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ABSTRACT 

STUDY OF CONTROLLED RELEASE OF  
ACTIVE PHARMACEUTICAL INGREDIENTS FROM FUNCTIONALIZED 

NANOCLAYS AND POLYMER MATRICES 
 

by 
Jin Uk Ha 

 
This dissertation contains the results of three related novel investigations in the field of 

structure-property-processing relationships of pharmaceutical polymer-based products. 

They are: a) modification of a pharmaceutical anionic nanoclay with two different Active 

Pharmaceutical Ingredients (APIs) to produce nanohybrid API carriers intended to be 

used alone or in acrylic polymer matrices, b) comparison of binary systems containing 

the above APIs in the selected acrylic polymers in terms of their miscibilities with the 

polymer, but in the absence of nanoclay, and c) comparison of the polymer/API binary 

systems with ternary polymer/API/Clay systems.  

For the first study, the calcination method which can be directly applied to 

carbonated hydrotalcite was used and successfully achieved API intercalations. During 

reconsitution of the clay, the crystalline APIs in the clay interlayer was apparently 

transformed in an amorphous state, and as a result it showed increased apparent solubility 

in the simulated body fluids.  

The second study dealt with API-polymer miscible or immiscible systems 

prepared by different mixing methods. The selected APIs have low solubility at the low 

pH of the aqueous medium and different solubility parameters by comparison with the 

polymer. The Eudragit® E100/ DIK-Na+ mixture produced by batch melt mixing showed 

an API solid dispersion whereas the Eudragit® E100/ IND system produced an API solid 

solution. These different morphologies were anticipated by calculating API and polymer 



solubility parameters and were confirmed by several analytical methods. The miscible 

API-polymer system showed better apparent solubility in the aqueous media. In order to 

confirm the effect on apparent solubility of the different API physical states differing in 

particle size or crystallinity, solvent casting and twin screw extruder mixing were also 

compared with batch mixing. The amorphous API in the polymer matrix showed 

improved apparent solubility as compared to its crystalline state. This confirmed that the 

state of API in the polymer matrix is the most important factor to increase its apparent 

aqueous solubility. 

The third segment of this research focused on the API release from the ternary 

system (API/clay/polymer) produced by hot melt mixing. A novel approach in order to 

have a sustained API release by utilizing the nanoclays was attempted. Since the API 

present in the clay interspacing may experience one more step in its release by diffusion 

as compared to the binary system, the API from the ternary system showed a slower and 

more controlled release than the one from the binary system. Controlled API release from 

such a ternary system produced by hot melt mixing, to the best of our knowledge, has not 

been reported in the literature. 

The mechanisms of APIs release in solution from the aforementioned systems 

were identified by using the Korsmeyer-Peppas (Power law) and Peppas-Sahlin models. 
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CHAPTER 1 

INTRODUCTION 

 

One big challenge currently facing the pharmaceutical industry is that as many as 40% of 

new drug molecular entities have poor bioavailability, related to a large extent to their 

low aqueous solubility.1-3 In addition to size reduction of the Active Pharmaceutical 

Ingredient (API) powders, a promising solution to this widespread issue is to mix the API 

with one or more highly aqueous soluble polymeric excipients using the novel Hot-Melt 

Extrusion process (HME). HME involves continuously mixing the APIs, commonly 

available in a crystalline form, with polymeric excipients by means of one or more 

rotating screws at elevated temperatures. Consequently, depending on the polymer and 

the API chemical structures, the API may be fully dissolved, or dispersed to very fine 

particle sizes in the polymer matrix, leading to a dramatically increased API dissolution 

rate in the body fluids.1, 2 In contrast to traditional processes such as fluidized bed 

granulation, HME can significantly reduce the API size during mixing. HME also offers 

other advantages such as continuous processing, ease of automation and process control, 

better product consistency, and environmental friendliness by eliminating or minimizing 

solvent usage.  

 In addition to increased bioavailability of the API, controlled drug release is also a 

very important issue in the pharmaceutical industry. Since all drugs for oral 

administration need to get through the gastrointestinal tract this means that the drug may 

experience an acid environment for a few hours (1 ~ 2 hours) in the stomach, and a 

neutral pH in the small intestine (3~4 hours) and the large intestine for several hours (7~ 
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10 hours). Therefore, delivering the drug to the target organ is not easily accomplished. 

In order to overcome this barrier, enteric polymer coated API is commonly used for 

transferring the drug into the intestinal tracts.4, 5 

 Nanoclays are well known as high performance functional fillers for polymers in 

order to increase their mechanical, thermal, and barrier properties.6, 7 However, their 

broader applications in the pharmaceutical industry are less known. In addition to the 

therapeutic attributes of some unmodified nanoclays, their hybrids with ionic APIs that 

may be intercalated in the nanoclay interlayer space8 in an amorphous state can also 

increase the apparent API solubility. As a result,8-12 it is hypothesized that the addition of 

nanoclay platelets may improve the overall API stability by providing a tortuous path that 

would slow down the API’s diffusion to the body fluids in the presence or absence of a 

polymeric excipient. The decrease of the API’s mobility inside the polymeric excipient 

would also help to prevent or slow down the aggregation of the API molecules. Thus, the 

crystallization of the API molecules that may lead to their delayed dissolution could be 

minimized and the long term drug stability improved. It should be noted that hydrophilic 

polymers are, in general, chosen as excipients for the purpose of improving the APIs’ 

dissolution rate. It folllows, then, that hydrophilic pharmaceutical nanoclays such as 

montmorillonite and hydrotalcite, would tend to disperse better in hydrophilic polymers 

due to their improved affinity. Among the primary objectives of this research is to 

increase the aqueous solubility of API released from immiscible API/polymer systems 

produced by melt mixing. Emphasis is placed on the role of nanoclays in such systems.  

From a thermodynamic point of view, each substance has only one solubility 

value at a specific temperature, pressure and volume. This value is defined as the 
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saturated concentration of the substance in solution when it is in equilibrium with its most 

stable solid state structure. In this research, the term solubility is often used loosely to 

mean the metastable or kinetic solubility rather than the solubility at this 

thermodynamically stable state. In most cases, metastable apparent solubility decreases to 

the level of the true or thermodynamically stable solubility, after an infinite equilibrium 

time.  

In this dissertation, three different types of binary and ternary drug delivery 

systems prepared by different methods are investigated and compared in order to address 

the aforementioned issues of solulibility and rates of API release.  

In the first part of the dissertation on organic API-inorganic clay binary systems, 

named also hybrids, the fundamentals of intercalation of cationic API molecules of 

different sizes and chemical structures into the anionic nanoclay interlayer are 

investigated. In the absence of a polymer matrix, the nanoclay acts both as an API carrier 

and inorganic matrix. Intercalating API molecules into the interlayers of a nanoclay such 

as hydrotalcite is not an easy task,13 unless a co-precipitation method is used for the 

preparation of the API/Clay complex. To the best of our knowledge, there are only few 

reports on the direct intercalation of the API molecules into the interlayer space of 

commercially available hydrotalcite by ion exchange methods. Thus, in this research, the 

experimental conditions for achieving intercalation of the API, preferably in its 

amorphous state, were firstly investigated with particular emphasis on possible 

physiochemical interactions between API and nanoclays that could adversely affect the 

functionality of the drug. API release from the clay/API hybrids in simulated gastric and 
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intestinal fluids was subsequently investigated in order to understand and identify 

potential pharmaceutical applications for sustained drug delivery. 

In the second part of the dissertation on organic binary systems (API/polymer), 

different combinations of polymer matrices with miscible or immiscible APIs prepared 

from solution or melt mixing are compared. By calculating solubility parameters, the 

solubility of the API in polymer matrices of different chemical compositions can be 

predicted and subsequently confirmed, the differences in the properties between the 

miscible and immiscible systems are then examined, particularly, in terms of drug 

morphology and rate of API dissolution.  

The third part of the dissertation refers to ternary systems containing components 

of parts one and two above, i.e. API intercalated anionic nanoclays (hybrids) dispersed in 

a polymer matrix. For drug delivery applications, polymer/API intercalated nanoclay 

composites are anticipated to have interesting advantages as compared to polymer/API 

systems. It may be possible to achieve more controllable API release pattern as compared 

to polymer/API systems since the ternary system involves one more additional step, 

which is the API release from the clay. Furthermore, the possibility of sustained drug 

release by utilizing an API intercalated nanoclay dispersed in the polymer matrix is 

investigated. In this particular system, API has to diffuse out from the nanoclay interlayer 

space through a more tortuous path length vs. the system where API is solely coated by 

the enteric polymer. Therefore, slower release of API from the hybrid complex is 

anticipated.  
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 API Solubilty/Miscibility Effects 

It is recognized that amorphous APIs have improved rates of dissolution in biological 

fluids as compared to their different crystalline forms (e.g., polymorphs). Several studies 

reported the solubility advantage for amorphous drug forms. For example, Imaizumi14 

reported 1.6-fold increased amorphous indomethacin (IND) solubility as compared to its 

crystalline form, 2-fold for cefalexin,15 2.5-fold for tetracycline16 and 10-fold for 

novobiocin acid.17 Hancock and Park18 studied the solubility of indomethacin in 

deionized water at different temperatures. Amorphous IND showed higher solubility than 

α or γ type IND. In general, miscible APIs and water soluble polymer systems used in 

pharmaceutical formulations are desirable since they lead to a fast API dissolution and 

higher apparent solubility.  

By comparing the magnitude of the solubility parameters (δ) of polymers and 

APIs defined by Equation 2.1:  

                                                                                                     (Equation 2.1)   

 

where Ecoh is cohesive energy and V is molar volume for polymers and APIs, the 

miscibility of the system can be predicted. The closer the values of the solubility 

parameters of the polymer and the API, the higher the tendency to be miscible. 

Greenhalgh et al.19 showed that molten systems with differences in solubility parameter 

Δδ ranging from 1.6 to 7.5 MPa1/2are considered to be completely miscible; systems with 
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Δδ from 7.5 to 15.0 MPa1/2 show some sign of immiscibility in the liquid state, whereas 

systems with Δδ above 15.9 MPa1/2 exhibit total immiscibility over the entire 

composition range.  

Table 2.1 shows that comparison of the solubility parameters of the polymers 

(Eudragit® E100 and S100) and APIs (DIK and IND) used in this research indicates three 

miscible pairs and one immiscible pair. The solubility parameter of a plasticizer (TEC) is 

also shown. All values were calculated by the Fedor’s group contributions method.20 The 

group contributions to cohesive energy and molar volume by this method are apparently 

less accurate than those of other methods such as Small’s, Van Krevenlen’s and Hoy’s. 

However, Fedor’s database contains a larger number of structural groups and could as a 

result be used for a variety of APIs and polymer systems.   

Table 2.1 Solubility Parameters of the Materials used in this Study  
Polymer/API Eudragit® E100 Eudragit® S100 TEC DIK IND 

Solubility parameter, 
δ (MPa0.5) 

19.721 24.6* 26.3* 27.922 24.521 

* calculated 

In the following sections, literature data on methods that are used to improve drug 

aqueous solubility and bioavailability, and/or modify drug delivery are reviewed. The 

systems include:  

1) Compounds of polymers with APIs prepared by melt mixing, including hot melt 
extrusion.1, 2  
 

2) Compounds  of inorganic particles with APIs (hybrids), including intercalated 
anionic and cationic clays.8  
 

3) Compounds of polymers with API-intercalated clays    
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2.2. Polymer/API Compounds Prepared by Melt Mixing 

2.2.1 Hot Melt Mixing Processing (HMMP) 

Hot melt mixing processing (HMMP) is one of the most widely used mixing and forming 

techniques in the plastic industry. HMMP includes batch mixing, ram extrusion, and 

screw extrusion. HMMP, and in particular the continuous hot melt extrusion (HME), can 

offer many advantages to pharmaceutical manufacturing vs. batch mixing methods. For 

instance, molten polymers during melt mixing can function as thermal binders and act as 

drug depots and/or drug release retardants upon cooling and solidification. Furthermore, 

HME can reduce the number of processing steps and eliminate time-consuming drying 

steps since this technique does not require solvents and water. The intense mixing 

resulting from the rotating screw(s) causes de-aggregation of suspended particles in the 

molten polymer resulting in more uniform dispersion. Due to these advantages, the 

number of patents that have been issued on this topic has steadily increased since the 

1980s.3 

 

2.2.2 Polymer/API Compounds  

Liu et al.23 studied the effects of IND on the properties of an acrylic terpolymer 

(Eudragit® EPO) prepared by hot melt twin screw extrusion. The effects of three process 

parameters such as barrel temperature, screw rotating speed and residence time were 

systematically investigated. In order to fully dissolve in the polymer matrix and thus 

convert IND, into an amorphous state, long residence time, high temperature, and high 

screw rotating speed are preferable. The IND state in the polymer matrix was examined 

by DSC, XRD, polarized light microscopy and FTIR. Particularly, FTIR showed the 
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transition in the polymer matrix of the IND state from crystalline to amorphous. All the 

samples showed increased solubility up to around 90% in simulated gastric fluid. All 

samples showed reduced solubility after they reached a maximum solubility level. This 

phenomenon was responsible for the recrystallization of IND in the medium since its 

concentration in the medium was far beyond its saturation capacity. 

Physico-mechanical property changes of biosoluble polymers, such as Eudragit® 

EPO, polyvinylpyrrolidone-vinyl acetate copolymer (PVP-VA), polyvinylpyrrolidone 

K30 (PVPK30), and poloxamer 188NF (P188), compounded with IND were studied by 

Chokshi et al.21 The formations of solid solutions and solid dispersions which indicate 

miscible one-phase and immiscible two-phase systems, respectively, were predetermined 

by calculating solubility parameters. The differences between these systems were 

analyzed by observing thermal property and viscosity changes. EPO mixed with IND 

produced a miscible system. The Tg of these blends increased with increasing IND 

loading (loaded amounts were 30, 50, and 70%) and the authors ascribed these changes to 

the antiplasticization effect of the system. The zero-shear rate viscosity of the system 

decreased with increasing IND loading due to the solubilization effect of the API in the 

polymer. The viscosity of the immiscible API/polymer system (IND and P188) tended to 

increase with increasing IND loading. However, other researchers showed that the Tg of 

these blends can be decreased at low amounts of IND loading.24 

Forster et al.25 studied water insoluble APIs (indomethacin, lacidpine, and 

tolbutamide) blended with hydrophilic amorphous polymers (polyvinylpyrrolidone and 

polyvinylpyrrolidone-co-vinyl acetate) by hot melt extrusion. They assumed that 

amorphous solid dispersion in the polymer matrices is an effective way of increasing the 
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dissolution rate of these APIs. The extrudates were compared with physical mixtures of 

API and polymer. XRD results of both APIs and their physical mixtures indicated 

crystallinity. However, extrusion compounded API-polymers did not show any peaks, 

which suggests an amorphous state for the API. Similarly, DSC results of extrusion 

compounded samples did not show any melting temperatures for the APIs. FTIR data 

showed some degree of hydrogen bonding between drugs and polymers produced by melt 

mixing suggesting strong interactions. Physical stability of the samples was related to 

moisture content and glass transition temperature.     

Nollenberger et al.26 reported that addition of felodipine in the Eudragit® E matrix 

resulted in the API’s improved dissolution in acidic environment. This is because the 

polymer dissolved rapidly and formed a polymer-rich phase in which the API molecules 

could dissolve resulting in increased solubility and also increased wettability.  

Schilling and co-workers27 studied the effects of plasticizers on theophylline 

release from polymers including polymethacrylates and cellulosics. Dissolution profiles 

were evaluated in simulated gastric acid (pH 1.2) followed by phosphate buffer solution 

(pH 7.4). All excipients containing 10% theophylline showed an initial weak burst effect 

because the small quantity of drug particles on the surface of the pellets could not be 

protected by the enteric polymer (Eudragit® L and S series) and were directly exposed to 

the aqueous medium. Cellulosic pellets plasticized with triethyl citrate showed a 

relatively higher burst effect and faster diffusion rate in the simulated gastric acid while 

methacrylic polymers exhibited a good protection with lower API release rates at low pH. 

Increasing the amount of the plasticizer, not only reduced the glass transition temperature, 

but also increased the permeability of the polymeric matrix in both dissolution media. 
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Differences in API release rates among the plasticized samples were attributed to 

different volume percentages of the plasticizers and different efficiencies. Plasticized 

pellets showed a more homogeneous dispersion of the crystalline API throughout the 

polymer matrix with reduced particle size. 

The effects on polymeric excipients upon the addition of plasticizers were also 

studied by Bruce and co-workers.28 5-aminosalicylic acid (5-ASA) was used as the model 

drug. Triethyl citrate (TEC), and citric acid monohydrate (CAM) were used as 

plasticizers. Eudragit® S100 and L100 were used as excipients. TEC improved API 

dispersion in the polymer matrix due to increased processability. The application of high 

loadings of CAM on Eudragit® S100 containing 5-ASA resulted in slower release as 

compared to the lower loading of CAM. The authors attributed this result to the lowered 

micro-environmental pH. The locally lowered pH on the matrix due to the citric acid 

suppressed ionization of the carboxylic groups in the acrylic polymer when exposed to 

pH 7.4 phosphate buffer solution, thereby delaying the erosion of the tablet matrix and 

the release of 5-ASA. For the same reason, higher 5-ASA loadings showed a slower 

release profile as compared to lower loadings.  

Improved dissolution properties of API (Itraconazole) through the formation of  

solid dispersions in different polymers were studied.29 Two different polymers, Eudragit® 

E100, and PVPVA 64 were used for this study, and melt extrusion was used for preparing 

the samples. The Tg of the API-polymer blend was theoretically calculated by the 

Gordon-Taylor30 Equation 2.2 shown below. These values showed a good agreement 

with the experimental results. 
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                                                                                      (Equation 2.2) 

 

where Tg1 and Tg2 are the glass transition temperatures of the API and the polymer, 

respectively, w1 and w2 are the weight fractions of API and the polymer in the dispersions, 

repectively, and K is a constant calculated from the equation below: 

 

                                                                                                      (Equation 2.3) 

 

in which ρ is the density of the amorphous solids. Increased bioavailability of API 

depended, not only on the amorphous state of the API, but also on the type of the 

polymers. PVPVA 64 increased solubility by approximately 40%, while Eudragit® E100 

showed 80% increased solubility. API dissolution rate from Eudragit® E100 was slower 

than from PVPVA64. The authors explained that this was due to the increased pH at the 

polymer surface when Eudragit® E100 went into the solution and this retarded the 

dissolution of the remaining undissolved polymer.  

Qi et al.31 studied the effects of paracetamol in a Eudragit® E matrix after hot melt 

extrusion. The polymer matrix containing paracetamol showed reduced glass transition 

temperature as compared to the pure polymer and this plasticization trend was more 

pronounced with increasing amount of the API.  
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2.3. Compounds of Inorganic Particles with APIs  

Clay minerals are commonly used materials in the pharmaceutical industry both as 

excipients and active agents. Clays can be directly used for medical applications. For 

example, a cationic nanoclay, MMT, is a potent detoxifier and it can adsorb dietary 

toxins, bacterial toxins associated with gastrointestinal disturbance, hydrogen ions in 

acidosis, and metabolic toxins such as steroidal metabolites associated with pregnancy.12, 

32 Hydrotalcite, an anionic nanoclay is a popular antacid and it is used because 

magnesium and aluminum metal oxides slowly hydrolyze regulating the pH to an 

optimum value (pH 3 and 4) without provoking a rebound effect in the stomach.33  

Although some studies reported a decreased bioavailability of several drugs by 

co-administration with several types of clays,34 concomitant benefits of the uses of 

nanoclays, in modified drug delivery systems have been more often reported. Modified 

drug delivery systems address issues such as release patterns and drug stability/targeting.8 

New drug delivery systems based on clay minerals are shown in Table 2.2. 

Many studies have aimed at improving the understanding of the physicochemical 

aspects of API/Clay complexes. Currently known action mechanisms of API/Clay 

complexes are as follows: 

1) Cationic or anionic clays which have the counter ion in their interlayer space can 
be ion exchanged with foreign ions (in this case charged API) 
 

2) The intercalated API/Clay complex is able to ion exchange again at the action site 
and release API molecules. 

 
3) Released API from the clay interlayer space is absorbed at the action site and, 

thus, API is functioning. 
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Table 2.2 Drug Delivery Systems Based on Clay Minerals8 
Issue Target 

parameter 
Delivery 
system 
 

Mechanism Excipients Original clay 

Release pattern Dissolution rate Extended release 
systems 

Clay mineral-drug 
interaction 

Natural clay minerals 
with high cation 
capacity values,  
Synthetic clay 
minerals, 
Modified clay 
minerals, 
Active pillared layered 
structures. 

