) for a Dy3Fe5O12 single crystal. 
Ferromagnetic ordering of Dy3+ occurs at TC =16 K. (b) Temperature dependence of the 
static dielectric constant at H=0 (solid red line) and H=10 kOe (blue dashed line). Black 
squares represent the temperature dependence of the soft optical phonon frequency at 146 
cm-1 measured with RAE. (c) Magnetic field dependence of the static dielectric constant 
at T= 5 K.  In all graphs E || [1 0 0] and H || [0 1 1]. 
 
The appearance of anti-ferroelectric ordering and a Dy−Dy ferromagnetic interaction 

motivates us to re-visit the far-IR optical spectra of Dy-IG. RE-IGs have been studied in 

Refs. [14, 75-77].  It was shown that below 80 cm-1, transmission spectra in 
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polycrystalline RE-IGs are dominated by both RE3+ single ion electronic transitions and 

Kaplan-Kittel (KK) modes, which were attributed to magnetic dipoles [14, 78].   Figure 

9.2(a,b) shows a transmittance spectrum of Dy3Fe5O12 at T = 5 K, and the transmittance 

intensity map. In addition to the optical phonon at 81 cm-1 [see Ref. [79]], a number of 

crystal field (CF) lines of Dy3+ at 20, 52, 72, and 87 cm-1 are observed for T > 16 K. At 

low temperatures T<16 K, however, the number of absorption lines increases.  The ligand 

field (LF) and KK modes appear at 13, 22, 29, 43, 51, 59.5, 73, 78, 87, 91, and 98 cm-1 

for T=5 K. In a simplified model for two-spin ferrimagnetic systems, like RE-Fe, a single 

exchange-type KK mode is expected with the frequency of Mω . The LF mode LFω  

corresponds to precession of the Dy3+ moments in the effective field imposed by the iron 

magnetization due to the superexchange interaction between Fe and RE. The latter is 

modified by the ferromagnetic interaction between Dy3+ spins at low temperature. The 

zone-center frequencies of these collective excitations of Dy3+ and Fe3+ spins are: [75, 76, 

78]  

 
( ) ( )

( ) ( ) ,

M Fe Dy B Dy Fe Fe Dy

LF Dy B Fe Dy Fe Dy Dy Dy

T g M g M T

T g M M T

ω λ µ

ω µ λ λ
−

− −

 = − 

 = + 

 (9.1) 

where Bµ  is the Bohr magneton, Fe Dyλ − is the exchange constant between Fe and Dy ions, 

Dy Dyλ − is the ferromagnetic exchange constant, 2Feg =  and Dyg  
are the corresponding  

g-factors, ( )DyM T  is the Dy-sublattice magnetization, and FeM  is the combined Fe 

magnetization. The LF and KK modes can be distinguished based on the temperature 

dependence of their frequencies [see Eq. (9.1)]. For T< 16 K, the KK modes ( )M Tω  

exhibit softening due to increase of ( )DyM T . Figure 9.2(a,b) shows three KK modes at 
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43, 51, and 59.5 cm-1, that can be explained by the double umbrella structure for Dy3+ 

spins and by the strongly anisotropic and temperature-dependent superexchange 

interaction between Dy3+ and Fe3+ ions. The temperature-induced variation of the LF 

mode frequencies below 16 K is also proportional to ( )DyM T  [see Eq. (9.1)], but it has 

an opposite sign compared to that for KK modes. Fig. 2(b) indicates a phase transition at 

TC =16 K with appearance of the long range ordering of Dy spins. 

According to the simplified model for collinear Dy3+ and Fe3+ spins, the KK and LF 

modes were viewed as pure magnons [75, 76].  However, their spectral proximity to the 

phonon at 81 cm-1 and modification of the LF due to local electric polarization should 

result in a hybrid electric- and magnetic-dipole activity. In the following, we will prove 

this suggestion using a combination of several optical techniques: transmittance and 

reflectivity at normal incidence, and RAE. The terms “LF” and “hybrid” will be applied 

interchangeably to the same modes. The first term refers to the origin of the IR-active 

excitation as described above, while the latter corresponds to the mixed dipole activity of 

the mode in the optical spectra.  
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Figure 9.2 (a) Far-IR transmission spectrum for a Dy3Fe5O12 single crystal measured at 
T=5 K. The light propagation is along the [0 0 1] direction. Arrows indicate the 
frequencies of the IR modes. (b) Transmission map vs. temperature and light frequency. 
The blue (dark) color corresponds to stronger absorption and red (light) color indicates 
high transmission. The horizontal green line represents the ferromagnetic transition 
temperature TC =16 K.  The white dots represent the phonon at 81 cm-1. The black dots 
show the KK and LF excitations.  
 
Figure 9.3(a,b) compares the transmittance Ts(ω) and reflectivity Rs(ω) spectra of the 

same Dy-IG sample as in Figure 9.2. Ts(ω) and  Rs(ω) have been measured at T=8 K and 

9 K, respectively, at near-normal incidence, i. e., the angle of incidence (AOI) is close to 

zero. RAE measurements were taken for the same sample at T=8 K and AOI=75 deg. The 

results of the RAE measurements are shown in terms of the real part of the pseudo-

dielectric function 1( )ε ω , [Fig. 9.3(c)]. Modes of three kinds can be identified in Fig. 

9.3(a,b,c): (i) The phonon at 81 cm-1, which is obviously an electric dipole, has a 
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conventional Lorentz shape in the  Rs(ω) and RAE spectra. The phonon is also strong in 

Ts(ω); (ii) The KK mode at 59.5 cm-1 has an inverted Lorentz shape in both the Rs(ω) and 

RAE spectra. As shown below, this shape is typical for magnetic dipoles. (iii) The LF 

modes at 73, 78, and 91 cm-1 are as strong as the phonon in Ts(ω), but practically 

invisible in both the Rs(ω) and RAE spectra. The  Ts(ω) and Rs(ω) spectra, both measured 

for the same sample and at the same AOI, can be reconciled by suggesting that the LF 

modes in Dy-IG possess a hybrid, i.e., magnetic- and electric-dipole activity. This 

suggestion can be qualitatively understood based on Veselago’s approach for light 

propagation in an isotropic, semi-infinite medium with ( ) 1µ ω ≠ . Here a simple 

replacement of the refractive index is used: for Fresnel’s reflection coefficient, 

( ) ( ) / ( )n ω ε ω µ ω→ ; while in transmittance, ( ) ( ) ( )n ω ε ω µ ω→ ⋅  [36]. These formulas 

explain that a magnetic mode has an inverted shape in the reflectivity spectrum since

( )n ω ~ 1/ ( )µ ω  in the vicinity of the mode where ( ) constε ω ≈ . They also naturally 

account for the suppression of the mode feature in the reflectivity spectrum for a hybrid, 

i.e., magnetic-dielectric mode, where the magnetic and dielectric components tend to 

cancel each other (see Appendix C for further details). 
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Figure 9.3 Optical spectra of a Dy3Fe5O12 single crystal. (a) Transmission spectrum at 
AOI=0, T=8 K.  (b) Absolute far-IR reflectivity at AOI=0, T=9 K. (c) Rotating analyzer 
ellipsometry (RAE) data for pseudo dielectric function 1( )ε ω  at AOI=75 deg, T=8 K. 

In (a,b,c), the blue diamonds are experimental data and the red solid curves represent 
results of the fit.  Electric (d) and magnetic (e) susceptibilities as determined from the fit 
results. Magnetic, electric, and hybrid modes are marked with m, e, and h, respectively.  
 
 
In order to properly analyze the experimental data in Fig. 9.3(a,b,c), we developed an 

exact numeric method (see Ref. [1] for details), which is based on Berreman’s 4×4 matrix 

formalism.[1, 16]  Our method incorporates the exact geometry of the measured Dy-IG 

sample with average thickness d=0.55 mm, multiple reflections, variable AOI’s, and 
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possible magnetic and electric anisotropies. The response functions of Dy-IG, ( )ε ω and 

( )µ ω , were modeled using a set of Lorentz oscillators:  

 

2
, , 0

2 2
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− −

= +
− −

∑

∑
 (9.2) 

Here ε ∞  is the infinite-frequency value of the dielectric function, 1µ∞ ≅ , Se(m) is the 

oscillator strength, γe(m) is the damping constant, and ( )0e mω  is the resonance frequency. 

Although the response functions of Dy-IG can be in principle anisotropic, the comparison 

of the reflectivity and ellipsometric data taken at different AOI do not reveal any 

anisotropy within the accuracy of the data.  The hybrid modes in this model have non-

zero electric and magnetic oscillator strengths  Se  and Sm  at the same resonant frequency 

( )0h e mω ω= , thus creating a contribution to both ( )ε ω  and ( )µ ω . The electric and 

magnetic damping constants for the hybrid modes are assumed to be the same:e mγ γ= .  

The results of the fit using 4×4 matrix formalism for Rs(ω), Ts(ω), and 1( )ε ω
 
are shown 

in Figs. 9.3(a,b,c) with solid curves. The corresponding values of Se and Sm are 

summarized in Table 9.1 and the real parts of the dielectric function and the magnetic 

permeability are shown in Figure 9.3(d,e). Note that for Dy-IG, Se  and Sm  are not large 

enough to modify significantly the background values of 17ε∞ ≅  and 1µ∞ ≅ . Hence, both 

( )ε ω  and ( )µ ω  are positive everywhere in the vicinity of the hybrid mode frequencies 

[see Fig. 9.3(d,e)].  Thus, the natural occurrence of a negative index of refraction does not 

take place at the spectral range dominated by the hybrid modes that might otherwise 

occur if their damping were sufficiently low.   
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TABLE  9.1.  The values of parameters of optical phonon at 81 cm-1 (e), magnetic KK 
mode at 59.5 cm-1 (m), and three hybrid modes (h) at 73 cm-1, 78 cm-1 and 91 cm-1 

obtained from the analysis of the combination of the transmission, RAE and reflectivity 
measurements. 
 
ω0, cm-1 Se Sm Type 

59.5 − 0.0019 m 
73 0.036 0.0021 h 
78 0.035 0.0022 h 
81 0.077 − e 
91 0.032 0.0010 h 

 
 
 Certain analytical formulas can be obtained which assist in describing the 

measured Ts(ω),  Rs(ω) , and RAE spectra.  Consider two electric and magnetic 

oscillators that are separated on the energy scale and have comparable values of e mγ γ≈ . 

If the backside reflection is not strong, the ratio of the amplitudes of the modes in the 

reflectivity spectra at their respective resonances are related to ( ) ( )0/ss e mR ωω ω∂ ∂ as 

follows:  

 0 0

0 0

|
,

|
ss e e e

ss m m m

R S

R S
ω

ω

ω ωµ
ω ε ω

∞

∞

∂ ∂ ≈ −
∂ ∂

 (9.3) 

where eS <<ε ∞ . µ∞  and ε∞  are determined at the frequencies shifted from ( )0e mω  by at 

least ( )3 e mγ . Note that the negative sign corresponds to the inverted Lorentzian shape at 

the magnetic resonance. If the thickness of the sample d  is optimized to prevent 

saturation of the transmitted intensity at the resonance, then the following relationship for 

transmission amplitudes of the magnetic- and electric modes can be obtained:  

 
2
0

2
0

e e e

m m m

T S

T S

ωµ
ε ω

∞

∞

∆ ≈
∆

 (9.4) 

where ( ) ( )0 ( )0 ( )( ) ( 3 )e m e m e m e mT T Tω ω γ∆ ≈ − ± . In the case of hybrid modes with a mixed 

electric- and magnetic dipole activity, Eq. (9.3) and Eq. (9.4) indicate that the 
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contribution of the dielectric and magnetic  oscillators to the transmission spectra is 

additive with an adjusted oscillator strength (AOS)
 T e mS S Sµ ε∞ ∞≈ ⋅ + ⋅ , while their total 

contribution to reflectivity is subtractive with AOS of ( ) 2
R e mS S Sµ ε µ∞ ∞ ∞= ⋅ − ⋅ . Here, 

the relevant magnetic or dielectric oscillator strength is multiplied by its constitutive 

response function complement. For the general case of a spectrum with several hybrid 

modes, a complete cancellation in reflectivity measurements is possible for each mode if 

the adjusted oscillator strength matching condition (AOSM) occurs: ( ) ( ) .h e h mS Sµ ω ε ω⋅ = ⋅  

These results are consistent with the aforementioned Veselago approach (see Appendix 

C).  In our experiment, the AOSM condition is realized for the hybrid modes at 73 and 78 

cm-1 that are not visible in either normal-incidence reflectivity or RAE experiments. The 

hybrid mode contribution to ( )ss hdR dω ω  is negligible and the Rs(ω) spectrum looks 

essentially featureless around the resonance frequencies. Analysis of RAE spectra taken 

at AOI=75° shows that the AOSM condition ( ) ( )h e h mS Sµ ω ε ω⋅ = ⋅  is valid across a wide 

range of AOIs, even close to the Brewster angle (76.4° for 17ε∞ =  and 1µ∞ = ).  

9.4 Conclusions 

In conclusion, the rare occurrence of the AOSM condition for hybrid modes was studied 

in Dy-IG. The proximity of the Dy3+ LF exchange resonances (73 and 78 cm-1) to the 

frequency of the lowest optical phonon (81 cm-1), local electric polarization, and the non-

collinear spin structure for the Dy-Fe magnetic system are responsible for the mode 

hybridization. The AOSM condition is used to explain the almost complete cancellation 

of the hybrid modes in the reflectivity spectra while remaining strong in the transmission 
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spectra. One of the possible applications of the AOSM condition is for the design of 

antireflective coatings in the far-IR spectral range using magnetic- and metamaterials. 

9.5   Chapter Summary 

The following original results were presented in this Chapter: 

• for the first time, Adjusted Oscillator Strength (AOS) formulas for a magneto-

electric material have been derived for reflection in the semi-infinite configuration 

and reflection and transmission in the thin film configuration. 

• using the AOS formulas, the proper ratio of the size of dielectric and magnetic 

excitations in the optical spectra can be calculated 

• for the first time, hybrid magnetic and dielectric modes in the optical spectra of a 

multiferroic material have been identified 

• for the first time, the Adjusted Oscillator Strength Matching (AOSM) condition 

has been derived which completely explains the behavior of the hybrid modes in 

the optical spectra of Dy-IG.  
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Chapter 10 

MODELING OF ELECTROMAGNETIC WAVE PROPAGATION AND 
SPECTRA OF OPTICAL EXCITATIONS IN COMPLEX MEDIA USI NG 4×4 

MATRIX FORMALISM 

10.1  Introduction 

10.1.1 Motivation 

Optical spectra of complex materials, such as magneto-electric (ME) and multiferroic 

crystals, materials with intrinsic or artificial chirality, and metamaterials, are in the focus 

of modern experimental and theoretical studies. The common feature of these complex 

materials is that their optical properties cannot be described only with a 3 3×  dielectric 

susceptibility tensor ̂( )ε ω . By analogy with bi-axial dielectrics, the complex materials 

can reveal a so-called bi-anisotropic optical behavior in a form of the fascinating effects, 

such as nonreciprocal light propagation, negative index of refraction (NIR), and 

polarization plane rotation. These exotic optical phenomena usually occur in a relatively 

narrow part of the optical spectrum. For example, the NIR effect could occur in 

metamaterials or multiferroics only in the GHz or THz spectral ranges, but above a 

certain frequency such materials behave as normal metals or dielectrics and, hence, a 

simple ( )ε ω  function could perfectly describe their optical properties in, for example, the 

visible part of the spectrum. Note also that the bi-anisotropic optical phenomena, such as 

magneto-electric and chirality effects, are not mutually exclusive and can coexist in the 

same or different parts of the optical spectrum. The proper description of the bi-

anisotropic optical effects in complex materials requires an adequate theoretical 

description and advanced experimental spectroscopic approaches. Calculations of the 
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optical spectra and polarization for complex anisotropic materials are particularly 

important at the resonance with the related elementary excitations, such as, i. g., 

electromagnons in magneto-electric materials. 

