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ABSTRACT

ACTIVE CACHING FOR RECOMMENDER SYSTEMS

by
Muhammad Umar Qasim

Web users are often overwhelmed by the amount of information available while carrying

out browsing and searching tasks. Recommender systems substantially reduce the

information overload by suggesting a list of similar documents that users might find

interesting. However, generating these ranked lists requires an enormous amount of

resources that often results in access latency. Caching frequently accessed data has been

a useful technique for reducing stress on limited resources and improving response time.

Traditional passive caching techniques, where the focus is on answering queries based on

temporal locality or popularity, achieve a very limited performance gain. In this dissertation,

we are proposing an ‘active caching’ technique for recommender systems as an extension

of the caching model. In this approach estimation is used to generate an answer for

queries whose results are not explicitly cached, where the estimation makes use of the

partial order lists cached for related queries. By answering non-cached queries along with

cached queries, the active caching system acts as a form of query processor and offers

substantial improvement over traditional caching methodologies. Test results for several

data sets and recommendation techniques show substantial improvement in the cache hit

rate, byte hit rate and CPU costs, while achieving reasonable recall rates. To ameliorate the

performance of proposed active caching solution, a shared neighbor similarity measure is

introduced which improves the recall rates by eliminating the dependence on monotinicity

in the partial order lists. Finally, a greedy balancing cache selection policy is also proposed

to select most appropriate data objects for the cache that help to improve the cache hit rate

and recall further.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

With the increasing popularity of the World Wide Web, amount of information and number

of users are growing exponentially. However, this increase, particularly in database backed

web sites, has created challenges for web developers to provide efficient solutions.

Traditional applications such as file transfer, news and email need more throughput but can

tolerate delays. However, applications of interactive nature require latencies on the order

of seconds [15]. Recommender Systems, being computationally intensive and interactive

applications, cannot tolerate access latency. Although advanced more powerful physical

resources can help to improve the performance yet there is dire need for further improvement

using optimization techniques.

In many databases and Web applications, caching is often employed to improve

response time and reduce the server workload. A cache is a temporary storage area where

data can be stored for quick access. Once the data is stored in the cache, future use can

be made by accessing the cached copy rather than re-fetching or recomputing the original

data, so that the average access time is shorter. Caching can improve the performance of an

application by reducing access latency, server load and network traffic. Caching strategies

can be divided into two broad classes: traditional ‘passive’ caching, and the more recent

‘active’ caching. With passive caching, where the server query result is retrieved either

directly from the cache or from the disk, the effectiveness of the operation is guaranteed.

Passive cache management strategies generally seek to fill the cache with result lists for the

most popular queries, and utilize effective replacement strategies to maximize the overall

performance. In general, only limited performance gains are possible with passive caching.

Active caching techniques attempt to improve upon the performance of passive caching by

1
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synthesizing a query result from stored information whenever the sought-after result is not

explicitly present. This form of caching is referred to as ‘active’ since the cache can be

considered to function in a limited query-processing role [83].

The active caching techniques proposed in the research literature to date are extensions

of relational database caching strategies that aim to answer Boolean queries: the caching

strategies attempt to make use of the stored results of past queries to generate a new result

that satisfies the containment criteria of the current query. For recommender system queries

returning a ranked list of the top-k relevant objects this form of active caching cannot be

applied. This dissertation proposes an active caching strategy specifically designed for

recommender system queries or top-k similarity queries (also known as k-nearest-neighbor,

or k-NN queries).

1.2 Background and Motivation

This research addresses the problem of access latency in recommender systems. In contrary

to effectiveness studies dominated in recent recommender system research, this dissertation

focuses on efficiency aspect of these applications. Recommender systems aid users in

finding useful information according to their interests. However, delay in providing this aid

can lead to user frustration and result in non-usage of such systems. Therefore efficiency is

very crucial aspect for the success of these applications and must be addressed.

The specific objectives of the research are to address the latency problem in

recommender systems and find a way to solve or at least mitigate the problems. Although

performance optimization work has been done in the related domains i.e., search engines,

yet none of the existing studies have specifically addressed recommender systems. These

approaches improve the performance to a certain level and can be extended to work for

recommender system. This dissertation focuses on investigating an optimization solution

specifically designed for recommender systems which performs better than already available

techniques.
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In many databases and Web applications, caching is often employed to improve

response time and reduce the server workload. Caching techniques have seen significant

success in the query processing both in databases and web applications. Traditional caching

approaches only attempt to answer those queries whose result is available in the cache.

These approaches generally seek to fill the cache with result lists for popular queries, and

to utilize effective replacement strategies to maximize overall performance. In general,

only limited performance gains are possible with this type of caching. More recently,

active caching techniques have been developed that use the results of prior queries to

answer related queries. However, these caching strategies attempt to make use of query

containment but this form of active caching cannot be used with recommender system

queries.

The particular problem to be solved in this research is designing and implementing

an active caching strategy that can improve upon the performance of traditional caching

solutions for recommender systems. This approach is expected to work better than already

available caching methods and should work for all types of recommender systems. Major

research questions include; How to design an effective and efficient caching solution for

recommender systems? How to design a more general and effective similarity measure for

active caching? How to select the objects in the cache for a caching with no replacement?

1.3 Proposed Methodology

This research first reviews the related work in recommender systems and web-caching

domains and then presents the active caching solution for recommender system.

Recommender systems normally differ how the resultant list of recommendation are

computed. Traditional caching solutions can easily be used with any type of recommender

system. With traditional caching, where the server query result is retrieved either directly

from the cache or from the disk, the effectiveness of the operation is guaranteed. Traditional

cache management strategies generally seek to fill the cache with result lists for the most
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popular queries, and to utilize effective replacement strategies to maximize the overall

performance. In general, only limited performance gains are possible with this type of

caching. Active caching technique attempt to improve upon the performance of tractional

caching by synthesizing a query result from stored information whenever the sought-after

result is not explicitly present. Thus if implemented, active caching can provide significant

improvement in performance over traditional caching solutions.

This dissertation proposes an active caching solution for recommendation systems

which also works with any other application that uses top-k similarity queries e.g. contextual

advertising, image retrieval etc. The proposed active caching solution not only returns

cached results, but also actively estimates answer for queries whose results are not present

in the cache, by aggregating those results stored in the cache for related queries. This

dissertation first introduces the basic structure of the proposed active caching solution. The

proposed approach is capable of efficiently synthesizing answers for non-cached queries

using the partial order lists available in the cache. It uses both cached lists of objects in

the neighborhood of query objects, as well as inverted lists derived from these neighbor

lists. The basic solution drives The basic active caching technique utilizes the partial order

that can be used with any type of recommender system. The basic solution is built upon

the monotonicity feature of the cached partial order lists and uses aggregate functions to

assess the similarity between two objects. This solution successfully estimates the answer

for non-cached queries. However, due to inherent dependency on monotonicity, result

accuracy can be lower for datasets having lower levels of monotonicity.

To improve the accuracy of estimated results, a shared-neighbor similarity measure is

introduced latter in the dissertation. This method assess the similarity between two objects

in terms of the number of other objects in the common intersection of their neighborhoods.

The proposed method is general in a sense that it does not require that the features be drawn

from a metric space, nor does it require that the partial orders induced by the similarity
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measure be monotonic. It helps to improve the accuracy of query results that are actively

processed from the cache.

Finally, this work proposes a greedy balancing strategy for the selection of appropriate

cache data in order to answer maximum number of queries.The proposed greedy balancing

heuristic for the selection of the cache content provides a good coverage over the range of

possible queries, and improves both the hit rate and average recall even for small cache

sizes.

For the implementation of active caching approach, a two dimensional memory based

data structure has been introduced. This data structure keeps lists of cached queries as

forward lists whereas inverted lists for each object in the cache is maintained as well.

Forward lists help in answering cached queries where as inverted lists along with the

forward lists are used to estimate the answer for non-cached queries.

The evaluation focuses on the efficiency and effectiveness of the proposed methods

and the optimal settings to achieve the best performance. Efficiency of the system is

measured by hit rate, byte hit rate and execution cost. Hit rate is the proportion of requests

that are answered by the cache over the total number of requests whereas execution cost is

the total time to process given number of queries. Performance effectiveness is measured

by recall i.e., the proportion of the result returned from cache that would also appear in a

top-k query if requested from the recommender system.

1.4 Research Scope

Recommender System is a very broad area and several techniques are available to implement

these systems. This study proposes active caching solution for any type of recommender

system in general. Although this solution works with other applications that produce ranked

lists as an output, however, this study focuses on recommender system domain. Evaluation

is focused on two most famous techniques e.g. content based and collaborative filtering to

test the proposed approach due to the unavailability of datasets for other types of systems.
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There are several variations in the implementation of CB and CF systems. Mainly these

variations are due to the type of method used to compute relevancy amongst the objects in

the collection. The proposed solutions work for any variation of these recommendation

techniques. The proposed active caching approach is targeted to provide solution for

any type of recommender system however, it can also work for any nearest neighbor

application.

Recommender systems use various methods to compute relevancy scores amongst the

objects in its collection. While integrating these recommender systems in other applications,

the access to this internal relevancy information might be possible in some cases and not

possible in other cases. The proposed approach does not make use of actual relevancy

scores therefore can be used in both situations. One limitation of the partial order based

approach is that it produces lower recall rates with the datasets having lower levels of

monotonicity in the data. Shared neighbor approach overcome this limitation because it

does not depend on monotonicity in the underline data. The current study does not consider

dynamic changes in the object collection and the relevancy scores are computed for the

fixed collection. One extension to the study could be taking into

consideration dynamic changes in the object collection.

Main focus of this study is to provide active caching architecture along with

appropriate cache management policy for the selection of objects to be kept in the cache.

This study uses proactive cache loading approach where cache is loaded upfront and no

cache replacement policy is used. However, due to the unavailability of recommender

system query logs, comparison with other cache replacement policies is not done.

The evaluation focuses on the performance of the proposed methodology, which is

measured by the cache hit rate, execution cost and the average recall of the results processed

from the active cache. Other factors, such as system usability and user’s satisfaction, though

might be important to know, are not explored in this study.
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1.5 Intellectual Merit and Contributions

Most of the current studies in the area of recommender system have focused on the

effectiveness of generated recommendations. However, performance of these systems is

at risk if efficiency is not addressed properly. Caching has been successfully used in many

applications to improve response time and reduce the server workload. Traditional caching

approaches can easily be used with recommender systems however, limited performance

gains are possible with already available caching. This study proposes an active caching

solution for recommender systems that attempts to improve upon the performance of

traditional caching by synthesizing a query result from stored information whenever the

sought-after result is not explicitly present.

This study has targeted to address the issue of efficiency in recommender systems and

provides significant contributions in various ways. First, the conventional approach is to fill

the cache with those items most likely to be requested in future queries, the partial order

based active caching solution can instead support a form of data interpolation, in which

the cache is used to actively process most if not all query results. Second, it proposes the

design of shared-neighbor similarity measure for active caching to make the active solution

more general and effective. It allows for variation of such parameters as the size of the

cache, the length of ranked lists stored in the cache, and the number of items requested

by the query. Third, the greedy balancing cache selection strategy balances the size of

the inverted cache lists through reduction in variance of the lengths of these lists, thereby

balancing the frequency of appearance of objects in the cached top-k neighbor lists. By

achieving a better inverted list balance, it provides a better uniform coverage of the query

range, and increases the spatial locality from which most if not all query results can be

actively generated. The work proposed in this study is very general and can be used with

any nearest neighbor application with top-k similarity queries. Also it uses techniques to

drive ranking functions without any knowledge of the similarity values used in producing
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these lists and does not require that the features be drawn from a metric space. Three main

contributions of this work are

Partial Order Based Active Caching Approach: Chapter 4 proposes a partial order

based active caching approach. The main contribution of the partial order based active

caching algorithm is that it effectively estimates the answers for non-cached queries. The

algorithm builds upon monotonicity amongst partial order lists and aggregate functions

help to estimate the most relevant objects. The objective is to serve as many requests from

the cache as possible, by implementing a policy that takes advantage of the freedom to

provide a similar item. Furthermore, the solution is robust, unlike traditional approaches it

can even work in cases where queries are less likely to be repeated and can be applied even

when non-metric and probabilistic approaches are used to produce query results [105].

Shared Neighbor Similarity Measure: Chapter 5 proposes a shared-neighbor

similarity measure which makes the active caching solution more general and improves the

accuracy of estimated results by eliminating the dependency on monotonicity. It introduces

a general model, the Cache-Estimated Significance (CES), for the estimation of the results

of top-k similarity queries using shared-neighbor similarity measure on cached information.

The model does not assume any knowledge of the methods or similarity measures used,

nor does it require that the partial orders induced by the similarity measure be monotonic

and as such can be applied even when non-metric and probabilistic approaches are used

to produce query results. The main contribution of the CES approach is to facilitate the

design of shared-neighbor ranking formulae for active caching that allow for variation of

(and comparison across) such parameters as the size of the cache, the length of ranked lists

stored in the cache, and the number of items requested by the query . The CES model

improves upon the performance of partial order approach by eliminating the dependency

on monotonicity and helps to achieve higher recall for queries whose answers are estimated

from the cache [49].
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Greedy Balancing Cache Selection Policy: Chapter 6 proposes a greedy balancing

strategy, CES-GB, for the selection of appropriate cache data in order to answer the largest

possible number of queries. The proposed active caching strategy has been shown to

depend on the frequency in which the query object appears together with result objects

in the lists stored in the cache. The main contribution of the CES-GB algorithm is that it

balances the size of the inverted cache lists through reduction in variance of the lengths

of these lists, thereby balancing the frequency of appearance of objects in the cached

top-k neighbor lists. By achieving a better inverted list balance, CES-GB provides a better

uniform coverage of the query range, and increases the spatial locality from which most if

not all query results can be actively generated. CES-GB provides significant improvement

in the hit rate and average recall for small caches. Since the size of cache memory is

usually much smaller than the total dataset size, this approach can have a great practical

impact. Even for small caches, CES-GB may be sufficient to answer all queries actively,

without ever referring to the original dataset. This form of active caching therefore has the

potential to serve as a scalability technique. With the explosive growth of data repositories

and the popularity of similarity-based applications, the CES-GB approach opens doors for

new forms of indices based on data sampling [45].

This research is not only going to contribute to the

recommender systems domain, but also provide guidelines to develop caching solutions

in many other areas. For some applications, it may even suffice to answer all similarity

queries actively, without ever referring to the original data. Active caching could thus serve

as a scalability technique, as it provides the basis of space- and time-efficient approximation

of large databases.

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 provide review

of literature related to the study. It presents the background of recommender systems
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and overview of important recommender system techniques. It also discusses available

caching techniques and various strategies to implement them. Chapter 3 discusses possible

approaches for implementing caching solutions for recommender systems. It also outlines

the research questions, provides information about the datasets and performance measures

that will be used to assess the performance of proposed solution. Chapter 4 describes

the proposed framework in detail for the partial order based active caching solution. The

methodologies as well as the algorithms and test results are presented. Chapter 5 proposes

a shared-neighbor similarity measure for active caching solution that helps to improve the

accuracy of results, including the architecture, algorithm for estimation and experimental

results for this approach and comparison with the basic partial order approach. Chapter 6

proposes a greedy balancing cache selection policy which provides a good coverage over

the range of possible queries, and improves both the hit rate and average recall for small

cache sizes. The dissertation is concluded with the expected contributions of this research

in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

This chapter provides background information of recommender systems, goals of

recommender systems and various techniques used for building recommender systems. It

also provides insight into caching techniques, ways to implement these techniques and

discuss possibilities of implementing caching solution for recommender system.

2.1 Recommender Systems

Information available on the World Wide Web has been growing enormously. Web users

are often overwhelmed by the amount of information available creating an information

overload problem. Information overload is becoming more and more complex with the

rapid growth of web for the information seekers. It is difficult to make choices among

the alternatives without enough personal experience and information overload makes it

even more difficult. Many techniques have emerged to assist the web users in finding

the desired information more efficiently and effectively. One of the emerging techniques

is recommendation system which assists users in finding desired information. In everyday

life, people rely on “word-of-mouth” recommendations to make decisions [97].

Recommender system automate this natural social process to assist users. These systems

act as personalized decision guides for users, aiding them in decision making about matters

related to personal taste. Recommender systems attempt to reduce information overload

by providing a subset of items from a universal set that are likely of interest to the user. In

its most common formulation, the recommendation problem is reduced to the problem of

estimating likelihood of the items that have not been seen by a user. This is an important

application area and the focus of considerable recent academic and commercial interest.

11
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Recommender system roots can be traced back to the cognitive science, information

retrieval, forecasting theories, approximation theory, and management science [97]. Term

recommender system was first introduced by Resnick and Varian as a system which accepts

user input, aggregates them, and returns recommendations to users [108]. Research in this

field started after a series of shifts in information systems research. In the 1970’s great deal

of IS research was focused on information retrieval systems [114]. The emphasis of such

research was on retrieving information deemed relevant to queries. Development of vector

space model was the result of one of those research studies which permitted similarity to

be measured by the cosine of the angle between vectors [115].

In the 1980’s, with the rapid increase in the amount of electronic information,

researchers began to focus on removing irrelevant information rather than retrieving relevant

information which ignited research in the area of information filtering [102]. Belkin and

croft in one of the early research papers explained the idea of information filtering as a

process which involves removing persistent and irrelevant information over a long period of

time [13]. Information filtering later was termed as content-based filtering to the

recommender system community and has since been used in many domains [7] [95]. Content-

based systems model content features of objects and recommend items by querying such

features against preferences of the user [67]. Selective dissemination of Information was

one of the first information filtering systems [51]. This system provided information about

the availability of resources meeting the user’s search parameters. The selection was based

on a user profile which has a list of keywords that described their interests. Since then

content-based systems have be used in many domains; however, it is most effective in

text-intensive domains, e.g. digital libraries, which account for only a portion of the artifact

landscape. This limitation led the researchers to implement work on alternate information

filtering solutions.

One of the major advancement in the area of information filtering was the initiation

of a filtering system by Goldberg et al. Their system Tapestry became the first known
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recommender system which was based on collaborative filtering technique [41]. Tapestry

mail system developed at the Xerox used user reactions to the documents they read. It then

used these reactions to filter incoming streams of electronic documents. In this way these

systems result in filtering items for a user that similar users filtered. Collaborative filtering

introduced a major shift in information filtering research and since been applied in many

publicly available systems, and even some commercially available systems.

GroupLens is one of the first known project in the recommender system domain and

the main goal of this project was to explore automated collaborative filtering [63]. Soon

after, collaborative filtering technique was applied in filtering the information in Usenet

news [94]. Ringo agent was one of the first applications that provided personalized music

recommendations, which became available on July 1st 1994 [124]. In this method the

users provide the ratings of the music articles. Based on these opinions the user profile,

which changes over time, is created. The profile enables to create the recommendations

by utilizing the social filtering method. This method can be treated as the automation

of the wordofmouth recommendation [124]. The application that utilized concept of the

Ringo system was Fireflys system. This technology was further developed by Yahoo and

Barnesandnoble who signed up to use it [58]. One of the most famous implementations of

collaborative filtering is done by the book dealer Amazon.com that introduced the

BookMatcher system. At the beginning the BookMatcher was used for book

recommendations, but later on, the system started to recommend other types of items, using

also other methods of recommendation [58].

In recent years, online recommender systems are successfully providing assistance

to the users. Recommender systems are being successfully used by many online businesses

like amazon, ebay etc. E-commerce sites use these systems to suggest items to the customers

which assist them to determine which products to purchase. These items can be

recommended based on the most selling items on a site, on the demographics of the customer,

or through analysis of the past buying behavior of the customer to predict his/her future
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buying behavior. Recommendations could be provided by suggesting products to the

customer, providing personalized product information, summarizing community opinion,

and showing community critiques. Recommender systems help E-Commerce sites in

improving sales by helping customers find products they want to purchase; converting

browsers into buyers; improving by recommending additional products for the customer

to purchase; improving loyalty by creating a relationship with the customer [121].

Much of the recent work in recommender systems is focused on e-commerce

applications. However, many other domains have also opted to use this technology. iTunes

use it to recommend top songs, Bloglines suggest users about the similar blogs, the NYTimes

guides people to show most emailed articles, Del.icio.us uses this technology to recommend

most popular bookmarks, Netflix & Reel use it to recommend movies to their users. Content-

based book recommender system developed by Mooney & Roy uses information extraction

and a machine-learning techniques to recommend books [95]. Recommender systems

for web pages [101] and newsgroup messages [70] have also been developed to provide

recommendations in these domains. The list is growing rapidly and it seems like this

technology will become an essential part of most online applications [120].

2.1.1 Goals of Recommender Systems

Recommendation systems suggest objects and services that are likely of interest to the

user. The aim is to help the potential user to select the appropriate object and hence, act

as decision support systems. Furthermore these systems serve as a marketing tool for the

ecommerce stores to attract customers. In short, the main objectives of these systems are to

cop with the information overload problem, helps customers in decision making, and helps

to increase sales for e-commerce businesses [97].

Information overload is a common problem in the digital era and recommender

systems are a popular and effective choice for combating information overload. Information

overload is believed to occur when the information received poses an obstacle rather than an
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aid to the user [12]. This situation causes potentially useful and even critical information

to be overlooked and may result in productivity losses. In situations where amount of

information is overwhelming, the knowledge of which information is useful and valuable

matters most because the chances of overlooking critical information are much higher [46].

Recommender systems are able to select a small subset of objects that seems to fit users’

needs and preferences from a much bigger dataset. Users don’t have to browse through

all the objects in a dataset to find objects of interest thus effectively help to cop with the

information overload problem [94] [4] [60].

Recommendation systems are applications that identify list of objects of potential

interest to a user based on the user’s interaction with a system. By restricting the number of

suggested objects, recommender systems help people in decision making [97]. In general,

these systems help customers in making decisions like what items to buy, which news

to read next or which movie to watch, much faster than by the regular browsing. These

systems provide a web-based decision support system that analyze the users skills, attitudes,

preferences, etc., and then compute relevant information to support their decisions

concerning actions on a particular website.

Recommender systems can also be used as a marketing tool as they can help to

increase sales for e-commerce websites. Recommender system field is growing rapidly

and adopted as business tools and changing the way people do business over the internet.

Large business organizations adopting this tool to improve their sales [121]. Recommender

systems help to increase sales by converting browsers into buyers, cross-sell and improving

loyalty with a customer. Often site visitors pass browse through a website without

purchasing anything. Recommender systems can suggest items of interest to visitors and

help to converter them into buyers. These systems also help in increasing the average

order size through cross-sell. For example, a user might be suggested additional items in

the checkout process based on the products already in the shopping cart. Recommender

systems can improve loyalty through building relationship between a seller and a buyer .
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Sellers are eager to learn about the behavior of their users which can help to customize their

interaction with the users [121].

2.1.2 Types of Recommender Systems

Recommendations suggested by a recommender system can be obtained in different ways

[108] [120]which results in different implementations of these systems depending on the

information and techniques used to compute recommendations. content based [101] [23],

collaborative [101] [46], demographic, knowledge based [20], utility based, and several

kinds of hybridations among these methods.

Usually recommender systems are categorized by their approach to compute list

of recommendations. Recommender systems suggest documents, products, services etc.

to the users using various methods. These methods differ by the type of a background

data as well as the algorithm that is used to generate the recommendations. Adomavicius

mentioned three main categories of recommender systems that are most popular and

significant; collaborative filtering, content-based filtering, and hybrid methods [4]. Robin

Burke distinguished five techniques of the recommendation systems: collaborative, content-

based, demographic, utility-based, and knowledge-based [20]. Schafer et al. [121] listed

six categories as most current recommendation systems: raw retrieval, manual selection,

statistical summarization, attribute-based, item-to-item correlation, and user-to-user

correlation. In a recent study Castellano and Martinez mentioned content based, collaborative

, demographic, knowledge based, utility based and hybrid techniques as major recommender

system approaches [23].

Based on the above mentioned classifications, recommender systems could of types;

raw retrieval, manual selection, statistical summarization, attribute-based, content based,

collaborative, knowledge based, demographic, utility based and hybrid systems. Raw

retrieval or “null recommender” system provides customers with a search interface through

which they can query a database of items and is technically not a recommender application
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[120]. Similarly, in manual selection method recommendations are manually selected by

editors, artists, critics, and other experts. This process does not use computer computation

at all and “human recommenders” provide the recommendations therefore, not a pure

recommender application.

Amongst the remaining types, few are variations of a similar recommendation

technique and can be categorized under broader types. For example, statistical

summarization technique provides recommendations by statistical summaries of the

community opinion. This technique can be categorized as a type of collaborative filtering

because it uses the rating / history information similar to other CF systems. This technique

provides non-personalized recommendations, same recommendations for all the users,

which are based on with in community popular items using rating/history data. Similarly,

in demographic based systems, demographically similar users are identified and only rating

/ history from this set of users are used to compute recommendations. As such this is also

a variant of collaborative filtering algorithm. Attribute based system uses properties of

the items and users interest in those properties. Attribute based systems use customer’s

profiles that indicate likes or dislikes to process recommendations for a user [120]. This

type of technique has also been used in some content-based systems where user history or

profile information is used along with the content information to make recommendations.

In utility based system features of items in the set are identified. Then a utility function

that defines the user’s preferences is applied to this set to find out the relevance of each

item to this function. This type of system is also similar to content based systems that take

into account user’s preferences either implicitly or explicitly. Explicit information could be

possible form profiles and implicit information can be extracted from user rating / history

data.

Based on the above discussion, recommendation techniques can be categorized into

four broader recommendation techniques; content based, collaborative filtering, knowledge

based and hybrid as shown in the Figure 2.2 and explained in the Figure 2.1.
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Recommendation
Approach

Computation
Process

Variations

Content-Based Identify features of 
objects in set O and
compute k nearest 
neighbors of object o in 
the set 

Distance based : Uses Euclidean 
or other distance functions to 
compute K-NN 

Similarity based : Uses Cosine 
or other similarity functions to 
compute K-NN 

Clustering based : Uses a 
clustering method to compute K-
NN

Attribute based: Consider user 
u’s rating /history or preferences 
also along with the object 
features. 

Utility Based – Uses a utility 
function defined by u over objects 
in O

Collaborative 
Filtering 

Based on ratings 
/history data Identify 
users in the set U
similar to u and
predict objects for u

User to user correlation : Find 
out similar users from rating / 
history data 

Item to item correlation : Find 
out similar items from rating 
/history data 

Demographic based - identify 
demographically similar users 
and only use rating/history from 
those. 

Statistical summaries: Uses 
popularity measure / aggregate 
functions. 

Knowledge-Based Identify features of 
objects in O and how 
these matches with a 
user u’s profile 

Hybrid Combine two or more 
of the above mentioned 
approaches. 

Figure 2.1 Table categorizing famous recommendation techniques discussed in the
literature according to the implementation method.

Content Based: Content-based (CB) recommender systems recommend items based on

the products the customers have expressed interest in. For example, if a customer has

checked an item or placed an item in his/her shopping cart, the recommender system

may recommend items similar to that. Generally in content-based approach objects are

recommended based on correlation between objects in the collection, but in some systems,

like attribute based, user profile is also managed and used. Content-based system uses

the description of the items that were previously watched or purchased by the customer

and/or evaluated by them in a positive way. Content-based system recommends items to

the customers similar to the items they liked in the past [60] [94].
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Figure 2.2 Classification of recommendation techniques into four broader categories.

Content-based systems are normally based on observations of the user’s selection and

generate recommendations automatically. Automatic system doesn’t require any explicit

input from the user whereas manual system requires the user to explicitly type in several

items of interest in order to generate recommendations. Another variation in recommender

systems is whether the history rating information is required or not. Transient systems do

not need to know any history / rating information about the user to generate

recommendations. On the contrary non-transient or persistent system requires history /

rating information on the products he/she has selected or purchased in the past to produce

recommendations for a particular user. Content based systems are usually transient, for

example, moviefinder and reel.com systems recommend products to a user based on another

product that user liked it in the past. These systems are transient as well as automatic,

because they do not require any action or information about the customer. CDNOW

application on the other hand is different. In this album advisor user has to type in a set

of artists and system them provides recommendations based on this list. This application

is still transient, however, is not totally automatic [120]. Some of the CB systems are also

persistent and keep information for each user to generate recommendation. Output of a

content based system is a list of items that are most similar to the one that customer has

shown interest in. This list is ranked in the order of relevancy to the item that the user

has shown interest in. This relevancy can be calculated by various measures for example,

cosine similarity, Euclidean distance, Pearson’s correlation etc.

The content-based approach to recommendation has its roots in the information

retrieval (IR) community. In 1992, Belkin and Croft compared information filtering and
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information retrieval systems in the ACM special issue on information retrieval. They

explained that information retrieval systems return relevant information in response to

a short-term information-seeking goal posed via queries, whereas information filtering

involves removing persistent and irrelevant information over a long period of time [13].