Smectites, 
Fibrous clay 
minerals, 
LDH, 
Hydrotalcites, 
Bentonite, 
Kaolinite, 
Montmorillonite 

 
 
 
 
 
 
 
Drug stability 
and Targeting 

 
 
Site of release 
 
 
 
 
 
 
Hydrophilic 
ambient (sensible 
molecules) and 
distribution 
profile 

Improved drug 
solubility systems,  
Site specific system 
 
 
 
 
Microparticles, 
Nanoparticles 
 

Clay swelling, 
Adsorption 
 
Enteric coated 
 
 
Bioadhesion 
 
 
Encapsulation, 
Surface 
precipitation , 
others  
 
Clay-polymer 
interaction 

Swelling clays 
Montmorillonite 
 
Montmorillonite 
and LDH (oral 
release), 
Smectite and 
halloysite (local 
release) 
 
Halloysite, 
Porous-hollow 
nanoparticles 
 
Clay polymer 
nanocomposites 

 
 
 
 
 
 
 
 
 
 
Porous silica from 
clay minerals, 
halloysite 
 
Montmorillonite 

 

The API/Clay complexation and in vivo API release mechanism is described in Figure 

2.1 by Aguzzi et al8 . 
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Figure 2.1 Idealization of API/Clay complexation and in vivo API release mechanisms 
(clay mineral surface charge (-); compensating cations (a+); cationic drug (X+); drug 
associated anions (Y-); in vivo counter ions (A+); anions associated with the counter ions 
(B-)).8 
Note: In the case of anionic clay, the surface charge is positive and anions are the compensating ions  
 

2.3.1 Cationic and Anionic Clays 

As mentioned in the previous section, clay minerals are able to sorb certain anions and 

cations and retain them in an interchangeable status, in which they can exchange for other 

anions or cations by treatment with ions in a solution. The exchange reactions are 

stoichiometric and the exchange capacities are generally measured in terms of 

milliequivalents per gram or more frequently per 100 grams.35 The importance of ion 
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exchange is that the exchangeable ion may influence the physical properties of the 

material. 

Cationic clays have negatively charged metal containing layers, which have 

cations in the interlayer space to balance the charge.36 Cationic clays, with a cation 

exchange capacity, include many aluminum silicates such as montmorillonite, 

vermiculite, smectites, and swelling micas. These clays are difficult to synthesize and are 

usually obtained from nature.37  

Table 2.3 Composition, Crystallography and Symmetry for Some Natural Anionic 
Clays38 

Unit cell parameters 
Mineral Chemical composition 

a (nm) c (nm) 
Symmetry 

Hydrotalcite Mg6Al2(OH)16CO3·4H2O 0.3054 0.7603 3R 

Manasseite Mg6Al2(OH)16CO3·4H2O 0.310 0.78 2H 

Pyroaurite Mg6Fe2(OH)16CO3·4H2O 0.3109 0.7804 3R 

Stichtite Mg6Cr2(OH)16CO3·4H2O 0.310 0.78 3R 

Barbertonite Mg6Cr2(OH)16CO3·4H2O 0.310 0.78 2H 

Takovite Ni6Al2(OH)16CO3·4H2O 0.3025 0.753 3R 

Reevesite Ni6Fe2(OH)16CO3·4H2O 0.3081 0.768 3R 

Coalingite Mg10Fe2(OH)24CO3·2H2O 0.312 1.25 3R 

3R and 2H: rhombohedral and hexagonal stacking sequence (three layers polytype and 
two layers polytype)  
a : cation-cation distance within a layer 
c : interlayer space 
 



16 
 

Anionic clays have positively charged metal hydroxide layers with balancing 

anions and water molecules located interstitially; they occur both as  natural minerals and 

can also be synthesized by reacting dilute aqueous solutions of magnesium and aluminum 

chlorides with sodium carbonate (in the case of hydrotalcite). Anionic clays obtained by 

low temperature synthesis have generally the rhombohedral stacking sequence while 

hexagonal stacking sequences generally form at higher temperature.38 Several names 

according to the composition and polytype form of the minerals are shown in Table 2.3. 

 

2.3.2 API /Nanoclay Compounds 

Ambrogi et al.39 investigated the intercalation of diclofenac (DIK) into the interspacing of 

(HT) followed by its release which was carried out in a simulated intestinal fluid at pH 

7.5 to mimic the ionic conditions of the small intestine. To functionalize an anionic clay, 

(HT-CO3
2-), having carbonate ions at the interspacing, the anions were initially replaced 

by chloride ions by reaction with dilute HCl solution to produce HT-Cl. HT-Cl was then 

reacted with 2X the stoichiometric amount of DIK in hydroalcoholic solution (50% 

vol/vol) at 60 oC for 3 days. The intercalation of the anionic clay was confirmed by TGA, 

XRD, DSC and FTIR. Approximately 55% of DIK was intercalated into the interspace, 

and as a result the interlayer distance increased from 0.78 nm to 2.36 nm. In vitro drug 

release profiles in simulated intestinal fluid showed a slower drug release from the 

intercalated HT as compared to DIK physically mixed with HT. DIK release from HT 

physically mixed with DIK was completed within 15 minutes whereas DIK release from 

intercalated HT was completed after 9 hours (38%: 15 mins; 60%: 90 mins; 90%: after 9 

hrs).  
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Costantino et al.40 intercalated several anionic drugs, belonging to the anti-

inflammatory class, such as indomethacin, thiaprofenic acid, ibuprofen, diclofenac, 

ketoprofen, and flurbiprofen into the interlayer of hydrotalcite; they confirmed their 

intercalation by observing XRD peak shifting to lower angles (2θ). Calculated drug 

loadings in the HT interspace ranged from 50.0% to 55.0%. When API was released from 

HT, the solubility of some of these poorly soluble drugs in biological fluids increased as 

compared to drugs physically mixed with HT. In the case of HT/intercalated 

indomethacin in simulated gastric fluid (pH 1.2) solubility was 14 mg/ml, while for the 

same combination physical mixture the solubility was 2 mg/ml. Similar increases were 

observed from HT functionalized with ketoprofen (1.3 times higher solubility) and 

thiaprofenic acid (1.6 times higher solubility).  

Controlled drug release of donepezil intercalated in smectite clay was investigated 

by Park et al.41 Montmorillonite (MMT), laponite (LA), and saponite (LA) were used in 

order to avoid the adverse effects of donepezil due to the increase in gastric acid secretion 

caused by enhanced cholinergic activity through the gastrointestine. According to XRD 

and TGA results, MMT modified with donepezil showed the largest expansion of the 

basal spacing and the highest weight loss, respectively. Authors explained that these 

results were due to the higher cationic exchange capacity (CEC) of MMT as compared to 

other clays. The API in the clay showed slightly increased thermal stability as compared 

to pure API. From the FTIR results, it was confirmed that donepezil molecules 

intercalatated in the interlayer spacing were not crystallized but resided in molecular 

form. The API release from the clays showed sustained releases profiles in accordance 
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with their CECs. Therefore, MMT showed the slowest drug release followed by SA and 

LA. Their CECs are 100, 71, and 63 meq/ 100g, respectively.  

The fundamentals of the interaction between clay and API were investigated by 

White and Hem11 since clay-API interactions affect the drug action and produce either 

desirable or undesirable effects. Several effects occurring when the API interacted with 

the clay were discussed. For instance, clindamycin absorbed on montmorillonite was not 

removed by washing with deionized water at pH 2 but it was readily desorbed by water at 

pH 11. Therefore, this API/clay complex may be stable in the stomach and could be 

released in the intestines thereby achieving sustained API release. A negative impact of 

API-clay interaction was that a neutrally absorbed by hydrogen bonding dioxin on 

montmorillonite (MMT) was degraded by acid catalyzed hydrolysis. Furthermore, in the 

case of atrazine, the API showed increased dissociation possibility with MMT. Finally, 

the authors concluded that careful examination of API-clay interactions is very important 

in order to avoid undesired reactions.  

McGinity and Lach42 studied sustained drug release by using MMT and 

amphetamine sulfate as the model API. API-MMT (1:20) complex was compared with 

pure API and a 1:1 combination API-complex. API release tests were done in vivo. API 

excretion rates were obtained from the measured concentration of amphetamine sulfate in 

the subject’s urine. The API-MMT (1:20) complex showed sustained drug release pattern 

while the pure drug showed a burst effect in the early stages. The MMT affected the 

pharmacological response of the API from all formulations. The effect of amphetamine in 

the complexed form reached its maximum effect several hours after drug administration. 

Some experimental subjects were suffering from headache after administration of the 
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pure drug and the 1:1 combination drug complex; however the API - MMT complex 

(1:20) reduced or caused no headache at all due to the sustained drug release out of the 

API-MMT mixture.  

It has been reported that MMT could increase the solubility and dissolution rate of 

hydrophobic drugs.43 Dissolution tests on three different hydrophobic APIs (griseofulvin, 

indomethacin, and prednisone) and their complexes with MMT were investigated. All 

three APIs absorbed by MMT showed faster dissolution rates and increased solubility as 

compared to the unmodified APIs. The authors ascribed the increased dissolution rate and 

apparent solubility to certain unique properties of MMT. In particular: 

1. MMT has an extremely large surface area (750 m2/g). Therefore, it adsorbs a 
large amount of API on its surfaces. 
 

2. MMT is hydrophilic and swells in aqueous media. These properties help to 
facilitate the wetting of hydrophobic drug substances, thereby increasing 
solubility. 

 
It should be noted that back in the 1970s and 1980s our understanding of the 

structure of nanoclay products was very minimal. Hence, in articles from this period the 

reported results are not based on the notion of API intercalation into the clay interspacing 

but rather on adsorption on the clay surfaces. However, this dissertation is mainly 

focused on the intercalation of organic modifiers into the clay interlayers. 

Suzuki et al10 studied layered materials for diclofenac sodium (DIK-Na+) 

delivery. One promising inorganic material, synthetic mica (sodium difluorotetrasilicate), 

was used for this drug delivery system. Since high molecular weight ions are hardly able 

to intercalate into the host inorganic compound, a phospholipid was first intercalated 

before ion exchange reaction with DIK-Na+. Diclofenac was then successfully 

intercalated into the synthetic mica interlayers. Mica/DIK results show slow DIK release, 
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low solubility and steady dissolution profile while DIK-Na+ alone showed high solubility 

and recrystallization of DIK after 10 minutes at pH 5.0. This complex showed an 

increasing resistance to humidity, absorbing less than 2 wt% in the temperature range 

between 50 and 100 oC whereas the hygroscopic API alone showed 20 wt% absorption.  

Choy et al44 reported that in attempts to develop possible applications of 

biohybrid materials as gene or drug delivery carriers, biomolecules such as cytidine-5'-

monophosphate (CMP), adenosine-5'-monophosphate (AMP), guanosin-5'-mono-

phosphate (GMP) and deoxyribonucleic acid (DNA) can be intercalated into the layered 

double hydroxides by an ion exchange process.  

Li et al.9 studied a fenbufen (FBF) delivery system produced by incorporation 

with LDH. FBF-LDH complexes were prepared through a co-precipitation method at 

different pH conditions ranging from 8 to 13. Fenbufen was successfully intercalated into 

the LDH interlayer and this intercalation was confirmed by XRD analysis. However, 

XRD patterns were different depending on the pH conditions of the FBF-LDH synthesis 

suggesting different crystalline structures of the FBF-LDH complexes. Furthermore, the 

chemical composition of the complexes prepared under different pH was also different. 

FBF content in LDH was increased with increasing pH during co-precipitation. Release 

patterns were also different in accordance with different metal elements. LDH composed 

of Mg/Al showed sustained API release while the one containing Li/Al showed the 

maximum release within 20 minutes.9  

A study on dissolution and solubility of fenamates from layered double 

hydroxides was reported by Del Arco et al.45 Mefenamic and meclofenamic acid were 

intercalated into chloride LDH interlayer by ion exchange reaction. Intercalation of APIs 
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was confirmed by XRD analysis. Solubility of APIs from the LDH hybrids containing 

mefenamic was tested at three different pH of 1.2, 4.5 and 6.8. Hybrids showed increased 

solubility at all three conditions. The authors attributed the increased solubility of the API 

from the LDH-mefenamic hybrid at pH 1.2 to the API released in its molecular form and 

to dissolution of LDH under the acid condition. Release profiles of LDH-mefenamic and 

LDH-meclofenamic acids hybrids showed sustained API release as compared to pure 

APIs and API - LDH physical mixtures releases in the simulated body fluids (pH 7.5 and 

9). These slower releases were ascribed to ion exchange reaction between API in the 

LDH interlayer and anions in the buffer solutions.  

Intercalation of indomethacin (IND) into the interlayer space of layered double 

hydroxides (LDH) was successfully achieved by Del Arco et al.46 Co-precipitation and 

calcination methods were used for the modification of the LDH with API. During the 

clay modification, the pH of the solution was controlled to about 8-9 and the expanded 

interlayer space of the modified LDH was confirmed by XRD. The LDH modified by the 

co-precipitation method showed more IND loading (≈ 56 wt%) than the calcination 

method (≈ 25 wt%) in its interlayer space and this was confirmed by elemental analysis. 

Pharmacological studies in vivo showed that mice that consumed the LDH modified with 

IND had reduced ulcerating damage as compared to the ones that were treated with IND 

alone.  
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2.3.3 Compounds of APIs with Other Types of Inorganic Materials  

 
Studies on API release from different inorganic matrices have also been carried out.47 

Two different types of mesoporous materials, silica (MCM) and alumina (ALO), and a 

layered double hydroxide (LDH) were used to compare the rate of Naproxen release from 

those inorganic matrices. LDH and the other two mesoporous materials containing the 

API were prepared by synthesis followed by an ion exchange reaction with Naproxen. 

The API loading was confirmed by XRD and FTIR. ALO showed higher Naproxen 

loading than MCM by measuring N2 adsorption at -196 oC. All the samples showed 

sustained drug release to different degrees in a phosphate buffer solution. MCM showed 

the slowest drug release while LDH showed the fastest drug release among the samples. 

The authors attributed these different rates to different particle morphology and size. The 

release process of the mesoporous materials followed Fick’s law while that of the LDH 

showed a non-Fickian anomalous process. The Korsmeyer-Peppas model inspired from 

the Higuchi equation was applied to the release mechanism.  

Monkhouse and Lach48 studied the effects of increased dissolution rate of water 

insoluble model APIs such as indomethacin, and aspirin by incorporation with adsorbents 

such as fumed silicon dioxide or silicic acid. The rationale of their research was that the 

low solubility of the APIs was mainly responsible for their aggregation in the medium 

since their hydrophobicity minimized their surface area. Therefore, they presumed that 

increasing the surface available for contact with the media might increase the dissolution 

rate. All the APIs were surface absorbed by adsorbents and dissolution rates were 

compared between pure APIs and APIs on different adsorbents. APIs incorporated on 

adsorbents showed increased dissolution profile as compared to pure APIs. Increased 
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solubility varied from 1 to 10 times depending on the types of adsorbents and their 

surface area. The results also showed increased dissolution rate with increased agitation 

of the medium although dissolution rank orders were not changed with increased 

agitation speed.  

Das et al.49 studied the influence of surface functionality and pore size of 

mesoporous alumina (Al2O3) host on ibuprofen (IBU) loading and release. Surface 

acidity was varied due to the density of OH groups on the alumina surface. This density 

difference did not change the mesopore characteristics such as pore size, distribution, 

surface area although the in vitro IBU release kinetics were influenced by the varying 

surface acidity. Al2O3 with higher surface acidity showed the highest IBU loading and the 

slowest release rate. Diffusion of IBU was also affected by pore size, with smaller pores 

showing slower release. 
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2.4 Compounds of Polymers with API-Intercalated Clays 

For drug delivery applications, polymer-API intercalated nanoclay composites are 

anticipated to provide interesting advantages as compared to polymer-API systems. It 

may be possible to achieve more controllable API release pattern as compared to 

polymer/API system since the system have one more controllable parameter which is the 

API release from the clay.    

LDH and fenbufen (FBF) complex was prepared by the co-precipitation method 

and coated with enteric polymers, Eudragit® S100 and L100 by solvent mixing. 

Dissolution tests were done under pH 1.2 for 2 hours, pH 6.8 for 2 hours and pH 7.4 for 5 

hours in order to simulate passage through the human gastrointestinal tract. Eudragit® L 

and S efficiently protected the API-clay complex at low pH. Enteric polymer coated 

LDH-FBF showed slower drug release rate as compared to enteric polymer containing 

the API alone.50 

Bugatti et al.51 studied mechanical and barrier properties of LDH and poly ε-

caprolactone (PCL) nano-hybrids. LDH was modified with active molecular anions such 

as benzoate (Bz), 2, 4-diclorobenzoate (BzDC), p-hydroxybenzoate (p-BzOH), and o-

hydroxybenzoate (o-BzOH). The modified LDHs were incorporated in PCL by high 

energy ball milling. According to XRD results, modified LDH showed different forms of 

dispersion in the PCL matrix depending on the type of modified active molecular anions. 

Compared to the pure PCL, all the PCL nano-hybrids showed improved elastic modulus 

that increased in proportion to the modified LDH loading, up to a critical point. PCL 

nano-hybrids showed improved barrier properties because LDH created more tortuous 

paths. The release test of Bz directly from PCL in saline solution showed faster rates 
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compared to the Bz lamellar solid incorporated into the PCL. All the Bz molecular ion 

from sodium benzoate dispersed into PCL are released within 250 hours, whereas only 

40% is released in the same time from the nano-hybrid into PCL 

Ambrogi et al.39 studied an anionic clay composite system for colonic delivery of 

diclofenac. Eudragit® L-100 and S-100, pH sensitive polymers, were used to coat HT 

functionalized with DIK. These polymers are insoluble at pH below 5 but soluble at pH 

above 6 and 7, respectively. Therefore, functionalized HT coated by Eudragit® can pass 

through the stomach without any premature release of the drug. Coated samples were 

prepared by using an oil-in-oil solvent evaporation method. The samples were exposed 

under simulated gastric solution (pH 1.2) and incubated at 37 oC for 2 hours and then in a 

simulated enteric fluid (pH 7.5) that was used for the in vitro drug release studies. X-ray 

diffraction analysis and SEM pictures confirmed that the Eudragit® coating protected the 

HT containing DIK under the acidic gastric environment. The drug release kinetics of this 

system followed Higuchi and Bhaskar’s equation52. Higher amounts of Eudragit® S or L 

coating resulted in slower drug release rates but did not change the release mechanism. 

Donepezil intercalated in a smectite clay along with Eudragit® E100 showed 

increased API release rate. This increased release rate was explained by considering that 

Eudragit® E100 could replace the intercalated Donepezil molecules by ion exchange 

reaction and facilitate the swelling of the clay. Furthermore, many hydrophilic chemical 

groups such as NH4
+ of Eudragit® E100 could improve the hydration of the drug-clay and 

polymer hybrid. 41 

In order to examine the effects of nanocomposites on controlled release, Cypes et 

al.53 studied poly(ethylene-co-vinyl acetate) (EVAc) solvent mixed with silicates with 
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different aspect ratios (Cloisite 20A, SOMASIF-MAE100, and SOMASIF-MAF300) 

containing dexamethasone. TEM images showed that silicate clays having a high cation 

exchange capacity produced better clay dispersion in the EVAc matrix. Dexamethasone 

release tests carried out in pH 7.4 phosphate buffer solution followed the Fickian model 

for diffusion from a disk54 (all samples were prepared as circular pellets) as shown below: 

 

                                         
Mt

M∞

= 4
Dappt
L2π

                                 (Equation 2.4) 

 

Where Mt is the mass released in time t, M∞ is the initial mass loading, Dapp is the 

apparent diffusion coefficient, t is time, and L is the disc thickness.  

 A study on composites of paracetamol loaded poly(ethylene glycol) (PEG) with a 

naturally derived and partially synthetic layered silicate nanoclay prepared by hot melt 

extrusion was reported by Campbell et al.55 The API was efficiently distributed in the 

PEO matrix. The dissolution rate of paracetamol from the nanocomposites was retarded 

with increasing amount of nanoclays from 1% to 5%. The retarded API release from the 

composites was ascribed to a tortuous path created by the nanoclay in the PEO matrix. 

 Forni et al.56 studied the effect of montmorillonite (MMT) on API (papaverine 

hydrochloride) release from polyvinyl alcohol (PVA). Results showed that MMT 

addition can modify the drug release rate from the PVA based matrix by clay interaction 

with the API through a cationic exchange process. Therefore, the API /MMT ratio was an 

important factor for controlling the API release rate. 
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 Nanocomposite hydrogels for mucoadhesive applications were synthesized by 

Lee and Chen57. In vitro release studies of differently charged APIs (Vitamin B2, 

Vitamin B12, etc) from poly(AA-co-PEGMEA)-bentonite nanocomposite gels showed 

that the release amount was lower when the API and hydrogel were oppositely charged.  

 The use of nanoclay/API in biodegradable or biosoluble polymers may allow 

improved efficacy, less toxicity and better patient compliance than conventional drug 

delivery devices. However, little knowledge on the nature of the intercalated 

nanoclay/API composites is yet available and practically no data have been published on 

such ternary systems produced by melt processing. Therefore, continuous and intensive 

investigations are required in order to fully utilize these systems for pharmaceutical 

applications.  
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CHAPTER 3 

EXPERIMENTAL 

 

3.1 Materials 

3.1.1 Active Pharmaceutical Ingredients  

One of the active pharmaceutical ingredients (API) used in this study is the sodium salt of 

diclofenac (DIK-Na+) purchased from Spectrum Chemical & Laboratory Products 

(Gardena, CA). Its structure is shown in Figure 3.1(a).  DIK-Na+ is a non steroidal anti-

inflammatory drug exerting a preventive effect against colon cancer.58 It is a white 

powder with molecular weight of 296.14 g/mol and melting point (Tm) of 284 oC. It is 

very soluble in methanol, whereas its aqueous solubility depends on the pH (Table 3.1).  

