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ABSTRACT 

APPLICATION OF MASS/STIFFNESS ECCENTRICITY TO CONTROL RESPONSE 
OF STRUCTURES SUBJECTED TO EARTHQUAKE GROUND MOTION 

by 
Bakhtiar Feizi 

  

This dissertation is driven by the concept that engaging more modes in the response of 

structures can be used to mitigate its translational dynamic response. One such an 

approach is to engage torsional modes through engineered eccentricity (mass/stiffness 

eccentricity), thus, introducing coupled translation-rotation response. This idea was first 

introduced in a paper published by MacBain and Spillers in 2004. As a follow up to the 

same idea this dissertation was an attempt to investigate and develop the theory 

concerning the application of mass/stiffness eccentricity to control the translational 

motion of structures subjected to earthquake ground motion. 

Different discrete and continuous mathematical models of structures were used 

for this study. Discrete models are single story building and multi story building, and 

continuous models are shear beam and flexural beam.  

Initially, the steady state behavior of eccentric structures was analyzed. This type 

of analysis proved to be revealing in terms of parameters that impact the response 

mitigation. A sufficient and necessary condition under which increasing eccentricity in a 

single story building always leads to mitigation of translational displacement was 

deducted. Moreover it was observed that in addition to the eccentricity the relationship 

between dominant translational frequency to dominant rotational frequency plays a 

significant role in the magnitude of reductions.  



 
 

Furthermore through conducting a statistical analysis the seismic effectiveness of 

the proposed method was investigated. For this purpose the structural models were 

exposed to 16 real earthquake records. The records were selected in a way that  a broad 

range of frequency content were covered. The records are applied to structures with 

different eccentricities and frequency ratios. Altogether 5632 analyses were performed. 

The results showed that eccentricity was indeed effective in reducing the average 

translational displacements up to 30%. Moreover, using the data obtained from time 

history analyses the variation of reductions with eccentricity and frequency ratio was 

studied. 

The dissertation continued with proposing a systematic approach for finding the 

eccentricities and frequency ratio that lead to the maximum reduction in displacements. 

To address this issue an optimization problem in frequency domain was formulated. The 

mean square value of response was selected as the performance function. Two types of 

constraints including limitations on rotations and eccentricity were imposed. Kanai-

Tajimi power spectral density function was used to model the ground motion. It was 

observed that this approach could be used to decrease the performance function up to 

50%.  Finally through a case study the performance of the proposed approach was 

compared with tuned mass dampers (TMD). The results showed that the proposed 

method could be as effective as TMDs. Even in some cases more reductions in 

displacements could be achieved.  
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  1 

CHAPTER 1   

INTRODUCTION 

1.1 Background Information 

Due to a variety of reasons such as irregular architectural forms, asymmetric distribution 

of mass or stiffness in plan or complicated geometries the center of mass and stiffness 

(rigidity) are apart in many structures and this fact makes the existence of eccentricity 

inevitable. In such structures the translational displacements in two orthogonal directions 

and rotation can no longer be treated separately, for they are actually coupled in the 

governing differential equations of motion. Therefore introducing eccentricity into the 

vibration problems will lead to activation of rotational degree of freedom and 

participation of a higher number of modes in the response. 

Generally speaking, rotation is considered to be undesirable by many structural 

engineers. There is a plethora of literature in this regard and almost everywhere the focus 

is on finding ways to eliminate, mitigate or accommodate the unwanted rotation. 

However the possibility that this irregularity could be manipulated to reduce the 

translational vibrations had never been investigated until a paper was published in 2004 

by MacBain and Spillers.  

MacBain and Spillers showed that three-dimensional effects caused by 

eccentricity can be used to reduce system vibrations in a dispersion-like manner 

(MacBain and Spillers 2004) by engaging new modes. Therefore by engineering the 

eccentricity and adept application of it, a new method of passive control can be 

developed that could lead to significant reductions in translational vibration of structures. 
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Thus this research is an attempt to investigate and develop the theory concerning 

the application of mass/stiffness eccentricity in controlling translational motion of 

structures subjected to base excitation.  

1.2 Literature Review 

An extensive amount of research has been conducted to address the dynamic and more 

specifically seismic response of asymmetric structures and improving torsional 

provisions of seismic codes. Recent reviews on this subject can be found in (De Stefano 

and Pintucchi 2008). The trend that is easy to see is that the researchers are trying to find 

the tools to mitigate the unwanted rotational displacements induced in structures due to 

irregularities.  

Moreover, over the last two decades, a significant amount of research has been 

devoted to develop theories and tools to control the structural vibrations under loading 

conditions such as earthquake and wind. Most of the approaches implemented to control 

the vibrations can be divided into four categories namely: passive, active, semi active and 

hybrid control methods (Spencer Jr and Nagarajaiah 2003). Passive control strategies 

have been well understood and have been widely accepted by structural engineers in both 

academia and practice (Spencer Jr and Nagarajaiah 2003). Base isolation systems, tuned 

mass dampers and viscoelastic dampers are among the most well known passive control 

systems. According to the nature of passive control, the application of the eccentricity of 

mass/stiffness in reducing the translational vibration would belong to this category. 

As it was mentioned earlier, there are plenty of literature on asymmetric structures 

and passive control systems, however the only literature available which is directly 
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related to the subject of this proposal is the paper published by MacBain and Spillers in 

2004 (MacBain and Spillers 2004). All the results and analyses presented in this section 

are from that paper.  

MacBain and Spillers have studied the behavior of a single story building 

subjected to a step input of base motion in x direction [ 
0

( )x H t   ]. If the eccentricities 

are zero the response of the system is only translational displacement in x direction (

1 cos( )) xt . In this case the response is obviously equivalent to the response of a single 

degree of freedom system with H(t) at the base. However, by introducing the eccentricity 

in both directions, all the three degrees of freedom of the system are activated.  The 

responses of the eccentric system with and without damping are compared in Figure 1.1.  

 

 

Figure 1.1 Behavior of a single story building with and without eccentricity. 
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Second graph of Figure 1.1 shows that eccentricity can reduce the initial 

displacement by about 25%. However, if the damping is not taken into account the input 

energy finds its way back into vibration in the x-direction over time and the reduction is 

lost. But if damping is taken into account damping would take care of the long term 

response (MacBain and Spillers 2004). 

Additionally, it was mathematically shown that for a system with equal stiffness 

and eccentricity in both directions the short time solution to the translational 

displacement can be made smaller by increasing the eccentricity. The maximum possible 

reduction in the initial primary response could reach up to 50% (MacBain and Spillers 

2004). 

Moreover, both step function and earthquake inputs were applied to a two story 

building. Plots of the maximum displacement of the structure at the top floor indicate the 

general trend of decreasing response with increasing eccentricity (Figures 1.2 and 1.3) 

(MacBain and Spillers 2004).  
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Figure 1.2 Two story response to unit-step displacement applied in x-direction. 
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Figure 1.3 Two-story response to Parkfield earthquake record applied in x-direction. 
 

1.3 Objective 

The paper discussed in the previous section was a proof of concept.  As a follow up to the 

same idea, the objective of this research is to develop the theory and investigate the 

application of mass/stiffness eccentricity in motion control of structures under base 

excitation. To this end the emphasis would be on two important concepts: 
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1. Investigating the effectiveness of the proposed passive control method for seismic 
loading. 

2. Finding an approach to tune the eccentricity in a way that under certain 
circumstances the maximum amount of reduction is achieved.  

 

To study these concepts the research is broken down into four major parts as 

follows: 

1.3.1 Steady State Response of Structures with Mass/Stiffness Eccentricity 

This first task is the starting point of this research.  The approach used to do this part is 

almost analogous to that of tuned mass dampers (TMD). TMD in the simplest case is a 

new degree of freedom introduced to the structure. The frequency of this new DOF is 

tuned so the displacements of the main structure are controlled. Developing the theory of 

TMDs started with steady state analysis.  Therefore, the author believes that selecting 

steady state analysis could be a very informative starting point as far as this research is 

concerned. 

Four structural models are selected to represent different structural systems. These 

structural models are introduced in the next chapter. A harmonic load is applied to these 

systems and the steady state response is studied. It is expected that studying the behavior 

of the eccentric structures under this loading condition would be very helpful in finding 

the parameters that impact the response of eccentric structures.  

 

1.3.2 Seismic Effectiveness of Eccentricity in Mitigation of Translational Response 

The first part of this task deals with statistical analysis with historical earthquakes. For 

this purpose an ensemble of historical earthquake records are selected. They are applied 

to all four models with different values of translational and rotational frequency. The 
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eccentricity is varied uniformly over the height and the maximum reduction in 

translational displacement is found.  By calculating some statistical parameters such as 

mean, median and standard deviations of reductions, the effectiveness of eccentricity in 

mitigation of displacements when the structure is subjected to real earthquakes is studied. 

The second part is on parametric analysis of the behavior of eccentric structures 

under base excitation. The main objective in this part is to study the parameters that 

impact the amount of reduction obtained by using eccentricity as a strategy for motion 

control. For this purpose the structures are subjected to several earthquake records and 

the amount of reduction versus different parameters are analyzed and the impact of this 

parameters along with eccentricity is studied.  The time history response of eccentric 

structural models will be studied as well.  

1.3.3 Optimal Design of Eccentricity for Seismic Applications 

Similar to the previous parts studying the optimal design of eccentricity is addressed in 

two subsections. The first subsection is on optimal eccentricity for a single story building. 

The central problem in this subsection is to solve an optimization problem that finds the 

maximum reduction in displacements. The state variables are eccentricity and the ratio of 

translational frequency to rotational frequency. There are different strategies to approach 

this problem, namely: using the displacement-eccentricity graphs developed in the 

previous task, formulating the optimization problem in frequency domain and using 

optimal control theory approach. 

The second problem to be solved is finding the optimal variation of eccentricity 

over the height for a multistory system. For this section, the method opted in the previous 

section is used to generalize the solution to a multistory system. 
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1.3.4 Conducting a Case Study 

The main objective of this section is comparing the performance of a renowned passive 

control method with the proposed strategy through conducting a case study.  

1.4 Intellectual Merit 

This work deals with a new phenomenon: how mass/stiffness eccentricity can be used to 

damp structural vibration. Its application should lead to new approaches in structural 

design.  
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CHAPTER 2 

METHODOLOGY 

 
The main focus of this chapter is to describe an overview of the methodology that is 

going to be used for accomplishing the tasks mentioned in the previous chapter. 

 It should be noted that throughout this dissertation non-eccentric structure 

wherever used, refers to the structure in which the center of mass and stiffness (rigidity) 

are identical, and the structure with eccentricity of mass/stiffness is simply called 

eccentric structure. 

 

2.1 Structural Models 

The structural models that have been used in the literature can be divided into two main 

groups: discrete and continuous.   