Information filtering later became known as content-based filtering in the recommender

system domain [7] [95]. Content-based systems model content features of objects and

recommend items by querying such features against preferences of the user [67]. Selective

dissemination of Information was one of the first information filtering systems [51]. This

system provided information about the availability of resources meeting the user’s search

parameters. The selection was based on a user profile which has a list of keywords that

described their interests.

Content-based systems have been used in many domains and particularly are very

effective in text-intensive domains. Content features are more naturally available textual

objects, such as books and articles. The content of a book or article available for

recommendation generation could be title, abstract, authors, and even the full text. Most

of the current content-based filtering approaches combine techniques from Information

Retrieval and Machine Learning. Many approaches treat the recommendation problem

as a classification problem using supervised learning techniques [11] [95]. Using these

classification techniques the objects are categorized in predefined categories based on their

content features. Some other approaches treat content-based filtering as a regression

problem, in which a statistical model, especially a regression model, is learned from the

training data and used to predict the ratings of documents unknown to a user [135]. Content-

based filtering technique is usually based on three main modules: representations of user

profiles, modeling documents and matching them to user profile representations.

User profile creation can be achieved through a manual process or through automatic

categorization techniques. Manual approaches have been used to develop user’s profiles

in a book recommendation system [109]. In this system while evaluating recommended
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books, users have to explicitly tell the system the information about themselves. Automated

techniques provide new ways of exploiting content-based filtering to generate

recommendations. Supervised learning approaches automatically form user profiles from

a set of training documents [95]. In this process first a user selects and rates a few training

books on a given scale. Classification system then builds a model for the user by analyzing

the items user liked in the past. In the Fab system [10] the user’s profile is developed and

maintained by a personal selection agent.

Document modeling is also done in a similar way by extracting bags of words for

each document. One way is by using categorization techniques which classify documents

into predefined categories. The classifier determines whether a document belongs to a

particular category or not [95] [11]. Some other approaches try to predict the degree of

relevance of a document to a user’s profile [91] [38]. The degree of relevance is computed

through similarities between the vectors of words for both the document and the profile.

A similarity score can be computed by different measures - Euclidian distance, Pearson

correlation, and cosine similarity are some of the well known methods.

Personalized Recommender System (PRES) creates hyperlinks for a web site which

contains pieces of advice about home improvement and makes it easier for a user to find

interesting items. System makes these recommendations by comparing a user’s profile with

the content of each document in the collection. The contents of a document are represented

by a set of terms. The user profile is also represented with a set of terms by analyzing

the content of documents that the user found interesting in the past. User’s interest can

be determined through implicit or explicit feedback. Explicit feedback requires a user to

provide feedback about documents . On the other hand implicit feedback is recorded by

observing the users actions, e.g., clickstream information [91].

PURE [142] a PubMed article recommendation system, is based on content-based

filtering. In PURE web-based system users can add/delete their preferred articles. Once

articles are registered, PURE then performs model-based clustering of the preferred articles
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Figure 2.3 Screen shot of PubMed System showing an implementation of content based
system.

and recommends the highly-rated articles by the prediction using the trained model. Model-

based clustering assumes that the data were generated by a model and tries to recover the

original model from the data. This trained model then defines clusters and an assignment of

documents to clusters. PURE updates the PubMed articles and reports the recommendation

by email on daily-base. This system reduces the time required for gathering information

from PubMed. Figure 2.3 shows a sample screen of PURE system which uses content

based approach.

Content-based systems provide several benefits over other recommendation techniques.

Some other techniques utilize social filtering in which a system maintains preferences of

individual users. A recommendation request from a user is fulfilled through finding other

users whose preferences co-relate significantly with this user, and system recommends

other items preferred by like minded users [41] [124] [108]. These approaches assume that

system has sufficient number of preferences from users and preferences of one user match

with several other users. In this scenario objects that have not been rated by enough users

cannot be recommended. Hence, these approaches generally tend to recommend objects

that are popular among other users. Furthermore it is impossible for these approaches to
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recommend items that no one has yet rated or purchased. Similarly, when a user first start

using these systems, they have no ratings on record hence, if it impossible to find any

correlation with other users.. In general, these issues collectively are cold-start problem

in which a recommender system cannot make effective recommendations due to an initial

lack of ratings [119]. Content-based systems on the other hand uniquely characterize each

user without matching his preferences to anothers preferences. Therefore these systems

require the analysis of items that one independent user has seen and does not require other

users input. Content-based approaches do not have a cold start problem as faced by other

approaches. It means reliable recommendation can be created only when the system has the

exact knowledge about the users’ preferences and needs [4] [60] Objects are recommended

based on information about the object itself which can help in providing explanations about

what caused an item to be recommended, potentially giving users confidence in the system

and feedback about their own preferences [95].

The content-based approach to recommendation has its roots in the information

retrieval (IR) community, and consequently inherits many of their limitations. Due to the

diversity of resources on the web, not all of the objects could be properly represented

using traditional IR techniques. The retrieval of the information from the text document

is comparatively easy than other types of objects (images, audio/video etc.) [10]. Also

the textual representations capture only one aspect of the content (text), but ignore many

others that would influence a user’s experience. For example, IR techniques completely

ignore aesthetic qualities like readability and all multimedia information. Content-based

systems also face specialization problem, it means that the items suggested to the user

will be very similar and the customer can be bored by the continuous watching of the

documents with overlapping content. Another problem is objects that do not have the exact

features specified in the user’s profile may not get recommended even if they are similar to

user’s interest [119] . Collaborative filtering generally leads to more different items that are

equally valuable which is referred to as novelty or serendipity of these CF systems [46].



24

In CB system cross-genre recommendations are not possible for example, a user can only

get recommendations very similar to what he / she is looking at and it limits the system to

provide recommendations from any other categories. For example, in CB systems normally

users cannot get movie recommendation while buying or viewing a book.

Collaborative Filtering: Collaborative Filtering is a process of filtering or evaluating

items using the preferences of other people. Work on collaborative filtering (CF) started in

early 1990’s, but it takes its roots from something humans have been doing for centuries

sharing opinions with others [119]. One of the major advancement in the area of information

filtering was the initiation of a filtering system by Goldberg et al. Their system Tapestry

became the first known recommender system which was based on collaborative filtering

technique [41]. Tapestry mail system developed at the Xerox used user reactions to the

documents they read. It then used these reactions to filter incoming streams of electronic

documents. In this way these systems result in filtering items for a user that similar users

filtered. Collaborative filtering introduced a major shift in information filtering research

and since been applied in many publicly available systems, and even some commercially

available systems.

The basic idea of CF-based algorithms is to provide item recommendations or

predictions based on the opinions of other like-minded users without using any descriptive

data about items as compared to content-based systems. Few studies showed that

collaborative recommender systems can be more accurate than content-based even without

using the descriptive data [20] [6]. CF is domain independent in that it performs no content

analysis of the items in the domain. Rather, it relies on user opinions about the items to

generate recommendations. The opinions of users can be obtained explicitly from the users

or by using some implicit measures.

Collaborative filtering methods have been widely used in academia as well as in

industry. The electronic mail was one of the first areas where CF was used [42]. GroupLens,
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developed at University of Minnesota, was also amongst the first systems that utilized this

technique to calculate the correlation between the users of Usenet newsgroups automatically

[107]. Implementation of a networked system called Ringo was also based on this technique,

which makes personalized recommendations for music albums and artists [124]. Another

study showed that the video recommendations provided by a CF system were highly effective

[47]. Currently this technique is being used in many commercial applications. Amazon and

Moviefinder use Collaborative filtering technique to recommend products to their customers.

In these systems users have to provide ratings for different products and this rating

information is used recommend other product that might be of interest to the user. Ratings

are provided by the user manually hence, these systems are not considered fully automatic.

CDNOW is a fully automatic system, user behavior is inferred by the actions of a customer

on the CDNOW website. General recommendation engine (GRE), developed for National

Science Digital Library collections, is also a fully automatic system in which users clicks

are stored and processed to recommend documents using association rules [136].

The output of a collaborative filtering algorithm is a list of items for a particular

user based on the user’s previous likings and the opinions of other like-minded users.

Like-minded users are selected using the history / rating data and finding the correlation

amongst users. In a typical CF system, there is a list of m users and a list of n items.

Each user has a list of items which the user has expressed his opinions about. Opinions

can be explicitly given by the user as a rating or can be implicitly derived from purchase

records, by analyzing timing logs, by collecting web hyperlinks etc. There are number of

collaborative filtering algorithms that can be divided into two main categories user-based

(memory-based) and item-based (model-based) algorithms [17].

User-Based Correlation: User-based algorithms utilize the entire user-item database to

generate a prediction. It is an information filtering technique that use group opinions to

recommend information items to individuals [107] [63]. User-based correlation utilizes the
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correlation between a particular user and other users who have purchased or liked an item.

These systems use the history / rating information to find out neighbors of a given user.

These neighbors have either rated various items similarly or they tend to buy similar sets

of items as the given user. Once a neighborhood of this user is formed, rating / history

information of these users is used to produce a prediction or top-N recommendation of

unseen objects for the active user. This top-N recommendation list is ranked in the order

of relevancy. Relevancy can be computed using various methods and the most famous are

cosine similarity and pearson correlation. This technique, also known as nearest-neighbor

or people to people collaborative filtering is very popular and widely used in practice.

User-based correlation systems are persistent since learning about patterns between

users requires substantial data which is collected over time. However, these systems can be

automatic as well as manual. An automatic system does not require users to provide any

information explicitly. Browsing / click-stream history information is stored implicitly and

latter used it to produce recommendations. On the other hand in manual system users

have to explicitly rate the products and this rating information is used to compute the

recommendations [120].

User-based collaborative filtering systems use the opinions of a community

to recommend items to individuals. In the music example, a collaborative filtering

recommender would identify other people who share your music tastes, and would then

recommend to you music that those “neighbors” liked but that you hadn’t yet heard.

MovieLens utilizes user-based collaborative filtering technique and matches preferences of

a user with the preferences of other users with similar movie preferences [63]. My CDNOW

is a system that uses user-to-user correlations to identify a community of customers who

tend to own and like the same sets of CDs. New music recommender iLike suggests songs

you might enjoy based on your listening habits and other users with similar tastes. The

principle is that if several members of a community owned and liked the latest album, then
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Figure 2.4 iLike uses user-based collaborative filtering approach.

it is highly likely that another user from this community will also like it. Figure 2.4 shows

music recommendations from iLike system.

User-based algorithms face sparsity and scalability problems. Sparsity problem arises

because normally there are large numbers of items in commercial recommender systems

like Amazon.com and even active users may have purchased less than 1% of the items. This

results in poor accuracy of the recommendations. Scalability is another issue which will

arise when the number of users and items will increase. With millions of users and items it

will be time expensive operation to compute the recommendations. Item-based correlation

approach can solve the sparsity and scalability issues.

Item-Based Correlation: Unlike the user-based collaborative filtering algorithm the item-

based approach looks into the set of items the target user has rated. System identifies

items frequently found in “association” with items in which a customer has expressed

interest. Association may be based on co-purchases, ratings by common customers, or

other measures. Using this information item similarity is computed, for example, similarity
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between object i and j is computed by first isolating all the users who have rated / purchased

both items and then applying a similarity measure like cosine similarity or Pearson

correlation. Once the most similar items are found, the prediction is then computed by

taking a weighted average or regression value of the target user’s ratings. Final list is

ranked in the order of regression values computed.

Item-based correlation takes a probabilistic approach and the collaborative filtering

process computes the expected value of a user prediction, given his ratings on other items.

Item-based collaborative filtering scales to massive datasets and produces high quality

recommendations. Rather than matching the user to similar customers, item-to-item

collaborative filtering matches each of the user’s purchased and rated items to similar

items, then combines those similar items into a recommendation list [76]. Amazon.com’s

recommender system is one of the famous item-based CF systems. Amazon.com uses a two

stage process to generate recommendations. In the first offline stage the algorithm builds

a similar-items table by finding items that customers tend to buy together. As this process

is done offline, systems scalability issue does not arise. In the second stage this algorithm

finds items similar to each of the user’s purchases /ratings, aggregates those items, and then

recommends the most popular or correlated items. This process is very quick as it only

depends on the number of items the user purchased or rated in the past. Figure 2.5 shows a

sample list of recommendations from Amazon.com using item-based correlation approach.

Collaborative filtering solves several limitations in content-based filtering techniques

[10]. Due to the diversity of resources on the web, not all of the objects could be properly

represented which limit the implementation of content-based system in these domains.

For instance, retrieval of the information from the text document is comparatively easy

than other types of objects (images, audio/video etc.) [10]. Collaborative filtering on the

other hand do not make use of object features rather uses opinion of other users to make

recommendations and can be effectively used with any type of object collection. Similarly,

textual representations capture only one aspect of the content (text), but ignore many others
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Figure 2.5 Amazon uses item-based collaborative filtering method.

that would influence a user’s experience. For example, IR techniques completely ignore

aesthetic qualities like readability and all multimedia information. Collaborative system

can effectively make use of aesthetic properties noted by other users with similar interests

thus can effectively overcome this issue. Content-based systems also face specialization

problem, it means that the items suggested to the user will be very similar and the customer

can be bored by the continuous watching of the documents with overlapping content.

Collaborative filtering generally leads to more different items that are equally valuable

which is referred to as novelty or serendipity of these CF systems [46]. In CB system cross-

genre recommendations are not possible for example, a user can only get recommendations

very similar to what he / she is looking at and it limits the system to

recommendations from any other categories. On the other hand collaborative filtering can

provide cross-genre recommendations based on the opinions of likely minded users.

Despite being a successful technique in many domains, CF has its share of

shortcomings. One of the major issues with collaborative techniques is cold-start problem.

Cold-start problem means system has no way to recommend a new item to users or to

provide an accurate predictions for a new user. Due to cold-start problem collaborative
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recommender system cannot make effective recommendations [119].

Collaborative approaches process recommendations by finding users whose preferences

correlate significantly and recommends items preferred by likely minded

users [41] [124][108]. These approaches assume that system has sufficient number of

preferences from users and preferences of one user match with several other users. In this

scenario objects that have not been rated by enough users cannot be recommended. Hence,

these approaches generally tend to recommend objects that are popular among other users

and cannot effectively utilize the whole item base. Furthermore it is impossible for these

approaches to recommend items that no one has yet rated or purchased. Similarly, when a

user first starts using these systems, they have no ratings on record hence, if it impossible

to find any correlation with other users. Content-based filtering is based on the document

features and as such does not face such cold-start problem. Condliff et al. proposed a

Bayesian methodology for recommendation system which uses Bayesian theory to give a

good prediction by fully incorporating all of the available data to cop with the cold-start

problem [31]. Claypool et al. also proposed an approach to solve cold-start problem what

was based on a weighted average of the content-based filtering prediction and collaborative

filtering prediction [30].

Another challenge that collaborative filtering systems face is sparsity problem which

is due limited ratings or opinions from users. It is very difficult to convince users to provide

their opinions explicitly. Since these systems depend on the votes of users compute the

similarities among users, it is very important to get enough opinions from the users. Due

to this reason usually in collaborative systems, the number of ratings already obtained is

usually very small as compared to the number of ratings that need to be predicted. For

example, in the movie recommendation system, there may be many movies that have

been rated by only few people and these movies would be recommended very rarely if

they were rated highly. Also, for the user whose preferences are uncommon, it is highly

likely that there may not be any other similar users, which result in poor recommendations
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[10]. Maintaining and using a profile can help mitigate the sparsity problem. In this way

two users could be considered similar if they have similar profiles even if enough rating

information is not available. Pazzani used the gender, age, area code, education, and

employment information in the profile to compute similarities amongst users [101]. This

type of filtering techniques is also referred to as demographic recommender system [101].

In another study sparsity issue was handled by implementing associative retrieval framework

and activation algorithms which helps to determine transitive associations between users by

their transactions and feedback [52]. In some other studies Singular Value Decomposition

(SVD) was used to cop with the sparsity problem by reducing the dimensionality of sparse

ratings matrices [117] [92]. Although explicit feedback mechanism e.g., rating information,

leverage the calculation of similarity, implicit feedback is usually easier to record and

more helpful to decrease the sparse matrices. Implicit methods can be implemented by

monitoring user’s behavior or user’s browsing time on the page. Clickstream information

or browsing time shows users interest in a particular website or object. Explicit methods

require users to provide input in the form of ratings, voting or opinion in order to provide

recommendations. The system also can use compensation methods in which user only gets

recommendations after providing some rating information.

Another challenge of conventional collaborative filtering algorithms is the scalability

issue [118]. As the amount of information increases quality of recommendation becomes

better but it affects the efficiency. With million of users providing rating on hundreds of

thousands of items create huge matrices which results in scalability issues for collaborative

filtering systems. These approaches often cannot cope well with the large numbers of users

and items. The model-based collaborative approaches alleviate scalability issues through

upfront computation but these approaches tends to limit the range of users [141].

Knowledge Based: One of the major shortcomings of the CF or CB techniques is that

they cannot provide recommendations with a holistic view of the domain as they cannot
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provide explanations about why the recommended objects are relevant to the user within

the domain. Knowledge based approaches work by mapping users’ needs to product

features in order to provide more personalized recommendations. These systems gather

information on the requirements of desired products, and tries to map the user information

to appropriate item descriptions [29]. These types of recommender systems are able to

reason about the relationship between the user need and a possible recommendation [20].

Although prior research has shown content-based and collaborative filtering

as successful techniques to aid users but there is emergent requirement of more

personalization. Knowledge-based recommender systems can generate more personalized

recommendations while taking into consideration background knowledge of the users.

These systems map user needs to the products and suggest them to the users. Knowledge-

based approaches utilize the functional knowledge: about how an item can meet a specific

user need, and can therefore reason about the relationship between a need and a possible

recommendation. Knowledge-based recommender systems do not generalize user base,

rather match user’s need with the set of available options. These systems do not incur

ramp-up and sparsity problems because they do not use statistical evidence to provide

recommendations [20]. Schafer et al. call Knowledge-based recommendation the “Editor’s

choice” method [120].

Knowledge-based recommender systems provide recommendations based on

inferences about a user’s needs and preferences. Although all recommendation techniques

use some kind of inference, however, Knowledge-based systems have also functional

knowledge not used in other techniques. This functional knowledge tells how a particular

item meets a specific user need. This functional knowledge is either entered manually by

experts like in case of Entre system or acquired automatically by computer programs. For

example, in recommendation engine’s KB system, this functional knowledge is extracted

by running naive bayes classifier. Functional knowledge helps in reasoning about the

relationship between a need and a possible recommendation. This functional knowledge is
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stored in a user profile and it can be any knowledge structure that supports this inference.

The knowledge structure could be very simple, as in Google, uses information about the

links between web pages to infer popularity and authoritative value [19]. In other cases

it can be more representative of the user’s needs. In such cases it requires the additional

information about users and products that gives the system power in difficult recommendation

tasks, and also controls both the ramp-up problem and the sparsity problem experienced by

current recommender systems [133]. The Entree system and several other recent systems

employ techniques from case-based reasoning for Knowledge-based

recommendation. Entree uses knowledge of cuisines to infer similarity between restaurants

(Robin Burke). Entree is an interactive system that recommends restaurants to the user

based on factors such as cuisine, price, style, and atmosphere, etc. or based on similarity to

a restaurant in another city. The user can then provide feedback such as finding a nicer or

less expensive restaurant and the system will refine the results according to user input.

Output of a Knowledge-based system is a ranked list of items as in other recommender

systems. However, this ranking process is different than other systems. In Knowledge-

based system a score is given to each particular item’s feature that meets any of the user’s

need. Scores for each item are combined which shows how well a particular item fulfills

user’s need. In the end items are ranked from the highest score to the lowest and top-k are

presented to the user.

Knowledge-based system does not involve a start-up period during which its

suggestions are of low quality, therefore these systems don’t have ramp-up or cold start

problem as in collaborative filtering systems. A Knowledge-based recommender cannot

find user groups, the way collaborative systems can, however, it can make recommendations

as wide-ranging as its knowledge base allows.

Although Knowledge-based systems provide certain benefits over content-based and

collaborative filtering systems, however, they also have limitations of their own. Primarily

these systems have disadvantage due to limitations in acquiring knowledge. These systems
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require three types of knowledge, Catalog knowledge, functional knowledge and user

knowledge, to provide recommendations. Catalog knowledge is about the items being

recommended and their features. Functional knowledge helps in mapping user’s needs

with the object that might satisfy those needs. User knowledge is required to provide

good recommendations. This knowledge could be in the form of demographics or specific

information about the need. User knowledge is the most challenging and in the worst case

it is an instance of the general user-modeling problem [133].

Hybrid: Hybrid recommendation approaches combine techniques of other type of

recommender systems. The main goal of hybrid approach is to avoid the shortcomings of

the other enumerated methods and get advantage from their benefits [4] [94] [101]. Usually

techniques from content-based and collaborative filtering are combined to develop hybrid

systems. There are several possible ways to combine different recommender techniques

in order to develop a hybrid system [4]. It can be done by implementing various methods

separately and combining the outputs of these methods [136]. The outputs received from

individual systems can be combined using a linear combination of ratings [30] or a voting

scheme [101]. Another way is by combining characteristics of different approaches into

one system and in this way approaches complement each other and contribute to the others

effectiveness [94]. Melville et al. proposed a hybrid approach in which a collaborative

filtering based on users’ ratings is supplemented with more ratings obtained via content-

based predictor [89]. Fab is based on collaborative filtering but also maintain the content-

based profiles for each user [10].

Many hybrid recommender systems have been successfully built in the past. TechLens,

a hybrid recommender algorithm, successfully combined Collaborative Filtering and

Content-based Filtering to recommend research papers to users. This algorithm combined

the strengths of each filtering approach to address the individual weaknesses [132]. Stanford

University digital Library system Fab recommended Web pages by choosing neighbors for



35

CF-based recommendations using CB-based user profiles. Combining both collaborative

and content-based filtering systems, Fab eliminated many of the weaknesses found in each

approach. Fab’s hybrid structure allows for automatic recognition of emergent issues

relevant to various groups of users. [10]. Woodruff successfully developed six hybrid

recommender algorithms that combined textual and citation information in order to

recommend the next paper a user should read from within a single digital book [138].

Hybrid recommender systems combined with Knowledge-based approach can improve

recommendation accuracy and overcome some of other limitations of traditional

recommender systems. EntreeC system combines knowledge-based recommendation and

collaborative filtering to recommend restaurants [20].

Output of a hybrid system is a ranked list of items. This ranked list can be formed by

using the individual lists from each type of recommender system and then aggregating the

results. This list integration operation can be done by simple aggregation function like max,

min, avg. or more complex functions like skyline etc. In case of general recommendation

engine [136] this list was formed using simple aggregation function.

Currently hybrid recommendation systems have been used by many commercial

website like netflix.com. The Netflix Web site makes recommendations automatically using

a system called CineMatch. CineMatch uses information from various sources to determine

which movies customers are likely to enjoy. These sources include films themselves, which

are arranged as groups of common movies similar to content based systems. Customers’

ratings, rented movies information, current queue and the combined ratings of all Netflix

users are also used in the process of making recommendations from cinematch. Collaborative

systems commonly use such sources of information to make recommendation. Figure 2.6

shows a sample screen for netflix recommendations.

Several researchers have compared the performance content-based and collaborative

approaches alone with hybrid approach and showed that the hybrid approaches can be more

accurate then both of these individually. [10][89][101][129].
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Figure 2.6 Netflix uses hybrid approach to process recommendations.

2.1.3 Performance Challenges

Recommender systems face performance challenges in terms of effectiveness of the

recommendations as well as how efficiently these recommendations are being computed.

Effectiveness: Recommendation effectiveness has been a major concern for researchers

since the beginning of research in this field. Several recommendation techniques have been

proposed to cop with this problem. Over specialization , and limited feature extraction

capabilities result in effectiveness issues for content-based systems where as sparsity, and

cold-start problems are major hurdles to produce quality recommendations using

collaborative systems. Effectiveness of a recommendation technique is usually measured

through coverage and accuracy metrics. Coverage measures the percentage of items for

which a recommender system can make predictions [46]. Coverage can be measured

generally through statistical or decision-support [46] methods. Statistical methods generally

compare the estimated ratings with the actual ratings in the user item matrix. Decision-
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support methods measure how well a recommender system can make predictions about

highly relevant items. Most of the research studies in recommender system domain have

focused on improving the quality or effectiveness of recommendations. Inception of various

recommendation techniques is primarily due to the effort of producing effective

recommendations that can help users.

Efficiency: In recommender systems the result of a query is a ranked list of items based

on relevancy score. Generating ranked lists is typically an expensive operation that often

results in access latency. This is especially problematic when the volume of data is extremely

big. This problem is often referred as scalability issue [118]. As the amount of information

increases quality of recommendation becomes better but it affects the efficiency. With

million of users providing rating on hundreds of thousands of items create huge matrices

which results in scalability issues. These approaches often cannot cope well with the large

numbers of users and items. Another problem is due to the presence of these matrices

on the secondary storage devices. These devices are slow in access and result in access

latency. Model-based CF approaches are developed to cop with the scalability problem to

some extent. How these approaches can only provide limited performance improvement

in terms of efficiency. With the increasing popularity of the World Wide Web, amount

of information and number of users are growing exponentially. This increase has created

challenges for developers to provide efficient solutions. Traditional applications such as

file transfer, news and email need more throughputs but can tolerate delays. However,

applications of interactive nature like recommender systems require latencies on the order

of seconds [15]. Recommender Systems, being computationally intensive and interactive

applications, cannot tolerate access latency. Although advanced as well as more powerful

physical resources can help improve the performance yet there is dire need for further

improvement by using other optimization techniques.



38

Caching is one of the optimization techniques and it has seen significant success in

reducing latency in storage systems [62][65][72] and in processor memory hierarchies

[128]. These techniques can potentially be used to cop with the efficiency problem in

recommender systems. Web-Caching is one of the optimization techniques to improve

the efficiency of web applications. Cache is a temporary storage area where popular

or frequently accessed data is stored for rapid access. Once the data is stored in the

cache, future use can be made by accessing the data in the cache, rather than re-fetching

or recomputing the original data. This results in reducing the average access time and

improving the response time. Caching of results was noted as an important optimization

technique in Google search engines [19]. There has not been any explicit study on caching

for recommender system applications however, this approach is very much applicable for

any type of recommendation system.

2.1.4 Summary

Information overload is becoming more and more complex with the rapid growth of web

and recommender system is a viable solution to cop with this problem. Recommender

systems assist users in finding desired information and making decisions about product and

services. Recommendations can be generations using several techniques where as most

popular are content based and collaborative filtering approaches. The former generates

recommendations based on the similarities of content while the later provides

recommendations based on users’ evaluations and preferences [75]. Both of these

approaches are being widely used but have their own limitations in providing

quality recommendations. Knowledge-based systems avoid some of the limitations in

content-based and collaborative systems but have its own disadvantages. Hybrid techniques

compute recommendations by combining multiple approaches into a single system [10]in

order overcome the disadvantages of individual systems. Figure 2.7 summarizes the

advantages and disadvantages of each of these approaches.
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Figure 2.7 Table summarizing the benefits and limitations of famous recommendation
approaches.

Generating recommendation lists requires an enormous amount of resources that

often result in access latency problem. However, applications of an interactive nature like

recommender systems require latencies on the order of at most several seconds [86].Sites

risk losing patronage due to the frustration of users by slow access to information. Caching

frequently accessed data has been a useful technique for reducing stress on limited resources

and improving response time. Web caching is one of the optimization techniques which is

successfully used to improve the efficiency in various applications and in the next chapter

provides literature review of caching.

2.2 Caching

Recommendation techniques are found to be very effective in mitigating the information

overload problem. No matter, how effective any such application is, poor efficiency can

result in non-usage of the system and ultimately leads to the failure of such system. Poor

efficiency is always a big threat in the success and usefulness of any system. Many techniques

have been emerged in the recent years to cop with the problem of efficiency in web based

systems.
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Research for improving performance of web based systems can be divided into two

areas: improvement in web servers and improvement in networks. Previous work in

many studies has focused on techniques for improving server performance. These studies

often suggest improvement to application and the operating systems. Research in the

area of network has focused on improving network infrastructure performance for Internet

applications. Researchers have used web caching in both areas to improve the performance

of web based systems. It is a technology targeted to reduce the transmission of redundant

network traffic, server load and access latency.

Cache stores popular or frequently accessed data for rapid access. Once the data

is stored in the cache, future use can be made by accessing the data in the cache, rather

than re-fetching or recomputing the original data. This results in reducing the average

access time and improving the response time. Caching of results was noted as an important

optimization technique in Google search engines [3].

Caching has been effectively used to decrease the delay of access to data available

over the web. It helps reduce the page generation delay in generating the web pages

requested by the web users. Also local Cache helps in reducing the network latency where

request to a document on the network results in a cache hit on the local machine.