Table 3.1 Solubility of Diclofenac Sodium (DIK-Na+) in Stock Buffer Solution 59 
Medium Solubility (mg/mL) 

Hydrochloric acid 0.1M 0.0012 

Hydrochloric acid 0.01M 0.0017 

Hydrochloric acid 0.001M 0.28 

Purified water  14.18 

Phosphate buffer solution pH 5.8 0.14 

Phosphate buffer solution pH 6.0 0.15 

Phosphate buffer solution pH 6.8 0.67 

Phosphate buffer solution pH 7.0 1.36 

Phosphate buffer solution pH 7.4 5.15 

Phosphate buffer solution pH 8.0 12.14 
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 The reported DIK-Na+ density varies from 1.501 to 1.546 g/ml.60 DIK-Na+ is 

considered as anionic drug since its carboxylic anions would allow API intercalation 

between the hydrotalcite layers through anionic exchange reaction. DIK-Na+ was selected 

for the immiscible API-polymer system since its solubility parameter differs by more 

than 7.5 MPa1/2 compared to Eudragit® E100 (Table 2.1). However, DIK-Na+ was 

expected to be miscible with Eudragit® S100 and its TEC plasticized versions since their 

solubility parameters differ by less than 7.5 MPa1/2.  

 Another API used for the miscible API-polymer system is indomethacin (IND) 

purchased from Spectrum Chemical & Laboratory Products (Gardena, CA). IND is a 

non-steroidal anti-inflammatory drug, which is commonly used to reduce fever, pain, and 

swelling. IND is a white powder with molecular weight of 357.7 g/mol and melting point 

(Tm) of 162 oC. It has very poor water solubility reported as 3.8 µg/ml in simulated 

gastric fluid (pH 1.2) and 767.5 µg/ml in simulated intestinal fluid (pH 7.2), but dissolves 

very well in methanol.1 IND can also be considered as anionic drug due to the presence 

of carboxylic groups in its molecular structure (Figure 3.1 (b)). Therefore, IND can also 

intercalate into the LDH interspacing through anionic exchange reactions. IND was 

selected for the miscible API- polymer system since it has a solubility parameter differing 

by less than 7.5 MPa1/2 compared with Eudragit® E100 (Table 2.1). 

Three dimensional structures of APIs, simulated by the Materials Studio® version 

4.4 of Accelrys Inc.61 are shown in Figure 3.2. DIK has a maximum end-to-end length of 

9.35Å while the maximum length for IND is 12.95Å. 
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(a)                                                                                (b) 

Figure 3.1 Chemical structures of (a) DIK-Na+, and (b) IND. 

 

 

 

Figure 3.2 Three dimensional structure of (top) DIK and (bottom) IND. 
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3.1.2 Anionic Nanoclay 

The anionic LDH clay used in this work is a synthetic aluminum magnesium hydroxyl 

carbonate donated by Sasol Germany (CAS # 11097-59-9, trade name: Pural MG 63 HT). 

It has a double layered metal hydroxide structure consisting of magnesium and aluminum 

hydroxide octahedrally interconnected via the edge (Figure 3.3); the manufacturer’s 

reported weight ratio of Al2O3: MgO is 38:62.  

The chemical formula is Mg4Al2(OH)12CO3nH2O, the basal spacing is 0.77 nm 

and the anionic exchange capacity (AEC) has been reported to be approximately 340  

meq/ 100 g. Calcined HT, designated as CHT, was prepared as shown in Section 3.2.1. 

 

Figure 3.3 Molecular structure of LDH.62 

3.1.3 Polymer Excipients 

An amorphous cationic butyl/ methyl methacrylate-dimethylaminoethyl methacrylate 

terpolymer (1:1:2), (Eudragit® E 100: granule) donated by Evonik Industries (Piscataway, 

NJ) (Figure 3.4 (a)), was used as the excipient of the APIs and the API modified clays. 

Eudragit® E 100 is soluble in the gastric fluid up to the pH 5.0. This polymer has a 
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reported Tg of 48 oC and a maximum processing temperature of 220 oC. Real density of 

Eudragit® E100 was reported as 1.09 g/cm.3,63  

An amorphous anionic methacrylic acid-methyl methacrylate (1:2) copolymer, 

(Eudragit® S 100: powder) donated by Evonik Industries (Piscataway, NJ) (Figure 3.4 

(b)), was also used as the excipient of the APIs and the API modified clays. Eudragit® 

S100 is soluble in the colonic fluid at pH above 7.0. This polymer has a reported Tg of 

172 oC27 and a maximum processing temperature of 186 oC.64 Therefore, adding 

plasticizers such as triethyl citrate (TEC), acetyltributyl citrate, or citric acid 

monohydrate, are necessary in order to lower the melt processing temperature. 

 

(a) 

 

(b) 

Figure 3.4 Chemical structures of (a) Eudragit® E100 and (b) Eudragit® S100. 
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3.1.4 Plasticizer 

In order to facilitate melt processing of Eudragit® S100 triethyl citrate (TEC) (Sigma-

Aldrich) was used as a plasticizer (Figure. 3.5). TEC is a colorless, odorless liquid with 

molecular weight 276.2 g/mol and density 1.137 g/mL. Its reported melting point is -55 

oC and its boiling points are 127 oC at 1 mm Hg and 294 oC at 760 mm Hg. Reported 

solubility in water is 62 g/L.65 A variety of applications for TEC are reported in the food 

and pharmaceutical industries.  

 

Figure 3.5 Molecular structure of TEC. 
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3.2 Sample Preparation 

3.2.1 Calcined Hydrotalcite (CHT) 

Substitution of carbonate ions in the hydrotalcite (HT) interlayer spacing with foreign 

ions is very difficult due to the high affinity of the carbonate ions to the positively 

charged HT interlayers. Removal of carbonate anions and water by calcination followed 

by immersion in a solution containing the modifier ions was the method used in this 

work. Calcination of hydrotalcite was carried out in a porcelain crucible heated at 490oC 

for 7-8 hours. 

3.2.2 Preparation of DIK Functionalized Clay (DIK/Clay)  

Methanol/distilled water (4:1)(250 ml) solution was first prepared and sonicated for 10 

minutes at room temperature and then heated at 60 oC for 5 minutes in order to remove 

gases, including any residual CO2.66 Calcined HT (2g) was then slowly added into the 

methanol/water (4:1) solution. Since calcined HT increases the pH of the solution, and 

increased pH may convert any traces of remaining carbon dioxide to carbonate ions,67 the 

solution pH was set to 6.0 by adding 0.05 N of HCl. It is to be noted that lowering 

excessively the pH may prevent intercalation since the solubility of DIK-Na+ is very 

limited at the low pH (see Table 3.1). Five grams of DIK-Na+ (more than its 

stoichiometric amount based on AEC) was then added into the slurry.68 The reaction was 

carried out at 60 oC for 2 days in a closed reactor in the absence of N2. An additional run 

was carried out for 5 days to investigate possible degradation. 

A schematic of the CHT and DIK-Na+ reaction is shown in Figure 3.6. The 

collapsed HT crystalline structure after calcination is regenerated in the presence of the 

foreign anions.69 After the reaction, the modified clays were filtered under vacuum 
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(Genuine Whatman filter paper, 1.6 µm pore size), washed with a methanol/water 

mixture (4:1) and then separated from the solution by centrifuging. These washing 

procedures were repeated over 5 times in order to remove the residual DIK from the clay 

surface. The modified clays were then dried at room temperature for 24 hours and dried 

again at 80 oC for 24 hours.  

 

Figure 3.6 (Top) LDH reconstruction process of calcined LDH69, (bottom) schematic of 
DIK intercalation into HT interlayer spacing. 
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3.2.3 Preparation of IND Functionalized Clay (IND/Clay) 

The procedure used was similar to the above with the following exceptions:  

- 400 ml of a methanol/distilled water (3:1) solution was used 

- No pH adjustment were made for this reaction since IND was lowering the pH of 
the solution 
 

- 1 g of CHT and 3 g of IND were used 

- The reaction was carried out from 1 day to 5 days and FTIR and XRD spectra 
were taken regulary during this period. 
 

The pH changes after adding clays and APIs to the methanol/water solution are shown in 

Figure 3.7.   

 

Figure 3.7 pH changes after adding clays and APIs to methanol/water: (A) 200 ml 
methanol/50 ml water, (B) added 5g DIK-Na+ into solution (A), (C) added 2g HT into 
solution (A), (D) added 2g CHT into solution (A), (E) 300 ml methanol/100 ml water, 
and (F) added 3g IND into solution (E). 
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3.2.4 Preparation of Eudragit®E100/DIK-Na+, and Eudragit®E100/DIK/Clay 
Compounds by Melt Mixing 

 

Eudragit® E100 compounds containing 4 wt% or 15wt% DIK-Na+ and 10 wt% DIK/Clay 

(containing 4wt% DIK) were prepared by compounding in a Brabender batch mixer 

(PL2000, C. W. Brabender) at 50 rpm and 130 oC for 5 minutes. After melt mixing, the 

compounds were pressed for 50 seconds at 130 oC into thin disks for further analyses. 

 

3.2.5 Preparation of Eudragit®E100/DIK-Na+, and Eudragit®E100-DIK/Clay 
Compounds by Solvent Mixing 
 

Solvent mixing was carried out in order to compare the dispersion of the DIK-Na+ or 

API/Clay particles in the polymer matrix with that obtained by melt mixing in the batch 

mixer. Eudragit® E100 pellets (10g) were dissolved into 100 ml of a 50/50 

methanol/acetone solution. DIK-Na+ (4 wt% or 15 wt%) and DIK/Clay (10 wt%) were 

added into the mixture and stirred for 5 hours at room temperature. DIK-Na+ was fully 

dissolved and DIK/Clay was suspended in the solution. The DIK-Na+ solution and the 

DIK/Clay mixture were then transferred to aluminum dishes to remove solvents. The 

samples were then stored in an oven at 80 oC and kept for 1 day under vacuum. The dried 

samples were collected by removal of aluminum dish and collected samples were hot 

pressed at 130 oC for further analyses. 
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3.2.6 Preparation of Eudragit® E100/DIK-Na+, and Eudragit®E100-DIK/Clay 
Compound by co-Rotating Twin-Screw Extrusion  

 

A co-rotating twin screw extruder, APV MP 2015, was used in order to compare the 

dispersion of API and API/Clay complex in the polymer matrix with that obtained with 

the batch mixer and by solvent casting. The diameter of the APV MP 2010 screw is 15 

mm, and the ratio of the barrel length to the screw diameter is 15. The screw contains one 

set of kneading blocks as shown in Figure 3.8 that provide intensive mixing.  

 

 

Figure 3.8 Screw configuration of APV twin screw extruder. 

The barrel temperature was set at 130 oC and the screw speed was 50 rpm. A physical 

mixture of Eudragit® E100/DIK-Na+ and Eudragit® E100-DIK/Clay was fed into the 

extruder by a volumetric feeder (SCHENCK AccuRate® 102M). The ratio of 

Polymer/API and Polymer-API/Clay was the same as for the conditions of batch mixing. 

Feeding rate was 0.03 kg/hr and calculated residence time was around 5 minutes, similar 

to that used for the batch mixer.  
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3.2.7 Preparation of Eudragit®E100/IND and Eudragit®E100-IND/Clay Compounds 

Eudragit® E100 was compounded with 4 wt% or 15 wt% IND and 10 wt% IND/Clay as 

desribed above for the case of DIK. After melt mixing, the compounds were pressed for 

50 seconds at 130 oC into thin disks for further characterization. 

3.2.8 Preparation of Eudragit®S100/ DIK-Na+ and Eudragit® S100- DIK/Clay 
Compounds in Batch Mixer 
 

Eudragit® S100 was premixed with 20wt% TEC in a wrist action shaker (Burrell 

Corporation, Pittsburgh PA) for 3 hours. 4 wt% or 15 wt% DIK-Na+ and 10wt% 

DIK/Clay (containing 4wt% DIK) were melt compounded with the premix in the batch 

mixer at 170 oC for 4 minutes. After compounding, samples were pressed into thin disks 

for further characterization.  
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3.3 Characterization 

 
3.3.1 Fourier Transform Infrared (FTIR) Spectrophotometry  

FTIR spectra of unmodified clays, APIs, API modified clays, polymer excipients with or 

without APIs or API modified clays were obtained using a Spectrum One FTIR 

Spectrometer® (Perkin-Elmer Instruments) in the mid infrared range wavelength 400-

4000 cm-1. Samples (1 wt%) were mixed with potassium bromide and dried at 80 oC for 

24 hours under vacuum. Transparent KBr pellets (13 mm in diameter) were prepared by 

torque wrench (Craftsman). 

 

3.3.2 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) was carried out with a TGA Q50 thermogravimetric 

analyzer (TA Instruments). Tests were carried out using a ramp from room temperature to 

500 oC, at a heating rate of 20 oC/min in a nitrogen atmosphere (flow rate 40 cm3/min). 

Initial sample weight was set as 0.9-1.5 mg with thickness of 0.3-0.5 mm. 

 

3.3.3 Differential Scanning Calorimetry (DSC) 

Glass transition temperature (Tg), melting temperatures (Tm) and other thermal properties 

were determined by differential scanning calorimetry (DSC) (DSC Q100, TA 

instruments). Heating and cooling rates were 20 oC/min at a predetermined temperature 

range under 40 cm3/min nitrogen flow. Weight of all test samples ranged from 4 to 9 mg. 

All samples were hot pressed and prepared as thin films before the analysis. Tg of 

samples was calculated out of three DSC runs of each sample. 
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3.3.4 Wide-Angle X-ray Diffraction (XRD) 

Wide-angle X-ray diffraction (XRD) analysis was performed for pure APIs, HT, calcined 

HT, API modified HT, and the corresponding polymer composites with a Philips 

PW3040 diffractometer (Cu Ka radiation λ=0.154 nm), operated at 45 kV/ 40 mA. All 

specimens were scanned in the 2θ range from 2o-40o at a rate of 0.003o/sec. The interlayer 

spacings of unmodified and organomodified clays were calculated using Bragg’s law of 

diffraction: 

 

                                                                                                   (Equation 3.1) 

 
Where, n is an integer, 1 in this case, λ is the wavelength of the incident X-ray beam in Å, 

and θ is the angle of incidence in degrees. 

 

3.3.5 Scanning Electron Microscopy (SEM) 

APIs, API modified clays and the fracture surfaces of polymer compounds were 

examined by Scanning Electron Microscopy (LEO 1530 VP Emission SEM) at 3-5 keV 

working voltage.  

 

3.3.6 Energy Dispersive X-Ray Analysis (EDX) 

In order to detect the API and the clay particles and their degree of dispersion in the 

polymer matrix, Energy Dispersive X-ray analysis (EDX) (2400 Perkin-Elmer Elemental 

mapping), was used. By selecting characteristic elements, corresponding elemental 

mappings were possible and the detected elements were identified as dots. The working 

voltage was 5 kV and mapping time was 300 seconds for all species.  
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3.3.7 Laser Diffraction Method 

Particle size distribution of IND and DIK-Na+ was measured by a Laser diffraction 

method (Beckman-Coulter LS 230 Particle size analyzer). The Laser diffraction method 

sizes particles by utilizing the diffraction pattern of scattered light. Size distribution can 

be obtained in the range from 0.04 µm to 2 mm. 

 

3.3.8 Elemental Analysis 

Elemental analysis for carbon, hydrogen, and nitrogen was performed at QTI 

Laboratories, NJ, USA. The nitrogen content in the API modified HT was determined 

using a Perkin-Elmer 2400 Elemental Analyzer. The nitrogen content was then used for 

calculating the API content in the nanoclay, since the latter does not contain nitrogen. 

This analyzer uses combustion to convert the sample elements to simple gases, such as 

carbon dioxide, water, and nitrogen. Upon entering the analyzer, the sample is combusted 

in a pure oxygen environment. The product gases are separated under steady state 

conditions, and measured as a function of thermal conductivity.  

 

3.3.9 Dissolution Test and UV-Vis Analysis 

Drug dissolution (also referred to in the literature as drug release) was studied in a Distek 

dissolution system 2100A with a Distek temperature control system TCS 0200 according 

to USP dissolution apparatus II with a paddle rotation speed of 50 rpm at 36.5 ± 0.1 oC. 

The dissolution medium was 1L of a pH 1.2 HCl buffer solution for simulating a gastric 

acid fluid and a pH 7.4 phosphate buffer solution for simulating a colonic fluid. 

Generally, in dissolution, apparatus II (paddles) showed a slightly faster API release 
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profile than apparatus I (baskets). Faster dissolution profiles also occurred as stirring 

speed increased. The clay related dissolution tests were carried out with 100 ± 10 mg 

powders. Samples of the test fluid were collected at predetermined time intervals, filtered 

through a 0.45 µm filter and then analyzed at 276 nm and 318 nm for DIK-Na+ and IND 

related experiments, respectively, by an UV-Vis spectrophotometer (Evolution 60, 

Thermo Scientific). The experiments were repeated three times with good reproducibility. 

Details on calibration procedure can be found in Appendix I. 

Eudragit® E100 and S100 compounds with APIs or API modified clay were 

compressed into 2 mm disks having the same holder geometry (circular). The weight of 

each sample was 200 ± 20 mg.  

 

3.3.10 Rheometry 

 In order to study the rheological behavior of the polymer/API and polymer-

API/Clay compounds, a Rheometrics Scientific RMS-800 Rheometer used with a plate 

diameter of 25 mm and a distance between plates of 0.8 mm. A dynamic frequency 

sweep was performed at a strain of 10 % within the linear viscoelastic region, 

predetermined by a dynamic strain sweep. All samples from the batch mixer were hot 

pressed into specimens with 2.54 cm in diameter and 1 mm in thickness before the RMS 

test. Samples based on Eudragit® E100 and Eudragit® S00 were tested at 130 oC and 160 

oC, respectively.  
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CHAPTER 4 

CLAY/API SYSTEMS 

In this chapter, efforts to intercalate anionic hydrotalcite with selected APIs containing 

anions of different sizes, MW and chemical structures were investigated in order to 

produce novel nanohybrids that could be used as API reservoir either alone or after 

addition in the polymer excipients (see Chapter 6). Hybrids were characterized for 

thermal properties, dissolution characteristics, and morphology.  

 

4.1 Characterization of Clay Modified with DIK-Na+ 

4.1.1 FTIR Results  

FTIR spectra of DIK-Na+, unmodified HT, and DIK/Clay are shown in Figure 4.1. Figure 

4.2 is a magnification of the dotted area of Figure 4.1. The spectra ascertain the presence 

of DIK on the clay but not its exact location. The anionic clay contains carbonate ions in 

its interlayer spacing corresponding to a band at 1357 cm-1 (Figure 4.1 (b)). The spectrum 

of the clay after calcination (CHT) and modification with DIK-Na+ (Figure 4.1 (c)) does 

not show a band at 1357 cm-1 indicating the successful removal of the carbonate ion from 

the interlayer space. On the DIK/Clay particles, the newly created peaks can be attributed 

to DIK that may be present as either a surface coating and/or as an intercalant. The peaks 

at 1575, 1508, 1499, and 1456 cm-1 indicate ring stretching of 1, 2, 3 tri-substituted 

benzene. The peak at 1585 cm-1 results from the benzene ring carbon-carbon vibration. 

The peaks at 1470 cm-1 and 1400 cm-1 correspond to the CH2 bending of ortho- 

substituted benzene. The band in the region between 1300 and 1150 cm-1 is responsible 

for C-O bonds. The band for aryl halide between 1080 and 1060 cm-1 is not visible, 

apparently due to the strong interaction of ring vibrations.70 The broad peak between 
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3700 and 3000 cm-1 results from hydroxyl groups of the layers and the reabsorbed 

interlayer water. 

 

Figure 4.1 FTIR results of (a) DIK-Na+, (b) pure HT, and (c) CHT modified with DIK-
Na+. 
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Figure 4.2 Magnified regions of spectra of Figure 4.1. 

4.1.2 XRD Results 

XRD analysis was used to evaluate the intercalation of DIK into the interlayer space of 

HT. Figure 4.3 shows the XRD spectra of DIK-Na+, HT, DIK/Clay and calcined HT. In 

order to index patterns of HT and HT modified with APIs, Equation 4.1 valid for 

hexagonal system can be used to designate Miller indices: 

 

                                                                     (Equation 4.1) 

 

Where h,k,l indicate the Miller indices of a plane, which makes fractional intercepts of 

1/h, 1/k, 1/l with the axes, and A = λ2/3a2 and C = λ2/4c2; λ is wavelength, the “a” 
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parameter of the hexagonal unit cell corresponds to the distance between two metal 

elements in adjacent octahedral sites while the “c” parameter corresponds to three times 

the distance between adjacent hydroxyl layers.71, 72 Due to insufficient information for 

certain parameters in Equation (4.1), Figure 4.3 contains Miller indices that have been 

used in references72-76. 

DIK-Na+ shows sharp peaks indicating highly crystalline structure (Figure 4.3(a)). 

