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ABSTRACT

A MOLECULAR DYNAMICS SIMULATION BASED PRINCIPAL COMPONENT
ANALYSIS FRAMEWORK FOR COMPUTATION OF MULTI-SCALE

MODELING OF PROTEIN AND ITS INTERACTION WITH SOLVENT

by
Tao Wu

This dissertation presents a new computational framework for calculating the normal modes

and interactions of proteins, macromolecular assemblies and surrounding solvents. The

framework employs a combination of molecular dynamics simulation (MD) and princi-

pal component analysis (PCA). It enables the capture and visualization of the molecules’

normal modes and interactions over time scales that are computationally challenging. It

also provides a starting point for experimental and further computational studies of protein

conformational changes.

A protein’s function is sometimes linked to its conformational flexibility. Normal

mode analysis (NMA) and various extensions of it have provided insights into the con-

formational fluctuations associated with individual protein structures. In traditional NMA,

each protein requires a customized model for such analysis due to its mechanical com-

plexity. The methodology presented here is applicable to any protein with known atomic

coordinates. Because of its computational efficiency and scalability, it facilitates the study

of slow protein conformational changes (on the order of milliseconds), such as protein

folding.

PCA reduces the dimensionality of MD atomic trajectory data and provides a con-

cise way to visualize, analyze, and compare the motions observed over the course of a

simulation. PCA involves diagonalization of the positional covariance matrix and identifi-

cation of an orthogonal set of eigenvectors or “modes” describing the direction of maximum

variation in the observed conformational distribution. Consequently, slow conformational

changes can be identified by projecting these dominant modes back to original trajectory

data.



In this work, the new multiscale methodology was first applied to a relatively small

mutant T4 phage lysozyme, establishing its equilibrium atomic thermal fluctuations and its

inter-residue fluctuation correlations. These results were compared with published data ob-

tained by NMA, by finite element methods, and by experiment. The eigenmodes captured

are in quantitative agreement with previously published results. With this success on a

small protein, the method was applied to the interaction of mutated hemoglobin molecules

that cause sickle cell anemia and the atomic level details of which are unknown. The new

methodology reveals slow motion processes of the hemoglobin-hemoglobin interaction.

MD based PCA is computationally expensive. Thus, this dissertation work also in-

cludes a widely-applicable parallel programming implementation of the modeling frame-

work to improve its performance.
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CHAPTER 1

INTRODUCTION

Computational and mathematical models help biologists and medical researchers to un-

derstand the causes of disease, molecular level processes, and much more. These models

uncover a multitude of biological facts, such as genome sequences and protein properties.

Experimental and computational methods are integrated into biological research to better

understand complex biological systems. Computational biology provides powerful meth-

ods to address critical scientific questions outside a laboratory.

Understanding a protein’s mechanics is a prerequisite for insight into its biological

function, since most proteins perform their functions through structural deformation, also

called conformational change. Such conformational change has been modeled by atomic

level simulation such as molecular dynamics (MD) simulation.

It is difficult to theoretically explain and predict the conformational changes in pro-

tein binding or interaction, though there are standard methods to experimentally probe this

phenomenon. These methods include fluorescence resonance energy transfer, X-ray crys-

tallography (Rossmann et al. 2005), cryoelectron microscopy (cryo-EM) (Saibil 2000),

NMR (Ishima and Torchia 2000), etc. Conformational change is not accessible to MD sim-

ulation available today due to its computational cost. It happens on millisecond scales (El-

ber 2005; Schlick et al. 1997) compared to MD simulation on nanosecond scale. Therefore

other computational methods must be applied. One of these methods is normal mode anal-

ysis (NMA), which has proven useful for studying collective motion of biological macro-

molecules. In addition, NMA with coarse-grained modeling of protein structures of large

proteins has been a computational alternative to atomic level simulation. Studies (Marques

and Sanejouand 1995; Perahia and Mouawad 1995; Tama et al. 2000) show that some of

the lowest-frequency normal modes of several proteins, including hemoglobin, are strongly

correlated with their large amplitude conformational changes.

1
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Proteins and other biological macromolecules are large and chemically inhomoge-

neous. Their dynamic behaviors or conformational changes are in timescales from fem-

toseconds (high-frequency local bond vibration) to milliseconds (protein folding) (Harris

and Laughton 2007). This complex system is difficult to study theoretically. Although

NMA provides information about slow protein motion (Marques and Sanejouand 1995;

Perahia and Mouawad 1995), its harmonic approximation limits its use to small ampli-

tude motion in the potential energy surface associated with a local minimum (Barton et al.

2002). It is difficult, using NMA, to analyze such large scale effects as the hydrophobic

effect (Ma 2005), which plays an important role in protein-protein interaction. A combina-

tion of MD simulation and principal component analysis (PCA) provides a systematic way

to study protein slow motion. This method overcomes some of the difficulties of NMA.

Protein-protein interaction such as macromolecular docking has been studied ex-

tensively. The ultimate goal is the prediction of the three dimensional structure of the

macromolecular complex as it would occur in a living organism. If the bond angles, bond

lengths and torsion angles of the components are not modified at any stage of formation of

the complex, it is known as rigid body docking. In general, hemoglobin-hemoglobin inter-

action caused by hydrophobic interaction could be treated as rigid body docking. Docking

processes that include conformational change, or flexible docking, are much more com-

plicated. Flexible docking could, in theory, be studied by quantum mechanics and other

methods. Slow motion analysis is suitable for some rigid body docking.

Sickle cell anemia is the first disease whose cause was pinpointed at a genetic level.

The switch of a single DNA base pair in the hemoglobin gene from A to T changes an

amino acid in hemoglobin from glutamic acid to valine (Herrick 1910). Red blood cells

(RBCs) are composed largely of hemoglobin. In normal RBCs, hemoglobin is globular.

Normal hemoglobin tends to form a protective layer of surrounding water molecules. This

protective water coating keeps hemoglobin molecules separated from each other. RBCs

have a flexible membrane and can easily squeeze through capillary vessels. In the mutated
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hemoglobin molecule, one normally hydrophilic spot becomes slightly hydrophobic and,

in deoxygenated states, tends to lose its protective layer of water molecules. Consequently,

the hemoglobin molecules tend to stick together and form a chain of hemoglobin beads. In a

cascading event, such chains form bundles, eventually altering the red blood cell membrane

from flexible to stiff. As a result, the affected RBCs switch from their normal dumbbell

shape to a sickled shapes. Stiff sickle cells tend to block capillary vessels and directly

contribute to sickle cell anemia.

Hydrophobic interaction is the main cause for sickle hemoglobin (hemoglobin S)

sticking to itself. Interaction of water with hydrophobic objects plays a major role in molec-

ular self-assembly processes (Israelachvili and Wennerstrom 1996; Lum et al. 1999; Tan-

ford 1980), as well in the process of aggregation of hemoglobin S. In this study, slow

motion analysis was performed to study the process of hemoglobin-hemoglobin interac-

tion.

This dissertation presents a new computational framework for calculating the nor-

mal modes and interactions of proteins, macromolecular assemblies and surrounding sol-

vents. The framework employs a combination of MD simulation and PCA. It enables

the capture and visualization of the molecules’ normal modes and interactions over time

scales that are computationally challenging, providing a starting point for experimental

and further computational studies of protein conformational changes. The details of this

framework are introduced in Chapter 2.

The new multiscale methodology was first applied to a relatively small mutant T4

phage lysozyme. The methods and results are presented in Chapter 3. These results are

compared with published data obtained by NMA and finite element methods. The eigen-

modes captured are in quantitative agreement with previously published results.

With this success on a small protein, the method was applied to the interaction of

mutated hemoglobin molecules that cause sickle cell anemia, which is described in Chap-

ter 4. The results suggest an explanation of hemoglobin aggregation at the atomic level.
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MD based PCA is computationally expensive. This work includes a widely appli-

cable parallel programming implementation of the modeling framework to improve its per-

formance. These results are introduced in Chapter 5.

1.1 Classical Molecular Dynamics

In classical molecular dynamics (MD), atomic trajectories are computed by solving New-

ton’s equation of motion Eq(1.1), which is a system of second order ordinary differential

equation (ODE),

M
d2

dt2 q(t) =−∇U(q(t)), (1.1)

where q is the position vector, M is the diagonal mass matrix, U(q) is the potential energy,

and −∇U(q) is the force.

In practice, the following system of first order ODEs are solved,

q̇ = M−1 p, ṗ =−∇U(q), (1.2)

where p is the momentum vector.

The potential energy, U , is typically given by

U =Ubo +Unbo, (1.3)

Ubo =Ub +Ua +Ud +U i, (1.4)

Unbo =ULJ +Ue. (1.5)

Note that Ubo terms are bonded potential, Unbo terms are unbonded potential, Ub and Ua

terms are harmonic (linear and angular spring) potentials that model covalent bond inter-

action, Ud terms are dihedral potential, U i terms are improper potential, the Ue term is
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the coulomb potential, and ULJ term models a van der Waals attraction and hard core re-

pulsion. The coefficients in these potentials are determined experimentally, often aided by

theoretical approaches such as abinitio quantum mechanical calculation.

It is unrealistic to expect that accurate trajectories can be computed for long time

intervals in MD simulation because MD trajectories are chaotic. One can only expect that

the trajectories will have the correct statistical properties, which can be verified by using

the initial velocities that are randomly generated from a Maxwell distribution.

The computational difficulty of molecular dynamics simulation resides in the com-

putation of the force fi that is a gradient of an anharmonic potential field prescribed to all

atoms. Further, the time step for integrating the equation of motion is typically on the order

of femtoseconds, whereas protein function occurs at much larger time scale, from nanosec-

onds to seconds. The accessible time scale for molecular dynamics commonly in the order

of nanoseconds (Elber 2005; Schlick et al. 1997). However, Shaw et al. (2009) reported

that millisecond-scale MD simulation have been performed on Anton, which is a recently

completed special-purpose supercomputer designed for MD simulation of biomolecular

systems. Even with this huge improvement, MD simulation may be computationally inhib-

ited for large protein mechanics, where large spatial and temporal scales are required.

1.2 Coarse-grained Structural Model of Protein Molecules

Coarse-grained models have been widely used for large scale protein analysis, which enor-

mously reduces the degrees of freedom. Since the dominant motion of a protein structure

is represented by a carbon backbone chain (Amadei et al. 1993), in coarse-grained models

protein structure is represented by α-carbon atoms for the protein backbone chain. More-

over, the high computational costs usually arise from the complicated anharmonic potential

field. Consequently, the simplification of such a potential field for a protein structure de-

scribed by α-carbon atoms is the key issue for the coarse-grained modeling of proteins.



6

1.2.1 Normal Mode Analysis

Normal mode analysis (NMA) is a computational alternative to atomic simulation such

as MD for understanding large protein mechanics (Brooks and Karplus 1985; Gibrat and

Gõ 1990; Harrison 1984; Tama et al. 2000). The principle of NMA is similar to that

typically employed for structural mechanics. Once the stiffness matrix (Hessian matrix)

for a structure is constructed, the modeling analysis provides the vibration information of

such a structure. The stiffness matrix for a protein structure is usually established based on

the computation of second gradients of anharmonic potential field prescribed to all atoms.