2.1.1 Discrete Models 

Two discrete models will be used in this research. The first one is a single story building 

(SSB) shown in Figure 2.1. This model is very popular and has been extensively used by 

researchers to study the irregularities in structures (De Stefano and Pintucchi 2008). 

In Figure 2.1 CM denotes the center of mass and Cs denotes the center of stiffness 

(rigidity). If these two points (centers) are separate the building is considered to be 

eccentric.  It is assumed that the origin of the coordinate system is located at the center of 

mass. The system has three degrees of freedom (DOF), and the displacement vector 

which consists of two translational displacements in x and y directions and one rotation 

is:  
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Figure 2.1  A simplified model of a single story building with eccentricity. 

 
 

 
 
 
( )

x

y

t

t t

t





 
   
  

δ                                                                  (2.1) 

 
The dynamic equation of motion is:  

      ( )t t t t   M δ Cδ Kδ P                                                  (2.2) 

The matrixes of stiffness and mass for the model shown in Figure 2.1 can be 

expressed as (Chopra 1995) : 

2 2

0

0
x y x

y x y

y x x y y x x y

k e k

k e k

e k e k k e k e k

 
   
    

K                                                  (2.3) 

 
0 0

0 0

0 0

x

y

O

m

m

I

 
   
  

M                                                                 (2.4) 

 
In which:  
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kx and ky : translational stiffness in x and y direction 

kθ:  torsional stiffness 

ex and ey:  the distance between the center of stiffness (rigidity) and y and x  axes 

mx and my:  mass of the floor in x and y direction  

Io:  mass moment of inertia of the floor slab 

 Due to the simplicity of this model, in some particular cases, problem 

formulation and also obtaining the exact mathematical solution is straight forward. From 

the closed form solutions most of the characteristics of the response can be studied and 

interpreted. 

The second discrete model is a multistory building (MSB) which is basically a 

stack of several single story buildings. 

2.1.2 Continuum Models 

Continuum models have also been used extensively to estimate deformations and forces 

in buildings subjected to wind and earthquake loads.  Usually the type of deformation of 

a building falls into one of the following three categories (see Figure 2.2):  

1. Flexural type deformation 

2. Shear type deformation 

3. Combined flexural and shear type deformation 

For the purpose of this research, a cantilever shear beam (SBM) and a flexural 

beam (FBM) have been selected to model the shear type and flexural type deformations 

of structures respectively.  It can be proven that the equation governing the vibrations of 

flexural beam and shear beam with eccentricities are three coupled partial differential 

equations (PDE).  
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Figure 2.2 Types of deformations in building structures (Miranda et al. 2005) 

 
 

The system of PDEs governing the vibration of a cantilever flexural beam can be 

expressed as follows: 
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           

 

 
Where:  

z: vertical axis which is zero at the base of the beam and passes through the center 

of mass  

E: modulus of elasticity,  

G: shear modulus of elasticity,  

Ix and Iy : moment of inertia about y and x axis  

J : polar moment of inertia of the cross section  
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m: mass of the unit length of the beam  

Io: mass moment of inertia of the beam cross section about z-axis  

Px and Py: distributed load in x- and y-direction  

T: distributed torsion.   

 
In addition to that the system of PDEs governing the vibration of a cantilever 

shear beam is expressed as:  
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   

 

        
        

                 
        

 

                        (2.6) 

,T z t











 

 

 

where   

z : vertical axis  

A: cross-section area  

G: shear modulus of elasticity  

m: mass of unit length   

λ = J/A   

J : polar moment of inertia for the beam  

 Px and Py: distributed load applied in x and y direction  

T: torsion.  
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The equations governing the vibration of the flexural beam are fourth order 

parabolic PDEs. The equations governing the vibration of the shear beam are second 

order hyperbolic PDEs which are in the same category of PDEs as wave propagation 

problems. 

2.1.3 Solution to Mathematical Models 

For some particular cases, the shear beam equations can be solved analytically (Abrate 

1995; Li 2002). However, finding the closed form solution for the general case for both 

systems is extremely difficult if not impossible. Therefore, for the purpose of this thesis, 

the above PDEs have been solved numerically.  Some specific cases for which exact 

solutions are available have been used to verify the results of numerical solutions. 

For solution of hyperbolic and parabolic PDEs there are several numerical 

schemes available in the literature. However, because of the variable stiffness and 

eccentricity parameters, the numbers of numerical schemes which can solve the above 

equations are not many. After trying a couple of methods it was observed that a 

combination of Finite Difference Method and Newmark time integration provides a 

robust and stable scheme to solve both systems. Using the finite difference method 

(FDM) the space (length of the beam) is discretized into several elements. This reduces 

the partial differential equations to a system of ordinary differential equations (ODE). In 

the system of ODEs the independent variable is time and using the Newmark time 

integration method the solutions for the displacements can be obtained.  
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2.2 Computer Programming 

In order to solve the above mentioned systems of PDEs numerically, several object 

oriented computer programs have been developed in MATLAB.  All the programs as 

well as robustness of numerical schemes have been verified.  
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  CHAPTER 3 

STEADY STATE RESPONSE OF STRUCUTRES WITH MASS/STIFFNESS 
ECCENTRICITY 

3.1 Background Information 

The main objective of this chapter is studying the steady state response of eccentric 

structures to harmonic loading. The approach used to address the issue is almost 

analogues to that of tuned mass dampers (TMD). Four cases are studied here. Analyses 

start with the classic single story building. Due to the simplicity of this model, problem 

formulation and also obtaining the exact mathematical solution is easy. It will be shown 

that these characteristics can be seen in more complicated cases too. Then, a multi-story 

building which is a stack of several single story buildings is studied. The chapter 

continues with studying the behaviors of flexural and shear beam. For each case 

numerical examples will be presented.  

3.2 Single Story Building 

The classic single story building (Figure 2.1) is basically a rigid floor with three degrees 

of freedom. The degrees of freedom are translational displacements in x- and y- direction 

plus rotation. This system has been extensively used in the literature.  As it can be seen in 

Figure 2.1 the eccentricity can exist in two directions. If this is the case a load applied in 

x or y direction would lead to activation of all three degrees of freedom. Therefore, the 

equations of motions are the three coupled equations introduced in Equations (2.1) to 

(2.4). 
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However, in this section, for the sake of simplicity it is assumed that the plan is 

eccentric only in y-direction. In this case if the load is applied in x direction there will be 

no displacement in y direction for the system is symmetric with respect to y-axis, thus 

just two degrees of freedom will be activated (Figure 3.1) and the equations of motion for 

the plan shown in Figure 3.1 would reduce to two coupled equations. 

 
Figure 3.1 Plan of the single story building with eccentricity only in y-direction. 

 
 

If the load applied to the structure is a harmonic load as:  

    0

0 sin Ω sin(Ω )
0

xP
t t t

 
   

 
P P                                               (3.1) 

 
the steady state responses at the center of mass would be a displacement in x-

direction and a rotation about the vertical axis: 

    0

0

0

sin Ω (Ω )
x

t t sin t



 

   
 

δ δ                                          (3.2) 

 
 Since the positive direction of rotation is considered to be counterclockwise, the 

displacement of the center of stiffness (rigidity) in x-direction can be written as: 

*
x x ye                                                                (3.3) 
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Now by substituting Equations (3.1) and (3.2) in Equation (2.2) we will have: 

 2
0 0Ω  M PK                                                        (3.4) 

Thus: 

2 1
0 0( Ω  )  K M P                                                     (3.5) 

 
From the above equation, the solutions of 

0x  and 0  will turn out to be: 
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.                                                3.6
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.                                              (3.7)
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  where: 

 
2 2

2 2
     ,            ,                                                     (3.8)
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x

x
o

M

I



       

and also : 

  2 2                                                                   3.9x
x

o

K K
and

M I


  
 

 
It is easy to see that x  and   are the translational and rotational frequency of 

the non-eccentric structure and x  and   are the ration of these two parameters to the 

load frequency. 

And now in order to study the effect of eccentricity on the translational response 

of the structure a new parameter is defined as follows:                                                                                  

                                                   

0

0

                                                                   (3.10)x
x

x

R



  

where  0 (Ω )x sin t   is the response of the primary structure to the harmonic load of 

Equation (3.1). It is known from classical structural dynamics that: 
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0 .                                                              3.11
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Therefore, by substituting Equations (3.6) and (3.11) in (3.10) xR would become:  

 
 

  

2

2

( 1) 1
                                         (3.12)

1 1
x x y

x
x x y

e
R

e
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  

    
  

 

Basically xR  is the ratio of the translational displacement of the eccentric 

structure to that of the non-eccentric structure and shows how applying eccentricity can 

impact the steady state response of the non-eccentric structure. If  xR < 1 then it shows 

that application of eccentricity has reduced the displacement. 

As it can be seen from Equation (3.12), xR  is a function of the load frequency       

( 2Ω ) , 2
 , x  2

  , shape of the floor slab ( )  and eccentricity (ey).  In addition to xR   it is 

important to define another parameter to study the changes in rotation with eccentricity.  

For this purpose Equation (3.7) is divided by 
0

/  xP K  and a new parameter named S  is 

introduced as follows:  

 
   2

 
                                            (3.13)

1 1
x y

x x y

e
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e





 
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
    

Now from Equation (3.12) the circumstance under which increasing eccentricity 

reduces the translational response can be found. The argument could be put this way: 

since all the parameters in Equation (3.12) are positive then if  

     1 1 0                                                     3.14x     

 

the absolute value of  the denominator of Equation (3.12) would increase with increasing 

the eccentricity and consequently xR  reduces as an indication that the translational 
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displacement is getting smaller. On the other hand if the condition in (3.14) is not 

satisfied,  xR starts to increase by increasing the eccentricity until the eccentricity reaches 

its critical value. Critical eccentricity is the eccentricity for which the response of the 

structure is infinity as an indication that the system is undergoing resonance. The value of 

critical eccentricity can be calculated by setting the denominator of Equation (3.12) to 

zero: 

 
    1 1

                                                3.15
cr

x
y

x

e  


 
  

 
It is beyond this point that xR  starts to decrease.  

Therefore, Equation (3.14) is the sufficient and necessary condition under which 

increasing eccentricity always mitigates the translational response in a single story 

building.  

Another case that is interesting to study is when 1  . By substituting this value for  

in Equations (3.6), (3.7), (3.3), (3.12) and (3.13) we have: 

 0

0
                                                               (3.16)x

x

P

K




   

0

0                                                             (3.17)x

y

P

K e



   

* 0                                                                      (3.18)x   
 

      1                                                              3.19x xR    

 
1

                                                                                      (3.20)
y

S
e 

   

                        
The above equations indicate that when 1   the responses are not dependent on 

translational stiffness and the displacement of center of stiffness (rigidity) is actually 
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zero. Moreover the displacement of the center of mass is remained unchanged with 

changing eccentricity.  