Pristine HT (Figure 4.3(b)) has a strong peak around 11.5o (0.77 nm calculated from 

Bragg’s law); it corresponds to its original basal spacing and this value is in good 

agreement with supplier’s specifications. HT also shows a broad, asymmetric reflection 

marked as star (*) (Figure 4.3 (b)) beyond 30o, which may be an indication of turbostratic 

disorder in the layer stacking.77  

Calcined HT which lost its crystalline structure due to removal of counter anions 

by heating does not show any peaks throughout the range from 2 to 40o (Figure 4.3 (d)). 

Therefore, based also on the FTIR results, it can be concluded that the carbonate ions are 

fully removed.  

Figure 4.3, (spectrum (c)), clearly shows the different X-ray peaks of the 

DIK/Clay as compared to the parent HT (spectrum (b)). It can be shown that the 

crystalline structure of HT was reformed by regeneration in the presence of DIK-Na+ and 

peaks corresponding to the regenerated HT have shifted to lower angles. The anionic clay 

modified with DIK-Na+ shows an angle shifted from 11.5o to 3.9o indicating an increased 

interlayer space from 0.77 nm to 2.39 nm, and an evidence of intercalation. The 

broadening of the crystalline reflections in the DIK/Clay represents a loss of HT 

crystallinity.76 Assuming a thickness of 0.45 nm for the Mg-Al double hydroxide layer,78 
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this result indicates that the interlayer space generated by DIK is 1.94 nm, corresponding 

to twice the length of the end-to-end distance of DIK (Figure 3.2). Constantino et al.40 

and Ambrogi et al.39 reported that increased interlayer spacing is responsible for the DIK 

bilayer presence in the clay interlayer space which is partially interdigitated and 

perpendicular to the layer plane. It has been  reported that the second and the third peaks 

may correspond to the higher harmonics of the interlayer distance.79  

Figure 4.3 XRD results of (a) DIK-Na+, (b) HT, (c) DIK/Clay, and (d) CHT. 
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4.1.3 Thermal Analysis  

Figure 4.4 shows TGA data of DIK-Na+, HT, CHT, and DIK/Clay. HT shows typically 

two different weight loss regions. The first region is related to the dehydration of the HT 

(100-250 oC). The second region (250-527 oC) is responsible for the dehydroxylation and 

decarbonation reactions.68 DIK-Na+ is thermally stable and started decomposing around 

284 oC close to its melting point. Since the anions and water of HT were removed, the 

TGA results of CHT do not show the typical weight losses of HT. The early weight loss 

of CHT up to 100 oC can be attributed to moisture absorbed during sample preparation. 

DIK/Clay also does not show a similar pattern of weight loss as compared to the 

unmodified HT since the original carbonates have been replaced by DIK anions. 

DIK/Clay shows an early 10 wt% moisture loss and these water molecules may have 

been absorbed during the DIK-Na+ / clay reaction or the preparation of the sample for the 

analysis. Subtracting the moisture content of the DIK/Clay, the approximately 40 % 

additional weight loss could be attributed to the weight of both intercalated and coated 

DIK.  
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Figure 4.4 TGA results of DIK-Na+, clays, and CHT modified with DIK-Na+. 

Isothermal TGA was used to estimate the thermal stability of DIK/Clay (when 

dispersed in a polymer matrix) at melt processing times and temperatures. The results at 

both 180 oC and 200 oC for 10 minutes show no differences (Appendix A) in the weight 

loss between the two temperatures and an overall good thermal stability after an initial 

moisture loss. 

The DSC results of DIK-Na+ show a strong endothermic peak at 291 oC 

corresponding to its Tm (Figure 4.5). HT shows two broad endothermic peaks attributed 

to the dehydration, and the dehydroxylation and decarbonation reactions68 discussed in 

the TGA analysis. However, unlike the unmodified clay, DIK/Clay that does not contain 
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carbonate ions and interlayer water shows very weak broad endothermic peaks. 

Furthermore, DIK/Clay does not show any Tm, which may suggest an amorphous state 

for DIK.  

 

Figure 4.5 DSC heating results of DIK-Na+, DIK/Clay, and HT. 

 

4.1.4 Quantitative Analysis of DIK/Clay 

The DIK loading of DIK/Clay was determined by carbon and nitrogen elemental analysis 

(Table 4.1). Carbon and nitrogen are unique elements present only in the API. Therefore, 

by using this information and results from the elemental analysis, the content of DIK in 

the clay can be readily calculated (Appendix B). Calculated DIK loadings on the 
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modified clays based on carbon and nitrogen are 39.98% and 41.31%, respectively. 

Therefore, it has been assumed that approximately 40% of the API was loaded on the 

clay matrix. This is in reasonable agreement with the results of Ambrogi39 who, by using 

a different type of hydrotalcite and a different preparation method, reported that roughly 

50 % DIK was intercalated. 

Table 4.1 Results of DIK/Clay Elemental Analysis 
Material % Carbon  % Nitrogen 

HT* 4.0 0.0 

CHT* 0.0 0.0 

DIK* 56.7 4.7 

DIK/Clay** 22.7 1.9 

* calculated 
** experimental 
 

4.1.5 Particle Size Distribution  
 
Different particle size distributions between pure HT and modified DIK/Clay are shown 

in Figure 4.6. The SEM individual particle size of HT (Figure 4.7) is much smaller than 

the one measured by the laser diffraction method. This is because the laser diffraction 

method takes into account agglomerated clay particles. This also confirms, not only how 

easily these types of nanomaterials are agglomerated, but also why they require special 

conditions to achieve nanosized dispersion. The pure HT shows a bimodal distribution, 

while DIK/Clay shows a unimodal distribution with a peak at 6 µm. It can be concluded 

that pure HT has more tendency towards agglomeration than DIK/Clay and hence, less 

uniform size distribution. The tendency of the clays toward agglomeration was also 

observed by microscopy. HT and DIK/Clay were dispersed in water or water-surfactant 
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(10 wt%) solution (Figure 4.8). All clay particles are aggregated and their sizes vary from 

1 µm to 60 µm, except for DIK/Clay in the water-surfactant solution which shows better 

separation of the clay aggregates. This suggests that nanoclays can be readily separated 

by incorporation of a modifying agent with an appropriate structure and by proper 

selection of the matrix. Obviously, DIK-Na+ is not the appropriate agent for achieving 

high degree of clay dispersion.     

 
Figure 4.6 Particle size distributions of pure HT and DIK/Clay.  
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Figure 4.7 SEM images of (a) HT,80 (b) and (c) DIK/Clay. 
 

(b) 

(a) 

(c) 
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Figure 4.8 Optical microscopy images of (a) HT in water, (b) HT in water-surfactant, (c) 
DIK/Clay in water (d) DIK/Clay in water-surfactant. 
 

4.1.6 Dissolution Tests at Different pH 

Figure 4.9 shows the percentage of the dissolved DIK from DIK-Na+, DIK-Na+/ HT 

physical mixture and DIK/Clay as a function of time in acidic buffer. DIK-Na+ rapidly 

dissolves in neutral pH water. However, as mentioned earlier, its solubility is 

dramatically decreased at lower pH. Figure 4.9 shows that less than 4 % DIK is dissolved 

from both DIK-Na+ and from the physical mixture of DIK-Na+ and HT while less than 

10% DIK was dissolved from DIK/Clay in the simulated gastric fluid (SGF) at pH 1.2. 

Therefore, it is shown that HT does not affect the dissolution behavior of DIK-Na+. The 

(c) 

(a) (b) 

(d) 
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increased apparent solubility of DIK from the DIK/Clay can be explained by the 

following considerations: 

1) DIK released in its molecular forms (non-ionized) while HT dissolved rapidly 
under the acidic conditions. 45 

 
2) Amorphous- like state of API in the anionic clay interlayer space. 

3) Increased wettability of API associated with the anionic nanoclay.42  

It is to be noted that clays can increase, not only the apparent solubility, but also the API 

release rate due to their hydrophilic and swelling properties in aqueous solution.43 

Initially, it was expected that DIK/Clay may achieve a sustained API release. However, 

since HT was dissolved at the low pH medium within 30 minutes (see Appendix C) 

sustained DIK release was not observed.  

 
Figure 4.9 Dissolution results in simulated gastric fluid (pH 1.2) of DIK-Na+, DIK/Clay 
(containing approximately 40% DIK) and an HT/DIK-Na+ physical mixture containing 
40% DIK-Na+.  
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The acidic solution firstly dissolves HT to produce a mixture of MgCl2 and AlCl3 

and converts DIK anions into an acid form; the amorphous-like DIK is then exposed to 

the medium simultaneously. According to the Noyes-Whitney equation81, 82 the 

dissolution rate among other parameters is proportional to the total area of the API 

exposed to the dissolution medium. Therefore, it is not surprising that DIK/Clay shows 

the highest dissolution rate (Figure 4.10) since, assuming that DIK is in an amorphous 

state, it is spread over a larger area in the clay interlayer space.  
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Figure 4.10 Dissolution results of magnified range from Figure 4.9 (pH 1.2). 

Figure 4.11 shows the dissolution profile of DIK/Clay in simulated body fluid 

(SBF) at a 7.4 pH.  Since HT does not dissolve in the neutral pH medium, the intercalated 

DIK anions had to be ion exchanged with the phosphate ions of the medium in order to 

diffuse out from the clay interlayer.39 Since this procedure takes time, DIK could be 

released slowly. However, the DIK release rate at an early stage up to 30 minutes was 

somewhat faster (dissolution rate: 1.03%/minutes) than the release after 30 minutes. This 

could provide evidence that DIK is, not only intercalated in the layer space, but is also 

coating the outside clay surface. Unlike DIK at the interlayer, the DIK at the outside 

layers will be exposed directly to the medium and will be dissolved immediately. 
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After 30 minutes and up to 240 minutes, the release rate of DIK slowed down 

indicating that release from the clay interlayer was dominant (dissolution rate: 

0.15%/minutes). Based on Figure 4.11, a rough approximation of the concentration of 

DIK on the clay surface is 30 wt%. After 240 minutes, the dissolution of DIK/Clay is the 

slowest. This may be because the precipitated DIK/Clay stacked at the bottom of the 

vessel even at an agitation speed of 50 rpm, and the inner stacked DIK/Clay was not 

directly exposed to the medium making diffusion slower. It is shown that DIK/Clay 

achieved 100% API release after 25 hours. This suggests that the dissolution method can 

be another method for calculating DIK loading on the clay along with the Elemental 

Analysis. Note that Figure 4.11 is very similar to Figure 7 in the paper by Ambrogi et al39 

obtained with a different clay and different experimental conditions. 

 

Figure 4.11 Dissolution profiles of DIK/Clay in simulated body fluid (phosphate buffer 
solution, pH 7.4). 
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4.1.7 Shelf Stability  

For long shelf life pharmaceutical applications, API recrystallization or undesired 

physicochemical changes need to be minimized. In order to determine an early API 

release during storage, a 12 month-old DIK functionalized clay was examined by XRD 

analysis. 

As shown in Figure 4.12, peak intensities and peak locations were the same after 

one day or 12 months following modification. Thus, it appears that the DIK/Clay hybrid 

can be stored at room temperature without any physical changes.  

 

Figure 4.12 XRD results of DIK/Clay (a) 1 day old and (b) 12 months old. 
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4.1.8 Mechanisms of DIK Release from DIK/Clay at Different pH 

API release rates are usually explained by three controlling mechanisms which are 

diffusion, swelling and erosion.83, 84 Among other equations, two simple and semi-

empirical equations, the Korsmeyer-Peppas model (power law)54 and the equation 

developed by Peppas and Sahlin,85, 86 can be used to describe the API release behavior 

from a matrix. 

The Korsmeyer-Peppas (power law) equation is: 

                                          (Equation 4.2) 

Where Mt and M∞ are the absolute cumulative amounts of API released at time t and 

infinite time, respectively, “k” is a constant incorporating structural and geometric 

characteristics of the sample, and “n” is the release kinetics exponent. This “n” value is 

used in order to differentiate between release mechanisms. The interpretation of “n” 

value for different diffusion mechanisms is given in Table 4.2. 

The heuristic equation developed by Peppas and Sahlin86 can be used to estimate 

the effect of API diffusion and polymer erosion on the anomalous transport. 

                             (Equation 4.3) 

Where “k1”, “k2” and “m” are constants. The first term on the right hand side 

represents the Fickian diffusional contribution (D), whereas the second term represents 

the polymer relaxation contribution (R). “m” is geometrical factor (in this case m= 0.5: 
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disk or film). Equations 4.2 and 4.3 are valid only up to 60 % dissolution (Mt/M∞<0.6).87 

The ratio of relaxation (R) and diffusion (D) contributions86, 88 could be calculated as: 

                                           (Equation 4.4) 

 
Table 4.2 Interpretation of Diffusional Release Mechanisms from Polymeric Films87  
Release exponent (n) Drug transport mechanism Rate as a function of time 

0.5 Fickian diffusion 
(diffusion dominant) 

t-0.5 

0.5<n<1.0 Anomalous transport 
(non Fickian diffusion) 

tn-1 

1.0 Case-II transport* 

(erosion dominant) 
Zero order release 

n>1.0 Super Case-II transport** tn-1 

* Case II transport (Case II relaxational release) is the drug transport mechanism associated with stresses 
and state-transition in hydrophilic glassy polymers which swell or erode in water or biological fluids (non-
Fickian).86, 89  
** Super case - II transport is indicating API release due to the combination of API diffusion and polymer 
relaxation/dissolution as opposed to simple Fickian diffusion.90 
 

 Figure 4.13 shows DIK release from DIK/Clay at different pH values of 1.2 and 

7.4. Note that the clay is soluble at pH of 1.2 (Appendix C). Table 4.3 shows results 

calculated from Equations 4.2 and 4.3. The exponent for Equation 4.2 indicates that both 

systems exhibit anomalous transport. Since the DIK/Clay dissolved very quickly in SGF 

within 30 minutes, it was anticipated that erosion mechanism would be dominant. From 

the k1 and k2 values of Table 4.3 obtained by regression, the R/ D ratio can be calculated 

(Equation 4.4) and plotted versus fraction dissolved in Figure 4.14. The results show that 

for both pH values diffusion dominates over relaxation. However, the R/D ratios in the 
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pH 7.4 solution are much higher than the ones in the pH 1.2 solution since the clay did 

not dissolve in the pH 7.4 buffer solution but was able to exchange slowly API anions for 

buffer anions.  

Table 4.3 Dissolution Fitting Results of DIK/Clay at Different pH 
Power law (Eq. 4.2), 

 

Peppas and Sahlin (Eq. 4.3), 

 

System 

n 
± 95% CI k1 ( min-0.5) 

 ± 95% CI 
k2 ( min-1)  
± 95% CI 

DIK/Clay at pH 1.2 0.64 ± 0.05 0.11 ± 0.02 0.02 ± 0.01 

DIK/Clay at pH 7.4 0.54 ± 0.04 7.78 ± 0.17 0.14 ± 0.01 

 

 

Figure 4.13 DIK dissolution profile from DIK/Clay at pH 1.2 and 7.4. 
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Figure 4.14 R/D ratio values versus fraction dissolved for the DIK/Clay system at 
different pH of 1.2 and 7.4. 

 

Since both DIK/Clay dissolution profiles from pH 1.2 and 7.4 have a stronger diffusion 

than relaxation component, dissolution data were fitted to the Fickian model (no erosion) 

presented earlier which describes API diffusion from a disc.
 

                                  (Equation 2.4) 

 
Since L2 is initially same for all samples and Dapp is only dependent on the molecular size 

of the API and the temperature of release53, Equation 2.4 can be simplified as Equation 

4.5.  
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                                     (Equation 4.5) 

 
Figure 4.15 shows dissolution profiles of DIK from DIK/Clay at different pH fitted to 

Fickian model. DIK release from DIK/Clay at pH 7.4 has larger R2 value than the one at 

pH 1.2 since no erosion occurs in this case.   

 

Figure 4.15 DIK release from DIK/Clay as a function of time0.5, (■) DIK/Clay at pH 1.2, 
and (●) DIK/Clay at pH 7.4. 
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4.2 Characterization of Clay Modified with IND 

Before discussing the results on HT modified with IND, it is to be noted that calcined HT 

appeared to chemically interact with IND as evidenced by FTIR and XRD data obtained 

up to five days of intercalation reaction. By contrast, such changes were not observed in 

the CHT modification with DIK. HT interaction with other APIs has also been previously 

reported.33, 91, 92 Therefore, the practical pharmaceutical applications of the IND/Clay 

system would require further studies. In this section, the reported results are based on the 

IND/Clay, three days after the modification reaction, since after this time significant 

differences were observed in the FTIR spectra of the IND/Clay as compared to the pure 

IND. 

4.2.1 FTIR Results  

FTIR spectra of IND, HT and IND/Clay are shown in Figure 4.16. Generally, the 

methoxy group attached to the aromatic ring has a sharp isolated band near 2835 cm-1.93 

The aromatic C-H stretching vibrations give rise to multiple bands in the region 3100 - 

3000 cm-1.70 In substituted benzene ring compounds the C-H out of plane bending 

vibrations give rise to bands in the region 1000-700 cm-1. Indole absorbs near 1460, 

1420, and 1350 cm-1.70 The NH stretch in indole causes absorption at 3400-3100 cm-1.70  

In Figure 4.17, the sharper peak at 1692 cm-1 shifted to 1681 cm-1 and became 

slightly broader, which indicates that the original γ-form was converted to the metastable 

α-INM. The peaks at 1591 cm-1 and 1545 cm-1 (Figure 4.17 (c)) may be due to the 

carbon-carbon interaction within the benzene ring. Five-membered ring compounds 

generally show three ring stretching bands near 1590, 1490 and 1400 cm-1.70 FTIR peaks 

of IND/Clay are shifted slightly to a different wavenumber as compared to IND. This 
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suggests possible interactions of IND with the clay. Similar FTIR spectra were also 

obtained by Del Arco et al46 who ascribed the shifting of the peaks to the presence of 

ionized IND in the clay interlayer. 

 

Figure 4.16 FTIR results of (a) IND, (b) HT, and (c) IND/Clay. 



68 
 

 

Figure 4.17 Magnified FTIR results from Figure 4.16. 
 

4.2.2 Thermal Analysis 

From the TGA analysis (Figure 4.18), the content of IND in the nanoclay can be 

calculated. Since IND/Clay lost approximately 10 wt% at 150 oC due to moisture, the 

30% weight loss between 230 oC and 500 oC can be ascribed to the IND loading in the 

clay. This rough approximation matches the IND loading calculated from elemental 

analysis (Table 4.4). 

DSC results (Figure 4.19) show a sharp melting temperature (Tm) for IND. 

However, similarly to the DIK/clay system no transition is shown for the IND/Clay 
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around the IND Tm. Similar results were observed by Ambrogi et al.94 who explained that 

the absence of the IND melting temperature was due to a new compound that was formed 

by intercalation of IND; however, it may also be due to the amorphous state of IND in the 

clay interlayer space as was also shown in the case of DIK/Clay. 

 
Figure 4.18 TGA results of HT, CHT, IND, and IND/Clay. 
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Figure 4.19 DSC heating results of IND, HT, and IND/Clay. 

4.2.3 XRD Results 

XRD results (Figure 4.20) indicate that IND is intercalated into the clay interlayer. 

However, the increase in the interlayer spacing is not larger than that of DIK/Clay 

(calculated spacing is 1.91 nm vs. 2.39 nm). The molecular size of IND end to end based 

on its MW and its simulated chemical structure (Figure 3.2) is larger than that of DIK. 

Therefore, it appears that IND may exist in an interdigitated state in the interlayer 

space.39 Also, the peaks (003) and (006) in Figure 4.20 (c) shifted towards lower angles 

showing that during the regeneration process of HT, IND successfully expanded the clay 
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interlayer structure. However, it appears that the original crystalline structure has been 

modified transformed to a different one since the intensity of the (006) peak is reduced 

and became broader. The third peak that is present in the DIK/Clay spectrum (Figure 4.3) 

is absent since there are no higher harmonic clay layers. Del Arco et al46 obtained a 

different XRD spectrum which has more pronounced crystalline peaks (003) and (006). 

Their different spectra may be attributed to differences in the pH of the solution during 

the clay modification. 

 

Figure 4.20 XRD results of (a) IND, (b) HT, and (c) IND/Clay. 
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4.2.4 Quantitative Analysis of IND/Clay 

The indomethacin loading of IND/Clay was determined by elemental analysis (Table 4.4) 

as in the case of DIK/Clay. Calculated IND loading on modified clays based on carbon 

and nitrogen are 33.6 % and 30.8 %, respectively (See Appendix B). Therefore, it is 

assumed that roughly 30 % of the API has been loaded in the clay. These loadings are 

slightly lower than those of the DIK/Clay possibly due to differences in reaction time, 

molecular structure, and preparation methods. 

Table 4.4 Results of IND/Clay Elemental Analysis 
Material % Carbon  % Nitrogen 

HT* 4.0 0.0 

CHT* 0.0 0.0 

IND* 63.7 3.9 

IND/Clay** 21.4 1.2 

* calculated 
** experimental 
 

4.2.5 Dissolution Test 

IND dissolution profiles from the HT interlayer spacing and possibly from the HT 

surface as well are shown in Figure 4.21. IND alone shows almost zero solubility in the 

simulated gastric acid at a pH of 1.2. However, the dissolution data from the IND/Clay 

interlayer and possibly from the clay surface suggest higher solubility. As discussed 

earlier in the DIK/Clay section, increased solubility can be ascribed to increased 

wettability or the presence of IND in an amorphous state.  