In general, calculation of a stiffness matrix is implemented at equilibrium position, which

is obtained by minimization of anharmonic potential. This implies that, for large proteins,

the computation of a stiffness matrix along the minimization process is a computationally

expensive process.

NMA is also referred to as quasi-harmonic analysis (Teeter and Case 1990), since

the modal analysis is implemented with harmonic approximation to potential energy V for

small displacement,

V ≈V0 +
1
2 ∑

i, j
Ki, j(|ri, j|− |r0

i, j|)2, (1.6)

where ri, j is the displacement between atom i and j, r0
i, j is the initial displacement, and Ki, j

is the Hessian matrix (stiffness matrix) for a protein structure given by Ki j = ∂ 2V/∂ ri∂ r j.

Quasi-harmonic analysis is used to solve the eigenvalue problem such as Ki jv j = ω2mivi,

where ω is the natural frequency, vi is the normal mode corresponding to natural frequency

ω , and mi is the atomic mass for ith atom. The cross-correlation matrix representing the

thermal fluctuation motion can be computed from equilibrium statistical mechanics theory,

Li j =
3N

∑
n=7

kBT
mi

ωn
2(vi⊗ v j), (1.7)

where kB is the Boltzmann’s constant, and T is the absolute temperature. The subscript

n for natural frequency and normal mode represents the mode number (Weiner 1983). It
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should be noted that summation goes from 7 to 3N, where N is the total number of atoms,

and rigid body modes correspond to six zero eigenmodes.

1.2.2 Gõ Model

Hayward and Gõ (1995) introduced a more simplified potential field for α-carbon atoms

such that α-carbon atoms are prescribed by a potential field consisting of covalent bonds for

consecutive α-carbon atoms and non- bonded interaction (i.e. van der Waal’s interaction)

for native contacts. The thermal fluctuation behavior of protein structures has been well

described by Gõ model.

Low-frequency normal modes relevant to protein dynamics is insensitive to details

of potential field (Teeter and Case 1990). Hayward and Gõ (1995) pointed out that short-

range interaction may govern the protein dynamics. Furthermore, the motion of protein

structure fits well with a backbone chain represented by α- carbon atoms. Gõ potential can

be addressed as,

V ≈∑
i
[
k1

2
(ri,i+1− r0

i,i+1)
2 +

k2

4
(ri,i+1− r0

i,i+1)
4]+∑

i, j
4ε(

1
r6

i, j
− 1

r12
i, j
), (1.8)

where ri, j is the distance between ith and jth α-carbon atoms.

Superscript zero indicates the equilibrium state. The first summation represents

the nonlinear elastic energy for covalent bonds, while the last summation shows the non-

bonded interaction for native contact. Native contact is defined so that α-carbon atoms i

and j are in the native contact if ri, j is less than a specific cut-off distance, such as 10 Å.

1.2.3 Elastic Network Models

In an elastic network model (ENM), the system is represented by a network of beads con-

nected by elastic springs. Generally one bead represents one amino acid (Fig. 1.1). How-
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ever, elastic network models can also be used with an all-atom description as well. The

ENM is widely used for its simplicity. Although ENM only includes harmonic fluctuation,

it correctly represents the topology of the system and yields the right pattern of the principal

modes, which normally associate with protein functions.

(a) Molecular structure with CPK view, col-
ored by atom type: H white; O red; N blue;
C cyan; S yellow; P tan.

(b) Elastic network model, each bead who
stands for one residue is connected with ab-
stract springs within a cutoff distance.

Figure 1.1 Model T4 lysozyme (PDB: 3lzm) with elastic network model

ENM was first studied by Tirion (1996). She assumed the harmonic approxima-

tion to potential field prescribed to α-carbon atoms. The harmonic potential field can be

presented only for native contacts and covalent bonds with identical force constant,

V ≈∑
i, j

γ

2
(ri, j− r0

i, j)
2H(rc− r0

i, j), (1.9)

where γ is a force constant, ri, j is the distance between ith and jth α-carbon atoms, su-

perscript 0 indicates the equilibrium state, rc is the cut-off distance defining a native con-

tact, and H(x) is the Heaviside unit step function defined as H(x) = 0 if x < 0; otherwise

H(x) = 1.
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1.3 Principal Component Analysis

As a linear combination of all state variables, for instance, nodal unknowns in finite element

analysis, the general coordinate ξ (t) can be introduced as

ξ (t) =
m

∑
i=1

φixi(t) = φφφ
Tx(t), (1.10)

where m represents the total number of channels or state variables and xi(t) is the ith time

dependent variable.

If the variance of ξ (t) within the time interval [t0, t1] is maximized, the data spreads

mostly in this general direction. Consequence, this direction, represented as a linear com-

bination of all state variables, will be called the principal direction, as illustrated in Fig. 1.2.

Of course, it is anticipated that the total number of principal direction r should be much

smaller than the spatial dimension m. Denote the variance of ξ (t) can be expressed as,

ξ (t) =
∫ t1

t0
(ξ (t)− ξ̄ )2dt, (1.11)

with time averaged value,

ξ̄ =
∫ t1

t0
ξ (t)dt/(t1− t0), (1.12)

It is often more practical to use temporal discretization instead of dealing with

infinite dimensional problems in the time domain. For example, there are n time snap-

shots within the time interval [t0, t1]. For a typical kth channel or variable, denoted as

x̄k =
n

∑
j=1

xk j/n, the variance of this channel can be expressed as
n

∑
j=1

(xk j− x̄k)
2. Conse-

quently, the variance based on the general coordinate ξ in Eq. (1.10) can be expressed in

terms of
n

∑
j=1

(ξ j− ξ̄ )2, where the mean value of ξ is defined as ξ̄ =
n

∑
j=1

ξ j/n.

The procedure to maximize the variance ξ in Rn leads to an optimization problem:

find φ ∈Rm such that φφφ
T(xk− x̄k)(xk− x̄k)

Tφφφ is maximized subject to the constraint

φφφ
T
φφφ = 1. It is then clear that the principal component φφφ is in fact the eigenvector of the
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Figure 1.2 Illustration of principal component

covariance matrix,

AAA = (xk− x̄k)(xk− x̄k)
T, (1.13)

and the number of principal components r depends on the rank of the covariant matrix AAA.

Principal component analysis involves diagonalization of the positional covariance

matrix A to identify an orthogonal set of eigenvectors or “modes” describing the direction

of maximum variation in the observed conformational distribution. Covariance matrix A

is calculated with Eq. (1.13). PCA diagonalization of the covariance matrix involves the

following eigenvalue problem:

AAAµ = λ µ, (1.14)

where µ are the eigenvectors and λ are the eigenvalues of covariance matrix AAA.

One motivation for PCA is to reduce the dimensionality of the MD trajectory data

and provide a concise way to visualize, analyze, and compare large-scale collective motion

observed over the course of the simulation. Particularly eigenvectors with the largest eigen-

values provide the biggest contribution to the observed covariance (Cheng et al. 2007; Rod
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et al. 2003). The so-called “essential” modes from a PCA are usually a selection of these

eigenvectors and associated eigenvalues that collectively account for a large percentage of

the total observed motion.

In the following example, PCA will be used to analyze a simple dynamical system.

This example illustrates the PCA procedure and its relationship with the original data.

Consider the three body system shown in Fig. 1.3, where the edge points are fixed and

cannot move. According to the mathematical model (Wang 2008), there are three degrees

of freedom in the system. Therefore, the dynamics equation of the system is:

Mẍ+Kx = R(t), (1.15)

M =


m 0 0

0 2m 0

0 0 3m

 , K =


2k −k 0

−k 2k −k

0 −k 2k

 ,

Kφφφ = ω
2Mφφφ , (1.16)

with x = [x1 x2 x3]
T , m for mass and k for stiffness of the spring, ω for natural frequency

of this system.

With the standard procedure, the natural frequency can be calculated by solving the

generalized eigenvalue problem. The eigenvalues equal to ω2, where ω denotes natural

frequency. Table 1.1 shows the eigenvalues and the corresponding eigenvectors for the

calculation result.

Table 1.1: Eigenvalues and Eigenvectors for the Spring System

number eigenvalue eigenvector
1 1.18161 0.40298, 0.46837, 0.27219
2 2.23607 -0.40825, 0.40825, 0.40825
3 3.45502 0.06539, -0.33758, 0.87135
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Figure 1.3 Illustration of three oscillator system. Three bodies (not affected by gravity),
with mass m; 2m; and 3m, attached to four springs, each with spring constant k.

To build a dynamical system based on these three bodies, Verlet integration is used

to generate trajectories for each integration or timestep. A trajectory matrix AAA is built where

each row holds a body’s displacement data and each column records displacements at one

time step. PCA analysis will be performed as introduced.

Verlet integration is a numerical method used to integrate Newton’s equation of mo-

tion. It is frequently used to calculate trajectories of particles in MD simulation. Newton’s

equation of motion for conservative physical systems is,

Mẍ(t) = F(x(t)) =−∇V (x(t)), (1.17)

where t is the time, x(t) is the ensemble of the position vector of N objects, V is the scalar

potential function, F is the negative gradient of the potential giving the ensemble of forces

on the particles,

Typically, an initial position and initial velocity are given. To discretize and numer-

ically solve this initial value problem, a time step ∆t > 0 is chosen and the sampling point

sequence tn = n∆t is considered. The task is to construct a sequence of points that closely

follow the points on the trajectory of the exact solution.

Verlet integration can be seen as using the central difference approximation to the

second derivative,

aaan =
∆2xxxn

∆t2 ≈
xxxn+1−2xxxn + xxxn−1

(∆t)2 . (1.18)

The Verlet algorithm uses Eq. (1.18) to obtain the next position vector from the previous
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two as

xxxn+1 = 2xxxn− xxxn−1 +aaan(∆t)2. (1.19)

Two systems have been built. The first system is running in ideal condition; the

second system is running with noise. To add noise to this system, random disturbing dis-

placements are added at every integration. To stimulate the system, the initial position of

every mass is set corresponding to one eigenvector of the natural frequencies, shown in

Table. 1.1, namely as k, where k = 1,2,3; the initial velocities are set to zero; every time

step ∆t is set with ∆t = 0.05 and total integration or time steps nstep = 200.

Table 1.2: Eigenvector and Rayleigh-Ritz Results with Verlet Algorithm

k Eigenvector Rayleigh-Ritz quotient
1 -0.50870, -0.67489, -0.53455 1.53942
2 -0.21210, 0.71023, 0.67125 1.93758
3 -0.01360, 0.16764, -0.98575 3.36764

Once the displacement matrix has been calculated, the covariance matrix is pro-

duced as Eq. (1.13). Eigenvectors for this covariance matrix are listed in Table.1.2. The

new trajectory is produced by projecting data back corresponding each of the eigenvector.

The Rayleigh-Ritz method is used to find the approximate real resonant frequencies

of systems with multiple degrees of freedom, such as spring mass systems (Chakraverly

2009). Figure. 1.4, 1.5, and 1.6 show the frequency computed by Rayleigh-Ritz with initial

position corresponding to natural frequency. Based on linear algebra, the Rayleigh-Ritz

quotients must lie between the minimal and maximal eigenvalues. It can be easily observed

that the dominant eigenmode looks like the corresponding eigenvectors and Rayleigh-Ritz

quotients are approximately equal to the corresponding eigenvalues. Most importantly, if

one imposes an excitation with frequency around a generic natural frequency on the system,

the result is resonance. In addition, the Rayleigh-Ritz quotient will tend to converge with

the natural frequency as the number of snapshot nstep increases based on the computing

result.
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Figure 1.4 Frequency computed by Rayleigh-Ritz with initial position corresponding to
first natural frequency; dashed line denotes the corresponding natural frequency.

