

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

MECHANISMS FOR QUALITY-OF-SERVICE PROVISIONING IN NETWORKS
WITH EXTENDED SERVICES

by
Zhen Qin

The emerging network traffic with various Quality-of-Service (QoS) requirements creates

a demand for QoS service provisioning beyond the best effort service that Internet cur-

rently provides. QoS provisioning requires a framework that satisfies users' QoS and cost

demand while maximizes benefits for network service providers. It is considered that QoS

provisioning involves three issues: a) estimations of the network QoS performance, which

can be achieved by performing network measurement; b) dissemination of the measured

QoS states throughout the network with states exchanged among different network routers;

and c) QoS routing. In this dissertation, these three issues are addressed.

In QoS networks, knowledge of the network status is crucial but current implemented

network protocols cannot provide enough QoS measurement functions. For such purposes,

a network measurement framework is proposed that runs active measurement tools to es-

timate multiple QoS classes. An important issue involved in the network measurement is

the tasks conflict problem. This problem occurs when multiple active measurement tasks

sending probing packets in the same network segment at the same time, and causes mis-

leading report of QoS performance because the tasks' contention for network resources

disturb each other's measurement. In this dissertation a novel scheduling algorithm is pro-

posed to allow such contention among measurement tasks and to shorten the measurement

period time.

In addition, flooding algorithm is dominantly used in link state dissemination. It faces

the large overhead problem when used in QoS networks since a lot of QoS states need to

be updated frequently. On the contrary, the alternative algorithm, single spanning tree

dissemination, may not be able to achieve fast convergence or reliability. In the proposed

new scheme, Per-Hop pArtial-Spanning Tree Adjust (PASTA) for dissemination, link states

can be distributed with low overhead and fast speed, and the computation complexity to

build the tree is small compared to single spanning tree algorithm. The reliability of the

dissemination is enhanced by the multi-spanning-tree approach and the back-trace method.

Furthermore, in most of the current QoS architectures, a traffic flow receive the uni-

fied service at every hop on the path, resulting that the end-to-end QoS provisioning lacks

flexibility and granularity. To solve this problem, a nested DiffSery model is presented.

In this model, service at each hop is quantified and divided into multiple classes, and the

edge router on behalf of user is allowed to select different service at each hop. Under this

framework, routing in terms of cost and QoS requirements can be regarded as a

delay-leastl-ow-cost (DCLC) problem, which is known to be NP-hard. An improved k-shortest path

QoS routing algorithm is proposed to solve this problem.

MECHANISMS FOR QUALITY-OF-SERVICE PROVISIONING IN NETWORKS
WITH EXTENDED SERVICES

by
Zhen Qin

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

May 2010

Copyright © 2010 by Zhen Qin

ALL RIGHTS RESERVED

APPROVAL PAGE

MECHANISMS FOR QUALITY-OF-SERVICE PROVISIONING IN NETWORKS
WITH EXTENDED SERVICES

Zhen Qin

Dr. Roberto Rojas-Cessa, Dissertation Advisor 	 Date
Associate Professor, Department of Electrical and Computer Engineering, New Jersey
Institute of Technology

Dr. Nirwan Ansari, Committee Member 	 Date
Professor, Department of Electrical and Computer Engineering, New Jersey Institute of
Technology

Dr. Sotirios G. Ziavras, Committee Member 	 Date
Professor, Department of Electrical and Computer Engineering, NJIT

Dr. Yanchao Zhang, Committee Member 	 Date
Assistant Professor, Department of Electrical and Computer Engineering, NJIT

Dr. George Lapiotis, Committee Member 	 Date
Senior Research Scientist, Applied Research, Telcordia Technologies

BIOGRAPHICAL SKETCH

Author:	 Zhen Qin

Degree:	 Doctor of Philosophy

Date:	 May 2010

Undergraduate and Graduate Education:

• Master of Science in Electronic Engineering,
Queen Mary, University of London, London, UK, 2003

• Bachelor of Science in Communications Engineering,
Beijing University of Posts and Telecommunications, Beijing, P.R.China, 2002

Major:	 Electrical and Computer Engineering

Publications:

Z. Qin, R. Rojas-Cessa, and N. Ansari, "Task-Execution Scheduling Schemes for Network
Measurement and Monitoring," Elsevier Journal of Computer Communications, Vol.
33, Issue 2, pp. 124-135, Feb. 2010.

R. Rojas-Cessa, and Z. Qin, "Proactive Routing for Congestion Avoidance in Network Re-
covery under Single-Link Failures," in Proceedings of IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 822-825, Nov. 2009.

Z. Qin, R. Rojas-Cessa, and N. Ansari, "Descending-Order Clique-Based Task Scheduling
for Active Measurements," in Proceedings of IEEE Conference on High Performance
Switching and Routing (HPSR), pp. 1-6, May 2007.

Z. Qin, R. Rojas-Cessa, and N. Ansari, "Distributed Link-State Measurement for Accu-
rate QoS Routing," in Proceedings of IEEE Conference on Military Communications
(MILCOM), pp. 1-6, Oct. 2006.

Z. Qin, R. Rojas-Cessa, and N. Ansari, "OSPF-Based Adaptive and Flexible Security-
Enhanced QoS Provisioning," in Proceedings of IEEE Sarnoff Symposium, Princeton,
NJ, Mar. 2006.

iv

To my wife and parents

v

ACKNOWLEDGMENT

I wish to express my sincere gratitude to my advisor, Dr. Roberto Rojas-Cessa, for giving

me the opportunity to work with him and guiding me through this learning process. I

am greatly indebted to my advisor for his inspiration and encouragement over my Ph.D.

years. He is always open to new ideas and I really appreciate the support he gave me while

working on my research. This research could not have been possible without his brilliant

ideas. Not only was he readily available for me when I have questions, as he generously

is for all his students, but also he carefully goes through the drafts of my work. Moreover,

Dr. Rojas-Cessa also provided valuable facilities and brilliant guidelines for testing and

evaluation of my dissertation. I owe much for his unending help to do the research and for

his financial support during my graduate study.

I am also very grateful to Professor Dr. Nirwan Ansari, who offered his invaluable

suggestion and dedicated help throughout these years. I feel fortunate and will never forget

his support and contributions to my academic development.

I would also like to thank Dr. Sotirios Ziavras, Dr. Yanchao Zhang, and Dr. George

Lapiotis for serving on my committee, reviewing this dissertation and making constructive

comments.