2.2.1 Caching Overview

A cache retains a copy of data which is computed earlier or stored some where else and

is costly to fetch or to compute when compared to the cost of fetching from the cache.

In general, a cache acts as a temporary storage place where frequently accessed data is

retained for quick access. After the data is available in the cache, future requests for this

data are fulfilled by accessing this cached data rather than re-fetching or recomputing the

original data and it helps to decrease average access time.

Caching concept was first introduced in 1967 as an exciting memory improvement

in Model 85, a latecomer in the IBM System/360 product line [104]. Since then it has
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been used to improve efficiency in various domains. CPU cache helps expedite data access

that the CPU would otherwise need to fetch from main memory. The page cache in main

memory is usually managed by the operating system kernel helps improve the performance

of main memory. Database caching can substantially improve the throughput of database

applications. Web caching deals with problems such as redundant data transmission, limited

bandwidth availability, slow response times, and high costs and target to improve

performance in these areas.

Caching techniques have seen significant success reducing latency in storage systems

[62][65][72] and in processor memory hierarchies [128], it remains to be seen how effective

such techniques can be within the World Wide Web.

2.2.2 Cache Location

Proxy Caching: Proxy caching, also known as forward proxy caching, are usually

deployed by internet service providers, schools and corporations to save bandwidth. A

proxy server gets HTTP requests from users, matches it with the information inside the

cache, if found sends the requested object back to the user. If not found in the cache, a

request is sent to the origin server on behalf of the user. The object is then fetched from the

origin server, a copy of it is may be retained in the cache before sending it to the user. A

careful placement of proxy caches can lead to bandwidth savings, quicker response times,

and enhanced accessibility to static web objects [98].

A proxy server can be placed in the user’s local computer or at specific key points

between the user and the destination servers but normally it is positioned at the edge of a

network in order to serve large number of internal users. In this type of approach users

have to manually setup the appropriate proxy for use. One of the drawbacks of this type

of caching is that it is a single point of failure in the network. Using proxies between

clients and servers reduces bandwidth usage, server load and reduces user access latency
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Figure 2.8 Figure showing the architecture of proxy caching.

[37][85][111]. However, proxy caching has significant overhead in placing dedicated proxies

among the Internet. Figure 2.8 depicts a proxy server.

Browser Caching: Browser Caching is implemented on the user side. Most Web browsers

facilitate caching information in the memory or hard disk of user’s machine which helps

in reducing the response time [139]. It keeps a copy of visited pages on the local disk for

later retrieval. It checks to make sure that the objects are fresh, usually once a session. This

cache is useful when a client hits the ’back’ button to go to a page they’ve already seen.

Also, if same navigation images are used throughout any website, browser cache keeps

a copy of it and sends it immediately on subsequent pages. User side caching reduces

access latency significantly because it helps in answering the repeated request from the

cache. It not only reduces the access latency but also server load and network traffic. Web

servers have limited resources and the benefit of the sum of individual user’s gain is huge.

However, user side caching cannot take the benefit of shared caching. If most queries are

shared and not repeated by the same users then these queries cannot be answered from the

cache.

Chen et al. have proposed a browser-level web caching system [24]. The system

supports hybrid and cooperative caching and it is based on chord. The nodes on the network

contacts with other nodes for the sharing of URL based web caching. The proposed model
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takes advantage of URL and static web object .As their system is based on chord it is

benefitted from advantages of chord. Chord provides the simplicity and proven performance

boost to the proposed system. Through the performance analysis of their model they have

been able to demonstrate that browser-level web caching system can improve the hit rate.

Server Side Caching: Server side cache also known as reverse proxy cache is helpful

for servers that anticipates a substantial number of requests and need to maintain a superior

quality of service in terms of response time. This type of caching is common in database

backed web applications. When a query is sent by a user, it is first checked in the cache

and if available, answer is sent back to the user. In case of cache miss answer is requested

from the server as shown in Figure 2.9. Server caching provides several benefits. It has

small overhead as compares to proxy caching because one resource can answer the entire

incoming requests. Moreover, it allows the maximum query sharing among different users

and the hit rate would be high by caching popular queries.

Although server caching provides benefits but there are certain issues and challenges

that must be addressed. An important issue is how to maintain consistency between the

original web page at the server and the cached web page. With the increasing number of

dynamic web sites, the probability of reusing the cached content decreases. Applications,

like recommender systems, are connected to databases for producing recommendations

dynamically using data retained in databases. If the data is highly dynamic e.g., stock

data, news items, the validity of a cached page could be very short and the probability

of successfully reusing the cached pages will be low. Recommender Systems attempt to

predict items (movies, music, books, news, Web pages) that a user may be interested in. In

such case actual data at the server could change as new items can arrive. Also, as in case

of recommender systems, answer for various users could be diverse; hence, probability of

using the cached pages would be low.
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Figure 2.9 Figure showing an architecture of server side cache.

Zeng and Veeravalli have proposed a novel server side web caching model called H/T

and Hk/T for multimedia application [143]. Their proposed model provides flexibility to

choose different objects. Later on these objects could be place and replaced in proxies.

Apart from hit rate the model also considers the multimedia object sizes and their playback

time as an important factor. This model is the first one that provides cooperative server-

side caching strategy, for multimedia systems. The experimental tests to evaluate the

performance of this model have demonstrated that the proposed model has outperformed

one of the most popular Least Frequently Used (LFU) algorithm significantly and it can

improve the performance of very large multimedia.

Kumar et al. proposed a model called Object Caching Service (OCS) to save the

results of invocations of reading of objects on the server side [68]. The model is based on

CORBA and provides strong consistency using dependency graph techniques. Their model

is implemented as a CORBA service. The model aims at caching of the dynamic contents

and its Caching Service is implemented by using CORBA. Client requests are intercepted

by the help of CORBA intercept services. Objects register themselves to OCS with the

help of a specifically designed registration interface. To process an intercepted request

OCS checks the validity of request in cache. If the request is found in the cache, the result

is served from the cache to the clients otherwise the results are saved in the cache first and
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then are sent to the client. They have used a simple policy for cache replacement to replace

the least used objects when cache is full.

Menasce et al. proposed a model to improve the performance of online auction

system by using server side activity based caching [90]. The model tackles the problem of

server overloading which may delay the bids and some of bids reach to the server after the

biding is closed. This may reduce the revenue of the auction sites as some of the highest

bids may not reach to the server. They have proposed a server-side caching model that

employs policies that are based on auction-related parameters these parameters include

number of bids placed before the end of biding time. Through their analysis they were

able to show that auction sites can increase the performance with very small caches rather

than using the larger one. These small caches produce high hit rates when compared with

large caches. The proposed model is implemented using a three tiered auction site and the

results collected from this implementation indicated that the proposed model has increased

the performance of auction system significantly. At the end they were able to prove that

server side caching can improve an auction system considerably.

Saleh et al. proposed a model to serve dynamic web object to the client efficiently [113].

Their model enables users to do internet surfing faster and reduces the load on the server.

The model is based on the “URL Rewriting” feature. This feature is provided by some of

the most popular web servers these web servers includes Apache that provides a built-in

feature of caching of dynamic objects. The model provides control of cached data to

the system administrator that was not the case of proxy and browser caching. They have

evaluated the performance of their model by using a simulated environment. The results

obtained have shown that the model has reduced the response time of dynamic web pages

considerably.

Zhang et al. has developed a novel server side caching system [144]. Their model

provides an efficient way of storing and retrieving of cached objects. The model organizes

an image map of similar objects in a file by relating them with in-memory data and data
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stored on disc. In this way it was able to provide a very efficient way of finding the large

cached objects. They have done the performance evaluation using two categories of tests,

the first one is to evaluate the hit rate that finds an object in main memory. The second on

calculate the number of time it has to access the hard disc to find and load an object if it is

not found in the memory. The evaluation is done on a simulation system created to address

the above mentioned test categories. The Results have shown that the proposed model has

very high hit rate and has almost no need to access the objects on the disc. The response

time to access objects on disc was also very good.

Shen has presented new concepts of meta-caching and metatranscoding [125]. In

this model the intermediate results are cached and the future identical requests served

through transcoding from the metadata that was cached earlier. The model reduces a lot of

computing load on the server. The results indicate that by using the proposed meta-caching

method, even a small size cache could decrease a significant amount of computation cycles.

It has also improved the start-up latency for memory based implementation.

2.2.3 Web Traffic Characteristics

Several research studies have shown that people browsing behaviors show certain kind of

pattern. Studying this pattern allows us to manage the cache data effectively. There are two

most common laws that state the web traffic characteristics e.g., zipf’s law and locality of

reference.

Zipf’s Law: Zipf’s law states that the relative probability of a request for the ith most

popular page is proportional to 1/i. People tend to access the same piece of information

over time, more specifically the usage pattern follows the Zipf’s law. Breslau et al. used

six traces from proxies at academic institutions, corporations and ISPs and found that the

distribution of page requests generally follows a Zipfs like distribution [18].
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Caching solutions require the selection of objects with higher probability of being

accessed in the future. One rule for choosing such objects is through Zipf’s law, which has

been applied in a number of areas. It predicts that the probability of access for an object is

a function of its popularity. [123] Verified that high cache hit rates can be achieved using

Zipf’s law caching. Markatos found out that some queries are very popular and a large

number of queries were requested repeatedly which can be effectively used for caching

purposes [86]. Query repetition frequency follows a Zipf distribution [139]. Several

researchers have observed that the relative frequency with which web pages are requested

follows Zipfs law [40] [32]

Locality of Reference: Locality of reference suggests that an application does not access

all of its data at once with equal probability but rather exhibits temporal and/or spatial

locality. Former suggests that if some data is requested, then there is a high probability that

it will be requested again in the near future. Later advice that if some data is requested,

then there is a high probability that data nearby will also be requested in the near future

[14].

Computer memory cache, a specially designed faster memory area, keep both recently

referenced data and data near recently referenced data for caching purpose. Similarly, in

web applications effective use of temporal and spatial reference can help implementing

the web cache. When the number of users increase, the locality of reference within that

group gets stronger, and caches become more effective. Several studies have indicated that

a significant amount of locality of reference exists in the queries of web search engines.

Log traces of Alta Vista search engine showed almost 33% queries were repeated by same

or different users [127]. In another study Markatos examined the query traces of EXCITE

search engine and found out that a large number of queries were repeated [86].

Although these traces show a significant number of repeated queries however, it only

quantifies the locality of these queries if the same query is repeated in a short interval.
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In order to find out the temporal locality in these submitted queries, the time between

submissions of same query at different times was measured in several studies. In Excite

search engine traces, for 1,639 queries this time interval was less than 100. So a cache

size large enough to keep recent 100 queries can help to answer 1,639 requests. Similarly,

traces show that for 14,075 queries the time between repeated query submission was less

than 1,000 and for 68,618 queries this time was 10,000. In Excite query traces 83% of

the queries were repeated within an hour [86]. In another study Xie et al. observed the

Vivisimo traces and found out that 65% of the queries were asked within an hour again.

Rizzo et al. observed this property in the web proxy traces collected at University of Pisa,

Italy [110], and Cao et al. observed this property in the digital equipment corporation’s

proxy traces [21].

All these studies show that queries submitted exhibit excellent locality in the traces.

Utilizing this property, a significant number of queries can be cached and high hit rate

can be achieved. Figure 4 shows a sample characteristic of queries submitted to EXCITE

search engine [86].

2.2.4 Cache Selection Policies

Cache servers have a limited capacity for storage of Web contents. Once the cache is full

there must be a procedure to replace some of the cached contents with newer ones. The

replacement policy for a cache determines which documents to remove to make room for

new data to be brought into the cache. Empirical studies have indicated that the choice of

page replacement policy for Web caches can have a serious effect on the utility of the cache.

Figure 2 shows the cache hit and cache miss scenario. When a query is sent by a user, it

is first checked in the cache and if available, answer is sent back to the user otherwise is

requested from the sever as shown in Figure 2.10. Although Zipf’s law and Principle of

Locality show the characteristics of web usage patterns however, these rules cannot help

in deciding the exact objects to keep in the cache. Cache replacement algorithms help
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Figure 2.10 Cache hit miss scenario.

in selecting the proper objects. They often aim to minimize various parameters such as

the hit rate; the byte hit rate, the cost of access and the latency. The most widely used

cache replacement algorithms include static caching, Least Recently Used (LRU), Least

Frequently Used (LFU) algorithms and hybrid algorithms. Selection of best algorithm

depends on the size of cache, user population, and type of application. As the cache size

and user population increases, cache hit rate also increases.

Many classifications of replacement algorithm has been presented. In general, the

important factors of Web objects that can influence the replacement process are frequency,

recency, size, cost of fetching, modification time, and expiration time [64]. In another study

these factors were combined into three broad strategies for cache replacement: recency-

based strategies, frequency-based strategies and hybrid strategies [55].

Static Cache selection Policy: Web access patterns change very slowly which leads to

static cache selection policy. In static caching a cache is filled with set of objects which help

to maximize the cache performance. In static caching content in the cache remains constant

for certain period of time thus doesn’t result in CPU overhead like other policies [130]. In

static cache selection policy a fixed set of object are kept in the cache for a relatively long

period of time. This set is determined periodically to maximize the cache hit rate. Once the

cache is filled, no objects are replaced in the cache throughout the predefined timeperiod

and it is expected that the cached objects will be accessed more frequently than the other

documents.
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It is known that people tend to access the same piece of information over time, more

specifically the usage patron follow the Zipf’s law [140]. Search engines use this fact and

fill the cache with the most popular queries by analyzing query logs. This type of approach

can serve in a static manner if a cache is loaded in batch mode and not modified until the

next batch update.

Markatos used this approach using EXCITE query log and showed that static caching

policy is a good choice for small cache sizes [86]. Static caching can also be combined with

dynamic approaches like LFU, LRU etc. Fagni et al. proposed a static-dynamic in which

cache is divided into two parts where one part is used for static caching and the other is

used for dynamic caching [36]. Both of these studies measured the query frequency to

select the static cache content and then fill the cache with the most frequent queries. Yates

et al. proposed an admission policy to select infrequent queries that will not be submitted in

the future. Static caching perform well for highly loaded Web servers with a limited cache

size [130]. However, static caching may not be effective for dynamic Web sites which

provide up-to-date information and results in unstable access patterns. Static caching can

be combined with other dynamic policies to provide solutions for such applications.

LFU: As discussed earlier, web access follows zipfs law. This law helps effectively

manage the caches by storing popular objects. LFU replacement policy is typically used

when data follows zipfs distribution. Arbitrarily high cache hit rates are possible by storing

the most popular objects and employing the LFU replacement policy [123][18].

Least frequently used algorithm removes the object that was retrieved least frequently

from the cache. LFU policy works well with zifp’s like distribution because it keeps the

popular objects in the cache and removes the least popular ones. Study results show that,

for large enough cache sizes, LFU is optimal and even for smaller caches is better than

widely used policies like LRU [18].
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Several variations of LFU algorithm have been studied. LFU-Aging keeps objects

that were very popular during one time period in the cache even when they are not requested

for a long time period. LFU-DA is another policy designed to overcome the limitations of

LFU-Aging due to the heavily dependency on parameters [9]. In Window-LFU algorithm

replacement decisions are made based on statistics for a subset of all objects that have been

accessed in the past. [59].

There are certain disadvantages of this strategy. Using this strategy cache pollution

can occur. Cache pollution is a phenomenon where the data inserted into the cache will not

be reused before it is expelled. Another problem is due to the similar values of frequency.

Many objects can have the same frequency count and a tie breaker is needed for selection.

LRU: LFU policy does not provide a solution where the characteristics of temporal and

spatial locality exist in the data. LRU cache replacement policy is based on the temporal

locality principle which states if some data is requested, then there is a high probability

that it will be requested again in the near future. LRU is widely used in database and

Web-based applications. Least recently used removes the object from the cache that was

requested least recently. LRU policy works well with applications that show high locality

of reference. All objects with higher probability of being requested in the near future will

be kept in the cache. In Squid, A proxy server that filters Web traffic and caches frequently

accessed files, the LRU is successfully used along with certain parameters to control the

usage of the cache. LRU is also been used with several variations. LRU-Min favors smaller

objects and expels the least recently used object with size at least S. LRU-Threshold only

caches the objects that are smaller than a certain size [1]. In Hyper-G cache replacement

algorithm, ties are broken based on recentness of earlier access and also by measuring the

size of objects [137]. HLRU algorithm utilizes the history of caches objects and keeps the

objects with the maximum hist value based on OldTimeofAccess and NewTimeofAccess

[134].
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One of the disadvantages of the LRU is that it only considers the time of the last

reference and does not use the frequency of objects to evict the objects from the cache.

This factor is very important for static websites. Another problem is this method doesn’t

combine recency and size in a useful, balanced way [103].

Hybrid: Many researchers have studied several other strategies. These strategies use

LRU, LFU with size, cost functions or combination of several techniques to expel objects

from the cache. The algorithm SIZE replaces the object having the largest size. LRU-Min

keeps smaller objects in the cache and replaces least recently used objects which are above

pre-defined threshold [98]. Cost based algorithms make the decision of replacement based

on parameters related to time such as time of expiration, time of insertion in the cache and

time of last access. Greedy-Dual-Size cache algorithm incorporates locality along with

size and cost [21]. Generational Replacement algorithm store objects in lists. Each list i ¡

n contains objects that were requested i times. List n contains all objects with n or more

requests. A request to an object causes its deletion in its current list and its insertion in

the next list [99]. HYPER-G strategy combines LRU, LFU, and SIZE [137]. Although

these strategies work well however, due to composite procedures, most of these strategies

are more complex than LFU and LRU.

2.2.5 Caching Paradigms

Cache stores copies of content passing through it so that subsequent requests may be

satisfied from the cache if certain conditions are met. The main objective of any cache

is to correctly answer as many subsequent requests as possible, also called as hit rate of

a cache. To accomplish this objective several cache paradigms have been used. These

paradigms can be differentiated by the type of content and management of that content in

the cache. Mainly the content is either static or dynamic and there are three ways to manage

it. The cache can be managed as a passive cache (cold cache) or as an active cache (hot
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cache). Along with these methods, prefetching techniques can also be used to administer

the cache. Bellow is the complete description of each paradigm.

Passive Caching: A passive cache stores some content and returns the same content upon

a latter request. For example, if clicking on a given URL always generates the same result

page, the subsequent request adds no information from the user, cache can store this result

page and subsequent request can be answered from the cache. Similarly, caching a query

and its answer can be used to answer subsequent requests for the same query. Passive

caching serves to reduce network traffic as well as latency and server load. All three types

of caches, browser, proxy & server, can be implemented using passive caching approach.

It helps to reduce network traffic, server load as well as access latency.

Caching documents passively to reduce access latency is extensively studied. As

discussed earlier both zipfs law and locality of reference suggest that users tend to seek

similar information over a period of time. Keeping this information in the cache can help

answering subsequent queries. Each query answered from the cache results in a cache hit

and moderate cache hit rate can be achieved using passive caching.

Passive caching implemented using the browser cache works for the users

independently. Browser caches the pages on the local machine and returns it upon hit.

Passive caching in this case works very well. This cache is useful when a client hits the

’back’ button to go to a page they’ve already seen. Also, if same navigation images are

used throughout any website, browser cache keeps a copy of it and sends it immediately on

subsequent pages. Passive caching in this case reduces access latency significantly in case

of a cache hit because the redundant user requests will all be kept in the browser cache and

it reduces the access latency, server load and network traffic.

Passive caching implemented as proxies between users and web servers reduces

server load, network bandwidth usage as well as user access latency [37][85][111]. Browser

caching also uses passive caching approach and yield performance improvement. Abrams
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[2] observed that a cache hit rate of up to 50% is obtainable by employing a proxy cache.

The cache hit rate of an unlimited sized cache grows like a log, zipf’s distribution, as

a function of users of the proxy and number of request. This property was observed in

Digital Equipment Corporation’s proxy traces and University of California Berkley’s proxy

traces [21][43]. Similarly, Duska et al. observed this property in a number of traces from

university proxies and ISP proxies [35].

Passive caching can also be deployed on the server side for performance improvement

as users tend to seek similar information and send same queries to be processed by web

servers. Traces of several web servers show the presence of repeated queries. In the

Vivisimo trace, over 32% of the queries were repeated ones that have been submitted before

by either the same user or a different user. In the Excite trace, more than 42% of the queries

were repeated queries [139]. The study of very large log of AltaVista Queries shows that

the average frequency of the queries in their trace was 3.97 [127]. Using the traces from

Exite search engine, Markatos found that a large number of queries that are accessed several

times and are excellent candidates for caching [86]. Xie et al. studied two real search engine

traces and analysis yielded that about 30% to 40% of queries were repeated this repetition

follows a Zipf distribution. Also these repeated queries were requested by different users

hence, are good candidates for a server side cache [139]. By using server side caching these

repeated queries can be answered more efficiently and access latency can be reduced.

Passive caching can improve the performance up to a certain level. In one study

passive caching was able to reduce latency from 22%-26% [66]. Another study showed

that the search engine query results may reach a hit rate up to 25% using passive caching

[86]. However, this performance can be further improved by employing other caching

methods. These methods are discussed next.

Active Caching: Active caching extends the performance of passive cache so that it can

not only service requests that exactly match previous requests, but it can also fulfill requests
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that can be answered by processing results of previous requests. This type of caching was

termed as active caching, because the cache functions in a limited query processing role

[83].

Increasing number of sources of information on the web is becoming dynamic,

generated on-the-fly in response to a user requests. Personalized web pages, targeted

advertisements, e-commerce applications, recommender systems etc. all are examples of

dynamic applications. Passive caching work well with static content however, in dynamic

environments the performance can be further improved by utilizing more advance approaches.

Recent work has targeted extending the passive caching concept by storing the result of

dynamic web requests and utilizing this content. Active query caching for database web

servers has been considered as feasible and promising approach [81]

In dynamic environments, passive approach caches queries and their answers, and

can fulfill request for an exact query match. This approach give performance gain however,

it is possible to do more by using active caching approach. This can be accomplished, if

the cache itself has a query processing capability, that is if cache is able to answer cached

queries as well as those whose answers can be effectively estimated from the cache.

Most of the available work in the area of active caching is targeted toward semantic

caching, one variation of active caching where query semantics are used. In the area

of active caching Pei et al. proposed an Active Cache protocol to support caching of

dynamic documents on the Web and through prototype implementation and performance

measurements, show that Active Cache is a feasible scheme that can result in significant

network bandwidth savings at the expense of moderate CPU costs [22]. In another study

Luo et al. implemented an active caching approach in which server sends a query applet

to the cache that implements a simple query processor. Test results show that the active

query caching can achieve higher hit rates than passive query caching [82]. Levy-Abegnoli

et al. proposed an active caching approach to support caching of dynamic contents. This
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Figure 2.11 Advantages / disadvantages comparison chart.

approach provides an API which allows applications to add, delete and update cache data

[73].

Semantic caching is a variant of active caching in which query semantics are utilized.

These semantics are defined by inspecting a query predicates and operators used in this

query. Semantic caching concept was first proposed by Dar et al. and they used the

semantics of the queries to manage the contents of the cache and to decide about the

availability or lack of query results in the cache [33]. Semantic caching manages the cache

as a collection of semantic regions; these regions are formed by keeping the overlapping

queries together and the size and shape of regions can change dynamically as new queries

arrive in the cache. Access information is maintained and cache replacement is performed

at the unit of semantic regions only [33]. In semantic caching, set of semantically associated

results are group together in semantic regions as compare to tuples or pages which are used

in conventional caching. When user sends a query, it is divided into two parts: a probe

query that fetches the relevant portion of the answer set from the cache; and a remainder

query that fetches the missing part of the result. If the remainder query is not empty, the

remainder query is sent to the server for further processing [26]. In semantic caching the

client is able to reason from the local cache to determine whether a query can be totally

answered, how much it can be answered, and what data are missing. Semantic caching

can improve performance substantially when a series of semantically associated queries
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are asked and if the results may likely intersect or contain one another. In containment

case where one query is a subset of another query, the answer is quite easily obtained from

the cache without sending any remainder query. In overlap or intersection case however,

the overlapping result is fetched from the cache and remainder query is formed to get

the remaining result from the server as shown in Figure 2.11. This is an effective way

to reduce costs by caching the results of prior queries and reusing them fully or partially

to answer other queries [5][56]. Semantic caching can work well in applications, such

as the cooperative database system and geographical information system [28]. Recently,

semantic caching in a client-server or multi-database architecture has received attention

[8][33][106][27] . Moreover, semantic caching is particularly attractive for use in mobile

computing due to the fact of more autonomy of the mobile clients [71][106][145]. In [26], a

semantic cache mechanism for Web queries based on signature files has been proposed. The

method uses signature-based region descriptions to efficiently manage both containment

and intersection cases.

Semantic caching works well with databases, mobile computing and in number of

other areas. It has also been implemented in Web caching [26] [71]. Chidlovskii et al.

used this method for conjunctive Web queries. A conjunctive query allows the Boolean

operators AND and NOT between query terms. However, they implemented this approach

without the operator OR, due to the exponential complexity of the semantic containment

and intersection problem for the full Boolean expressions. Loukopoulos et al. proposed an

active semantic caching approach that enables the proxies to cache some parts of the data,

together with the semantics in order to process queries and construct the resulting pages

[78]. Luo et al. proposed a method that uses this approach and suggested that computing

answers for contained queries can provide significant improvement however, getting results

for cache-intersecting queries is a challenge [83].

As discussed above, semantic caching in web environment is limited to only certain

types of web queries. It cannot provide a solution for queries with OR operator. Also
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the schemes mentioned above cannot be used for recommender system queries where

queries are not conjunctive and there is no overlap between queries however, the result

of the queries does intersect with each other. In this scenario application of these semantic

caching techniques is not feasible and solution must be investigated by utilizing the results

of the queries rather than semantics. This issue is discussed in detail in the next chapter.

In search engine domain, several studies have focused on caching approaches where

cache acts in a query processing role. Saraiva et al. proposed storing inverted lists of query

terms (keywords) in the cache to assist in the active caching query-handling process [116].

The cache mechanism uses a two-level scheme that combines cached query results and

cached inverted lists. Results of repeated identical queries are cached at the front end,

whereas data for frequently-used query terms are cached at a lower level. The inverted lists

for each term are accessed, and used to generate lists of result documents containing all

terms. Although their combined caching strategy increased the throughput of the system,

it can only handle queries having multiple key- words. This approach can improve the

performance in keyword queries however, it cannot provide performance gain in case of

K-NN queries. K-NN queries are always based on a single object and their approach

can only process already cached queries (passive caching). In [77] a three level cache

was proposed wherein an intermediate level is added to the design. The intermediate level

exploits frequently occurring pairs of terms by caching intersections or projections of the

corresponding inverted lists. This approach also cannot accommodate K-NN queries,

as it requires that the query be expressed as a pair of keywords which is not the case

in K-NN queries. Luo & Naughton proposed an effective caching scheme that reduces

the computing and I/O requirements of a Web search engine without altering its ranking

characteristics [81]. Their approach targeted to answer the queries which are contained in

already cached queries and mentioned that computing answers for contained queries can

provide significant improvement however, getting results for cache-intersecting queries is a
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challenge. Again query containment is not possible in K-NN queries and implementation

of this approach can only give performance gain similar to a passive cache.

Although active caching provides a number of benefits over passive caching however,

it has limitations or its own. CPU overhead, accuracy, and cache space management

can easily gate the scalability of these schemes. These issues must be addressed before

implementing active caching solutions. This research provides a novel active caching

approach for recommender systems. Details of this approach are discussed in the Chapter

4.

Cache Prefetching: Pre-fetching is a process which utilizes idle time to download or

pre-fetch documents that the user might visit in the near future. A web page provides a

set of pre-fetching links, and after rendering the page to the end user, cache server begins

silently pre-fetching specified documents and stores them in its cache. When the user visits

one of the pre-fetched documents, it can be served up quickly out of the server’s cache.

Thus, successful prefetching reduces the delay and reduces both server and network load.

Prefetching objects in proxies has been explored for further performance improvement by

using various methods [22][65].

Pre-fetching is a proactive caching scheme because data is cached before the

appearance of any request to that information. The pre-fetched information could be simply

a static web page or other types of data, in case of dynamic websites, to service users’ future

requests. The main difference in efficiency as compared with the cache-only is in the first

access of pre-fetched information. After being pre-fetched first time, it becomes part of

cached data. In Pre-fetching, the important issue is how to predict the next information

to be visited by the user. For static websites, within a page, it may have a number of

combinations for identifying the next page to be accessed by a user. For dynamic pages, it

is the prediction of future queries, for example, using usage statistics, and data required to

service these queries. If the prediction is incorrect, the backend server will waste resources
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on generating unwanted pages. However, due to the dynamic organization of web pages,

it is not easy to have a high accuracy in prediction. Web prefetching technique utilizes

the spatial locality of Web objects whereas, caching uses temporal locality. A page could

have links to many other pages and all these pages are candidates for pre-fetching. Right

prediction is very important in case of prefetching otherwise the overhead on the server can

reduce the overall performance.