Figure 1.5 Frequency computed by Rayleigh-Ritz with initial position corresponding to
second natural frequency; dashed line denotes the corresponding natural frequency.
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Figure 1.6 Frequency computed by Rayleigh-Ritz with initial position corresponding to
third natural frequency; dashed line denotes the corresponding natural frequency.

The projected trajectories present the motion of the original set. Eigenvalues for

the covariance matrix show how important each mode’s contribution is to the whole mo-

tion. The percentages of the variance for each mode are: 97.1969,2.0035,0.7996. In other

words, one mode dominates the entire motions of the system. This result is true for any

type of initial displacements proportional to the eigenmode.

The original displacements are showed in Fig. 1.7. Projected displacements after

PCA are shown in Fig. 1.8. After the PCA projection, the modes of displacements are

close to the original motion. Similar phenomena (Figs. 1.9 and 1.10) can be discovered

after applying noise in the spring system. In the latter case, the motion reinstated using

PCA are between the system eigenmode and the dominant mode.

PCA is also applicable to the study of complex systems, for example the confor-

mation (slow motion) analysis of biological macromolecules. Biological macromolecules

such as proteins are large and have thousands of degree of freedoms. It is theoretically

difficult to explain and predict the conformational changes in proteins. Slow motions such
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(a) Excited by initial displacement with k = 1 (b) Excited by initial displacement with k = 3

Figure 1.7 Time vs. displacement without noise

(a) Excited by initial displacement with k = 1 (b) Excited by initial displacement with k = 3

Figure 1.8 Time vs. projected displacement without noise

(a) Excited by initial displacement with k = 1 (b) Excited by initial displacement with k = 3

Figure 1.9 Time vs. displacement with noise
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(a) Excited by initial displacement with k = 1 (b) Excited by initial displacement with k = 3

Figure 1.10 Time vs. projected displacement with noise

as protein folding can be dominant motions. The projection of dominant motion provides

an effective way to study protein slow motion.

1.4 Quasi-harmonic Analysis

Quasi-harmonic analysis (QHA) (Harris and Laughton 2007; Karplus and Kushick 1981)

and related principal component analysis techniques, based on the eigenvalue decomposi-

tion of an ensemble of protein conformation, have provided a useful method for identifying

motion, particularly at long time scales (Ramanathan and Agarwal 2009). QHA captures

the large-scale conformational fluctuation in a protein by diagonalizing the mass-weighted

covariance matrix, known as the atomic fluctuation matrix (Fαβ ). For a system with N

atoms, Fαβ is a 3N×3N symmetric matrix, defined as:

Fαβ = 〈m1/2
α (xα −〈xα〉)m1/2

β
(xβ −〈xβ 〉)〉, (1.20)

where α and β represent the 3N degrees of freedom in Cartesian space; m is the mass of

the atom and the quantity within 〈〉 denotes an average over the ensemble of structures in

MD simulation.

The inverse square roots of the eigenvalues determined by diagonalizing Fαβ rep-
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resent the frequencies associated with the protein eigenmode. The eigenvectors represent

the displacement vectors of the individual atoms. The lowest frequencies correspond to

large-scale cooperative motion in the protein; the higher frequencies represent localized

motion. For a system with N atoms, there are 3N− 6 internal modes. However, due to

computational costs, typically only a limited number of slow modes (lowest frequencies)

are computed.

QHA allows identification of protein motion at a variety of time scales that are re-

lated to the length of the MD simulation. The atomic fluctuation matrix can be computed

from protein conformation sampled during a single MD simulation that is of limited dura-

tion. It also can be computed with a collection of MD trajectories that represent a long time

scale.

QHA is computationally expensive, especially with a large number of atoms and the

long MD simulation. Various methods have been developed to minimize the computational

cost, such as time-averaged normal coordinate analysis (TANCA) (Noid et al. 2000). Ap-

proximation methods lose information. An all-atom, all- time-frame computing approach

with parallel/distributed computing is presented in this dissertation and details can be found

in Chapter 5.

A significant advantage of QHA over other methods is that it allows identification

of slow conformational fluctuations that span distant areas of the protein energy landscape,

such as the reaction pathway during enzyme catalysis (Agarwal 2006; Agarwal et al. 2002).

Overcoming some of the limitation of NMA based approaches, QHA provides a method-

ology to explore protein motions with longer time scales.

The difference between QHA and PCA is that in computing the atomic fluctuation

matrix (Fαβ ) QHA takes mass to amplify the motion of heavy atoms (that is, atoms other

than hydrogen). Hydrogen atoms moves faster and are more likely to relate to high fre-

quency motion. QHA and PCA also study protein conformational changes by exploring

of location of each residue. These locations are usually represented by the location of the
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alpha-carbon of each residue. Motion of hydrogen atoms is related with localized mo-

tion. Therefore QHA is better at describing slow motion than PCA. The research on these

phenomena is presented in Section. 3.4.

1.5 High Performance Computing

The implementation of PCA and other analytical methods in this dissertation involve op-

erations on very large matrices and other computationally expensive tasks. There are few

tools to do such analysis efficiently. Therefore, this research involved designing and im-

plementing a parallel computing package for the operations performed, as presented in

Chapter 5.

High-performance computing (HPC) uses supercomputers and computer clusters

to solve advanced computational problems. In this research, Franklin, a massively parallel

processing (MPP) system, was used to test the methods and produce the results.

Franklin belongs to National Energy Research Scientific Computing Center. It has

(in October 2010) 9,572 nodes, each with a quad core processor core. It has a theoretical

peak performance of 9.2 GFlop/sec per core (4 flops/cycle if using SSE128 instruction).

More information about the Franklin system is listed in Table 1.3.
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Table 1.3: Franklin System Specification

Franklin Specification
Number of compute nodes 9,572
Processor cores per node 4
Number of compute processor cores 38,288
Number of spare compute nodes 20
Processor core type Opteron 2.3 GHz Quad Core
Processor core theoretical peak 9.2 GFlop/sec
System theoretical peak (compute nodes only) 352 TFlop/sec
Physical memory per compute node 8 GB
Memory usable by application per node 7.38 GB
Number of login nodes 10
Switch interconnect SeaStar2
Measured MPI point-to-point bandwidth 1.6 GB/sec
Measured MPI point-to-point latency 6.5−8.5µs
File system Lustre
Usable disk space 436 TB
Theoretical IO bandwidth 32 GB/sec aggregate
Batch system Torque/Moab

Source: http://www.nersc.gov/nusers/systems/franklin/about.php,
accessed November 2, 2010.



CHAPTER 2

EQUILIBRIUM CONFORMATIONAL FLUCTUATION ANALYSIS

Equilibrium conformational fluctuation plays an essential role in the biological function of

proteins. These fluctuation range from subtle rearrangements of a few atoms to large-scale

movement involving the entire protein. Protein motion timescales occupy a correspond-

ingly large range, from femtosecond to microseconds and even longer (Agarwal 2006;

Cannon and Benkovic 1998). The lower end of this range, or fast motion, is commonly

known as vibration, which includes bond stretching and angle bending. The upper end of

this range, or slow motion, involves large conformational changes (Elber 2005; Harrison

1984; Rossmann et al. 2005; Saibil 2000; Schlick et al. 1997; Tama et al. 2000), such

as rotation of side chains and movement of flexible loops. Slow fluctuations have been

studied in relation to possible involvement with protein function (Agarwal 2005, 2006;

Agarwal et al. 2002; Benkovic and Hammes-Schiffer 2003; Cannon and Benkovic 1998;

Caratzoulas et al. 2002; Eisenmesser et al. 2002, 2005; Hammes 2002; Hammes-Schiffer

2002; Henzler-Wildman et al. 2007). However, proteins are chemically inhomogeneous

(Ma 2005). The complexity of protein dynamic behavior makes it difficult to obtain a

theoretical description of thermal fluctuation. In this research, a combination of classical

molecular dynamics (MD) simulation and principal component analysis (PCA) is intro-

duced to study equilibrium conformational fluctuation of proteins.

Protein motions and their possible role in protein function are studied with normal-

mode analysis (NMA) and its various extensions. Conformational fluctuation and individ-

ual protein structures are associated with protein structure and function. NMA is based

on harmonic approximation of the potential energy minimum, which is computed by di-

agonalizing the Hessian matrix. However, recent research shows that slow conformational

changes of proteins are largely anharmonic (Tournier and Smith 2003). Furthermore, NMA

ignores solvents, but water plays an important role in protein conformation. Nevertheless

21
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NMA is not well suited for protein conformational change that covers widely separated

areas of the conformational energy landscape, such as enzyme catalysis (Ramanathan and

Agarwal 2009).

The increase in available computing power provides a systematic way to study pro-

tein conformational changes with MD simulation. A combination of MD simulation with

PCA and its extensions have provided insights into protein and DNA dynamics. These

methods have been successfully applied to the thermodynamics of a number of nucleic acid

interactions including sequence selective drug-DNA association (Harris et al. 2005), large

conformational transition in DNA (Noy et al. 2007), and protein-DNA complexes (Dixit

et al. 2005). A generalized package of this methodology has been built in this research and

is demonstrated in this chapter.

2.1 Framework

One motivation of this research is to build a generalized package for protein equilibrium

conformational fluctuation analysis. This method may be applied to any protein with

known atomic coordinates. The standard procedure is as follows:

1. Select an appropriate PDB file from Protein Data Bank and run an MD simulation.

Save the trajectories matrix A3m×n, where m is number of atoms and n is the number

of snapshots from simulation shown as follows:

AT =



x11 x21 . . . xm1 y11 . . . ym1 z11 . . . zm1

x12 x22 . . . xm2 y12 . . . ym2 z12 . . . zm2

...
... . . . ...

... . . . ...
... . . . ...

x1n x2n . . . xmn y1n . . . ymn z1n . . . zmn



T

2. Clean the data to remove translation and rotation. Details can be found in Sec-

tion 2.4.1.
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3. Compute the covariance matrix with Eqs. (1.13) and (1.20).

4. Solve the eigen problem with covariance matrix to get eigenvectors and eigenvalues.

5. Assess the number of modes required to accurately represent the conformational

change by analyzing overlap coefficients and eigenvalues. Overlap coefficients anal-

ysis was introduced in Section 2.2.

6. Calculate a new “mode matrix” by projecting selected eigenvectors or “modes” back

to covariance.

7. Analyze conformational changes based on the results of previous steps.

8. Do correlation analysis, introduced in Section 2.3.

2.2 Mode Selection and Evaluation with Overlap Coefficients

The overlap coefficients (OCs) of the α-carbon atoms are calculated to measure how well

each PCA mode represents all motion (Bradley et al. 2008). PCA modes (vi) are compared

with a vector ( ∆x), that describes the displacement of α carbon atoms from the minimized

starting simulation position. The structure is experimentally determined by X-ray crys-

tallography. This vector is calculated following alignment of the minimized and crystal

structures with the MD average structure to remove rotation and translation of the center of

mass.