My thanks go out to my lab mates Gang Cheng, Zhen Guo, Chuan-Bi Lin, Ziqian

Dong, Lin Cai, Khondaker Salehin, Jie Yang and Jingjing Zhang who provided help and

suggestions for my research. All my friends in and out of NJIT have been great source of

support and fun. I thank them for making this journey productive and enjoyable.

I am grateful to the donors of the National Science Foundation which provide finan-

cial support for my study.

Finally, I expressed my special gratitude to my parents and my wife, for their dedi-

cated and endless love. They supported me with their best in every aspect. Without them, I

would not have achieved anything that I achieved today.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 	 INTRODUCTION 	 1

1.1 Challenges in QoS Network Provisioning 	 1

1.2 QoS Network Architecture 	 2

1.3 Network Measurement Overview 	 4

1.4 Scheduling of Network Measurement Tasks 	 6

1.5 Link State Dissemination 	 7

1.6 QoS-Enabled Routing 	 7

2 NETWORK QOS MEASUREMENT ARCHITECTURE AND SCHEDULING
OF MEASUREMENT TASKS 	 9

2.1 Introduction 	 9

2.1.1 	 Active Measurement 	 9

2.1.2 	 Passive Measurement 	 14

2.1.3 	 Combination of Different Measurement Methods 	 16

2.2 Distributed QoS State Measurement 	 17

2.2.1 	 Service Vector 	 17

2.2.2 	 QoS Measurement Architecture 	 18

2.2.3 	 Experiments Data and Analysis 	 18

2.3 Task-Execution Scheduling Schemes for Network Measurement and Mon-
itoring 	 22

2.3.1 	 Problem Analysis 	 24

2.3.2 	 Related Work 	 26

2.3.3 	 Modeling of Network Measurement Scheduling Schemes 	 27

2.3.4 	 Proposed Scheduling Schemes 	 32

2.3.5 	 Simulation Results 	 41

2.4 Summary 	 52

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3 EFFICIENT AND RELIABLE DISSEMINATION OF LINK STATE INFOR-
MATION 	 54

3.1 Introduction 	 54

3.2 Preliminary Definition 	 58

3.3 QoS-Based Link State Dissemination Schemes 	 58

3.3.1 Formulation of Link-State Dissemination Problem 	 58

3.3.2 PASTA Link-State Dissemination Algorithm 	 62

3.3.3 Back-Trace Algorithm 	 67

3.3.4 Multiple Spanning Tree (MST) Algorithm 	 68

3.3.5 Spanning Tree Selection Algorithm at Each Node 	 71

3.4 Complexity Analysis 	 73

3.4.1 Overhead Complexity 	 73

3.4.2 Time Complexity 	 76

3.5 Simulation Analysis 	 77

3.6 Summary 	 86

4 OSPF-BASED ADAPTIVE AND FLEXIBLE QOS ROUTING 	 87

4.1 Introduction 	 87

4.2 Drawbacks of EEAC with Path Selection 	 88

4.3 OSPF-based Adaptive and Flexible QoS Provisioning 	 90

4.4 Combination of Security and QoS 	 92

4.5 Path Selection Algorithm Analysis 	 93

4.6 Summary 	 98

5 CONCLUSIONS AND FUTURE WORK 	 100

5.1 Conclusions 	 100

5.2 Future Work 	 100

APPENDIX A TEST RESULTS OF PING AND PIPECHAR 	 101

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

APPENDIX B TEST RESULTS OF PATHLOAD 	 102

REFERENCES 	 103

ix

LIST OF TABLES

Table	 Page

2.1 Selected Measurement Tools for QoS Parameters. 	 19

2.2 Comparison of Network Consumption by Each Tool 	 21

3.1 Number of Dissemination Failure Events for Different Dissemination Methods. 80

3.2 Dissemination Failure Rate for 32-node Network with Simultaneously Link
Changing. 	 84

3.3 Dissemination Failure Rate for 32-node Network with Link Changing on Var-
ious Time Slots. 	 86

A.1 Test Result of Ping and Pipechar. . 	 101

B.1 Test Result of Pathload 	 102

LIST OF FIGURES

Figure	 Page

2.1 Packet pair and packet train dispersion 	 12

2.2 Probing packets to test various service classes between routers. 	 18

2.3 Experiment topology. 	 19

2.4 Comparison of the available bandwidth measured by Pipechar and the actual
value 	 20

2.5 Network measurement implementation topology 	 22

2.6 An example of network measurement infrastructure. 	 23

2.7 Illustration of network measurement tasks. 	 28

2.8 Illustration of the relationship between measurement tasks by a conflict graph. 30

2.9 Consumption matrix. 	 32

2.10 Example of sub-graph. 	 34

2.11 Pseudo code of scheduling algorithm for periodic measurement tasks. 	 37

2.12 Example of scheduling on-demand measurement task: (a) pre-computed sched-
ule; (b) on-demand task has higher priority; (c) on-demand task has same
priority as periodic tasks 39

2.13 Pseudo code of scheduling algorithm for on-demand measurement tasks. . . . 40

2.14 Illustration of the improved round robin scheduling algorithm 	 42

2.15 Normalized waiting time for 10 periodic measurement tasks 	 45

2.16 Execution success ratio for 10 periodic measurement tasks. 	 46

2.17 Normalized waiting time for 20 periodic measurement tasks 	 46

2.18 Execution success ratio for 20 periodic measurement tasks. 	 47

2.19 Normalized waiting time for 10 periodic measurement tasks with non-uniformly
distributed execution times. 	 48

2.20 Execution success ratio for 10 periodic measurement tasks with non-uniformly
distributed execution times 49

2.21 Average waiting time for on-demand measurement tasks of on-demand tasks
in a combination with periodic tasks 	 50

xi

LIST OF FIGURES
(Continued)