The pre-fetching problem is also complicated by the timing problem in pre-fetching.

A pre-fetched page is useful only if it is available at the right time even if the prediction

is correct. If the pre-fetched page is replaced before it is viewed then this entire effort

will waste resources of backend server on generating unvisited information. Similar to

prediction problem, browsing patterns information could be very useful in approximating

the right timing of pages. Web caching and Web prefetching can complement each other

since the Web caching technique exploits the temporal locality, whereas Web prefetching

technique utilizes the spatial locality of Web objects [131]. Prefetching is a well-known

approach to decrease access times in the memory hierarchy of modern computer architectures

[128][126][79] and has been proposed by many as a mechanism for the same in the World

Wide Web [100][65]. Marc et al. stated that maximum hit rate obtainable by using proxy

cache is about 50% however, prefetching can be used to further the performance [2].

Padmanabhan and Mogul showed that prefetching can reduce the access latency experienced

by the users by a maximum of about 45% [100]. Kroger et al. noticed that proxy caching

can reduce the latency by maximum of about 26% whereas a combined caching and

prefetching proxy yield 60% latency reduction [65]. Markatos and Chronaki used a top

10 approach to prefetching and their results showed that this approach can predict more

than 40% of the client’s requests [87].

Although prefetching provides performance benefits over simple caching techniques

however, flawed use of this technique can undermine the benefits. Bad prediction and

timing problem are among the reasons that can increase the network traffic and server load.
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2.2.6 Summary

Caching of data has shown to be useful for reducing stress on limited resources and

improving response time. Selection of cache location, browser, proxy or server cache,

primarily depends on the type of application. Cache replacement policies help in maximizing

the hit rate of cache and selection of best method depends upon the actual usage pattern of

the system. Selection of paradigm is a tradeoff between effectiveness and efficiency and

should be selected based on the sensitivity of the application.



CHAPTER 3

CACHING FOR RECOMMENDER SYSTEMS

Research literature in the area of recommender system has very limited to no discussion on

caching solutions for these applications. Recommender system queries or top-k similarity

queries (also known as k-nearest-neighbor, or k-NN queries), the result of a query is a

ranked list of items based on relevancy score. Generating these ranked lists is typically

an expensive operation and often results in access latency. Traditional caching solutions

can easily be used with any type of recommender system. Traditional cache management

strategies generally seek to fill the cache with result lists for the most popular queries, and

to utilize effective replacement strategies to maximize the overall performance. In general,

only limited performance gains are possible with this type of caching. This dissertation

focuses on exploring a caching solution for recommender systems that improves upon

the performance of traditional caching. This chapter first examines the characteristics of

recommender system queries, then explores the possible caching options available in other

research areas and finally, formulates the research questions for this dissertation. It also

provides the description of different datasets along with the evaluation measures that will

be used to evaluate the performance of the proposed solution.

3.1 Recommender System Queries

Recommender system queries in general are considered k nearest neighbor type queries

(K-NN queries) or also termed as query-by-example type of queries . In these types of

queries, the query is always composed of one object and the result is a ranked list of k

nearest neighbors where k is a predefined value and nearest neighbor selection is based on

the type of recommender system and matrix used.

62
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Let S be a dataset drawn from some domain D. For every object v ∈ S, implies the

existence of a unique ordering (v1, v2, . . . , v|S|) of the objects of S, where i < j implies

that vi is deemed more relevant or similar to v than vj . With respect to v, the rank of

object w ranges from 1 to |S|, and will be denoted by rank(v, w). In practical settings, the

object most relevant to v is generally v itself. Nevertheless, unless otherwise stated, it is

not require that rank(v, v) = 1.

3.2 Caching Options

Based on the above definition of recommender system queries, a caching solution for these

queries is discussed below. These are several caching specific alternatives that should be

carefully selected for example, cache location, caching paradigm, and cache replacement

policy as shown in Figure 3.1. First, the best location for a recommender system cache.

Second, the selection of the best paradigm that can improve upon the performance of

traditional caching and finally, appropriate cache replacement policy which works best with

the selected paradigm.

Figure 3.1 Available caching options for recommender systems.
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3.2.1 Cache Location

There are three most common locations where caches are normally implemented. Browser

caches are at the client side, proxy caches are places between servers and clients and server

side caches are implemented on the server side. Both browser cache and proxy cache

are best for static content, however, dynamic applications like recommenders systems use

backend processing to compute ranked lists. Implementation of cache for such applications

on the client side is out of question as each cache can only serve one client and when

millions of people are accessing the application only duplicate queries from a single person

will get benefit from cache. Proxy cache solutions are most viable for intranets where proxy

can cache the request from a small community and the content is mostly static. Applications

like recommender systems that serve the large user base around the globe and the content is

dynamic, recommendation list is generated on the fly, best possible location is server side

cache. Server side cache for recommender system will keep those queries and their result

in the cache that have higher chance of being requested latter. Each request coming to the

recommender system server will be first checked in the cache. If the answer is available in

the cache, cache hit occurs and answer will be sent back from the cache. If answer is not

available in the cache then it will be requested from the recommender system and then sent

to the user. Based on the cache replacement policy, a copy of this answer might be retained

in the cache for latter requests for same query.

3.2.2 Caching Paradigm

The purpose of maintaining a cache is to allow faster delivery of query results to the user.

Accordingly, answering a query with the aid of a cache should be faster than retrieving a

result from the server and the query result obtained using the cache should be as similar as

possible to the result that would be retrieved from the server.
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Keeping in view these goals, cache for a recommender system can be implemented

using any of the three paradigms discussed in the last chapter. Each paradigm has its own

advantages and disadvantages as discussed below.

Passive Caching: When a server query result is duplicated in the cache, the technique is

called passive caching. Passive caching approaches only attempt to answer those queries

whose result is available in the cache and remaining query results are requested from the

recommender system. Passive cache management strategies generally seek to fill the cache

with result lists of popular queries or recent queries, and utilize effective replacement

strategies to maximize overall performance.

Implementation of passive caching for recommender system is very straight forward

similar to other applications like search engines. Cache will keep the answer for most

popular or most recent queries, based on replacement policy, and only these queries can

be answered from cache if requested latter. Any such technique will guarantee the perfect

recall of the results answered from the cache as the answer was previously fetched from

recommender system and provided to the user as is. However, using this approach can

only provide limited performance benefit in terms of hit rate. Various cache replacement

policies can help to increase the hit rate to a certain extent but with organizations having

millions of users and millions of items it becomes a bottleneck. In these circumstances

passive caching can only provide limited performance benefit.

As mentioned earlier, none of the prior studies discussed any caching solution for

recommender systems. However, in other types of retrieval systems many studies have

focused on this topic. One example of a retrieval system for which passive caching was

effective is the Excite search engine. Markatos discovered a large number of frequently-

posed queries in the retrieval logs that constitute excellent candidates for caching [86].

However, limited performance gain was possible with passive caching in a study showing

that search engine query results may achieve a hit rate up to 25% using passive caching
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[88]. In experiments involving Digital Equipment Corporation traces, passive caching was

able to reduce latency by 22%-26% [66].

Although passive caching is a viable solution, scalable applications like recommender

systems need higher performance improvements. Active caching and cache prefetching are

two possible ways to achieve this goal.

Cache Prefetching: Pre-fetching is a proactive caching paradigm because data is being

fetched into the cached before the appearance of any request to that information. Existing

studies have showed that prefetching combined with passive caching can potentially improve

the latency [25]. However, mostly this technique is used for static content like web pages

etc. in which case images or text can be prefetched before the request from user.

Dynamic applications like recommender system where millions of users will be

sending individual requests for recommendations pose a real challenge to prefetching

techniques. Particularly for caches of small size, prefetching might negatively affect the

effectiveness of the cache replacement policy adopted. In case of cache replacement the

prefetched pages of results have to be inserted in the cache by likely evicting from it

an equal number of entries according to the replacement policy adopted. Obviously, the

hit rate increases only if the probability of accessing the prefetched pages is greater than

the evicted ones. Moreover, this whole process of prefetching increases the load on the

back-end server and increase network traffic which can overall degrade its throughput.

Also making prediction of what data to prefetch is very crucial and difficult. In case of

commercial recommender systems like Amazon.com it becomes even much more difficult

with millions of users’ requests have to be analyzed to see what next they might be seeking

that need be prefetched.

From these limitations, it is clear that although prefetching is a viable solution but,

not practical for recommender system cache. There is a dire need for a caching solution

that should increase the hit rate but not at the cost of degradation to its throughput.
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Active Caching: Active caching extends the performance of a passive cache so that it can

not only service requests that exactly match previous requests, but it can also fulfill requests

that can be answered by processing results of previous requests. This type of caching was

termed as active caching, because the cache functions in a limited query processing role

[83]. When a user sends a query there are three possibilities. First, the answer for that

query is already available in the cache. Second, although the answer is not available in the

cache but it can be computed from the cache. Third, the answer is neither available in the

cache nor it can be processed so it is fetched from the recommender system. First case is

simple passive cache where as third case is direct answer from the recommender systems.

For the second case, active cache, where answer is estimated from the cache, domains like

search engine and databases have some studies in this area.

The aim is to first explore available active caching solutions in similar domains

and see if those can work for recommender systems. One example of an active caching

strategy is semantic caching, which is based on the assumptions that the queries submitted

to information retrieval systems are boolean, and that the results of previous queries can be

used to compose results for new queries, using boolean algebra. When the user submits a

query, it is decomposed into two parts: a probe query that fetches the relevant portion of the

answer set from the cache, and a remainder query that fetches the missing part of the result.

If the remainder query is not empty, it is sent to the server for further processing [26]. In

the case of a containment query, when one query is a subset of other query, the final result

is easily obtained from the cache without requiring the generation of a remainder query.

However, in the case of an intersection query, the portion of the result in the intersection is

fetched from the cache, and the server is queried to obtain the remainder of the result.

Semantic caching is particularly attractive for use in mobile computing platforms,

due to the greater autonomy of the mobile clients [71][106][145]. It has also been used in

web caching to handle conjunctive queries supporting the use of Boolean operators AND

and NOT between query terms [26]. However, the operator OR could not be supported,
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due to the exponential complexity of the semantic containment and intersection problem

for full Boolean expressions. Luo et al. proposed a method that uses the semantic caching

approach; they concluded that answering cache-contained queries results in a significant

performance gain, but answering cache-intersecting queries is probably not worthwhile for

top-k conjunctive keyword queries [83]. The main limitations of using semantic caching

are that it can only work with boolean queries and utilize query containment. However in

case of K-NN queries, query is always based on a single object hence, query containment is

not possible. Any two queries are always based on different objects and are never contained

in each other and even never intersect each other. Thus if implemented, use of semantic

caching for recommender system queries can only work like a simply passive cache.

In search engine domain, several studies have focused on caching approaches where

cache acts in a query processing role. Saraiva et al. proposed storing inverted lists of

query terms (keywords) in the cache to assist in the active caching query-handling process

[116]. The cache mechanism uses a two-level scheme that combines cached query results

and cached inverted lists. Results of repeated identical queries are cached at the front end,

whereas data for frequently-used query terms are cached at a lower level. The inverted lists

for each term are accessed, and used to generate lists of result documents containing all

terms. Although their combined caching strategy increased the throughput of the system,

it can only handle queries having multiple keywords. This approach can improve the

performance in keyword queries; however, it cannot provide performance gain in case of

K-NN queries. K-NN queries are always based on a single object and their approach can

only process already cached queries, a case of simple passive cache.

Xiaohui et al. proposed a three level cache wherein an intermediate level was added

to the design [77]. The intermediate level exploits frequently occurring pairs of terms by

caching intersections or projections of the corresponding inverted lists. This approach also

cannot accommodate K-NN queries, as it requires the query to be expressed as a pair of

keywords which is not the case in K-NN queries.
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Luo & Naughton proposed an effective caching scheme that reduces the computing

and I/O requirements of a Web search engine without altering its ranking characteristics

[81]. Their approach targeted to answer the queries which are contained in already cached

queries and mentioned that answering contained queries results in a significant performance

gain, but answering cache-intersecting queries is probably not worthwhile. Again query

containment is not possible in K-NN queries and implementation of this approach can

only give performance gain similar to a passive cache.

From the above discussion it is clear that already available active caching strategies

cannot provide performance gain in case of K-NN queries. If implemented, all these

approaches can only provide answer for the queries which are already cached (passive

caching) and cache itself cannot work in a query processing role. Most of the above

mentioned active caching approaches use the query containment and query intersection

to process answer from the cache. There is a need for an approach that does not use the

part of queries answers but process the answers of the previously cached queries to answer

non-cached query.

This study investigates an active caching solution for recommender systems. Active

caching is an extension of the caching model whereby estimation is used to generate an

answer for queries whose results are not explicitly cached, where the estimation makes

use of the results cached for related queries. By answering non-cached queries along with

cached queries, active caching approach offers substantial improvement over traditional

caching methodologies. This dissertation focuses on the problem of active caching for

recommender system or top-k similarity queries. The goal is to estimate an answer for a

recommender system query using only cached information and without performing expensive

disk access operations, the computational savings may be considerable.
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3.2.3 Cache Replacement Policy

Normally only a small proportion of the entire dataset is cached, and the criteria by which

cache items are selected is crucial to the performance of any caching solution. This selection

can be performed in many ways; however, the ultimate goal of selection is to maximize the

number of queries that can be answered from the cache.

Several techniques have been proposed in the research literature to select the most

appropriate data for caching. Typically, the content of the cache is dynamically updated in

order to adapt to changes in user request patterns. Insertion of new items into the cache first

requires that items be selected for replacement. Most cache replacement strategies select

for deletion either the least recently used cache element (LRU) or the least frequently used

element (LFU). Both the LFU and LRU cache replacement strategies take into account the

popularity of the data with respect to query requests. The LRU approach can be viewed as

a form of temporal locality, whereas the LFU approach can be viewed as a form of zif’s law

in that it preserves cache objects residing in areas where the query distribution is dense.

Although traditional caching strategies allow for dynamic updates, researchers have

also considered the problem of selecting a static cache so as to be able to answer the

maximum number of queries for given distributions of data and queries [130]. Active

caching approach utilizes the data in a cache to answer maximum number of queries.

Hence, using a static cache with a better uniform coverage of the query range can increase

the spatial locality from which most if not all query results can be actively generated.

3.2.4 Active Cache for Recommender Systems

Selection of best caching options for recommender systems from the above mentioned

choices is obvious in some cases like cache location where best option is to implement a

service side cache. However, decision about the paradigm selection need to be done by

evaluating the pros and cons of each approach. This study opted to implement an active

caching solution in order to achieve maximum performance gain. Active caching solution
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can provide significantly higher hit rate but at the cost of lower recall which can be tolerated

in non-critical applications like recommender systems. In case of cache replacement policy,

a spatial locality based static caching policy is opted because it augments with an active

caching approach. These decisions were made based on the research questions outlined in

the next section.

3.3 Research Questions

This study is focused on providing a solution for the efficiency of recommender systems by

caching appropriate content in the main memory and then answering most if not all of the

queries from the memory rather than requesting them from the recommender system. To

design such a system, three major research issues need to be investigated: First question is

how to design a caching solution that can answer more queries than those available in the

cache. This design should be robust enough to work with any type of recommender system

and does not require access to the underline matrix. Also the solution should work in cases

where the access patterns does not follow zipf’s law or temporal locality. Active caches

estimate answers for non-cached queries so the second question is how to maximize the

result accuracy of non-cached queries which are estimated from the cache. Third research

question that should be investigated is how and what type of data should be selected to

put in the cache to achieve maximum performance from the cache. More specifically, the

following main research questions are to be answered:

Questions No 1:

How to design an effective and efficient caching solution for recommender systems?

Question No 2:

How to design a more general and effective similarity measure for active caching?

Question No 3:

How to select the objects in the cache for a caching with no replacement?
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3.4 Evaluation

Active caching technique proposed in this work is designed for recommender systems

in specific however, it can be used with any nearest neighbor application in general. In

Chapter 2, recommender systems are categorized into four major categories i.e., content

based, collaborative filtering, knowledge based and hybrid systems. Most of the commercial

recommendation systems use either content based or collaborative filtering approach to

process the recommendations. Knowledge based systems have only been used in few

research studies and appropriate datasets for these systems are not available. Hybrid system

are being used by several commercial applications however, the techniques used for

processing the recommendations are based on the combination of content based and

collaborative filtering techniques. Each of these systems, content based and collaborative

filtering, can be implemented in several ways, however, as mentioned in Chapter 2 these can

be categorized by the type of matrix used. Matrices are based on the distance function used

and are usually characterized by metric and non-metric distance functions. To cover both

content based and collaborative filtering recommendation techniques, five different types

of datasets and both metric and non-metric distance functions are being used to evaluate

the performance of proposed active caching approach using hit rate, byte hit rate, recall and

execution cost measures.

3.4.1 Dataset

Content Based Datasets: Content based systems use the content of each object in the

collection to compute recommendations based on the similarity amongst the objects in the

collection. Content based systems are usually used for collections where content can easily

be extracted to measure the similarity amongst the objects. Type of matrix used to compute

the similarity is another way to categorize content based systems which are either metric

or non-metric. Most commonly used matrices are based on Euclidean distance, cosine

similarity and Pearson correlation where Euclidean distance is a metric distance measure
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and both cosine similarity and Pearson correlation are non-metric measures. In order to

make the test datasets diverse enough two different types of object collections are chosen,

a text document collection or digital library collection and an image collection, as well as

both metric and non-metric matrices, Euclidean distance and cosine similarity, are used to

compute similarity. Each dataset is described in detail below

Reuters Dataset of Digital Documents: Reuters Corpus Volume I (RCV1) is an

archive of 802,352 newswire stories made available by Reuters, Ltd. for research purposes

[74]. Reuters is the largest international text and television news agency. Its editorial

division produces some 11,000 stories a day in 23 languages. Stories are both distributed

in real time and made available via online databases and other archival products. The set

consisted of 802352 documents and are modeled as bags of words. The feature words are

extracted and weighted to formulate a vector of words for each document, TF-IDF term

weighting [114], and their 120-NN lists were constructed using the SASH approximate

similarity search structure [50] lists with the vector angle distance measure. The degree of

relevance is measured by the similarities between the vectors of words for these documents.

Cosine similarity, a non-metric distance measure, is used to calculate the degree of similarity

amongst the documents. In this case, two items are thought of as two vectors in the m-

dimensional user-space, where dimensions are correspond to the words in each document.

The similarity between them is measured by computing the cosine of the angle between

these two vectors. Formally, in the “mxn” ratings matrix similarity between documents A

and B, denoted by sim(A,B) is given by

CM(A,B) =
|A ∩B|√
|A| · |B|

The similarity calculation process results in a relation with n2 number of tuples where n are

the total number of documents however, as only top 120-NN were stored for each object.

Recommender system uses this relation tuples to answer the queries posed by the users.
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Given a query, the nearest k (k is a predefined parameter) documents in the collection are

found and presented to the user as the similar documents.

ALOI Image Collection: ALOI dataset is an image collection based on Amsterdam

Library of Object Images (ALOI) [39]. The full dataset consists of 110250 images of

1000 common objects taken from a number of different angles under different lighting

conditions. The images were represented by dense 641-dimensional feature vectors based

on color and texture histograms [16] and 100-neighbor lists were computed using the

Euclidean distance for each image of the collection. Euclidean distance is based on distance

between objects as compared to similarity between them. In similarity measures, higher

the similarity more similar are the objects where as in distance measure, lower the distance

more similar are the objects. Here similarity and distance are used interchangeably. Euclidean

distance examines the root of square differences between coordinates of a pair of objects

and is a straight line distance between two points. If a = (x1, x2, . . . , xn) and b =

(y1, y2, . . . , yn) are two points on the plane, their Euclidean distance is given by

d(a, b) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

Geometrically, it’s the length of the segment joining u and v, and also the norm of

the difference vector (considering Rn as vector space). This distance induces a metric (and

therefore a topology) on R2, called Euclidean metric (on R2 )and standard metric on R2.

Cover Type Geographic Data: This dataset is prepared for forest cover type from

cartographic variables only (no remotely sensed data). The actual forest cover type for a

given observation (30 x 30 meter cell) was determined from US Forest Service (USFS)

Region 2 Resource Information System (RIS) data. Independent variables were derived

from data originally obtained from US Geological Survey (USGS) and USFS data. Data

is in raw form (not scaled) and contains binary (0 or 1) columns of data for qualitative

independent variables (wilderness areas and soil types). Number of instances (observations)
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in the data are 581,012 where as each observation has 12 measures, but 54 columns of data

(10 quantitative variables, 4 binary wilderness areas and 40 binary soil type variables).

100-NN lists were constructed using the SASH approximate similarity search structure

using Euclidean distance [50]

KDD Cup Intrusion Detection Data: This is a standard set of data, which includes

a wide variety of intrusions simulated in a military network environment provided to the

participants of The Third International Knowledge Discovery and Data Mining Tools

Competition. The datasets contain a total of 24 training attack types, with an additional 14

types in the test data only. A small subset of 120836 observations were used for this study.

This set represents a content based system and Euclidean distance is used to compute the

distances amongst the objects. 100-NN lists were constructed using the SASH approximate

similarity search structure [50]

Collaborative Filtering: Collaborative filtering methos do not take into consideration

the content of the objects rather use different data gathering techniques to process the

recommendations. Number of data gathering techniques like rating information, browsing

history, purchase history etc. as well as number of CF algorithms e.g., user based, item

based, aggregation etc. have been used to process recommendations. CF algorithms use one

of the distance functions mentioned earlier to predict the likelyhood of an object and these

functions are categorized into metric and non-metric types. Due to the limited availablility

of the datasets, only one underneath datasource was used. However, to make it diverse, two

different types of CF algorithms, user based and count model were used.

MovieLens Dataset: MovieLens data sets were collected by the GroupLens Research

Project at the University of Minnesota [46]. This data set consists of 100,000 ratings (1-5)

from 943 users on 1682 movies. Each user has rated at least 20 movies. The data was

collected through the MovieLens web site (movielens.umn.edu) during the seven-month

period from September 19th, 1997 through April 22nd, 1998. This dataset was used to
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test active caching for collaborative filtering systems. Model based approach was opted to

generate recommendations and used Multilens [93] to generate these models. MultiLens is

an OpenSource Recommendation Engine and supports several kinds of recommendation

algorithms including user-to-user correlation, item-to-item correlation and count model

(represent similarity by simple co-occurrence). MultiLens is used to make recommendations

on the MovieLens movie recommendation web site, and is being used in Other research

projects by the GroupLens group at the University of Minnesota. This study uses Count

model approach to process the recommendations. The basic functionality of a CountModel

is to keep track of the number of times an item has co-occurred with another. Incrementing

the co-occurrence counter is a fundamental operation for this model. Given a user id and a

new item rated by that user, system incorporates this new item into the model along with

all of the previously rated items by this user.

Jester Rating Dataset: This dataset represents a collaborative filtering

recommendation system, which used data like rating information, browsing history, purchase

history etc. rather than content of the objects itself. Anonymous ratings data from the jester

online joke recommender system is used. It is Collaborative Filtering Data of 4.1 Million

continuous ratings (-10.00 to +10.00) of 100 jokes from 73,421 users collected between

April 1999 - May 2003. Euclidean distance measure was used to compute the similarity

amongst users using the available rating data.

3.4.2 Performance Measures

In web caching research cache hit rate is the most common measure for evaluation. In

passive caching answer for a query is readily available in the cache hence, precision and

recall is always perfect i.e., 1. However, in active caching, recall and precision for the

cached queries is always perfect but for non-cached queries which are processed from the

cache these values vary. In order to do the evaluation for effectiveness, recall measure is

used in this study. When the cache query and the database query have equal size k, this
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definition is equivalent to that of query precision. Execution cost is also used as another

measure for efficiency of the proposed solution. Each of these measures are explained in

detail below:

Hit Rate: The hit rate is defined to be the proportion of queries that lead to cache hits.

Traditionally, a hit is said to occur when the information sought for resides in the cache. In

active caching, this definition is extended to include those cases also where a query result

can be processed using the proposed methods. A miss occurs when a query cannot be

processed from the cache and the answer is fetched from the recommender system.

Byte Hit Rate: The byte hit rate is is the hit rate with respect to the total number of

bytes in the cache that lead to cache hits. Similar to hit rate, this definition includes cases

where query result is available in the cache as well as those cases where a query result can

be processed using the proposed methods. A miss occurs when a query cannot be processed

from the cache and answer is fetched from the recommender system.

Recall: Consider the item set retrieved by any given top-k query operating on the

cache. The recall of the query is defined as the proportion of this result that would also

appear in a top-k query applied to the full database. Since the cache query and the database

query have equal size k, this definition is equivalent to that of query precision. Note that

when the top-k list is explicitly stored in the cache, the recall trivially equals 1, and when a

cache miss occurs, the recall is 0.

Execution Cost: Execution cost is the time a systems takes to process certain number

of queries. In this study execution cost is measured in terms of time to process all the

queries in the dataset. These queries could be those whose answer is readily available in

the cache, or whose answer can be estimated from the cache or the ones whose answer

cannot be provided from the cache and is fetched from the database.
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3.4.3 Hardware and Software

Microsoft SQL Server is used to store the recommender system matrix in order to process

recommendations. All the implementation was done in Microsoft CSharp and tested on an

IBM machine with processor speed of 3.0 GHz and memory of 2 GB.

3.5 Summary

Caching solution for recommender systems can be implemented in different ways. However,

for maximum performance, active caching is a viable approach. Active caching allows

to answer significantly higher number of queries from the cache with reasonable recall

rates. Applications like recommender systems, which are not mission critical in terms of

recall and precision, can attain significant performance gain through active caching. This

study has focused to provide an active caching solution including cache management policy

and data structure which can be used with any type of recommender system to increase

its efficiency. In the next few chapters this active caching approach is presented and

evaluated using the above mentioned datasets. Chapter 4 introduces the partial order based

active caching technique for recommender system. Chapter 5 proposes an improvement

to the original approach by introducing shared neighbor similarity measure which helps to

improve the recall. Chapter 6 introduces a greedy balancing cache selection policy which

helps to improve the hit rate and recall of the proposed active caching approach. Finally,

Chapter 7 highlights the contributions of this work and future research directions.



CHAPTER 4

PARTIAL ORDER BASED ACTIVE CACHING APPROACH

4.1 Introduction

As discussed in the previous section, caching has enabled developers to optimize the

performance of web applications. Cache keeps a local copy of data to reduce visits to

the actual data storage location. Cache size is always much smaller than actual storage

area and choosing the right objects to keep in the cache is very important. However,

answering already cached queries can only provide limited performance benefit. This

chapter proposes a new active caching based solution that can not only answer already

cached queries but can also provide answer for queries other than those in the cache

The proposed active caching technique is based on partial orders that can be used

with any type of recommender system. It uses the principle of monotonicity of rank order

to construct results for non-cached queries. This approach can not only answer queries that

are already cached, but is also capable of efficiently synthesizing answers for ‘neighboring’

queries using the contents of the cache. In case of recommender systems, neighboring

queries are all those objects that exists in the result list of a top-k query and this query

happens to be in the cache. These neighborhood queries have higher chance of being

accessed in the future as laid out by spatial locality principle.

The proposed technique is primarily targeted for recommender systems and works as

a server-side cache. This work has investigated the question of whether a caching strategy

might be useful as optimization technique for recommender systems. Answering a query in

recommender systems requires a significant amount of computation and resources. Benefits

of caching popular queries and their answers could be two fold. Firstly, repeated queries

could be answered without redundant processing to minimize the access latency. Secondly,

because of the reduction in server workload, resources could be used for other queries to

79
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be answered more efficiently. Although Web caching has been widely studied, no explicit

work is available in the domain of recommender systems.

Traditional caching implementation is very straight forward for recommender systems

however, aim of this study is to investigate a technique that can not only answer queries

that are already cached “passive caching” but can also actively process, “active caching”,

other queries utilizing information available inside the cache. As discussed in the earlier

chapter, passive caching approach caches a page and returns it on a hit without any extra

processing. Cache hit rate can be further improved by using active caching approach. The

active cache can not only service requests that exactly match previous requests but also

service requests that can be answered by processing results of previous requests [81]. The

goal is to not only get benefit from temporal locality but also focus on spatial locality and

process neighboring queries by using the cached information.