The weight factor (α(i)) for each PCA mode is calculated as follows:

α
(i) =

vi·∆x
‖ vi ‖2 . (2.1)

It measures whether or not ∆x can reasonably be represented in the vector space described

by various subsets of PCA modes. A subset S of modes is calculated as a reconstructed
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vector (Ṽ ) as follows:

Ṽ = ∑
i∈S

α
(i)vi. (2.2)

Then the overlap coefficients, which show the similarity between ∆x and each PCA mode

(vi or Ṽ ) are calculated by the angle between the two vectors:

cos(θ) =
v·∆x

‖ v ‖·‖ ∆x ‖
. (2.3)

The relative error in the reconstructed vectors can be computed as:

ε =
‖ ∆x− ṽ ‖
‖ ∆x ‖

. (2.4)

This error simply provides a measure of how well the displacement due to the recalculated

vector recapitulates the observed crystallographic ∆x and thus allows users to assess the

number of modes required to accurately represent the conformational change.

2.3 Introduction of Correlation Analysis Method

Correlations among the fluctuations of residues, measured at alpha-carbon atoms, provide

additional insight into protein function (Brooks et al. 1983; Lange and Grubmüller 2006;

Waight et al. 2010). An unweighted pair group method with arithmetic means (UPGMA)

clustering algorithm is used to define groups of residues with similar correlation patterns

under equilibrium fluctuation. The correlation is measured by constructing correlation ma-

trices. The details of correlation matrices can be found in Section 2.4.3.

A correlation analysis procedure similar to Bradley et al. (2008), is followed:

1. Construct a positional correlation matrix Si j (Section 2.4.3).

2. Compute the effective “distance” di j, based on the correlation measure:

di j =
√

1.0−S2
i j (2.5)
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The distances between residues represent the strength of the relationship between

them, with the closest residues having the strongest correlation.

3. Generate a “treelike” representation of correlated residues by the UPGMA method,

based on the calculated effective distances. The UPGMA method is presented in

Section 2.4.4.

4. Do a depth-first search to choose the smallest clusters that contain at least one residue

from each of the groups defined by the selection criteria. Experimental information

plays an important role in the definition of these clusters.

5. Complete the cluster selection.

(a) Figure out other important residues of the selection criteria that were not found

in the initial cluster selection.

(b) Find the clusters that contain those important residues identified in step 5a but

do not contain any residue selected in the previous depth first step.

Correlation matrices provide insight into the pairwise correlation of residues. While

residue clusters are likely to involve inter-domain communication, they do not show indi-

vidual residue interaction that could be important for the protein functional mechanism.

Although the correlations identified by clustering do not provide direct information about

the series of events that generate the correlations, they do provide a starting point for ex-

perimental and further computational studies designed to model conformational changes in

the protein.



26

2.4 Methods and Theory

2.4.1 MD Simulation Data Cleaning and Preparing for PCA

Based on the eigenvalues from PCA analysis presented in Chapter 3 (Fig 2.1), the domi-

nant motions were the first three motions for each system. Each mode was projected back

corresponding with its eigenvector. The motions are shown in Figs. 2.2 and 2.3. Rotation

is dominant in the third motion as is evident from Fig. 2.3. The other two motions they

are a combination of rotation and translation. This is generally true for any simulation of

a protein system because translation and rotation are usually the dominant motions of the

original data set. This is one evidence that PCA captures slow conformational changes.

However, further significant motions lie behind the dominant rotation and translation. To

bring these motions to the fore, alignments are used to remove translation and rotation

before PCA.

A reference structure is defined for alignment. The coordinates of each snapshot is

aligned with the reference structure. The reference structure is defined by the user and usu-

ally is the initial position or the averaged position of all snapshots. Translation alignment

can easily be done by moving all coordinates by a vector vvv which equals to vvvo− vvvr, where

vvvo and vvvr hold the coordinates of the center of mass of the original and reference systems.

The center of mass is traced by (x̄1, x̄2, x̄3). At each time step, the center of mass

can be evaluated as follows: for k = 1,2,3,

x̄k =
N

∑
i=1

mixi
k

m
, (2.6)

where N is the total number of atoms, xi
k represents the position of the ith atom in the k

direction, and m is the total mass expressed as
N

∑
i=1

mi.
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(a) in vacuum

(b) in solvent

Figure 2.1 PCA eigenvalues with original data for T4 lysozyme MD simulation
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(a) Expansion (b) Contraction

Figure 2.2 Non-aligned PCA mode 1 displacement visualization of MD simulation with-
out solvent. The starting structure is shown in new-cartoon representation colored by struc-
ture. The destination structure is shown in blue ribbon. The red arrows indicate the direc-
tion of displacement based upon 1st PCA mode of MD simulation without solvent.

(a) (b)

Figure 2.3 PCA mode 3 displacement visualization of MD simulation without solvent.
The initial structure is shown in new-cartoon representation colored by structure. The
destination structure is shown in blue ribbon. The red arrows indicate the direction of
displacement based upon the third PCA mode of the MD simulation without solvent.
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Alignment for rotation is calculated by the Kabsch algorithm, which is introduced

in Section 2.4.2.

2.4.2 Kabsch Algorithm

The Kabsch algorithm (Kabsch 1976, 1978) is a method for calculating the optimal rotation

matrix that minimizes the RMSD between two sets of points, namely rotation alignment.

The algorithm calculates only the rotation matrix. Both sets of coordinates must be

transformed to their centroid first. Note that, in general, the “rotation matrix” represents a

transformation to a different orthonormal basis rather than a rotation about a single axis.

The algorithm starts with two sets of paired points, P and Q. Each set of points can

be represented as an N × 3 matrix. The first row consists of the coordinates of the first

point, the second row of the coordinates of the second point, the nth row of the coordinates

of the nth point:

P or Q =



x1 y1 z1

x2 y2 z2

...
...

...

xn yn zn


The algorithm works by calculating a covariance matrix, AAA,

AAA = PPPT QQQ. (2.7)

The optimal rotation RRR is based on the matrix formula RRR = (AAAT AAA)1/2AAA−1. However, in the

case that AAA does not have an inverse, Kabsch (1976, 1978) propose another approach with

singular value decomposition (SVD). First, calculate the SVD of the covariance matrix AAA,

AAA =UUUΣΣΣVVV T . (2.8)
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Next, decide whether you need to correct the rotation matrix to insure a right-handed coor-

dinate system

d = sign(det(AAA)). (2.9)

Finally, calculate the optimal rotation matrix RRR, as

R =VVV


1 0 0

0 1 0

0 0 d

UUUT . (2.10)

2.4.3 Positional Correlation Matrix

A scalar correlation matrix was defined in Cartesian space by equation

Si j =
〈(rrri−〈rrri〉)(rrr j−〈rrr j〉)〉√

〈(rrri−〈rrri〉)(rrri−〈rrri〉)〉〈(rrr j−〈rrr j〉)(rrr j−〈rrr j〉)〉
, (2.11)

to denote the correlation between atoms i and j (Bradley et al. 2008). The value of Si j

ranges from −1.0 to 1.0, with positive and negative values indicating correlated and anti-

correlated motion. rrri and rrr j are the position of atoms i and j and 〈〉 denotes the trajectory

average over snapshots. The matrix is calculated across all α carbon atoms of the protein.

2.4.4 The Unweighted Pair Group Method with Arithmetic Mean

The unweighted pair group method with arithmetic mean (UPGMA) (Durbin et al. 1999)

is a simple agglomerative or hierarchical clustering method. The algorithm examines a

pairwise distance matrix (or similarity matrix) to construct a rooted tree. At each step, the

nearest two clusters are combined into a higher-level cluster. The distance between any two

clusters A and B is the average of all distances between pairs of objects x in A and y in B

(d(x,y)):
1

|A|· |B| ∑x∈A
∑
y∈B

d(x,y). (2.12)
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UPGMA algorithm are illustrated in Fig 2.4.

(a) Row data (b) Clustering with UPGMA

Figure 2.4 Illustration of UPGMA algorithm
Source: http://en.wikipedia.org/wiki/Cluster_analysis,

accessed November 2, 2010.



CHAPTER 3

CASE STUDY ON T4 LYSOZYME

This chapter presents a case study designed to evaluate the framework developed in Chap-

ter 2 by analyzing the equilibrium conformational fluctuation of a T4 lysozyme. This study

helps us to understand protein function by local conformational flexibility and provide a

quantitative evaluation of the proposed MD-PCA framework. The fluctuation and domi-

nant motion analysis generated by this research produce comparable results with published

results arrived at by other methods.

The use PCA on MD simulation data is computationally expensive due to the size

of proteins and large sets of time snapshots generated. Most previous work, therefore,

analyzed only models in which α- carbon positions were used to represent residue posi-

tion. This reduces the computational cost of PCA. This research expands these published

methods (Bradley et al. 2008; Yang et al. 2010) from the residue level to the atomic level.

A question about all-atom PCA/QHA analysis is whether it produces accurate (slow

motion) protein equilibrium conformational fluctuation. This research, employing analysis

with eigenvalues, overlaps, correlation and modes, answers this question in the affirmative.

The results suggest that QHA produces more precise slow motion than PCA. The details of

this analysis are presented in the following section.

3.1 Molecular Dynamics Simulation of T4 Lysozyme

The T4 phage lysozyme molecular dynamics simulation utilizes the NAMD parallel molec-

ular dynamics package version 2.6 (Phillips et al. 2005) with the CHARMM force field

(Brooks et al. 1983). The initial structure was determined by X-ray crystallography (Mat-

sumura et al. 1989), retrieved from the Protein Data Bank (PDB ID 3LZM; residue numbers

1-164).
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Two systems, one with solvent and another in vacuum, were built for MD simula-

tion. The PSF package in VMD (Humphrey et al. 1996) is used to generate the structure

file (PSF file) for MD simulation. First, the coordinates missing in the crystal structure

are reconstructed. For the solvent system, the minimized structure is solvated in a periodic

truncated cubic simulation box of 29,712 TIP3P water molecules, providing a minimum

of 15Å of water between the protein surface and any box edge. The water box is rotated

to minimize the system size. Sodium and chloride ions are added to neutralize the total

system and achieve a salt concentration of 0.05 mol/L. Ion placement is random; minimum

distances between ions and molecules as well as between any two ions are set to 5Å. The

parameter setting was shown in Table 3.1.

Table 3.1: MD Simulation Parameter Setting for T4 Lysozyme

Item Setting
periodic boundary conditions yes

cutoff distance 12Å
switch distance 10Å
pair list distance 13.5Å

timestep 2.0
rigid bonds all

non-bonded frequency 2

Periodic boundary conditions are selected for simulation with solvent. The periodic

boundary condition involves surrounding the system under study with identical virtual unit

cells. The atoms in the surrounding virtual systems interact with atoms in the real sys-

tem. These modeling condition are effective in eliminating surface interaction of the water

molecules and creating a more faithful representation of the in vivo environment than what

a water sphere surrounded by vacuum provides (Bhandarkar et al. 2008).

In the solvent simulation, energy minimization was performed in 20,000 steps.