Recently, spectra of electromagnons in TbMnO3 multiferroic crystals have been 

discovered by Pimenov et al. [63]. Similar electromagnon excitations have been also 

observed in other related multiferroic oxides, including REMnO3 and REMn2O5 (RE = 

rare earths) [64, 80-82].The polarization selection-rules analysis for the transmission 

optical configuration suggested that this electromagnon mode is excited by an electric 

field of light, in contrast to antiferromagnetic resonance (AFMR) that can be excited by 

the magnetic field only. However, the polarization analysis of the electromagnon spectra 

has been always restricted by the experimental geometry with the normal light incidence 

on the sample surface. The limitations of this approach revealed themselves recently by 

failing to explain the experimentally-observed suppression of electromagnons in 

reflectivity measurements of GdMnO3 [83]. As we will see in the following, 

electromagnons in uniaxial crystals are not optically active in a back-reflection 

configuration, while transmission technique applied alone is not capable to differentiate 

between pure magnetic- and electric dipoles and, of course, cannot distinguish them from 

electromagnon-type of excitations. As we demonstrate in this Chapter, the most suitable 

theoretical representation of bi-anisotropic phenomena can be done with the help of the 

Jones and/or Mueller Matrices. Correspondingly, the most efficient experimental 

technique for the experimental studies of complex materials is Mueller Matrix 

Spectroscopic Ellipsometry (MMSE) that can be realized in both reflection and 
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transmission configurations with variable azimuthal angle and variable angle of incidence 

(AOI).  

The primary goal of this Chapter is to apply 4 4×  Berreman’s matrix formalism to 

calculate polarization of the optical spectra in complex materials. We illustrate our results 

with examples of Mueller Matrix calculations for the far-infrared spectral range, which is 

mostly interesting for spectra of electromagnons in multiferroic materials. Nevertheless, 

these calculations are also easily applicable to a diverse group of bi-anisotropic materials, 

such as metamaterials and chiral structures. Our results should provide a foundation for 

building the adequate forward models that can be used in the experimental data analysis 

obtained with MMSE and other spectroscopic techniques, such as Rotating Analyzer 

Ellipsometry, Generalized Ellipsometry, and Transmission Polarimetry. 

10.1.2.  Modeling Approach  

Models for electromagnetic wave propagation in a medium require solutions to 

Maxwell’s equations. These solutions, in turn, depend upon the proper characterization of 

the electromagnetic properties of the medium.  As Weiglhofer explains in a theatrical 

analogy, if Maxwell’s equations are a play with intricate plots, then the medium is the 

stage in which the electromagnetic processes take place [34]. The stage is described by a 

set of equations which are known as the medium’s constitutive relations: 

 

                                                         

ˆ ˆ

ˆ ˆ'

D E H

B E H

ε ρ
ρ µ

= +

= +

� � �

� � �                                                   (10.1) 

 
In Eq. (10.1), D

�
 is the dielectric displacement, B

�
 is the magnetic induction, E

�
 is the 

primary electric field vector, H
�

 is the primary magnetic field vector, ε̂  is the dielectric 

permittivity tensor, µ̂  is the magnetic permeability tensor, and ρ̂  and ˆ 'ρ  are the bi-
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anisotropic tensors. Each tensor is associated with a unique physical property of the 

medium and can be described by a 3 3×  matrix [33]. Further, the physical properties of 

the medium, which the tensors represent, are often frequency-dependent and must be 

described by a set of dispersion equations. Various mathematical models including the 

simple harmonic oscillator (SHO) and coupled harmonic oscillator (CHO) models are 

usually used for these dispersion relationships.  Some of these models will be considered 

below. In this paper, a simple medium is defined to have isotropic ε̂  and µ̂  tensors but 

no bi-anisotropic activity. A complex medium will refer to all other possible tensor 

symmetries and allowed tensor combinations [34]. We do not consider the effects of non-

linearity nor spatial dispersion in this paper. The combination of Maxwell’s equations, 

boundary conditions, the constitutive relations, and the dispersion relations are required 

to derive a proper solution for electromagnetic wave propagation and to model 

excitations in the optical spectra.  

In contrast to ̂ε  and µ̂  tensors, the bi-anisotropic tensors ρ̂  and ˆ 'ρ  are less known and 

their properties require clarification. In this paper we will consider two major additive 

contributions to ̂ρ  and ˆ 'ρ : the magneto-electric effect and chirality, so that: 

 
ˆˆ ˆ

ˆˆ ˆ' ' T

j

j

ρ α ξ

ρ α ξ

= + ⋅

= − ⋅
 (10.2) 

One can see that the ME contribution is described by the complex tensor ̂α , and chirality 

is represented by tensor  ξ̂  . Both tensors, ̂ξ  and α̂ , are complex and can have both real 

and imaginary parts. Accordingly, ̂ρ  and ˆ 'ρ  are  not expected to be the complex-

conjugate-transpose for each other [43].  
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According to Dzyaloshinskii, the corresponding ME contribution to ˆ 'ρ  should be a 

“transpose” tensor: ˆ ˆ' Tα α= . This requirement follows from the Dzyaloshinsky’s 

definition of α̂  in the static case: 

 
2

ij
i j

F

E H
α ∂=

∂ ∂
 (10.3) 

At present, however, this requirement of ˆ ˆ' Tα α=  for optical frequencies is under debate 

in the literature [32]. In the following theoretical analysis we won’t implement 

Dzyaloshinskii’s restriction and keep a general notation for the ρ̂  and ˆ 'ρ   tensors. In any 

case, both ̂α  and ˆ 'α  have the same sign of their complex parts, so that the oscillators in 

both α̂  and ˆ 'α  should absorb light in the transmission experiments. Tensors ̂α  and ˆ 'α  

change sign under space inversion and time inversion operation, remaining unchanged if 

both operations are applied simultaneously. This property results in the requirement that  

ˆ ˆ ' 0α α= ≡  in materials with the center of inversion or with time-reversal symmetry (see 

Refs. [18, 25] for more detail). In contrast to α̂ , the chirality term ˆj ξ⋅   has its transpose-

complex conjugate counterpart ˆTj ξ− ⋅  that contributes to ̂ 'ρ . For isotropic materials, 

Georgieva [41] showed that the chirality parameter ξ , which originates from the H t∂ ∂
�

 

and  E t∂ ∂
�

 terms in the Maxwell equations, scales proportionally to ω  which requires its 

disappearance at zero frequency: (0) 0ξ → . In the case of a crystal, we assume that the 

chirality effect can also have a resonant behavior and should diminish at high 

frequencies: ( ) 0ξ ∞ → .    

The main challenge to the analysis of bi-anisotropic materials is a vast number of 

possible tensor symmetries in the bulk crystals and thin films. The task of obtaining 
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analytical solutions for all possible configurations appears daunting. Fortunately, 4 4×

matrix formalism, as developed by Berreman [16], provides for an accurate and 

systematic method of obtaining numerical, and in some cases, analytic solutions for 

electromagnetic wave propagation in both simple and complex media. A complete 

description of electromagnetic wave propagation in a complex medium is made possible 

using Berreman’s matrix equation [16]: 

                            

ˆ ˆ0 -

ˆ ˆ0 '

curl E E
i

curl cH H

ε ρω
ρ µ

      
=               

� �

� �

 

                              (10.4) 

 
In Eq. (2.52), curl represents the 3×3 matrix operator. The first matrix on the right hand 

side is a 6×6 matrix called the optical matrix M . This matrix contains all information 

about the constitutive relations and completely describes the anisotropic properties of the 

material [17]. Eq. (2.52) can be reduced to the Berreman equation which describes 

electromagnetic wave propagation in a crystal: 

                                                                

d
i

dz c

ωΨ = ∆Ψɶ                                              (10.5) 

In Eq. (10.5), Ψ  is an array of the transverse components of the electromagnetic wave 

[ , , , ]Tx y y xE H E H−  in the medium and is an eigenvector of ∆ɶ , where ∆ɶ  is a 4 4× matrix 

constructed from the components of the ε̂ , µ̂ , ρ̂  and ˆ 'ρ  tensors. Eq. (10.5) is at the 

heart of 4 4× matrix formalism. The eigenvalue and eigenvector solutions to Eq. (10.5) 

represent wave vectors and the transverse components of the propagating electromagnetic 

waves, respectively. These solutions are unique to the crystal symmetries and constitutive 

relations incorporated into the ∆ɶ matrix. 
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In this paper, five different configurations of crystal symmetry and constitutive tensors 

will be examined. They are presented in increasing order of complexity. The five cases 

have been selected to illustrate both the application of 4 4× matrix formalism as well as 

aspects of electromagnetic wave propagation.  

Case 1 examines a medium with anisotropic ε̂  and µ̂  tensors only ˆ ˆ( ' 0)ρ ρ= = . This 

case is applicable, for example, to a system with a center of inversion or with time-

reverse invariance. We consider this as the base case of our analysis because it illustrates 

how the eigenvalues of the ∆ɶ  matrix are evident not only in the eigenvectors describing 

the electromagnetic waves but also in the complex reflection coefficients, k
�

 vectors and 

Poynting vectors associated with each polarization. Case 1 illustrates how birefringence 

is contained in the non-degenerate eigenvalue solutions of the ∆ɶ  matrix.  

Case 2 examines isotropic ε̂  and µ̂  tensors. We have presented this simple medium case 

second because it is an immediate consequence of Case 1. We use Case 2 to compare 

results obtained using 4 4× matrix formalism to the Veselago approach for materials 

having magnetic permeability 1µ ≠ [36].  

Case 3 introduces magneto-electric tensors into the analysis by examining the case of a 

multiferroic material with uniaxial ̂ε  and µ̂  tensors and magneto-electric tensors having 

only one off-diagonal element. The results of this analysis permit the interesting 

observation of irreversibility in electro-magnetic wave propagation in magneto-electric 

crystals [25].  

In Case 4, the analysis of isotropic ε̂ , µ̂ , ρ̂  and ˆ 'ρ  tensors is presented. Solutions for 

this symmetry are more mathematically complicated compared to the first three cases yet 
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still permit analytic solutions. Case 4 illustrates how anisotropy can be introduced into an 

isotropic crystal through the magneto-electric effect.  

Finally, Case 5 analyzes anisotropicε̂ , µ̂ , ρ̂  and ˆ 'ρ  tensors, all in orthorhombic 

symmetry. Case 5 illustrates how the ∆ɶ  matrix can be constructed for such a set of 

complicated constitutive relations.  Case 5 will be illustrated using results of our 

numerical analysis.  A simulation tool that covers reflectivity geometry for semi-infinite 

bi-anisotropic material is available in Ref. [84].  

In Section 10.2, each of the five cases is analyzed in the semi-infinite configuration. The 

analysis follows the flowchart for 4 4× matrix formalism outlined in Fig. 1. This 

procedure begins with the M  matrix which enables the ∆ɶ matrix to be calculated along 

with its eigenvalues and eigenvectors. From the eigenvalues, the k
�

vectors can be 

immediately determined which, in turn, allow for the analysis of possible birefringence in 

the medium. The eigenvectors, together with the tangential boundary conditions on E
�

 

and H
�

for non-magnetic incident media, provide for the solution of the complex 

reflection coefficients. Finally, when the zcomponents of E
�

and H
�

are recovered, the 

Poynting Vector is returned, which can then be compared to the wave vector for analysis 

of possible divergence between the direction of the wave fronts and energy flow.  
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M , the optical matrix

Δ

Eigenvalues, qz Eigenvectors, Ψ

birefringence

rpp rps rsp rss

tss tps tsp tss

Recapture of Ez and Hz

Poynting  Vector , S

Wave vector,  k

2.   

2

Wave vector,  k

 Fig. 10.1. Flowchart for steps in 4 4× matrix formalism.  
 

In Section 10.3, the procedure is applied to the thin film configuration for Cases 1 and 3, 

where the method takes into account interference from the multiply reflected waves at the 

surface boundaries. The analysis of bi-anisotropic materials in thin film configuration 

also allows for the calculation of the complex transmission coefficients assuming a non-

magnetic substrate. In Section 10.4, the need for dispersion models for proper modeling 

of the response functions is examined. For Case 3, which incorporates the magneto-

electric effect, the implications of dispersion for wave propagation and Negative Index of 

Refraction (NIR) are discussed. In Section 10.5, the interesting case of hybrid modes, i.e., 
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electric and magnetic excitations at the same resonant frequency, is examined for variable 

angle of light incidence. Using the complex reflection and transmission formulas derived 

in previous Sections, together with the dispersion models, the condition called the 

Adjusted Oscillator Strength Matching is discussed. Under this condition, we show that 

the hybrid modes can disappear in the Reflectivity spectra but still remain strong in the 

transmission spectra [2]. Finally, in Section 10.6, we simulate electric, magnetic, hybrid 

and electromagnon modes in the Reflectivity spectra. Mueller Matrices (MM) are used to 

illustrate these simulations in both the frequency and AOI domains. Full MM analysis 

allows for the possibility of distinguishing between many of the electric, magnetic and 

magneto-electric effects. Simulations such as these should assist in the proper 

characterization of material constitutive relations through fitting of experimental data.  

In recent literature, both Berreman’s 4 4×  matrix formalism as calculation tool and 

Mueller Matrices as an analytical tool for optical spectra have been employed.  

Konstantinova et al. have used 4 4×  matrix formalism to analyze a number of crystal 

characteristics including optical activity [85, 86]. Mayerhofer et al. have recently used 

this approach to calculate the reflection coefficients of  non-magnetic crystals with mono-

clinic symmetry [87]. Georgieva et al. have used the Berreman method in the analysis of 

chirality including the calculation of the Poynting vector [41] for optically active 

materials. Bahar et al. [88-92] and Arteaga et al. [93-97] have both employed Mueller 

Matrices extensively in the study of chiral materials. The work in this Chapter is unique 

because it considers the most general case of crystals comprised of the various 

constitutive tensors in anisotropic symmetries. This analysis is made possible through the 

combination of 4 4× matrix formalism and the use of Mueller Matrices.    
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10.2 Semi-Infinite Configuration 

 

10.2.1 Case 1 - Orthorhombic ̂ε  and µ̂  Tensors; ( ' 0)ρ ρ= =  

The case of a material having orthorhombic ε̂  and µ̂  tensors will now be examined. It is 

assumed that this crystal has principal axes parallel to the x , y  and zcoordinate axes 

which form a right hand system with the zaxis pointing downwards and the xaxis 

pointing to the right. Radiation is incident in the x z−  plane. This configuration is 

illustrated in Fig. 2 [1]. 

 

Fig. 10.2. Wave vector diagram for incident and refracted waves propagating in a 
complex medium.  
 
 

We further assume that the ε̂  and µ̂  tensors can be simultaneously diagonalized in the 

same x - y - zcoordinate system. In crystals, the principal axes for ε̂  and µ̂  tensors 
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rarely coincide. Accordingly, this symmetry realization is mostly applicable to 

metamaterials. With no magneto-electric activity, the optical matrix M  becomes: 

 
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx

yy

zz

xx

yy

zz

ε
ε

ε
µ

µ
µ

 
 
 
 
 
 
 
  
 

, (10.6) 

 
and the ∆ɶ  is a 4 4× matrix calculated to be [16]: 
 
 

2 2
0 0

2 2
0 0

sin( )
0 0 0

0 0 0

0 0 0

sin( )
0 0 0

yy
zz

xx

xx

yy
zz

N

N

θµ
ε

ε
µ

θε
µ

∆ =

 − 
 
 
 
 
 
 − 
 

ɶ  (10.7) 

 
 

Inserting Eq. (10.6) and Eq. (10.7) into Eq. (3) returns four exact solutions of the form 

( ) ( )0 l
l l

iq z
z eψ ψ= with 1,2,3l = or 4 , two for each of the p and s polarization states. 