4.2 Partial Order Based Active Caching Solution

4.2.1 Preliminaries

Let S be a dataset drawn from some domain D. For every object v ∈ S, the existence of a

unique ordering (v1, v2, . . . , v|S|) of the objects of S, where i < j implies that vi is deemed

more relevant or similar to v than vj .Assume query Q represents a recommender system

query and its results is a ranked list l. In other words l=Q(v, k), a nearest-neighbor type

of query is sent to a recommender system which generates the list l = (v1, v2, v3, . . . , vk)

of the top k objects that are the closest to the query object v. According to the temporal

locality principle, query Q(v, k) is likely to be asked again in the near future and should be

kept in the cache. Lets assume C is a main memory cache and C ⊆ S. C is used to keep

|C| most repeated queries in the cache.

Traditional caching approaced target to keep repeated queries in C and can only

answer subsequent requests for these queries. In applications like recommender systems

requests are less likely to be repeated hence, minimizing the benefits of caching. This
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study proposes an active caching approach whose goal is to provide answers for not only

cached queries but also non-cached queries. Spatial locality suggests that queries that are

close (similar) have a higher probability to be asked in the near future and this approach

targets to answer these similar non-cached queries. Generally in a Nearest-Neighbor type

of queries, every object is also a query. In this case (v1, v2, v3, . . . , vk) can also be possible

queries with a high probability in the future since being close to or similar to Object v as

per spatial locality principle. If a solution is able to accurately answer

(Q(v1, j1), (Q(v2, j2), Q(v3, j3), . . . , (Q(vk, jk)), ji ≤ k from the data in the cache, it will

also achieve a much higher hit rate as the cache will also be working as query processor for

some queries.

4.2.2 Cache Implementation

Consider now the situation in which a main-memory cache C(C, k)
△
= {Q(v, k) : v ∈ C}

of top-k relevant sets is available for each object in a given subset C ⊆ S, for some fixed

k ∈ [1, |S|]. If each of the relevant sets is maintained as a list of objects sorted from most

relevant to least relevant, the collection of relevant sets C(C, j) is also readily available for

all 1 ≤ j < k. It is referred to C(C, j) as a sub-cache of C(C, k). The support of an object

v in the cache is the number of list in which v appears and is denoted by Supp(v).

For a given u ∈ S, reverse relevant sets for u can also be defined with respect to the

cache C(C, k), by restricting the membership of the lists to objects of C instead of S, as

follows:

Q−1
C (u, k)

△
= Q−1(u, k) ∩ C = {v ∈ C : u ∈ Q(v, k)}.

The collection of all such reverse lists taken over all choices of u ∈ S will be referred

to as the reverse cache corresponding to C(C, k), and will be denoted by C−1(C, k)
△
=

{Q−1
C (v, k) : v ∈ C}. In this work the terms forward cache and forward relevant set are

used to refer to the original cache C(C, k) and its lists, and the term cache loosely to refer
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to the set C taken together with its forward and reverse relevant sets. Figure 4.1 shows

a structure with set size of 10, cache size of 3 and reverse lists updated according to their

presence in the forward lists. All the objects with forward relevant set available in the cache

can be answered as is, same as traditional caching approach. For the object without forward

revelent set in the cache, inverse relevant set will be used to process the answer from the

cache and cache will act in a limited query processing role or referred as active cache.
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Figure 4.1 Cache data structures for a set of 10 objects in the 2-D plane. Top-5 lists are
cached for three objects and reverse lists updated accordingly.

4.2.3 Partial-Order Based Approach

The proposed method for active caching of recommender system results is described in

detail below. The method does not make use of the actual distance values, instead rely

only on ranking information of query result lists. This approach uses partial ordered list

characteristics to compute the answer for neighboring queries. In order to assess the impact

of using rank information instead of distance information for active caching, study also

describes and implements a distance-based variant of this method.

Let S be a dataset drawn from some domain D and l is a ranked list of objects similar

to the query object returned by a recommender system for S. Let rank(l, v) denote the rank

of the object v in the list l. A preference (or dominance) relation over l is a binary relation

≻ over l × l, where v1 ≻ v2 whenever rank(l, v1) > rank(l, v2). In such situations, v1
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is preferable to v2, or that v1 dominates v2. When extended to the full domain D, the

preference relation constitutes a partial order on D. If for v1, v2 ∈ D neither v1 ≻ v2 nor

v2 ≻ v1 hold, then v1 and v2 are incomparable, written v1 ∼ v2.

Given a query object v for which no result is cached, The active cache method first

generates two partial orderings from each cached query result list containing v as shown in

Figure 4.2:

• the suffix list suff (l), defined as the sublist of l consisting of items with ranks strictly

higher than rank(l, v); and

• the prefix list pref (l), defined as the sublist of l consisting of items with ranks strictly

less than rank(l, v), taken in reverse order.

With respect to these two partial orderings, define the rank rankv(l, u) of object u ∈ l

with respect to v to be the rank that u holds in either pref (l) or suff (l) — note that u

cannot simultaneously be contained in both. More precisely, this rank is defined to be the

difference

rankv(l, u)
△
= |rank(l, u)− rank(l, v)|.
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The objective of active caching is to synthesize an answer for a given query from

other query result lists available in the cache. Assume l is a cached list with rankv(l, v1) >

rankv(l, v2), for some pair of objects v1, v2 ∈ D. If for a top-k query-by-example Q(v, k)

an active cache method generates a ranked result list l′ containing both v1 and v2, then

ideally it would expect the ranks of these objects in the synthesized result to satisfy

rank(l′, v1) > rank(l′, v2). In this limited sense, the active cache function would be

‘monotonic’ with respect to l, in that the ordering of the objects v1 and v2 would be

preserved. However, note that it is in general impossible for any aggregation function

to be monotonic with respect to all cached lists. Monotonicity applies only to the lists

selected from the cache to contribute to the answer and is only used in the aggregation

algorithm to determine the ranks of the object v1 and v2. For recommendation systems,

monotonicity makes sense because most objects in a list will appear in each others lists.

The active caching method proposed in this dissertation resolves conflicts in the partial

order information by aggregating the rank information across all suffix lists and prefix lists

available from the cache. The aggregation can be performed with respect to such standard

operations as min, max, avg and skyline.

Algorithm Query

Input: query object v, result size k;

Output: ranked top-k query-by-example result list Result.

1. Initialization:

(a) Assign list L← Q−1
C (v). L refers to the cached forward lists containing object

v.

(b) Initialize result object candidate set candset ← ∅, and final result object set

Result← ∅.

2. For all lists l ∈ L do:
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(a) For all objects u ∈ l do:

i. If u /∈ candset then insert u into candset, and initialize rank value multiset

rankset(u)← ∅.

ii. Insert an instance of the rank value rankv(l, u) into the multiset rankset(u).

3. For all objects u ∈ candset do:

(a) Generate a score s for u by aggregating the rank values stored in rankset(u)

using the chosen aggregation function (for example, max, min, avg, etc.).

(b) Insert the object-score pair (u, s) into the result list Result.

4. Sort the entries in the list Result according to their score values, and return the objects

of top k object-score pairs. Ties can be broken arbitrarily, with the exception that v

is given priority over any other object w ̸= v in D.

If the object domain D is embeddable in a metric space M with distance metric d,

and these distance values are readily computable, a distance-based variant of the proposed

query algorithm is possible: each instance of the rank rankv(l, u) can simply be replaced by

the distance value d(v, u). The use of distance values in place of rank values can reasonably

be expected to lead to better performances in practice; however, as has been previously

noted, a distance-based formulation may not always be possible.

4.2.4 Cache Replacement Policy

In traditional setting, a cache stores and processes queries that are requested repeatedly. In

a case of cache hit when result for a requested query is available in the cache: the cost of

answering the query is very little. Contrarily, if the cache does not contain the result of a

requested query, the result is fetched from the disk at a much higher cost. At this point the

answer for this new query can be kept in the cache to answer future requests, but since the

cache size is limited, answer for another query must be removed from the cache. A cache
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replacement policy is a decision process that helps in retaining right objects in the cache

to achieve the goal of answering as many requests as possible. Zipf’s law and temporal

locality principles help to make these decisions where least recently used, least frequently

used and other replacement policies apply these principles to select the items for evictions.

This process will automatically load the popular content in the cache after certain period of

time. Selection of proper replacement method depends on the type of dataset and the traffic

characteristics.

Traditional caching may not be effective in applications such as recommender systems

where requests are unlikely to be repeated. For example, it is highly unlikely that a user asks

for recommendations for an object again and again and hence, in that case almost none of

the requests would hit an item already in a cache. In such case cache replacement policies

could be very expensive and not much helpful in reducing the server load. However, a static

cache, a cache without any replacement of the content, which is able to answer most of the

queries could be more appropriate for these types of applications. Active caching approach

in this dissertation also follows this approach where data is loaded in the cache only once

and this data helps to answer cached as well as non-cached queries posed by the users and

high cache hit rates can be achieved with out any replacement of the content.

4.3 Evaluation

As discussed earlier, existing active caching methods developed for boolean queries cannot

in general be applied to handle recommender system queries, and thus a direct comparison

between these methods and the proposed technique is not possible. For this reason, to

evaluate the active caching approach for recommender system queries, this study instead

compare their performance against those of traditional passive caching strategies in terms

of four measures, the hit rate, the byte hit rate, the recall and the execution cost. Use of

both hit rate and byte hit rate is due to the fact that the proposed solution requires more
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space than the traditional caching approach due to the storage of inverted lists alongside

standard result lists.

Partial order based active caching approach in general can be used with any nearest

neighbor application. In order to test the performance of out proposed approach, different

types of datasets have been selected . First, this study focuses on testing this approach

with the two major categories of recommender systems i.e., content based and collaborative

filtering. Second, it also focuses on other nearest neighbor applications e.g., image retrieval

etc. Third, similarity functions used in nearest neighbor applications either result in a metric

space e.g. Euclidean distance, or non-metric measures like cosine similarity. Datasets

selected for evaluation in this study cover both content based and collaborative filtering

recommendation techniques. Furthermore in these datasets similarity measure is also

manipulated and both metric as well as non-metric similarity measures are used. Finally,

to test nearest neighbor applications from various domains, datasets for digital libraries,

images, network, intrusions, geographical data and rating data are used. Each of these

dataset is detailed below.

4.3.1 Ranking Functions

Partial order approach discussed in this chapter uses ranking information to estimate answer

for non-cached queries. Output is a top-k list of objects most reagent to the query object

based on the information available in the cache. This relevancy or ranking is computed

using the rank value of each object in all inverted list used to process the answer for an

object. Aggregation of these rank values should be done carefully to get most accurate

answer. This study uses four different ranking or aggregation methods to estimate top-k

objects.

Min ranking function considers those objects most relevant whose rank value is most

closer to the query object in any of the lists in which they co-occured with the query objects.

Sum functions take into account all the occupancies of each object in these lists and sum
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the rank values and k objects with highest sum values are returned. Avg function takes the

average and returns those object with highest avg rank values. Skyline approach returns

those objects which have higher rank in atleast one list and same in all other lists. In some

cases it needs multiple iterations to return top-k skyline objects.

4.3.2 Experimental Results

In this study several tests were conducted using above mentioned datasets to check the

performance of the proposed solution. Various proportions of the data were selected through

a uniform selection at random and loaded to the cache. Every object v in the dataset was

used in a query Q(v, k) and posed against the cache for all the experiments.

Hit Rate: Partial order based approach test results showed substantially high hit rate

when compared with a traditional caching approach. A traditional approach can only

answer queries that are already in the cache, however, active caching can not only answer

cached queries but also process answer for non-cached queries. For hit rate tests, various

sizes of datasets were put in the cache and all possible queries, each object in the dataset

was considered as a query, were executed. A hit is considered when answer can be provided

from the cache.

For the ALOI dataset, Figure 4.3 shows the hit rate achieved by the active caching

strategy for different choices of the standard list size λ. The proportion of items cached for

this experiment varied between 10% and 100%. A traditional cache will always result in

the same hit rate with varying list size because the list just kept to answer cached queries.

However, active cache hit rate is directly proportional to the list size because it uses these

lists to estimate answer for non-cached queries. In all cases, the hit rates were much higher

with active caching than for passive caching, increasing very quickly with increasing list

size. For the RCV1 dataset Figure 4.4, KDDCup dataset Figure 4.5, CoverType dataset
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Figure 4.6 and Jester dataset Figure 4.7 also shows a very substantial improvement over

passive caching.
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Figure 4.3 Hit rate for active caching across a range of cache sizes using dataset Aloi,
with λ = 10, 20, 30.
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Figure 4.4 Hit rate for active caching across a range of cache sizes using dataset Reuters,
with λ = 10, 20, 30.
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Figure 4.5 Hit rate for active caching across a range of cache sizes using dataset KDD
Cup, with λ = 10, 20, 30.
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Figure 4.6 Hit rate for active caching across a range of cache sizes using dataset
CoverType, with λ = 10, 20, 30.
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Figure 4.7 Hit rate for active caching across a range of cache sizes using dataset Jester,
with λ = 10, 20, 30.
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Figure 4.8 Hit rate for active caching across a range of cache sizes using dataset
MovieLens, with λ = 10, 20, 30.

Experiments were conducted to see the hit rate in terms of total distinct objects

available in the cache and number of queries that can be answered from the cache. Again

active caching approach outperformed the traditional caching as showing in Figure 4.9
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Figure 4.9 Hit rate for active caching across a range of distinct objects in cache using
dataset ALOI, with λ = 20.

Content based data sets showed much higher hit rate than collaborative filtering cases.

Possible reasons could be that the size of movielens dataset is very small, both users and

movies, and also the available rating data is not equally distributed. The hit ratE mentioned

above is based on the data size in the cache. Another advantage of the proposed active

caching approach is that it utilizes cached list size effectively and shows high hit rate with

increasing list size as demonstrated in Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6 and

Figure 4.7. However, if the cache is considered in terms of cache size as oppose to data

size, the result will be slightly different. Because the active cache uses twice the cache

space of the traditional cache, caching 50% of the database will use as much space as

caching 100% of the database in traditional cache. This is unlikely to happen in practice

as the cache is designed for popular queries. In addition, database sizes are becoming too

large (TB) to fit in a cache.

Byte Hit Rate: The proposed solution can require more space than the traditional caching

approach due to the storage of inverted lists alongside standard result lists. For example,

in a straightforward implementation in which integer variables are stored using 32 bits and

floating point variables occupy 64 bits, each result item would be associated with 64 bits of

storage: an integer object ID in the standard list, and an integer object ID in the inverted list.

If traditional caching is performed with only object IDs being stored, only 32 bits would be

required for each result list entry, and thus active caching would require approximately 2
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times as much storage as the traditional implementation. However, if floating-point object

distances were also required for the traditional implementation, the storage per entry would

rise to 96 bits, leading to more storage cost as for active caching (since the active caching

method would generate estimated similarity values with its own measure instead of relying

on explicitly-stored distances). Nevertheless, it can be seen from Figures 4.10, 4.11, 4.12,

4.13 and 4.14 that for various cache sizes of data, the active caching solutions can answer

substantially more queries than traditional caching even taking its potentially-increased

memory requirements into account.
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Figure 4.10 Byte Hit rate for active caching across a range of cache sizes in megabytes
using dataset Aloi, with λ = 10.
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Figure 4.11 Byte Hit rate for active caching across a range of cache sizes in megabytes
using dataset Reuters, with λ = 30.
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Figure 4.12 Byte Hit rate for active caching across a range of cache sizes in megabytes
using dataset KDD Cup, with λ = 10.
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Figure 4.13 Byte Hit rate for active caching across a range of cache sizes in megabytes
using dataset CoverType, with λ = 30.
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Figure 4.14 Byte Hit rate for active caching across a range of cache sizes in megabytes
using dataset Jester, with λ = 10.
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Figure 4.15 Byte Hit rate for active caching across a range of cache sizes in megabytes
using dataset MovieLens, with λ = 10.

Recall: Recall and precision are the most commonly used accuracy measures. As

mentioned earlier, in this case recall = precision, only recall test results are shown here

using the above mentioned datasets. For each dataset, various sizes of data was loaded in

the cache and all possible queries that can be answered from the cache were executed. The

proposed active caching approach showed high recall values with various data sizes in the

cache as shown in figures below.

Figures 4.16, 4.17, 4.18, 4.19 and 4.20 shows the cache recall values obtained over

active caching hits for top-10 queries with standard list length λ = 10.
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Figure 4.16 Average cache recall for active caching hits for the ALOI dataset, taken across
a range of cache sizes with k = λ = 10.
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Figure 4.17 Average cache recall for active caching hits for the RCV1 dataset, taken
across a range of cache sizes with k = λ = 10.
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Figure 4.18 Average cache recall for active caching hits for the KDD dataset, taken across
a range of cache sizes with k = λ = 10.
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Figure 4.19 Average cache recall for active caching hits for the CoverType dataset, taken
across a range of cache sizes with k = λ = 10.
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Figure 4.20 Average cache recall for active caching hits for the Jester dataset, taken across
a range of cache sizes with k = λ = 10.
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Figure 4.21 Average cache recall for active caching hits for the MovieLens dataset, taken
across a range of cache sizes with k = λ = 10.

For all the datasets, the proposed solutions achieved very high recall values across

the range of cache sizes. Sum and Skyline measures performed best in all the datasets with

Skyline only slightly better than Sum measure. Together with hit rate and byte hit rate

figures, these results show that for sufficiently-large cache sizes, very effective recall rates

can be achieved while only rarely needing to access information on disk. For example,

for the ALOI set with 25% of the data items cached, the proposed active caching variants

answered approximately 98% of the queries, with an average recall of 0.75 and above.

Even for the smallest cache size studied, 50% of the queries were answered with recall

rates above 0.6, whereas the traditional caching approach would answer only 2.5% of the

queries (albeit with recall 1.0).

To confirm the consistency of recall values for larger list sizes, list size k was also

varied to see its impact on recall. Only test results for KDD and Aloi datasets are included



97

due to space limitations. These tests were conducted to test the recall by varying the size

of the query result k together with the cached standard list size λ. Top-k queries were

performed with k = λ = 10, 20, 30, 40 and 50 and cache size of 25%. The results,

shown in Figure 4.22 and 4.23, did not vary significantly for different settings of λ, hence,

confirming the reliability of the proposed approach with various size of λ.
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Figure 4.22 Average cache recall for top-k active caching hits using cache size of 25 for
Aloi dataset, and across a range of list sizes λ = k.
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Figure 4.23 Average cache recall for top-k active caching hits using cache size of 25 for
KDD dataset, and across a range of list sizes λ = k.

Above results again confirm the performance of Sum and Skyline measures as being

best to use with the proposed approach. Both Avg and Min measure performance was

degraded with the increase in list size however, recall rates for Sum and Skyline was very

much consisted with the increase in list size.

For the remainder of the experiments in this section, this study concentrates on the

estimation power of the proposed active caching methods, by forcing an active estimation
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in which the standard list stored for the item at which the query is based is always ignored.

In these experiments recall is calculated only for the estimated non-cached queries and

cached queries are ignored.

To get further information on inverted list usage statistics, several experiments were

conducted to show the relationship between observed average estimation recall rates and

the sizes of the inverted lists associated with query items. Also information about number of

objects was collected against each size of inverted list to further explore this relationship. In

Figure 4.24 histogram shows the numbers of query items with inverted lists of a given size

for Aloi dataset where as in Figure 4.25 the average recall values are plotted as a function

of query inverted list size. For this experiment 25% objects were randomly selected and

each having a standard list of size λ = 20.
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Figure 4.24 The histogram for ALOI shows the numbers of query items with inverted
lists of a given size.
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Figure 4.25 Average estimation recall values for active cache hits as a function of query
inverted list size, for the ALOI dataset with cache size 25% and k = λ = 20.
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The experimental results show consistently-high average estimation recall rates over

all but the smallest inverted list sizes for both Sum and Skyline measures. Figure 4.25

suggest that better performances are achieved for longer query inverted list sizes. The high

variation towards the end in recall for large inverted lists is due to the very small number

of instances of these lists. A similar recall pattern can be seen for KDD Cup dataset in

Figures 4.26 and 4.27
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Figure 4.26 The histogram for KDD dataset shows the numbers of query items with
inverted lists of a given size.
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Figure 4.27 Average estimation recall values for active cache hits as a function of query
inverted list size, for the KDD dataset with cache size 25% and k = λ = 20.

The above experiments on inverted lists show higher recall values for objects with

larger inverted list sizes. Hence, overall recall for the cache can be improved by applying

thresholds on inverted list size using the best performing measures i.e., Sum or Skyline. By

using a threshold on inverted list size, active caching only generates a result only when the

object satisfies a specified minimum value as evident from the Figures 4.25 and 4.27.
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Another experiment was conducted to determine the influence of the choice of

Lambda on the recall rate of top-k active cache queries when the length of the cache

standard lists is varied. In this test, the list lengths of 10, 20, 30, 40, 50 were used to estimate

top-30 results. and the cache size was again chosen to be 25%. Figure 4.28 and 4.29 shows

a peak in performance for all methods with k between 30 and 40, with the Sum and Skyline

methods again offering the greatest stability across the range.
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Figure 4.28 Average estimation recall rates of top-30 active cache hits for the ALOI
dataset, plotted for a cache size of 25% against different standard list sizes.
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Figure 4.29 Average estimation recall rates of top-30 active cache hits for the KDD
dataset, plotted for a cache size of 25% against different standard list sizes.

Execution Cost: In the experimental evaluation, efficiency of the proposed solution was

tested in terms of the execution time of the queries posed. This test was conducted by
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posing all possible similarity queries, and computing the execution time over each. For

active caching, most of the queries will be answered from the cache and remaining will

be answered from the database. For a traditional caching solution, fewer queries will be

answered from the cache, and the remainder will be answered from the database. For

comparison purposes, the cases where no cache is used were also considered, and an

adjustment in which the size of the traditional cache is doubled. To test the cost of

computation, cache was loaded with 25% of the data from the Aloi dataset and all the

possible (110,250) queries were executed comparing the execution time of no caching ,

traditional caching and active caching . Active caching approach outperforms traditional

cache [compared at 10,000 intervals]. Figure 4.30 shows the superior performance of the

proposed approach in terms of CPU costs when compared with no caching and traditional

caching approaches.
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Figure 4.30 Query execution times for active caching across a range of query sizes, for
the ALOI dataset with k = λ = 30. The execution costs (in milliseconds) for traditional
caching, triple-sized traditional caching, and no caching is also shown.

The query execution time for the proposed solution as shown in the Figure 4.30 can

be further improved. The execution time includes the sorting step before returning the

results and it uses a simple bubble sort algorithm. An implementation of any better sorting

algorithm can improve this time for the active caching approach; however, the execution

time for traditional cache will remain same.
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As mentioned above, if cache size is considered in terms of bytes of data, active

cache uses twice the amount of size as in traditional cache. Figure 4.31 shows that even if

traditional cache is loaded with twice the amount queries as in active cache, active cache

out performs traditional caching approach in terms of CPU cost. A traditional cache was

loaded with 50% data and active cache with 25% of the data from the same dataset (Aloi)

and then executing all the possible queries (110250).
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Figure 4.31 Performance test in terms of cpu cost, active cache outperforms traditional
cache even when traditional cache is loaded with twice the amount queries as active cache.

Robustness: Robustness of the proposed solution is tested by introducing noise entries

into the cached standard lists. In each test, cache lists were replaced by noise lists of the

same length, generated by selecting objects from the full dataset uniformly at random.

The proportion of cache lists replaced by noise lists was varied between 0% and 100%.

The experimental results in Figure 4.32 and 4.33 shows a very strong linear relationship

between the performance and the proportion of noise. The results indicate that relatively

large amounts of noise can be tolerated while still providing very high recall rates.
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Figure 4.32 Average estimation recall rates for ALOI active cache hits, with a cache size
of 25% and with k = λ = 10, plotted against the proportion of noise lists.
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Figure 4.33 Average estimation recall rates for KDD active cache hits, with a cache size
of 25% and with k = λ = 10, plotted against the proportion of noise lists.

4.4 Summary

Partial order based active caching approach mentioned above showed very strong overall

performance and provides an intriguing answer to the question of cache management for

recommender systems. The experimental results in the previous section show substantial

improvement in the cache hit rate and the latency reduction in terms of execution costs as

compared to traditional caching solutions. The proposed approach can not only answer

queries that exactly match the queries in the cache but also computes answers for non-

cached queries hence, the cache acts in a limited query processor and answers significantly

higher number of queries than traditional caches.
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Similar to any other caching solution, this approach also incurs an overhead in case of

cache miss. This overhead is due to the fact that the first answer is checked in the cache and

if it is not available then requested from the database. However, in active caching approach,

the overhead is much lower because the number of cache misses are very low. The active

caching solution has a marginal memory overhead due to the reverse lists but even if cache

is considered in terms of byte size, it still provides significant performance gain.

This approach in general is suitable for both metric as well as non-metric distance

measures and does not assume the queries lie in a metric space. However, it utilizes the

monotonicity amongst the partial order lists to correctly compute the answer for non-cached

queries. One of the limitation of this approach is that it can only achieve higher recall

rates with the datasets having high level of monotonicity amongst the partial order lists.

However, in practical it is not always difficult to assess the level of monotonicity in a

dataset and the lower recall rates for non-cached queries could diminish the benefits of

this approach. A possible solution to this limitation is to implement an approach which

does not make use of monotonicity and thus can result in a higher recall for non-cached

queries while maintaining the cache hit rate and execution cost. In the next chapter, shared

neighbor approach is proposed which does not utilize monotonicity and results in a higher

recall for non-cached queries.



CHAPTER 5

SHARED NEIGHBOR SIMILARITY MEASURE FOR ACTIVE CACHING

5.1 Introduction

Chapter 4 proposed a partial order based active caching approach that utilizes the

monotonicity amongst partial order lists to compute the answer for non-cached queries.

One of the limitation of partial order approach is that it can only achieve higher recall with

the datasets having high level of monotonicity amongst the partial order lists. However,

practically it is very difficult to estimate and improve the monotonicity in any dataset. In

this chapter, a more general ‘active caching’ technique for K-NN queries is proposed which

does not make use of monotonicity and can achieve higher recall while maintaining the hit

rate. The solution is based on concepts from the relevant set correlation (RSC) clustering

model, which measures the similarity between two objects in terms of the number of

other objects in the common intersection of their neighborhoods. The intersection size of

neighborhood sets has been used as the basis of the merge criteria of several heuristics for

data clustering. These heuristics, collectively referred to as ‘shared-neighbor’ methods, use

neighborhood intersection sizes in the estimation of local data density. These methods have

the advantage of being more adaptable to variations in data distribution than methods that

rely solely on distance measures. Examples of agglomerative shared-neighbor clustering

algorithms include Jarvis and Patrick’s method [54], ROCK [112], DBSCAN [84] and

SNN [69]. More recently, a non-agglomerative clustering method, GreedyRSC [48], was

proposed that uses shared-neighbor information to directly assess the quality of cluster

candidates, and to rank the members of clusters in order of relevance.

The proposed approach provides a very general solution and can work with any

application that results in a ranked list. General in a sense that it does not require the

actual distance scores to compute the result from the cache. A more specific solution can

105
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be implemented by using the triangular inequality if the underneath distance function is

metric. Similarly, if the cached ranked lists show the property of monotonicity, partial

order approach can be used to process non-cached queries. Although triangular inequality

based and partial order based solution can be used, however, it will be a limitation and

solution cannot be used with all those applications which results in a ranked list.

The active caching technique proposed in this chapter make use both of cached lists

of objects in the neighborhood of query objects, as well as inverted lists derived from these

neighbor lists. The lists used in this approach are fundamentally different from those used

in [116],[53],[77]. Their approaches are designed specifically for keyword-based queries,

whereas the proposed approach is much more general: it can be applied to any system that

supplies ranked lists as query results, and relies only on the inherent ordering within these

lists and their inversions.

This chapter refers to the preliminaries explained in Chapter 3. In the next section, a

brief description of the original RSC model for clustering as well as supporting terminology

and notation is presented. Section 5.3 lists the most commonly-used measures of shared

neighbor information, and use techniques developed under the RSC model to derive similarity

measures for active caching that take into account potential variation in the sizes of cached

neighbor lists and/or inverted lists. Implementation section shows how these similarity

measures can be efficiently implemented. Experiments are provided in Section 5.5 for

various datasets, that show how the proposed active caching formulations can be surprisingly

effective in terms of both recall and hit rate, even for relatively small cache sizes. Finally,

the discussion is concluded in Section 5.6.

5.2 Relevant Set Correlation

Set correlation can be regarded as a special case of the well-known Pearson correlation of

variable pairs. Every object of some universal set Ω can be associated with a coordinate

of a vector space whose dimension is equal to the size of S. A subset A of Ω can be
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represented by a zero-one characteristic vector in this space, where a coordinate value of

1 indicates that the corresponding object is a member of A, and a value of 0 indicates that

the object does not belong to A. Even if no additional information is available regarding

the nature of A and B, the relationship between A and B (and their underlying concepts)

can be quantified in terms of the correlation between corresponding coordinates of their

characteristic vectors.