There were no energy changes during last 1,000 time-steps. This stage is shown in Fig. 3.1b

Following minimization, the entire system was heated in 10 K increments up to 300 K with

micro-canonical ensemble (NVE) equilibration per temperature step. The simulation was
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(a) Molecular structure in vacuum (b) Molecular structure in solvent

Figure 3.1 Schematic representation of the energy-minimized molecular structure ana-
lyzed for T4 lysozyme with structure view, colored by structure type: Alpha-Helix purple,
3_10_Helix blue, Pi_Helix red, Extended_Beta yellow, Bridge_Beta tan, Turn cyan, Coil
white.
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conducted at 300 K. Atomic trajectories were calculated in one femtosecond ( f s) time steps

using SHAKE (Ryckaert et al. 1977) constraints on hydrogen-heavy atom bonds. The total

production simulation length is 15 nanosecond (ns). The first 9 ns were discarded as an

“equilibration period.” This extensive relaxation/equilibration period was necessary due to

drift in the potential energy,

A similar procedure was performed in vacuum (shown in Fig. 3.1a), except that

during the heating stage each step is 50 K. The total simulation length is 40 ns. In both

simulations, snapshots were recorded every picosecond (ps) for analysis.

3.2 Equilibration Measures

It is important to assess whether or not the simulation achieved equilibrium or steady-state

sampling before analyzing conformational fluctuation. Analysis of the molecular dynamics

of the T4 lysozyme was performed as described in Section 3.1. The root mean-squared

deviation (RMSD) of atomic position relative to the starting structure was calculated to

measure equilibration and simulation stability.

RMSD is a numerical measure of the difference between two structures defined as,

RMSD =

√
∑

Natoms
i=1 (ri(t1)− ri(t2))2

Natoms
, (3.1)

where Natoms is the number of atoms whose positions are being compared and ri(t) is the

position of atom i at time t.

Figure 3.3 shows the results of the RMSD calculation. There is an initial rapid rise

in RMSD that levels off around 10 ns in vacuum. By contrast, the RMSD in solvent was

stable except during the first 0.2 ns. The solvent simulation was heated slowly to create

a stable simulation result. The system was relaxed during the heating stage. The rapid

rise reflects a significant conformational change during the simulation as demonstrated in

Fig. 3.2. Without the “protection” of water molecules, the alpha-helix on the top bends
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Figure 3.2 Illustration of T4 lysozyme structure after 40 ns simulation in vacuum

toware the lower part. This is one of the natural modes (Kundu et al. 2002). Based on these

results, last 5 ns simulation with solvent was mainly used for fluctuation analysis.

3.3 Fluctuation Analysis

Equilibrium thermal fluctuation of residues provides the first quantitative evaluation of the

proposed MD- PCA framework and helps to understand protein function by local con-

formational flexibility. The root mean square fluctuation (RMSF) of α-carbon atoms is

plotted as a function of residue number to show local conformational change. Atomic

alpha-carbon fluctuations are compared to published results such as the All-Atom-Method

(ATM), Rotational-Translational Block (RTB), Gaussian Network Model (GNM), and Fi-

nite Element Method (FEM) (shown in Fig. 3.4).

The T4 lysozyme shows flexibility at the solvent- exposed β -hairpin turn between

residues 20 and 24, also at the short loop between residues 35 and 38. The solvent-exposed

α-helix at residues 39-51 which can found in Fig. 3.4. These RMSF results are in quanti-

tative agreement with other methods except at residue 115. This suggests that the α-helix

containing residue 115 tends to bend at that spot. In the simulation without water, that

α-helix does bend at residue 115 without solvent-exposed “protection”.
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(a) RMSD value with T4 lysozyme simulation in vacuum

(b) RMSD value with T4 lysozyme simulation with solvent

Figure 3.3 Root Mean-Squared Deviation (RMSD) of atomic position relative to the start-
ing structure with T4 lysozyme simulation.
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(a) Methods used are: All-Atom-Method (ATM), Rotational-Translational Block (RTB),
Gaussian Network Model (GNM), Finite Element Method (FEM), Data generated from
simulation (PCA)

(b) Illustration RMSF, colored by RMSF value

Figure 3.4 RMSFs of the α-carbon atoms at 300 K for T4 lysozyme
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3.4 Mode Selection and Evaluation with PCA and QHA

This research analyzes the motion of all atoms in the system, including the hydrogen atoms

in the protein, which form a large part of the protein atoms and which have high frequency

modes. In this section, eigen analysis and overlap analysis are used to evaluate the dominant

modes of motion. Both PCA and QHA are used in the analysis.

Three models are tested with data taken from the same simulation. Model one is

PCA with α-carbon atoms only; model two is PCA with all atoms; model three is QHA

with all atoms. PCA with α-carbon model represents the benchmark solution. The purpose

of this test is to evaluate the all atom methods.

PCA transforms a number of possibly correlated variables into a number of uncor-

related variables called principal components. Its operation can be thought of as revealing

the internal structure of the data in a way that best explains the variance in the data. PCA

is sensitive to the relative scaling of the original variables. In the following, the similarities

and differences among these three models are presented.

3.4.1 Eigenvalue Analysis

Eigenvalues and eigenvectors are calculated according to the standard procedure in the

three models. The results are shown in Figs. 3.5, 3.6, 3.7, and Tab. 3.2.

The screen test first proposed by Cattell (1966) yields the best results in practice to

decide how many eigenmodes should be taken. Cattell suggests finding the place where

the smooth decrease of eigenvalues appears to level off to the right of the eigenvalue plot.

Following this suggestion, the first 10 eigenmodes are selected in all three models.

Although all atom PCA discovers the same number of dominant modes (slow mo-

tion) as α-carbon PCA does, the slow motions are disturbed. The cumulative energy of

the first 10 is 59.1% in α-carbon PCA, 42.6% in all atom PCA, 46.2% in QHA. Quasi-

harmonic analysis magnifies each atom’s motion by its mass. QHA is a mediated method

between all atom PCA and α-carbon PCA.
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(a) Eigenvalue

(b) Cumulative energy content for each eigenvector

Figure 3.5 PCA eigenvalues calculated with α-carbon for T4 lysozyme MD simulation
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(a) Eigenvalue

(b) Cumulative energy content for each eigenvector

Figure 3.6 PCA eigenvalues calculated with all-atoms for T4 lysozyme MD simulation



42

(a) Eigenvalue

(b) Cumulative energy content for each eigenvector

Figure 3.7 QHA eigenvalues calculated with all-atoms for T4 lysozyme MD simulation
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Table 3.2: Eigenvalues and Cumulative Energy Content

index
α-carbon PCA PCA QHA

eigenvalue cumulative
energy

eigenvalue cumulative
energy

eigenvalue cumulative
energy

1 14.411 0.171 421.061 0.126 2381.532 0.135
2 9.679 0.286 245.015 0.199 1468.108 0.218
3 5.786 0.355 160.080 0.247 944.536 0.271
4 4.667 0.410 121.069 0.283 672.259 0.309
5 3.954 0.457 101.190 0.313 570.720 0.341
6 2.865 0.491 93.356 0.341 520.547 0.370
7 2.409 0.520 87.318 0.367 498.236 0.398
8 2.192 0.546 75.949 0.390 444.936 0.423
9 2.003 0.570 68.630 0.410 384.959 0.445

10 1.810 0.591 54.685 0.426 297.665 0.462

3.4.2 Overlap Evaluation

With the calculated PCA/QHA modes placed into experimentally determined structural re-

arrangements, the overlap coefficients (OCs) were calculated as shown in Section 2.2. The

results are shown in Figs. 3.8, 3.9 and 3.10. The full basis set of 492 α-carbon PCA modes

gives a very high overlap ( cos(θ) = 1.000), as do all atom PCA/QHA, while carrying low

error at 0.00001 for α-carbon PCA, 0.00006 for all atom PCA, and 0.0006 for all atom

QHA. From this PCA basis set, a minimal set of modes was identified that represented the

observed displacement. The first 10 modes were selected based on eigenvalue analysis.

The first and largest all atom PCA mode accounts for 12.6% of the total motion, but

has only a small overlap (cos(θ) = 0.17) with the changes observed in the X-ray structure.

This largest mode represents an asymmetric “twisting-like” mode (Fig. 3.13). The second

mode accounts for 7.3% of the total motion but has a greater overlap (cos(θ) = −0.29).

This is a “flapping-like” motion (Fig. 3.14). A similar result is obtained with the all atom

QHA method. Figure 3.11 shows different distribution of the errors with the QHA method.

Errors tended to occur at the begin and end modes. This is evidence that QHA can “sepa-

rate” slow motion and high frequency motion.
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(a) Overlap for individual mode

(b) Overlap for comculative modes

Figure 3.8 PCA motion overlap measurement calculated with α-carbon for T4 lysozyme
MD simulation
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(a) Overlap for individual mode

(b) Overlap for comculative modes

Figure 3.9 PCA motion overlap measurement calculated with all-atoms for T4 lysozyme
MD simulation



46

(a) Overlap for individual mode

(b) Overlap for comculative modes

Figure 3.10 QHA motion overlap measurement calculated with all-atoms for T4 lysozyme
MD simulation
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(a) Error for α-carbon PCA

(b) Error for all-atom PCA

(c) Error for all-atom QHA

Figure 3.11 Motion error measurement
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3.5 Identification of Slow Conformational Flexibility

The lowest modes of proteins describe their most characteristic conformational changes,

which are often directly related to their function. The lowest mode of the T4 lysozyme is

a hinge-bending mode similar to that of native hen egg lysozyme. Three lowest modes are

presented in Figs. 3.13, 3.14, and 3.15, They are compared with the results from Bathe

(2008). The second mode shows the hinge-bending mode.

Figure 3.12 Schematic representation of the two lowest eigenmodes of T4 lysozyme com-
puted using the FEM

3.6 Correlation Analysis of T4 Lysozyme

A cluster analysis of resideues was produced from the correlation matrix and is shown

in Section 2.3. It depicts possible interactions among groups of residues. This method

provides a starting point for experimental and computational studies designed to determine

more fine-grained conformational changes in the protein.

Figures 3.16a and 3.16b generated by Bathe (2008) were used as a basis for evalu-

ation of these results. In Fig. 3.16c, where results were calculated from the raw simulation
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(a) Generated from PCA (b) Generated from QHA

Figure 3.13 The 1st eigenmode displacement visualization of T4 lysozyme MD simula-
tion with solvent. The starting structure is shown in new-cartoon representation colored by
structure. The red arrows indicate the direction of displacement based upon 1st eigenmode
of MD simulation with solvent.
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(a) Generated from PCA (b) Generated from QHA

Figure 3.14 The 2nd eigenmode displacement visualization of T4 lysozyme MD simula-
tion with solvent. The starting structure is shown in new-cartoon representation colored by
structure. The red arrows indicate the direction of displacement based upon 2nd eigenmode
of MD simulation with solvent.
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(a) generated from PCA (b) generated from QHA

Figure 3.15 The 3rd eigenmode displacement visualization of T4 lysozyme MD simula-
tion with solvent. The starting structure is shown in new-cartoon representation colored by
structure. The red arrows indicate the direction of displacement based upon 3rd eigenmode
of MD simulation with solvent.
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data, the (anti-) correlation was weak. However, after projecting the first 10 eigenmodes to

generate a new “cleaned” data set, the (anti-) correlation results were in closer agreement

with Bathe’s (Fig. 3.16d). However, more correlations among residue groups are found in

this map, suggesting that more interaction have been identified with the PCA based method.