0θ  is the angle of incidence (AOI) while ( )p s  refers to radiation parallel (perpendicular) 

to the plane of incidence. zpq
 
and zsq are the eigenvalues associated with p and s

polarizations, respectively and constitute the zcomponents of the wave vectors in the 

medium. These are: 
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( )

( )

2 2
0 0

2 2
0 0

sin

sin

zp xx yy
zz

zs xx yy
zz

N
q

c

N
q

c

θω ε µ
ε

θω µ ε
µ

= ± −

= ± −

 (10.8) 

Given the zcomponents of the wave vector in Eq. (D.1), the complete wave vectors for 

each of the p and s polarization states can be written as:   

 

( ) ( )

( ) ( )

2 2
0 0

0 0

2 2
0 0

0 0

sin
sin ,0,

sin
sin ,0,

p xx yy
zz

s xx yy
zz

N
k N

c c

N
k N

c c

θω ωθ ε µ
ε

θω ωθ µ ε
µ

   = −    

   = −    

�

�

 (10.9) 

 
The two k vectors in Eq. (10.9) identify the direction of propagation of the waves 

associated with each polarization. It is clear that for non normal AOI, the two k  vectors 

will not be identical and will therefore diverge as they propagate forward (downward) 

into the medium. This phenomenon is known as birefringence and is evidenced by two 

separate forward propagating electromagnetic waves. 

The eigenvector solutions (in columns) are:  
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( ) ( )

( ) ( )

2 22 2
0 0 0 0

2 22 2
0 0 0 0

1 0 1 0

0 0
sin sin

0 1 0 1

sin sin

0 0

xx xx

yy yy
zz zz

yy yy
zz zz

xx xx

N N

N N

ε ε

θ θ
µ µ

ε ε

θ θ
ε ε

µ µ
µ µ

 
 
 − 
 − −
 
 
 
 
 

− − 
 −
 
 
 (10.10) 

 
In Eq. (10.10), the eigenvectors in columns 1 and 2 represent forward propagating waves 

while those in columns three and four represent backward propagating waves. The 

eigenvectors in columns one and three are associated with the zpq
 
eigenvalue and 

represent p  polarized radiation. A complete description of this wave involves 

multiplication by zpiq z
e

±
. Similarly, the eigenvectors in columns two and four are 

associated with the zsq  eigenvalue and represent spolarized radiation. A complete 

description of this wave also involves multiplication by zsiq ze± . For a semi-infinite 

material, the two eigenvectors representing the forward propagating waves are used to 

calculate the complex reflection coefficients for p  and s polarized radiation. The 

procedure for calculating the complex reflection coefficients involves matching the 

tangential components of the incident and reflected E
�

and H
�

 fields to a linear 

combination of the two eigenvectors calculated at the common interface located at 0z =  

[16, 17]. The complex reflection coefficients are:
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0 0
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xx z zp
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−
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+
              (10.11) 

0

0

xx z zs

xx z zs
ss

k q

k q
r µ

µ
−=
+

.   (10.12) 

In Eq. (4.9) and Eq. (8.5), ( )0 0 0coszk N
c

ω θ=
 
is the zcomponent of the wave vector and 

0N is the index of refraction in the incident medium. The eigenvectors in Eq. (10.10) can 

also be used to calculate the Poynting vector for each of the p andspolarized radiation 

states. This procedure first requires recapture of the zcomponents of the E
�

 and H
�

 fields 

which were originally suppressed in the Berreman equations in order to reduce from a 

6 6×  to a 4 4× formalism. By solving the two algebraic equations associated with the 

initial Berreman matrices, for orthorhombic symmetry, the solutions for the z

components are:  

 

( )

( )

0 0

0 0

sin

sin

y
z

zz

y
z

zz

H N
E

E N
H

θ
ε

θ
µ

= −

=

 (10.13) 

 
Eq. (10.13) can be applied to each of the p andspolarization states. Since the terms in 

Eq. (10.10) recur frequently in this analysis, we define 
( )22

0 0sin
yy

zz

N θ
ς ε

µ
= − and 

( )22
0 0sin

yy

zz

N θ
η µ

ε
= − . First consider p polarization. Here, zH  becomes zero and the 

vector fields are:  
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( )0 0sin
1,0,

0, ,0

zp

zp

iq zxx
x

zz

iq zxx
x

N
E E e

H E e

ε θ
ε η

ε
η

 −
=  

 
 

 
=  

 
 

�

�

 (10.14) 

The fields in Eq. (10.14) now permit the calculation of the Poynting vector, 

( )*1

2
S E H= ×
� � �

applicable to p polarization: 

               
( )

2 *

2 0 0sin1
,0,

2
xx xx

p x
zz

N
S E

ε εθ
η ε η

  
 =  

    

�

                       

 (10.15) 

 
where the asterisks, *, represents the complex conjugate operation. From Eq. (10.15), the 

tangent of the Poynting vector angle in the medium is:  

 

 ( ) ( )0 0sin
tan xx

S p
zz

Nε θ
θ

ε η
=�  (10.16) 

 
From Eq. (10.9), the tangent of the k vector angle in the medium is:  
 

 ( ) ( )0 0sin
tan

k p
xx

N θ
θ

ε η
=�  (10.17) 

 
While the expressions in Eq. (10.16) and Eq. (10.17)  are similar, a comparison shows 

that if xx zzε ε≠ they are not identical. This analysis points out the well known observation 

that for a crystal with orthorhombic symmetry, the direction of the wave vector is not 

identical to that of the energy flow as given by the Poynting vector. For spolarization, 

zE  is zero and the fields become:  
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( )

( )0 0

0,1,0

sin
,0,

zs

zs

iq z
y

iq z
y

zzxx

E E e

N
H E e

θς
µµ

=

 
= − 

 
 

�

�

, (10.18) 

 
and the Poynting vector for spolarization is found to be:  

 
( )

**
2 0 0sin1

,0,
2 y

zz xx

N
S E

θ ς
µ µ

 
 =
 
 

�
. (10.19) 

 
From Eq. (10.19), the tangent of the Poynting vector angle for s polarization is:  
 

 ( ) ( )0 0sin
tan xx

S s
zz

Nµ θ
θ

µ ς
=� , (10.20) 

 
and from Eq. (10.9), the tangent of the k vector angle for spolarization is calculated to 

be:  

 ( ) ( )0 0sin
tan

k s
xx

N θ
θ

µ ς
=� . (10.21) 

 
Again, while the expressions in Eq. (10.21) and Eq. (10.20) are similar, a comparison 

shows that if xx zzµ µ≠ they are not identical. Accordingly, the s polarized state will also 

experience a divergence between the direction of wave propagation in the crystal and the 

direction of energy flow. In summary, a crystal with orthorhombic ̂ε  and µ̂  tensors will 

give rise to four unique vectors: one unique k
�

vector for each polarization and one unique 

S
�

vector for each polarization, neither of which is coincident with its corresponding wave 

vector.  These four vectors are simulated in Fig. 10.3(b) for an imaginary material with 

diagonal tensor components: ( )4,6,8ε = and ( )1,2,3µ = .  
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10.2.2 Case 2-Isotropicε andµ Tensors ( ' 0)ρ ρ= =  

Case 2 deals with a simple medium described by isotropic ε̂  and µ̂  tensors. The M 

matrix for isotropic symmetry is given by:  

 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ε
ε

ε
µ

µ
µ

 
 
 
 
 
 
 
  
 

 (10.22) 

 
Conclusions regarding this symmetry are immediately available from the previous case 

by setting xx yy zzε ε ε ε= = =  and xx yy zzµ µ µ µ= = = . A key result is the degeneracy of 

the eigenvalues: 

  

 

( )

( )

2 2
0 0

2 2
0 0

sin

sin

zp

zs

q N
c

q N
c

ω εµ θ

ω εµ θ

= −

= −

 (10.23) 

 
According to Eq. (10.23), for an isotropic crystal, there will be no birefringence that 

existed for the orthorhombic symmetry of Case 1. Both electromagnetic waves will, of 

course, follow identical paths. In addition,  from Eqs. (10.16), (10.17), (10.20) and 

(10.21) it is clear that the direction of energy flow is also identical to the direction of 

wave propagation. This configuration is simulated in Fig. 10.3(a) for a material with 

diagonal tensor components: ( )4,4,4ε = and ( )2,2,2µ = , where all four vectors are 

coincident.  
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Fig. 10.3 Wave vector k

�
 and Poynting vector S

�

 in for various symmetries and tensor 
combinations given in the table below. Unless otherwise indicated, diagonal tensor 

components are given. k
�

for p and s polarizations are solid green and solid red lines, 

respectively. S
�

 for p and s polarizations are dotted green and dotted red lines, 
respectively.  

Plot Symmetry ε̂  µ̂  ρ̂  ˆ 'ρ  
(a) Case 2 (4,4,4) (2,2,2) - - 
(b) Case 1 (4,6,8) (1,2,3) - - 
(c) Case 3 (4,4,5) (2,2,3) 3xyρ =  ' 3xyρ =  

(d) Case 3 (4,4,4) (2,2,2) 3xyρ =  ' 3xyρ =  

 
 This case also illustrates how Veselago’s approach for materials with 1µ ≠  is 

automatically incorporated into the results using 4 4× matrix formalism via the solution 
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of Maxwell’s equations. For radiation normally incident from vacuum, Eq. (8.5) reduces 

to:  

 
1

1
ssr

µ
ε
µ
ε

−
=

+
 (10.24) 

For a non-magnetic material, Fresnel’s reflection coefficient is given by: 1 2

1 2
ss

n n
r

n n

−=
+

where n ε=  [51]. However, for a semi-infinite isotropic magnetic material, Veselago 

explained that n  should not be replaced by εµ  but rather by / 1/ zε µ = where z  is 

the wave impedance [36, 37]. The formula for the reflection coefficient then becomes: 

2 1

2 1
ss

z z
r

z z

−=
+

. This expression is identical to Eq. (10.24) which is derived using 4 4×

matrix formalism.  

 

10.2.3 Case 3-Anisotropic ε̂  andµ̂  Tensors; Off-diagonal Magneto-Electric Tensors.  
 

In Case 3, we introduce the  magneto-electric effect in which a polarization P
�

 may be 

induced by the application of magnetic field H
�

, and a magnetization M
�

 may be induced 

from the application of electric field E
�

[18]. There is much debate surrounding the 

theoretical explanation of these coupling mechanisms. The effect is modeled through the 

magneto-electric tensors, ρ̂  and ˆ 'ρ , which couple the response functions of a magneto-

electric material. In the case of zero chirality (0ξ = ), ˆ ˆρ α=  and ˆ ˆ' 'ρ α= . As we 

mentioned in Introduction, in the static case, 'α  is the transpose of α . For the dynamic 

case, this relationship does not necessarily hold [32]. We note that other variables can be 
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used to describe magneto-electric tensors in the (E
�

, B
�

) basis [18, 32]. In this paper we 

use the (E
�

, H
�

) basis because is the most convenient for the 4×4 formalism.  Crystal 

symmetry plays a critical role in correctly defining the M  matrix for magneto-electric and 

multiferroic materials. For example, the requirement that ˆ ˆ 0ρ α= ≠  infers a simultaneous 

absence of both center of inversion and the time-reverse invariance. In symmetry terms, 

these constraints limit the number of possible magnetic point groups to 58 where the 

magneto-electric effect is possible [25].    

Recent theoretical studies have included derivations of magneto-electric symmetries for 

spiral magnetic ordering. It has been shown that the magneto-electric tensor for a 

cycloidal distribution, such as found in RMnO3 compounds (R=rare earth), has only one 

non-zero element, xyρ [32]. For hexagonal crystals of HoMnO3 [11], the ε̂  and µ̂  tensors 

are uniaxial [33]. For the ̂ε  tensor we use: xx yyε ε ε⊥= =  and zz pε ε= ; for the µ̂  tensor 

we use xx yyµ µ µ⊥= =  and zz pµ µ= . For this configuration, the M  matrix for cycloidal 

magnetic ordering becomes:  

 

 

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

' 0 0 0 0

0 0 0 0 0

p

p

ε ρ
ε

ε
µ

ρ µ
µ

⊥

⊥

⊥

⊥

 
 
 
 
 
 
 
  
 

, (10.25) 

 
and its associated ∆ɶ matrix is calculated to be: 
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( )
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' 0 0
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0 0 0
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0 0 0

p
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N
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θ
ρ µ

ε
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θ
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⊥

 
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 
 
 
 
 
 

− 
 

. (10.26) 

Inserting the ∆ɶ matrix in Eq. (10.26) into the Berreman equation (see Eq. (10.5)) returns 

the following four eigenvalue solutions: 

   

 

 

( ) ( )

( )

( ) ( )

( )

22
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1

22
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22
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22
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ε θω ρ ρ ρ ρ ε µ
ε

θω µ ε
µ

⊥
⊥ ⊥

⊥ ⊥

⊥
⊥ ⊥

⊥ ⊥

 
 = + + − + −
 
 

 
= − 

 
 

 
 = + − − + −
 
 

 
= − − 

 
 

 (10.27) 

In Eq. (10.27), 1q and 3q are associated with p polarized radiation and at normal 

incidence ( 0θ =0), these wave vectors reduce to exactly those derived in Ref. [32]. 1q and 

3q  represent forward and backward propagating waves, respectively. The wave vectors 

2q  and 4q are associated with spolarized radiation and are similar in form to those 

derived for s polarization in Case 1. Hereyy xxε ε=  as required to model uniaxial 
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symmetry. With these derivations for the zcomponents, the complete description of the 

wave vectors for both polarization states is: 

 

 

( ) ( ) ( )

( ) ( )

2 22
0 0

0 0

22
0 0

0 0

' 4 sin
sin ,0, ' 4

2

sin
sin ,0,

p
p

s
p

N
k N

c c

N
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c c

ρ ρ θω ωθ ρ ρ ε µ
ε ε

θω ωθ µ ε
µ
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⊥

⊥ ⊥
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    = −         

�

�

(10.28) 

 
As is evident in Eq. (10.28), this magneto-electric crystal will display birefringence as the 

two wave vectors will diverge in the direction of propagation (see Fig. 10.3(c)). Of 

course, this result is expected for a uniaxial crystal. However, even if we had assumed 

isotropic ε̂  and µ̂  tensors (which were not birefringent in Case 2), as can be seen from 

Eq. (10.28), the birefringence would still have been in effect due to the presence of the 

magneto-electric tensors (see Fig. 10.3(d)).  With the definition 

( ) ( )22
2 0 0' 4 sin

4a
p

N
q

ε θ
ρ ρ ε µ

ε
⊥

⊥ ⊥= − + − , the associated eigenvectors (in columns) are: 
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2 22 2
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2 2
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q q
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θ θ
ε ε

µ µ
µ µ
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 
 
 − + − −
 
 
 
 − −
 
 −
 
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 (10.29) 
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In Eq. (10.29), the first column is the eigenvector associated with 1q  while the second 

and fourth columns are associated with 2q . Their complete descriptions require 

multiplication by 1iq ze and  2iq ze± , respectively. The third column is associated with 3q  and 

its complete description requires multiplication by 3iq ze− . As stated earlier, 1,2q are the z 

components of the wave vectors of the forward propagating waves while 3,4q are the z 

components of the wave vectors of the backward propagating waves.  The eigenvectors in 

columns one and three are influenced by the magneto-electric effect. The forward 

propagating eigenvectors when combined with the tangential boundary conditions for E
�

 

and H
�

return the complex reflection coefficients which make up the Jones matrix: 
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⊥

⊥
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⊥ ⊥

 − − + 
 + − + 
 
 − − 
 
 
 + −
 
 

 (10.30) 

 
As will be discussed later, with proper dispersion relations for the ̂ε , µ̂  and ρ̂  tensors, 

the reflectivity spectra for this crystal can be simulated using Eq. (10.30).  

The presence of three distinct eigenvalues for ∆ɶ  matrix gives rise to the interesting 

phenomenon of the irreversibility of the p polarized wave propagation. The wave 

propagation associated with wave vectors 1q  and 3q is irreversible because they represent 

different phase velocities [32]. The same path will not be followed for each the forward 

and backward propagating waves. On the other hand, 2q  and 4q  are clearly reversible 
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because the electro-magnetic effect is not picked up for spolarized incident radiation. It 

also shows that optical reflectivity spectra measured for s polarized radiation not 

sensitive to magneto-electric excitations. As previously explained, the s polarized 

eigenvalues are entirely consistent with those of Case 1 for after adjusting for uniaxial 

symmetry.  