Figure Page

2.22 Average waiting time of periodic tasks when they are combined with on-
demand tasks. 	 51

2.23 Normalized waiting time of periodic tasks when they are combined with on-
demand tasks. 	 52

3.1 An example of the outdated spanning tree. 	 56

3.2 An example to illustrate case 4 	 61

3.3 Flow chart of the PASTA algorithm. 	 63

3.4 Spanning tree adjustment and acknowledgement from node V 1 . 	 67

3.5 An example of back-trace algorithm. 	 68

3.6 Example of RT build-up procedure 	 70

3.7 Illustration of a minimum edge cut of G(V, E):{e1, e2 , ... , en} 71

3.8 The example of the LDF algorithm 	 72

3.9 Pseudo code of spanning tree selection algorithm. 	 74

3.10 The topology of 32-node network. 	 75

3.11 The single tree for link state dissemination in a 32-node network. 	 75

3.12 The trees generated by the PASTA algorithm in a 32-node network. 	 75

3.13 Comparison of average overhead for different dissemination methods with one
link changing events 	 78

3.14 Comparison of average convergence time for different dissemination methods
with one link changing events. 	 79

3.15 Comparison of average convergence time for different dissemination methods
with multiple link changing events 	 81

3.16 Comparison of average overhead for different dissemination methods with
multiple link changing events. 	 81

3.17 Comparison of average convergence time for 32-node network with simulta-
neously link changing. 	 82

3.18 Comparison of average overhead for 32-node network with simultaneously
link changing. 	 83

xii

LIST OF FIGURES
(Continued)

Figure Page

3.19 Comparison of average convergence time for 32-node network with link chang-
ing on various time slots 	 84

3.20 Comparison of average overhead for 32-node network with link changing on
various time slots. 	 85

4.1 Network topology of the first example 	 90

4.2 The illustration of virtual links with service class. 	 94

4.3 The path selection algorithm for concave constraint. 	 95

4.4 The path selection algorithm for additive constraint. 	 97

4.5 Average number of iterations of the proposed algorithm in 32-node network 	 98

Xlil

CHAPTER 1

INTRODUCTION

1.1 Challenges in QoS Network Provisioning

Nowadays, users demand wider spectrum of network services, many of them with Quality-

of-Service (QoS) requirements. Popular applications, such as VoIP, streaming video, and

online gaming have stringent requirement of delay, bandwidth, and jitter that current In-

ternet's best effort mechanism cannot support [1, 2]. The implementation of multimedia

and security service in the next generation networks is coupled with the limited QoS pa-

rameters the network (Internet) service providers (ISP) offer. QoS provisioning is a critical

issue in designing current and next generation networks. However, providing satisfying

and efficient QoS guarantees is challenging because of the following reasons:

• Granularity. The network is shared by various and large amount of end-users, most
of which have their particular QoS requirements. This makes the provider consider
specific performance guarantees for each traffic flow, so that the processing complex-
ity of parameters of each flow is high and the required storage space is large, which
causes processing delays in transmitting packets and challenges hardware processing
and memory capability.

• Optimization of path and service selection. That is, to find a path that can provide
a satisfying service to the end user, and minimize the user's cost or maximize the
network provider's benefit, including maximizing network utilization. Optimization
of such routing problem is known to be NP-complete.

• Service quantification. The quality of network service parameters are set up by dif-
ferent network applications. The common parameters include capacity, available
bandwidth, delay, jitter, packet loss ratio; round trip time (RTT). Network security
plays another critical role in the service provisioning; therefore it is also regarded as
a QoS parameter in recent literature. To improve the flexibility of the service, it is
necessary to separate this service into various classes so as to increase the options for
users to select. However, some QoS parameters are difficult to be quantified. As an
example, security may be quantified from user's perception perspective rather than
by a quantifiable parameter. As another example, VoIP applications also estimate
quality of service based on speaker's satisfaction feedback.

1

2

• Service pricing. QoS provisioning requires cooperation among multiple network
service providers. Different providers can use mutual agreements on service charges
and map service classes among partner ISPs. Service providers who are independent
organizations, may be only concerned with its own profit, creating possible conflicts
on fulfilling their agreements to provide the QoS service.

• QoS state distribution. The accuracy of QoS paths and service selections depends on
the accuracy of the QoS states. The dynamic feature of QoS parameters [3-5] make
it hard to maintain accurate link state information of the whole network. Otherwise,
intolerable amount of network resources are wasted during the dissemination of link
states, which causes disturbance to QoS service on data traffic and increases the
complexity for the design of high performance network routing mechanisms.

• QoS measurement. The accuracy measurement of the QoS state is also important.
While efforts in network measurement have produced a wide variety of hardware
and software monitoring tools, demand for faster and more flexible measurement and
monitoring technology is increasing. With the requirement of granularity of QoS,
large amount of measurement processes need to be carried out. Thus, the measure-
ment processes need to be scheduled carefully to avoid the contention for network
resources; on the other hand, the measurement overhead must be limited within an
acceptable level to save resources for user data traffic.

1.2 QoS Network Architecture

These issues have obtained attention from IETF and ITU-T for many years. In the IETF,

the IP Performance Metric (IPPM) Working Group [6] is organized to define a set of QoS

parameters (so called metrics in IPPM) and to provide quantitative characteristics of net-

works [7]. ITU-T proposed general Recommendation 1.350 [8] or for IP in Recommenda-

tion Y.1540 [9], Y.1541 [10] and G.1010 [11], which recommends the use of a statistical

probabilistic definition for the QoS parameters.

IETF also organizes several other working groups for QoS provisioning. Open Short-

est Path First (OSPF) protocol [12] proposed by IETF is by now one of the most pervasive

routing protocol implemented in the Internet. The OSPF protocol defines the link state or

weight as inversely proportional to the link capacity. The IETF OSPF IGP Working Group

extends the weight (cost) of a link as originally designed in OSPF by the association of

QoS parameters with it [13], while the link state update policing and the routing based

3

on the QoS-mapped weight design remain unaddressed. Besides that, IETF organizes the

Common Control and Measurement Plane (CCAMP) Working Group [14], which aims to

provide a common control plane and a separate common measurement plane for physical

path and core tunneling technologies of Internet and telecom service providers. CCAMP

mainly focuses on MPLS networks and does not consider network-layer based QoS state

measurement and monitoring.

On the existing QoS architecture, Integrated Services (Intserv) [15] and Diffsery [16]

are well-known paradigms. The Intsery model is designed to provide network service to

each individual data flow generated by users. Resources are reserved and allocated to each

flow. A signaling protocol, namely, the Resource Reservation Setup Protocol (RSVP) [17]

was proposed to assist Intsery model so that, the admission control and end-to end resource

allocation is able to be performed in a dynamic way; the state of every flow can be updated

in the Intsery routers. Since the Intsery requires per-flow management in the network and a

router must keep information about the state of each flow, the QoS granularity is improved

but with the cost of management and monitoring is high as the complexity, thus Intsery has

limited scalability.