Clustering was performed using the UPGMA algorithm introduced in Section 2.3.

In Fig. 3.17, the cluster showed only “contact based” relationships. This might be caused

by the conformational changes in which a new harmonic balance has been reached. In

Fig. 3.18, the red α-helix group shows the contribution of the “hinge-bending” mode. Fur-

thermore, interaction between the two lower α-helix are strong too.

This chapter presents the MD-PCA framework of analysis applied to the equilib-

rium conformational fluctuation of the T4 lysozyme. This T4 lysozyme case study indi-

cates the PCA/QHA analysis using all atoms is effective in extracting slow motions of the

protein, yielding results in agreement with previous studies, as well as some novel and

potentially useful new results.
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(a) All Atom Method (ATM) vs. Normal Mode
Analysis (NMA)

(b) the RTB procedure

(c) Original simulation data (d) PCA method

Figure 3.16 Correlated fluctuation of α-carbon atoms computed for T 4 lysozyme.
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Figure 3.17 Residue clusters based on the correlation matrix for MD simulation without
solvent. Clusters generated using the UPGMA algorithm were selected based on includ-
ing binding site residues. These clusters imply groups of residues with concerted confor-
mational fluctuation that could be important for inter-domain communication. Different
clusters are indicated by color.
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Figure 3.18 Residue clusters based on the correlation matrix first 10 PCA modes. Clus-
ters generated using the UPGMA algorithm were selected based on including binding site
residues. These clusters imply groups of residues with concerted conformational fluctua-
tion that could be important for inter-domain communication. Different clusters are indi-
cated by color.



CHAPTER 4

HEMOGLOBIN-HEMOGLOBIN INTERACTION ANALYSIS

It is difficult to theoretically explain and predict the conformational changes of proteins that

occur during binding or interaction. Conformational change is not accessible to molecular

dynamics simulations today due to their high computational costs. Therefore other compu-

tational methods must be applied. Previous studies (Harrison 1984; Tama et al. 2000) show

that some of the lowest-frequency normal modes of several proteins, including hemoglobin,

are strongly correlated with the large amplitude conformational change of these proteins.

In this chapter, the MD based PCA method previously described is applied to large-scale

(low-frequency) protein-protein interaction, ignoring local (high-frequency) motion. This

method reveals that the dominant motion of aggregation of sickled hemoglobin molecules

is caused by hydrophobic effects. This discovery demonstrates that it is feasible to model

slow motions due to hydrophobic effects with MD based PCA.

The MD-PCA framework is used to analyze hemoglobin-hemoglobin interaction in

this chapter. An artificial environment resembling sickled hemoglobin interaction is built.

The simulation produces a noticeable “aggregation” process. The dominant modes calcu-

lated using PCA in this simulation show a damping-approach process during hemoglobin-

hemoglobin interaction. Furthermore, this interaction displays a “softball-like” shape change

in each hemoglobin molecule. That is, the atomic motions have greater amplitude op-

posite the point of interaction. The amplitude diminishes along with the distance to the

“interaction-spot.” This suggests that there is not a single “attractive force bond” that

causes the aggregation of hemoglobin, which matches the results of (Israelachvili and Wen-

nerstrom 1996; Lum et al. 1999; Scatena et al. 2001; Wallqvist et al. 2001).
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4.1 Hemoglobin and Sickle Cell Anemia

Hemoglobin is the main ingredient of red blood cells (RBC) in vertebrate blood. Hemoglo-

bin is an iron-containing oxygen-transport metallo-protein. The primary structure of hemo-

globin, like other protein molecules or polypeptides, is a long chain of many monomers or

amino acids. The well known secondary structures are α helices and β sheets. The α-

and β -globins are derived from gene clusters. The α-globin genes are on chromosome 16

and the β -globin genes are on chromosome 11. Both gene clusters contain not only the

major adult genes, α and β , but other expressed sequences that are utilized at different

stages of development. The orientation of the genes in both clusters is in the 5′ to 3′

direction, with the earliest expressed genes at the 5′ end. These basic structures eventually

form tertiary and quaternary structures. In humans, the hemoglobin molecule is most often

an assembly of four globular protein sub-units, as shown in Fig. 4.1. Each sub-unit is

composed of a protein chain tightly associated with a non-protein heme group. Each heme

group contains one iron atom that is directly responsible for the transport of oxygen from

the lungs to other tissues and transport of carbon dioxide from tissues to the lungs. The

four polypeptide subunits are bound to each other by salt bridges, hydrogen bonds, and

hydrophobic interaction. There are two kinds of contacts between the α and β chains: α1β1

and α2β2. The predominant hemoglobin in adulthood is HbA (±97%), which consists of

two α and two β globin chains (α2β2). Other hemoglobin types are HbA2 (2 to 3.5%;

α2δ2) and HbF (< 2%; α2γ2).

Figure 4.1 Quaternary structure of hemoglobin and its oxygen carrier heme
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Although secondary and tertiary structures of various hemoglobin subunits are sim-

ilar, reflecting extensive homology in amino acid composition, the variations in amino acid

composition that do exist impart marked differences in hemoglobin’s oxygen carrying prop-

erties. In addition, the quaternary structure of hemoglobin leads to physiologically impor-

tant allosteric interaction between the subunits. One specific mutation in the genes for the

hemoglobin protein results in a series of consequences – from the type of amino acid to

the conformation or shape and the function of the complete hemoglobin molecule, which

eventually leads to sickle cell anemia.

Figure 4.2 An illustration of the genetic cause of macroscopic property changes of RBCs

This particular point mutation – β6 – replaces glutamic acid with the less polar

valine at the sixth position of the β chain, forming an abnormal globin: β s. This results in

the formation of “sickle hemoglobin” or HbS (α2β s
2).

In Fig. 4.2, hemoglobin tetramers are represented as circles. Each quarter corre-

sponds to one protein subunit. The β6 mutation is indicated as a protrusion from the circle

in the β2 subunit and the hydrophobic pocket is a kink in the β1 subunit. The interaction
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of different HbS tetramers and the formation of the fiber or chain in the deoxygenated

state is also illustrated in Fig. 4.2. Upon deoxygenation, HbS has a certain probability of

forming a hydrophobic interaction with an adjacent S globin, ultimately resulting in the

polymerization of HbS. The hydrophobic residue provides a nucleating site for protein-

protein interaction or “sticky patch.” Figure 4.3 provides an illustration of this docking

phenomenon.

Figure 4.3 Illustration sickle mutation alters a hydrophilic β -globin site to a hydrophobic
one

In essence, the underlying problem in sickle cell anemia is that the valine for glu-

tamine substitution results in hemoglobin tetramers that aggregate into arrays upon deoxy-

genation. This aggregation leads to deformation of the red blood cell, making it relatively

inflexible and unable to traverse the capillary beds. Repeated cycles of oxygenation and

deoxygenation lead to irreversible sickling. The end result is clogging of the fine capillar-

ies. Because bones are particularly affected by the reduced blood flow, frequent and severe

bone pain results. This is the typical symptom of a sickle cell crisis. Long term recur-

rent clogging of the capillary beds leads to damage to the internal organs, in particular the

kidneys, heart and lungs. The continual destruction of the sickled red blood cells leads to

chronic anemia.

Under anaerobic conditions, sickle cell hemoglobin (HbS) polymerizes into highly

elongated cables. Such polymers distort the shape and suppleness of RBCs, resulting in

a sickle-like appearance as compared to the donut shape of normal RBCs. The rigid and
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(a) Global view (b) Enlarged view from (a)

(c) Donor and acceptor, enlarged view from (b)

Figure 4.4 Donor and acceptor during deoxgenated states
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distorted sickled RBC has difficulty passing through the small capillary, thereby blocking

blood flow. However, only deoxy-HbS, and not oxy-HbS, polymerizes. This is consistent

with the fact that RBC sickling occurs in the capillaries where the O2 concentration is rel-

atively low and the deoxy-HbS concentration is relatively high. The sickle cell phenotype

arises from a single mutation in the β -globin gene resulting in an amino acid substitution at

the sixth residue of the β -chain with β -Val6 in HbS substituted for β -Glu6 in normal HbA.

The hydrophobic β -Val6 side chains are exposed on the surface of two β -chains of HbS and

they can fit into hydrophobic pockets created by the side chains of β -Phe85 and β -Leu88,

also on the β -chain surface (Adachi et al. 1994; Jensen et al. 2004), as shown in Fig. 4.4.

The spacing between these residues is such that deoxy-HbS molecules self-associate and

polymerize. However, the geometrical spacing between these residues is different for the

oxy-HbS conformer and it does not polymerize.

This red blood cell system (sickle or normal) was chosen as a test system for a

multiscale and multi-physics modeling protocol because there is a wealth of clinical data

for sickle cell diseases and, more importantly, because the sole cause of this hereditary

disease, a mutation of a base pair in the β -globin gene, is known. Hydrophobic effect is the

molecular level cause and it is a slow motion during protein-protein interaction. The test

sought to determine whether this MD based PCA method aim to reveal this conformational

change.

4.2 Molecular Dynamic Simulation with NAMD

The threshold for sickled hemoglobin aggregation is unknown, which makes it difficult to

simulate this process. An artificial system was built by separating two docked mutated

hemoglobin molecules a small distance apart (4Å ~5Å) along with the axis of their center

of mass. The initial docked configuration was obtained from Kavanaugh et al. (1993) (PDB

ID: 1BZ0). The initial system is illustrated in Fig. 4.5.

The PSF package in VMD (Humphrey et al. 1996) is used to generate a structure
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(a) global view

(b) global view without water

(c) a closer look of the pocket

Figure 4.5 Initial simulation position for HbS
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file (PSF file) for MD simulation. First, the coordinates missing in the crystal structure are

reconstructed. The minimized structure is solvated in a periodic truncated cubic simulation

box of 111,738 TIP3P water molecules, providing a minimum of 15Å of water between the

protein surface and any periodic box edge. The water box is large enough that the protein

does not interact with its image in the next cell. The water box is rotated to minimize the

system size.

Ions are placed in the water to represent a more typical biological environment.

They are especially necessary because the protein being studied carries six excess negative

charges. Six extra sodium ions are added to make the system neutral. The ions present

shield the regions of the protein that carry the charge and make the entire system more

stable. They are placed in regions of potential minima, since they will be forced into those

regions during the simulation anyway. Sodium and chloride ions are added to neutralize the

total system and achieve a salt concentration of 0.05 mol/L. Minimum distances between

ions and the protein molecule as well as between any two ions are set to 5Å.

A periodic boundary condition was selected for simulation with solvent. The use of

a periodic boundary condition involves surrounding the system under study with identical

virtual unit cells. The atoms in the surrounding virtual systems interact with atoms in the

real system. These modeling conditions effectively eliminate surface interaction of the

water molecules and create a more faithful representation of the in vivo environment than

a water sphere surrounded by vacuum provides (Bhandarkar et al. 2008).

Energy minimization involves searching the energy landscape of the molecule for

a local minimum. MD minimization and equilibration simulation involve more than one

minimization-equilibration cycle, often fixing and releasing molecules in the system.