As in the previous two cases, through 4 4× matrix formalism, comparisons can be made 

between the direction of propagation and the direction of energy flow. For this crystal 

symmetry, the formulas for the recapture of the zcomponents of E
�

and H
�

vectors are 

identical to those in Eq. (10.13) derived in Case 1. We restrict our analysis to the wave 

influenced by the magneto-electric effect. For the 1q  eigenvalue, the complete 

expressions for E
�

and H
�

are: 
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�

 (10.31) 

and the associated Poynting vector is calculated to be :   
 

( )
( )2 *

0 0
1

2 sin
,0,

' 'q
a p a

N
S

q q

θε ε
ρ ρ ε ρ ρ

⊥ ⊥
  
 =  
 − + − +  

�
 (10.32) 

 
From Eq. (10.32), the tangent of the S vector angle in the medium is: 
 

 ( ) ( )
( )

0 02 sin
tan

'S
p a

N

q

ε θ
θ

ε ρ ρ
⊥=

− +
 (10.33) 

Similarly, from Eq. (10.28), the tangent of the k vector angle in the medium is:  
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 ( ) ( )
( )

0 02 sin
tan

'k
a

N

q

θ
θ

ρ ρ
=

+ +
 (10.34) 

Again, while Eq. (10.33) and Eq. (10.34) are similar in form, they are not identical. As a 

result, there will be a divergence between the direction of wave propagation k
�

 and the 

direction of energy flow S
�

. As was shown in Case 1, for the spolarization state, the k
�

and S
�

vectors are also not coincident. This configuration is simulated in Fig. 10.3(c) for a 

material with diagonal tensors: ( )4,4,5ε = and ( )2,2,3µ = and 3xyρ = . Again, all four 

vectors are distinct.  

Finally, in addition to deriving the properties of birefringence and irreversibility, 4 4×

matrix formalism allows for the derivation of certain energy constraints pertaining to the 

magneto-electric crystal. From Eq. (10.27), it can be shown that the backward 

propagating wave,  3q , becomes zero at normal incidence when 'ρρ ε µ⊥ ⊥= . Under this 

constraint, this wave will not propagate inside the crystal as the only remaining non-zero 

component of this wave vector is in the xdirection.  

 

10.2.4. Case 4-Isotropicε̂  and µ̂  Tensors; Isotropic Magneto-Electric Tensors  

In Case 4, the constitutive relationships are described by simultaneously diagonalized 

isotropic tensors. While this configuration is not strictly allowed given symmetry 

constraints, for certain multiferroic crystals and polycrystalline materials, the anisotropy 

is small and the crystal can be effectively modeled using the isotropic assumption. The 

corresponding optical matrix M is:  
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 
 
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 (10.35) 

 
The associated ∆ɶ matrix is:  
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 
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 

− − 
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ɶ  (10.36) 

 
which has the following four eigenvalue solutions: 
 

           

        

( ) ( )

( ) ( )

2 2 2 2

0 0

2 2 2 2

0 0

1, 3

2, 4

2 ( ' ) ' 2 sin

2

2 ( ' ) ' 2 sin

2

z z

z z

K N
q

c

K N
q

c

εµ ρ ρ ρ ρ θω

εµ ρ ρ ρ ρ θω

− + + − −
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− + − − −
= ±

         (10.37)

 

 

Using Eq. (10.37), ( )2
' 4K ρ ρ εµ+ −= . The two k

�
 vectors in the medium are 

( )0 0 1sin ,0, zN q
c

ω θ 
 
   

and ( )0 0 2sin ,0, zN q
c

ω θ 
 
 

. For 'ρ ρ= the wave vectors are 

identical and there will be no birefringence. However, for 'ρ ρ≠ , which is possible in the 

dynamic case and/or in the medium with chirality, 1 2z zq q≠  and there will be two 

refracted waves with the direction of each wave being influenced by the combination of 

theε , µ, ρ  and 'ρ  parameters. This material is bi-anisotropic and behaves similar to a 
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birefringent one. For 'ρ ρ≠ , the magneto-electric tensors introduce birefringence even in 

the presence of isotropic ε̂  and µ̂ . In Eq. (10.37), the positive signs indicate forward 

propagating waves while the negative signs indicate backward propagating waves. Note 

that the phase is identical for both forward and backward propagating waves. 

Reversibility for this configuration is expected, of course, given that all tensors are 

isotropic. For 'ρ ρ≠ , the eigenvector solutions ( )[ , , , ]Tx y y xE H E H− , in columns, for the 

∆ɶ  matrix are:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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0 0 0 0 0 0 0 0

1 1 1 1

sin sin sin sin

2 2 2 2

sin sin sin sin

z z z z

z z z z

c Lq c Lq c Uq c Uq

M QN M QN Q MN Q MN

c q c q c q c q

M QN M QN Q MN Q MN

ωµ θ ωµ θ ωµ θ ωµ θ

ω θ ω θ ω θ ω θ

− Ξ Ξ Ξ − Ξ
       Ξ + Ξ + Ξ + Ξ +       

Ξ − Ξ − Ξ Ξ
     Ξ + Ξ + Ξ + Ξ +     
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 
 
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 
 
 
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 (10.38) 

 
where 

 

( )2

'

'

'

'

' 4

'

K

L K

M K

Q K

U K

ρ ρ εµ

ρρ εµ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

+ −

Ξ = −

=

= + −
= − + +

= − +

= + +

 (10.39) 

 
As can be seen in Eq. (10.38), there are four distinct eigenvector solutions. The first two 

columns of Eq. (10.38) are associated with the 1zq eigenvalue and their complete 

description requires multiplication by 1ziq ze± . The last two columns are associated with the 

2zq eigenvalue and their complete description requires multiplication by 2ziq ze± .  
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Completing the reflection calculation using 4 4× matrix formalism returns four complex 

reflection coefficients: 
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Compared to the previous cases, we see that the off-diagonal Jones matrix elements are 

occupied. As expected, if ρ  and 'ρ  are identically zero, the off-diagonal elements 

vanish and ppr
 
and ssr  reduce to previously calculated results for the p  and s polarized 

reflection coefficients for a non magneto-electric semi-infinite medium [1]. For this 

symmetry, the formulas for recapture of the zcomponents of E
�

 and H
�

vectors are more 

complicated than for the previous cases and are given by:  
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We again note that the solutions in Eq. (10.41) can be applied to both eigenvectors. For 

purposes of illustration, we will analyze propagation associated with the 1zq eigenvalue 

only. For 1zq , the electromagnetic fields in the medium are:  
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 (10.42) 

 
The y and z  component terms in Eq. (10.42) are dependent upon the angle of incidence 

0θ . Therefore, it is interesting to note that even at normal incidence, the eigenvector 

solutions will have both xand y components for each of E
�

 and H
�

. Accordingly, while 

still vibrating in the x-y plane, the magneto-electric effect causes the eigenvector to be 

rotated off the principal axes as it propagates into the material. This suggests that 

modeling of bi-anisotropic activity can be implemented using planar thin film layers each 

having different values for the response function tensors. This is different from 

orthorhombic ε̂  and µ̂  (Case 1), for example, where the eigenvectors remain on the 

principal axes only (see Eq. (10.10). For general AOI, the calculation of the Poynting 

vector, *1

2
S E H= ×
� � �

, is a complicated algebraic expression and proper modeling requires 

a numerical approach. Analytically, it can be shown that at normal incidence (0 0θ = ), 

both the k
�

 and S
�

vectors are parallel with propagation along the zaxis only, as expected 
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for this trivial case.  Numerical simulations show that for variable AOI, the two Poynting 

vectors are coincident with the two k
�

 vectors. We ascribe this to the isotropic symmetry 

assumption for the ρ tensor. We simulate this material having diagonal tensors: 

( )4,4,4ε = and ( )2,2,2µ =  and ( )2.5,2.5,2.5ρ = . Fig. 10.4(a) illustrates that all four 

vectors are coincident. However, if the medium is chiral, it can be shown that 

birefringence will result.  

Finally, it should be noted that at normal incidence, 1zq and 3zq  vanish when 'ρρ εµ= . 

This condition results in the fascinating outcome whereby the wave vector will not 

penetrate the medium and will continue along the xaxis only. This condition, derived 

using 4 4× matrix formalism, is consistent with the thermodynamically derived limitation 

that the square of the magneto-electric susceptibility must be less than the geometric 

mean of the diagonalized ε̂  and µ̂  tensors  [21, 98].  We note further that the condition 

'ρρ εµ=  is identical to the condition in Case 3 which was derived using a completely 

different symmetry for the ̂ρ  tensor. This configuration is modeled in Fig. 10.4(b) for a 

material with diagonal tensors: ( )4,4,4ε = and ( )2,2,2µ =  and ( )8, 8, 8ρ = .  
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Figure. 10.4 Wave vector k
�

 and Poynting vector S
�

 in for various symmetries and tensor 
combinations given in the table below. Unless otherwise indicated, diagonal tensor 

components are given. k
�

 for p and spolarizations are solid green and solid red lines, 

respectively. S
�

 for p and spolarizations are dotted green and dotted red lines, 
respectively.  
 

Plot Symmetry ε̂  µ̂  ρ̂  ˆ 'ρ  
(a) Case 4 (4,4,4) (2,2,2) (2.5,2.5,2.5) (2.5,2.5,2.5) 
(b) Case 4 (4,4,4) (2,2,2) ( )8, 8, 8  ( )8, 8, 8  

(c) Case5 (4,6,8) (3,4,5) (1,2,3) (1,2,3) 
(d) Case 1 (-4,-6,-8) (-1,-2,-3) - - 
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10.2.5  Case 5-Anisotropic ̂ε  and µ̂  Tensors; Anisotropic Magneto-Electric Tensors  

In Case 5, the configuration of anisotropic ε̂ , µ̂  and magneto-electric tensors is 

examined. Orthorhombic symmetry, which is appropriate for crystals belonging to the 

222 point group,  is chosen for each tensor [25, 33]. The M  matrix for this configuration 

is:  

 

0 0 0 0

0 0 0 0

0 0 0 0

' 0 0 0 0

0 ' 0 0 0

0 0 ' 0 0

xx xx

yy yy

zz zz

xx xx

yy yy

zz zz

ε ρ
ε ρ

ε ρ
ρ µ

ρ µ
ρ µ

 
 
 
 
 
 
 
  
 

’ (10.43) 

 
and its associated ∆ɶ matrix is calculated as: 
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 − − 
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ɶ  (10.44) 

 
In Eq. (10.44), it can be seen that all direction components of each tensor enter into the ∆ɶ  

matrix. With 12 different variables entering into the calculation, the analytic solution for 

the wave vectors is quite complicated. Accordingly, this is an example of a configuration 

which requires numerical analysis for proper modeling. This configuration is simulated in 

Fig. 10.4(c) for a material with diagonal tensors: ( )4,6,8ε = and ( )3,4,5µ =
 
and ( )1,2,3ρ = . 

As expected, all four vectors are distinct.  
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We again note that the condition 'zz zz zz zzε µ ρ ρ= causes the solutions for this symmetry to 

diverge. In this case, singularities will occur in the denominators in the first and fourth 

rows of Eq. (10.44) and no solutions for the Del matrix are possible. 

 

10.3  Thin Film Configuration 

 
The analytical procedures for thin films using 4 4× matrix formalism are identical to 

those of the semi-infinite configuration up to the calculation of the complex reflection 

and transmission coefficients. In the following analysis, we restrict our work to a single 

layer thin film structure with the thickness d. For this configuration, both forward and 

backward propagating waves (i.e., all four eigenvectors) are needed to satisfy the 

electromagnetic boundary conditions at both top and bottom interfaces. The tangential 

components of the electric and magnetic field vectors are matched at 0z =  and z d=  to 

produce two generalized field vectors ( )0ψ and ( )dψ , respectively. A thin film layer 

matrix L  is utilized to relate the fields inside the film of thickness d at its two boundaries 

[16, 17]: 

 

( ) (0)d Lψ ψ=
                                         

 (10.45) 

L is a 4 4× matrix calculated from the eigenvalues and eigenvectors of the ∆ɶ  matrix 

according to: 

                                                         
1( ) * ( )*L d K d −= Ψ Ψɶ ɶ
                                        (10.46) 

In  Eq. (8.7), Ψɶ  is composed of the four ∆ɶ eigenvectors as columns while K  is a 

diagonal matrix given by liq d
llK e= with lq  representing the four eigenvalues of ∆ɶ .  After 
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some algebra relating the incident and reflected waves, the complex reflection and 

transmission coefficients for a thin film can be calculated.  

10.3.1 Case 1- Anisotropiĉε  and µ̂  Tensors; No Magneto-Electric Activity  

Analytic expressions for the case of orthorhombic ε̂  and µ̂  for both p and s 

polarizations have been given in Ref. [1].  For purposes of comparison to other material 

symmetries, the equations are reproduced here. The complex reflection and transmission 

coefficients for p polarized radiation are:  
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The complex reflection and transmission coefficients for s polarized radiation are: 
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In Eq. (8.8) and Eq. (8.9), zpq  and zsq have the same definitions as derived in Case 1 for 

the semi-infinite configuration (see Eq. (10.9)). ( )0 0 0coszk N
c

ω θ=  and 

( )2 2 2coszk N
c

ω θ=  are the zcomponents of the incident and substrate wave vectors, 

respectively. 

10.3.2 Case 3-Anisotropicε andµ Tensors; Off-Diagonal Magneto-Electric Tensors 

In this section, we will analyze the thin film complex reflection and transmission 

coefficients of the crystal discussed in Case 3 of Section 10.2. This work permits the 

interesting analysis of the impact of the magneto-electric tensor on reflection and 

transmission.  A priori, we would expect that the magneto-electric tensor would affect 

only the p polarization terms since it is only this wave vector which has been influenced 

by the magneto-electric effect for this symmetry (see Eq. (10.27)). Using the above 

procedures for 4 4× matrix formalism, the complex reflection coefficients are calculated 

to be:  
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 (10.49) 

 
The formulas for the complex transmission coefficients are: 
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 (10.50) 

 
As expected, the magneto-electric tensors affect only the p polarization terms. The 

equations for ssr and sst are the same as for Case 1 since the spolarization is not affected. 

In Eq. (10.49) and Eq. (10.50), ( ) ( )22
2 0 0' 4 sin

4a
p

N
q

ε θ
ρ ρ ε µ

ε
⊥

⊥ ⊥= − + − . It is 

interesting to note that it is only aq  and not the entire eigenvalue expression for 1q  (see 

Eq. (10.27), that enters into the argument for the trigonometric functions in both the thin 

film reflection and transmission coefficients. In ppr , the magneto-electric terms enter as 

the middle terms of each of the numerator and denominator in Eq. (10.49) and for 

transmission they enter in the middle term of the denominator in ppt .  If 'ρ ρ= , it can be 

seen that 2a zpq q
c

ω = , where zpq is as defined in Case 1 for the semi-infinite 

configuration. Under this condition, the magneto-electric terms vanish and ppr
 
and ppt  

reduce to the identical expressions derived in Case 1 for thin films (see Eq. (8.8) and Eq. 

(8.9)). We note further that this scenario is also consistent with the fact that the magneto-

electric effect for hexagonal manganites is forbidden for symmetry reasons for the static 

case [35]. Eq. (10.49) and Eq. (10.50) , which accommodate variable AOI, should be of 
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significant use to experimentalists in the analysis of the reflectivity spectra of magneto-

electric thin film materials and should also assist in the proper characterization of the 

magneto-electric tensor and in the study of electromagnons. We note that if the 

experiment is designed as a vacuum-thin film-vacuum configuration, then the first term 

in the numerators for both reflection polarizations vanish and the formulas are further 

simplified: 
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10.4 Dispersion Models for ε  and µ  

In order to simulate the response functions in the optical spectra (for example, ( )sR ω and 

( )sT ω ), assumptions must be made about the models that can describe their frequency 

dependent excitations. A common approach is to model the excitations using a 

combination of Lorentzian oscillators. We first consider models for ̂ε  and µ̂ :  
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where ε∞  is the infinite-frequency of the dielectric function, ,e mS  is the corresponding 

mode oscillator strength, ,e mγ  is the damping constant, and 0, 0e mω is the resonance 

frequency. Poles in the Lorentzian formulas are also known as modes for the response 

functions. We note in Eq. (10.52) that for metamaterials, the model for magnetic 

permeability is adjusted from the Lorentzian model via the replacement of 
0

2

m
ω  with 2ω  

in the numerator. This is known as the Pendry model and it ensures that the static value 

for the magnetic permeability is unity. For multiferroics, this condition is not applicable 

and we use the SHO model. Other dispersion models including the Coupled Harmonic 

Oscillator (CHO) model [5] can be used to describe the response functions.  