In a different approach, the Diffsery model only supports a number of services to

end users, based on the Service Level Agreement (SLA) between the user and the ser-

vice provider. The common service classes include best effort (BE), assured forwarding

(AF) and expedited forwarding (EF) [18]. A data flow is marked by the terminal (host)

or leaf router and classified, metered, shaped, and possibly re-marked at the ingress router

where the flows are aggregated according to the service class and be forwarded to the

core routers. At core routers, the aggregated flows are serviced according to the Per-Hop-

Behavior (PHB) associated with each service classes. The core router is not required to

keep the state of each traffic flow but only the service classes of the aggregated flows, thus

Diffsery has better scalability but only supports coarse end-to-end QoS granularity. Flows

4

belonging to the same service class receive same end-to-end QoS service even if they have

slightly different QoS requirements.

To balance the trade-off of granularity and scalability, the Intserv over Diffserv model

was proposed [19], but whether Intserv over Diffserv model can fill this void remains an

open issue, in which case it is necessary to map each individual flow's end-to-end QoS

requirements from Intserv model to the Diffserv model. Recently a new approach of ad-

mission control referred to as endpoint admission control (EAC) has been proposed [20-

22]. In EAC schemes, the end host sends out probing packets to collect and evaluate the

end-to-end performance that a flow may experience. The connection request will be can-

celled if the probing indicates that the current congestion level is high or the QoS provided

by Diffserv network is not acceptable. Since it is end host instead of router to process the

admission control on each individual flow, the scalability feature is saved in EAC. How-

ever, the probing path in EAC is pre-selected therefore EAC is separated from QoS routing

but only admission control and service selection, thus the false routing may occur and the

user's cost may increase.

1.3 Network Measurement Overview

As mentioned in section 1.1, QoS measurement has been researched and it remains as a

challenging topic in network QoS provisioning. Currently there are two types of measure-

ment methods that have been proposed for network measurements:

1. Active probing measurement: The router or end host deliberately sends probing

packets (also named measurement packets) to the target router with precisely controlled de-

parture time, and either the destination measures the arrival time or the source estimates the

result from the feedback of the target router. This method has been prevalent since the late

1980's [23, 24]. It can be categorized into two classes: delay based and dispersion based.

In the first category, path characteristics such as per-hop capacity, queuing delay, and link

utilization are inferred based on the round-trip-time (RTT) or one-way delay of individual

5

packets. The dispersion based method can estimate capacity and available bandwidth, by

observing the changes such as the space between the neighbors of probing packets pairs

or trains. The probing traffic can be generated by marking the user data packets and using

them as probing packets, so called in-band probing, or by injecting measurement packets

only for probing purposes. This method is categorized as out-of-band probing [25]. Al-

though inbound probing does not introduce additional traffic except for the marking bits,

the marking and analysis processing at the measurement points may cause delay to the data

traffic used for probing, hence currently most active measurement tools adopt out-of-band

probing. This dissertation also focuses on out-of-band probing.

2. Passive measurement: In comparison to the active measurement, passive mea-

surements do not inject probing packets into the network. They estimate the network per-

formance according to the traffic information captured from the header of the incoming

packets by network devices (for example, switches and routers) over various network paths.

NetFlow [26], implemented in Cisco routers, is one example. It counts the number of bytes,

packets, flag fields, time of the flow to measure bandwidth/link utilization between network

backbone routers. IETF also organizes the workgroup for passive measurement framework

[27]. Passive measurements can provide captured data with fine details, but large amount of

per-flow information to be store requires large network storage resources such as memory

of the router that are expensive. Furthermore, for high speed networks, the packets pass

through a monitor point are counted in gigabyte per second units. Routers have to sam-

ple the traffic to alleviate the processing burden and large storage, which diminishes the

accuracy of the measurement. The involved non-negligible installation and maintenance

cost also impede the wide-spread deployment of passive measurement. Meanwhile, pas-

sive measurement lets ISPs know the performance of their domains, but lacks the ability to

identify performance problems beyond a single ISP. Thus active measurements become a

possible method to replace or complement passive measurements.

6

1.4 Scheduling of Network Measurement Tasks

Because different active measurement tools may be executed simultaneously at one mea-

surement point, it is possible that different measurement tools contend with each other

for the network (or node) resources and the transmission channels, such as processing

time, bandwidth, and memory. Hence, the active measurement tasks that are performed

at each measurement point need to be carefully scheduled to avoid both potential resource

contention and measurement disturbance from each other measurement tasks. Otherwise,

contentions might affect the network measurement results, which may be interpreted as

a network problem, and mislead network administration and affect managing decisions.

Even worse, measurement without scheduling may cause a traffic burst that may impair the

users' data transmission quality.

Measurement tasks are also required to be executed as soon as possible so that the

network performance state can be updated timely to different QoS management systems

(e.g., QoS routers and server hosts). As the frequency of measurement tasks increases, the

measurement traffic also increases, and this raises the possibility of measurement distur-

bance. Therefore, it is of interest to minimize the measurement time to perform the set

of required measurements in each round (a set of measurement tasks that need to be per-

formed within a specified deadline or period of time). The repetition of the measurement

tasks, required for service monitoring, can be facilitated. That is, more active probing can

be injected into the network each time interval.

In this dissertation, a novel scheduling scheme to resolve contention for resources of

both periodic and on-demand measurement tasks from graph coloring perspective, called

ascending order of the sum of clique number and degree of tasks. The scheme selects tasks

according to the ascending order of the sum of clique number and conflict task degree in

a conflict graph and allows concurrent execution of multiple measurement tasks for high

resource utilization. The scheme decreases the average waiting time of all tasks in periodic

measurement tasks scheduling. For on-demand measurement tasks, the proposed scheme

7

minimizes the waiting time of inserted on-demand tasks while keeping time space utiliza-

tion high. In other words, the total time spent on finishing all the tasks is shortened.

1.5 Link State Dissemination

Current schemes for flooding-based link-state dissemination do not consider QoS parame-

ters and cannot provide timely updates of link states. OSPF protocol, as an example, uses

flood algorithm for link state update. For the sake of minimizing the administration com-

plexity and overhead, the OSPF protocol recommends link state be updated periodically

with intervals as large as 30 minutes. This is a low update frequency to obtain current link

states for today's network capacities and speeds and for QoS-enabled networks. Spanning-

tree based schemes have been proposed as an alternative to the flooding approach, but their

convergence times are long and they may compromise service agreement compliance if a

link of the spanning tree is affected. Therefore, the construction of the spanning tree can-

not follow the latest link states but store a stale state. This makes the dissemination path

suboptimal, causes slow responses with inaccurate state estimation, and makes the network

intolerant to link failures.