What happens in this case is a state of pure rotation about the center of stiffness 

(rigidity). Since x  and ye   are equal and anti-phase, they cancel out each other at the 

center of stiffness (rigidity). Since the displacement of the center of stiffness (rigidity) 

becomes zero, the translational stiffness of structure does not contribute in the response.  

On the other hand, the value of rotation is a function of eccentricity. By increasing 

the eccentricity the rotation decreases. It is interesting that the steady response of 

different single-story buildings with the same rotational stiffness and eccentricity is 

identical in this case. However, it should be noted that to avoid resonance, the natural 

frequencies of the structure has to be far enough from  . It can be seen that eccentricity 

is a critical parameter in controlling the rotation in this case.  

In an effort to better understand the behavior of the single story building model an 

example has been solved. A single story building with a square shape plan is assumed. 

The floor is 24m wide and 0.15m thick. The mass density of the floor material is 2350 

Kg/m3. By changing the translational and rotational stiffness different values of x  and 

  have been generated and finally for different values of x  and    the graphs 

depicting the absolute values of xR  and S  vs. eccentricity have been plotted. The plots 

are presented in Figure 3.2 through Figure 3.7. 
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Figure 3.2 Variation of xR  with eccentricity for a single story building ( 0.50) θ  . 

 
 
 

 
Figure 3.3  Variation of xR with eccentricity for a single story building ( 1.00) θ . 
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Figure 3.4 Variation of xR with eccentricity for a single story building ( 2.00) θ . 

 
 
 
 

 
Figure 3.5 Variation of θS  with eccentricity for a single story building ( 0.50) θ . 
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Figure 3.6  Variation of θS  with eccentricity for a single story building ( 1.00). θ  

 

 
Figure 3.7 Variation of θS  with eccentricity for a single story building ( 2.00). θ  

 
 

In all the graphs shown in the figures above, except for Figures (3.3) and (3.6) 

which are a special case ( 1.00  ), two different types of behavior is distinguishable. In 

Figures (3.2) and (3.4), considering the values of x  and    if the condition of Equation 

(3.14) is satisfied then increasing eccentricity reduces the response. This is especially true 

in Figure (3.2) that there are eccentricities for which the response is actually zero. On the 
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other hand if the condition of Equation (3.14) is not satisfied then, as it was discussed 

earlier, the translational response starts to increase until the resonance occurs at the 

critical eccentricity. It is after this point that the response start to plunge. The same trends 

can be seen in Figures (3.5) and (3.7) too. However, in these figures if Equation (3.14) is 

satisfied the rotations start to increase and then after reaching a maximum they start to 

decrease.  

It is easy to see that graphs of Figures (3.3) and (3.6) are showing an exceptional 

behavior. In this special case as long as  x  is smaller than 2, eccentricity reduces the 

response. Moreover xR  is constant for any value of eccentricity (Equation (3.19)). 

Meanwhile Figure 3.6 shows that if the eccentricity is small the rotational frequency of 

the eccentric structure is very close to that of primary structure and since 1.00  , the 

resonance occurs. Therefore, if 1.00  , xR   is controlled by x . That means the value 

of xR   is basically based on x  and varying the eccentricity would not change it. 

However, in this case eccentricity would control the rotational response.  

3.3 Multi-Story Building 

The multi-story building studied in this paper is basically a stack-up of eight 

single story buildings. Thus this model will have 24 modes of vibration. The mass and 

stiffness of each story is equal. The definitions of the parameters are the same and x  

and    used here are respectively the first translational and rotational frequencies of the 

primary structure. In the multi-story building it is assumed that equal eccentricities are 

applied in both x- and y-directions. Moreover, n harmonic loads similar to Equation (3.1) 

are applied at each floor in x-direction. Just like the single story building the steady state 
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response is going to be sinusoidal and eventually Equations (3.4) and (3.5) are the 

governing equations to be solved. However, for a multi-story building M and K are 

3n×3n matrices and n is the number of stories. As it was mentioned earlier for the 

example solved in this section n=8. 

Since applying an equal eccentricity to all the stories is more practical, for the rest 

of this section it is assumed that the value used for eccentricities at each floor is the same 

and equal at both directions. The objective is to study the top floor displacement of the 

eight-story building. For this purpose, similar to single story building, in Figures 3.8 to 

3.13 the variations of  xR  and S  versus eccentricity for top floor are presented.  

Figures 3.8 to 3.10 show almost the same behavioral trend as that of Figures 3.2 

to 3.4. Figure 3.8 is very similar to Figure 3.2. Figure 3.9 shows that when  1.00  , 

although the variation of xR  with eccentricity is not exactly zero, it is small enough to be 

negligible.  Moreover in three out of the four cases the translational response of the 

eccentric structure is lower than non-eccentric structure, especially for the cases with 

 1.5x   and    0.80x  . The reduction in response in these two cases is more than 80% 

which is significant. 

There is a considerable difference between single-story and eight-story building 

when  2.00  .  The difference can be seen in Figure 3.10 for the case in which

  0.30x  . Therefore, the statement that for a specific loading frequency resonance can 

be totally avoided if Equation (3.14) is satisfied is not necessarily applicable for multi-

story buildings. A modal analysis of the building with  0.30x   showed that the 

resonance is actually due to the second mode, the frequency of which is very close to the 
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loading frequency. However, it is observed that when Equation (3.14) is satisfied the 

translational displacement, just like single story building, starts to decrease with 

increasing the eccentricity and when that condition is not satisfied it starts to increase 

with increasing the eccentricity. 

 
Figure 3.8  Variation of xR  at the top floor for an eight-story building with eccentricity 

in both directions ( 0.50 θ ). 

 
Figure 3.9 Variation of xR  at the top floor for an eight-story building with eccentricity in 

both directions ( 1.00 θ ). 
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Figure 3.10 Variation of xR  at the top floor for an eight-story building with eccentricity 

in both directions ( 2.00 θ ). 

 
 

In addition to  xR  the variations of S  have been plotted.  These plots are shown 

in Figures 3.11 to 3.13. The variations of S  in these figures are almost like variations of 

S  for the single story building. The difference pointed out earlier for xR  in Figure 3.8 

can be seen here too. However, the insensitivity to translational stiffness observed in 

Figure 3.6 is not seen any more for multi story building. From Figure 3.12 it is seen that 

although all the structures with different translational stiffness have the same behavior, 

the amount of torsional response is different for each of them. 
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Figure 3.11 Variation of θS  at the top floor for an eight-story building with eccentricity 

in both directions( 0.50 θ ). 

 
 

 
Figure 3.12  Variation of θS  at the top floor for an eight-story building with eccentricity 

in both directions ( 1.00 θ ). 
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Figure 3.13 Variation of θS  at the top floor for an eight-story building with eccentricity 

in both directions ( 2.00 θ ). 

 

3.4 Flexural Beam Model 

In order to better understand the behavior of structures with eccentricity, two continuous 

models have been selected for further study: flexural and shear beam. In this section, the 

focus will be on the flexural beam and the shear beam analysis will be discussed in the 

next section.  

It can be proven that the equations governing the vibration of a flexural beam with 

eccentricity are three coupled partial differential equations (PDEs). If it is assumed that 

the moment of inertia, mass and eccentricity is constant over the length of the beam, the 

system of coupled PDEs of (2.5) can be expressed as follows: 
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These equations are a set of fourth order parabolic partial differential equations. 

The beam is assumed to be fixed at the base and free at the other end. As it was 

mentioned in Chapter 2 the system of Equations (3.21) are solved numerically.  

It should be noted that in this thesis Equations (3.21) are solved in normalized 

space. It is assumed that eccentricities are equal in both directions. A distributed 

harmonic load is applied in x-direction. x  and    are the ratios of  dominant (first) 

translational and torsional frequencies to the load frequency.  By changing the 

normalized eccentricities from zero to one, variations of xR  and S  versus eccentricity 

have been plotted and the corresponding graphs are presented in Figures 3.14 to 3.19.  

The trends seen in these figures are more or less similar to the previous two 

sections, showing that the flexural beam model is having almost similar behavior to the 

single and multi-story building. The most significant difference is seen in Figure 3.14. 

For the case of  0.30xγ  the critical eccentricity is larger than one and is practically 

larger than the feasible eccentricity. This is the reason why for this case the resonance 

cannot be seen while for single and multi-story buildings the critical frequency happens 
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to be within the range of plotted eccentricities. The same discussion applies to Figure 

3.17.  

Additionally, Figure 3.15 shows that the translational response of all the eccentric 

structures are smaller than that of non-eccentric structures.  The reduction varies from 

about 10% to 70%. 

 

 

Figure 3.14 Variation of xR  at the top of the flexural beam with eccentricity in both 

directions ( 0.50 θ ). 
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Figure 3.15  Variation of xR  at the top of the flexural beam with eccentricity in both 

directions ( 1.00 θ ). 

 

 
Figure 3.16  Variation of xR  at the top of a shear bean with eccentricity in both 

directions ( 2.00 θ ). 
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Figure 3.17  Variation of θS  at the top of the flexural beam with eccentricity in both 

directions ( 0.50 θ ). 

 

 
Figure 3.18  Variation of θS  at the top of the flexural beam with eccentricity in both 

directions ( θ 1.00). 
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Figure 3.19 Variation of θS  at the top of the flexural  beam with eccentricity in both 

directions ( θ 2.00). 

3.5 Shear Beam Model 

 

The partial differential equation governing the vibration of a shear beam is hyperbolic 

and represents the wave propagation problem. In the most general case, just like flexural 

beam, the vibration of a shear beam with eccentricity is a set of three coupled partial 

differential equations. This system is shown in Equation (2.6). If the cross sectional area 

and eccentricity is assumed to be constant, the governing system of equation can be 

presented as: 
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Similar to the flexural beam, it is assumed that a constant eccentricity is applied in 

both directions and the load is a harmonic distributed load applied in x-direction. By 

changing this eccentricity the variation of response ratio at the tip of the beam has been 

presented in Figures (3.20) to (3.25). It should be mentioned that similar to flexural beam 

the following figures were prepared by solving the system of PDEs of Equation (3.22) in 

normalized space. The same numerical scheme as of previous section was used. 

As it can be seen from these graphs, the shear beam model is showing the same 

behavior as the previous cases, thus the arguments and discussions are the same as 

before. 
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Figure 3.20 Variation of xR  at the top of a shear beam with eccentricity in both 

directions ( 0.50 θ ). 

 
 

 
Figure 3.21  Variation of xR  at the top of a shear beam with eccentricity in both 

directions ( 1.00 θ ). 
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Figure 3.22  Variation of xR  at the top of a shear bean with eccentricity in both 

directions ( 2.00 θ ). 