With the above dispersion formulas, expressions for reflected and transmitted intensities 

can be obtained by multiplying the complex formulas by their complex conjugate. For 

example, for thin film s polarization:  

 

( )

( )

*

*

s ss ss

s ss ss
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 (10.53) 

 
It is clear from the foregoing analysis that the intensities in Eq. (10.53) are functions of  

ε̂ , µ̂ , ρ̂ and ˆ 'ρ . 

However, even before the simulation step, from the dispersion formulas alone, it is 

possible to make conclusions about two interesting optical effects possible for complex 
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media: (i) the inverted Lorentzian shape in reflectivity for a pure magnetic dipole 

excitation; and (ii) the phenomenon of negative index of refraction (NIR).  

As explained in Ref. [2], the shape of the response function of a pure magnetic dipole is 

best understood by using the Veselago approach presented in Section 10.2.2, where 

/n ε µ→ . It is assumed that the natural frequency of the magnetic dipole is far from 

dielectric resonance so that the dielectric function can be treated as a constant, ε∞ . That 

is, we assume 0eS = . The expression for reflection using the Veselago approach 

becomes [2]:  
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 (10.54) 

 

where ( ) ( ) ( ) 2
1 1f x x x= − + .  The negative sign in Eq. (10.54) corresponds to the inverted 

Lorentzian shape of a pure magnetic dipole with an adjusted oscillator strength (AOS) 

R mS S ε∞= ⋅ . As is evident from the equation, a pole in the effective dielectric function 

measured, for example, in RAE experiments, is shifted from mω , appearing at the 

longitudinal frequency 1LO m mSω ω= ⋅ + . Note that this frequency shift is small due to 

mS µ∞≪ for magnetic modes. As will be discussed later, the inverted shape of the 

magnetic dipole response is responsible for the partial or complete cancellation of an 

electric mode in reflectivity when both excitations occur at the same frequency.  

If the background dielectric function is not too large, it is possible for both ε  and µ  to 

become simultaneously negative in the frequency spectra. This is the condition for NIR 

which causes materials to become ‘left handed’ [36]. The NIR phenomenon has been 
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observed experimentally [39]. The consequence of this condition to the direction of wave 

propagation and the direction of energy flow can be analyzed qualitatively using 4 4×

matrix formalism. In Case 1, the vector components for the k
�

vector (see Eq. (10.9)) and 

the Poynting vector, S
�

(see Eq. (10.15) and Eq. (10.19)) were derived. For each of these 

vectors, both the xand zcomponents are positive indicating that the wave direction and 

the direction of energy flow are downward and to the right in the medium (recall that the 

positive zaxis is downward). However, both of these equations change when ε ε→ −  

and µ µ→ − . For the wave vectors, while the xcomponent remains positive, the z

component becomes negative. This indicates that the direction of the wave fronts is 

upward and to the right in the material. For the Poynting vectors, the xcomponent 

becomes negative while the zcomponent remains positive. This indicates the direction of 

energy flow is downward to the left in the material. The opposite directions for k
�

and S
�

as well as their propagation in the third quadrant of the material is now a common 

understanding for NIR [44]. The qualitative results using 4 4× matrix formalism further 

suggest that under conditions of NIR, for crystals with orthorhombic symmetry, the k
�

and S
�

vectors should diverge as they propagate in the medium in the left handed 

configuration. Fig. 10.4(d) simulates this configuration for a material with the negative 

value of the response functions to those of Section II A: ( )4, 6, 8ε = − − − and 

( )1, 2, 3µ = − − − . 

The implications of the dispersion relations to the magneto-electric case studied in 

Section II. C will now be explored. As explained in that section, a complete description 

of the p polarized eigenvector required multiplication by 1iq ze . This expression can be 
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rewritten in terms of xk , the xcomponent of the incident wave vector: 

( ) ( )
22

2
' 2

4
' 4

2
2

xx x
xx xx

zz

ki c
zi

z c
ce e

εω ρ ρ ε µω ρ ρ εω

 
 − + −

+  
  . The square root term can be recognized as aq  as 

defined in Case 3. Consider the case where ε  and µ  are real and ρ  and 'ρ  are modeled 

as chiral complex conjugates. The sign of 2
aq  will determine the nature of wave 

propagation in the magneto-electric crystal. For 2 0aq > , the wave will propagate into the 

material with sinusoidal amplitude; for 2 0aq <  the wave will decay exponentially and 

form an evanescent solution. Following a similar analysis to that for indefinite media 

outlined in Ref. [44], there will be a value for xk  that makes 0aq = which is denoted as 

ck , the cut-off wave vector. This cut off wave vector, which separates propagating waves 

from decaying waves, can be calculated as: ( )2
' 4

2
zz

x xx xx
xx

k
c

εω ρ ρ ε µ
ε

= − + . Since 

anisotropic dispersion relations permit the combinations of ε  and/or µ  to have differing 

signs, various cases for propagation need to be examined. For example, if 0xx xxε µ > and 

/ 0xx zzε ε > , then propagation will occur only if x ck k< . On the other had, if  0xx xxε µ >

and / 0xx zzε ε < , there will always be propagation. For s polarized radiation, the cut off 

conditions will be identical to those in Ref. [44] upon adjustment for uniaxial symmetry. 

The cut-off  analysis can assist in the derivation of  the condition for NIR in the magneto-

electric crystal examined in Case 3. Recent studies have suggested that this type of 

magnetic ordering may result in NIR [32]. We consider the case where the damping 

constants for the response functions are sufficiently small such that all four  responses 

become negative in the same frequency range. From Eq. (10.28), it can be seen that if 
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ε ε→ − , µ µ→ − , ρ ρ→ − and ' 'ρ ρ→ − , the zcomponent of the wave vector will 

become negative if x ck k< . From Eq. (10.32), it can be seen that this same condition 

causes the sign of the xcomponent of the Poynting vector to become negative. These 

changes cause the wave vector to propagate upward and to the right in the material while 

the direction of energy flow will be downward and to the left. Accordingly, when  

x ck k< , we expect that NIR can be produced in the magneto-electric crystal.  

As explained in Eq. (10.2), ρ and 'ρ may have contributions from both magneto-electric 

and chiral effects. As explained by Cano, the magneto-electric tensor takes on a chiral 

character for Case 3 [32]. In order to illustrate the influence of the chirality on NIR, a 

material with diagonal  tensors ( )4, 4, 5ε = − − − and ( )3, 3, 4µ = − − −  and ˆ 3iξ =  is 

examined. For these inputs, 2 10.4aq =  indicating that the wave should propagate without 

decay in the material. As simulated in Fig. 10.5(a), the magneto-electric material displays 

NIR. However, if ρ is changed by only one unit to 4i− , 2 17.6aq = − and the cut-off 

condition is met. As illustrated in Fig. 10.5(b), the p polarized wave no longer enters the 

medium while the s polarized wave remains unaffected by the magneto-electric effect. In 

summary, for proper study of NIR in chiral magneto-electric materials, the interaction of 

all four response functions must be examined.  

The effects of chirality can also be examined for the isotropic symmetry in Case 4. Fig. 

10.5(c) shows the expected results for the wave vectors and Poynting vectors for isotropic 

ε̂  and µ̂  tensors. When a sufficiently large chiral parameter is introduced, the s 

polarized wave demonstrates NIR while the p  polarized wave remain propagating 

downward and to the right.  
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Figure. 10.5 Wave vector k
�

 and Poynting vector S
�

 in for various symmetries and tensor 
combinations given in the table below. Unless otherwise indicated, diagonal tensor 

components are given. k
�

 for p and s polarizations are solid green and solid red lines, 

respectively. S
�

 for p and s polarizations are dotted green and dotted red lines, 
respectively.  
 

Plot Symmetry ε̂  µ̂  ρ̂  ˆ 'ρ  
(a) Case 3 (-4,-4,-5) (-3,-3,-4) 

xyρ = 3i yxρ ' = -3i 

(b) Case 3 (-4,-4,-5) (-3,-3,-4) 
xyρ = 4i yxρ ' = -4i 

(c) Case 4 (2,2,2) (1.1,1.1,1.1) - - 
(d) Case 4 (2,2,2) (1.1,1.1,1.1) (4i,4i,4i) (-4i,-4i,-4i) 
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10.5 Hybrid Modes and Adjusted Oscillator Strength Matching (AOSM) 

 
A rare occurrence of coincident electric and magnetic resonances is possible in, for 

example, magneto-electric materials, where ligand-field excitations occur in RE-IG [10]. 

We recently observed this effect and have explained it using the concept of the AOSM 

condition [2]. The condition for the matching has been derived for the case of isotropic ε̂  

and µ̂  tensors at AOI=0. Below, we expand the theoretical treatment of the AOSM effect 

for AOI ≠ 0 and for the case of anisotropic ε̂  and µ̂  tensors.  

As discussed in the previous section, the Lorentzian profiles of magnetic and electric 

dipole excitations have opposing shapes in the reflectivity spectra. A hybrid mode is 

produced if these modes appear at the same frequency, hω . We do not consider the 

magneto-electric effect in the analysis of hybrid modes: ' 0ρ ρ= = . For hybrid modes, 

there is the interesting possibility for partial or complete cancelation of the excitation in 

the Rs(ω) and RAE spectra. This motivates the analysis of the derivative 
( )s hR ω
ω

∂
∂

 for 

each mode. Conceptually, for electric and magnetic modes with the same damping 

coefficient, if their derivatives are identical but of opposite sign, then cancellation should 

result. This analysis will be undertaken for both semi-infinite and thin film configurations 

at normal incidence.  

 

10.5.1 Semi-infinite Configuration and Hybrid Modes 

From Eq. (10.53), the following partial derivative expansion is used for 
( )s hR ω
ω

∂
∂

: 
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*

*ss ss ss ss ss
ss ss

dR r r r r
r r

d d d d d

ε µ ε µ
ω ε ω µ ω ε ω µ ω

 ∂ ∂   ∂ ∂ ∂ ∂ ∂ ∂= + + +   ∂ ∂ ∂ ∂   
 (10.55) 

 
Eq. (8.5) provides the formula for ssr and the Lorentzian oscillator models found in Eq. 

(10.52) are used for the response functions, ε and µ . The same hγ  apply to both 

response functions. When these expressions are inserted into Eq. (10.55), the following 

exact derivative can be calculated: 

 

( )
( ) ( )

( )( ) ( ) ( ) ( )
( )

( )
( ) ( )

( )( ) ( ) ( ) ( )
( )

*

*

21

21

SI
m hSIss h

ss h h e h h e h m SI
h e hh h

SI
m hSIh

ss h h e h h e h m SI
h e hh h

dR
r i S S

d

r i S S

α ωωω γ α ω µ ω ε ω
ω γ α ωε ω µ ω

α ωωω γ α ω µ ω ε ω
γ α ωε ω µ ω

    −
 = + +  
     

     −  + + +         

(10.56) 

 

In Eq. (10.56), the 
,e m

SIα terms are part of the expressions for ssdr

dε
and ssdr

dµ
, respectively. 

The superscript SI refers to the semi-infinite configuration. In Eq. (10.56), we define the 

bracketed terms, ( ) ( ) ( )
( )

SI
m h

h e h m SI
e h

S S
α ω

µ ω ε ω
α ω

+ , as the Adjusted Oscillator Strength 

(AOS) for reflection, RS . At normal incidence, ( ) ( )SI SI
e h m hα ω α ω= − and RS is:  

 ( ) ( ) ( )( ).R h h e h mS S Sω µ ω ε ω= −  (10.57) 

 
Eq. (10.57) suggests that the two modes should cancel in reflection. The condition for 

complete cancellation is:  

 ( ) ( )m h e hS Sε ω µ ω=  (10.58) 
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We define Eq. (10.58) as the Adjusted Oscillator Strength Matching (AOSM) condition.  

More detail about AOSM and its application to the optical spectra of DY-IG are available 

in Ref. [2]. When the AOSM condition is satisfied, the electric and magnetic modes 

interact in such a way as to have no net impact on the background Reflectivity at that 

point in the spectrum. In other words, the Reflectivity spectra should appear essentially 

featureless at hω . This outcome is also consistent with the opposite slope of each mode in 

the Reflectivity spectra. Note that we have made no assumptions in deriving Eq. (10.56) 

and the AOSM condition is therefore exact. Furthermore, to establish the AOSM 

condition perfectly, both the real and imaginary components in Eq. (10.58)  must be 

identical. It is quite improbable to find a magneto-electric sample where the real and 

imaginary parts of ( )ε ω  and ( )µ ω  will satisfy simultaneously Eq. (10.58). However, the 

AOSM calculation using only real components will suffice to result in significant 

damping of the hybrid modes in Reflectivity even for ( ) ( )m h e hS Sε ω µ ω≈ .  Note that the 

AOSM condition has three major similarities to the phenomenon of impedance matching 

in metamaterials [42]. First, both effects require the presence of a magnetic response. 

Second, in both effects, reflection due to the mode is eliminated. For impedance 

matching, all reflection is eliminated. For AOSM, the contribution to reflection from the 

hybrid mode is eliminated although there will still be a background reflection from the 

presence of other higher-frequency excitations that contribute to ε∞ and µ∞ . Third, both 

effects are described by an exact matching of the real and imaginary parts in their 

equations. For impedance matching, the complex valued impedances of the incident and 

material media must match exactly. For AOSM, the complex valued adjusted oscillator 

strengths must match exactly.   
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Using Eq. (8.5), the AOSM condition at a variable AOI can be derived. Using a similar 

expansion procedure to that above, we get: 

 
 

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( )

2
0 0

22
2 2

0 0
0

cos 2sin2

sin sin
cos

h

ss h
h e h m

h

h h h
h h

r
S S

θ θω µ ω ε ω
ω γ µ ωθ θ

µ ω ε ω θ ε ω
µ ω µ ω

  ∂  ≅ − −   ∂      
 − + −
 
 

 (10.59) 

 
From Eq. (10.59), it can easily be seen that the AOSM condition for variable AOI will 

be:  

 

 ( ) ( ) ( )
( )

2
02sin

h e h m
h

S S
θ

µ ω ε ω
µ ω

 
= −  
 

 (10.60) 

 
At normal incidence this expression reduces to the formula in Eq. (10.58), as expected.  

Eq. (10.60) is important to the characterization of materials with 1µ ≠  since the AOSM 

condition may not always occur at normal incidence. At AOI where the AOSM condition 

is not met, the above equations provide expressions for AOS in reflection which will also 

assist in the proper characterization throughout the AOI domain.   

 Also using Eq. (8.5), the AOSM condition at normal incidence (AOI=0) can be 

expressed for an anisotropic material. Since the tensor components which enter into ssr

are xxµ and yyε , the AOSM condition becomes:  

 ( ) ( )
xx yym yy h e xx hS Sε ω µ ω=  (10.61) 

 



194 
 

 

The foregoing analysis relating the AOSM condition and the tendency toward 

cancellation of modes in Reflectivity can be also qualitatively understood based on 

Veselago’s approach for light propagation in an isotropic, semi-infinite medium with 

( ) 1µ ω ≠ . This approach was discussed previously and involves a simple replacement of 

the refractive index: for Fresnel’s reflection coefficient, ( ) ( ) / ( )n ω ε ω µ ω→  [36, 37]. 

Using the Lorentzian formulas in Eq. (10.52), it can be shown that the hybrid resonance 

can be described with an AOS in reflection of ( ) 2
R e mS S Sµ ε µ∞ ∞ ∞= ⋅ − ⋅  [2]. 