For sequences of variables (x1, . . . , x|Ω|) and (y1, . . . , y|Ω|) with means x̄ and ȳ,

respectively, the standard Pearson sample correlation is given by the following formula [96]:

r =

∑|Ω|
i=1(xi − x̄)(yi − ȳ)√∑|Ω|

i=1(xi − x̄)2
∑|Ω|

i=1(yi − ȳ)2

=

∑|Ω|
i=1 xiyi − |Ω| · x̄ȳ√

(
∑|Ω|

i=1 x2
i − |Ω| · x̄2)(

∑|Ω|
i=1 y2

i − |Ω| · ȳ2)
.

Applying the formula to the characteristic vectors of sets A, B ⊆ Ω, and noting that

|Ω|∑
i=1

x2
i =

|Ω|∑
i=1

xi = |Ω| · x̄

whenever xi ∈ {0, 1}, the following set correlation formula can be obtained [48]:

RΩ(A,B) =
|Ω| · CM(A,B)−

√
|A| · |B|√

(|Ω| − |A|)(|Ω| − |B|)
,

where

CM(A,B) =
|A ∩B|√
|A| · |B|

is the popular cosine similarity measure between A and B [96]. Note that when the sizes

of A and B are fixed, the set correlation value tends to the cosine measure as the universal

set size |Ω| increases.

Although the set correlation resembles to some extent the Spearman rank correlation

and Kendall tau rank correlation coefficients appearing in the statistical literature [61], the
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latter two are fundamentally unsuited for application to relevant sets. Given two ranked

lists of items drawn from a common domain, Spearman rank correlation assigns to each

item an ordered pair of values equal to the rank of the item with respect to each ranked

list. The Spearman rank correlation value is simply the Pearson correlation applied to the

collection of variable pairs. Compared to the set correlation, however, the Spearman rank

correlation ascribes great importance to the magnitude of the difference between the ranks

of a given item with respect to each list. The Kendall tau coefficient, on the other hand, is

formulated in terms of the sign of the difference between the ranks of the item with respect

to the two lists. For situations such as caching in which the available ranked lists span only

a local neighborhood (the relevant set) and not the entire database, it is often the case that

an individual item appears in one list and not the other, precluding the calculation of both

Spearman and Kendall tau coefficients.

5.3 The CES Model

With traditional caching strategies, in processing a top-k query object v for which results

have not already been cached, the information is retrieved directly from disk. However,

if the query result for v can be reliably estimated using only cached information and

without performing expensive disk access operations, the computational savings may be

considerable. This section proposes the Cache-Estimated Significance (CES) model for the

estimation of top-k query results using cached information, where parameters such as k, the

cached neighbor list size λ, and the cache size are all allowed to vary. The model includes

shared-neighbor similarity measures that, given any object w ∈ S, assesses the statistical

significance of the relationship between v and w using only the information available in the

cache. Using one of these measures, an approximation to the top-k query result for v can

be generated by determining the k objects of S most closely related to v.
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5.3.1 Shared-Neighbor Similarity Measures

Before presenting the details of the CES model and associated similarity measures, a

spatially-motivated argument is given as to why shared neighbor information has the potential

of indicating similarity relationships among data objects, even when the underlying distance

values are not available.

Consider the situation in which the objects of a dataset S are embedded in a metric

space with distance function dist, from which the relevancy ranking function Q is derived.

Let x be any point in the space (not necessarily coincident with an object of S). With

respect to any object v ∈ S, a rank(v, x) is defined to be the rank that a new object would

be assigned if it were inserted into S at location x, with any tied distances broken in favor

of x. Point x would also determine a standard relevant set Q(x, λ) and inverted relevant set

Q−1(x, λ), with respect to S using dist.

If x were allowed to migrate towards the location of v, the memberships of Q(x, λ)

and Q−1(x, λ) would tend progressively toward those of Q(v, λ) and Q−1(v, λ), respectively,

until they coincided at x = v. The relationships between Q(x, λ) and Q(v, λ) on the

one hand, and Q−1(x, λ) and Q−1(v, λ) on the other, can serve as the foundation of a

rank measure of the similarity between x and v. Each object of Q(x, λ) ∩ Q(v, λ) would

support the contention that x and v were similar, and each object of Q(x, λ) \ Q(v, λ) or

Q(v, λ) \ Q(x, λ) would work against it. The same would be true for inverted sets, with

each of Q−1(x, λ) ∩ Q−1(v, λ) acting as a witness testifying to the similarity of x and v,

and each object of Q−1(x, λ) \ Q−1(v, λ) or Q−1(v, λ) \ Q−1(x, λ) refuting it.

For the cache entry estimation problem, assume that the estimation of the top-k

relevant set Q(v, k) for some object v /∈ C. Even though only rank information is available

and any spatial embedding and distance information is unknown, the spatial intuition

described above can still be expected to apply in many (if not most) practical settings.

The cached object set C would constitute a set of potential witnesses to the relationship

between two objects v and w in S. However, as the cache generally contains only a small
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fraction of the total possible standard relevant sets, any rank measure of similarity must

rely primarily on the inverted relevant sets.

Just as different formulations of shared-neighbor criteria have been proposed for

clustering applications, it is possible to devise many shared-neighbor similarity measures

for estimation problem. Given an inverted cache C−1(C, λ) and two inverted relevant

sets Q−1
C (v, λ) and Q−1

C (w, λ), study focuses on the following three cache-estimated rank

measures:

• the intersection size measure

SimIntC,λ(v, w)
△
= |Q−1

C (v, λ) ∩ Q−1
C (w, λ)|;

• the set correlation measure

SimCorrC,λ(v, w)
△
= RC(Q−1

C (v, λ), Q−1
C (w, λ));

• and the cosine measure

SimCosC,λ(v, w)
△
= CM(Q−1

C (v, λ), Q−1
C (w, λ)).

The cosine measure is included here as a simplified alternative to the set correlation measure

— in practical settings, the value of λ and the sizes of the inverted sets Q−1
C (v, λ) and

Q−1
C (w, λ) are very much smaller than S and C, and the difference between SimCosC,λ and

SimCorrC,λ is negligible.

For all three measures, a value of 1 indicates that all occurrences of v in the cached

top-k query result lists coincide with occurrences of w (and vice versa), and thus that the

cache strongly supports the association of v and w. On the other hand, values approaching

0 indicate little support for the association of v and w. The set correlation and cosine

measures are not well-defined whenever Q−1
C (v, λ) = ∅ or Q−1

C (w, λ) = ∅. For these cases,

the values of the measures are taken to be 0. For the set correlation measure, note that
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Q−1
C (v, λ) and Q−1

C (w, λ) are subsets of C, and thus the characteristic vector descriptions

take C to be the universal set, and not S.

5.3.2 Significance of Similarity Measures

The measures SimIntC,λ, SimCosC,λ and SimCorrC,λ stated above may have different biases

with respect to the cache size |C|, the relevant set size λ, and the sizes of the inverted

relevant sets involved. The intersection size measure SimIntC,λ potentially favors those

objects w having the largest inverted relevant sets Q−1
C (w, λ), as no penalty is applied

when members of this set do not appear in Q−1
C (v, λ). The other two correlation measures

compensate for this deficiency by normalizing the contributions with respect to the sizes of

the inverted relevant sets. However, these two measures also admit the possibility of bias.

In general, when making inferences involving Pearson correlation, a high correlation value

alone is not considered sufficient to judge the significance of the relationship between two

variables. When the number of variable pairs is small, it is much easier to achieve a high

value by chance than when the number of pairs is large.

The RSC model for clustering was proposed as a way of correcting for the bias in

shared-neighbor density measures for clustering applications [48]. The statistical significance

of formulas involving set correlation values was tested against a ‘hypothesis of randomness’

— the assumption that each relevant set contributing to the density measure is independently

generated via uniform random selection from among the available objects of S. In practice,

of course, the relevant sets are far from random. However, this situation serves as a

convenient reference point from which the significance of observed values of the measure

can be assessed. Under the randomness hypothesis, the mean and standard deviation of the

measure can be calculated, and standard scores (also known as Z-scores) [96] can then be

generated and compared with one another. The more significant grouping would be the one

whose standard score is highest — that is, the one whose correlation exceeds its expected

value by the greatest number of standard deviations.
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For the proposed cache entry estimation model, this study uses the ‘hypothesis of

randomness’ to account for potential bias of SimIntC,λ and SimCorrC,λ due to the choice

of standard cache list size λ, and the variations in the size of the inverted relevant sets that

accompany the choice of λ. The analysis is similar to that of RSC significance in [48]. In

that chapter, the expected value and variance of the set correlation was derived under the

assumption that the sizes of the the sets were fixed, and that at least one set was chosen

uniformly at random (without replacement) from among the objects of S. It requires

that both sets be generated by random selection of objects, with each object selected

independently with fixed probability. Let A be a set generated through independent random

selection from the objects of set Ω, with each object present in A with probability 0 < p <

1. Let B be a second set generated independently from Ω in the same manner as A. Then

• E[|A ∩B|] = p2 · |Ω| and Var[|A ∩B|] = p2(1− p2) · |Ω|,

• E[RΩ(A,B)] = 0 and Var[RΩ(A,B)] = 1
|Ω|−1

.

Let SimIntC,λ(v, w) be a random variable representing the value of SimIntC,λ(v, w)

that would be achieved if all cached standard relevant sets were independently generated via

the uniform random selection of λ objects from the dataset S. Similarly, let SimCorrC,λ(v, w)

be a random variable representing the value of SimCorrC,λ(v, w) that would be achieved

under the same conditions. The probability p of an individual object u ∈ C appearing in

Q−1
C (v, λ) would equal that of v appearing in Q(u, λ), which is p = λ

|S| . lemma 5.3.2 can

then be applied with Ω = C, A = Q−1
C (v, λ), B = Q−1

C (w, λ), and p = λ
|S| to show that

• E[SimIntC,λ(v, w)] = |C| λ2

|S|2 and Var[SimIntC,λ(v, w)] = |C| λ2

|S|2

(
1− λ2

|S|2

)
, and

• E[SimCorrC,λ(v, w)] = 0 and Var[SimCorrC,λ(v, w)] = 1
|C|−1

.

Given a set of cache objects C, the cache-estimated correlation significance of w

relative to query v is defined as the standard score for SimCorrC,λ(v, w) under the randomness
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hypothesis:

ZCorrC,λ(v, w)

△
=

SimCorrC,λ(v, w)− E[SimCorrC,λ(v, w)]√
Var[SimCorrC,λ(v, w)]

=
√
|C| − 1 SimCorrC,λ(v, w)

=
√
|C| − 1

|C|√
(|C| − |A|)(|C| − |B|)

·

(
|A ∩B|√
|A| · |B|

−
√
|A| · |B|
|C|

)
,

where A = Q−1
C (v, λ) and B = Q−1

C (w, λ). This indicates that as long as the cache size |C|

is kept constant, the correlation significance of w relative to v is equivalent to the correlation

for the purposes of ranking.

The cache-estimated intersection significance of w relative to query v is defined as

the standard score for SimIntC,λ(v, w) under the randomness hypothesis:

ZIntC,λ(v, w)

△
=

SimIntC,λ(v, w)− E[SimIntC,λ(v, w)]√
Var[SimIntC,λ(v, w)]

=
SimIntC,λ(v, w)− np2

p
√

n(1− p2)

=
√
|C| |S|√

|S|2 − λ2

·

(
|Q−1

C (v, λ) ∩ Q−1
C (w, λ)|

λ·|C|
|S|

− λ

|S|

)
.

The intersection significance somewhat resembles the correlation significance, in that it can

be obtained from the latter as a result of the following substitutions (in order):

1. the factor
√
|C| by

√
|C| − 1;

2. the factor |C|√
(|C|−|A|)(|C|−|B|)

by |C|√
|C|2−|A|·|B|

;
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3. all occurrences of the set sizes |A| = |Q−1
C (v, λ)| and |B| = |Q−1

C (w, λ)| by their

expected values, λ·|C|
|S| .

5.3.3 Proof

Proof. Letting Ω = {ω1, ω2, . . . , ωn}, define zero-one random variables Ai and Bi for all

1 ≤ i ≤ n, such that Ai = 1 if and only if ωi ∈ A, and Bi = 1 if and only if ωi ∈ B. Let

Ā = 1
n

∑n
i=1 Ai and B̄ = 1

n

∑n
i=1 Bi be the respective means of these random variables.

Note that these random variables are all independent, and thus E[AiAj] = E[Ai] · E[Bj]

for all 1 ≤ i < j ≤ n, and E[AiBj] = E[Ai] · E[Bj] for all 1 ≤ i, j ≤ n. Also, the fact

that these variables are identically distributed implies that for any function f : {0, 1} → R,

there is E[f(Ai)] = E[f(Aj)] = E[f(Bj)] for all 1 ≤ i, j ≤ n.

The expected value of the size of the intersection of A and B is

E[|A ∩B|] = E

[
n∑

i=1

AiBi

]

=
n∑

i=1

E[Ai] · E[Bi]

= np2.
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The variance of the size of the intersection of A and B is

Var[|A ∩B|]

= E
[
(|A ∩B| − E[|A ∩B|])2

]
= E

[
|A ∩B|2 − 2np2 · E[|A ∩B|] + n2p4

]
= E

( n∑
i=1

AiBi

)2
− n2p4

= E

 n∑
i=1

A2
i B

2
i +

n∑
i=1

n∑
j=1

j ̸=i

AiBiAjBj

− n2p4

=
n∑

i=1

E[Ai] · E[Bi]

+
n∑

i=1

n∑
j=1

j ̸=i

E[Ai] · E[Bi] · E[Aj] · E[Bj]− n2p4

= np2 + n(n− 1)p4 − n2p4 = np2(1− p2).

The expected value of the correlation of A and B is

E[RΩ(A,B)]

= E

[ ∑n
i=1(Ai − Ā)(Bi − B̄)√∑n

i=1(Ai − Ā)2 ·
∑n

i=1(Bi − B̄)2

]

=
n∑

i=1

E

[
(Ai − Ā)(Bi − B̄)√∑n

i=1(Ai − Ā)2 ·
∑n

i=1(Bi − B̄)2

]

=
n∑

i=1

E

[
(Ai − Ā)√∑n
i=1(Ai − Ā)2

]
· E

[
(Bi − B̄)√∑n
i=1(Bi − B̄)2

]

=
1

n
E

[ ∑n
i=1(Ai − Ā)√∑n
i=1(Ai − Ā)2

]
· E

[ ∑n
i=1(Bi − B̄)√∑n
i=1(Bi − B̄)2

]
=

1

n
· 0 · 0 = 0.
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The variance of the correlation of A and B is

Var[RΩ(A,B)]

= E[(RΩ(A,B)− E[RΩ(A,B)])2]

= E[R2
Ω(A,B)]

= E

[ (∑n
i=1(Ai − Ā)(Bi − B̄)

)2∑n
i=1(Ai − Ā)2 ·

∑n
i=1(Bi − B̄)2

]

= E

[∑n
i=1

∑n
j=1(Ai − Ā)(Aj − Ā)(Bi − B̄)(Bj − B̄)∑n

i=1(Ai − Ā)2 ·
∑n

i=1(Bi − B̄)2

]

=
n∑

i=1

n∑
j=1

E
[
(Ai − Ā)(Aj − Ā)∑n

h=1(Ah − Ā)2

]
· E
[
(Bi − B̄)(Bj − B̄)∑n

h=1(Bh − B̄)2

]

=
n∑

i=1

n∑
j=1

E
[
(Ai − Ā)(Aj − Ā)∑n

h=1(Ah − Ā)2

]2

,

due to the independence and identical distributions of the random variables Ai and Bj for

all 1 ≤ i, j ≤ n.
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Continuing,

Var[RΩ(A,B)]

=
n∑

i=1

E
[

(Ai − Ā)2∑n
h=1(Ah − Ā)2

]2

+
n∑

i=1

n∑
j=1

j ̸=i

E
[
(Ai − Ā)(Aj − Ā)∑n

h=1(Ah − Ā)2

]2

=
1

n
· E
[ ∑n

i=1(Ai − Ā)2∑n
h=1(Ah − Ā)2

]2

+
1

n(n− 1)
· E

[∑n
i=1

∑n
j=1j ̸=i

(Ai − Ā)(Aj − Ā)∑n
h=1(Ah − Ā)2

]2

=
1

n
+

1

n(n− 1)

· E

∑n
i=1(Ai − Ā)

(∑n
j=1(Aj − Ā)− (Ai − Ā)

)
∑n

h=1(Ah − Ā)2

2

=
1

n
+

1

n(n− 1)
· E
[
(−1) ·

∑n
i=1(Ai − Ā)2∑n

h=1(Ah − Ā)2

]2

=
1

n
+

1

n(n− 1)
· (−1)2 =

1

n− 1

5.3.4 Ranking Functions

The use of standard scores as a measure of statistical significance can facilitate comparison

across differing distributions. The cache-estimated significance measures, being standard

scores, can thus be used to account for significance across such parameter choices as the

dataset size |S|, the number of cache entries |C|, the cached list size λ, the query result size

k, and the sizes of inverted sets. At query time, the parameters S and C can be considered

to be fixed quantities, and the sizes of inverted sets vary according to the distribution of

objects in the vicinity of the query object.



118

With regard to the number of cache entries, the correlation significance values ZCorrC,λ

and ZIntC,λ both tend to increase as |C| increases, due to the presence of the factor
√
|C| − 1

in the former expression, and
√
|C| in the latter. This accords well with the intuition that

the greater the amount of cached information, the higher the quality of the query-result

estimation under the model.

Under certain conditions, some of the secondary similarity measures proposed in

this section turn out to be equivalent. In some practical settings, the cache and dataset

sizes can greatly exceed the maximum sizes of the standard and inverted relevant sets; in

these situations, the value of the set correlation measure SimCorrC,λ tends to that of the

cosine measure SimCosC,λ. When the cache size is considered to be fixed, ZCorrC,λ and

SimCorrC,λ determine the same rankings of dataset objects, and can be used interchangeably.

The latter measure is in fact more convenient to use as its values are restricted to the range

[−1, 1]. If the relevant set size λ is also taken to be fixed, the measure ZIntC,λ determines

the same ranking of data objects as SimIntC,λ. Similarly, the rankings due to ZIntC,λ(v, w)

would be the same as those determined by the ratio between the inverted set intersection

size and the average individual inverted set size:

SimRatioC,λ(v, w)
△
=
|Q−1

C (v, λ) ∩ Q−1
C (w, λ)|

λ · |C|/|S|
.

However, in general, neither of these equivalances hold if λ is allowed to vary. It should

be noted that unlike SimIntC,λ, SimCosC,λ and SimCorrC,λ, the measure SimRatioC,λ may

attain values exceeding 1.

If the values of R−1
C (v, w, j) are readily available for all 1 ≤ j ≤ λ, each object w

can be scored with respect to query v according to the query size j for which it is most

significant. Assuming that the dataset size |S| and cache size |C| are both taken to be

constant, for the experimental evaluation to follow the following six ranking functions for

the objects of S with respect to query object v were used:
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• (derived from the significance of the intersection size measure SimInt) the ratio

measure SimRatioC,λ(v, w) and the max-ratio measure

MaxRatioC,λ(v, w)
△
= max

1≤j≤λ
SimRatioC,j(v, w);

• (derived from the significance of the set correlation measure SimCorr) the set correlation

measure

SimCorrC,λ(v, w), and the max-correlation measure

MaxCorrC,λ(v, w)
△
= max

1≤j≤λ
SimCorrC,j(v, w);

• (derived from the limit of the set correlation measure SimCorr as the database and

cache sizes increase) the cosine measure SimCosC,λ(v, w), and the max-cosine measure

MaxCosC,λ(v, w)
△
= max

1≤j≤λ
SimCosC,j(v, w).

5.4 Implementation

When standard cache C(C, λ), its inverted cache C−1(C, λ), and their subcaches are all

available in main memory, the intersection sizes SimIntC,j(v, w) can be efficiently calculated

for all 1 ≤ j ≤ λ. A practical assumption that will help to lower the computational

cost is that w need only be evaluated if the intersection size SimIntC,j(v, w) is positive

— otherwise, there is no information supporting the contention that w should be included

in the estimated query result for v. Moreover, even if the intersection size is positive, a

negative value of the correlation measure MaxCorr (or SimCorr) would indicate that the

intersection between the inverted neighborhoods is less than what would be expected if the

members of the original standard neighborhoods had been selected at random. Therefore,

for any ranking function f chosen from among the six listed in the previous section, it is

assumed that a threshold value φ > 0 has been supplied, and that only those w ∈ S for
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Table 5.1 Actual and Estimated Rankings of the Neighbors of Object 11 from the Example of
Figure 5.1, with λ = 8, |C| = 5, and |S| = 20.

Euclidean SimCorr MaxCorr SimCos MaxCos SimRatio MaxRatio

w dist w score w score j w score w score j w score w score j

11 0.000 11 1.000 11 1.000 4 11 1.000 11 1.000 4 11 1.500 11 1.500 8

7 1.000 3 1.000 3 1.000 8 3 1.000 3 1.000 8 1 1.500 1 1.500 8

3 1.202 7 0.667 7 1.000 4 7 0.817 7 1.000 4 3 1.500 3 1.500 8

12 1.647 0 0.408 12 1.000 4 1 0.775 12 1.000 4 5 1.500 5 1.500 8

0 1.944 8 0.408 14 1.000 4 5 0.775 14 1.000 4 7 1.000 7 1.000 4

5 1.961 10 0.408 0 0.612 6 0 0.577 1 0.775 8 17 1.000 12 1.000 4

14 2.000 12 0.408 8 0.612 6 8 0.577 5 0.775 8 0 0.500 14 1.000 4

1 2.119 14 0.408 10 0.612 6 10 0.577 0 0.707 6 8 0.500 17 1.000 8

8 2.499 1* undef 5 0.408 7 12 0.577 8 0.707 6 9 0.500 0 0.667 6

13 2.832 5* undef 15 0.167 7 14 0.577 10 0.707 6 10 0.500 8 0.667 6

15 3.102 9* -0.167 1* -0.167 6 17 0.577 17 0.577 8 12 0.500 10 0.667 6

17 3.201 15* -0.167 2* -0.250 4 9 0.408 15 0.500 7 13 0.500 15 0.571 7

10 3.432 17* -0.408 4* -0.250 4 15 0.408 9 0.408 8 14 0.500 9 0.500 8

9 3.655 2* -0.612 6* -0.250 4 13 0.333 13 0.333 8 15 0.500 13 0.500 8

2 4.425 4* -0.612 9* -0.250 4 2* 0.000 2* 0.000 4 2* 0.000 2* 0.000 4

4 4.432 6* -0.612 16* -0.250 4 4* 0.000 4* 0.000 4 4* 0.000 4* 0.000 4

6 4.541 16* -0.612 18* -0.250 4 6* 0.000 6* 0.000 4 6* 0.000 6* 0.000 4

16 4.791 18* -0.612 19* -0.250 4 16* 0.000 16* 0.000 4 16* 0.000 16* 0.000 4

19 5.175 19* -0.612 13* -0.408 4 18* 0.000 18* 0.000 4 18* 0.000 18* 0.000 4

18 5.268 13* -0.667 17* -0.408 5 19* 0.000 19* 0.000 4 19* 0.000 19* 0.000 4
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Figure 5.1 Cache data structures for a set of 20 objects in the 2-D plane. Top-8 lists are
cached for 5 objects, with the Euclidean distance as the underlying ranking function.

which f(v, w) ≥ φ are eligible to appear in the estimated query result for v. If it turns out

that fewer than the requested k objects are eligible, then the estimation is deemed to have

failed, possibly necessitating an exact computation of the query result from information

residing on disk.

The efficiency of the ranking process also depends on the storage of additional

information with the inverted relevant sets:

1. For all v ∈ C, with each object u ∈ Q−1
C (v, λ), the rank rank(u, v) of v in Q(u, λ) is

stored.

2. The objects of Q−1
C (v, λ) are listed in non-decreasing order of these stored rank

values.

With these preparations, the objects of set Q−1
C (v, j) are simply those objects u ∈ Q−1

C (v, λ)

with stored rank value rank(u, v) ≤ j, which can be read off from the head of the list in

time proportional to the size of Q−1
C (v, j).
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In order to compute meaningful query result estimates, the cache size should be

chosen so as to ensure that the inverted relevant sets are sufficiently large. This implies

that |C| and λ should be chosen so that the average inverted list size λ·|C|
|S| — the number of

witnesses of the relationship between the query and its estimated result objects — exceeds

some supplied threshold τ > 0. Since λ·|C| ≥ τ ·|S|, the main memory must be sufficently

large to be able to store at least a constant amount of storage for every object in the dataset.

5.4.1 Cost

Computing the sizes of the intersections of inverted sets SimIntC,j(v, w) for every possible

w ∈ S, if performed in the most straightforward manner, would be too costly an operation

even with all necessary information resident in main memory. The computational cost can

be reduced by first observing that for the majority of points w ∈ S, the intersection between

Q−1
C (v, j) and Q−1

C (w, j) is empty. As it is reasonable to assume that only positive values of

SimIntC,j are meaningful, it may limit the ranking effort to those w for which Q−1
C (v, j) ∩

Q−1
C (w, j) ̸= ∅. These objects are precisely those of the set N(v, j)

△
=
∪

u∈Q−1

C (v,j)
Q(u, j),

which can be constructed in time proportional to O(j · |Q−1
C (v, j)|), which is approximately

Õ(j2). The overall time cost for ranking the objects could then be directly computed in

time O(j · |Q−1
C (v, j)| +

∑
w∈N(v,j) |Q

−1
C (w, j)|), or approximately Õ(j3). However, the

computation time can be further reduced by computing the intersection

sizes |Q−1
C (v, j)∩Q−1

C (w, j)| incrementally during the visitation of the members of N(v, j),

by noting that

|Q−1
C (v, j) ∩ Q−1

C (w, j)| = |{u ∈ Q−1
C (v, j) : w ∈ Q(u, j)}|.

The overall cost of ranking all objects can thus be reduced to O(j · |Q−1
C (v, j)|+ |N(v, j)|),

or approximately Õ(j2).

The values of the final ranking functions MaxRatioC,λ, MaxCosC,λ, and MaxCorrC,λ

can be calculated by sequentially computing the respective values of SimRatioC,j , SimCosC,j ,
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and SimCorrC,j over the range 1 ≤ j ≤ λ, and reporting the maximum observed. However,

this would lead to a total time complexity of O(λ2 · |Q−1
C (v, λ)| + λ · |N(v, λ)|), or

approximately Õ(λ3). Again, the computation time can be significantly reduced. Noting

that

∣∣Q−1
C (v, j + 1) ∩ Q−1

C (w, j + 1)
∣∣

=
∣∣Q−1

C (v, j) ∩ Q−1
C (w, j)

∣∣
+
∣∣(Q−1

C (v, j + 1) \ Q−1
C (v, j)

)
∩ Q−1

C (w, j + 1)
∣∣

+
∣∣Q−1

C (v, j) ∩
(
Q−1

C (w, j + 1) \ Q−1
C (w, j)

)∣∣ ,
the value of |Q−1

C (v, j +1)∩Q−1
C (w, j +1)| can be calculated using the precomputed value

of |Q−1
C (v, j)∩Q−1

C (w, j)|. Only the values of |
(
Q−1

C (v, j + 1) \ Q−1
C (v, j)

)
∩Q−1

C (w, j +

1)| and |Q−1
C (v, j) ∩

(
Q−1

C (w, j + 1) \ Q−1
C (w, j)

)
| need be explicitly computed in the

transition from j to j + 1. The total time, therefore, for computing |Q−1
C (v, j)∩Q−1

C (w, j)|

for all 1 ≤ j ≤ λ is simply that of computing |Q−1
C (v, λ)∩Q−1

C (w, λ)|, which as mentioned

earlier is O(λ · |Q−1
C (v, λ)|+ |N(v, λ)|), or approximately Õ(λ2).

5.4.2 Algorithm

The proposed method for the cache-estimated ranking of all objects of S with respect

to a query object v is summarized below. In the pseudocode description, all objects are

represented by IDs in the range [0, . . . , |S|). For any object u ∈ C is denoted by q(u, j)

the ID of the object of rank j in the ranked list Q(u, λ). Also, q−1(v, j) = {u ∈ C| v ∈

Q(u, λ) ∧ rank(u, v) = j} the set of IDs of objects of Q−1
C (v, λ) having rank j. Note that

the objects IDs of Q−1
C (v, λ) are assumed to be sorted in terms of these ranks, and thus the

objects of q−1(v, j + 1) appear immediately after those of q−1(v, j) in Q−1
C (v, λ).
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Query

Input: query object ID v;

Output: object-correlation ordered pair list Result.

0. Initialization:

(a) Static integer array for storing the number of visits to objects, assumed set to

RevIntersectCount[s]=0 for all object IDs 0 ≤ s < |S|.

(b) Static integer array for storing an object visit flag, assumed set to VisitFlag[s] =

0 for all object IDs 0 ≤ s < |S|.