 

 
Figure 3.23 Variation of θS  at the top of a shear beam with eccentricity in both 

directions ( 0.50 θ ). 
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Figure 3.24 Variation of θS  at the top of a shear beam with eccentricity in both 

directions ( 1.00 θ ). 

 

 
Figure 3.25 Variation of θS  at the top of a shear bean with eccentricity in both  

directions ( 2.00θγ ). 



 
 

41 
 

CHAPTER 4  

SEISMIC EFFECTIVENESS OF ECCENTRICITY IN MITIGATION OF 
TRANSLATIONAL RESPONSE 

 

In Chapter 3 the focus was on the steady state response of eccentric structures. It was 

observed that eccentricity can indeed reduce the translational steady state response of 

different structural systems provided certain conditions are met. In this chapter the 

structural models are subjected to more realistic loads, and a comprehensive study is 

conducted to evaluate the seismic effectiveness of the proposed method with respect to 

reducing the translational displacement. To this end the structural models are exposed to 

a variety of earthquake records and the response ratios are statistically studied. 

4.1 Statistical Analysis with Historical Earthquakes 

The four structural models introduced in Chapter 2 are subjected to real earthquake 

records and the time history responses are evaluated carefully.  

The earthquake records are acceleration time histories of a selection of major 

earthquakes that have happened all over the world in the past. One of the most important 

characteristics of an earthquake record is its frequency contents. This parameter is 

different from record to record and it could have a significant impact on the response. 

Therefore, it is tried to select the earthquake records in a way that they represent different 

site conditions and consequently cover a broad range of frequency contents. Based on the 

average shear wave velocity (Vs) to a depth of 30m, the United States Geological Survey 

(USGS) classifies the site conditions into four categories: 

 



42 
 

 
 

I. A:  Vs ≥ 750 m/s        
II. B:   360 m/s ≤ Vs ≤ 750 m/s 
III. C:  180 m/s ≤ Vs ≤ 360 m/s  
IV. D:  Vs ≤ 180 m/s 

 

This classification covers a broad range of site conditions from hard rock 

(category A) to soft soil (category D). Four records from each category is selected which 

altogether form an ensemble of sixteen earthquake records. The list of selected records is 

presented in Table 4.1. The records are picked from PEER Strong Motion Database. 

(http://peer.berkeley.edu/smcat/index.html). 

Moreover the results of Chapter 3 show that the ratio of translational frequency to 

rotational frequency could play an important role in the amount of reduction in 

translational displacement. Thus, in order to take the effect of this factor into account, a 

new parameter denoted with  Γ  and called frequency ratio is defined as follows:  

 
2

2
Γ                                                                          (4.1)x






  

Since in most of structures the dominant mode of vibration is the translational 

mode, translational frequency would be smaller than torsional frequency. Thus for the 

most structures the frequency ratio will be smaller than one.  Nevertheless, in order to 

cover a broad range of numbers for frequency ratio, eight numbers were selected as 

follows: 0.2, 0.5, 1.0, 2.0, 5.0, 10, 20 and 50. 

To put the issue into perspective, the procedure of statistical analysis against 

historical earthquakes can be summarized as follows: 

1. One structural model, out of four models introduced earlier, is selected. 

2. An earthquake record is selected from Table 4.1. 
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3. A value for Γ  is picked and while the translational stiffness is kept unchanged 

the rotational stiffness values are modified accordingly. 

 

Table 4.1  List of Earthquake Records Selected for the Analyses 
Site 

Condition 
Record  
Number 

Earthquake Station Record/Component 
PGA 
(g) 

A 

1 
Loma Prieta 
1989/10/18 

47379 Gilroy Array 
#1 

LOMAP/G01090 0.473 

2 
San Fernando 
1971/02/09  

127 Lake Hughes #9 SFERN/L09021 0.157 

3 
Northridge  
1994/01/17  

24207 Pacoima 
Dam (upper left) 

NORTHR/PUL104 1.585 

4 
Kocaeli, Turkey 

1999/08/17 
Izmit KOCAELI/IZT090 0.22 

 5 
Kern County 
1952/07/21  

1095 Taft Lincoln 
School 

KERN/TAF111 0.178 

B 6 
Friuli, Italy 
1976/09/15  

8014 Forgaria 
Cornino 

FRIULI/B-FOC270 0.212 

 
7 

Kobe, Japan 
1995/01/16  

0 KJMA KOBE/KJM000 0.821 

8 
Loma Prieta 
1989/10/18  

58065 Saratoga -      
Aloha Ave 

LOMAP/STG000 0.512 

 9 
Central Calif 
1960/01/20  

1028 Hollister City 
Hall 

CTRCALIF/B-
HCH271 

0.063 

C 10 
Cape 

Mendocino 
1992/04/25  

89156 Petrolia 
CAPEMEND/PET0

00 
0.590 

 

11 
Chi-Chi, 
Taiwan 

1999/09/20 
NST CHICHI/NST-E 0.309 

12 
Chi-Chi, 
Taiwan 

1999/09/20 
TAP042 CHICHI/TAP042-N 0.1 

 13 
Imperial Valley 

1979/10/15  
5057 El Centro 

Array #3 
IMPVALL/H-

E03140 
0.266 

D 14 
Loma Prieta 
1989/10/18  

1002 APEEL 2 - 
Redwood City 

LOMAP/A02043 0.274 

 15 
Kobe, Japan 
1995/01/16  

0 Takarazuka KOBE/TAZ090 0.694 

 16 
Northridge  
1994/01/17  

90011 Montebello -  
Bluff Rd. 

NORTHR/BLF206 0.179 

 

4. Eccentricity is varied from 0 to 100% (with 10% increments) of allowable 

value and for each value a time history analysis is carried out. The maximum 

displacement in each time history analysis is found and the corresponding response ratio 
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is computed.  It should be noted that the eccentricities are assumed to be constant over 

the height. Among the calculated response ratios in this step the smallest is selected. 

5. Steps 1 to 4 are repeated for all the possible combinations of structural models, 

earthquake records, values of response ratios and eccentricities. The number of analyses 

would add up to 5632. 

6. Finally, three major statistical parameters, namely: mean, median and standard 

deviation of response ratio are computed and different types of graphs are developed. 

 

4.2 Seismic Effectiveness of Eccentricity as a Motion Control Strategy 

The study presented in previous section is a comprehensive observation of the behavior 

of eccentric structures that could lead to a good understanding of the effectiveness of 

eccentricity as a motion control strategy. Since the number of analyses is high (1408 for 

each structural model), the results are expected to be solid and provide us with a decent 

estimation of the reductions that could be achieved under more realistic loadings. 

The results of the analyses for different structural models are presented in Figure 

4.1. 

Figure 4.1 shows the average, mean and standard deviation of response ratios(Rx) 

for different structural models. An overall review of the graph indicates that the amount 

of reductions are significant. The average reductions achieved is from 20% to 30%. This 

proves the effectiveness of the proposed idea as a tool to mitigate the translational 

displacements. As it can be seen the average of reductions in a single story building, 

multistory building and flexural beam are about the same and around 32%. This is an 

indication of the fact that the performance of eccentric structure is independent of the 
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structural system as long these three models are concerned. However, with respect to the 

shear beam model, less amount of reduction is seen. The mean value of reduction in 

displacements is about 19% for this system.  

Another interesting point about Figure 4.1 is the small difference between mean 

and median values. This fact along with the fact that the standard deviation values are 

rather small (less than 20%) indicates that the values of response ratios are clustered 

closely around mean and median. This point holds for all structural models. 

 

 

  Figure 4.1  Mean, median and standard deviation of response of ratios. 
 

 

4.3 Parametric Analysis of the Behavior of Eccentric Structures 

4.3.1 Variation of Response Ratio with Frequency Ratio 

The steady state analyses of Chapter 3 showed that the frequency ratio could have a 

significant impact on the level of reduction in translational displacement. In light of this 
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fact a key component of the statistical analysis of this chapter is studying the effect of 

frequency ratio on the variations of response ratio. 

Figures 4.2 through 4.5 show the variations of mean, median and standard 

deviation of response ratio versus frequency ratio. The mean value graphs essentially 

represent the average of calculated minimum response ratios while the frequency ratio is 

set to a certain number. Medians and standard deviations are computed in a similar way. 

Figures 4.2 to 4.5 indicate that the variation of mean value of response ratio with 

frequency ratio is more or less the same for all structural models. Nevertheless the 

behavior of shear beam model is slightly different. The trend of median and standard 

deviations are also the same in all figures. Therefore, it can be concluded that the 

behavior of eccentric structures are roughly the same regardless of their type and 

governing equations of motion. 

As it can be seen the median is very close to the mean value and this does not depend on 

the frequency ratio. In other words median remains to be in a close vicinity of mean value 

for every frequency ratio. The values of the standard deviation shows to be about the 

same as the values shown in Figure 4.1. Actually this is an indication of the fact that the 

scattering of the response ratio values does not depend on the frequency ratio either and it 

remains to be the same as what is shown in Figure 4.1. This statement especially holds to 

be true when frequency ratio is more than one. As it was discussed earlier in structures 

with a frequency ration larger than one, the dominant mode of vibration is torsional rather 

translational. 
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Figure 4.2  Variation of different statistical measures of response ratio with frequency 
ratio for the single story building model. 
 
 
 

 
Figure 4.3  Variation of different statistical measures of response ratio with frequency 
ratio for the multi-story building model. 
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Figure 4.4  Variation of different statistical measures of response ratio with frequency 
ratio for the flexural beam model. 
 
 
 

 
Figure 4.5  Variation of different statistical measures of response ratio with frequency 
ratio for the shear beam model. 
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Furthermore Figures 4.2 to 4.4 show that when frequency ratio is smaller than one 

the amount of reduction is significantly sensitive to the frequency ratio. This trend is 

different for shear beam. Because the response ratio remains sensitive to frequency ratio 

until frequency ratio reaches twenty. In any case, in all the structural models, when the 

frequency ratio is larger than a certain value the amount of reduction would become 

insensitive. This certain value would be called sensitivity threshold. It is easy to see that 

the amount of reduction is maximum when the frequency ratio is smaller than sensitivity 

threshold. Put differently, Figures 4.2 to 4.5 reveal that the minimum value of response 

ratio occurs when the frequency ratio is smaller than the value of sensitivity threshold. 

However, the response ratios corresponding to the frequency ratios larger than the 

threshold value are close to that minimum point. Therefore, it could be deducted that 

once the frequency ratio is larger than the sensitivity threshold the response ratio would 

not be sensitive to it and also its value is close to the minimum value that could be 

achieved.  In addition to that it is an indication of the fact that for large frequency ratios, 

as far as the statistical analysis presented in this chapter is concerned, changing the 

rotational frequency did not affect the amount of reduction that could be achieved. 