1.6 QoS -Enabled Routing

The basic function for QoS routing is to find a path (as unicast routing) or tree (as multi-

cast routing) to satisfy users' QoS requirement by selecting the proper link and service in

a network. The Dijkstra algorithm to build a routing tree is the well-known shortest path

calculation algorithm to find a routing path with only one constraint (for example, cost of

path). However, in QoS routing, multiple constraints need to be considered. This rout-

ing process is named as multi-constraint routing. The constraint could be the minimum

bandwidth and end-to-end delay the user requires, and the end-to-end cost the user bud-

gets. Multi-constraint routing is an NP-hard problem [28]. There are there types of routing

strategies that can address multi-constraint routing: source routing [29], distributed routing

8

[30] and hierarchical routing [31]. This dissertation mainly discusses the source routing

approach.

CHAPTER 2

NETWORK QOS MEASUREMENT ARCHITECTURE AND SCHEDULING OF

MEASUREMENT TASKS

2.1 Introduction

In this chapter, a distributed QoS state measurement architecture and a measurement task

scheduling algorithm are proposed. The presented measurement framework is able to esti-

mate multi-class QoS levels at each link of the network. The scheduling algorithm aims to

minimize the scheduling time for each round of periodic measurement tasks, and to resolve

resources the contention among various tasks. An analysis and simulation are presented in

this chapter. They show the advantages of the proposed algorithm when compared to other

existing schemes.

2.1.1 Active Measurement

Current QoS applications need QoS report to verify the service level agreement (SLA).

Active measurement and passive measurement can help them to obtain such information.

Because of the disadvantages of passive measurement as mentioned 1 and the controllable

properties of active measurement, active measurement becomes a better solution for QoS

measurements. [23, 32-42]. In active measurement, routers or end hosts, as the measure-

ment points, deliberately send probing packets (also named measurement packets) to the

target destinations with precisely controlled departure time, and either the destination mea-

sures the arrival time of such packet or the source estimates the resulting delay from the

feedback of the target router or host [43-46]. The network information obtained by such

measurements includes available bandwidth, capacity, and one-way delay, round trip time

(RTT), jitter, and topology. The knowledge of such parameters facilitates various network

administration tasks, network monitoring against network threats (e.g., denial-of-service

attacks and hot spots), traffic engineering (e.g., QoS routing and link state update), and

9

10

billing (e.g., pricing based on traffic amount or QoS performance). Such active measure-

ments have been implemented in some advanced existing networks [47-49]. Examples of

tools for active measurement [43] include the simple ones such as Ping and Traceroute,

and the sophisticated, such as Pipechar [50], Pathload [51], Cing [52], Clink [53], Nettimer

[54], Pathrate [55], Pathchar [56], Yaz [57].

There are different tools to measure each QoS parameters and some tools may eval-

uate more than one parameter. Some of those tools are described below.

2.1.1.1 Bandwidth. In computer networking, digital bandwidth or just bandwidth often

refers to a data rate measured in bits/s, for instance, network throughput. These measure-

ment tools are used to evaluate two bandwidth metrics: capacity and available bandwidth.

Capacity Ci of link i is defined as the maximum possible Internet Protocol (IP) layer trans-

fer rate through that link. It should be noticed that the capacity of the link at IP layer

delivers a lower rate than that its claimed transmission rate due to the overhead of data-

link-layer encapsulation and framing. Given the claimed capacity and overhead of data

link layer with Clayer2 and H yayer2, the transmission time for an IP packet with size L is

T = (L + H yayer2)/Clayer2,so the capacity of the IP layer is L/T= Clayer2• 1/1+Hlayer2/L

which is less than Ciayer2. The available bandwidth of a link is the maximum throughput

that the link can provide to an application, given the link's current cross traffic load. Be-

cause of its volatility, the available measurement should last a period to average the value.

The existing active measurement techniques are mainly divided into four families:

• Variable Packet Size probing (VPS): This scheme estimates the capacity of each link

along the path. The time-to-live (TTL) field in IP header is set to force probing pack-

ets to expire at the target link. The router at that link then feedback Internet Control

Message Protocol (ICMP) time-exceeded error messages back to the source, which

measures the RTT to that link. The tools Clink, Pchar, Pathchar, and Bing belong

to this category. However, VPS probing may cause large capacity underestimation

11

errors if the path it passed includes a store-and-forward data link layer switch [58]

because it introduces other delays hidden from the IP layer.

• Packet Pair/Train Dispersion Probing (PPTD): This scheme estimates end-to-end ca-

pacity (i.e., the minimal capacity of the links along the path, so called narrow link)

of a path by sending multiple packet pairs which includes two-packets back-to-back

with same size, or multiple back-to-back packets with same size as a train. For

packet pair probing, if the previous dispersion between the first and last packet is

ΔTi-1, after passing the current link i with capacity C2, the dispersion is ΔTi=

max(ΔTi-1 , L/Ci). As the first dispersion ΔT 1=L/C1,the final dispersion at the

receiver is:

that is, inversely proportional to the path capacity min(Ci),so the end-to-end capac-

ity can be estimated. The drawback of this mechanism is the unrealistic assumption

that there is no other traffic so called cross traffic in the network. To overcome this

disadvantage, packet train is proposed. This approach follows the same algorithm as

the one described above, but N packets are used for one train. In this case, the im-

pact of cross traffic will be smaller as N increases. Figure 2.1 illustrates this method.

Typical PPTD tools need the software installed on both sender and receiver side.

Nettimer, Abing, Spruce, Pipechar, Bprobe, Cprobe, Sprobe, and Pathrate are some

examples of PPTD tools.

• Self-Loading Periodic Streams (SLoPS): This scheme sends a number of equal-sized

packets to the receiver, or saying sink, at rate R to estimate the end-to-end available

bandwidth. The sink informs the source about the one-way delay of the probing

stream. This delay keeps increasing means that the sending rate R is larger than the

available bandwidth of the tight link (the link with input stream rate larger than output

stream rate is called tight link) Ba so that queuing delay occurs. Otherwise, a non-

12

t;j' IIIIIIG ~~~ packet pair

Input probing packets Rooter Output probing packets

L L L IIIIIIG
I-- D.T-../
~ I tmJ packet train

L L L

Figure 2.1 Packet pair and packet train dispersion.

increasing one-way delay accounts for R < Ba , and the source wi ll keep sending

probing packets with higher rate than R to approach the sending rate to Ba. In this

case, there shou ld be only one stream along the path, and the source must create a

silent period between the successive streams to guarantee the average probing rate

below 10% of Ba. Pathchirp, IG!, PTR, and Pathload are the members of thi s family .