IND/Clay has different dissolution profile than DIK/Clay. While DIK/Clay 

showed a fast DIK dissolution, IND/Clay shows a somewhat slower IND dissolution 
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pattern. For example, the DIK in the DIK/Clay achieved its maximum solubility in the 

simulated gastric medium within an hour. On the other hand, IND in the IND/Clay 

achieved 50% of its maximum solubility within an hour. These different rates of 

dissolution could be explained by differences in the microenvironmental pH28 since DIK-

Na+ could increase the pH while IND would tend to decrease it. In order to test this 

hypothesis, a simple experiment was carried on. 80 mg each DIK/Clay and IND/Clay, 

each, were added separately into 100 ml of SGF and the pH was measured. As expected, 

DIK/Clay increased the pH from 1.21 to 1.31 within 5 minutes while IND/Clay changed 

the pH to only 1.23. Although these pH differences appear not to be significant, they may 

be important in a microenvironment. 

 

Figure 4.21 Dissolution results of IND/Clay and IND in simulated gastric fluid (pH 1.2). 



74 
 

4.2.6 Stability of IND during Reaction with CHT 

In the introductory section 4.2, it was noticed that the stability of IND during its reaction 

with CHT appeared to be an issue as a result of possible adverse chemical reactions. The 

IND intercalation into the HT interlayer space, was carried out for 5 days, and FTIR and 

XRD spectra were obtained every day. Although the reaction after 1 day does not show a 

carbonate peak, which may have indicated the success of the IND intercalation (Figure 

4.22), XRD results (Figure 4.23) do not show any IND intercalation peak. After 2 days 

there is still no XRD intercalation peak, although the FTIR spectra show some changes 

(Figure 4.22). Thus, it appears that up to 2 days of reaction, IND was not intercalated into 

the CHT interlayer space but was rather absorbed on the clay surface. On the other hand, 

XRD results after 3 days show the IND intercalation peak. After 3 days and up to 5 days 

FTIR results show significant peak shifting and changes that could be the result of other 

interactions between CHT and IND. A possible scenario is that IND degrades into 5-

methoxy-2-methylindole acetic acid and p-chlorobenzoic acid in the presence of the 

strongly alkaline CHT as shown in Figure 4.24.95 The degradation of IND in the presence 

of hydroxide ions has also been previously reported.95 
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Figure 4.22 FTIR spectra during the IND/CHT reaction: (a) IND, (b) IND/Clay (1 day), 
(c) IND/Clay (2 days), (d) IND/Clay (3 days), (e) IND/Clay (4 days), (f) IND/Clay (5 
days). 

 

Interpretation of the FTIR spectra presents several challenges. Figure 4.22 shows 

the FTIR peak shifting for the IND reaction with CHT at different reaction times. Shifts 

occurred around 1684 cm-1, 1543 cm-1, and 1323 cm-1. The peaks at 1717 cm-1 and 1692 

cm-1 indicate the C=O of γ-IND. These peaks were combined together, as reaction 

proceeded, to one peak at 1684 cm-1 corresponding to the C=O peak of amorphous IND. 

Finally the peak at 1684 cm-1 disappeared as the reaction proceeded.  
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Figure 4.23 XRD results of IND/Clay at different reaction times. 
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Figure 4.24 Schematic of the possible IND degradation in alkaline pH.95 

 

 

Indomethacin 

5-methoxy-2-methylindole acetic acid p-chlorobenzoic acid 
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4.3 Conclusions 

Anionic nanoclay was successfully intercalated by both APIs. DIK/Clay showed 

increased interlayer spacing vs. pure HT and relatively well ordered clay crystallinity 

while IND/Clay showed increased interlayer spacing but reduced crystallinity. Calculated 

DIK and IND loadings in the clay were roughly 40 wt% and 30wt%, respectively. The 

different API loadings are due to the different experimental conditions used. DIK/Clay 

showed less tendency to agglomeration than the unmodified clay. API released from 

DIK/Clay showed not only increased apparent solubility and dissolution rate than DIK-

Na+ in SGF but also sustained API release in SBF. Increased solubility and dissolution 

rate in SGF might be due to a) non ionized form of API and rapid dissolution of HT, b) 

the amorphous state of DIK in the clay interlayer space and c) increased wettabililty. 

Sustained API release from DIK/Clay in SBF can also be an indication of intercalated 

API, whereas fast release at the initial stages is due to the presence of DIK coating on the 

clay. The Korsmeyer-Peppas (Power law) and the Peppas and Sahlin equation predicted 

the API dissolution mechanism from the nanoclay. DIK dissolution from the modified 

clay in different pH media showed that diffusion was the dominant mechanism although 

its magnitude differed among the two different pH buffers used. API dissolution from the 

clay showed a good fitting with Fickian diffusion. Chemical interactions that might 

correspond to API degradation during intercalation were not observed in the DIK/Clay 

but were observed in the IND/Clay systems. The latter system needs further analysis in 

order to understand the reason for the structural changes of IND. 
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CHAPTER 5 

API/POLYMER SYSTEMS PREPARED BY MELT AND SOLUTION MIXING 

In this Chapter, API-polymer miscible and immiscible systems are compared in order to 

distinguish between the properties of solid solutions and solid dispersions and their 

effects on API release. The miscibility of the systems was initially determined by 

comparing the solubility parameters of APIs and polymers. IND and DIK-Na+ in the 

water soluble Eudragit® E100 and Eudragit® S100 acrylic copolymers were selected as 

examples of API-polymer miscible and immiscible systems, and compared for their 

dissolution profile. API miscibility and morphology in the polymer matrix were 

determined by XRD and SEM. FTIR spectroscopy, TGA, DSC, and UV-Vis were used 

for further analysis. The API/ organic polymer systems are compared with the system 

discussed in chapter 4 where the matrix is an inorganic nanoclay. 

 

5.1 Results on DIK-Na+ Compounded with Eudragit® E100 
 

Based on solubility parameter calculations, (Chapter 3), DIK-Na+ would not be miscible 

with Eudragit® E100 but rather be dispersed in the polymer matrix. A schematic of API 

dispersion in a polymer is shown in Figure 5.1. The API can form smaller particles by 

melt mixing as a result of strong shear forces or it can be agglomerated and form larger 

particles if the compatibility between API and polymer is poor.  
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Figure 5.1 Schematic of dispersion of insoluble solid API particles in polymer matrix.96 
(Figure modified from Gogos and Wang, Evonik Workshop 2009) 

 
5.1.1 FTIR Analysis 

FTIR spectra of Eudragit® E100/DIK-Na+ composites and their components are shown in 

Figure 5.2. Arrows indicate peaks due to the presence of DIK-Na+. It should be noted that 

Eudragit® E100 contains similar functional group as DIK-Na+ such as carboxyl group, 

methyl, and methylene groups. Therefore, many characteristic peaks are overlapping and 

difficult to identify. Although it may be possible that there are weak molecular 

interactions between the API and the polymer, FTIR spectra do not provide any such 

indications since no peak shiftings are observed.  
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Figure 5.2 FTIR spectra of (a) Eudragit® E100, (b) Eudragit® E100/4wt% DIK-Na+, (c) 
Eudragit® E100/15wt% DIK-Na+, and (d) DIK-Na+ (samples prepared by batch mixer). 
 
 
5.1.2 Thermal Analysis 

Figure 5.3 shows TGA results for the API, Eudragit® E100 and the polymer containing 4 

wt% and 15 wt% of API. DIK-Na+ starts losing weight at about its melting point (283 oC) 

followed by the unfilled polymer (about 250oC). In the case of the polymer composites 

containing API, the onset of degradation temperature is reduced with increasing DIK-Na+ 

loading. This decreased thermal stability may be due to catalytic interactions between 

DIK-Na+ and the polymer at the higher temperatures. It should be noted that melt mixing 
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was carried out at 130 oC, well below the melting point of the API, but above the reported 

Tg of the polymer (48oC). As a quantitative comparison of thermal degradation, the 

temperature corresponding to 10 wt% loss is used to rank the materials in terms of 

thermal stability: DIK-Na+ > Eudragit® E100 > Eudragit® E100/4wt% DIK-Na+ 

>Eudragit® E100/ 15wt% DIK-Na+.  

 The thermal decomposition activation energy, Ea, of Eudragit® E100, and 

Eudragit® E100/ 4 wt% and 15 wt% can be calculated based on TGA data. In general, Ea 

is associated with the lowest energy needed for degradation and, thus, high Ea indicates 

high thermal stability. In order to further quantify differences in thermal stability, the 

Friedman technique was applied into the TGA results.97 The Ea values calculated by this 

method represent the thermal decomposition behavior in the temperature range from 

(onset degradation temperature minus [20 - 40] K) to the onset degradation temperature, 

in which the linear relation between ln(dα/dt) and 1/T (Equation 5.1) is available.97  

 

                                                               (Equation 5.1) 

 

Where α is the weight loss of the polymer undergoing degradation at time t, Z is a 

frequency factor, and T is temperature in K. In plotting the TGA data, the selected 

temperature range was from about 240 oC to 280 oC where the initial degradation 

occurred for each sample. It is recognized that by comparison to the processing 

temperature of 130 oC. This is a very high temperature range and perhaps unrealistic. 

However, it represents another means to rank the thermal stability of the polymer and 
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each composite. The calculated Ea values from Figure 5.4 are 2.267 103 kJ/mol, 

1.984 103 kJ/mol, and 1.531 103 kJ/mol for Eudragit® E100, Eudragit® E100/ 4 wt% 

DIK-Na+ and Eudragit® E100/15 wt% DIK-Na+, respectively, suggesting that Eudragit® 

E100 has the highest thermal stability and the thermal stability decreases with increasing 

loading of DIK-Na+, in agreement with the 10 wt% loss ranking above. 

  

Figure 5.3 TGA results of (a) DIK-Na+, (b) Eudragit® E100, (c) Eudragit® E100/4wt% 
DIK-Na+, and (d) Eudragit® E100/ 15wt% DIK-Na+ (Samples prepared by batch mixer) 
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Figure 5.4 Friedman plots of ln(dα/dt) versus 1/T for the direct calculation of Ea of 
thermal degradation at a heating rate of 20 oC min under N2 (Eudragit® E100/DIK-Na+ 
composites) (Samples prepared by batch mixer). 
 

The glass transition temperatures of Eudragit® E100 and its composites by DSC 

are shown in Figure 5.5. The Tg values of the composites are slightly higher than that of 

the unfilled polymer but the difference between the two API loadings is not significant. 

Glass transition temperatures of these systems vary from 43 oC to 47 oC (Table 5.1). 

Since as will be shown below this API-polymer combination forms a solid dispersion, the 

Tg increase would be analogous to that found in composites where the mobility of 

polymer segments is limited by the presence of the thermally stable at that temperature 

API.98  
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Figure 5.5 Glass transition temperature data of Eudragit® E100 and its DIK-Na+ 
composites (Samples prepared by batch mixer). 

 

5.1.3 XRD Analysis.  

Figure 5.6 shows XRD results of DIK-Na+, Eudragit® E100 and its composites containing 

4 wt% and 15 wt% DIK-Na+. DIK-Na+ shows many sharp peaks through the entire 

scanned range, an indication of high crystallinity. Strong crystalline peaks located at 

6.67o and 8.65o, whose intensity increased with increasing DIK-Na+ loading, appear also 

in the spectra of the composites. Thus, it is evident that after hot melt mixing DIK-Na+ 

remains dispersed in a crystalline form.  
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Figure 5.6 XRD results of (a) Eudragit® E100, (b) Eudragit® E100/ 4wt% DIK-Na+, (c) 
Eudragit® E100/15wt% DIK-Na+, and (d) DIK-Na+ (Samples prepared by batch mixer) 
 
 
5.1.4 Morphology of DIK-Na+/ Eudragit® E100 Systems 

Analysis of some SEM images of API polymer composites was carried out in order to 

obtain a general idea of the API dispersion in the matrix. It is recognized that more 

detailed analysis is required to fully confirm its dispersion state in the matrix. Figure 5.7 

(a, c, d) contains selected SEM images showing DIK-Na+ particles dispersed in the 

polymer matrix; Figure 5.7 (b) confirms the location of the DIK-Na+  particles through 

EDX chlorine mapping images. It is clear that DIK-Na+ was not dissolved into the 
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polymeric excipient during melt mixing, but it was rather dispersed in what appears to be 

agglomerated particles ranging in size from 5 to 50 µm. Previously analyzed by the laser 

diffraction method, the DIK-Na+ particle size distribution varied from 1 µm to 40 µm 

(Figure 5.8). Therefore, it appears that the API became somewhat more agglomerated 

during the mixing process. This could be due to lack of compatibility between polymer 

and API and inadequate stabilization of the resulting dispersion toward coalescence.  

 

 

Figure 5.7 SEM images of 4wt% DIK-Na+ in Eudragit® E100 (a), (c), and (d), and 
chlorine EDX mapping (b) at the same location as in Figure (a) (Samples prepared by 
batch mixer). 
 

(a) (b) 

(c) (d) 
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Figure 5.8 Particle size distribution of DIK-Na+. 
 
 
Under the polarized light microscopy, the crystalline particles are much brighter than the 

amorphous matrix. As a result, the dispersed API crystalline particles can be easily 

distinguished (Figure 5.9), a further confirmation of the formation of a solid dispersion.  
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Figure 5.9 Images from polarized light microscopy: (left) unfilled Eudragit® E100, 
(right) Eudragit® E100/ 4wt% DIK-Na+. 
 

5.1.5 Rheological Study  

Since DIK-Na+ does not dissolve in Eudragit® E100 during melt processing it was 

expected that it would act as a filler in the polymer matrix thereby increasing its viscosity. 

Figure 5.10 and Table 5.1 show RMS results of Eudragit® E100/DIK-Na+ composites at 

130oC. As expected, viscosity as well as G′ and G″ increased with increasing DIK-Na+ 

loading. All specimens show shear thinning as the shear rate increased. The effect of 

increasing DIK-Na+ concentration on shear viscosity is more pronounced at low shear 

rates. This is because the yield effect due to the formation of structured networks is 

frequently encountered at low shear rates and at high loadings of sub-micron particles.80 

On the other hand, the increases in viscosity relative to the unfilled matrix become less 

pronounced at higher shear rates since high shear rates tend to orient fillers to different 

degrees depending on their size, rigidity, concentration, and interactions with the 

matrix.80 The viscosity of the composites at different shear rates could be expressed with 

Cross model shown below.    
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                                                                          (Equation 5.2) 

 

Where ηo is the zero shear viscosity,  is shear rate and λ, and m are fitted parameters. In 

the equation, the value of zero for “1-m” indicates Newtonian behavior with “m” tending 

to unity for increasing shear thinning behavior. Calculated zero shear viscosity of 

Eudragit® E100, Eudragit® E100/4wt% DIK-Na+, and Eudragit® E100/15wt% are 

1.842 104, 2.319 104, and 2.923 104 Pa-s, respectively.  

 
Figure 5.10 RMS results of (■) Eudragit® E100, (▲) Eudragit® E100/4wt% DIK-Na+, 
and (♦) Eudragit® E100/ 15wt% DIK-Na+ (Samples prepared by batch mixer). 
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Several equations have been proposed in order to predict the ratio of viscosity of 

particulate composites to the viscosity of the unfilled matrix, (ηc/ηm).99, 100 These 

equations include dependence of viscosity on volume fraction, shape factors, aspect ratio, 

packing characteristics, interaction parameters, and so on. Examples are as follows: 

1) The Mooney equation	  

                                                                                  (Equation 5.3) 

 

2) The Equation proposed by Dougherty and Krieger 

                  (Equation 5.4) 

 

Where kE is a geometric parameter (aspect ratio, degree of agglomeration, and so on) 

known as the Einstein coefficient (2.5 for dispersed spheres ), φmax is the maximum 

packing factor, defined as true volume of filler/ apparent volume occupied by filler 

(0.637 for spheres random close packing), and Vf is volume fraction of the filler. 

3) The Nielsen equation  

                        (Equation 5.5) 
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Where A, B, and ψ are functions of component properties, packing characteristics, and 

aspect ratio, respectively. Assuming spherical particles, the viscosity ratios (ηc/ηm) from 

the experimental results and calculations from the above three equations are compared in 

Figure 5.11. To have a better comparison, 25 wt% and 40 wt% DIK-Na+ in the Eudragit® 

E100 matrix were additionally examined. Details are shown in Appendix D 

 

Figure 5.11 Comparison of experimental and calculated viscosity ratio (ηc/ηm) for 
Eudragit E100® DIK-Na+ composites (Samples prepared by batch mixer), 
 

Experimental viscosity values showed a reasonable agreement with those from 

theoretical equations, except for the Mooney equation at higher DIK-Na+ loading. The 

Mooney equation is generally not accurate beyond a volume fraction of 0.25.99 All three 

equations need the use of either Einstein coefficients (kE) or maximum packing fraction 
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(φmax). However, these parameters are not easily available because of irregular 

agglomeration and size variation of the API in the polymer matrix. These limitations add 

to the differences between experimental and theoretical results.  

 

5.1.6 Dissolution Profiles 

Dissolution profiles of Eudragit® E100/DIK-Na+ composites in a 1.2 pH buffer solution 

are shown in Figure 5.12. The reported solubility of DIK-Na+ under these conditions is 

approximately 1.2 µg/ml. The apparent solubility of the API in the composite increased 

significantly due to increased wettability of the API by the surfactant effect of the 

dissolved polymer.26 Increased apparent solubility may also be the result of increased 

microenvironmental pH. Eudragit® E100 could increase the pH when it is dissolved in the 

SGF. In order to observe the pH changes, 100 mg Eudragit® E100 powder was added into 

100 ml of SGF and the pH of the prepared solution was measured. The pH of SGF 

immediately changed from 1.2 to 1.5. This pH change may be significant in a 

microenvironment and result in increased apparent solubility. Dissolution rate and 

solubility of both composites (4 wt% and 15 wt%) were similar up to one hour. However, 

the composite containing 15 wt% DIK-Na+ shows a decreasing apparent solubility after 

one hour. This is because the API in the composite recrystallized at this API loading 

which is presumablely higher than the API solubility limit. Therefore, it should be noted 

that higher API loadings may accelerate its recrystallization in the medium, and finding 

an optimum API loading is necessary to achieve its stable release. This type of 

recrystallization effect has also been observed by other researchers.23 
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Figure 5.12 Dissolution profile of (a) Eudragit® E100, (b) DIK-Na+, (c) Eudragit® E100/ 
4wt% DIK-Na+, (d) Eudragit® E100/ 15wt% DIK-Na+, and (e) physical mixture of 
Eudragit® E100/ 4wt% DIK-Na+ (in pH 1.2 solution) (Samples prepared by batch mixer). 
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5.1.7 Summary 
 
A summary of the characterization results for the melt mixed Eudragit® E100/DIK-Na+ 

composites is shown in Table 5.1. 

Table 5.1 Characterization results of Eudragit E100/DIK-Na+ System 
 Eudragit® E100 Eudragit® E100 /  

4 wt% DIK 
Eudragit® E100/ 
15 wt% DIK 

Miscibility 
prediction from 
solubilty 
parameters 
 

- Immiscible Immiscible 

FTIR As expected As expected - No 
peak shifts 

As expected - No 
peak shifts 

Thermal Stability    

Temp. @ 10% 
weight loss, oC 
 

293.5 273.2 257.3 

Activation Energy, 
kJ/mole 

2.27 x 103 1.98 x 103 1.53 x 103 

Tg 42.7 ± 1.2 45.9 ± 2.4 46.3 ± 2.1 
XRD Amorphous API few crystalline 

peaks 
API more crystalline 
peaks 

Morphology Amorphous Dispersed API-
agglomerates 

Dispersed API-
agglomerates 

Rheology    

Complex viscosity 
ratio,  
10-1/102 rad/s 

8.14 9.16 10.28 

API dissolution 
(pH 1.20) 

- 60% dissolved in 
one hour 

60% dissolved in 
one hour –
recrystallization 
after 
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5.2 Mixing Comparison of Solvent Casting and Twin Screw Extruder 

In this section, an attempt is made to evaluate the efficiency of different mixing methods. 

From an engineering point of view, hot melt extrusion is obviously able to offer a lot of 

benefits by reducing time consuming steps and increasing output of pharmaceutical 

products. However, in the case of APIs that are immiscible with the polymers and cannot 

be well dispersed in individual particles by melt extrusion but are rather agglomerated in 

the polymer matrix, the efficiency of the system will be inferior. With this motivation, 

DIK-Na+ and Eudragit® E100 combination (an immiscible system based on solubility 

parameters and confirmed by batch melt mixing) was prepared by solvent casting and a 

comparison is made between its morphology and dissolution results with the ones made 

by melt mixing including twin screw extrusion and batch mixing. 