(c) Static real-valued array for storing object-to-query similarities Score[s] for all

object IDs 0 ≤ s < |S|.

(d) Initialize lists Visited ← ∅ and NewlyVisited ← ∅.

1. Set list L← Q−1
C (v, λ) to contain the inverted relevant set for v, in the form of object

IDs, with the entries sorted in non-decreasing order of the ranks they occupy in their

neighbors’ λ-relevant sets.

2. For all 1 ≤ j ≤ λ do:

(a) Extract objects Lj ← q−1(v, j) from the head of L.

(b) For all objects u ∈
∪j−1

i=1 Li do:

i. Let w ← q(u, j).

ii. If RevIntersectCount[w] = 0, then w has been visited for the first time

overall. Perform the list insertion Visited ← Visited ∪ {w}.

iii. Increment RevIntersectCount[w]

← RevIntersectCount[w] + 1.

iv. If VisitFlag[w] = 0, then w has been visited for the first time in iteration

j. Perform the list insertion NewlyVisited ← NewlyVisited ∪ {w}, and set

VisitFlag[w]← 1.
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(c) For all objects u ∈ Lj do:

i. For all objects w ∈ Q(u, j):

A. If RevIntersectCount[w] = 0, then w has been visited for the first time

overall. Perform the list insertion Visited ← Visited ∪ {w}.

B. Increment RevIntersectCount[w]

← RevIntersectCount[w] + 1.

C. If VisitFlag[w] = 0, then w has been visited for the first time in

iteration j. Perform the list insertion NewlyVisited ← NewlyVisited ∪

{w}, and set

VisitFlag[w]← 1.

(d) For all objects w ∈ NewlyVisited do:

i. Let SimIntC,j(v, w)← RevIntersectCount[w].

ii. Compute

Temp←


SimRatioC,j(v, w)

SimCosC,j(v, w)

SimCorrC,j(v, w)

from SimIntC,j(v, w), as appropriate.

iii. If Temp > Score[w] then update Score[w]← Temp.

iv. Reset VisitFlag[w]← 0, and delete

NewlyVisited ← NewlyVisited \ {w}.

3. For all objects w ∈ Visited do:

(a) Append the object-correlation ordered pair

Result← Result ∪ {(w, Score[w])}.

(b) Reset RevIntersectCount[w]← 0, and delete

Visited ← Visited \ {w}.
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4. Sort the ordered pairs of list Result in non-increasing order of the values, and return

the list. Ties can be broken arbitrarily, with the exception that v is given priority over

any other object w ̸= v in S.

5.5 Evaluation

5.5.1 Performance Measures and Datasets

As already discussed in Chapter 2, existing active caching methods developed for Boolean

queries cannot in general be applied to handle similarity queries, and thus a direct comparison

between these methods and the proposed techniques is not possible. For this reason, to

evaluate the active caching strategies for top-k similarity queries proposed in Section 5.3,

their performance is compared against those of passive caching strategies in terms of two

measures, the hit rate and the recall. Recall performance of the shared-neighbor based

approach and partial order based approach is also compared. Hit rate is not compared

because both approaches answer same number of queries from the cache.

Overall estimation power of the proposed active caching methods is also assessed.

To do this, the recall that would be achieved for the query result estimated by the active

caching method is reported, without checking whether the true query result is explicitly

stored in the cache. To distinguish the two interpretations of recall, this latter interpretation

is referred as the estimation recall, and the former (usual) interpretation as the cache recall.

Six data sets were used for experimentation, each of these are described in Chapter

3.

All six methods — SimCorr, SimCos, SimRatio, MaxCorr, MaxCos and MaxRatio —

were implemented in Microsoft C♯, and tested on an IBM desktop computer with an Intel

Xeon 3.0 GHz processor, with 8 GB of main memory, and running the Windows Server

2003 operating system. For both data sets, the standard cache lists and inverted lists were

managed using Microsoft SQL Server.
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5.5.2 Experimental Results

For all six datasets, several top-k query-by-example retrieval experiments were conducted,

over a variety of cache and list sizes, and of choices of k. For each experiment, subsets

of the data objects were selected uniformly at random for inclusion in the standard cache,

at different proportions of the total dataset size. The cached information consisted of the

standard neighbor list for each cache item, and their associated inverted lists. After setting

up the cache, each of the objects of the full dataset was used as the basis of a query-by-

example operation. In all the experiments that follow, experimental results are shown only

for the SimCorr, MaxCorr, SimRatio and MaxRatio methods, as the values SimCos and

MaxCos were virtually identical to those of SimCorr and MaxCorr for even the smallest

of the cache sizes considered. Finally, the experiments were conducted to compare the

shared neighbor approach with partial order approach using only SimRatio measure which

performed best in the earlier experiments.

Efficiency: For the ALOI dataset, Figure 5.2 shows the hit rate achieved by the active

caching strategy for different choices of the standard list size λ. The proportion of items

cached for this experiment varied between 2.5% and 100%. In all cases, the hit rates

were much higher with active caching than for passive caching, increasing very quickly

with increasing list size. For the RCV1 dataset, Figure 5.3 also shows a very substantial

improvement over passive caching.

The proposed solution can require more space than the traditional caching approach

due to the storage of inverted lists alongside standard result lists. For example, in a

straightforward implementation in which integer variables are stored using 32 bits and

floating point variables occupy 64 bits, each result item would be associated with 96 bits

of storage: an integer object ID in the standard list, and an integer object ID plus an

integer rank in the corresponding inverted list entry. If traditional caching is performed

with only object IDs being stored, only 32 bits would be required for each result list
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Figure 5.2 Hit rate for active caching across a range of cache sizes using the ALOI data
set.

0.9

1

0.7

0.8

0.5

0.6

0.7

H
it

 R
a

te

λ=10

0.3

0.4

0.5

H
it

 R
a

te

λ=10

λ=20

λ=30

0.1

0.2

0.3
Traditional

0

0.1

0 20 40 60 80 1000 20 40 60 80 100

Cache Size (%)

Figure 5.3 Hit rate for active caching across a range of cache sizes using dataset RCV1.

entry, and thus active caching would require approximately 3 times as much storage as the

traditional implementation. However, if floating-point object distances were also required

for the traditional implementation, the storage per entry would rise to 96 bits, leading to

approximately the same storage cost as for active caching (since the active caching method

would generate estimated similarity values with its own measure instead of relying on

explicitly-stored distances). Nevertheless, it is can be seen from Figures 5.2 and 5.3 that

for cache sizes of approximately less than one-third of the data, active caching solutions

can answer substantially more queries than traditional caching even taking its potentially-

increased memory requirements into account.
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Figure 5.4 Hit rate for active caching across a range of cache sizes using dataset KDD.
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Figure 5.5 Hit rate for active caching across a range of cache sizes using CoverType
dataset.

Effectiveness: Figures 5.8 and 5.9 shows the cache recall values obtained over active

caching hits for top-30 queries with standard list length λ = 30. For both the ALOI and

RCV1 datasets, The proposed solutions achieved very high recall values across the range of

cache sizes. Together with Figures 5.2 and 5.3, these results show that for sufficiently-large

cache sizes, very effective recall rates can be achieved while only rarely needing to access

information on disk. For example, for the ALOI set with 25% of the data items cached,

the proposed active caching variants answered approximately 98% of the queries, with an

average recall of 0.8 and above. Even for the smallest cache size studied, 50% of the queries
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Figure 5.6 Hit rate for active caching across a range of cache sizes using CoverType
dataset.

were answered with recall rates above 0.65, whereas the traditional caching approach would

answer only 2.5% of the queries (albeit with recall 1.0). Recall rates for various datasets

are shown in 5.8, 5.9, 5.10, 5.11, 5.12, 5.13.

Next, a similar experiment was performed on the ALOI dataset for one representative

measure, SimRatio, this time varying the size of the query result k together with the cached

standard list size λ. Top-k queries were performed with k = λ = 10, 30, 50 and 100. The

results, shown in Figure 5.14, did not vary significantly for different settings of λ; however,

the same general dependence on the cache size was observed as in the previous experiment.

For the remainder of the experiments in this section, this section concentrates on the

estimation power of active caching methods, by forcing an active estimation in which the

standard list stored for the item at which the query is based is always ignored.

Experiments were conducted to show the relationship between observed average

estimation recall rates and the sizes of the inverted lists associated with query items. In

Figure 5.15 the average recall values for the ALOI dataset are plotted as a function of

query inverted list size, together with a histogram showing the numbers of query items

involved. Top-30 queries were performed based at all 110,250 ALOI images. 25% of the

ALOI images were selected at random for inclusion in the cache, each having a standard list
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Figure 5.7 Hit rate for active caching across a range of cache sizes using CoverType
dataset.
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Figure 5.8 Average cache recall for active caching hits for the ALOI dataset, taken across
a range of cache sizes with k = λ = 30.

of size λ = 30. The experimental results show consistently-high average estimation recall

rates over all but the smallest inverted list sizes, with MaxRatio and SimRatio performing

slightly better than MaxCorr and SimCorr over most of the range. They suggest that better

performances are achieved for the largest query inverted list sizes.

The effect on estimation recall is also measured when minimum thresholds are applied

to SimRatio, MaxRatio, SimCorr and MaxCorr scores. Again, top-30 queries were performed

for the ALOI dataset, with 25% of the images cached and λ = 30. In this experiment, active

caching was used to generate a result only when each item in the estimated top-k result list
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Figure 5.9 Average cache recall for active caching hits for the RCV1 dataset, taken across
a range of cache sizes with k = λ = 30.

achieved a score higher than a specified minimum threshold value. Figure 5.16 shows plots

of the average recall for the four active caching methods, against a range of score threshold

values. The results show a positive influence between the minimum scores obtained and

the recall rates achieved.

For each of the top-k query experiments presented above, the standard list size λ was

set equal to k. In order to provide insights into the effect of λ and k on the performance

of the proposed active caching methods, a further experiment was conducted in which λ

was varied while fixing k. Once again, a cache size of 25% was chosen from the ALOI

dataset, and k chosen to be 30; the standard list sizes were set at λ = 10, 20, 30, 50

and 100. The results of the experiment are displayed in Figure 5.17. All of the caching

methods performed best for the case λ = k = 30. For smaller values of λ, the performance

degenerated markedly. For larger values, the recall rates remained high, although the

SimRatio and SimCorr performances showed substantially more degradation than those of

MaxRatio and MaxCorr. Although SimRatio performed marginally better than MaxRatio

for the case λ = k = 30, the latter method achieved the best overall performance when

larger list sizes were used.
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Figure 5.10 Average cache recall for active caching hits for the KDD dataset, taken across
a range of cache sizes with k = λ = 30.

Comparison with Partial Order Approach: Partial order based approach presented in

the last chapter uses monotonicity amongst partial order lists to compute answers for non-

cached queries. Due to the high dependency on monotonicity, partial order based approach

results in lower recall rates for datasets having lower levels of monotonicity. Shared

neighbor approach presented in this chapter eliminates the need for monotonicity and just

uses the witnesses to compute the answer for non-cached queries. Both of these approaches

use similar architecture in terms of processing the number of queries from the cache, the

hit rate and execution cost is exactly similar and not compared here. Main difference in

terms of output is in the recall as both approaches use difference strategies to compute the

answer for non-cached queries. Cached queries are always answered with a perfect recall

of 1 in both approaches hence, the recall results are only shown for non-cached queries.

Figure 5.18 shows a comparison of recall rates for partial order based approach and shared

neighbor approach using ALOI dataset.

Similar experiment is conducted for Reuters, KDD, CoverType, Jester and MovieLens

datasets. Similarly, Figure 5.19, Figure 5.20, Figure 5.21, Figure 5.22 and Figure 5.23

shows a comparison of recall rates for partial order based approach and shared neighbor

approach for other datasets.
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Figure 5.11 Average cache recall for active caching hits for the CoverType dataset, taken
across a range of cache sizes with k = λ = 30.

KDD and CoverType datasets showed small improvement in recall using shared

neighbor approach. To further confirm that this improvement is significant T-tests results

for both of these datasets and the result showed that the improvement is significant. Since

the P-value = 0 for all cases, then there is a very strong evidence against H0 (states that

the no difference between the two approaches). Equivalently, the data strongly recommend

that the shared neighbor approach provides a higher average recall than the partial order

approach.

Robustness: Proposed solution is tested for robustness by introducing noise entries into

the cached standard lists. In each test, ALOI cache lists were replaced by “noise lists” of

the same length, generated by selecting objects from the full dataset uniformly at random.

The proportion of cache lists replaced by noise lists was varied between 0% and 100%.

The experimental results in Figure 5.24 shows a very strong linear relationship between the

performance and the proportion of noise. The results indicate that relatively large amounts

of noise can be tolerated while still providing very high recall rates.

It is possible that for some caching applications, the stored result lists may not all

be of the same length, as has been assumed so far in the experimentation. Accordingly, an
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Figure 5.12 Average cache recall for active caching hits for the Jester dataset, taken across
a range of cache sizes with k = λ = 20.

experiment is conducted on the ALOI dataset in which top-30 query result estimation was

performed, with a varying proportion of the standard cache list lengths selected uniformly

at random between 1 and 100, and the remainder of the lists having lengths fixed at 30. The

cache size was chosen to be 25%. The results of the experiment are shown in Figure 5.25.

Although some degradation of performance was observed for the SimCorr and SimRatio

measures with increasing proportions of variable-sized lists, the estimation recall rates of

MaxCorr and MaxRatio were remarkably stable across the full range of proportions. The

results confirm the ability of the CES model to correct for bias with respect to the sizes of

standard list, in particular for those variants in which the significance is maximized over a

range of subcache sizes.

A final experiment was conducted to determine the influence of the choice of k on

the recall rate of top-k active cache queries, when the lengths of the cache standard lists is

variable. In this test, the list lengths were selected uniformly at random in the range 1 to

100. The cache size was again chosen to be 25%. Figure 5.26 shows a peak in performance

for all methods with k between 30 and 40, with the MaxCorr and MaxRatio methods again

offering the greatest stability across the range.
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Figure 5.13 Average cache recall for active caching hits for the MovieLens dataset, taken
across a range of cache sizes with k = λ = 10.

5.6 Summary

This chapter proposes an improvement to the original partial order based Cached Estimation

(CES) model for the estimation of top-k query results using cached information. The model

is based on shared-neighbor similarity measures that assess the statistical significance of the

relationship between objects based on their shared neighborhood. The main contribution

of the this improvement is to facilitate the design of shared-neighbor ranking formulae for

active caching that allow for variation of (and comparison across) such parameters as the

size of the cache, the length of ranked lists stored in the cache, and the number of items

requested by the query. The experimental results of the previous section indicate that the

performance of the CES-derived MaxRatio and MaxCorr ranking functions is somewhat

more stable than their counterparts SimRatio and SimCorr when cached list sizes were

allowed to vary.

Shared-neighbor ranking formulae do not make use of monotonicity like partial order

based approach presented in the last chapter. Test results showed significant improvement

in recall by using shared-neighbor approach. The very strong overall performance in terms

of hit rate, recall and execution cost of the shared-neighbor ranking formulae for active

caching provides an intriguing answer to the question of cache management for databases.
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Figure 5.14 Average cache recall for top-k active caching hits using the SimRatio
measure, across a range of cache sizes and list sizes λ = k.

Whereas the conventional approach is to fill the cache with those items most likely to

be requested in future queries, the experimental results show that shared-neighbor active

caching in which the cache is selected so as to provide uniform coverage of the data set

from which most if not all query results are actively generated. For some applications, it

may even suffice to answer all queries actively without ever referring to the original data.
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Figure 5.16 Average estimation recall rates of top-30 active cache hits for the ALOI
dataset, in which all items in the result list satisfy minimum thresholds on similarity
measure values.



139

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 20 40 60 80 100

List Size (λλλλ)

R
e
c
a
ll

MaxCorr

MaxRatio

SimCorr

SimRatio

Figure 5.17 The effect of varying cache list size λ on the average estimation recall rates
of top-30 similarity query cache hits, for the ALOI dataset with a cache size of 25%.
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30.
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Figure 5.20 Average cache recall for active caching hits for the KDD dataset, comparison
between partial order approach and shared neighbor approach using k = λ = 20.



141

0.8

0.85

0.75

0.8

0.65

0.7

0.75

R
e

ca
ll

0.6

0.65R
e

ca
ll

Partial Order Approach

0.55

0.6
Partial Order Approach

Shared Neighbor Approach

0.5

0 20 40 60 80 100

Shared Neighbor Approach

0 20 40 60 80 100
Cache Size (%)

Figure 5.21 Average cache recall for active caching hits for the Cover Type dataset,
comparison between partial order approach and shared neighbor approach using k = λ =
20.

0.2

0.4

0.6

0.8

1

R
e

ca
ll

Partial Order Approach

0

0.2

0 20 40 60 80 100

Cache Size (%)

Partial Order Approach

Shared Neighbor Approach

Figure 5.22 Average cache recall for active caching hits for the Jester dataset, comparison
between partial order approach and shared neighbor approach using k = λ = 20.
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Figure 5.23 Average cache recall for active caching hits for the MovieLens dataset,
comparison between partial order approach and shared neighbor approach using k = λ =
10.
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Figure 5.24 Average estimation recall rates for ALOI active cache hits, with a cache size
of 25% and with k = λ = 30, plotted against the proportion of noise lists.



143

0.65

0.67

0.69

0.71

0.73

0.75

0.77

0.79

0 20 40 60 80 100

Variable-Sized Lists (%)

R
e
c
a
ll

MaxCorr

MaxRatio

SimCorr

SimRatio

Figure 5.25 Average estimation recall rates of top-30 active cache hits for the ALOI
dataset, plotted for a cache size of 25% against various proportions of standard lists having
lengths ranging between 1 and 100, with the remainder of the lists having length 30.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 20 40 60 80 100

k

R
e
c
a
ll

MaxCorr

MaxRatio

SimCorr

SimRatio

Figure 5.26 Average estimation recall rates of top-k active cache hits for the ALOI
dataset, plotted for a cache size of 25% against different values of k, with standard list
sizes randomly selected between 1 and 100.



CHAPTER 6

GREEDY BALANCING CACHE SELECTION POLICY

6.1 Introduction

In many databases and Web applications, caching is often employed to improve response

time and reduce the server workload. A cache is a temporary storage area where data can

be stored for quick access. Once the data is stored in the cache, future use can be made by

accessing the cached copy rather than re-fetching or recomputing the original data, so that

the average access time is shorter. Caching can improve the performance of an application

by reducing access latency, server load and network traffic. Caching implemented as

proxies between users and web servers reduces server load, network bandwidth usage

as well as user access latency [37, 85, 111]. Normally only a small proportion of the

entire dataset is cached, and the criteria by which cache items are selected is crucial to

the performance of any caching solution. This selection can be performed in many ways;

however, the ultimate goal of selection is to maximize the number of queries that can be

answered from the cache.

Several techniques have been proposed in the research literature to select the most

appropriate data for caching. Typically, the content of the cache is dynamically updated in

order to adapt to changes in user request patterns. Insertion of new items into the cache first

requires that items be selected for replacement. Most cache replacement strategies select

for deletion either the least recently used cache element (LRU) or the least frequently used

element (LFU). Both the LFU and LRU cache replacement strategies take into account the

popularity of the data with respect to query requests. The LRU approach can be viewed as

a form of temporal locality, whereas the LFU approach can be viewed as a form of spatial

locality in that it preserves cache objects residing in areas where the query distribution

is dense. Although traditional caching strategies allow for dynamic updates, researchers

144
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have also considered the problem of selecting a static cache so as to be able to answer the

maximum number of queries for given distributions of data and queries [130].

Caching strategies can be divided into two broad classes, ‘passive’ and ‘active’. With

passive caching, if the query result cannot be retrieved from the main memory cache,

the result is constructed from information residing in secondary storage. Active caching

extends the performance of a passive cache so that whenever the target result is not explicitly

available in the cache, it makes use of the stored results from previous queries to estimate

the result for the current query. This estimation can be viewed as a form of approximate

query processing [83]. Active caching with some query processing capability can

significantly reduce the server workload and improve the performance and scalability [80].

As with traditional caching, the performance of any active caching solution depends greatly

on the selection of cache data. Since the size of cache memory is much smaller than the

total data size, it is essential to select data that can help answer the maximum number of

queries. Active caching research in the past has not addressed the issue of appropriate data

selection for the active caches.

For the problem of top-k similarity search, recently-introduced active cache strategies

have been shown to significantly improve the query hit rate [49, 105]. The Cache-Estimated

Significance (CES) model [49] utilizes the spatial locality amongst the cached content to

process non-cached queries. The result of a non-cached query is estimated based on the

relationship of data objects with the cached top-k neighbor lists: if a given database object

s and the query object q both appear in the same cached lists, then the likelihood is high

that s belongs to the top-k result for q. Inverted lists associated with the cached top-k result

list are also maintained in the cache to help estimate the similarity between the query object

and other objects in the database.

This chapter focuses on the problem of selecting a set of cache objects so as to allow

CES-style query result estimation to be reliably performed on any object in the database.

The ideal selection strategy for CES would allow all objects of the database to have equal
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representation in the cached top-k neighbor lists. If all data items were to have equal

representation in the cached top-k lists, the lengths of the corresponding inverted top-k

lists must be balanced. The main contribution of this chapter is an efficient greedy cache

selection strategy that achieves an balancing of inverted neighbor lists that greatly improves

the effectiveness of CES.

The remainder of the chapter is organized as follows. Section 6.2 gives background

information on traditional passive cache management techniques, and argue that these

techniques are not appropriate for active caching. Section 6.3 describes the proposed

greedy balancing strategy. Section 6.4, provides and discusses experimental results.

6.2 Background

This section first gives an overview of issues related to caching, before focusing on the

Cache-Estimated Significance model that serves as the basis.

6.2.1 Caching Strategies

Most existing passive caching techniques have been proposed either for relational databases

or the Web, and most allow for dynamic updates of the cache so as to adapt to changes in

user access patterns. As mentioned earlier, LRU and LFU (along with their variants) are

the most commonly used cache replacement strategies. The effects of these strategies, and

the motivations for their use, can be understood in terms of the temporal and spatial locality

of data access patterns.

The locality of reference principle dictates that an application does not access all of

its data at once with equal probability, but instead exhibits dependencies on the temporal

and/or spatial properties of the data. The temporal locality property suggests that if a data

item is requested at a given time, then there is a high likelihood of it being requested

again in the near future [14]. Markatos compared caching of the most popular queries

with caching of the most recently accessed queries and showed that (spatially-based) LFU
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is advantageous for small caches, while (temporally-based) LRU has significantly better

performance for large caches [86]. In another study of database access traces, the proportion

of repeated queries was found to be roughly 30% to 40%, with the majority of repeated

queries occurring within a short time interval after the intial query [139]. In one of the

traces (Vivisimo), about 65% of query repetitions occurred within a one-hour interval [139].

Rizzo and Vicisano [110] and Cao and Irani [21] also observed this property in web proxy

server traces.

The LFU replacement policy is typically used when the data is known to follow the

Zipf distribution. Zipf’s law assumes that the relative probability of a request for the i-th

most popular data item is proportional to 1/i. Breslau et al. [18] examined six traces from

proxy servers at academic institutions, corporations and ISPs and found that the distribution

of page requests generally followed a Zipf-like distribution. Serpanos and Wolf [123]

verified that high hit rates can be achieved for web page caching using strategies based

on the Zipf distribution. Markatos discovered a large number of frequently-posed queries

in the retrieval logs of search engines that constitute excellent candidates for caching [86];

in general, the query frequencies follow a Zipf distribution [139, 40, 32].

Along with temporal locality, the spatial locality principle also dictates the pattern

of usage particularly in memory caches. The spatial locality principle states that if a

given data item is requested, then there is a high likelihood of similar data items being

requested in the near future [14]. Spatial locality has been effectively used in computer

memory caches, where recently referenced data is cached together with similar but less-

recently referenced data. Spatial locality, when used effectively, alleviates the latency and

bandwidth issues of computer memory by boosting the effect of prefetching [44]. I/O

scheduling and prefetching can effectively exploit spatial locality and dramatically improve

disk throughput [34]. Kampe & Dahlgren focused on the characteristics of locality in terms

of spatial and temporal proximity, and presented a scheme to exploit this locality for cache

management [57]. Ding, Jiang and Chen proposed the DULO buffer cache management
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scheme, which exploits both temporal and spatial locality [34]. Sequeira et al. proposed

an approach for increasing the spatial locality of programs for data mining, decreasing the

average working set size and thereby decreasing the page fault rate [122].

Cache management policies based on spatial and temporal locality have been widely

studied in the context of passive caching, but essentially no research has yet been conducted

on the problem of selection strategies for active caching. With passive caching, replacement

strategies are necessary due to the small coverage of the query range provided by the cache.

Active caching strategies seek to provide good coverage of the full query range without

relying on cache updates to anticipate query access patterns. As such, temporal locality-

based cache selection strategies such as LRU are not appropriate when full coverage is

sought; spatial locality-based selection strategies such as LFU are also not appropriate

when applied relative to only a small subset of the dataset or query range. In order to

achieve good coverage of the dataset, recent active caching strategies proposed for top-k

similarity queries used random sampling to populate the cache [49, 105], achieving hit

rate and average recall performance significantly better than that which would have been

achieved using traditional passive caching. Their results suggest that effective estimation

of query results may be performed without ever referring to the original data on disk [49].

6.2.2 The Cache-Estimated Significance Model

The Cache-Estimated Significance (CES) model [49] estimates the results of top-k similarity

queries whose result is not readily available in the cache. In this model, similarity measures

based on shared-neighbor information were introduced which assess the strength of the

relationship between two objects as a function of the number of cached top-k neighbor

lists that contain both objects. The cached objects thereby constitute a set of potential

witnesses to the relationship between two objects. The main contribution of the CES model

is the facilitation the design of shared-neighbor ranking formulae for active caching. These

ranking functions can correct for bias relating to variations in such quantities as the size of
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the cache, the length of ranked lists stored in the cache, and the number of items requested

by the query, all without any knowledge of the actual similarity values.

To support this approach, a cache structure was introduced to retain neighbor lists

(the relevant sets) and to maintain their associated inverted lists (the inverted relevant sets).

Given a dataset S drawn from domain D, and a list length λ > 0, for any object v ∈ S, the

relevant set of length λ based at v is represented by Q(v, λ). Taken together over all v ∈ S,

the relevant sets induce a collection of inverted relevant sets Q−1(u, λ) = {v ∈ S : u ∈

Q(v, λ)} for every choice of u ∈ S. For a given u ∈ S, inverted relevant sets for u can also

be defined with respect to the cache C(C, λ), by restricting the membership of the lists to

objects of C instead of S, as follows:

Q−1
C (u, λ)

△
= Q−1(u, λ) ∩ C = {v ∈ C : u ∈ Q(v, λ)}.

The collection of all such inverted lists taken over all choices of u ∈ S is referred to as the

inverted cache corresponding to C(C, λ), and can be denoted by C−1(C, λ)
△
= {Q−1

C (v, λ) :

v ∈ C}. To estimate the top-k relevant set Q(v, k) for some object v /∈ C, the cached

object set C would constitute a set of potential witnesses to the relationship between two

objects v and w in S.

With respect to any object v ∈ S, the CES model allows the rank of another object

w to be estimated. The relationships between Q(w, λ) and Q(v, λ) on the one hand, and

Q−1(w, λ) and Q−1(v, λ) on the other, serves as the foundation of a rank measure of the

similarity between w and v. Each object of Q(x, λ)∩Q(v, λ) would support the contention

that w and v were similar, and each object of Q(w, λ) \ Q(v, λ) or Q(v, λ) \ Q(w, λ)

would work against it. The same would be true for inverted sets, with each of Q−1(w, λ)∩

Q−1(v, λ) testifying as to the similarity of w and v, and each object of Q−1(x, λ)\Q−1(v, λ)

or Q−1(v, λ) \ Q−1(w, λ) refuting it.

Houle, Oria and Qasim [49] introduced and evaluated six ranking functions under the

CES model. As a representative of these measures, one of the simplest measures, SimInt,
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which performed well in their experimentation. Given two items v and w, SimInt is defined

as the size of the intersection of the cache inverted neighbor lists associated with v and w:

SimIntC,λ(v, w)
△
= |Q−1

C (v, λ) ∩ Q−1
C (w, λ)|.

Their proposed active caching approach showed very strong overall performance with

SimInt tested as being the most accurate ranking function in many situations. This is equally

applicable to any CES-based ranking function in general, and the six functions proposed in

[49] in particular. More details on CES-based ranking functions can be found in [49].