• Trains of Packet Pairs (ToPP): This scheme was proposed to measure the avai lable

bandwidth of the path [59]. ToPP is based on the same principle as SLoPS where the

sender sends several packet pairs to the receiver or with linear increas ing rate. The

initi al dispersion inside the packet pair t::.T, as well as the offered rate of the packet

pairs is known:

R, = L / t::.T, (22)

If Rs is larger than the available bandwidth Ba, the receiver obtains a dispersion

smaller than t::.T, which infers a measured rate Rm < R" so that the sender increases

the sending rate to one close to Ba. Besides that, ToPP is able to measure the capacity

of the link with minimum available bandwidth (so ca lled tightest link) in the path.

Some research groups compared the performance of different bandwidth estimation

tools. Clink, Pchar, Pathchar, Abing, Spruce, Patchirp, IGI and Ipiechar are implemented

end-to-end among different cities on France national research network [47]. The results

show that most of the tested tools overestimate bandwidth because of the long routing path.

Hence, per-link measurement may achieve better performance than end-to-end measure-

13

ment. Furthermore, the tools may be disturbed due to the network resource contention

when cross traffic exists. Hence the active measurement tasks need to be carefully sched-

uled to balance the network resources.

2.1.1.2 One-Way Delay. Round-trip time (RTT) is often referred as an approximation

delay, and it is easily measured by using Ping command. However, this measurement is the

sum of both forward and reverse delays. Note that half RTT cannot infer the one-way delay

as those two delays may not be the same in an asymmetry network, which is common in

the real environment.

IETF standardized the one-way delay measurement framework [60]. In the proposal,

the IP header of measurement packet is time-stamped when the packet is sent and received.

The sink collects the one-way delay by computing the difference of sending and receiving

timestamps. An important key issue is the synchronization of the clock between the source

and the destination. GPS systems provide a solution to synchronize both sides within sev-

eral 10s of pee but its high expense and strict requirements on antenna location (faint GPS

signals require an antenna be mounted outside with a clear view of the sky) prevents it

from wide deployment. A code division multiple access (CDMA) base station includes a

GPS receiver that broadcasts the time to a CDMA handset, so CDMA receivers can also be

used for synchronization. The disadvantage of this approach is that the transmission delay

always fluctuates because the distance between the receiver and base station is unknown.

Another approach Network-time protocol (NTP) [61] may achieve synchronization within

several milliseconds, so that NTP can be used for delay measurement when the tolerance

of the estimation error is larger than milliseconds. Internet2's project OWAMP [62], as an

implementation of IETF OWAMP protocol, is based on NTP.

Some other mechanisms have attempted to evaluate delay without time synchroniza-

tion. Choi et.al [63] proposed an algorithm in a TCP environment for this purpose. The

forward (reverse) delay is the deduction of difference between the accumulated RTT mea-

14

sured by sender and the receiver side. However, it requires the initial forward delay in the

first round, which needs a heuristic to predict it.

2.1.1.3 Packet Loss. IETF [64] also released a standard for one-way packet-loss mea-

surement: at the source, the prepared packet with a timestamp is transmitted. The des-

tination samples the coming packet within a time period ([64] proposed pseudo-random

Poisson sampling, but this is not exclusive). If the packet fails to arrive within a reasonable

time period or is corrupted, the destination considers it lost. Similarly to one-way delay

measurement, clock synchronization is required so the transmitted packets can be counted

by sender and receiver in exact same time period. On the other hand, to get an accurate

projection of loss rate in a low-packet-loss network, a measurement point can either send

the probing packet in a low rate but let the probing phase last long time, or transmit a

high burst of packets in a transitory period. However, both solutions have disadvantages.

The former produces coarse average loss ratio as the network performance is continually

changed. Increasing the probing rate improves the measurement resolution, but the probe

packets themselves can skew the results and disturb the existing traffic if the frequency

is too high. [24] compared the probe-based packet-loss measurement with the passive

method. The experiment reveals the active measurement suffers from high variance and do

not correlate with those results from passive measurement. Thus the active measurement at

low loss rates need be careful.

2.1.2 Passive Measurement

Most time the data of passive measurement is only accessible to the network operators,

who use it to manage today's complex Internet. Besides routing, the information is used

for intrusion detection system to detect hot spots and denial-of-service attacks, for link state

update, and billing.

15

2.1.2.1 NetFlow. NetFlow [26] is built into most Cisco switches and routers. It main-

tains a flow cache to contain flow records which maps the traffic relayed by the router. The

current version 9 of NetFlow supports the IETF standard called IP Flow Information Export

(IPFIX) to export the record by UDP to a collector application that analyzes and archives

the data. The router retrieves the IP header of the traffic to identify the flow by its source

and destination IP address, source and destination port, layer 4 protocol type, type of ser-

vice (TOS) byte, and input logical interface. A new flow record is inserted into the flow

cache if packet does not match current existing flow. NetFlow will let the flow end and be

exported if TCP flags (FIN or RST) arrive, after a waiting threshold is passed (15sec, con-

figurable), or 30 minutes (configurable) after the record is created, or else, if the flow cache

is full. In addition to the flow IDs, the recorded entries also include the number of bytes

and packets in the flow and the timestamps of the first and last packets. NetFlow looks up

the record entry when a packet arrives, then update the corresponding entry. In high-speed

networks with large number of flows, sampling policy is utilized by NetFlow to provide

scalability. An early version of NetFlow provided deterministic sampling (named Sampled

NetFlow), which selected every n th packet for processing on a per-interface basis called

"1 out of n". Then random sampling methodology (named random sampled NetFlow) is

introduced in new version. This approach selects packets randomly with a fixed sampling

probability, so it is more statistically accurate than deterministic sampling when traffic ar-

rives in fixed patterns. However, it is true that sampling (often 1 in 100, or 1 in 1000) hides

the full details of the traffic and causes estimation errors. Many researchers have provided

improved sampling strategies to dynamically adjust sampling rates according to specific

network scenarios [65].

2.1.2.2 DAG. Data Acquisition and Generation (DAG) [66] is a network monitoring

interface card, originally developed by university of Waikoto, New Zealand, and later com-

mercialized by Endace company. Regarded as accurate monitoring equipment, it is often

16

used to calibrate the active measurement software. It captures the whole traffic on the mon-

itored link without packet loss. Based on its low CPU occupancy feature, DAG cards claim

be able to handle data rates of up to 0C192 and 10GigE with full line utilization. It uses

GPS or CDMA timing signal from base station for clock synchronization. FPGA generates

the timestamp for each packet, and filters and preprocesses the packets. The memory and

processor are embedded in the card to process data. The captured data is then transferred

to a PC through a PCI-Bus interface for post-processing and recording. The accuracy of

the result if the packets arrival rate is far beyond the DAG processing capacity is unknown.