 
 
10.5.2 Thin Film Configuration and Hybrid Modes  

For the case of coincident natural frequencies for the magnetic and dielectric oscillators 

in thin films, the partial derivative expansions for reflectivity and transmission are:  

 

 

( ) ( )

( ) ( )

**
2 2

**
3 3

ss
ss ss

ss
ss ss

dR
r S r S

d

dT
t S t S

d

ω

ω

≅ +

≅ +

 (10.62) 

where 2S and 3S are given by:  
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 
= − +  

 

 (10.63) 

 
In Eq. (10.63), the bracketed terms are the Adjusted Oscillator Strengths for thin film 

reflection and transmission, RS and TS . As in the semi-infinite case, the α  terms are 



195 
 

 

components of the reflection and transmission coefficient derivatives with respect to the 

response functions. Here, TF denotes the thin film configuration. For materials with non-

negligible film thickness, 
( )
( )TF

TFR
m h
R
e h

α ω
α ω

 and 
( )
( )

T
m h
T
e h

α ω
α ω

 are negative and positive, respectively, 

with absolute value approximately equal to 1. The AOSM condition for thin films is 

therefore: 

 

 ( ) ( ) ( )
( )

2

2

R
m h

h e h m R
e h

S S
α ω

µ ω ε ω
α ω

= −  (10.64) 

 
The α  ratio term is retained in Eq.(10.64) because its value, while close to -1, is 

dependent on film thickness.  The fact that the 
( )
( )

T
m h
T
e h

α ω
α ω

 
term is positive at hybrid 

resonance sets up the interesting result that while hybrid modes in reflection tend to 

cancel,  in transmission they are additive. This additive conclusion can also be 

understood qualitatively based on Veselago who suggested that if light propagation in 

transmission is mainly driven by exponential decay and the extinction coefficient, ( )ssT ω  

becomes a function of ( ) ( )ε ω µ ω⋅ . Using the expansion outlined in Ref. [2], the AOS in 

transmission is: T e mS S Sµ ε∞ ∞≈ ⋅ + ⋅ with the two factors in TS being additive. Since most 

experiments in Transmission are carried out at normal incidence, we do not consider the 

variable AOI case for the thin film configuration.  

The expressions for RS  and TS  allow for analysis of the interesting case of hybrid modes 

which cancel or disappear in reflectivity but remain strong in transmission combining the 

magnetic and electric oscillator strengths. The case where hybrid mode magnetic and 
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electric dipole contributions completely cancel in reflection ( 0RS = ) but add to TS  in 

transmission requires the solution of the following simultaneous equation: 

 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

0
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TF

R
m h

h e h m R
e h

T
m h

h e h m TT
e h

S S
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α ω
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µ ω ε ω
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+ =
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 (10.65) 

 

For  
( )
( )

2

2
1

R
m h
R
e h

α ω
α ω

≈ − , 
( )
( )

1
T
m h
T
e h

α ω
α ω

≈ , ( ) 1hµ ω ≈ and ( )hε ω ε∞≈ , Eq. (10.65) has the 

approximate solution:
 2

T
e

S
S ≅ and 

2
T

m

S
S

ε∞

≅ . The key implication of Eq. (10.65) to 

experimentalists is that experimental data for both Reflectivity and Transmission are 

needed for proper characterization of a hybrid mode.  

10.6 Mueller Matrix Simulations 

 
Based on the foregoing analysis, electric, magnetic, hybrid, electromagnon and chirality 

excitations in the optical spectra can be simulated  The Mueller Matrices of a chiral 

multiferroic crystal in 222 point group symmetry (see Case 4) in a semi-infinite 

configuration are modeled. The material is assumed to have two main oscillators: a 

magnetic dipole mode at 60 cm-1 and an electric mode at 80 cm-1.  A hybrid mode at 70 

cm-1 is modeled to illustrate the AOSM condition. In addition, a number of scenarios 

addressing electromagnons and chirality are analyzed in both the frequency and AOI 
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domains. For the ̂ε  and µ̂  tensors, the Lorentzian models described in Eq. (10.52) are 

used. For electromagnon activity and chirality, we use the following models.  
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2
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2 2
1 , 0 ,

ˆ ˆ ˆ
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ˆ
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j j j

f

f

S

i
ξ

ξ ξ

α ω ε ω µ ω

α ω ε ω µ ω

ω
ξ ω

ω ω γ ω=

= ⋅ ⋅
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=
− −∑

 (10.66) 

 
In Eq. (10.66), ,e mf are prefactors which are modeled as either 0 or 1. The model for 

chirality follows a Pendry approach so that the static value is 0. Sξ is the chiral oscillator 

strength, 0ξω  is the chiral natural frequency and ξγ is the chiral damping coefficient. 

Figure 10.6 illustrates the MM of the two main oscillators at normal incidence. Only the 

diagonal MM elements are populated due to the absence of cross polarization terms. The 

Reflectivity spectra can be seen in M11 where the opposite Lorentzian shapes of the 

magnetic and electric dipoles are evident.  
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Figure. 10.6 AOI=0. MM of electric and magnetic excitations at 80 and 60 cm-1. 

,  and . Only diagonal elements are populated due to the absence of 

cross polarization terms. The opposite Lorentzian shapes of the magnetic and electric 
oscillators are evident in M11.   
 

Figure 10.7 illustrates a hybrid mode with coincident electric excitation  (e)  with 

0.2eS =  and magnetic excitation (m) with 0.0168mS =  at 70 cm-1 (green). With 10ε∞ = ,

an initial observation would suggest that the AOSM condition should only be met if  

0.02mS = . It must be remembered, however that the coupling occurs with the actual 

( )hε ω  at the hybrid frequency which is approximately 10.86 in this case. Accordingly, 

mS  must be less than 0.02 for perfect matching to occur. With 0 0168mS = . , the oscillator 
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strengths meet the AOSM condition. The hybrid mode at 70 cm-1 disappears in the MM 

spectra.  

 

Figure 10.7  AOI=0. Two main electric and magnetic excitations at 80 and 60 cm-1 
(blue).  ,  and . Two main excitations together with 

coincident electric excitation  (e) with and magnetic excitation  (m) with 

 at 70 cm-1 (green). Oscillator strengths meet the AOSM condition. The 

hybrid mode at 70 cm-1 disappears in the MM spectra.  
 

Figure 10.8 illustrates the effect of electromagnons on the MM spectra in the frequency 

domain. In addition to the two main oscillators (blue), a electromagnon excitation is 

added to the magnetic oscillator (mem) at 60 cm-1 (green). This results in a non-zero α̂  

tensor. Off diagonal elements of the MM become populated due to presence of cross 

polarization terms. Electromagnons result in visible peaks at the two resonances in M14 
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and M41. These peaks exist because both the resonances of  ε  and µ  are incorporated 

into the equation for α̂ . It should be noted that M14 and M41 have opposite signs. This 

observation is important in distinguishing dynamic magneto-electric activity from chiral 

activity.  

 

 

Figure 10.8  AOI=45. Electric and magnetic excitations at 80 and 60 cm-1 (blue). 

,  and . Two main oscillators together with a magneto-electromagnon 

(mem) (green). In mem, . Certain off diagonal elements of the MM 

are populated due to the presence of cross polarization terms. The electromagnon results 
in peaks at the two resonances in M14 and M41.  
 
Figure 10.9 illustrates the effect of chiral activity on the MM spectra in the frequency 

domain. An oblique angle is used to better analyze the chirality. In addition to the two 
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main oscillators (blue), chiral excitations are added to the electric oscillator at 80 cm-1 

and magnetic oscillator at 60 cm-1 (green). Off diagonal elements of the MM become 

populated due to presence of cross polarization terms. Chiral excitations result in visible 

peaks at the two resonances in M14 and M41. It is important to note that the peaks in 

M14 and M41 are not inverted as in the case of the electro-magnon spectra.  

 

Figure 10.9 AOI=45o. Electric and magnetic excitations at 80 and 60 cm-1 (blue). 
,  and . Two main oscillators together with chiral excitations 

at 60 and 80 cm-1  (green) each having 0 2Sξ = . .  Off diagonal elements of the MM are 

populated due to the presence of cross polarization terms. The chiral excitations result in 
peaks at the two resonances in M14 and M41.  
 
Figure 10.10 illustrates the MM of the two main electric and magnetic excitations at 80 

and 60 cm-1 in the AOI domain. These coincident excitations are measured at 60 cm-1 

(green) and 80 cm-1 (blue). Off diagonal elements are non-zero at varying AOI because of 
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differences between ppr  and ssr . We note that M34 results in opposite signs for each of 

the two resonances.   

 

Figure 10.10 MM of coincident electric and magnetic excitations at 80 and 60 cm-1 in the 
AOI domain. ,  and . Simulated at ω=60 cm-1 and  

 ω=80 cm-1 . Off diagonal elements M12 and M34 become populated at varying AOI 
because of differences between  and . 

Line Description Excitation Measured at 

Frequency 

Green Magnetic at 60 cm-1 

Electric at 80 cm-1  
60 cm-1 

Blue Magnetic at 60 cm-1 

Electric at 80 cm-1 
80 cm-1 

 
 

Figure 10.11 illustrates the effect of electromagnons on the MM spectra in the AOI 

domain. In addition to the two main oscillators, electromagnon excitations are added:  

(eem) (blue) and (mem)  (green). Since the analysis is done in the AOI domain, it is 
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critical to identify the frequency with which the simulation takes place. We have chosen 

the two resonance frequencies of 60 cm-1 and 80 cm-1 for analysis. This configuration 

produces four separate curves: mem simulated at the two resonances and eem simulated at 

the two resonances. All off diagonal elements of the MM are populated due to presence 

of cross polarization terms. This figure suggests that it is possible to distinguish between 

a mem and eem excitation through the analysis of M14 or M34 at the different resonance 

frequencies. For both M14 and M34, the mem measured at 60 cm-1 (thick green) has the 

opposite sign to the eem measured at 80 cm-1 (dotted blue). As in the case of electro-

magnon activity in the frequency domain, we see again that M14 and M41 are inverted.  

 

 

 



204 
 

 

 

Figure 10.11 MM of electric and magnetic excitations at 80 and 60cm-1  ( ,

 and ) in the  AOI domain together with an electro-electromagnon 

(eem) (blue) and a magneto-electromagnon (mem) (green). For eem, 

 . For mem, . All 16 MM elements are 

populated when the electromagnons are active. The possibility of distinguishing between 
eem and mem is suggested through the asymmetric shapes in M34 for eem and mem.  
Line Description Excitation Measured at 

Frequency 

Thick green mem 60 cm-1 

Thin green mem 80 cm-1 

Solid blue eem 60 cm-1 

Dotted blue eem 80 cm-1 

 

Figure 10.12 illustrates the effect of chiral excitations in the MM spectra in the AOI 

domain. To the main magnetic and electric oscillators, chiral excitations with 0 20Sξ = .  

are added at each of 60 and 80 wave numbers. From Fig. 10.9, we use the two 
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frequencies which produce maximum amplitude for the chiral oscillators in M14. This is 

61.5 cm-1 for the chiral oscillator with natural frequency of 60 cm-1 and 83.5 cm-1 for the 

chrial oscillator with natural frequency of 80 cm-1 . These combinations result in the 

simulation of four separate curves. When the chiral excitations are active, all 16 elements 

of the MM are populated. This figure also suggests the possibility of using M24 to 

distinguish between the two chiral excitations. In M24, the chiral excitation at 60 cm-1 

and measured at 61.5 cm-1 (thick green) is of opposite sign to the chiral excitation at 80 

and measured at 83.5 cm-1  (dotted blue) for low angles of incidence. As in the case of 

chiral activity in the frequency domain, we see again that M14 and M41 are of the same 

sign and not inverted. Accordingly, in both the frequency and AOI domains, it is possible 

to distinguish between the magneto-electric and chirality effects by examing the 

relationship between M14 and M41.  
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Figure 10.12  MM of electric and magnetic excitations at 80 and 60 cm-1 ( ,

 and ) in the AOI domain together with chiral excitations at 60 cm-1 

and 80 cm-1 . , . Note that all 16 MM elements are populated when chiral 

excitations are active.  
Line Description 0ξω  Measured at 

Frequency 

Thick green 60 cm-1 61.5 cm-1 

Thin green 60 cm-1 83.5 cm-1 

Solid blue 80 cm-1 61.5 cm-1 

Dotted blue 80 cm-1 83.5 cm-1 

 

10.7 Chapter Summary 

In this Chapter, we have used 4×4 matrix formalism to analyze electromagnetic wave 

propagation and the optical spectra of complex media. We have demonstrated that a 

complete description requires the calculation of eigenvalues and eigenvectors of the ∆ɶ  
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matrix using all four response functions. We have used 5 cases to describe the interesting 

optical effects when additional components are added to the optical matrix. These effects 

include birefringence, non-reciprocity, divergence between the wave vector and Poynting 

vector, NIR, opposing Lorentzian shapes for magnetic and dielectric excitations, and 

AOSM. For REMnO3 compounds with cycloidal magnetic order (having off diagonal 

magneto-electric tensors in the dynamic state) the following results have been derived 

analytically for the first time:  

 

• the eigenvectors for p  and s polarizations 

• the complex reflection coefficients for p  and s polarizations for the 

semi-infinite case 

• the Poynting Vector for p  and s polarizations 

• proof of birefringence for the p  polarization state but not for the s 

polarization state 

• the complex reflection and transmission coefficients for p  and s 

polarizations for the thin film case 

• the cutoff wave vector which separates propagating waves from decaying 

waves in the medium for both right handed and left handed conditions 

 
For a multiferroic material with anisotropic ε̂ , µ̂ , ρ̂ and ˆ 'ρ  tensors, the ∆ɶ  matrix has 

been derived. In addition, we have shown how a full Mueller Matrix analysis assists in 

the proper characterization of the material properties of such media. For example, 

although the effects of electro-electromagnons and magneto-electromagnons are difficult 
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to distinguish in the reflectivity spectra, it is possible to distinguish them using full 

Mueller Matrix analysis over varying AOI. We have also derived the AOSM condition at 

varying AOI. These derivations will assist in the characterization of metamaterials and 

multiferroic materials. 
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CHAPTER 11 

THESIS SUMMARY 

After a review of background material in Chapters 1-7, the following original results 

were presented in Chapters 8-10.  

• formulae for the complex reflection and transmission coefficients have been derived 

for materials with 1µ ≠≠≠≠  in the thin film configuration having orthorhombic symmetry 

or higher. These formulae incorporate the case of non-vacuum incident and substrate 

media. 

• the behavior of Mueller matrix components for a planar metamaterial in proximity to 

resonance has been illustrated at varying AOI. 

• for the first time, the separation of dielectric and magnetic contributions in the optical 

spectra of a magnetic material  has  been demonstrated by performing MM 

simulations at varying AOI 

• for the first time, the identification of the Negative Index of Refraction condition in 

the optical spectra of  thin films with 1µ ≠≠≠≠  is illustrated by performing MM 

simulations at varying AOI. 

• for the first time, Adjusted Oscillator Strength (AOS) formulas for a multiferroic 

material have been derived for reflection in the semi-infinite configuration and 

reflection and transmission in the thin film configuration. 

• for the first time, the Adjusted Oscillator Strength Matching (AOSM) condition 

( ) ( )h e h mS Sµ ω ε ω⋅ = ⋅  has been applied to explain  the behavior of the hybrid modes in 

the optical spectra of Dy-IG.  
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• For REMnO3 compounds with cycloidal magnetic order (having off diagonal magneto-

electric tensors in the dynamic state) the following results are derived analytically for the 

first time:  

• the eigenvectors for p  and s polarizations 

• the complex reflection coefficients for p  and s polarizations for the semi-infinite 

case having oblique angles of incidence 

• the Poynting Vector for p  and spolarizations 

• proof of birefringence for the p  polarization state but not for the spolarization state 

• the complex reflection and transmission coefficients for p  and s polarizations for 

the thin film configuration having oblique angles of incidence 

• the cutoff wave vector which separates propagating waves from decaying waves in 

the medium for both right handed and left handed conditions 

• For a multiferroic material with anisotropic ε , µ , ρ and 'ρ  tensors, the Del matrix has 

been derived.  
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APPENDIX A 

ERROR ANALYSIS FOR DY-IG REFLECTIVITY FIT 

A.1 Fitting Procedures 

The experimental results for the Reflectivity spectra for Dy-IG are illustrated in Figure 

A.1.  