Energy minimizes in 180 fs equilibrates with the atoms in the protein fixed in space

in 120 fs, minimizes the system again in 60 fs and equilibrates in 120 fs again, this time

with the protein free to move. Fixing the protein allows the water, which typically responds

much faster to forces than the protein, to do the relaxing in the first step. This saves compu-
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tational effort and prevents the introduction of artifacts from an unstable starting structure.

A final 100 fs energy minimization reaches the “minimized” position. The parameter set-

tings are shown in Table 4.1.

Table 4.1: MD Simulation Parameter Setting for Hemoglobin Interaction

Item Setting
periodic boundary conditions yes

cutoff distance 12Å
switch distance 10Å
pair list distance 13.5Å

timestep 2.0
rigid bonds all

non-bonded frequency 2

It is important to check if this system has the possibility of docking. After energy

minimization, a vacuum space forms between β -Val6 side chains and the surface of another

β -Phe85 and β -Leu88 (shown in Fig. 4.6). This leads to a docking process of the two

hemoglobin molecules.

There were no energy changes during last 1,000 timesteps in energy minimization.

Following minimization, the entire system was heated in 5 K increments up to 310 K with

micro-canonical ensemble (NVE) equilibration per temperature step. The production sim-

ulation was conducted at 310 K. The trajectory was calculated with one femtosecond ( f s)

timesteps using SHAKE (Ryckaert et al. 1977) constraints on hydrogen-heavy atom bonds.

In order to represent an environment more typical of the human body, a constant

temperature of 310 K was set. The temperature is controlled by Langevin dynamics de-

ploying a damping frequency of 5 picosecond−1 to all non-hydrogen atoms. Langevin

dynamics are a means of controlling the kinetic energy of the system and so controlling the

system temperature and/or pressure. The method uses the Langevin equation for a single

particle:

mi
d2xi(t)

dt2 = Fixi(t)− γi
dxi(t)

dt
mi +Ri(t) (4.1)

The second term on the right side represents a frictional damping that is applied to the
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(a) global view, for illustration water was shown within 20Å of residue beta 6 only

(b) closer view (c) Rotation by 90° from (b)

Figure 4.6 Illustration for energy minimization position with HbS simulation
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particle with frictional coefficient γimi. The third term represents random forces that act

on the particle (as a result of solvent interaction). These two terms are used to maintain

particle kinetic energy to keep system temperature at a constant value.

The particle Mesh Ewald Method (PME) (Darden et al. 1993; Essmann et al. 1995)

is used to compute the electrostatic forces. The grid spacing is kept below 1.0Å. Multiple

time stepping is carried out using the Verlet impulse/r-RESPA integration scheme (Den Ot-

ter and Briels 2000). Van der Waals interaction is truncated at 13.5Å using a switching

function starting at 12.0Å. Full periodic boundary conditions are imposed. The coordi-

nates and energy are saved every 1 picosecond.

4.3 Results

The whole process of hemoglobin-hemoglobin interaction could be long. MD simulation

works at a nanosecond scale and cannot reveal this whole process. In addition, microscopic

details are missed by experiments, such as the behavior of hydrogen bonds and the role of

water, could be studied and explored with slow motion analysis.

4.3.1 Conformational Change Analysis

The beginning approach between the two hemoglobin molecules occurs during the “heat-

ing” stage. Figure 4.7 shows the distance between the centers of mass of two HbS. The

first 660 ps timesteps are the heating stage, followed by 60 ps equilibrating steps. A rapid

drop can be noticed during the heating stage. After their initial displacement, these two

molecules were pushed toward each other, and then reached a local equilibration. The

distance during the last 9 ns shows a “damping” stage between two molecules.

Figure 4.8 shows the results of RMSD during regular simulation, that is, after the

heating and equilibrating stages. RMSD is a measure of equilibration and simulation stabil-
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Figure 4.7 Distance of center of mass of two hemoglobin molecules

Figure 4.8 RMSD of HbS simulation
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Figure 4.9 Illustration of RMSFs for hemoglobin interaction simulation, colored by
RMSF value for each residue.
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(a) potential energy

(b) Van der waals energy

(c) kinetic energy

Figure 4.10 Energy plotting, heating and equilibrating stage shown before timestep 0.
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ity. Although the distance doesn’t change during the last 9ns, the RMSD changes indicates

continued conformational changes.

Figure 4.9 illustrates the conformational changes for each residue. Blue areas in-

dicate higher RMSF scores and red reflect lower RMSF scores. This shows that the most

conformational fluctuation occurs on the surface at the far end of each hemoglobin. The

insides of each hemoglobin are more rigid than the surface, except at the point of interac-

tion. Therefore, the dynamic motion of each hemoglobin is not a rigid body motion, but

more like the motion of a soft ball.

This method enable the study of conformational changes by analysis of energy as

well. Figure 4.10 shows the energy calculation. To separate the heating stage from regular

simulation, the start of regular simulation is set as time zero. During the heating stage, both

kinetic energy and potential energy increase. During the heating stage, the velocities are

reassigned so these energies do not reflect the conformational changes.

Van der Waals (VDW) forces are relatively weak compared to normal chemical

bonds, but play a fundamental role. Figure 4.10b shows the calculation of VDW poten-

tial. As the two molecules approach, VDW increases until the so-called strong repelling

position. VDW then decreases while the distance increases. After equilibration, VDW and

other potentials remain stable within a local potential well. However, the conformational

changes have not ended. These two molecules could reach another equilibration place and

relative energies will continue to change as well.

4.3.2 PCA Analysis

The principle components of the MD results are calculated using the procedure explained

in Chapter 2. The eigenvalues are shown in Fig. 4.11. In Fig. 4.11a, the “elbow” turn is at

the 5th eigenvalue and the cumulative energy content of the first five eigenvalues is 63%.

The first five eigenmodes are selected as the dominant modes for study.

The lowest mode shapes computed using PCA are projected onto the energy-mini-
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(a) eigenvalue

(b) cumulative energy content for each eigenvector

Figure 4.11 PCA eigenvalues calculated with α-carbon for hemoglobin interaction

mized structures of hemoglobin in Fig. 4.12 to visualize the directional behavior of their

large length-scale collective motion. The lowest mode shapes of proteins describe their

most typical conformational changes, which are often directly related to their function.

Based on the lowest mode shape, each hemoglobin molecule oscillates around the

point of contact. The whole molecule is not rigid during this oscillation. The residues on the

contact chain, namely chains B and H, shown in Fig. 4.12, move with smaller amplitude;

the residues on the outer chains, namely chains A, C, E and F, move with larger amplitude.

Furthermore, the farther the distance from the point of contact, the larger the amplitude

of the motion of each residue. This result shows that the driving force for hemoglobin-

hemoglobin aggregation is not a bonding force. Rather, the water environment plays an

important role in the motions – which are a hydrophobic effect. The entire surface of the

hemoglobin molecules are involved in this effect.
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(a)

(b)

Figure 4.12 Hydrophobic motion captured by PCA analysis, colored by chains: chain
A blue, chain B gray, chain C orange, chain D yellow, chain E tan, chain F silver, chain
G green, chain H red. the red arrows indicate the direction of displacement based on 1st

eigenmode, the length of arrows indicate the amplitude.
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4.3.3 Correlation Analysis with HbS Interaction

A correlation matrix showing the clustering of the motions of residues was produced, as

shown in Section 2.3. This indicates a possible interaction between groups of residues.

The correlation matrix is bases on Eq. (2.11). The clusters were identified by the UPGMA

algorithm introduced in Section 2.3. Figure 4.13 shows the correlation map and Figure 4.14

illustrates the clusters, with different clusters indicated by color.

Figure 4.13 Correlation of HbS result

The hydrophobic “pocket” formed by residue β -Val6 on chain H and residue β -

Phe85 and β -Leu88 on chain B, has been studied. The correlated residues with β -Phe85

and β -Leu88, which are in the same cluster, are in yellow; whereas the correlated residues
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β -Val6 are in red. The yellow cluster indicates that the motion related to β -Phe85 and

β -Leu88 come from outside α-helices. The driving “forces” are horizontal, which tend to

“push” the protein molecules closer. On the other hand, the red cluster has vertical motion

and contribute shear stress to the docking place. This stress may leat to the seperation of

these two molecules. The heme near the docking spot plays an important role. It may con-

tribute resistance to the shear stress. The formation of this heme is important. Hemoglobin

aggregation occurs only during a deoxygenate state. The possible reason is the heme dur-

ing deoxygenated stage which supports the stability of the docking pocket. Of course,

this hypothesis needs further validation by experiments or other methods such as quantum

mechanical calculation.

Figure 4.14 Residue clusters based on the correlation matrix first 5 PCA modes. Clus-
ters generated using the UPGMA algorithm were selected based on including binding site
residues. These clusters imply groups of residues with concerted conformational fluctua-
tion that could be important for inter-domain communication. Different clusters are indi-
cated by color.

4.4 Conclusion

In this chapter, the MD-PCA framework is used to study sickled hemoglobin-hemoglobin

interaction. The fine details of protein motion are produced to predict the hemoglobin-

hemoglobin interaction. A correlation matrix based on clustering of residue motion is
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produced. The clustering suggests a possible explanation for hemoglobin aggregation and

points to the role of water during this intermediate state. These analyses provide a start-

ing point for further study and for exploring protein conformational changes using the

micromechanical and elastic properties of protein.



CHAPTER 5

PARALLEL PROGRAMMING

The MD-PCA framework is feasible for protein normal modes analysis. With increasing

protein size and simulation time, this framework becomes increasingly computationally

expensive. Therefore, in this work the computation intensive parts, such as calculation of

covariance and eigenvalues, are implemented using parallel programming.

Parallel programming has become increasingly important as the design of processes

has shifted to parallel computing in the form of multicore processors. Frequency scaling

(or frequency ramping) was the dominant force in commodity processor performance in-

creases from the mid-1980s until roughly the end of 2004. However increasing power con-

sumption and heat generation of processors limits such development. To further improve

performance, most computer programs must be implemented in parallel.

The main principle of parallel programming is to divide large problems into smaller

ones that are not mutually dependent, which are then solved concurrently ("in parallel").

Parallel programming uses multiple processing elements simultaneously to solve a prob-

lem. This is accomplished by breaking the problem into independent parts so that the pro-

cessing elements can execute their respective parts of the algorithm simultaneously. The

processing elements can be diverse and include resources such as a single computer with

multiple processors, several networked computers, specialized hardware, or any combina-

tion of the above. There are four modes for parallel computing:

• SIMD - Single Instruction Multiple Data. Processors are “lock-stepped”: each pro-

cessor executes a single instruction synchronously on different data.

• SPMD - Single Program Multiple Data. Processors run asynchronously using a local

copy of a program.

• MIMD - Multiple Instruction Multiple Data. Processors run asynchronously: each
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processor has its own data and its own instructions.

• MPMD - Multiple Program Multiple Data. Multiple autonomous processors simul-

taneously execute at least two independent programs.

In this work, parallel programming was implemented in programs written in C++

with Message Passing Interface (MPI). MPI is an application programming interface (API)

specification that allows computers to communicate with one another. It is a language-

independent communication protocol used to program parallel computers. It is also avail-

able in most computer clusters and supercomputers, such as the Franklin supercomputer in

which the programs were tested.