6.3 Greedy Balancing Strategy

The performance of the CES active strategy has been shown to depend on the length of

the cached inverted list associated with a given query object q [49]. Generally speaking,

the quality of the query result estimate degrades as the length of the query inverted list is

reduced — the most extreme case occurs when the list is empty, in which case no result

can be estimated. This suggests that for providing consistently good estimates for arbitrary

similarity queries, cache selection strategies should seek to achieve the best possible balance

in terms of the inverted list lengths. To be effective, any such strategy would need to provide

good coverage for all possible queries, be easy to implement, and be efficient to compute.

One way of assessing the degree of balance of inverted cache lists is through the

variance of the lengths of these lists, with low variance indicating a high degree of balance.

Let γ(si) denote the length of the inverted list associated with a given object si ∈ S in

C−1(C, λ). The goal is to select C so as to minimize the variance of the lengths of these

lists, which can be expressed as

σ2(C, λ) =
1

n

n∑
i=1

(γ(si)− µ(C, λ))2

=
1

n

n∑
i=1

γ2(si)− µ2(C, λ),
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where µ(C, λ) = λ·|C|
n

is the average length of the inverted cache lists.

With the objective of achieving better inverted list balance than is possible using

uniform random cache selection, a greedy selection strategy for minimizing the variance of

inverted cache list lengths is proposed. Objects are introduced into the cache one by one; at

each step, an object is chosen so that the increase in the inverted list length variance is the

minimum possible (or equivalently, the decrease in the variance is the maximum possible).

Determining the next object for inclusion in the cache, if performed in a straightforward

manner, would be prohibitively expensive for large databases: computing σ2(Ct ∪ {s}, λ)

for every candidate s ∈ S \ Ct for the partial cache C(Ct, λ) at every insertion step 1 ≤

t ≤ m would require at least Ω(mn2) operations overall, where m = |C| is the number of

objects in the final cache C.

This section shows that the greedy list variance minimization can be performed much

more efficiently. Let Ct be an existing set of cache objects selected as of the current iteration

of greedy selection. For every s ∈ S, maintain a score equal to the total size of the inverted

lists associated with the objects in the relevant set Q(s, λ). More precisely, the score is

defined to be

Γt(s) =
∑

v∈Q(s,λ)

γt(v),

where γt(v) is the length of the inverted list associated with v ∈ S in C−1(Ct, λ). For

example, the score of object 6 in Figure 6.1 equals 3 — the sum of the inverted list lengths

of its neighbor objects 6, 0, and 5.

The following lemma implies that the greedy selection process reduces to determining

an object in S \ C for which Γ is minimized.

Lemma 6.3.1. Let C(Ct, λ) be a cache for some subset Ct ⊂ S. Let s∗ be any object

minimizing Γt(s) over all choices of objects of S \ Ct. Then

min
s∈S\C

σ2(Ct ∪ {s}, λ) = σ2(Ct ∪ {s∗}, λ).



152

Proof. Let s be any object of S \ Ct, and let t = |Ct|. Consider now the set of cache

objects Ct+1 = Ct ∪ {s} obtained by augmenting Ct with s. Let γt+1(si) be the length of

the inverted cache list for object si after the insertion of s into the cache. Applying (6.1),

and noting that the average inverted list length grows from tλ
n

to (t+1)λ
n

, the resulting change

in variance is then

∆ = σ2(Ct+1, λ)− σ2(Ct, λ)

=
1

n

∑
i=1

n
(
γ2

t+1(si)− γ2
t (si)

)
− λ2

n2
(2t + 1) .

Note that the set I of objects whose inverted lists change as a result of the introduction of

s into the cache is precisely I = Q(s, λ), and that each of the affected inverted lists grows

by exactly one element. Simplifying,

∆ =
1

n

∑
si∈I

(
(γt(si) + 1)2 − γ2

t (si)
)
− λ2

n2
(2t + 1)

=
2

n

∑
si∈I

γt(si) +
λ

n
− λ2

n2
(2t + 1) .

In this expression for ∆, only the summation depends on the choice of object s. Therefore

minimizing ∆ over all choices of s ∈ S \ Ct is equivalent to minimizing

Γt(s) =
∑

v∈Q(s,λ)

γt(v).

The result then follows.

Maintaining the list length sums Γt(s) for all remaining candidate objects s ∈ S \Ct

can be managed much more efficiently than the direct recomputation of variances. Below

are the details as to how the greedy cache balancing strategy can be implemented using list

length sums, as justified by Lemma 6.3.1. Initially, at step t = 0 assume that the cache set

C0 is empty, and that λ-nearest neighbor lists are available for each object in S. The goal is

to determine a set of objects C = Cm with specified cardinality m whose inverted neighbor

list lengths have the smallest possible variance.
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In the description of the algorithm, the following structures are maintained:

• For a specified subset of S \ Ct, a set of objects HoldingSet together with their

identifiers and a linked list to inverted neighbors. For example, object 6 in the

HoldingSet shown in Figure 6.1 heads a linked list to objects 4 and 5, indicating

that objects 6, 4 and 5 are the 3-nearest neighbors of object 6.

• A list RankedList of objects achieving a common value of Γ from among the objects

currently available for selection. Each object si ∈ RankedList is associated with an

identifier i ∈ [1, n], its inverted list length γ(si), and its neighbor set Q(si, λ).

• A min-heap data structure ScoreHeap storing pointers to all objects not yet selected

for inclusion in the cache. The min-heap is organized according to the Γ scores of

the objects it stores. All objects sharing the same Γ value are stored in a common

RankedList structure linked to one node of the min-heap. An example is shown in

Figure 6.1.

At each selection step, The greedy strategy performs the following operations. An

object s is randomly chosen from the RankedList referenced by the top element of

ScoreHeap, and a new cache object set Ct+1 = Ct ∪ {s} is formed. As a result of

the selection of s, the inverted list lengths of all neighbors of s (including s itself) are

incremented by one. This incrementation necessitates an update of the Γ values of each of

the objects of S \ Ct that share at least one neighbor with s. Any objects whose Γ value

increases would be reassigned to the RankedList structure associated with its new value.

The objects requiring an update of their Γ values (and relocation to another RankedList

structure) can be characterized as follows: for each object v in Q(s, λ), an update is required

for each object of Q−1(v, λ). As these objects are discovered, they are inserted into a

HoldingSet structure; once all candidates have been inserted, the scores are updated, and

objects are relocated to other RankedList structures. If no RankedList structure exists for
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Figure 6.1 Data structures of the GreedyBalance algorithm for a set of 10 objects after
the objects 0, 1, and 5 have been selected.

a given score, a new RankedList is created and inserted into ScoreHeap. A pseudocode

description of the greedy selection process is provided below (Algorithm 1).

Figure 6.2 shows an example state of the structures for the neighbor lists of Figure

6.1, where the object selected from the RankedList with score 0 is object 2. As a result

of the selection, the inverted list lengths of neighbor objects 2, 0 and 9 are incremented

by one. The set of objects containing at least one of {0, 2, 9} as neighbors is {3, 6, 7, 9}.

Before the selection, objects 3 and 7 have score 2, and objects 6 and 9 have score 3. After

the update, object 2 is added to the cache. Objects 3 and 7 are moved to the RankedList

structure for score 3, resulting in the list for score 2 becoming empty. In the case of objects

6 and 9, a new RankedList structure for score value 4 is created to store it, and is inserted

into the min-heap.

The GreedyBalance heuristic allows for much faster cache selection as compared to a

direct computation of list length variances, in that only a limited number of list objects need
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be examined at every selection. These objects are precisely those whose cached neighbor

lists contain one of the λ neighbors of the object entering the cache. Evaluation of the

balancing heuristic focuses on the degree of balance of inverted list lengths achieved using

the heuristic, as well as the impact of balancing on the performance of CES active caching.

6.4 Evaluation

The impact of inverted list balancing strategy is assessed by implementing CES together

with GreedyBalance using the SimInt measure for inverted list similarity. SimInt was

selected as it was shown to perform well across the different datasets considered in [49].

This variant, referred as CES-GB, was tested against basic CES, again implemented using

SimInt.

6.4.1 Performance Measures

The query processing performances of CES and CES-GB were assessed in terms of two

measures: the hit rate and recall. Given a schedule of queries, the hit rate is traditionally

defined to be the proportion of queries for which the result is explicitly resident in the

main-memory cache. Here, the definition is extented to include those cases where a query

result can be estimated using active caching. A miss occurs when active caching does not

lead to an estimate of the query result due to the query object having no assocation with a

cached neighbor list or a cached inverted list.

Consider now the item set retrieved by any given top-k query operating on the cache.

The recall of the query is defined as the proportion of this result that would also appear in

the result of the same query when applied to the full database. Since the cache query result

and the database query result are of equal size, this definition of recall is equivalent to that

of query precision, and the terms can be used interchangeably. In order to better contrast

the estimation powers of CES and CES-GB, experimental evaluation uses active caching

to produce an estimated query result regardless of whether or not the result is explicitly
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stored in the cache. Accordingly, query recall values may be less than 1 even when the

top-k result list is explicitly stored in the cache. When a cache miss occurs, as the query

result cannot be estimated using the cache, the recall of the query is considered to be 0.

6.4.2 Hit Rate

Using the datasets described in Chapter 3, several top-k query-by-example retrieval

experiments were conducted, over a variety of cache and neighbor list sizes, and choices

of k. For each experiment, the cache objects provided to CES were selected uniformly at

random from among the set of available objects, whereas for CES-GB the GreedyBalance

heuristic was employed. The cached information consisted of the standard neighbor list for

each cache item, and well as their associated inverted lists. After setting up the cache, each

of the items of the full collection served as the basis of a query-by-example operation.

Tests of CES-GB generally showed higher hit rates as compared with standard CES,

for cache proportions ranging between 5% and 50% (see Figures 6.3, 6.4, 6.5 , 6.6, 6.7 and

6.8). The differences in hit rates are very significant for smaller caches, with the advantage

held by CES-GB diminishing as the cache size increases. For the ALOI, KDDCup and

CoverType datasets with a cache proportion of 5%, CES-GB was able to estimate a result

for more than 85% of the queries, compared to just over 60% for CES. For the RCV1

dataset, the hit rates for both methods were lower, although CES-GB still outperformed

CES by a margin of more than 20%. In practice, usually only a very small proportion of a

dataset is kept in the cache.
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Figure 6.3 Hit rate for the ALOI dataset for cache proportions of between 5% and 50%,
with neighbor list size λ = 20.
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Figure 6.4 Hit rate for the KDDCup dataset for cache proportions of between 5% and
50%, with neighbor list size λ = 20.
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Figure 6.5 Hit rate for the CoverType dataset for cache proportions of between 5% and
50%, with neighbor list size λ = 20.
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Figure 6.6 Hit rate for the RCV1 dataset for cache proportions of between 5% and 50%,
with neighbor list size λ = 20.
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Figure 6.7 Hit rate for the Jester dataset for cache proportions of between 5% and 50%,
with neighbor list size λ = 20.
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Figure 6.8 Hit rate for the MovieLens dataset for cache proportions of between 5% and
50%, with neighbor list size λ = 20.

6.4.3 Average Recall

The experiments to measure average recall values were conducted for the same choices

of cache sizes and list sizes as for the hit rate; the results are shown in Figures 6.9, 6.10,



161

6.11, 6.12 and 6.13. For cache sizes of size 10% or more, the average inverted neighbor

list length was 2 or more (due to the choice of λ = 20), allowing both CES-GB and CES to

achieve very high average recall rates. For the smaller cache sizes, CES-GB substantially

outperformed CES, while for cache proportions in excess of 30%, CES held only a very

slight advantage over CES-GB. When the cache size was set to 5%, the average inverted

list length was only 1, which led to a large drop in average recall values for both methods.

Nevertheless, for the ALOI, KDDCup and CoverType datasets, CES-GB achieved average

recall rates in excess of 50% even despite the small average inverted list length, even with

the imposed limitation of using an estimate when the result was present in the cache, and

even with the recall of cache misses treated as zero. These rates were more than 10%

higher than those for CES. For the RCV1 set, the average recall of CES-GB was slightly

over 30%, with CES achieving 25%.

The results for average recall together with those for hit rates show that very effective

performance can be achieved while only rarely needing to access information on disk.
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Figure 6.9 Average recall for top-k queries using the ALOI dataset with list size λ = k =
20.
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Figure 6.10 Average recall for top-k queries using the KDDCup dataset with list size
λ = k = 20.
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Figure 6.11 Average recall for top-k queries using the CoverType dataset with list size
λ = k = 20.
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Figure 6.12 Average recall for top-k queries using the RCV1 dataset with list size λ =
k = 20.

0.6

0.7

0.5

0.6

0.3

0.4

R
e

ca
ll

CES

0.2

0.3R
e

ca
ll

CES

CES-GB

0

0.1

CES-GB

0

0 10 20 30 40 50

Cache Size (%)

Figure 6.13 Average recall for top-k queries using the Jester dataset with list size λ =
k = 20.

6.4.4 Inverted Neighbor List Balancing

The performance of the CES active strategy strongly depends on the length of the cached

inverted list associated with a given query object q [49]. The proposed solution is targeted
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to achieve the best possible balance in terms of the inverted list lengths. The degree of

balance of inverted cache lists can be assessed through the variance of the lengths of these

lists, with low variance indicating a high degree of balance. To be effective, this strategy

should also provide good coverage for all possible queries.

In Figures 6.14, 6.15, 6.16, 6.17, 6.18, and 6.19, histogram plots are provided showing

the numbers of query items against inverted list length for both CES-GB and CES, with the

query proportion set at 20% and neighbor list lengths chosen as size λ = 20. For all

examples, the mean inverted neighbor list length is 4. The results show far less variation

in the inverted list lengths for CES-GB as compared against CES. Query coverage is

dramatically improved using the greedy selection strategy, as evidenced by the much smaller

numbers of inverted lists with length zero.

5

4

5

O
b

je
ct

 C
o

u
n

t

x
 1

0
0

0
0

3

4

O
b

je
ct

 C
o

u
n

t

x
 1

0
0

0
0

CES

CES-GB

2

3

O
b

je
ct

 C
o

u
n

t

CES-GB

1

2

O
b

je
ct

 C
o

u
n

t

0

1O
b

je
ct

 C
o

u
n

t

0

0 2 4 6 8 10 12 14 16 18 20

Inverted List LengthInverted List Length

Figure 6.14 Histograms of object count versus inverted neighbor list length for the ALOI
dataset, with neighbor list size λ = 20 and a cache proportion of 20%.
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Figure 6.15 Histograms of object count versus inverted neighbor list length for the
KDDCup dataset, with neighbor list size λ = 20 and a cache proportion of 20%.
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Figure 6.16 Histograms of object count versus inverted neighbor list length for the
CoverType dataset, with neighbor list size λ = 20 and a cache proportion of 20%.
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Figure 6.17 Histograms of object count versus inverted neighbor list length for the RCV1
dataset, with neighbor list size λ = 20 and a cache proportion of 20%. For the CES method,
although some inverted lists had lengths in the range 200 to 600, histogram bars are shown
only for lists of lengths up to 200.
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Figure 6.19 Histograms of object count versus inverted neighbor list length for the
MovieLens dataset, with neighbor list size λ = 20 and a cache proportion of 20%.

Further experiments were conducted to show the relationship between the recall rates

produced and the lengths of the inverted neighbor list associated with query objects. In

Figures 6.20, 6.21, 6.22 and 6.23 plots are provided showing the average recall values as

a function of query inverted list size. The scaling of the plot along the x-axis is expressed

as a cumulative proportion of the total number of objects. For example, a plot point of

(0.7, 0.75) would indicate that an average recall of 75% is attained for queries based at the

data objects of a common inverted neighbor length, and that objects of that length occupy

up to the 70th percentile in the ordering of objects by inverted neighbor list length. The

experimental results show flatter, more consistent performance for CES-GB as compared

to CES. The query coverage of CES-GB is also much larger and more reliable than that of

CES. In the rare cases where the inverted neighbor list of the query object is very large sizes,

CES provides a better recall than CES-GB. However, the experiments clearly show that this

occasional high performance by CES comes at the expense of coverage and consistency.
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Figure 6.20 Average recall as a function of query inverted list size for the ALOI data set,
with k = λ = 20 and a cache proportion of 20%.
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Figure 6.21 Average recall as a function of query inverted list size for the KDDCup data
set, with k = λ = 20 and a cache proportion of 20%.
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Figure 6.22 Average recall as a function of query inverted list size for the CoverType data
set, with k = λ = 20 and a cache proportion of 20%.
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Figure 6.23 Average recall as a function of query inverted list size for the RCV1 data set,
with k = λ = 20 and a cache proportion of 20%.

6.5 Summary

This chapter proposes a greedy balancing strategy, CES-GB, for the selection of appropriate

cache data in order to answer the largest possible number of queries. The active strategy
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presented in [49] has been shown to depend on the frequency in which the query object

appears together with result objects in the lists stored in the cache. This frequency is equal

to the length of the inverted lists associated with cached result lists. The quality of the result

has been shown to be lower for when the query object is associated with a shorter inverted

list, and better when it is associated with a longer inverted list. Furthermore, no result can

be estimated when the query object is associated with an empty inverted list. The proposed

greedy balancing heuristic for the selection of the cache content provides a good coverage

over the range of possible queries, and improves both the hit rate and average recall even

for small cache sizes.

The main contribution of the CES-GB algorithm is that it balances the size of the

inverted cache lists through reduction in variance of the lengths of these lists, thereby

balancing the frequency of appearance of objects in the cached top-k neighbor lists. By

achieving a better inverted list balance, CES-GB provides a better uniform coverage of the

query range, and increases the spatial locality from which most if not all query results can

be actively generated.

CES-GB provides significant improvement in the hit rate and average recall for

small caches. Since the size of cache memory is usually much smaller than the total

dataset size, this approach can have a great practical impact. Even for small caches,

CES-GB may be sufficient to answer all queries actively, without ever referring to the

original dataset. This form of active caching therefore has the potential to serve as a

scalability technique. With the explosive growth of data repositories and the popularity of

similarity-based applications, the CES-GB approach opens doors for new forms of indices

based on data sampling.
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Algorithm 1 GreedyBalance
Input S: set of objects.

F : file containing λ-NN lists for all objects of S.

m: target cache set size.

Output SelectedList : list of selected cache objects.

1: Initialize SelectedList ← ∅.

2: Initialize min-heap ScoreHeap with a single node with score 0.

3: Associate the node of ScoreHeap with a structure RankedList(0) holding all λ-NN lists from file F .

4: Set pointer RL to indicate that RankedList(0) is associated with the top element of ScoreHeap.

5: Initialize set HoldingSet ← ∅.

6: For each item s ∈ S do

7: Initialize Γ(s)← 0.

8: EndFor

9: While (|SelectedList| < m) do

10: Select a new object s randomly from RL.

11: For each item v in the neighbor list Q(s, λ) do

12: For each item w in the inverted neighbor list Q−1(v, λ) do

13: If w /∈ HoldingSet then

14: Insert HoldingSet ← HoldingSet ∪ {w}.

15: Delete w from RankedList(Γ(w)).

16: If RankedList(Γ(w)) = ∅ then

17: Delete RankedList(Γ(w)).

18: Update ScoreHeap, and (if necessary) RL.

19: EndIf

20: EndIf

21: Increment Γ(w) by 1.

22: EndFor

23: EndFor

24: For each item w ̸= s in HoldingSet do

25: If RankedList(Γ(w)) = ∅ then

26: Create structure RankedList(Γ(w))← {w}.

27: Insert RankedList(Γ(w)) into ScoreHeap.

28: EndIf

29: Insert RankedList(Γ(w))← RankedList(Γ(w)) ∪ {w}.

30: EndFor

31: Insert object s into SelectedList .

32: Reset HoldingSet ← ∅.

33: EndWhile

34: Return SelectedList .



CHAPTER 7

SUMMARY, LIMITATIONS AND FUTURE WORK

This chapter will summarize the major findings of this study, discuss the results in terms

of theoretical and practical implications, outline the contributions of this study, and discuss

the limitations and possible future research directions.

7.1 Summary

This study proposes a caching solution for the efficiency issue in recommendation systems.

It aims at finding a caching solution that can work with any type of recommender system

as well as any type of distance matrix i.e., metric & non-metric. Normally only a small

proportion of the entire dataset is cached and traditionally this cached information is used

to answer most popular queries. This study, on the other hand, is focused on finding a

more scalable solution that can help to answer most, if not all, of the queries regardless of

their popularity using cached information. Three major research issues in this study are:

How to design an effective and efficient caching solution for recommender systems? How

to design a more general and effective similarity measure for active caching? and How to

select the objects in the cache for a caching with no replacement?

The first research question, how to design an effective and efficient caching solution

for recommender systems, is addressed through partial order based approach proposed in

the Chapter 4. The proposed solution helps to answer most of the queries in a dataset

using the small subset of data available in the cache. It can not only answer queries whose

result is readily available in the cache but can also actively process answers for non-cached

queries and in a sense cache acts in a limited query processing role. This solution does

not rely on popular or most recent data hence, works well even in the absence of any

access patterns. Also the solution is not dependent on any type of recommender system

172



173

or type of distance matrix and performs well with variety of datasets. Partial order based

active caching approach uses monotonicity amongst the cached information to estimate

the answers for non-cached queries. This approach will result in lower recall for estimated

answers in datasets having lower monotonicity. The second research question addresses the

issue of how to design a more general and effective similarity measure for active caching.

Shared neighbor similarity measure for active caching proposed in Chapter 5 addresses this

question. A general model, the Cache-Estimated Significance (CES), is proposed for the

estimation of the results of similarity queries using shared-neighbor similarity measures on

cached information. The proposed method is general in that it does not require that the

features be drawn from a metric space, nor does it require that the partial orders induced by

the similarity measure be monotonic. It successfully improves the recall rates for queries

whose results are estimated from the cache. The third and final major research question

addressed by this study is how to select the objects in the cache for a caching with no

replacement. This question is addressed in the Chapter 6 of this study. It proposes a

greedy balancing cache selection policy which helps to provide better over all coverage

of the data and increases the spatial locality in the cache. This approach uses a greedy

balancing strategy, CES-GB, for the selection of appropriate cache data in order to answer

the largest possible number of queries. The proposed greedy balancing heuristic for the

selection of the cache content provides a good coverage over the range of possible queries,

and improves both the hit rate and average recall even for small cache sizes.

Active caching is an extension of the caching model whereby estimation is used to

generate an answer for queries whose results are not explicitly cached, where the estimation

makes use of the results cached for related queries. By answering non-cached queries

along with cached queries, active caching approach offers substantial improvement over

traditional caching methodologies. Active caching approach presented in this work showed

very strong overall performance and provides an intriguing answer to the question of

cache management for recommender systems. The experimental results show substantial
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improvement in the cache hit rate while achieving high recall rates. The proposed approach

can not only answer queries that exactly match the queries in the cache but also computes

answers for non-cached queries hence, the cache acts in a limited query processor role.

Active caching extends the performance of a conventional cache so that whenever

the target result is not explicitly available in the cache, it makes use of the stored results

from previous queries to estimate the result for the current query. Whereas the conventional

approach is to fill the cache with those items most likely to be requested in future queries,

experimental results show that the active caching can instead support a form of

data interpolation, in which the cache is selected so as to provide uniform coverage of

the data set from which most if not all query results are actively generated. For some

applications, it may even suffice to answer all queries actively without ever referring to

the original data. The proposed solution goes beyond the keyword-based cache solutions

proposed for web applications — it is quite general, and independent of any method used

to generate the ranked lists. In this sense, it can be applied even when non-metric and

probabilistic approaches are used in generating ranked lists. Active caching could thus

serve as a scalability technique, as it provides the basis of space- and time-efficient

approximation of recommender system applications.

7.2 Contributions and Implications

7.2.1 Contributions

This study contributes to recommender system as well as caching domains. It provides a

caching strategy that is specifically designed for recommender system queries however, it

works with any application which uses top-k similarity queries (also known as k-nearest-

neighbor, or k-NN queries). This caching strategy, active cache mechanism, can answer

not only queries that exactly match the queries in the cache, but also act as a limited query

processor by computing results for non-cached query items using information cached for

other items. The main contributions of this study are:
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The main contribution of the active caching approach is to provide a mechanism

which assists in answering not only queries that exactly match the queries in the cache

but also estimating answers for non-cached queries thus using cache in a limited query

processor role. This approach does not assume any knowledge of the methods or similarity

measures used, and as such can be applied even when non-metric and probabilistic

approaches are used to produce query results. Whereas the conventional approach is to

fill the cache with those items most likely to be requested in future queries, active caching

can instead support a form of data interpolation, in which the cache is selected so as to

provide uniform coverage of the data set from which most if not all query results are

actively generated. For some applications, it may even suffice to answer all similarity

queries actively, without ever referring to the original data. Active caching could thus serve

as a scalability technique, as it provides the basis of space- and time-efficient approximation

of large databases [105].

The main contribution of the shared neighbor approach is to facilitate the design of

shared-neighbor ranking formulae for active caching that allow for variation of parameters.

The ranking function can correct for bias relating to variations in such quantities as the

size of the cache, the length of ranked lists stored in the cache, and the number of items

requested by the query, all without any knowledge of the actual similarity values [49].

The main contribution of the greedy balancing cache selection policy is that it balances

the size of the inverted cache lists through reduction in variance of the lengths of these lists,

thereby balancing the frequency of appearance of objects in the cached top-k neighbor

lists. By achieving a better inverted list balance, it provides a better uniform coverage of

the query range, and increases the spatial locality from which most if not all query results

can be actively generated. CES-GB provides significant improvement in the hit rate and

average recall for small caches. Since the size of cache memory is usually much smaller

than the total dataset size, this approach can have a great practical impact. Even for small

caches, CES-GB may be sufficient to answer all queries actively, without ever referring to
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the original dataset. This form of active caching therefore has the potential to serve as a

scalability technique. With the explosive growth of data repositories and the popularity of

similarity-based applications, the CES-GB approach opens doors for new forms of indices

based on data sampling [45].

7.2.2 Implications

This study has several implications in various research fields. These implications are

possible by applying the proposed caching solution with other query types. Furthermore,

proposed methods can also be adopted in other areas of research.

Active caching approach presented in this work is primarily designed to work with

recommender systems and showed very strong overall performance for

recommender systems. This approach can also work with any application which uses

top-k similarity queries (also known as k-nearest-neighbor, or k-NN queries). As such this

approach can be easily and effectively used with similar other applications like contextual

advertising, image retrieval etc. which use top-k similarity queries. Another possible

implication of active caching approach is to modify the solution so that it can work with

other types of queries. Modifying and using this approach with keyword queries can

significantly improve the performance of applications like search engines, digital libraries

etc. Another implication of this work is possible by using this approach with boolean

queries which can make database caching an effective approach to achieve high scalability

and performance.

The main contribution of the shared neighbor approach is to facilitate the design of

shared-neighbor ranking formulae for active caching. Shared-neighbor similarity measure

assess the statistical significance of the relationship between objects based on their shared

neighborhood. This concept provides new directions in various domains and can help to

introduce new approaches based on shared-neighbor information. A possible implication

of shared-neighbor approach is the development of a new type of recommender system
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which will be based on shared-neighbor information. This type of recommender system can

deduce from rich sources of relationships, text, images, media etc. using shared-neighbor

information and provide effective cross-genre recommendations.

Greedy balancing approach introduced in this work successfully provides a better

uniform coverage of the dataset. This approach has great implications in the areas of

data summarization and data sampling. Greedy balancing approach can help in computing

data summarization in very large multi-dimensional datasets like data warehouses which

otherwise require a very powerful and time consuming operations. GB approach also opens

doors for new forms of indices based on data sampling where a better uniform coverage of

the dataset can make these indices much more effective.

7.3 Limitations and Future Work

7.3.1 Limitations

Similar to any other caching solution, this approach also incurs an overhead in case of

cache miss. This overhead is due to the fact that the answer is checked in the cache first

and if it is not available then requested from the database. Active caching approach on the

other hand has much lower overhead because the number of cache misses are very low.

The active caching solution proposed in this study is mainly targeted for recommender

systems but can be used with other nearest neighbor applications. Nevertheless, for any

mission critical application, this solution should be used with care as the estimated answer

for non-cached queries processed from the cache is not always exactly similar to the result

if fetched from the database. The potential of the proposed active caching solution for the

large commercial data sets deserves further experimental investigation. Another limitation

of current approach is that it works with a fix set of objects. Objects are selected upfront to

be populated in the cache and any new addition or deletion of objects requires that cache

be populated again. Hence, any such applications where set of object constantly change,
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cache should be populated periodically so that any new objects have equal chance of being

selected from the cache.

7.3.2 Future Work

In the future, author is interested in applying this approach with other similar type of

applications to see its practical implications. Author is also interested in investigating how

this approach can be modified to work with other types of queries e.g. keyword queries

and boolean queries. Performance of applications like search engines, voice recognition,

face detection etc. can be significantly improved if this approach can be modified to work

with these systems. Author is particularly interested in applying active caching approach

with search engine queries. Furthermore, author would like to investigate a new type of

recommender system based on shared-neighbor information.
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