 

Figure A.1  Experimental results for Reflectivity for Dy-IG.  

The fitting for this spectra was done using the Levenberg Marquardt fitting 

algorithm.  In order to determine an initial parameter vector for the fitting process, we 

developed a program which simulates the reflectivity spectra for a given set of                                                                                 
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parameters. This simulation program also returns a 2χ value for the objective function. 

Accordingly, determining an initial parameter vector was essentially a ‘by hand’ 

procedure.  For the majority of the fitting process, unconstrained optimization techniques 

were used. By this we mean that all parameters were allowed to ‘float’ until convergence. 

However, later in the fitting procedure, it was necessary to constrain certain parameters 

within specified upper and lower bounds. For example, it is now understood that the 

magnetic and dielectric oscillators for a hybrid mode are additive in transmission. 

Therefore, the total value of the Adjusted Oscillator Strength (AOS) for transmission 

could not exceed its actual experimentally determined value. Accordingly, upper bounds 

for the oscillator strengths of the magnetic and dielectric oscillators were required. 

Another example is that the damping parameter for each of the magnetic and dielectric 

oscillators needed to be roughly the same for a hybrid mode in order to correctly model 

the lifetime of the excitation. A function called ‘check_bounds’ was created to ensure that 

targeted parameters stayed within pre-specified limits. This was called by the LM parent 

program ‘mrqmin’. The disadvantage of this approach, however, as compared to 

unconstrained optimization, is that for any given constrained parameter, its partial 

derivative approached zero as it neared or exceeded its upper or lower bound. This made 

convergence slow since the step in parameter space is proportional to the Jacobian. In 

addition, it made inversion of the Hessian more difficult. The inverse of the Hessian 

provides the covariance matrix which, in turn, provides the standard errors of the 

parameters. As a result, it was necessary to use a combination of the constrained and 
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unconstrained optimization procedures to properly calculate the error bars for the 

parameters.  

A.2. Error Analysis for Main Magnetic and Dielectric Oscillators 

The error bars for the magnetic oscillator at 59.5 cm-1 and the dielectric oscillator at 81.3 

cm-1 were determined using the analytical procedure discussed previously.  The dielectric 

oscillator strength for the hybrid mode at 73.5 cm-1 was fixed at 0.0400 (ie. ix=0 for this 

parameter which indicates that this parameter is not to be fitted). Subject to this single 

condition, the unconstrained optimization procedure was used. The objective function 

was calculated according to the formula: 

 χ
σ=

 −
= =   − −  

∑
� �

2

2 1 2 3

1

( ,( , , ... ))1
( ) ( )

1

m
i i M

i i

y y t x x x x
F x x

N m
 (A.1) 

In (A.1), N is 209 which is the number of data points and m is 68 which is the number of 

parameters to be fitted. σ
i
was taken to be .0005 for all data points. For the magnetic 

oscillator strength, mS , the process returned 0.0017 0.0006± . For the dielectric oscillator 

strength, eS , the process returned 0.0988 0.0143± . The error bars represent the standard 

error. When all parameters were subject to their upper and lower bounds, mS returned 

0.0018and eS  returned 0.0873. Using the same proportionality as for the unconstrained 

results, we finalized the error bars for the magnetic oscillator strength to be 

0.0018 0.0006± and for the dielectric oscillator, 0.0873 0.0126± . 
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A.3. Error Analysis for Hybrid Modes 

The error analysis for the hybrid modes must take into account that these oscillators are 

essentially acting as coupled oscillators. For the purposes of illustration, the hybrid 

oscillator at 73.5 cm-1 is analyzed.  With eS fixed at 0.0400, mS is returned as .0035 .0008±

. In doing this analysis, it was necessary to force the damping parameters to be the same 

for both oscillators. With these values for  mS and eS , the total adjusted oscillator strength 

matching condition is exceeded which cannot represent a physically realizable condition. 

However,  the result is still useful to provide proportionality for the error bar in mS . The 

constrained optimization results returned .0025 for mS . Using the same proportionality as 

for the unconstrained case, the error bar for the magnetic oscillator strength becomes: 

.0025 .0006± . We expect that the AOSM condition will also apply to the error bars in a 

hybrid mode since: 

 ( ) ( )( ) ( ) 0e e m m e m e mS S S S S S S Sµ ε µ ε µ ε+ ∆ − + ∆ = − + ∆ − ∆ =  (A.2) 

Under unconstrained optimization, we found that the ratio of the error bars for the hybrid 

modes is virtually the same as the ratio of the parameters which suggests that the rule in 

(A.2) is followed for both the parameters and their errors. Using this approach, the results 

for the magnetic oscillator strength are:  .0400 .0091± . 

A.4. The Impact of Random Errors 

We adjusted the experimental data for random errors by applying up to a 10%± change 

for every data point. The results of this process are illustrated in Figure A.2.  
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Figure A.2  Random errors applied to experimental data.  

At first glance, the Figure A.2. looks like it represents a linear relationship between 

reflection and frequency with positive slope. Parameters were fitted with the LM fitting 

algorithm with the results shown in Figure A.3.  
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Figure A.3  Results of fitting experimental results with random error.  

The magnetic oscillator strength was calculated to be 0.0015 0.0007± and the dielectric 

oscillator strength was calculated to be 0.0919 .0195± . Note that the range of outcomes 

includes that of the non-randomized case. The error bars for the dielectric case are 

slightly higher than for the non-randomized case.  
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APPENDIX B 

MATLAB SCRIPTS USED IN LEVENBERG MARQUARDT FITTING 
ALGORITHM 

B.1 Pseudo-Code and Numerical Implementation of Levenberg Marquardt Method 

Pseudo-code for the LM implementation consists of the steps outlined in the following 

table [55]: 

Table B.1  Pseudo Code for Levenberg Marquardt Implementation.  

1. Choose starting parameter vector, x
�

.  Initialize .001λ = . 

2. Calculate 2( )xχ �
. 

3. Solve Eq. (7.15) for lmh . Evaluate 2( )lmx hχ +
��

. 

4. If  2 2( ) ( )lmx h xχ χ+ ≥
�� �

then decrease λ by a factor of 10. This sends the step back 

in the direction of steepest descent. Repeat step 3.  

5. If  2 2( ) ( )lmx h xχ χ+ <
�� �

then increase λ by a factor of 10.  This sends the step in 

the direction of the Gauss Newton step for quicker convergence. Repeat step 3. 

6. Cease iterating when user defined stopping criteria are met.  

 
We have implemented this code using a number of Matlab functions. Table B.2 gives an 

explanation of each of the functions.  

B.2 List of Matlab Scripts Used in Fitting 

Table B.2 below provides a list of Matlab scripts used in fitting.  
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Table B.2  Matlab scripts used in Levenberg Marquardt Implementation. 

1 Matlab Script Functionality 

2 
Main_MM_to_Eps_Mu_Isotropic 
Main_MM_to_Eps_Mu_Anisotropic 

Loads Mueller Matrix data 
across a frequency spectrum.  
 
Using LM method, calculates ε
and µ using isotropic and 
anisotropic models. 
 
Creates a data file of calculated
ε and µ . 

3 
fit_exact_Mueller_to_Eps_Mu_ISOTROPIC 
 
fit_exact_Mueller_to_Eps_Mu_ANISOTROPIC 
 

Called by #1. Calculates the 
residual error function, if . 

4 
fit_Eps_Mu_to_Parameters_ISOTROPIC 
 
fit_Eps_Mu_to_Parameters_ANISOTROPIC 
 
 

Called by #2. Calculates the 
residual error function, if . 

5 
funcsv2(fun,x0,omega,y,cf) 
 

Required function in LM 
implementation [55]. 
 
For fun defined as #3 or #4 
calculates initial values of 
residual error function. 

6 
mrqminv5_bounded(alamda,ix, mx,ndata,fun,x0, 
opts, sig,theta1,y, cf,lb,ub) 
 

Implements major steps of LM 
method as outlined in Table 
B.1. 

7 
mrqcofv5(fun,sig,ndata,x,ix,mx,opts,omega,y,cf) 
 

Called by #6. Returns Hessian 
and Jacobian matrices in 
addition to residual error vector.  

8 
jacobianv5(fun,f,x,mx,ix,mfit,opts,omega,y,cf); 
 

Called by #7. Calculates the 
Jacobian matrix for parameters 
to be fitted. 

9 
gaussjmatlabv2(alpha,dx,alamda) 
 

Called by #6. Calculates next 
step in LM method. 

10 
check_bounds(x,lb,ub) 
 

Called by #6. Checks that 
current iteration of x

�
is within 

user defined bounds and adjusts 
vector if required. 
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APPENDIX C 

ADJUSTED OSCILLATOR STRENGTH MATCHING FOR HYBRID 
MAGNETIC AND ELECTRIC EXCITATIONS IN DY 3FE5O12 GARNET 

Expressions for the Adjusted Oscillator Strength (AOS) and the Adjusted Oscillator 

Strength Matching (AOSM) condition are developed for materials with 1≠µ . V. G. 

Veselago’s results for semi-infinite magnetic materials [36, 37] together with analytic 

expressions obtained by the authors in Ref. [1] are used in this treatment. A Lorentzian 

oscillator model is used in the formulas below for magnetic and dielectric excitations. For 

a single hybrid excitation, the dielectric and magnetic contributions are given in Eq. (9.2), 

where 1N M= = , 0 0e m hω ω ω= = , and e mγ γ γ= =  .  

The semi-infinite case for normal incident radiation (AOI=0) is examined first. Based on 

Veselago’s work, it is assumed that the s  polarized reflection intensity ( )ssR ω  is a 

function of ( ) ( )/ε ω µ ω  [36, 37].  Then, in the proximity of a resonance with a single 

hybrid mode  

( )

2

2 2

2

2 2

2 2

2 2 2 2 2

( )( )
( )

( )

( )

,
( ) ( )

e h

h
ss

m h

h

e m h R h

h h

S

i
R f f

S

i

S S S
f f

i i

ωε
ω ω γωε ωω

ωµ ω µ
ω ω γω

µ ε ω ωε ε
µ µ ω ω γω µ ω ω γω

∞

∞

∞ ∞∞ ∞

∞ ∞ ∞

 
+ 

  − − = = ≈    
  + 

 − − 

   −
   + = +

  − − − −  

                               (C.1)                                                                                                        

where ( ) ( ) ( ) 2
1 1f x x x= − + . The expansion in Eq. (C.1) is justified since mS µ∞≪ for the 

magnetic modes (see Table 9.1).  In general, the hybrid resonance can be described with 

an AOS in reflection: ( ) 2
R e mS S Sµ ε µ∞ ∞ ∞= ⋅ − ⋅ . We have also derived a similar 

expression for RS  by analyzing the derivative of the exact complex reflection coefficient 
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with respect to frequency for the thin film configuration, which will be described below. 

The AOSM condition, m eS Sε µ∞ ∞= , is immediately apparent from Eq. (C.1). Under this 

condition, the hybrid mode disappears from reflectivity and reflectivity becomes a 

function of ε∞  and µ∞  
only: ( )( ) / |

m ess h S SR f ε µω ε µ
∞ ∞∞ ∞ == .  

For a pure magnetic dipole at 0h mω ω= , Eq. (C.1) can be approximated for 0eS = and 

1µ∞ =  as: 

( )
2 2

2 2 2 2
0

.
( (1 ) ) ( )

m m m m
ss

m m LO

S S
R f f

S i i

ε ω ε ωω ε ε
ω ω γω ω ω γω

∞ ∞
∞ ∞

   
   = − ≈ −
   + − − − −   

 (C.2) 

 
The negative sign in Eq. (C.2) corresponds to the inverted Lorentzian shape of a pure 

magnetic dipole with AOS: R mS S ε∞= ⋅ . For hybrid modes, this inverted shape provides 

for the partial or complete cancellation of the electric and magnetic components at 

resonance. As is evident from Eq. (C.2), a pole in the effective dielectric function 

measured, for example, in RAE experiments, is shifted from 0mω , appearing at the 

longitudinal frequency 0 1LO m mSω ω= ⋅ + . Note that this frequency shift is small due to 

mS <<µ∞ for magnetic modes. 

 If light propagation in transmission is mainly driven by exponential decay and the 

extinction coefficient, according to Veselago, ( )ssT ω  becomes a function of the product 

( ) ( )ε ω µ ω⋅ : 

 

( )
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2 2

2 2 2 2
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2 2 2 2

( ) ( ) ( )
( ) ( )

.
( ) ( )

e h m h
ss

h h

e m h T h
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F F
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ω ωω ε ω µ ω ε µ
ω ω γω ω ω γω

µ ε ω ωε µ δ ε
ω ω γω ω ω γω

∞ ∞

∞ ∞
∞ ∞ ∞

    
 = ⋅ = + ⋅ +   
 − − − −    

   ⋅ + ⋅ ⋅ ⋅
   = ⋅ + + ≈ +

  − − − −  

 (C.3) 
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For strong absorption at the hybrid mode, when one can neglect multiple reflections, 

( ) ( ) ( )
2

21F y r t y= −  where y ε µ= ⋅  , ( ) expt y i yd
c

ω =  
 

, and r  is the complex 

reflection coefficient. We note that at hω , the reflection intensity ( )R ω  as described by 

Eq. (C.1) does not change significantly. As one can see from Eq. (C.3), the AOS in 

transmission is T e mS S Sµ ε∞ ∞≈ ⋅ + ⋅ . In contrast to RS , the magnetic and electric oscillator 

strengths in TS  are additive. Note that the contribution of the magnetic oscillator strength 

in TS  is “enhanced” by ε ∞ . The expressions for RS  and TS  allow for analysis of the 

interesting case of hybrid modes which can cancel or disappear in reflectivity but remain 

strong in transmission. Note that the exact analytical expression for ( )F y  in the general 

case of multiple reflections is complicated and will be discussed below.  

   A complete analysis of thin film reflectivity and transmission must involve the 

reflection from the backside of the sample, which depends on the thickness d .  The 

opposing shapes of the Lorentzian profile of the magnetic and electric excitations 

motivate the calculation of 
( )ss hR∂

∂
ω

ω
and 

( )ss hdT

d

ω
ω

.  The two total derivatives require 

partial derivative expansion of the response functions as well as those of ssr and sst , the 

complex reflection and transmission coefficients.  For a magnetic thin film whose 

principal axes are coincident with the laboratory system,  ssr and sst  are given by [1]: 
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 

+ − + 
 
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 

+ − + 
 

, (C.4) 

 where 0zk , zsq and 2zk are the zcomponents of the wave vector in the incident, thin film 

and substrate media, respectively. At hybrid resonance, the following expressions for the 

two total derivatives are obtained:   

                                   * *
2 2

ss
ss ss

dR
r S r S

dω
≅ ⋅ + ⋅   and   * *

3 3
ss

ss ss

dT
t S t S

dω
≅ ⋅ + ⋅    (C.5) 

 
where 2S and 3S are given by:  
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 

α ω α ωω µ ω ε ω
γ α ωµ ω ε ω

α ω α ωω µ ω ε ω
γ α ωµ ω ε ω

.                (C.6) 

 

The four α  terms are components of the partial derivatives of the complex reflection and 

transmission coefficients taken with respect to the two response functions. Analytic 

solutions for these terms can be obtained starting from ssr  and sst . For the material 

parameters of Dy3Fe5O12 sample with the thickness of 0.55 mm, 
( )
( )TF

TFR
m h

R
e h

α ω
α ω

 and 
( )
( )

T
m h

T
e h

α ω
α ω

 

are negative and positive, respectively, with absolute value equal to 1 (see FIG. C.1). 

When these values are inserted into Eq. (9.A6), the upper and lower bracketed terms can 
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be identified with the RS  and TS  terms discussed in the Veselago qualitative analysis 

above. These results are also consistent with the subtraction and addition of the AOS 

components in reflectivity and transmission, respectively.  