DAG marks the timestamp as soon as the packet arrives, which is faster than flow-based

measurement schemes. Therefore, the recorded time is closer to the ideal packet arrival

time. Besides of the above two solutions, some other technology as sFlow [67] and RMON

[68] also described passive measurement mechanisms.

2.1.3 Combination of Different Measurement Methods

2.1.3.1 End-to-End vs. Per-Link Measurement. From the above introduction, it can

be seen that most of the active measurement tools support end-to-end though a few of them

estimate the per-link performance. The performance of end-to-end QoS measurement may

not be as accurate as the performance of per-link measurement. On the other hand, passive

measurement tools mainly collect the QoS information of the local interface.

Traditional QoS routing needs the local state of each router, therefore per-link mea-

surement may be more suitable. Per-link measurement can also be regarded as the case of

end-to-end measurement where the path has no intermediate routers.

2.1.3.2 Combination of Active and Passive Measurement. Passive measurements can

be less intrusive than the active ones. They provide relatively continuous measurements

without any probing intrusion [24, 39]. This can assist ISPs to understand the network per-

formance and analyze the network trends. On the other hand, active probing measurement

17

is more flexible and easier to be deployed. It can monitor the transitory phenomenon with

various QoS measurement options. Based on this point, some proposals to combine active

and passive measurements have been proposed in literature.

In [39] an available bandwidth monitoring tool is developed that it passively captures

the existing application traffic whenever possible, and triggers active probes when no exist-

ing traffic is available. In this way, a constant series of measurement with lower overhead

can be achieved.

2.2 Distributed QoS State Measurement

2.2.1 Service Vector

In order to increase the granularity, the QoS service of each router is categorized into

various service classes. That is, assume there are n service classes, S = (Se , S1, ... , Sn—i)

provided by each link in a network and that a data flow passes v routers. Then at router i

and j, the user may select service Q i and Qj separately, whereQi and Qj can be the same

or different classes and Q iε S,

Q

i

εS.The service selected for each router is represented

as a vector as s = (so , s1 , . , sv-1 , sv), where s k is the service selected at router k and

sk ε S. This vector is the so called service vector. Service vectors are used to find the

suitable service classes in a single path so as to maximize:

where U is the utility function and C is the cost. This combination of service vectors de-

couples the provisioning of end-to-end QoS at each router, thus resulting in an intermediate

level of granularity and complexity between per-flow and per-group levels.

18

I 51 Probing

51 Data II 51 Data I

Router 1
Sn Probing

Router 2

Sn Data Sn Data

Figure 2.2 Probing packets to test various service classes between routers.

2.2.2 QoS Measurement Architecture

Following this consideration, it is necessary to measure the state of each service class. As

Figure 2.2 shows, the framework proposes that one router sends the probing packets with

different priority to measure the service class in each link.

As commented in 2.1.3, end-to-end measurement methods may not be suitable for

the required QoS granularity. The system needs to measure the QoS state of each link

between any neighboring routers, that is, the state of any router in the network (and in each

interface). The most demanded QoS parameters are one-way delay, one-way available

bandwidth, round-trip del ay, and packet loss ratio. Currently, there are many measurement

tools to evaluate them. Some of the available ones that can evaluate one-hop QoS state are

shown here with the acceptable measurement quality.

Table 2.1 illustrates the summarized selection of the software considered. However,

it is not restricted to these tools to measure the QoS state. In addition, other parameters for

measurement, such as link capacity and jitter, can be considered.

2.2.3 Experiments Data and Analysis

The implemented measurement system is illustrated by Figure 2.3. Routers RJ and R2 are

connected through a bidirectional cable with a capacity of 100Mbps. TJ and T2 are two

terminals that run the selected measurement tools. They are connected to the router with 1

19

Table 2.1 Selected Measurement Tools for QoS Parameters.

QoS parameter Measurement tool

One-way delay OWAMP [62]

Round-trip delay Ping

Available bandwidth Pipechar [50] or Pathload [51]

Topology Traceroute

Bandwidth capacity Pathchar [56]

RI R2

Spirent SmartSits 6000C

Figure 2.3 Experiment topology.

Gigabit Ethernet cable. A Spirent SmartBits 6000C system (traffic generator) [69] is used

to generate the background traffic, also called cross traffic, sent between R j and R2 with

the frame size 60 bytes. The experiments include the following three parts:

2.2.3.1 Test of Measurement Tools. Through the SmartWindow application of the Spirent

traffic generator, SmartBits generates bidirectional cross traffic between R j and R2 with the

traffic loads from 0 to 60% of the link capacity on each direction. Then, the measurement

tools Ping and Pipechar are invoked from T j • The probing traffic and the cross traffic have

same priority. The measurement results are shown in Appendix A. It can be seen that the

Cumpari.\on o(lllcasurcd aut! acllllll :lI'ailal:tlc h;mJwj,lth

I OO~,~------~~==~==~==~
" ' .. . -I)- ' Dellml b:mdwidth

"a.. .,.
-'-l1~asun.:d bandwidth

'a. - 80

! " ''' .
' ..

'" • .,

00 10 20 30 40 SO 60
Occupied b.1lldwidlh (Mbps)

20

Figure 2.4 Comparison of the available bandwidth measured by Pipechar and the actual
value.

average RTf measured from Ping and the average RTf fro m Pipechar are largely different.

This may be caused by the different protocol that each tool uses. However. the measured

RTf by SmartBits is close to the result obtained by Ping. Hence. Ping is selected for RTT

measurement in future tests.

From the result shown in Appendix A. it can be seen that the available bandwidth

measured by Pipechar is lower than the actual value (as measured by SmartB its). as Figure

2.4 shows. However. the difference between them approaches to a constant. This allows

people to further find the reason and compensate the difference fro m the measured data.

During another experiment. SmartBits sends cross traffic with the lowest priority.

The traffi c is changed in same way as above experiment. Pathload is invoked from both

terminal sides (for Pathload. T2 invokes the software as the end side) . In thi s case. the

probing packets are sent with higher priority. so as to simulate that Pathload measures a

high service class. The results presented by Pathload approaches to the actual SmartBits

values. In the fo llowing experiment. the cross traffi c shares same service class as Pathload.