Finally for all the structural models the reductions are very small when the 

frequency ratio is small. In other words when the translational frequency is substantially 

smaller than rotational frequency the reductions in translational displacements are the 

least. On the other hand when torsional frequency is drastically smaller than translational 

frequency the reductions are closed to maximum. This phenomenon could be explained 

this way: the central idea behind using eccentricity in motion control is to reduce the 

translational vibration by engaging new modes of vibration including rotation. Therefore, 
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in a structure with a given translational stiffness more reduction is achieved if more 

rotation is allowed and this happens when the structure is designed rotationally more 

flexible. In such a structure the dominant mode of vibration would be torsional.  

 

4.3.2 Variation of Response Ratio with Eccentricity 

To gain more insight on the behavior of eccentric structures the variation of average of 

response ratios with eccentricity has been studied. In Figures 4.6 to 4.9 the variations of 

the average of response ratios vs. eccentricity is plotted for different structural systems. 

The main graph (solid line) is the average of mean response ratios of structures with 

different frequency ratios exposed to different seismic records. However, the variation of 

response ratio of each structure with different frequency ratio has been plotted separately 

also (dashed lines).More specifically, the solid curve is average of shown dashed lines. 

These dashed curves are the average of response ratios of structures with a specific 

frequency ratio exposed to the different earthquake records shown in Table 2.1.  

Several observations can be made from Figures 4.6 to 4.9: 

Initially, there is an eccentricity in all the four graphs for which the reduction is 

maximum. That point was called optimal eccentricity in Chapter 3. The maximum 

reduction is slightly larger than 15% for single story building, multi-story building and 

flexural beam and it is around 12% for shear beam. Therefore, the shown graphs prove 

that usually there is a point of optimal eccentricity and consequently the average 

reduction for that eccentricity is maximum. 

Another interesting observation is the behavior of structures with different 

frequency ratios. It is easy to see that small frequency ratios would result in small 
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reductions and this statement is valid for all structural models. Moreover the maximum 

reductions are achieved for frequency ratios greater than the sensitivity thresholds 

introduced earlier in this chapter. This statement also holds to be true for all structural 

models and is in agreement with the results and conclusions gained in previous section. 

Similar to the previous section, the behavior of shear beam model is slightly different 

than that for other three models. Figure 4.9 shows that the amount of reduction is 

completely proportional to the frequency ratio. In other words the higher the frequency 

ratio the smaller the minimum response ratio. Figures 4.6 to 4.8 show that this is not the 

case. Because for these cases the minimum response ratio is achieved when Гx=2.0. 

It should be mentioned that all of the above results support what can be seen in 

graphs 4.2 to 4.5. 

 

Figure 4.6  Variation of average response ratios with eccentricity for the single story 
building model. 
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Figure 4.7  Variation  of average response ratios with eccentricity for the multi story 
building model. 
 
 

 

Figure 4.8  Variation  of average response ratios with eccentricity for the flexural beam 
model. 
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Figure 4.9  Variation  of average response ratios with eccentricity for the shear beam 
model. 
 
 

 

4.3.3  Time History Results 

Finally, studying different time history responses could be very informative with regard 

to behavioral characteristics of eccentric structures. Time histories of displacement 

demonstrate how the behavior of a non-eccentric structure changes when eccentricity is 

applied. Since the number of analyses carried out are too many only four time histories of 

displacements are chosen to be plotted in Figures 4.10 to 4.13. These figures are a 

comparison between the behavior of non-eccentric and the corresponding eccentric 

structures. The presented time histories represent a variety of site conditions and 

frequency ratios. All the eccentricities selected for the analyses are the optimal 

eccentricity for that particular earthquake record. 
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Figure 4.10  Time history responses of a non-eccentric and corresponding eccentric 
single story building to San Fernando record ( #2, Table 4.1). Гx = 5.0 and eccentricity is 
60% of the allowable eccentricity. 

 
 

 

Figure 4.11  Time history responses of a non-eccentric and corresponding eccentric multi 
story building to Chi-Chi Taiwan record ( #11, Table 4.1). Гx = 1.0 and eccentricity is 
70% of the allowable eccentricity. 
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Figure 4.12  Time history responses of a  non-eccentric and corresponding eccentric 
flexural beam to Kern County record ( #5, Table 4.1). Гx = 20.0 and eccentricity is 30% 
of the allowable eccentricity. 
 
 

 
Figure 4.13  Time history responses of a non-eccentric and corresponding eccentric shear 
beam to Northridge record ( #16, Table 4.1). Гx = 50.0 and eccentricity is 90% of the 
allowable eccentricity. 
 
 

By studying Figures 4.10 through 4.13 several interesting observations can be 

made as follows:  

To begin with, the frequencies of eccentric and non-eccentric structures are 

different. The larger the eccentricity the greater the difference between the two 

frequencies. This could be explained this way: by introducing the eccentricity the 
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stiffness matrix of the non-eccentric structures changes, while the mass matrix remains to 

be the same. Therefore, the eigenvalues are going to be different. In other words, by 

applying eccentricity the dynamic properties of structure is changed. 

Another interesting point that can be seen in the above figures is the fact that the 

time for which the maximum displacement occurs is not necessarily the same for the 

eccentric and corresponding non-eccentric structure. As an example in Figure 4.13 the 

non-eccentric structure reaches its maximum after about 7.8 seconds, while this time for 

eccentric structure is 10.7 seconds. 

4.4 A Final Point 

It is important to note that the values shown in Figure 4.1 are the mean values of 

response ratios of structures with a wide variation in dynamic properties. To be more 

specific, all of the dynamic properties included in statistical analysis were not adjusted to 

provide the conditions for which the most reduction is achieved. Therefore, once the 

eccentricity as well as the dynamic properties of the structure are designed for a particular 

loading conditions i.e. earthquake record characteristics, the amount of reductions are 

expected to be more than the average values shown in Figure 4.1. In a similar format 

Figure 4.14 represents the minimum response ratios that were achieved for each 

structural systems.  

This figure is plotted based on the minimum response ratios found throughout all the time 

history analyses performed for each structural model. The reductions shown in this figure 

are about 55%. The values in Figure 4.14 could be interpreted as the reductions that 

potentially could be achieved provided the dynamic properties of the structures along 
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with eccentricities are designed properly for a certain loading condition. It is easy to see 

that all the four structural models seem to have about the same minimum response ratio. 

 

 

Figure 4.14 The minimum values of response ratio for different structural systems. 
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CHAPTER 5 

OPTIMAL DESIGN OF ECCENTRICITY FOR SEISMIC APPLICATIONS 
 

Translational  displacements are one of the indexes of structural serviceability. Designers 

are always looking for ways to minimize it. In light of this fact the main objective of this 

chapter is to develop a systematic approach to maximize the reductions in translational  

vibration. The results of Chapters 3 and 4 show that eccentricity can drastically impact 

the dynamic response. In addition to eccentricity, frequency ratio turned out to play a 

significant role in the amount of reduction as well. The problem that is going to be solved 

herein can be expressed in this way: A structure with specific translational  frequency is 

given. If the structure is subjected to base excitation, what is the eccentricity and 

frequency ratio for which the maximum reduction in translational  displacements can be 

achieved? This eccentricity is called optimal eccentricity.  

In this chapter the optimal design problem is formulated first. The design 

parameters would include eccentricity and frequency ratio. The theories of random 

vibration and optimal control are incorporated into the problem formulation to 

accommodate various challenges. These challenges will be discussed in more detail in the 

sections that follow.  After the formulation of the optimization problem two structural 

models are studied through examples. Similar to the previous chapters the simplest model 

which is a single story building would be discussed first. Again since the numbers of state 

variables are few it is easier to analyze the behavior of this structural model.  

Next model to study is the multi-story building. The optimization problem for this 

case is studied with two different assumptions. First it is assumed that eccentricity is 

constant over the height. In this case the numbers of state variables are only two: 
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constant eccentricity and frequency ratio. Second assumption is that the eccentricity 

could be variable over the height. In other words in this case the optimal distribution of 

eccentricity over the height is sought. The number of state variables in this case could be 

very large and comparing to the constant eccentricity case it is a more difficult problem 

to solve.   

This chapter continues with a case study. The main objective of the case study is 

to compare the performance of the proposed strategy with that of an existing passive 

control such as tuned mass dampers (TMD). This model would be among those in the 

literature for which the effectiveness of TMD has already been tested. Based on the 

approach developed in this chapter optimal eccentricity and frequency ratio are applied to 

the same model and the reductions are compared with those of TMDs.  

 

5.1 Formulation of the Optimization Problem 

5.1.1 Governing Equations of Motion  

In time domain the equations of motion of a structure with 3n degrees of freedom that is 

subjected to base excitation can be described as: 

       t t t t   
gM δ Cδ Kδ f                                              (5.1) 

where  tδ  is the 3n×1 displacement vector and M, C and K are mass, damping and 

stiffness matrixes respectively.  tgf  is the ground motion function and is described as : 

   gt t  
gf Mr                                                          (5.2) 
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In which ( )g t  is the ground acceleration and r is a 3n×1 location vector and for 

the purpose of this thesis, since the earthquake is applied only in x-direction, it is 

expressed as : 

[1 0 0 1  0 0  1 0 0 1  0 0 1  0 0]   Tr                                            (5.3) 

Now by taking a Fourier Transform to both sides of Equation (5.1) the analysis 

could be transformed from time domain into frequency domain and the result can be 

shown as :  

     2 i       gM C K D F                                          (5.4) 

where 1 i    and  D  is the Fourier transforms of  tδ .  gF  is the Fourier 

transform of ground motion function and is expressed as:  

    gD gF Mr                                                        (5.5) 

in which  gD   is the Fourier transform of ground acceleration function.  

Assuming: 

  2 i     Z M C K                                                  (5.6) 

then  D  can be readily found from Equation (5.4) : 

     1     gD Z F                                                     (5.7) 
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Usually  1 Z  is shown as  H  and is called frequency response matrix or 

transfer function. Thus the equation of motion in frequency domain can be expressed in 

its simplest form as: 

         gD H F                                                       (5.8) 

Basically  H  is a function that bears the dynamic properties of the structure 

and is a mathematical representation of the relation between loading and response of the 

structure. For a 3n degree of freedom model this function is a 3n×3n matrix. 

If ground motion function  tgf is stochastic then the response  tδ  would be 

stochastic as well. In this case the relation between the Power Spectral Density Function 

(PSDF) of response and excitation is described as follows:  

      T
f  S H S H                                                          (5.9) 

in which : 

    ( )T
f gS  S Mr Mr                                                    (5.10) 

S  and   fS are respectively the PSDF matrixes of response and ground motion. Both of 

these matrixes are 3n×3n. Superscript T denotes the transpose or complex conjugate 

gradient of a matrix or a vector . gS  is the PSDF of the earthquake excitation.  