  
 

Fig. C.1 Variability of the ratio of α terms with thin film thickness, d . 15.85ε∞ = ,

0.100eS = , 0.0063mS =  and 78h =ω cm-1. 
( )
( )TF

TFR
m h

R
e h

α ω
α ω

is the bottom solid red line. 
( )
( )

T
m h

T
e h

α ω
α ω

 is 

the top blue dashed line. For the Dy3Fe5O12 sample with thickness 0.55d = mm, the 
opposite signs of these two ratios account for the subtraction of AOS contributions in 
reflectivity and the addition of the AOS contributions in transmission.  
 
   The case where hybrid mode magnetic and electric dipole contributions 

completely cancel in reflection ( 0RS = ) but add to TS  in transmission requires the 

solution of the following simultaneous equation: 
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For the case of the fitted parameters for Dy-IG,  
( )
( )

1
TF

TF

R
m h

R
e h

α ω
α ω

≈ − , 
( )
( )

1
T
m h

T
e h

≈
α ω
α ω

, ( ) 1h ≈µ ω and 

( )hε ω ε∞≈ , Eq. (C.7) has the approximate solution: 
2
T

e

S
S ≅

  
and 

2
T

m

S
S

ε∞

≅ . 
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APPENDIX D 

DERIVATION OF ADJUSTED OSCILLATOR STRENGTH MATCHING  
CONDITION USING DERIVATIVE APPROACH 

D.1 Introduction  

 

Berreman’s 4×4 matrix formalism can be used to analyze the optical properties of a 

crystal with 1≠µ . This technique can always return numerical solutions which describe 

wave propagation in the material. However, for many crystal symmetries, including those 

of orthorhombic and higher, closed form solutions for the complex reflection coefficients 

of a semi-infinite material and the complex reflection and transmission coefficients of a 

thin film can be obtained. These formulas are appropriate for the case where the principal 

axes of the crystal are coincident with the laboratory axes. From these formulas, 

expressions for the derivatives with respect to ω  of ( )ssR ω and ( )ssT ω  can be calculated. 

( )ssR ω and ( )ssT ω  are the Reflection and Transmission intensities, respectively.  

Focus is on the derivative calculations for two reasons. First, while it is possible 

to obtain exact analytical expressions for the complex reflection and transmission 

coefficients, analytical expressions for ( )ssR ω and ( )ssT ω  are more difficult to obtain. 

Second, for materials with 1≠µ , an examination of  the variation of intensity with 

respect to the frequency of incident radiation gives important information regarding the 

interaction between the magnetic and dielectric oscillators used in modeling optical 

properties. The derivative approach allows for the interesting property of Adjusted 

Oscillator Strength (AOS) for each of the magnetic and dielectric oscillators to be 



226 
 

 

identified. In turn, AOS gives rise to the fascinating case of Adjusted Oscillator Strength 

Matching (AOSM) for hybrid modes. When the AOSM condition is fulfilled, the hybrid 

modes can be completely cancelled in the Reflection spectra but are additive in the 

Transmission spectra.  

D.2.  Key Results From 4×4 Matrix Formalism 

For readability, key results from Berreman’s 4×4 matrix formalism are included to make 

this Appendix self consistent. zpq and zsq are the eigenvalues associated with p and s

polarizations, respectively and constitute the zcomponents of the wave vectors in the 

medium. These are: 

( )2 2
0 0sin θω ε µ

ε
= −zp xx yy

zz

N
q

c
 (D.1) 

 

( )2 2
0 0sin θω µ ε

µ
= −zs xx yy

zz

N
q

c
 (D.2) 

For a semi-infinite medium, the complex reflection coefficients are determined to be:  

 
2

0 0

2
0 0

xx z zp
pp

xx z zp

k N q
r

k N q

−
=

+
ε
ε

 (D.3) 

 0

0

,xx z zs

xx z zs

ss
k q

k q
r −=

+
µ
µ

 (D.4) 

where 0N is the index of refraction of the incident medium and 0zk is the zcomponent of 

the incident wave vector. In the case of thin films, the complex reflection and 

transmission coefficients are calculated using 4×4 matrix formalism to be:  
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and  
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 (D.6) 

where 2N is the index of refraction of the substrate medium and 2zk is the zcomponent of 

the wave vector in the substrate.  

D.3  Approach to the Calculation of Derivatives of ( )ssR ω and ( )ssT ω . 

Magnetic and dielectric excitations are modeled as Lorentzian oscillators:  
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, (D.7) 
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where ∞ε is the infinite-frequency of the dielectric function, Se,m is the corresponding 

mode oscillator strength, ,e mγ  is the damping constant, and ω0e,m is the resonance 

frequency.  

( )ssR ω  and ( )ssT ω are the spolarized reflection and transmission intensities, 

respectively. Both are real valued functions of their associated complex coefficients:  

 
( ) ( ) ( )

( ) ( ) ( )

*

*

ss ss ss

ss ss ss

R r r

T t t

= ×

= ×

ω ω ω
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 (D.8) 

The asterisk in (D.8) indicates the complex conjugate operation. Expressions for 
( )ssR∂

∂
ω

ω

and 
( )ssdT

d

ω
ω

 will be developed in parallel.  

From (D.8), the derivative chain rule for complex variables is used to obtain:  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*
*

*
*

ss ss ss
ss ss

ss ss ss
ss ss

R r r
r r

T t t
t t

∂ ∂ ∂
= +

∂ ∂ ∂

∂ ∂ ∂
= +

∂ ∂ ∂

ω ω ω
ω ω

ω ω ω

ω ω ω
ω ω

ω ω ω

 (D.9) 

In (D.9), ssr and sst are functions of ε  and µ  and ε  and µ , in turn, are functions of ω . 

Accordingly, the formulas for 
( )ssdR

d

ω
ω

 and 
( )ssdT

d

ω
ω

 require expansion in partial 

derivatives. The following expressions are used in this analysis:   
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 (D.10) 

 

For both semi-infinite and thin film configurations, the procedure to calculate these 

derivatives begins with analytical expressions for ssr and sst . From these expressions, the 

required partial derivatives can be  calculated. It is possible for some simplifications to be 

obtained in (D.10) if the response functions are analyzed at magnetic and dielectric 

resonance.  

D.4  Semi-infinite configuration – separate modes 

For the semi-infinite case, the spolarized eigenvalue, zsq , is given in Eq. (D.2) and the 

general equation for the spolarized complex reflection coefficient is given in Eq. (D.4). 

For simplification, an isotropic material  is modeled using one magnetic and one 

dielectric Lorentzian oscillator whose natural frequencies are separated by at least 3,e mγ .  

In addition, only normally incident radiation is considered. ssdR

dω
is analyzed at each of 

magnetic and dielectric resonance with the terms 
d

∂ε
ω

and 
d

∂µ
ω

being considered first. At 

magnetic resonance, the term  
d

∂ε
ω

 is negligible. At dielectric resonance, the term 
d

∂µ
ω

is 

negligible. At each of their respective resonances, the derivatives can be approximated by 

the following real valued expressions:  
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Expressions for ssdr

dε
and ssdr

dµ
 are given by:  
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 (D.12) 

where the α terms are defined as:  

 
( ), 2

1
SIR

e m =
+

∓α
ε µ

 (D.13) 

In Eq. (D.13), the terms associated with the dielectric (magnetic) oscillator are given by 

the upper (lower) sign. The SI (meaning semi-infinite) subscript in Eq. (D.12) is used to 

distinguish this term from its thin film counterpart which will be discussed below. Note 

that the expressions for SIR
eα and SIR

mα  are of opposite sign. It is this factor which accounts 

for the differing Lorentzian profiles for magnetic and dielectric excitations in the 

Reflection spectra. Inserting Eq. (D.11) and Eq. (D.12) into Eq. (D.10) produces:  
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We are motivated to find the ratio of these two derivatives. For modes with 

similar ,e mγ , it is evident that the ratio of the size of the excitations at magnetic and 

dielectric resonance is directly proportional to the ratio of ssdR

dω
calculated at each 

resonance. When the imaginary components in Eq. (D.14) are small compared to their 

real counterparts, the ratio of these derivatives can be approximated as:   
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If it is further assumed that: (i) e m≈ ≈γ γ γ ; and (ii) the first term in the bracket can be 

approximated by the ratio of the background response functions bg

bg

µ
ε

, then a good first 

order approximation of the ratio of the derivatives at the two resonances is given by:  
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It is important to note in Eq. (D.16), that the ratio is not simply proportional to the ratio 

of oscillator strengths but rather to the ratio of the oscillator strengths adjusted by their 

constitutive complement. This is an important observation. It suggests that even when 
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mS << eS , the impact of the magnetic oscillator in Reflection can be brought to the same 

order as that of the dielectric oscillator as a result of its multiplication by bgε . The role of 

this adjustment becomes even more apparent when consideration is given to hybrid 

modes.  

D.5.  Semi-infinite configuration - hybrid modes 

The interesting case of coincident natural frequencies for the magnetic and 

dielectric oscillators is now examined.  This case is referred to as the hybrid mode. The 

assumption that  
d

∂ε
ω

and 
d

∂µ
ω

are negligible at magnetic and dielectric resonance, 

respectively, can no longer be made given coincident resonances. The partial derivative 

expansion requires a second term and becomes:  
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 (D.17) 

where,  

 ( ) ( ) ( ) ( )
( )1

SI

SI

SI

R
m hR

e h h e h mR
e h

S S S
 

= +  
 

α ω
α ω µ ω ε ω

α ω
 (D.18) 

In Eq.(D.18), the bracketed term is identified as the Net Adjusted Oscillator strength for 

reflection and we define this term as RS . At hybrid frequency, ( ) ( )R R
e h m h= −α ω α ω and RS

can be further reduced to: 

 ( ) ( ) ( )( ).R h h e h mS S S= −ω µ ω ε ω  (D.19) 

In Eq. (D.19), the two components are identified as the Adjusted Oscillator Strengths 

(AOS) for the individual modes. The term ( )h eSµ ω  is identified as the AOS of the 
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dielectric oscillator. The term ( )h mSε ω is identified as the AOS of the magnetic oscillator. 

This equation also suggests that the AOS for the contributing modes tend to cancel in 

Reflection. This motivates examination of the interesting case when the AOS for the two 

modes are exactly matched. In this case, 0
h

ssdR

d
=

ωω
 and occurs when the adjusted 

oscillator strengths satisfy the simple condition: ( ) ( )m h hS S= εε ω µ ω . We define this 

condition as Adjusted Oscillator Strength Matching (AOSM). Notwithstanding that there 

are two oscillators active at hω , when AOSM is satisfied, they interact in such a way as to 

have no net impact on the background reflectivity at that point in the spectra. Note that in 

deriving Eq. (D.19), no assumptions have been made about the relationship of the 

imaginary and real components in the equation. In other words, to establish the AOSM 

condition perfectly, both the real and imaginary components in Eq. (D.19) must be 

identical.  

D.6.  Thin film configuration – separate modes 

The general equations for the complex reflection and transmission coefficients for s

polarized radiation incident upon a thin film of thickness d are given in Eq. (D.6). As for 

the semi-infinite case, an isotropic material is modeled using one magnetic and one 

dielectric Lorentzian oscillator whose natural frequencies are separated by at least 3,e mγ . 

Radiation is again incident normally. Both expressions in (D.9) and (D.10) will be 

developed in parallel. Since the same Lorentzian oscillator models will be used, the 

analysis for 
d

∂ε
ω

 and 
d

∂µ
ω

 is identical to the semi-infinite case. Analytical formulas for 
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the other derivatives are more complicated than those of the semi-infinite case and are 

given below:  
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, (D.20) 

where the expressions for α are calculated as:  
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(D.21) 

 
In the above equations, the subscript TF  (meaning thin film) is used to distinguish it from 

its semi-infinite counterpart. In Eq. (D.21), terms associated with the dielectric 

(magnetic) oscillator follow the upper (lower) signs.   

As in the semi-infinite case, we are again motivated to examine ssdR

dω  
at each 

resonance in order to estimate a ratio of the size of excitations  in the Reflectivity spectra.  

With the exception of the α  terms, an expression identical in form to the semi-infinite 

case is obtained: 



235 
 

 

 

( )
( )

( )
( )
( )

( )

( )
( )

( ) ( )
( )

( )

0 0

0 0 0

0 00

0 0

0
0 0

*

*0
0 02

*

*
2

2

2

e e

e e e

m mm

m m

m
m

TF TF

TF T

m

F

R Rss e
ss e e e ss e e e

e

R Rss
ss m m ss m m

m

dR
r S r S

d

dR
r S r S

d

    
    ≅ − +    

        

    
    ≅ − +    

        

ω

ω

µ ω µ ωω α ω α ω
ω γ ε ω ε ω

ε ω ε ωω
α ω α ω

ω γ µ ω µ ω

 (D.22) 

When the imaginary components in (D.22) are small compared to their real counterparts 

and we make similar assumptions as for the semi-infinite case concerning the γ , bgε and 

bgµ parameters, the first order approximation to the ratio of these derivatives becomes:  
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In (D.23), the 
( )
( )

0

0

m

TF

TF

R
e e

R
m

α ω
α ω

term is again negative. It is through this factor that the opposite 

slopes of the magnetic and dielectric resonances in Reflectivity are incorporated into the 

thin film configuration. Eq. (D.23) also shows that the AOS phenomenon is present for 

thin films. This again motivates an analysis of the interesting case of hybrid modes.  

D.7.  Thin film configuration – hybrid modes 

   

The case of coincident natural frequencies for the magnetic and dielectric oscillators in 

thin films is now examined.  The partial derivative expansions for Reflection and 

Transmission for thin films are:  
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where 2S and 3S are given by:  
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In Eq. (D.25), the bracketed terms can be recognized as the contributions the Net 

Adjusted Oscillator Strength for Reflection and Transmission and can be defined for thin 

films as RS and TS . At hybrid resonance, while 
( )
( )

2

2

R
m h
R
e h

α ω
α ω

is a negative term, it is no longer 

identically equivalent to -1 under all circumstances and will be retained in the following 

expressions. The AOSM condition for thin films is therefore: 

 

( ) ( ) ( )
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(D.26) 

 

 At hybrid resonance, while the 
( )
( )

T
m h

T
e h

α ω
α ω

term is positive, it is not identically equivalent to 

unity and will also be retained. The fact that this latter ratio is positive sets up the 

interesting result that while the modes in reflection tend to cancel, in transmission the 

AOS for each mode is additive. We note again that no assumptions regarding the 

relationship between the real and imaginary components were made in deriving Eq. 
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(D.26). Accordingly, to establish AOSM perfectly, both the real and imaginary parts must 

match. The condition for AOSM in Reflectivity and additive modes in Transmission 

requires the solution of a simultaneous equation. Assume that the Transmission spectra 

for a material can be fitted using a dielectric oscillator strength of TotalS  . At hybrid 

frequency, this result could also be obtained through a combination of one magnetic and 

one dielectric oscillator.  Using the expressions for AOS derived above, the simultaneous 

equation can be written down as:  
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 Eq. (D.27) has the solution:  

 

 

( ) ( )
( )

( )
( )

( )
( )
( ) ( )

( )
( )
( )

1

1

TF

TF

TF

TF TF

TF

Total
m RT

h m h m h
RT

e h e h

R
m hTotal

e R RT
h e h m h m h

RT
e h e h

S
S

S
S

=
 

−  
 

= −
 

−  
 

ε ω α ω α ω
α ω α ω

α ω
µ ω α ω α ω α ω

α ω α ω

 (D.28) 

Eq. (D.28) describes the coupling condition in a hybrid mode. It will produce a result 

where we clearly see a mode in transmission with oscillator strength TotalS but no 

commensurate mode in Reflectivity. For the Dy3Fe5O12 fitted parameters,  
( )
( )

2

2
1

R
m h
R
e h

≈ −
α ω
α ω

, 
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( )
( ) 1

T
m h

T
e h

≈
α ω
α ω

, ( ) 1h ≈µ ω and ( )h bg≈ε ω ε . Eq. (D.28) can be simplified to: 
2

Total
e

S
S ≅ and 

2
Total

m
bg

S
S ≅

ε
. These simplified equations were used in the fitting of the Reflection and 

Transmission spectra for  Dy3Fe5O12 with 1≠µ . 
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