5.2.1 Morphology of Samples  

DIK-Na+ is not miscible with Eudragit® E100 and this was confirmed in the previous 

section. However, DIK-Na+ can be dissolved and mixed with Eudragit® E100 in a 

common methanol/ acetone solvent. After solvent casting, the dried sample containing 

the polymer and 4 wt% API was still transparent (slightly yellowish due to the polymer) 

while the Eudragit® E100/15wt% DIK-Na+ combination showed a few crystalline 

particles. These systems containing different API concentrations were hot pressed to 1 

mm thickness at 130 oC for further analyses. After hot pressing, although the Eudragit® 

E100/ 4wt% DIK-Na+ was still transparent, the Eudragit® E100/15 wt% DIK-Na+ system 

became opaque after removal of the residual solvent and API recrystallization (Figure 

5.13). On the other hand, the transparency of Eudragit® E100/ 4 wt% DIK-Na+ was 
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maintained even after hot pressing at 130 oC a possible evidence of the presence of a 

small amount of residual solvent. This residual solvent could be dissolving the API since 

a low concentration of DIK-Na+ was used. However, this residual solvent may not be 

adequate to dissolve the higher API loading (15 wt%). It is known that complete removal 

of solvent by heating and vacuum techniques from polymeric films is very difficult; spray 

drying could have been a viable alternative. 

 
Figure 5.13 Eudragit® E100/ DIK-Na+ composites prepared by batch mixing (a) 4 wt% 
of DIK-Na+ loading, (b) 15 wt% DIK-Na+ loading; by solvent casting (c) 4 wt% of DIK-
Na+ loading, (d) 15 wt% DIK-Na+ loading; by twin screw extruder mixing (e) 4 wt% of 
DIK-Na+ loading, (f) 15 wt% of DIK-Na+ loading. 
 

Figure 5.14 shows the Tg of Eudragit® E100 containing 4 wt% and 15 wt% DIK-

Na+, both prepared by batch mixing, twin screw extruder, and solvent casting. The 4 wt% 

and 15 wt% DIK-Na+ systems prepared by solvent casting show lower Tg values than 

(a) (b) 

(c) (d) 

(e) (f) 
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specimens prepared by melt mixing. This can be a further evidence of the presence of 

residual solvents in the samples that would lead to plasticization. It could also be possible 

that the concentration of API was reduced from 4 wt% during sample preparation. 

However, all samples (Eudragit® E100/ 4wt% DIK-Na+) prepared by different methods 

show by TGA analysis similar amounts of residuals at 500 oC. This suggests that the API 

content is similar in all samples (Appendix E).  

 

Figure 5.14 Tg of Eudragit® E100/ 4wt% and 15wt% DIK-Na+ prepared by different 
methods (a) solvent casting, (b) batch mixing, and (c) twin screw extruder. 

 

The recrystallization of API in the Eudragit® E100/15 wt% DIK-Na+ sample was 

confirmed by polarized light microscopy (Figure 5.15). The Eudragit® E100/4wt% DIK-
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Na+ combination produced by solvent mixing did not show any bright particles; this is an 

indication that the API is in an amorphous state in the presence of the residual solvents.  

 

Figure 5.15 Images from polarized light microscopy (left) Eudragit® E100/4wt% DIK-
Na+, and (right) Eudragit® E100/15wt% DIK-Na+ made by solvent casting. 
 

Eudragit® E100/ DIK-Na+ composites prepared by twin screw extruder contained 

finer DIK-Na+ particles than the ones from the batch mixer as shown in Figure 5.16 

(compare with Figure 5.7). Twin screw extruders generally offer better mixing and filler 

dispersion in polymer matrices due to the high shear forces in the mixing zone. Mixing 

mechanisms can be categorized as dispersive polymer mixing and distributive mixing.101, 

102 Distributive mixing is described as the random spatial distribution of a minor 

constituent in a matrix of the major constituent. Dispersive polymer mixing can be 

described as the act of reducing the average particle size through the application of a 

shear stress (τ) (Equation 5.6) where , ,m and n are viscosity, shear rate, power law 

model parameter and power law exponent, respectively.101 

 
                                       (Equation 5.6) 

                                    (Equation 5.7) 
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Shear stress can be increased by an increase in shear rate which can be described 

as fluid velocity divided by gap between screw and barrel. Hence, as the gap narrows the 

shear rate increases, and this results in a higher level of shear stress being imparted to the 

compound. The mixing zone of the APV extruder has a narrower gap between the 

kneading elements and the barrel than the batch mixer. Therefore, this reduced size of the 

API particles in the polymer would originate from better dispersive mixing in the 

extruder. It should be noted that neither the APV nor the batch mixer achieved a 

nanodispersion of the API. In addition, appearance of the final products was exactly the 

same as the one produced from the batch mixer (see Figure 5.13 (a) vs. (e) and (b) vs. 

(f)). 

 
Figure 5.16 SEM image of fracture surface of Eudragit® E100/4wt% DIK-Na+ produced 
from APV extruder. 
 
5.2.2 XRD Analysis 

XRD results composites containing higher loadings (15 wt%) DIK-Na+ prepared by 

solvent casting show some crystalline peaks while lower loadings (4 wt%) show no 
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crystalline peaks indicating that DIK-Na+ is in its amorphous state (Figure 5.17). Note in 

Figure 5.6 the presence of some crystalline peaks in 4wt% DIK-Na+ prepared by batch 

mixing. Crystalline peaks in Eudragit® E100/15wt% DIK-Na+ composites are due to the 

DIK-Na+ which recrystallized during drying and hot pressing. Eudragit® E100/ DIK-Na+ 

(4wt% and 15wt%) samples produced from the twin screw extruder also showed 

crystalline peaks, similarly to the samples prepared by batch mixer (Figure 5.6).  

 
Figure 5.17 XRD results of (a) Eudragit® E100, (b) Eudragit® E100/4wt% DIK-Na+, (c) 
Eudragit® E100/15wt% DIK-Na+, and (d) DIK-Na+ (all samples were prepared by solvent 
casting except DIK-Na+). 
 
5.2.3 Dissolution Profiles 

Since the amorphous state of API is a more favorable state for dissolution,103 it was 

anticipated that Eudragit® E100 containing 4wt% DIK-Na+ prepared by solvent casting 

may have a higher apparent solubility. Figure 5.18 comparing the dissolution profiles of 
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Eudragit® E100 and DIK-Na+ mixtures with different API concentrations, and different 

preparation methods confirms the highest maximum DIK-Na+ solubility of almost 90% 

when dissolved from the Eudragit® E100/4 wt% DIK-Na+ formulation. By contrast, API 

dissolved from the Eudragit® E100/DIK-Na+ composites prepared by batch mixing and 

extrusion mixing were only 60 % and 62 %, respectively. Although Eudragit® E100/ 

15wt% DIK-Na+ prepared by solvent casting shows recrystallization due to the high API 

loading, the composite showed similar initial increased API solubility to the ones 

prepared by batch mixing and twin screw extruder. In summary, as expected, the 

crystalline or amorphous state of the API in the polymer matrix could be the controlling 

factor of dissolution rather than the method of sample preparation.  

 
Figure 5.18 Dissolution profile in pH 1.2 solution of:  (a) Eudagit® E100/4wt% DIK-Na+ 
(batch mixing), (b) Eudragit® E100/4wt% DIK-Na+ (solvent casting), (c) Eudragit® 
E100/15 wt% DIK-Na+ (solvent mixing) and (d) Eudragit® E100/4wt% DIK-Na+ (APV 
extruder).  
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5.3 Results on IND Compounded with Eudragit® E100 

 
From solubility parameter calculations, it was anticipated that IND and Eudragit® E100 

would form a miscible system. A possible mixing process of a soluble solid API in a  

polymer system (Figure 5.19), particularly when the processing temperature is lower than 

the melting point of API was described by Liu et al.23 

 
Figure 5.19 Schematic of soluble solid drug particle in the polymer matrix.23 
 
 
5.3.1 FTIR Analysis 

The FTIR spectra of IND, Eudragit® 100, and the Eudragit® E100/IND blends are shown 

in Figures 5.20 and 5.21. It has been reported that IND has different physical states such 

as a stable γ form, a metastable α form, and an amorphous state.104 Taylor and Zografi105 

reported how to determine the physical state of the IND by characterizing the FTIR 

peaks, particularly by analyzing the carbonyl peak. (Table 5.2).  
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Table 5.2 Infrared Peak Positions and Assignments for the Carbonyl Stretching Region 
of Indomethacin105 
Physical state Infrared (cm-1) Assignment 

γ-IND 1717 Asymmetric acid νC=O of a cyclic dimer 

 1692 Benzoyl νC=O 

α-IND 1735 Non-hydrogen bonded acid νC=O 

 1688 Benzoyl νC=O 

 1681 Hydrogen bonded acid νC=O 

 1649 Hydrogen bonded acid νC=O 

Amorphous IND 1735 Non-hydrogen bonded acid νC=O 

 1710 Asymmetric acid νC=O of a cyclic dimer 

 1684 Benzoyl νC=O 

As shown in Figures 5.20 and 5.21 the original crystalline IND particles are in γ-

form. However, changes are observed for the samples prepared in the batch mixer at 130 

oC and 50 rpm. The peak at 1692 cm-1 shifted to 1684 cm-1, and the sharper peak at 1692 

cm-1 became slightly broader at 1684 cm-1, which indicates that the original γ-form was 

converted to amorphous IND. The peak at 1684 cm-1 is much broader at a concentration 

of 4 wt% IND in the polymer excipient indicating a more amorphous state. Thus, it is 

shown that a lower concentration of API promotes better dissolution in the polymer 

matrix. The peak at 1718 cm-1 shifted to 1734 cm-1 indicates the non-hydrogen bonded 

C=O stretch for amorphous IND and Eudragit® E100.105, 106 These results are in good 

agreement with literature results from different IND melt mixing conditions.23  
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Figure 5.20 FTIR spectra of (a) Eudragit® E100, (b) Eudragit® E100/ 4 wt% IND, (c) 
Eudragit® 15 wt% IND, (d) IND (Samples prepared by batch mixer). 

 
Figure 5.21 FTIR spectra in the range between 2000 and 1000 cm-1 of (a) Eudragit® 
E100, (b) Eudragit® E100/ 4 wt% IND, (c) Eudragit® 15 wt% IND, (d) IND (Samples 
prepared by batch mixer) 
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5.3.2 Thermal Analysis 

IND started losing weight at about 220 oC (Figure 5.22), a temperature higher than its 

melting point (162 oC) and lower than the onset degradation temperature of Eudragit® 

E100 (about 250 oC). Eudragit® E100 containing 4 wt% and 15 wt% of IND showed 

lower thermal stability than the unmodified polymer (Figure 5.22). Since IND was fully 

dissolved in the polymer due to favorable interactions,23 the reduced thermal stability of 

Eudragit® E100/IND blends is mainly due to the presence of the less thermally stable 

IND. It should be noted that melt mixing was carried out at 130 oC, below the melting 

point of the API, but above the reported Tg of the polymer (43 oC). As a quantitative 

comparison of thermal degradation, the temperature corresponding to 10 wt% weight loss 

is used to rank the materials in terms of thermal stability: Eudragit® E100 > Eudragit® 

E100/ 4wt% IND> Eudragit® E100/ 15wt% IND.  

The thermal stability of Eudragit® E100/IND composites was also quantified by 

the Friedman equation (Figure 5.23). The calculated Ea values (temperature range 

between 220 and 280 oC) from Figure 5.23 are 2.267 103 kJ/mol, 1.351 103 kJ/mol, and 

0.747 103 kJ/mol for Eudragit® E100, Eudragit® E100/ 4 wt% IND and Eudragit® E100/ 

15wt% IND, respectively; this confirms that Eudragit® E100 has the highest thermal 

stability, decreasing as the concentration of IND increases.  
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Figure 5.22 TGA results of (a) IND, (b) Eudragit® E100, (c) Eudragit® E100/4 wt% IND  
and (d) Eudragit® E100/15 wt% IND (Samples prepared by batch mixer). 
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Figure 5.23 Friedman plots of ln(dα/dt) versus 1/T for the direct calculation of Ea of 
thermal degradation at a heating rate of 20 oC min under N2 (Eudragit® 

 E100/IND blends) 
(Samples prepared by batch mixer). 
 
 

Generally, in miscible systems, the small API molecules would allow the polymer 

chain segments to have greater mobility freedom - the plasticization effect.21, 24, 107 As 

shown in Figure 5.24, the Tg of the IND blends decreased with increasing IND loadings. 

Similar plasticizing effects with miscible API- polymer systems have been reported in the 

literature.2, 108-110 Generally, the reduced glass transition temperature can be calculated by 

the Gordon-Taylor Equation 2.2 for miscible polymer blends.29, 111 However, in Figure 

5.24, the theoretically calculated Tg values do not correspond to the experimental values 

since the experimentally determined Tg (46 oC) of IND was higher than that of the 
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polymer (43 oC). Note that the Tg of Eudragit® E100/ IND system has been shown to 

increase at much higher IND loadings (> 20 wt%) in the polymer matrix due to 

antiplasticization effect.21, 24  

 
Figure 5.24 DSC glass transition temperatures of (a) Eudragit® E100 (b) Eudragit® E100/ 
4wt% IND, and Eudragit® E100/ 15wt% IND (Samples prepared by batch mixer). 
 
 
5.3.3 XRD Analysis 

Figure 5.25 shows XRD results of IND and Eudragit® E100/IND composites. The IND 

spectrum contains many sharp peaks indicating a high degree of crystallinity. The XRD 

peaks have the same pattern as those of γ type IND shown in previous research.104 

However, Eudragit® E100/ IND blends do not show any peaks, a confirmation that IND 

has been dissolved in the polymer matrix and is in an amorphous state. Liu et al23 studied 
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the degree of dissolved IND in the polymer under different melt processing parameters 

and showed that miscibility increased as temperature and mixing rpm increased. Mixing 

conditions in the present study were in the range where Liu et al23 produced miscible 

systems. Figure 5.26 shows XRD patterns of different IND types reported in the 

literature.104 

 
Figure 5.25 XRD results of (a) Eudragit® E100, (b) 4wt% IND /Eudragit® E100, (c) 15 
wt% IND/ Eudragit® E100, and (d) IND (Samples prepared by batch mixer) 
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Figure 5.26 XRD pattern of (top) α-type IND, and (bottom) γ- type IND.104 

 

5.3.4 Morphology of Eudragit® E100/ IND Blend  

Figure 5.27 shows an SEM image of a fractured surface of Eudragit® E100/ 15 wt% IND 

blend. Unlike the Eudragit® E100/ DIK-Na+ composite, the entire surface is quite clear 

and smooth, and no API particles are visible. EDX chlorine mapping in Figure 5.27 

(right) indicates a uniform distribution of IND over the entire polymer area and confirms 

that IND was fully dissolved in the matrix.  
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Figure 5.27 SEM image of Eudragit® E100/15wt% IND (Left), and EDX chlorine 
mapping image of the same region (Right). 
 

It was expected that Eudragit® E100/IND blends would not show any dispersed 

crystalline particles. However, several particles are observed by PLM (Figure 5.28) that 

did not disappear on the hot stage above the IND melting point. As in a previous study,24 

it was concluded that these crystalline particles are impurities from the API.  

 
Figure 5.28 Eudragit® E100/15wt% IND images for polarized optical microscopy.  
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5.3.5 Rheological Study 

Figure 5.29 shows RMS results of Eudragit® E100/INDs blends tested at 130 oC. Unlike 

the Eudragit® E100/DIK-Na+ composites, the IND blends show decreasing viscosity, G′ 

and G″ with increasing IND loading. These effects that occur with plasticizers are in 

good agreement with the DSC results that also showed the plasticizing effect of IND. The 

zero shear viscosities of Eudragit® E100, Eudragit® E100/ 4wt% IND and Eudragit® 

E100/ 15wt% are 1.842 104, 1.420 104, and 8.099 103 Pa-s, respectively, in agreement 

with the plasticization trend. 

Figure 5.29 RMS results of (■) Eudragit® E100, (▲) Eudragit® E100/ 5wt% IND and 
(▼) Eudragit® E100/ 15wt% IND (Samples prepared by batch mixer) 
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5.3.6 Dissolution Profiles 
 
The dissolution profiles of IND and Eudragit® E100/IND composites are shown in Figure 

5.30. As expected, IND shows very poor solubility in the simulated gastric acid at pH 1.2. 

There are several differences of this system as compared to Eudragit® E100/ DIK-Na+ 

(Figure 5.12). Eudragit® E100/IND blends achieved almost 100% dissolved IND while 

Eudragit® E100/ DIK-Na+ composites achieved up to 60%. Since both APIs have almost 

equally low solubility in the low pH medium, the increased apparent solubility of IND 

from the Eudragit® E100/IND blend would be due to the amorphous state of the API in 

the polymer matrix. Although Eudragit® E100/15 wt% IND blends did not show the 

recrystallization behavior of the API observed with Eudragit® E100/ 15wt % DIK-Na+, 

this difference may be due to the enhanced solubility of the amorphous IND in the 

polymer matrix. However, it should be noted that if higher IND loadings are used for the 

dissolution test, the recrystallization effect may reappear.23 Another interesting 

observation is related to the Eudragit® E100/IND physical mixture. The DIK-Na+ in the 

physical mixture of Eudragit® E100/ DIK-Na+ showed improved solubility roughly about 

40 % from 3 % of its apparent solubility (Figure 5.12). By contrast, IND from the 

Eudragit® E100/IND physical mixture does not show any enhanced solubility (Figure 

5.30). Since the solubility of DIK-Na+ is improved significantly with increasing pH while 

IND has a low solubility up to a neutral pH, it appears that the increased 

microenvironmental pH due to the dissolved Eudragit® E100 was only effective for the 

DIK-Na+. Therefore, the state of the API in the polymer matrix is more important in the 

Eudragit® E100/IND blends than in Eudragit® E100/DIK-Na+ composites.  
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Figure 5.30 Dissolution results of (a) Eudragit® E100, (b) IND, (c) Eudragit® E100/4wt% 
IND, (d) Eudragit® E100/15wt% IND (e) Eudragit® E100/4wt% IND physical mixture (in 
pH 1.2 solution) (Samples prepared by batch mixer). 
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5.3.7 Summary 

 
The characterization results for the melt mixed Eudragit® E100/IND miscible blends are 

summarized in Table 5.3  

Table 5.3 Summary of Eudragit® E100/IND Miscible System 
 Eudragit® E100 Eudragit® E100/ 

4 wt% IND 
Eudragit® E100/ 
15 wt% IND 

Miscibility 
prediction from 
solubilty 
parameters 

- Miscible Miscible 

FTIR As expected Shifts-Amorphous 
IND 

Shifts- Amorphous 
IND 

Thermal Stability    

Temp. @ 10% 
weight loss, oC 
 

293.5 269.1 257.4 

Activation Energy, 
kJ/mole 

2.27 x 103 1.35 x 103 0.75 x 103 

Tg 42.7 ± 1.2 41.3 ± 2.2 36.4 ± 2.4 
XRD Amorphous API amorphous- no 

peaks 
API amorphous- no 
peaks 

Morphology Amorphous Complete 
miscibility 

Complete 
miscibility 

Rheology    

Complex viscosity 
ratio,  
10-1/102 rad/s 

8.14 7.17 5.78 

API dissolution 
(pH 1.20) 

- 100% dissolved in 
one hour  

100% dissolved in 
one hour 
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5.4 APIs Dissolution Mechanisms from Eudragit® E100 

Figure 5.31 shows dissolved APIs (IND and DIK-Na+) from the same polymer matrix 

Eudragit® E100. The dissolution rates at the early stages in both cases appear to be the 

same but the apparent solubility of the API from Eudragit® E100/ 4wt% IND is higher 

than that from Eudragit® E100/ 4wt% DIK-Na+.  

Figure 5.31 APIs release from the same polymer matrix. (Samples prepared by batch 
mixer) 
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According to calculation of dissolution profiles by Equations 4.2 and 4.3 (Table 

5.4), APIs dissolutions from the Eudragit® E100 matrix at pH 1.2 are erosion dominant. 

Exponent “n” falls in the range of super case II transport (combination of API diffusion 

and polymer relaxation/dissolution)90 (Table 4.2) and the ratios of relaxation to diffusion 

contributions (R/D) in Equation 4.4 are large (Figure 5.32). 

Table 5.4 Dissolution Fitting Results of Polymer/API Binary System at pH 1.2 
Power law 

(Equation 4.2) 

 

Peppas and Sahlin  
(Equation 4.3) 

 

System 

n 
± 95% CI 

k1 (min-0.5) 
± 95% CI 

k2 (min-1) 
± 95% CI 

Eudragit® E100/ 4 wt% DIK-Na+ 1.58 ± 0.04 0.06 ± 0.01 0.37 ± 0.02 

Eudragit® E100/ 4 wt% IND 1.73 ± 0.06 0.04 ± 0.01 0.21 ± 0.01 
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Figure 5.32 R/D ratio values versus fraction dissolved for Eudragit® E100 containing 
4wt% DIK-Na+ or IND.  

Since a Fickian model would not fit these dissolution profiles, a model developed 

by Hopfenberg on the release of APIs from surface-eroding devices87 is used. 

Hopfenberg’s model (Equation 5.8) describes API release from slabs, spheres and infinite 

cylinders displaying heterogeneous erosion. 

 

                             (Equation 5.8) 

 

Where Mt is the amount of drug dissolved in time t, M∞ is the total amount of API 

dissolved when the pharmaceutical dosage form is exhausted, Mt/M∞ is the fraction of 
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drug dissolved, k0 is the erosion rate constant, C0 is the initial concentration of API in the 

matrix and a0 is the initial radius for a sphere or cylinder or the half-thickness for a slab. 