Finally by substituting Equation (5.10) in (5.9) the PSDF of response can be re-

written as : 

   ( )  ( )T T
gS  S H Mr Mr H                                            (5.11) 
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If one is interested in an r-component response vector  tu  as given in the time 

and frequency domains respectively by: 

    . t tu B δ  
 
                                                             (5.12) 

  . ( ) U B D                                                              (5.13) 

Where B is a r×3n coefficient matrix, the r×r spectral density matrix for vector 

 tu  is then given by: 

 T
u S B S B                                                               (5.14) 

Equations (5.12) to (5.14) are useful when only the displacements and/or rotation 

of top floor are selected for study. 

 

5.1.2 Power Spectral Density of Ground Motion 

In real world prediction of a future earthquake is impossible. Thus a serious challenge in 

optimal design for seismic applications is the uncertainties of ground motion. 

There are different ways to tackle this challenge. An option is to select an 

ensemble of earthquakes that represent the site condition of structure. Then similar to the 

previous chapter displacement vs. eccentricity graphs are developed for the range of 

allowable eccentricities. If constraints are imposed on rotations then rotational 

displacement vs. eccentricity graphs should be developed too. Using these two types of 

graphs the feasible amount of eccentricity for which the probability of  maximum 

reduction is high could be obtained. 
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This approach is a robust method. However, the high computation cost is one of 

the disadvantages of this method. Moreover, it is very difficult to manage the huge 

amount of information obtained from numerous time history analyses. Because in order 

to find the optimum eccentricity a series of time histories analyses with all the possible 

eccentricities should be performed and then by comparing the results the optimum value 

should be found. Doing the time history analysis for several values of eccentricity and 

different records is computationally expensive and hard to deal with. Therefore, this 

method is considered to be costly. 

Another method to approach this problem is using the concepts of optimal control 

theory and random vibrations. In this approach the ground motion is modeled as a 

stationary stochastic process. For this purpose the Power Spectral Density Function 

proposed by Kanai (Kanai 1957, 1961) and Tajimi (Tajimi 1960) is used to model the 

ground motion.  This PSDF is expressed as: 

  
 

4 2 2 2

22 2 2 2 2

4

4

g g g
g

g g g

S
   


    




 
                                           (5.15) 

where g  and g  are characteristics ground frequency and damping ratio, respectively. 

By proper selection of these two parameters the above equation can be used to generate 

different spectral density shapes. It is shown in Figure 5.1 that Equation (5.15) captures 

well the frequency content of historical seismic events such as El Centro ( 12g   and 

0.6g   ) and Kobe ( 12g   and 0.3g   ) (Hoang 2008). El Centro is the N-S 

component recorded at the Imperial Valley in El Centro during the Imperial Valley, 

California earthquake of May 18, 1940 and Kobe is the N-S component recorded at the 
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Kobe Japanese Meteorological Agency (JMA) station during the Hyogo-ken Nabu 

earthquake of January 17, 1995.  

 

 

Figure 5.1 Comparison of Kanai–Tajimi PSDF with the actual ones for El Centro and 
Kobe records (Hoang 2008). 

 

This approach for modeling of ground motion has been widely used in literature 

and it has proven to be successful in optimal design of other passive control systems such 

as tuned mass dampers (TMD) (Hoang et al. 2008, Chen et al. 2001, Lee et al. 2006 and 

Li et al. 2004).  
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5.1.3 Performance Index 

An important part of an optimization problem is selecting the appropriate objective 

function. In optimal control theory this objective function is referred to as  performance 

index. A performance index is a quantitative measure of the performance of a system and 

is chosen so the emphasis is given to the important system specification (Dorf and 

Bishop, 2005). A system is considered an optimum control system when the system 

parameters are adjusted so the index reaches an extremum, commonly a minimum value 

(Dorf and Bishop 2005).The selection of a particular performance index is determined by 

the objectives of the optimization problem. The performance index may be defined in 

different ways such as the integral of a function of the error variable that must be 

minimized (Ogata 1990).   

Since the analyses are performed in frequency domain and the ground motion is 

modeled as a stochastic process, a convenient performance index (i.e. objective function) 

to use is the integral of the PSDF of the structural response with respect to frequency ( 

Hoang 2008, Lee et. al 2006, Hoang 2005 and Chen 2001). This integral is basically the 

mean square value of the structural response. For the purpose of this thesis we are only 

interested in translational  vibration of the top floor, therefore, the performance function 

is defined as:  

 2( )     T
top topJ E d 




  l S l                                              (5.16)              

in which E(.) represents the expected value or mean and l  is a 3n×1 vector and is defined 

as: 

[ 0 0 0 .1  0 0]T l                                                         (5.17) 
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5.1.4 Constraints 

There are two important types of constraints in the problem of finding the optimal 

eccentricity. One type of these constraints represents the limitations on the rotation and 

the other type restrains the maximum value that eccentricity can have. In this section 

these two types of constraints are explained in more detail. 

 

5.1.4.1 Serviceability Constraints on Rotation. On one hand preliminary results 

from previous chapters show that eccentricity can actually reduce the translational  

vibration and on the other hand applying eccentricity is always accompanied by 

activation of rotational degree of freedom. Rotations are sometimes undesirable and 

serviceability limitations imposed by the codes would not allow the rotation to exceed a 

certain amount. If the allowable rotations are exceeded then the design is considered to be 

infeasible.  

For building structures, the ASCE7-05 code imposes some limitations on story 

drift (ASCE7-05). These allowable story drifts are summarized in Table 12.12-1 of 

ASCE7-05. According to this table the allowable story drifts are in the range of 0.01h to 

0.025h, where h is the story height. In addition to that under section 12.12.1 of the same 

code it is explicitly mentioned that for the structures with significant torsional deflections 

the maximum drift shall include torsional effects as well. 

As for nonbuilding structures the same code under section 15.4.5 states that the 

above mentioned drift limitations need not to be applied, if a rational analysis indicates 

they can be exceeded without adversely affecting structural stability or attached or 

interconnected components and elements. 
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The structural models used for this thesis are mathematical models and they are 

meant to provide a simulation of the behavior of a broad range of building and 

nonbuilding structures. Therefore, it is thought that considering an allowable drift of 

0.02h is within a reasonable range. However, selecting this value does not hurt the 

generality of the proposed approach and the allowable drift could be different for 

different problems. 

Since the torsional effect is supposed to be included in the displacement, drift 

limitation should be imposed at a point on the plan for which torsion is having the most 

adverse effect. These points are usually located at the corners of the floor. Thus, the 

rotational constraints are expressed as follows:  

*  0.02  
2top topx x top

a
h      

 
                                                      (5.18)

*  0.02  
2top topy y top

b
h      

 
                                                     (5.19)                         

In which *  
topx and *

topy  are the displacements at the corners of top floor, 
topx , 

topy  and  top  are the displacements and rotation of the center of mass, a  and b  are the 

dimensions of the top floor in x and y direction and finally h  is the height of the 

structure. 

Since the optimization problem as well as the governing equations are solved in 

the frequency domain and in addition to that PSDF of response are convenient to 

evaluate, the constraints of Equations (5.18) and (5.19) are incorporated in the 

optimization problem as follows:  
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( )   0.02
2top topxJ J
a

h                                                         (5.20) 

( )  0.02
2top topy

b
J J h                                                         (5.21) 

In the above equations: 

2 2 2( ),  ( ) and ( )
top top top top top topy y xxJ E J E J E                                       (5.22) 

As it was mentioned earlier E(.) represents the expected value of a variable. The 

mean square values in Equations (5.20) and (5.21) are calculated in a similar manner to 

that of Equation (5.16). 

 

5.1.4.2 Physical Constraints on Eccentricity. There are physical limitation on the 

amount of eccentricity. These limitations are incorporated in the optimization problem as 

constraints.  These constraints are mathematically described as: 

 
i allx xe e                                                                    (5.23) 

 
i ally ye e                                                                    (5.24) 

In which 
ixe  and 

iye  are the eccentricities in x and y direction in the ith floor and 

 and 
all allx ye e  are the allowable eccentricities in x- and y-direction respectively. Usually in 

buildings it is physically impossible for eccentricity to exceed half of the length of the 

floor. Therefore, for the purpose of this research this value is selected as the allowable 

eccentricity.  
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5.1.5 Final Formulation of the Mathematical Programming 

Once the governing equations, objective functions and constraints are determined the 

final formulation of the mathematical programming can be summarized as follows: 

 

    ,                                           (

(

5.25)

 :      
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As it can be seen the state variables are the vector of eccentricities (e) and 

frequency ratio ( )x .  ,   ,   
ixx yg g k  and 

iyk  are inequality constraints,  and  are the 

lengths of each floor in x- and y-direction respectively, n is the number of floors and h is 

the height of the structure. 

 

5.2 Optimization Problem Solver 

When the degrees of freedom are two the number of state variables in mathematical 

programming of (5.25) would be three (two eccentricities and the frequency ratio). This 

problem can be easily solved using the Optimization Toolbox of MATLAB. When the 

number of degrees of freedom increases, the optimization problem of (5.25) becomes 

highly nonlinear and complicated. It was observed that for structural models with higher 
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degrees of freedom MATLAB is not able to find the optimum solution. Therefore, an 

optimization software called KNITRO (www.ziena.com) was utilized as the optimization 

problem solver. 

KNITRO, short for "Nonlinear Interior point Trust Region Optimization" (the "K" 

is silent) is produced by Ziena Optimization, Inc.. KNITRO was introduced in 2001 as a 

derivative of academic research at Northwestern University, and has undergone continual 

improvements. It is a powerful and robust software package to solve large scale 

mathematical optimization problems. 

KNITRO provides 3 state-of-the-art algorithms/solvers for solving optimization 

problems. Each algorithm addresses the full range of nonlinear optimization problems, 

and each is constructed for maximal large-scale efficiency (www.ziena.com). These three 

algorithms are as follows: 

 

The first algorithm is Interior-point Direct which applies barrier techniques and 

directly factorizes the KKT matrix of the nonlinear system. It performs best on ill-

conditioned problems. 

 

The second algorithm is Interior-point CG algorithm that applies barrier 

techniques using the conjugate gradient method to solve KKT subproblems. It provides 

an alternative to the Interior-point Direct algorithm when the KKT factorization is 

impractical or inefficient to form. 

 

The third algorithm is Active Set algorithm, which combines classical active set 

principles with a novel linear programming subproblem to rapidly discover the set of 

binding constraints. Its behavior is significantly different from Interior-point algorithms, 

and it converges precisely to the active set to provide highly accurate sensitivity 
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information. 