These applications read and produce large amounts of data, making it very impor-

tant to manage input and output (I/O) effectively. MPI-2 supports parallel I/O, in which

multiple processes of a parallel program access data (reading and writing) from multiple

disks. Parallel I/O mitigates the disadvantages of serial I/O, allowing larger datasets, scal-

ability, and speedup.

The input data could be very large. For instance, the binary data file of origi-

nal trajectories for hemoglobin-hemoglobin interaction, which records the displacement

of 19,120 atoms with 10,000 snapshots of float data type, occupies approximately 2.13

gigabyte (GB) of memory. The intermediate data for solving eigen problems could be as

large as 8 to 11 GB. These datasets are too large to be sent back to one node for serial

I/O. Parallel I/O improves the application’s scalability. The initial and intermediate data

are distributed almost evenly among a cluster of nodes. Parallel I/O helps the application to

solve a problem with very large datasets even though every node has limited memory size

(2GB).

A math library was used for matrix operations to improve programming perfor-

mance. BLACS and ScaLAPACK (Blackford et al. 1997) are the standard parallel nu-

merical libraries because of their portability and design. They contains an extensive set of

parallel routines for common linear algebra calculation that perform well and are scalable.
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BLACS routines transfer local data from one processor’s memory to another. These

routines are wrapper routines, which call a lower-level message-passing library. Typically

this is done by MPI itself. The BLACS routines include point-to-point communication,

broadcast routines, and “combination” routines for doing “global” calculations (summa-

tion, maximum, and minimum) with data residing on different processors. An attractive

feature of the BLACS communication routines is that they are array-based, meaning that

the data being transferred always consist of an entire array or subarray.

The BLACS library also contains important routines for creating and examining

the processor grid, which is expected and used by all ScaLAPACK routines. The processor

grid is a 2-dimensional grid whose size and shape is programmer controlled. A processor

is identified not by its traditional MPI rank, but rather by its row and column number in the

processor grid, similar to MPI virtual topologies.

ScaLAPACK libraries contain routines for more sophisticated linear algebra cal-

culations. These libraries tackle these three types of advanced problems: Solve a set of

simultaneous linear equations; eigenvalue/eigenvector problems; linear least squares fit-

ting. As with the basic libraries, many matrix types are supported, including real, double,

complex, and double complex. Various algorithms for factorizing the matrices are also

available.

The steps to use ScaLapack routines in the programs are listed below (detailed

instructions for MPI programming can be found in (Pacheco 1997; Snir et al. 1998)):

1. Initialize the BLACS library for use in the program.

2. Create and use the BLACS processor grid.

3. Distribute pieces of each global array over the processors in the grid.

4. Have each processor initialize its local array with the correct values of the pieces of

the global array it owns.

5. Call the ScaLAPACK routine.
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6. Confirm/use the output of the ScaLAPACK routine.

7. Release the processor grid and exit the BLACS library.

ScaLAPACK uses a 2-dimensional block-cyclic distribution technique to parcel out

global array elements onto the processor grid. The block-cyclic technique was chosen for

this application because it gives the best load balance and maximum data locality for most

of the ScaLAPACK algorithms (Blackford et al. 1997). The 2-dimensional block-cyclic

distribution was accomplished by following five steps:

1. Divide the global array into blocks with mb rows and nb columns. Think of the global

array as composed only of these blocks.

2. Present the first row of array blocks across the first row of the processor grid in order.

If the processor grid columns are exhausted, cycle back to the first column.

3. Repeat with the second row of array blocks, with the second row of the processor

grid.

4. Continue this method for the remaining rows of array blocks.

5. If processor grid rows are exhausted, cycle back to the first processor row and repeat.

The framework developed by this research is computationally intensive. It involves

linear algebra calculations with very large matrices. It is not executable on most single

computer configurations because of the memory limitation. Parallel computing provides a

way to efficiently perform these kinds of computations on a large scale.



CHAPTER 6

CONCLUSION AND FUTURE WORK

An effective computational procedure based on MD-PCA framework is proposed to calcu-

late the normal modes of proteins. QHA and PCA are compared, showing QHA to be better

on slow motion analysis because it filters out the high frequency motion of hydrogen atoms.

A method of clustering residue motions based on a correlation matrix is implemented. This

provides a starting point for experimental and computational studies designed to further

elucidate conformational changes in proteins.

This methodology was applied with a mutant T4 phage lysozyme. The equilibrium

thermal fluctuation of all protein atoms and their inter-residue correlations established by

this method are in agreement with published results arrived at by NMA and finite element

methods. The eigenmodes captured by this method are in quantitative agreement with other

computational results.

With this success on the analysis of a small protein, the methodology was applies to

hemoglobin-hemoglobin interaction, the details of which at the atomic level are unknown.

The method revealed a slow motion sickled hemoglobin-hemoglobin interaction, which is

the molecular underpinning of sickle cell anemia. Parallel computing applications using

C++ and MPI reduce the time costs of the computations.

This work estabishes the utility of the MD-PCA method to compute protein normal

modes for a limited range of biomolecules. To evaluate its effectiveness fully, the present

framework should be applied to a considerably broader set of proteins of variable structure

and chemical composition. The study of hemoglobin-hemoglobin interaction suggests that

the heme plays an important role in hemoglobin docking by stabilizing the docking pocket.

Further study is called for, using the micromechanical and elastic properties of the protein,

to confirm this claim.
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APPENDIX A

INTRODUCTION OF NAMD

NAMD (NAnoscale Molecular Dynamics) package was selected for MD simulation (Bhan-

darkar et al. 2008; Phillips et al. 2005). Simulation of this complex system involves a large

number of molecules. One way to create such simulation is to utilize parallel computers.

In recent years, distributed memory parallel computers have offered cost-effective com-

putational power. NAMD was designed to run efficiently on such parallel machines for

simulating large molecules. NAMD is particularly well-suited to the increasingly popular

Beowulf-class PC clusters, which are quite similar to the workstation clusters for which is

was originally designed. Future versions of NAMD will also make efficient use of clusters

of multi-processor workstation or PCs.

A.1 NAMD Feature

NAMD has several important features:

• Force Field Compatibility The force field used by NAMD is the same as that used

by the programs CHARMM (Brooks et al. 1983) and X-PLOR (Brünger 1992). This

force field includes local interaction terms consisting of bonded interaction between

2, 3, and 4 atoms and pairwise interaction including electrostatic and van der Waals

forces. This commonality allows simulation to migrate between these three pro-

grams.

• CMAP Correction CMAP is an energy correction map based on quantum mechan-

ical calculation and is one of the latest addition to the CHARMM force field. It

improves protein backbone behavior and thus yields more accurate dynamic proper-

ties for the protein. For example, CHARMM22 with CMAP gives the experimentally
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observed α-helix while the CHARMM22 force field without CMAP gives a π-helix

for certain model peptides.

• Efficient Full Electrostatics Algorithms NAMD incorporates the Particle Mesh

Ewald (PME) algorithm, which takes the full electrostatic interaction into account.

It is a useful method for dealing with electrostatic interaction in the system when

periodic boundary condition are present. The Ewald sum is an efficient way of cal-

culating long range forces in the periodic system. The particle mesh is a 3-D grid

created in the system over which the system charge is distributed. From this charge,

potentials and forces on atoms in the system are determined. This algorithm re-

duces the computational complexity of electrostatic force evaluation from O(N2) to

O(NlogN)

• Multiple Time Stepping The velocity Verlet integration method is used to advance

the position and velocity of the atoms in time (Allen and Tildesley 1989). To further

reduce the cost of the evaluation of long-range electrostatic forces, a multiple time

step scheme is employed. The local interaction (bonded, van der Waals and electro-

static interaction within a specified distance) are calculated at each time step. The

longer range interaction (electrostatic interaction beyond the specified distance) are

computed less often. This amortizes the cost of computing the electrostatic forces

over several time steps. A smooth splitting function is used to separate a quickly

varying short-range portion of the electrostatic interaction from a more slowly vary-

ing long-range component. It is also possible to employ an intermediate time step for

the short-range non-bonded interaction, performing only bonded interaction at every

time step.
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A.2 NAMD File Format

• PDB Files The term PDB can refer to the Protein Data Bank http://www.rcsb.

org/pdb/, to a data file provided there, or to any file following the PDB format.

The PDB format is used to store coordinate or velocity data being input or output

from NAMD. This is the standard format for coordinate data for most other molec-

ular dynamics programs as well, including X-PLOR and CHARMM. Files in the

PDB include information such as the name of the compound, the species and tissue

from which is was obtained, authorship, revision history, journal citation, references,

amino acid sequence, stoichiometry, secondary structure locations, crystal lattice and

symmetry group, and finally the ATOM and HETATM records containing the coordi-

nates of the protein and any waters, ions, or other heterogeneous atoms in the crystal.

Some PDB files include multiple sets of coordinates for some or all atoms. Due to

the limits of X-ray crystallography and NMR structure analysis, the coordinates of

hydrogen atoms are not included in the PDB.

• X-PLOR Format PSF Files A PSF file, also called a protein structure file, contains

all of the molecule specific information needed to apply a particular force field to a

molecular system. The CHARMM force field is divided into a topology file, which is

needed to generate the PSF file, and a parameter file, which supplies specific numeri-

cal values for the generic CHARMM potential function. The topology file defines the

atom types used in the force field; the atom names, types, bonds, and partial charges

of each residue type; and any patches necessary to link or otherwise mutate these ba-

sic residues. The parameter file provides a mapping between bonded and nonbonded

interactions involving the various combinations of atom types found in the topology

file and specific spring constants and similar parameters for all of the bond, angle,

dihedral, improper, and Van der Waals terms in the CHARMM potential function.

NAMD uses the same protein structure files that X-PLOR does. At this time, the

easiest way to generate these files is using X-PLOR or CHARMM, although it is
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possible to build them by hand. CHARMM can generate an X-PLOR format PSF

file with the command “write psf card xplor”.

• CHARMM19, CHARMM22, and CHARMM27 Parameter Files A CHARMM

forcefield topology file contains all of the information needed to convert a list of

residue names into a complete PSF structure file. It also contains internal coordinates

that allow the automatic assignment of coordinates to hydrogens and other atoms

missing from a crystal PDB file.

NAMD supports CHARMM19, CHARMM22, and CHARMM27 parameter files in

both X-PLOR and CHARMM formats. (X-PLOR format is the default, CHARMM

format parameter files may be used given the parameter “paraTypeCharmm on”). For

a full description of the format of commands used in these files, see the X-PLOR and

CHARMM User’s Manual (Brünger 1992).

• Parameter Files A CHARMM forcefield parameter file contains all of the numeri-

cal constants needed to evaluate forces and energies, given a PSF structure file and

atomic coordinates. The parameter file is closely tied to the topology file that was

used to generate the PSF file, and the two are typically distributed together and given

matching names.

• DCD Trajectory Files NAMD produces DCD trajectory files in the same format

as X-PLOR and CHARMM. The DCD files are single precision binary FORTRAN

files, so are transportable between computer architectures. They are not, unfortu-

nately, transportable between big-endian (most workstations) and little endian (Intel)

architectures. This same caveat applies to binary velocity and coordinate files. The

utility programs flipdcd and flipbinpdb are provided with the Linux/Intel version to

reformat these files. The exact format of these files is very ugly but supported by a

wide range of analysis and display programs.
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