The value of n is 1, 2 and 3 for a slab, cylinder and sphere, respectively. Since initial 

concentration of APIs (4 wt%) in the matrix and radius of the sample (1.27 cm) are the 

same for both cases and n=1. Equation 5.8 can be simplified as Equation 5.9.  

 

                                       (Equation 5.9) 

 

Figure 5.33 APIs dissolution profile (■: DIK-Na+, ●: IND) from the Eudragit® E100 
fitted with Fickian model. 
 

Dissolution profiles of APIs from the samples were fitted to the Fickian model 

(Equation 4.5) and Hopfenberg model (Equation 5.9) shown in Figures 5.33 and 5.34. As 



121 
 

anticipated, dissolution profiles show a good fitting only with the Hopfenberg surface 

erosion model (Figure 5.34).  

 

Figure 5.34 APIs dissolution profile (■: DIK-Na+, ●: IND) from Eudragit® E100 fitted to 
Hopfenberg model. 
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5.5 Results on DIK-Na+ Compounded with Eudragit® S100 

Eudragit® S 100 is a copolymer designed for delivering an API to the intestinal tracts. 

This polymer is not soluble in a low pH medium but dissolves slowly at pH above 7.0. 

Due to its high Tg (nominal 172oC), which is very close to its thermal degradation 

temperature of 186 oC,64 Eudragit® S100 is difficult to melt mix with API. Therefore, a 

miscible plasticizer needs to be used in order to reduce the Tg and improve processability.  

 

5.5.1 Thermal Analysis  

Figure 5.35 shows the DSC results of Eudragit® S100 and Eudragit® S100 containing 20 

wt% TEC. The addition of TEC having a solubility parameter of 26.2MPa1/2 to Eudragit® 

S100 (δ  = 24.6 MPa 1/2) effectively reduced the polymer Tg to 97.9 oC as also reported in 

other studies.28 Based on calculated solubility parameters (Table 2.1), DIK-Na+ would be 

soluble in Eudragit® S100 as well as its mixture with TEC introducing an additional 

plasticizing effect. Similarly to IND that reduced the Tg of Eudragit® E100, DIK-Na+ also 

reduced somewhat the Tg of Eudragit® S100/TEC proportionally to its loading. 

Figure 5.36 shows TGA results of the plasticizer and blends containing the 

plasticizer and API. The plasticizer, TEC, started losing weight at 130 oC due to 

volatilization and possible decomposition. Eudragit® S100 without plasticizer shows an 

initial weight loss at 180 oC and a significant decomposition starting at 370 oC. The 

polymer containing the plasticizer started losing 20 wt% at 150 oC. Note that due to 

processing difficulties at low temperatures that would also correspond to minimum 

evaporation of the plasticizer, the temperature of 170 oC was selected for compounding. 
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At this temperature, the expected evaporation loss could reduce the concentration of TEC 

in the polymer from the nominal 20 wt% to a lower value.  

 

Figure 5.35 Tg of Eudragit® S100 and its blends: (a) Eudragit® S100, (b) Eudragit® S100/ 
20wt% TEC, (c) Eudragit® S100/ 20wt% TEC-4wt% DIK-Na+, (d) Eudragit® S100/ 
20wt% TEC-15wt% DIK-Na+ (Samples prepared by batch mixer). 
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Figure 5.36 TGA results of (a) Eudragit® S100, (b) Eudragit® S100/ 20wt% TEC, (c) 
Eudragit® S100/ 20wt% TEC-4wt% DIK-Na+, (d) Eudragit® S100/ 20wt% TEC-15wt% 
DIK-Na+, (e) DIK-Na+ and (f) TEC (Samples prepared by batch mixer). 
 

5.5.2 XRD Analysis 

As also expected from solubility parameter calculations, XRD results of Eudragit® S100/ 

20 wt% TEC blends did not show any crystalline peaks, an indication of the presence of 

an amorphous API miscible with the polymer matrix (Figure 5.37).  
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Figure 5.37 XRD results of (a) Eudragit® S100/ 20wt% TEC, (b) Eudragit® S100/ 20wt% 
TEC-4wt% DIK-Na+, and (c) Eudragit® S100/ 20wt%TEC-15wt% DIK-Na+ (Samples 
prepared by batch mixer). 
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5.5.3 Morphology Observation  

Polarized light microscopy (Figure 5.38), SEM imaging and EDX chlorine mapping 

(Figure 5.39) confirmed the absence of crystalline particles and the uniform distribution 

of a fully dissolved DIK-Na+  in the polymer matrix..  

 

Figure 5.38 Polarized optical microscopy image of Eudragit® S100/ 20wt%TEC-15wt% 
DIK-Na+. 
 

 

Figure 5.39 SEM image of Eudragit® S100/ 20wt%TEC-15wt% DIK-Na+ (Left) and 
EDX chlorine mapping of the same region (Right). 

       20µm 
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5.5.4 Dissolution Test 

Figure 5.40 shows the dissolution profiles of Eudragit® S100 blends in a pH 7.4 buffer 

solution. DIK-Na+ dissolved quickly in the simulated body fluid, unlike its lack of 

dissolution under acidic conditions (Figure 5.12). Both Eudragit® S100/TEC (20wt%) 

with 4wt% and 15wt% DIK-Na+ show sustained API release, which may be due to the 

slower dissolution rate of the polymer at this pH of 7.4 as compared to Eudragit® E100 at 

pH 1.2 (Figure 5.12). Dissolution of DIK from Eudragit® S100/ 4wt% DIK-Na+ blend 

was tested at the pH 1.2 and pH was increased up to pH 7.4 (Appendix F) in order to 

confirm the stability of Eudragit® S100 at lower pH. The polymer excipient containing 15 

wt% DIK-Na+ shows slightly faster API release profile than the one containing 4 wt% 

DIK-Na+. DIK-Na+ has tendency to increase the pH of the medium, therefore the 

microenvironmental pH of blend containing 15wt% DIK-Na+ can be higher than that of 

4wt% blend. This could accelerate the DIK-Na+ release. It should also be mentioned that 

according to literature data, higher plasticizer concentration can increase the API 

dissolution rate. 
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Figure 5.40 Dissolution profile of (a) Eudragit® S100/ 20 wt%TEC, (b) Eudragit® S100/ 
20 wt% TEC- 4wt% DIK-Na+, (c) Eudragit® S100/ 20wt% TEC/15wt% DIK-Na+, and (d) 
DIK-Na+ (in pH 7.4 phosphate buffer solution). (Samples prepared by batch mixer) 
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5.6 Conclusions 

Eudragit® E100 was melt compounded with two different APIs, DIK-Na+ and IND at 4 

wt% and 15 wt% loadings. A miscible system was obtained with IND while DIK-Na+ 

was not dissolved but dispersed in the polymer matrix. This miscibility difference was 

anticipated from calculations of solubility parameters. The immiscible system, Eudragit® 

E100/ DIK-Na+, showed increased Tg and increased zero shear viscosity with increasing 

API loading.  

Eudragit® E100/ DIK-Na+ blends prepared by solvent casting could contain 

amorphous DIK-Na+ in the matrix at low API concentration. This amorphous  Eudragit® 

E100/ DIK-Na+ system showed improved solubility of DIK-Na+ up to 90% in a pH 1.2 

buffer solution. The composites prepared by twin screw extrusion showed slightly finer 

API dispersion than the ones prepared by batch mixer. However, the apparent solubility 

of the API from these composites was similar to those of samples produced by the batch 

mixer. Enhanced solubility was more dependent on the state of API in the polymer rather 

than the preparation methods. 

Eudragit® E100/IND blends showed decreased Tg and zero shear viscosity with 

increasing API loading. The increased apparent solubility of DIK-Na+ from Eudragit® 

E100/DIK-Na+ in 1.2 pH buffer solution was mainly attributed to increased wettablility 

due to the surfactant effect and increased microenvironmental pH due to the dissolved 

polymer. High DIK-Na+ loadings resulted in API recrystallization in the medium. IND 

dissolved from Eudragit® E100/IND blends also showed increased apparent solubility 
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and this increased solubility was due to, not only to the increased wettabililty of the API 

by the polymer, but also to the IND transition from a crystalline to an amorphous state.  

The Power law and the Peppas and Sahlin equations predicted the API dissolution 

mechanism from the polymer matrix. The results indicated that super case-II transport 

and erosion mechanisms are dominant. Therefore, API dissolution from the polymer 

matrix was better represented by the Hopfenberg surface erosion model.  

Eudragit® S100/TEC also produced a miscible system with DIK-Na+. This blend 

also showed reduced Tg and zero shear viscosity. In addition, Eudragit® S100/TEC blends 

showed sustained API release profile. 
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CHAPTER 6 

API-FUNCTIONALIZED NANOCLAY/POLYMER COMPOSITES 

Conventionally, nanoclays are used in order to increase thermal, barrier and mechanical 

properties of polymers. Studies on other polymer related applications are very rare. In 

this chapter, a novel application, namely the sustained API release from anionic 

nanoclays embedded in a water soluble polymer is studied and compared with the release 

from binary systems, which were discussed in previous chapters. To the best of our 

knowledge, this type of polymer/API/clay ternary system produced by melt mixing has 

not yet been reported in the literature. 

 

6.1. Eudragit® E100 and DIK/Clay Compounds 

In a previous chapter, a DIK/Clay hybrid was shown to have improved DIK apparent 

solubility due to the amorphous state of the API in the clay interlayer space. Therefore, it 

was anticipated that incorporation of the nanoclay hybrid may also increase the apparent 

solubility of the API released from the Eudragit® E100/ nanoclay hybrid composites. 

  

6.1.1 XRD Analysis 

Eudragit® E100 is an amorphous polymer showing no crystalline peaks in its XRD 

spectrum (Figure 6.1 (a)). However, Eudragit® E100 mixed with 15 wt% DIK-Na+ shows 

a major peak at 6.67o (Figure 6.1 (b)) and other minor peaks elsewhere. These peaks 

provide evidence that DIK-Na+ is not dissolved during melt mixing but dispersed as 

crystalline particles. Eudragit® E100 compounded with DIK/Clay (10 wt%) (Figure 6.1 

(c)) also shows crystalline peaks but these are not exactly the same as the ones of 
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Eudragit® E100 compounded with DIK-Na+ but more closely correspond to those of the 

nanoclay hybrid DIK/Clay (Figure. 6.1(d)). This suggests that the API in the clay 

interlayer space did not undergo any changes during the melt mixing process. This is 

because the first peak in Figure 6.1(d) marked with a star corresponding to the 

intercalated API, does not shift to a higher 2θ angle but to a slightly lower 3.83o 2θ angle 

in Figure 6.1(c). The slightly increased basal spacing of DIK/Clay in the Eudragit® E100 

matrix after hot melt processing may have resulted from a small amount of polymer 

migrated into the anionic clay interlayer space during melt compounding. Similar effects 

have been observed in other studies on nanoclay composites.112,113 
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Figure 6.1 XRD results of (a) Eudragit® E100, (b) Eudragit® E100/ 15wt% DIK-Na+, (c) 
Eudragit® E100-10wt% DIK/Clay, and (d) DIK/Clay (Samples prepared by batch mixer). 
 

6.1.2 SEM and EDX Analysis 

The fracture surfaces of Eudragit® E100 and its melt mixed compounds were examined 

by SEM. As discussed in previous chapters, Eudragit® E100 compounded with DIK-Na+ 

shows agglomerated crystalline API particles (Figure 6.2 (top)). The size of the DIK/Clay 

hybrid particles shown in Figure 6.2 (bottom) is significantly smaller as compared to that 

of DIK-Na+ particles and are more uniformly dispersed (average particle size 10 µm vs. 

30 µm).  
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Figure 6.2 SEM images of fracture surface of (top) Eudragit® E100/ 4 wt% DIK-Na+ and 
(bottom) Eudragit® E100-10wt% DIK/Clay (Samples prepared by batch mixer). 
 

6.1.3 Dissolution Test 

The data from the dissolution tests of Eudragit® E100 compounded with DIK-Na+, 

DIK/Clay and physically mixed with DIK-Na+ in SGF are shown in Figure 6.3.  
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The improved apparent solubility of DIK-Na+ from Eudragit® E100/DIK-Na+ 

compounds as compared to DIK-Na+ from the Eudragit® E100/DIK-Na+ physical mixture 

may be attributed to the less aggregated DIK-Na+ particles in the matrix after hot melt 

mixing and the enhanced wettability due to the polymeric excipient. The API from the 

physical mixture was separated from the polymer powder and floated as segregated 

particles when the sample was immersed into the medium. As a result, the hydrophobic 

API (at low pH) tended to minimize its contacting surface with the medium, thereby 

reducing wettability. The API from the Eudragit® E100-DIK/Clay composite shows 

roughly 10% increased solubility as compared to the API from the Eudragit® E100/DIK-

Na+ compound. This increased apparent solubility can be explained as follows: 

1. The crystalline DIK-Na+ is at least partially present in an amorphous state in 
the anionic clay interlayer space and would therefore dissolve more efficiently 
in the medium.  
 

2. The smaller size of the DIK/Clay as compared to the DIK-Na+ agglomerates in 
the matrix would provide a larger contacting surface area, thereby affecting 
rate of dissolution and apparent solubility. 

 

Along with the increased apparent solubility, it should be noted that the API 

dissolution results from Eudragit® E100-DIK/Clay have a relatively lower variability as 

compared to those from the Eudragit® E100/DIK-Na+ compound due to the smaller and 

more uniformly dispersed DIK/Clay particles. However, the apparent solubility cannot 

reach 100 %, unlike the one in the case of API-polymer miscible systems23 which 

confirms again that fully dissolved amorphous API in the polymer matrix is preferable in 

order to achieve the maximum apparent solubility.  
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By comparison to the difference in the API dissolution rate between the DIK/Clay 

and DIK-Na+ shown in Figure 4.11, the API dissolution rates from the Eudragit® E100 

compounds containing only API or nanoclay hybrid do not show significantly differences. 

This could be evidence that the surfactant effect of Eudragit® E100 in the earlier stages of 

the dissolution test was dominant and it prevailed over the effect of the clay hybrid. The 

physical mixture shows a slightly higher dissolution rate at the early stages. This is 

because the small size Eudragit® E100 powder (other samples were pressed to thin disks) 

dissolved faster and affected the overall mixture dissolution rate immediately.  

 

Figure 6.3 Dissolution results in SGF (pH 1.2) of: (a) Eudragit® E100-10 wt% DIK/Clay, 
(b) Eudragit® E100/ 4wt% DIK-Na+, (c) physical mixture of Eudragit® E100 and 4 wt% 
DIK-Na+ (Samples prepared by batch mixer) (Note: Data on DIK/Clay (d) added for comparison). 
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Dissolution test of the ternary system (Eudragit® E100-DIK/Clay) prepared by 

three different methods (batch melt mixing, solvent casting, and extrusion) showed 

similar dissolution patterns (i.e. similar dissolution rate and apparent solubility: see 

Appendix G). This is because each preparation method achieved micro rather than nano 

dispersion of the hybrid in the polymer matrix (Appendix H).  
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6.2 Eudragit® E100 Compound with IND/Clay 

Eudragit® E100 and IND form a miscible system by melt mixing during which IND 

becomes amorphous. Therefore, maximum API release and apparent solubility are 

already expected for this system. In this section, binary and ternary Eudragit® E100 

compounds containing respectively amorphous IND and IND at the clay interlayer space 

are compared.  

 

6.2.1 XRD Analysis 

In Figure 6.4 (d), Eudragit® E100-IND/Clay shows a peak at 4.79o due to the IND/Clay; 

this is absent in the spectra of the individual components. Recalling the data on DIK, 

Figures 6.1(c, d) contained similar spectra of DIK/Clay in Eudragit® E100 matrix and 

DIK/Clay. The interlayer spacing of DIK/Clay showed an increase from (2.24 nm → 2.31 

nm) during melt mixing, from migration of polymer molecules into the clay layers by 

comparison to Figure 6.4 (d) that shows a slightly reduced interlayer space (1.91 nm → 

1.84 nm) and a reduced peak intensity indicating reduced crystallinity. This decreased 

interlayer spacing of IND/Clay and reduced XRD intensity could be attributed to 

structural changes of IND during melt mixing at a temperature approaching its melting 

temperature of 162 oC and the high shear stresses involved.  
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Figure 6.4 XRD results of (a) IND, (b) Eudragit® E100, (c) Eudragit® E100/4 wt% IND, 
(d) Eudragit® E100-10wt% IND/Clay, and (e) IND/Clay (Samples prepared by batch 
mixer). 
 

6.2.2 SEM Analysis 

While Eudragit® E100/ IND mixtures indicate a miscible system (Figure 6.5 top), the 

Eudragit® E100- IND/Clay system (Figure 6.5 bottom) shows particles in the polymer 

matrix, presumably corresponding to microsized poorly dispersed clay aggregates that 

should contain API. These morphological differences should affect the dissolution 

profiles as shown below.  
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Figure 6.5 SEM images of the fracture surface of (top) Eudragit® E100/IND, and 
(bottom) Eudragit® E100-IND/Clay (Samples prepared by batch mixer). 

 

 

        20 µm 

        20 µm 
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6.2.3 Dissolution Results 

Dissolution profiles of IND from Eudragit® E100/ 4wt% IND and Eudragit® E100-

10wt% IND/Clay in the SGF (pH 1.2) are shown in Figure 6.6. Eudragit® E100 

containing 10% IND/Clay shows approximately 70% of IND solubility while Eudragit® 

E100/ 4wt%IND shows almost 100 % IND apparent solubility. Therefore, it can be 

concluded that for this system API incorporation in the nanoclay is not as efficient as for 

the system containing amorphous API in the polymer matrix. Possible reasons can be 

strong interactions between IND and clay that retard dissolution and/or state of the API in 

the clay agglomerates (amorphous vs. crystalline). 

 

Figure 6.6 Dissolution profiles in SGF pH 1.2 of (a) Eudragit® E100, (b) IND, (c) 
Eudragit® E100/4wt% IND and (d) Eudragit® E100-10wt% IND/Clay (Samples prepared 
by batch mixer).  
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6.3 Eudragit® S100-Plasticizer Compounds with DIK/Clay 

The quaternary system (polymer/plasticizer/API/clay) for this particular combination 

employs a different plasticized acrylic polymer and is intended to be used for sustained 

API delivery. In a conventional method employing a binary system of polymer /API, the 

API is directly released from the polymer matrix while the polymer is dissolved or eroded. 

In this quaternary system, API is not directly released but has to diffuse out from the clay 

interlayer in the presence of platelets that may control diffusion. Therefore, it is 

anticipated that API may be released slower than in a conventional binary system. 

 

6.3.1 Thermal Analysis 

Figure 6.7 contains TGA results of Eudragit® S100 plasticized with 20 % TEC and the 

blends/composites of the plasticized mixture with DIK-Na+ and DIK/Clay. TGA curves 

of the unmodified polymer and its additives TEC and DIK-Na+ are also shown for 

comparison. Figure 6.7 contains essentially the data shown and discussed earlier in 

Figure 5.32 with an additional curve for the composite Eudragit® S100/ 20% TEC- 10 

wt% DIK/Clay. Thermal stability expressed as temperature at 20% weight loss provides 

the following ranking: Eudragit® S100 > DIK-Na+ > Eudragit® S100/ 20 wt% TEC-10 

wt% DIK/Clay > Eudragit® S100/ 20 wt% TEC-4 wt% DIK-Na+ > Eudragit® S100/ 20 

wt% TEC > TEC. 
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Figure 6.7 TGA results of (a) Eudragit® S100, (b) Eudragit® S100/ 20% TEC, (c) 
Eudragit® S100/ 20% TEC- 4 wt% DIK-Na+, and (d) Eudragit® S100/ 20% TEC- 10 wt% 
DIK/Clay, (e) DIK-Na+ and (f) TEC (Samples prepared by batch mixer). 

 

Figure 6.8 contains glass transition temperature values for Eudragit® S100 

plasticized with 20% TEC and the blends/composites of the plasticized mixture with 

DIK-Na+ and DIK/Clay. Figure 6.8 includes essentially the data shown in Figure 5.31, 

and, in addition, the Tg of Eudragit® S100/ 20% TEC-10 wt% DIK/Clay. The glass 

transition temperature of composite (e) containing plasticizer and DIK/Clay was 

somewhat higher than that of Eudragit® S100 containing either only plasticizer (b) or 

plasticizer and DIK-Na+ (c or d). This increased Tg is a common phenomenon in clay 
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composites since the dispersed clay restricts the mobility of the polymer chains.114 It can 

also be argued that during melt processing the API which could also be acting as a 

plasticizer was not released from the interlayer. Ha and Xanthos115 reported that ionic 

liquids, which could be functioning as plasticizers, exerted a small plasticizing effect on 

PLA due to the barrier effect of the nanoclay layers.  