KNITRO offers interface to MATLAB. Thus for the purpose of this research the 

KNITRO solver is incorporated with the MATLAB programs written for the previous 

sections and it turned out to be successful and robust in solving the optimization 

problem of (5.25). 

 

5.3 Numerical Studies 

The proposed procedure for computing the optimum eccentricity and frequency ratio is 

applied to a single story building and a multi story building. The models are analyzed 

using four ground motion PSD functions. The PSD functions are generated using Kanai-

Tajimi (Equation (5.15)) formula. The characteristics of ground motions are presented 

in Table 5.1. In addition to that the PSD functions used for analysis are plotted in Figure 

5.2. 

 

Table 5.1 Characteristics of Ground Motions Used for Optimization 

Case 
Number 

Ground 
Frequency 
g (rad/sec) 

Ground 
Damping 
Ratio (g) 

1 3 0.6 
2 6 0.5 
3 12 0.6 
4 18 0.4 
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Figure 5.2 Kanai-Tajimi power spectral density functions of four ground motions used 
for optimization. 

 

5.3.1 Single Story Building 

Similar to previous chapters the first optimization problem to solve is finding the 

optimal eccentricity and frequency ratio of the single story building model shown in 

Figure (3.1). Since there is no eccentricity in x-direction the model has two degrees of

freedom: one translational  displacements and one rotation. The properties of the model 

are the same as in previous chapters; However, they are repeated herein for 

convenience. 

The single story building model is basically a 24m×24m rectangular concrete 

slab. The mass of the floor is 203.04 metric tons and its height is about 3m. It is 

assumed that the translational  frequency of the building is equal to 5.0 Hz in both 

directions. The damping of the model is assumed to be 3%. 

The state (design) variables are the eccentricity and frequency ratio. In other 
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words values for eccentricity and frequency ratio are sought that minimizes the 

performance function of (5.16). The allowable eccentricity (eall)  is half of the floor 

dimension which  is 12m. The allowable drift is considered to be 6 cm which is 2% of 

the model height. 

The ground motions of Table 5.1 are applied to the single story building model 

and using KNITRO the constrained optimization problem of (5.25) is solved. After 

finding the optimal eccentricities and frequency ratios the minimized objective function 

is evaluated. Then its value is compared with performance function of a non-eccentric

model with the same frequency ratio and the amount of reduction in performance 

function is computed. The results of this analysis are presented in Table 5.2. 

 
Table 5.2 Optimal Eccentricity and Frequency Ratio (Single Story Building Model) 

Ground Motion Optimal 
Eccentricity*

(%) 

Optimal 
Frequency 
Ratio (Гx) 

Reduction in 
Performance 
Function (%) Case No. g 

(rad/sec) 
g 

 
1 3 0.6 11.25 1.06 20.0 
2 6 0.5 11.75 1.06 23.1 
3 12 0.6 12.93 1.08 33.1 
4 18 0.4 11.95 1.08 31.7 

* Optimal eccentricities are presented as percentage of allowable eccentricity. 

 

According to the above table the reductions are in a range of 20% to 33% which 

is significant. In addition to that the optimal eccentricities are fairly small and practical. 

They cover a range from 11% to 13% of allowable eccentricity. The frequency ratios are 

interestingly close to one. It is important to bear in mind that since the rotational 

constraints are not violated, all of the above reductions are achieved while the expected 

value of rotation is remained within the limits allowed by the codes. 

Another interesting point that can be observed from Table 5.2 is the fact that for 
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the single story building studied,  since  the variation of optimal eccentricities and 

frequency ratios are close for all the ground motion cases, the optimal parameters are 

showing little sensitivity to the ground motion characteristics.  

Furthermore the ground motion of Case 3 is applied to the non-eccentric and 

eccentric single story building with optimal parameters and the PSD functions are 

evaluated. These two PSD functions are compared in Figure 5.3. The effectiveness of 

eccentricity can be seen in Figure 5.3 where the translational  displacement of the model 

is drastically supressed as the eccentricity is applied. The amount of reduction in the 

PSD function is about 66%. 

Additionally Figure 5.3 could be a good explanation of how the idea of 

eccentricity works. The non-eccentric structure has one degree of freedom. By applying 

eccentricity another degree of freedom i.e. rotation is introduced. That is the reason that 

the PSDF of the eccentric structure has two peaks while the non-eccentric structure has 

only one. As it can be seen the overall response of eccentric structure is smaller than 

non-eccentric one. This could be explained in this way, which is the basic idea behind 

this research :  in the non-eccentric model with one mode, the input energy leads to 

vibration in one direction, while for the eccentric model it is divided between two types 

(or modes) of vibration i.e. translational  and rotational. Therefore, the translational 

response of the eccentric structure would be smaller than non-eccentric. 

The time history of the translational  displacement of the structure with and 

without optimal eccentricity is illustrated in Figure 5.4. For this purpose El Centro 

record (NS 1940) whose properties are very close to that of Case 3 is used. Good 

reduction in strucutral response has been achieved when the parameters of the eccentric 
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model are adopted through the proposed optimal desigh procedure. It can be seen  that 

at the  time when the maximum displacement of non-eccentric building occurs, the 

displacement of the eccentric model is interstingly very small.  

Figure 5.3 Comparison between the PSDF of translational  response of optimal 
eccentric model and corresponding non-eccentric model. 

 

 

Figure 5.4 Comparison of translational  displacements (El Centro NS 1940). 
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5.3.2 Multi-Story Building 

The multi-story building is basically the stack up of 10 single story buildings of the 

previous section. Therefore, the dimensions of the floor slabs are 24 m × 24 m. The 

mass of each floor is 203.04 metric tons and the height of the structure is assumed to be 

30 m. The stiffness of all the floors is assumed to be equal and it is determined in a way 

that the first (dominant) translational  frequency of the structure is equal to 1.0 Hz in 

both directions. The damping of the model is 3%.  The system is excited by the ground 

motions presented in Table 5.1. 

The parameters to be optimized are the eccentricities at each floor and the 

frequency ratio of the structure. It is assumed that the eccentricities of each floor are 

equal in both x- and y-directions. The optimization problem is solved with two different 

assumptions. First it is assumed that eccentricity is constant over the height. In other 

words the same eccentricity is applied at each floor. Then for a separate analysis the 

optimization is performed assuming eccentricity can be variable over the height. In this 

case the optimal distribution of eccentricity over the height is sought. 

The maximum allowable eccentricity is half of the floor length, which is equal to 

12 meter. The maximum allowable top floor displacement is 2% of the building height 

and therefore is equal to 0.6 meter. 

The results of optimization are shown in Table 5.3. This table basically presents 

the amount of reduction that can be achieved using the approach proposed in this 

chapter.  Table 5.3 shows that the minimum reduction achieved is 37.40% and the 

maximum reduction can be as large as 50.43%.  
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Table 5.3 Optimal eccentricity and frequency ratio (10 story building model) 

Ground Motion Variable Eccentricity Constant Eccentricity 
Case 
No. 

g 

(rad/sec) 
g 

 
Optimal 

Frequency 
Ratio (Гx) 

Performance 
Function 

Reduction(%)

Optimal 
Frequency 
Ratio (Гx) 

Performance 
Function 

Reduction(%)
1 3 0.6 1.17 43.48 1.17 40.23 
2 6 0.5 1.06 37.34 1.06 35.30 
3 12 0.6 1.04 45.10 1.05 43.02 
4 18 0.4 1.06 50.43 1.07 48.27 

 

Paying close attention to the results of Table 5.3 two interesting point is observed:

first the results of optimization assuming variable eccentricity are very close to the 

results when eccentricity is assumed to be constant over the height. The second point is 

the fact that for the analysis performed herein the optimal frequency ratios are very 

close to each other and they are all in a small vicinity of one. A similar observation was 

made for the single story building as well. 

The optimal distributions of eccentricity over the height of structure are illustrated 

in Figures 5.5 through 5.8. The optimal eccentricities when they are constant are plotted 

in the same graph too.  Evaluation of Figures 5.5 to 5.8 reveals that the behavioral 

pattern of the optimal distribution of eccentricity is the same for all the cases studied.

Evidently, the values of eccentricity in lower floors are smaller than middle and upper 

floors. Moreover the amounts of eccentricities are smaller than 30% of allowable value. 

Additionally, Figures 5.5 to 5.8 show that the value of optimal constant 

eccentricity is very close to the optimal eccentricity of fifth floor when it is variable 

over the height. As a matter of fact the eccentricities of the top five floors are closer to 

the optimum constant eccentricity and their variations are smaller when compared to the 

bottom five floors of the building. 
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Figure 5.5 Optimal distribution of eccentricity over the height for a 10 story building 
(Ground motion Case 1). 

 

 

Figure 5.6 Optimal distribution of eccentricity over the height for a 10 story building 
(Ground motion Case 2). 
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Figure 5.7 Optimal distribution of eccentricity over the height for a 10 story building 
(Ground motion Case 3). 

 

 

Figure 5.8 Optimal distribution of eccentricity over the height for a 10 story building 
(Ground motion Case 4). 
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In order to further investigate the optimal constant eccentricity and optimal 

distribution of eccentricity, the minimized performance functions for different ground 

motions are plotted in Figure 5.9. As it can be seen the minimized performance 

functions are very close and practically equal. This fact along with the fairly small value 

for optimal eccentricity (less than 30%) makes the eccentricities easier to accommodate 

for practical applications. 

 

Figure 5.9 Comparison of optimum performance functions of the 10 story building with 
different distribution of optimal eccentricity. 

Finally, a time history response of top floor of the structure with optimal 

eccentricity and frequency ratio are shown in Figure 5.10. The optimal parameters are 

taken from the optimization performed for Case 3.  The eccentricity is assumed constant 

over the height. As it was mentioned earlier the ground motion properties of Case 3 are 

similar to that of El Centro NS 1940. Therefore, the time history of Figure 5.10 is 

produced by applying El Centro record to the 10 story building model. Figure 5.10 

shows about 18.45% reduction in the maximum displacement of the eccentric structure. 



81 
 

 
 

Figure 5.10 Top floor displacement responses of 10 story building with and without 
optimal eccentricity (El Centro NS 1940). 

 

5.4 A Case Study 

In an attempt to study the effectiveness of the proposed procedure, a model is selected 

from the literature. This model is among those for which the effectiveness of other 

control strategies has already been tested. The optimal eccentricity and frequency ratio 

according to the method proposed in this chapter are found and applied to the model. 

Then the reductions in displacements are compared. 

For this purpose, a simplified model of a tall building is selected. This model was 

originally used by Feng and Mita (Feng and Mita 1995) to study the performance of 

their proposed vibration control system. Their system takes advantage of the mega-

substructure configuration used in the design of tall buildings. In this system the mega-

subcontrol system is designed in such a way that the vibration energy of the 

megastructure due to wind or earthquake loads can be transferred into the substructures 

and then dissipated in the substructures by conventional damping devices. In other 

words in this system the substructures in the mega-structure serve as vibration 

absorbers. Feng and Mita arrive at the parameters of the substructure by using a two-
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degree-of-freedom system and minimizing the mean square response of the main mass 

to a white noise ground acceleration for seismic analysis and to a white noise force 

excitation for wind analysis.  

The building equipped with the proposed mega-subcontrol system and its 

conventional counterpart without control system are shown in Figure 5.11. The two

buildings have the same total mass to represent a 200 m tall building. The damping 

ratios are taken to be 2% for all vibration modes.  The properties of the substructures 

computed according to Feng and Mita's method are presented in Table 5.4. 

Sadek et al. (Sadek et al. 1997) have used the same structural model to 

demonstrate the effectiveness of their proposed method. Their method is based on 

defining a criterion to find the optimal design parameters of tuned mass dampers 

(TMD). The criterion they used to obtain the optimum parameters is to select, for a 

given mass ratio, the frequency (tuning) and damping ratios that would result in equal 

and large modal damping in the first two modes of vibration. They considered each 

substructure shown in Figure 5.11 as a separate tuned mass damper and using their 

proposed procedure they computed the optimal stiffness and damping. The optimal 

parameters of substructures calculated by Sadek et al. are shown in Table 5.4. 

For the purpose of this research the building of Figure 5.11(a) was selected. It 

was modeled as a four-story-building for which the dynamic properties is the same in 

both x- and y-direction. The allowable eccentricity was taken to be 15 m. The ground 

motion  properties were the same as Case 3 of Table 5.3, which is very close to El 

Centro (1940 NS) record. Using the procedure introduced in this chapter the optimal 

distribution of  eccentricity and frequency ratio are found. Additionally the optimal 
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          Figure 5.11 (a) Building without control.   (b) Building with mega Sub-control. 

 

eccentricity and  frequency ratio when eccentricity is assumed to be constant are 

obtained as well. The optimal distribution of eccentricity and optimal constant 

eccentricity and frequency ratios are presented in Table 5.5.  

 

( a ) ( b ) 
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Table 5.4 Optimal Properties of Substructures 

Level 
Feng and Mita's system Sadek et. al's procedure 

Stiffness (k) 
(kN/m) 

Damping (c) 
(kN.s/m) 

Stiffness (k) 
(kN/m) 

Damping (c) 
(kN.s/m) 

Top 5,480 6,411 23,655 18,452 
3 5,480 6,411 25,233 16,756 
2 5,480 6,411 28,638 13,249 
1 5,480 6,411 34,457 7,733 

 

Table 5.5 Optimal Eccentricities and Frequency Ratio 

 Level 
Variable Eccentricity Constant Eccentricity 

Eccentricity 
(m) 

Frequency 
Ratio (Γx) 

Eccentricity 
(m) 

Frequency 
Ratio (Γx) 

Top 2.29 

0.130 1.0 0.216 
3 2.36 
2 1.92 
1 1.07 

 

Feng and Mita and Sadek et al. subjected the structure with optimal parameters to 

El Centro (1940 NS) record and compared the peak values with uncontrolled case. The 

peak values of displacement are compared in Table 5.6.  

In concurrence with Feng and Mita and Sadek et al. work, the structure with 

optimal distribution of eccentricity is analyzed under El Centro (1940 NS)  ground 

motion. The peak values of displacement are shown in Table 5.6. 

Table 5.6 Peak Value of Displacements Under El Centro Record 

 Level 

No 
Control 

Feng and Mita* Sadek et. al 
Proposed 
Procedure 

Mega-
Structure 

Mega-
Structure 

Substructure
Mega-

Structure Substructure 
Mega-

Structure 

Top 0.358 0.156 0.195 0.105 0.074 0.178 
3 0.319   0.102 0.09 0.156 
2 0.215   0.091 0.12 0.120 
1 0.122   0.055 0.16 0.074 

* Responses of  lower stories not reported. 
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As it is evident from Table 5.5 all the control methods result in a considerable 

reduction in displacements. Sadek et al.'s method results in 70.7% reduction in 

displacement of top floor of the mega-structure. Feng and Mita's approach has reduced 

the displacement of top floor of mega-structure and substructure by 56.4% and 45.5% 

respectively. The approach proposed in this chapter mitigates the translational  

displacement of the top floor by 50.2%. This amount of reduction is significant and is 

comparable with the values achieved using other control strategies. Especially, it should 

be noted that the reduction achieved using this method is larger than the amount achieved 

by Feng and Mita for the substructure. This shows that using the proposed method even 

further reductions can be achieved compared to that reported by Feng and Mita. A 

comparison of time histories of top floor of mega-structure for controlled (eccentric) and 

uncontrolled (non-eccentric) case  is illustrated in Figure 5.12. It is evident that the top 

floor displacement of eccentric structure is significantly smaller than non-eccentric. 

However, the frequencies of the two structure are very close. The relatively small value 

of the optimal eccentricity can be the reason. 

 

Figure 5.12 Comparison between time histories of top floor of mega-structure in 
controlled(eccentric) and  uncontrolled(non-eccentric) cases. 
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CHAPTER 6 

CONCLUSION 

 

6.1 Summary 

The objective of this thesis was developing a theory to engineer mass/stiffness 

eccentricity for structural motion control purposes. Four types of structural models were 

selected to study: single story building, multi story building, flexural beam and shear 

beam. It is expected that these four models cover a wide range of structural behavior. 

 First a steady state analysis was performed on the structural models. The main 

purpose of this analysis was to conduct an exploratory investigation of parameters that 

affect the response mitigation. Then through a statistical analysis the seismic 

effectiveness of engineered mass/stiffness eccentricity for structural control was studied. 

For this purpose 16 real earthquake records representing a wide range of frequency 

contents were selected. Then by changing the eccentricity and also the ratio of 

translational  frequency to rotational frequency (called frequency ratio) in the models the 

effectiveness of the proposed idea for seismic application was confirmed.  The steady 

state analysis and seismic statistical analysis turned out to be useful in providing a better 

understanding of the parameters that impact the performance of the proposed idea. Once 

the impact of different parameters in response control was examined the focus turned to 

devise a systematic approach to design these parameters for maximum vibration 

reduction.  

To this end by combining basic concepts of control theory and random vibrations 

an optimization problem was formulated. In the optimization process the ground motion
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was modeled using the well known Kanai-Tajimi ground power spectral density function. 

The objective function was the mean value of the squared displacements. Two types of 

constraints were included as well. First due to physical limitation an upper bound was 

imposed on eccentricity. Additionally, rotations generated by introducing eccentricity 

were constrained. Using an optimization program called KNITRO several numerical 

studies performed for a single story building and a multistory building. Finally through a 

case study the performance of the proposed method was compared with two other 

methods used for the same structure. 

 

6.2 Conclusion 

Based on the results of this study and analyses the following general conclusions were 

obtained: 

    The results of both steady state analysis and statistical seismic analysis confirm that 

eccentricity of mass/stiffness can be effective in mitigation of translational  vibration 

of structures. 

    The steady state analysis of different structural models indicates that other than the 

amount of eccentricity the relationship between translational  frequency and rotational 

frequency plays an important role in the level of response reduction. As far as steady 

state response of single story building is concerned, a necessary and sufficient 

condition (Equation (3.14)) was found under which increasing the eccentricity always 

leads to  suppression of translational  response. In addition to that it was observed that 

under this circumstances there is an eccentricity for which the translational  

displacement of  center of mass diminishes. 
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    Statistical seismic analysis of structural models showed that application of 

eccentricity can lead to a substantial mitigation of translational  response. The 

average amount of reduction achieved under 16 real earthquake records was from 

20% to 30%. The closeness of mean and median value as well as fairly small values 

of standard deviation (20%) showed that for different earthquake records and 

structural properties the amount of reductions were clustered closely around the mean 

value. 

    Statistical seismic analysis reveals that when frequency ratio is smaller than one the 

average of response reduction in single story building, multi story building and 

flexural beam is immensely sensitive to the response ratio. On the other hand the 

response ratio of the mentioned models show little sensitivity to frequency ratio for 

values of greater than one. This statement does not hold to be true for the shear beam 

model. Shear beam model has a moderate sensitivity for all values of frequency ratio. 

    Statistical analysis confirms existence of optimal eccentricity. Optimal eccentricity is 

an eccentricity for which the maximum reduction in response is achieved. 

 The comparison between time history analysis of eccentric and non-eccentric model 

shows that the time at which the maximum displacement occurs is not necessary the 

same for those two models. In other word introduction of eccentricity to the 

symmetric model not only changes the frequency of the structure but also alters the 

time at which the model experiences the maximum displacement. 

 The proposed method for finding the optimal distribution of eccentricity and 

frequency ratio was used to select the optimal parameters of a single story building, 

multi-story building, flexural beam and shear beam. The results indicate that using the 
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proposed approach reduces the performance function, which is the mean value of 

squared displacements, significantly (up to 50%).  

  The method was also compared with two vibration control systems proposed by Feng 

and Mita and Sadek et. al for tall buildings. It was observed that the level of 

reductions obtained using the proposed method is comparable with other control 

strategies. In some cases, once the proposed method is used, even further reductions 

can be achieved. 

 

6.3 Recommendations For Further Study 

This research was the first step towards providing a theoretical background for the idea of 

application of engineered mass/stiffness eccentricity in structural control, proposed by 

MacBain and Spillers in 2004. As the continuation of this work the following studies 

could be helpful in further development of this research: 

 This dissertation was an attempt to provide a theoretical background for application 

of eccentricity in structural motion control. Therefore, the structural models used 

herein were mathematical models that solely provide general information about the 

behavior of structures. It is recommended that using more realistic models and 

analyses the findings of this thesis be further studied and investigated. For instance 

different types of structures could be modeled using Finite Element Programs and by 

conducting different linear and nonlinear analyses the translational  response, when 

eccentricity is applied, could be studied. This type of analysis could be very 

informative with respect to performance of the proposed idea for practical 

applications. 
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 The objective of this work was studying the effect of eccentricity on translational  

displacements. However, for a control strategy to be successful, there are other 

parameters that need close attention. Two other parameters that were not studied in 

this work are accelerations and forces. Thus investigating the effect of eccentricity on 

accelerations and base shear are natural continuation of this research. 

 As it was discussed earlier, to solve the optimization problem of Chapter 5, a 

computer program called KNITRO was utilized. KNITRO is a program designed to 

solve a broad range of optimization problems with different characteristics. However, 

while it proved to be powerful in finding the optimum points, the running time of 

some of the examples was very high. Thus it is recommended that a new optimization 

algorithm be designed that can solve the introduced optimization problems robustly 

with less computation cost. 
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