 

Figure 6.8 Tg of Eudragit® S100 composites of (a) Eudragit® S100, (b) Eudragit® S100/ 
20wt% TEC, (c) Eudragit® S100/ 20 wt% TEC- 4 wt% DIK-Na+, (d) Eudragit® S100/ 
20wt% TEC-15 wt% DIK-Na+, and (e) Eudragit® S100/ 20 wt% TEC-10 wt% DIK/Clay 
(Samples prepared by batch mixer). 
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6.3.2 SEM and EDX Analysis 

Figure 6.9 shows a fracture surface of the Eudragit® S100 composite containing 20 wt% 

TEC and 10 wt% DIK/Clay. By rough approximation from the SEM images, the 

DIK/Clay particles are smaller than 5 µm (Figures 6.9 and 6.10) and the particles are 

more uniformly dispersed than in the Eudragit® E100 matrix (Figure 6.2 bottom). This 

suggests that Eudragit® S100 has better compatibility with DIK/Clay than Eudragit® E100. 

 

 

 

 

 

 
Figure 6.9 SEM image of Eudragit® S100/ 20 wt% TEC-10 wt% DIK/Clay fracture 
surface.  
 

EDX mapping was carried out in order to identify the location of DIK/Clay in the 

matrix and the degree of dispersion of the hybrid. The shape and location of the 

DIK/Clay could be identified by EDX mapping of Mg, Al, and Cl mapping since HT 

contains magnesium and aluminum, and DIK contains chlorine. On the EDX images, 

dense bright dots indicate higher population of each individual element. The population 

of chlorine matched with magnesium and aluminum indicating that DIK is associated 

with nanoclay. 

            30µm           200 nm     
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Figure 6.10 Images of Eudragit® S100/20 wt% TEC-10 wt% DIK/Clay by (a) SEM, (b) 
EDX Mg mapping, (c) EDX Al mapping, and (d) EDX Cl mapping (Samples prepared by 
batch mixer). 

 

6.3.3 Rheological Study 

The immiscible API-polymer system (Eudragit® E100/ DIK-Na+) showed increased 

viscosity vs. the unfilled polymer since the API acted as a rigid filler (Figure 5.10). By 

contrast, based on their solubility parameters, it was expected that DIK-Na+ and 

Eudragit® S100/TEC would be miscible; from the reduced Tg of the polymer in the 

Eudragit® S100/TEC-DIK-Na+ compounds, it was also expected that DIK-Na+ would act 

as an additional plasticizer. Figure 6.11 shows related RMS results where DIK-Na+ 

reduced the zero shear viscosity of the matrix while DIK/Clay increased its viscosity. 

Thus, the systems can be classified respectively as polymer blends and polymer 

(a) (b) 

(c) (d) 

        2µm 
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composites. Unlike Eudragit® E100, Eudragit® S100 and its composites do not show a 

cross-over point between loss and storage modulus, and the storage modulus is always 

higher than the loss modulus indicating rubber like properties over the frequency range.  

 

Figure 6.11 RMS results of (■) Eudragit® S100/20 wt% TEC, (▲) Eudragit® S100/20 
wt%TEC-4 wt% DIK-Na+, and (▼) Eudragit® S100/20 wt%TEC-10 wt% DIK/Clay 
(Samples prepared by batch mixer). 
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6.3.4 Dissolution Study 

Initially, among the expected characteristics of the clay hybrid system was a sustained 

drug release. Since due to tortuosity reasons the intercalated API in the nanoclay 

interlayer space might have  required more time to be released, sustained release seemed 

readily achievable. However, in the simulated gastric fluid acidic medium at pH 1.2, the 

anionic nanoclay was dissolved shortly after its immersion into the medium and the API 

in the clay interlayer would thus immediately be released. On the other hand, since HT is 

not soluble at a pH 7.4 simulated body fluid medium, sustained API release would be 

expected. Figure 6.12 shows the dissolution profiles of Eudragit® S100/ 20 wt% TEC 

containing 4 wt% DIK-Na+ and 10 wt% DIK/Clay. Eudragit® S100 containing the API 

shows a relatively slow release profile while the one containing DIK/Clay shows an even 

slower API release. The different release behavior between the two compounds can be 

explained as follows: 

1) DIK in the clay interspacing may experience one more step in its release path, 
which is diffusion from the clay interlayer space. 
 

2)  Nanoclay platelets may act as barriers and slow down the DIK release process in 
the polymer matrix and/or its buffer solution. 
 

Note that Eudragit® S100/ 20wt% TEC containing 10wt% DIK/Clay achieved almost 

100% DIK release, while DIK/Clay in Eudragit® E100 reached only 70% (Figure 6.3). 

This different apparent solubility is mainly due to the different water solubility of the API 

in the different pH media.  
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Figure 6.12 Dissolution results in pH 7.4 buffer of (a) Eudragit® S100, (b) DIK-Na+, (c) 
DIK/Clay, (d) Eudragit® S100/ 20 wt% TEC- 4 wt% DIK-Na+ and (e) Eudragit® S100/ 20 
wt% TEC-10 wt% DIK/Clay (Samples prepared by batch mixer). 

 
 Dissolution results of Eudragit® S100 compounds were fitted with Equations 4.2 

and 4.3 (ordinary least square regression, ± 95% confidence limits)116 and results are 

listed in Table 6.1. It is to be noted that Eudragit® S100 compounds containing DIK/Clay 

have a larger “n” exponent value (Equation 4.2) as compared to the ones that do not 

contain clay. This is somehow indicating that the diffusion tendency of DIK vs. erosion 

was reduced due to the presence of the clay in the polymer matrix. Values calculated by 

Equation 4.3 also show interesting results that the sample containing nanoclay showed 

reduced diffusion constant while the erosion constant remains at a similar value as 

compared to the sample without the nanoclay. Therefore, it can be interpreted that DIK 
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release from the polymer matrix was either obstructed in the presence of nanoclay due to 

its barrier property, or the actual release mechanism was modified in the presence of the 

nanoclay. 

Table 6.1 DIK dissolution fitting results of from Eudragit® S100/ TEC matrix for 
Equations 4.2 and 4.3 

Power law, 
(Equation 4.2) 

Peppas and Sahlin, 
(Equation 4.3) 

Sample 

n ± 95% CI k1 (min-0.5) 
± 95% CI 

k2 (min-1) 
± 95% CI 

Eudragit® S100/20wt% 
TEC-4wt% DIK-Na+ 

0.75 ± 0.02 0.75 ± 0.01 0.56 ± 0.05 

Eudragit® S100/20wt% 
TEC-10wt% DIK/Clay 

0.92 ± 0.03 0.02 ± 0.01 0.57 ± 0.04 
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6.4 Conclusions 

Ternary polymer systems containing API modified nanoclay were compared with binary 

systems in which API was melt mixed with the polymer directly. Ternary systems 

showed several advantages. For example, the API from Eudragit® E100 melt mixed with 

DIK/Clay had higher DIK apparent solubility than from a binary system and less 

dissolution variation. However, use of this ternary system could not increase the API 

apparent solubility as much as an API-polymer miscible system did. As an example, 

Eudragit® E100 containing IND/Clay showed less apparent IND solubility than Eudragit® 

E100/IND system. Eudragit® S100 compounds containing plasticizer and DIK/Clay 

showed slower API release than in the absence of clay in pH 7.4 buffer solution. This 

slower release behavior due to the presence of the nanoclay platelets in the polymer 

matrix would be related to the formation of a more tortuous API diffusion path and/or 

modification of the release mechanism in the presence of the nanoclay. It remains to be 

seen whether a system containing exfoliated nanoclay and API separately mixed with the 

polymer would have different dissolution characteristic than our existing system. 
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CHAPTER 7 

CONCLUDING REMARKS AND SUGGESTED FUTURE STUDIES 

 
7.1 Summary 

This dissertation contains the results of three related novel investigations in the field of 

structure-property-processing relationships of pharmaceutical polymer-based products. 

They are: a) modification of a pharmaceutical anionic nanoclay with two different APIs 

to produce nanohybrid API carriers intended to be used alone or in two, structurally 

different, acrylic polymer matrices, b) comparison of binary systems containing the 

above APIs in the selected acrylic polymers in terms of their miscibilities with the 

polymer, but in the absence of nanoclay, and c) comparison of the polymer/API binary 

systems with ternary polymer/API/Clay systems. Polymeric compounds were primarily 

produced by hot melt batch or extrusion mixing. 

 Hydrotalcite containing carbonate ions in its interlayer space is one of the most 

common types of anionic clays. However, due to the strong electrostatic forces between 

the carbonate anions in the interlayer space and the cationic metal layers of hydrotalcite, 

it is extremely difficult to replace the carbonate anions with foreign anions by ion 

exchange, including those anions present in anionic APIs. The co-precipitation method 

which involves synthesis of the clay in the presence of organic modifiers is generally 

used in order to produce the modified hydrotalcite containing foreign anions. Instead of 

the co-precipation method, the calcination method which can be directly applied to 

carbonated hydrotalcite was used in this work and successfully achieved API 

intercalations. During reconsitution of the clay, the crystalline API (DIK-Na+ or IND) in 

the clay interlayer was apparently transformed in an amorphous state, and as a result it 
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showed increased apparent solubility in the simulated body fluids. The intercalated API 

was stable in the clay interlayer for several months. However, it should be noted that IND 

appeared to have degraded or structurally modified by the calcined hydrotalcite during 

the clay exchange reaction. Therefore, a particular combination of API and clay needs to 

be carefully selected. 

 The second study dealt with API-polymer miscible or immiscible systems 

prepared by different mixing methods. The selected APIs, DIK-Na+ and IND, have low 

solubility at the low pH of the aqueous medium and different solubility parameters by 

comparison with the polymer. The Eudragit® E100/ DIK-Na+ mixture produced by batch 

melt mixing showed an API solid dispersion whereas the Eudragit® E100/ IND system 

produced an API solid solution. These different morphologies were anticipated by 

calculating API and polymer solubility parameters and were confirmed by several 

analytical methods such as SEM, PLM, and XRD. Apparently, the API dissolved from 

the miscible API-polymer system showed better apparent solubility in the aqueous media. 

In order to confirm the effect on apparent solubility of the different API physical states 

differing in particle size or crystallinity, solvent casting and twin screw extruder mixing 

were compared with batch mixing. Solvent casting is a common method used in the 

pharmaceutical industry to provide good mixing since the API can be stirred in the low 

viscosity solution instead of a highly viscous molten polymer. Twin screw extruder can 

also provide better mixing due to the generation of higher shear stresses than in the batch 

mixer. The results for the twin screw extruder showed that DIK-Na+ can be dispersed as a 

finer particle in the polymer matrix. As a result, the dissolution rate was slightly faster 

than the one from the batch mixer. At low DIK-Na+ loading in the polymer matrix 
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prepared by solvent casting there were signs of DIK-Na+/polymer miscibility attributed to 

the presence of residual solvent. The amorphous API in the polymer matrix showed 

improved apparent solubility as compared to its crystalline state. This confirmed that the 

state of API in the polymer matrix is the most important factor to increase its apparent 

aqueous solubility. 

	   The third segment of this research focused on the API release from the ternary 

system (API/clay/polymer) produced by hot melt mixing (mostly batch mixing). In 

general, systems produced by hot melt mixing are binary systems that contain only APIs 

and polymers. In this work, a novel approach in order to have a sustained API release by 

utilizing the nanoclays was attempted. Since the API present in the clay interspacing may 

experience one more step in its release by diffusion as compared to the binary system, it 

was anticipated that the API from the ternary system would have a slower and more 

controlled release than the one from the binary system. At the pH of the simulated gastric 

fluid, the clay was dissolved in the acidic condition so that the sustained release was not 

observed while sustained released was shown in the simulated body fluid since the clay 

was not dissolved in the neutral pH and could function as a barrier controlling diffusion.	  

Controlled API release from such a ternary system produced by hot melt mixing, to the 

best of our knowledge, has not been reported in the literature. 

 The mechanisms of APIs release in solution from the nanoclay and the polymer 

matrix were identified by using the Korsmeyer-Peppas (Power law) and Peppas-Sahlin 

models. The API dissolution from the nanoclay in different pH media showed diffusion 

predominant mechanism while from the polymer matrix at acidic conditions showed 

erosion predominant mechanism. Therefore, the API dissolution from the nanoclay and 
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from the polymer matrix showed good fitting with the Fickian diffusion and Hopfenberg 

surface-erosion models, respectively. By considering their characteristic dissolution 

mechanisms, it can be readily anticipated that the ternary system containing 

API/Clay/Polymer involves the diffusion and erosion combined mechanisms and may 

require more advanced and complex modeling in order to describe its release mechanism. 
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7.2 Future Studies 

1. Study Possible Adverse Interactions (Degradation during Clay Intercalation) 
between API and Calcined Clay.  
 
During the process of the clay modification, it was recognized that the pH of the solution 

(MeOH and H2O) may affect the crystalline structure of the modified nanoclay. API 

modified nanoclays prepared in different pH solutions showed different XRD spectra. 

Particularly, the harmonic peaks identified as Miller indices of (006) and (009) were 

either shifted or removed. Therefore, it would be worthwhile to analyze the effects on the 

crystallinity of API modified nanoclays at different solution pH values. Since IND 

showed degradation or some structural modification while it reacted with the calcined 

hydrotalcite, it is possible that the highly alkaline solution may have caused these 

changes. Therefore, it would be worthwhile to identify the type of interaction that occurs 

during the reaction.  

 

2. API/Clay Particles were not Dispersed in their Nanosize Dimensions.  

This may be due to inappropriate screw configurations, poor compatibility between API 

modified clay and polymer, and poorly expanded interlayer due to the low MW API. 

Selection of proper screw configuration for TSE or applying gas such as super critical 

carbon dioxide during melt mixing may be helpful in order to achieve nanodispersion and 

break up agglomerates. Additional additives in the formulation, or APIs with higher MW 

and different structures could affect compatibility, wetting and dispersion.  



157 
 

3. Improve Controlled Release Characteristics by Combining Binary and Ternary 
Systems  

 
It was clearly observed that the ternary system containing API modified nanoclay 

releases the API more slowly than the API-polymer binary system. This slower release 

from the ternary system is mainly due to the presence of the nanoclay which interferes 

with the API diffusion. Since release rates of binary and ternary systems are different, 

novel applications can be realized by using mixtures of the two systems. In the case of 

the same API in both systems, continuous API release can be achieved over a long time 

period. In the case of two different API systems, multifunctional API release can be 

achieved for example, API “A” from the binary system can be released at a designated 

time (earlier stage) and API “B” from the ternary system can be released at a later stage.  
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APPENDIX A 

 
DIK/CLAY TGA ISOTHERMAL TEST 

 
API modified clay may be exposed at a high temperature, higher than the mixing 

temperature (130 oC) which was used in this study, particularly in the case of a different 

polymer. In order to observe a possible thermal degradation, isothermal TGA tests of API 

modified clay were carried out at higher temperature. Figure A.1 shows isothermal TGA 

results of DIK/Clay at 180 oC and 200 oC for 10 minutes. The mixture does not show 

significant weight loss at both conditions, indicating good thermal stability (the initial 

weight loss is due to the presence of the moisture).  

 
Figure A.1 Isothermal TGA results of DIK/clay at 180 oC and 200 oC in air. 
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APPENDIX B 

 
CALCULATION FOR API CONTENT IN NANOCLAY 

 
According to elemental analysis, DIK/Clay contains 22.68 wt% and 1.95 wt% of carbon 

and nitrogen respectively. Based on this information, the content of DIK in the clay can 

be calculated by the procedure below (Table B.1). IND content of IND/Clay is calculated 

as in Table B.2  

Table B.1 Calculation of DIK Content  
Element Experimental element 

content, % 
 

Calculated wt 
% of element 
based on API 
MW 296.1 
 

 Calculated API wt fraction 
(x) and Clay wt fraction (y) 
 
 

Carbon 
 

22.68 wt%  
 

56.72 wt% 

, 
, 

  
 

Nitrogen 1.95 wt% 4.72 wt% 

, 
, 
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Table B.2 Calculation of IND content 
Element Experimental element 

content, % 
 

Calculated wt 
% of element 
based on API 
MW 357.7 

 Calculated API wt % (x) 
and Clay wt% (y) 
 

Carbon 
 

21.41 wt%  
 

63.7 wt% 

, 
, 
 

 
Nitrogen 1.20 wt% 3.91 wt% 

, 
, 
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APPENDIX C 
 

DISSOLUTION OF HT IN SIMULATED GASTRIC FLUID 
 

Hydrotalcite (HT) (0.5 g/l) was first dispersed and fully dissolved in SGF solution (pH 

1.2) within 30 minutes as shown in Figure C.1  

 
Figure C.1 HT dissolution in SGF (pH 1.2). (top) HT after being added into SGF (0 
minute) and (bottom) HT after 30 minutes in the SGF.  
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APPENDIX D 
 

ADDITIONAL INFORMATION FOR CALCULATING VISCOSITY RATIO OF 
DIK/CLAY COMPOSITES 

 
In this section, additional information obtained from Nielson100 for calculating viscosity 

ratios shown in Equations (5.3, 5.4, and 5.5) are listed.  

kE : 2.5 (dispersed spheres) in Equation 5.3 
: 0.637 spheres (random closed packing) in Equation 5.4 

 

In Equation 5.5                                                              (Equation D.1) 
 
In Equation 5.5                                      A=kE – 1=1.5                                   (Equation D.2) 
 

In Equation 5.5                                      B = 1 for rigid filler    (Equation D.3) 

 
Vf: Volume fraction  
 
Table D.1 Results of Viscosity Ratio  
   Viscosity ratio, ηc/ηm 

API 
loading 

Viscosity 
(Pa⋅s) 

API  
Vf 

Experimental Mooney Eq. 
5.3 

D&K Eq. 
5.4 

Nielsen Eq. 
5.5 

0 wt% 17420     0 1.00  1.00 1.00 1.00 
4 wt% 23190 0.03 1.33 1.10 1.09 1.09 
15 wt% 29230 0.11 1.67 1.41 1.36 1.33 
25 wt% 35670 0.19 2.04 2.01 1.78 1.67 
40 wt% 52550 0.33 3.01 5.28 3.12 2.56 
Densities of DIK-Na+ and Eudragit® E100 are 1.5 g/cm3 and 1.09 g/cm3, respectively 
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APPENDIX E 
 

THERMAL STABILITY OF EUDRAGIT® E100 /DIK-NA+ COMPOSITES 
PREPARED BY VARIOUS METHODS 

 
Figure E.1 shows the TGA results of Eudragit® E100/ 4wt% DIK-Na+ prepared by 

different methods such as batch mixing, TSE, and solvent casting. At 500oC the samples 

containing API show similar amount of residuals. This is an indication that all the 

samples contain the same amounts of API. Samples prepared by TSE and solvent casting 

show somewhat retarded onset degradation temperature. This may be due to the better 

dispersion of the API in the polymer matrix as compared to the one from batch mixer.    

 
Figure E.1 TGA results of Eudragit® E100 and Eudragit® E100 containing 4 wt% DIK-
Na+ prepared by various methods (Batch mixing, TSE, and solvent mixing). 
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APPENDIX F 
 

STABILITY TEST OF EUDRAGIT® S100 AT DIFFERENT pH 
 

In order to confirm the stability of Eudagit® S100/ 20 wt% TEC- 4 wt% DIK-Na+ at a low 

pH, the sample was immersed into the pH 1.2 SGF. The pH of the medium was increased 

by adding 0.5 N NaOH. Figure F.1 shows the amount of dissolved DIK from the blend to 

the medium. DIK-Na+ was not detected at the pH lower than 7.4 due to the presence of 

Eudragit® S100 coating but it starts appearing when the pH of the medium reached 7.4.  

 
Figure F.1 Dissolution profile of DIK from Eudragit® S100/ 20 wt% TEC- 4wt% DIK-
Na+ at different pH. 
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APPENDIX G 
 

DISSOLUTION TEST OF EUDRAGIT® E100-DIK/CLAY PREPARED BY 
DIFFERENT METHODS 

 
Figure G.1 shows the dissolution profiles in SGF pH 1.2 of Eudragit® E100- DIK/Clay 

prepared by different methods. The dissolution results do not show much difference. 

 
Figure G.1 Dissolution profile of DIK from Eudragit® E100- DIK/Clay prepared by 
TSE, batch mixing and solvent casting. 
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APPENDIX H 

SEM IMAGES OF DIK/CLAY DISPERSION IN EUDRAGIT® E100 PREPARED 
BY VARIOUS METHODS 

 
 

 
Figure H.1 SEM images of DIK/Clay dispersion in Eudragit® E100 matrix prepared by 
(a) TSE, (b) solvent casting, (c) batch mixing. 

(a) 

(b) 

(c) 

        20 µm 

        20 µm 

        20 µm 
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APPENDIX I 

APIs CALIBRATION LINES IN pH 1.2 AND 7.4 BUFFER SOLUTIONS 
 

In order to quantify the dissolved DIK-Na+ and IND in the buffer solutions, the 

corresponding absorbance values were measured. Since DIK-Na+ and IND have very low 

solubilities at the acidic conditions, two different methods were used in order to increase 

APIs solubility in the medium. The first method involves the addition of 5 g of surfactant 

(sodium dodecyl sulfate). The second method involves dissolution of APIs in 5 ml 

ethanol prior to the addition of the solution to the 1 L medium. UV absorbance of the API 

solutions prepared by both methods showed the same values and linear increases as 

shown in Figure H.1 and H.2.  

 

Figure I.1 DIK calibration line in pH 1.2 and 7.4 buffer solution. 
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Figure I.2 IND calibration line in pH 1.2 buffer solution. 
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