The obtained results show that Pathload values largely diverge from the SmartBits values

once the cross traffic is sent as a burst. or when the gap between the frames has a large

variance. Appendix B shows these results. Pathload measures the available bandwidth

by increasing the prob ing-packet sending rate until it finds that the one-way delay of the

21

Table 2.2 Comparison of Network Consumption by Each Tool.

Measurement

Tools

CPU / Memory

Cost

Bandwidth

Cost

Measurement

Time(s)

Ping very low very low < 2

Pipechar Low Low > 20

Pathload Low Medium 7

packets is increased. Hence, the received difference is probably due to the variable gap

between packets affects the one-way delay measurements in Pathload.

2.2.3.2 Analysis of probing packets. The length and amount of probing packets affects

the accuracy of active measurements. It has been suggested that the optimal solution is to

use around 60 probing packets with 700 bytes each [70]. In the experiment, while still using

the above experiment topology, SmartBits generated bidirectional cross traffic with loads

from 0% to 50% through the SmartWindow application, and at the same time SmartFlow

application was used to send probing packets for one-way delay test. Compared with the

measurement result obtained by SmartWindow, the probing packets with size of 64 bytes

can achieve more accurate results than that obtained by using large size probing packets,

independently of the number of packets are used.

2.2.3.3 Consumption of measurement tools. From the above experiments, the resource

consumption by each tool is obtained, as Table 2.2 describes.

22

.-.- ... -...... ---_ .. -. --- --"'". -'" .. - _A.
" .. -

" .'.
:" !§.. Ca)

",
'"

Figure 2.5 Network measurement implementation topology.

2.3 Task-Execution Scheduling Schemes for Network Measurement and

Monitoring

Table 2.2 shows that the measurement tools potentially contend for network resources. Ac-

tive measurements are launched from a specific measurement server (measurement point)

connected to a router in the network to measure the end-to-end performance as shown in

Figure 2.S.a. A few measurement tasks can also be implemented at routers, such as the

Ping application, so that routers may measure the link state between any two neighbors,

as illustrated in Figure 2.S.b. Without loss of generality, Figure 2.6 shows a measurement

infrastructure designed by Internet2 E2E piPEs projects [71].

As discussed above, the measurement tasks need to be executed periodically. In each

cycle, a measurement task J~-+y is denoted as one measurement process executed by the

ith measurement tool sending probing packets from measurement point x to point y. The

same measurement task is processed periodically.

Independently of the measurement approach used, probing overhead is a general con-

cern for active measurement mechanisms as it may affect the user traffic. For example, an

active measurement experiment [70] showed that a 700-Byte packet size used in 60-packet

router I
per.hop link or multi-hop path

periodic scheduling tasks

on-(IClllam.l . I task:;

measurement results
resullS request

of measurement
results

routcr 2

Figure 2.6 An example of network measurement infrastructure.

23

probing trains can achieve sufficiently accurate results of available bandwidth measurement

per path on the Internet. In this case, one path overhead is about 42KB, and so measuring

all end-to-end paths in a 200-nodes bidirectional mesh system requires about 1.7GB for

just one snapshot if all network links are simultaneously tested. Therefore, the network

resources need to be efficiently managed under active probing.

In addition, distributed measurement tasks may be executed simultaneously at one

measurement point in a network. Hence, it is possible that different measurement tasks

contend for network resources, including transmission channels and bandwidth. Measure-

ment processes that are executed in different common points also contend for resources,

such as processing time, bandwidth, and memory. The accuracy of some measurement pro-

cesses may be affected by other measurement processes run concurrently. This conten tion

for resources is called measurement conflict problem. To gain insight of the impl icati ons of

contention for resources, Pipechar, Pathload, and Ping are executed in a host, all at the same

time, to measure several parameters in the transmission from one host to another through

a IOO-Mbps fast Ethernet link [46] . It is observed that the measurement resources and

24

measurement processing time had a large discrepancy among those measurement tools, as

shown in Table 2.2, and the obtained measurement results are instable because of the distur-

bance from other measurement processing. Sommers and Barford [72] also implemented

a testbed through which the experiment results show that the measurements of packet loss

and delay from active probes can be skewed significantly due to the contention of probing

packets. Thus, the active measurement tasks that are performed at each measurement point

need to be scheduled to avoid both potential resource contention and measurement distur-

bance from each other while achieving a satisfactory measurement in terms of time and

accuracy.

To solve the above problem, a solution is designed to schedule the periodic and on-

demand measurement tasks to achieve the following four goals:

1. Avoid conflicts among concurrent executed measurement tasks.

2. Network resources are not exhausted by measurement tasks.

3. Shorten the waiting time of each measurement task for the execution.

4. Shorten the total completion time of measurement tasks set, that is, improve the

resource utilization.

To comply with the above requirements, this dissertation proposes an algorithm to

schedule periodic tasks and to improve the measurement efficiency. It also proposes an

algorithm to schedule on-demand measurement tasks that minimize the delay of both pe-

riodic tasks and the incoming on-demand tasks. Both algorithms are based on graph col-

oring theory, where each measurement task is treated as a vertex in a graph, and the con-

tention/conflict by two tasks is represented as an edge connecting those two vertices.

2.3.1 Problem Analysis

According to the classification approach of scheduling introduced by Graham et al. [73],

the task scheduling problem is defined in terms of a three-tuple classifications [a, 3, -y],

25

where u defines the machine (processor) environment, specifies the job's characteristics,

and 'y denotes the optimality criterion. Following this classification method, the measure-

ment scheduling problem can be described as [P, {rec, ri } , Σ Ci]. Here, P is the number

of identical parallel processors to perform the required jobs. However, different from that

approach [73], P is a variable instead. The value of P depends on the number of measure-

ment tasks run simultaneously. Considering that n tasks need to be processed, the following

relationship exists:

rec refers to the constraints on the resources used by the execution of measurement tasks.

In order to minimize or to avoid the impact of probing packets on the performance of

regular data traffic, a network resource constraint, such as the maximum bandwidth, is

set at each measurement point. This is called measurement resource constraint (MRC) in

this dissertation. Scheduling measurement tasks need to ensure that the total amount of

resources consumed by the measurement tasks are within this constraint rec. Measurement

task i is denoted as τ i in the remainder of this chapter. The parameter ri denotes the release

time of a measurement task τ i , upon which one instance of the task Ti becomes available for

processing or execution. Σ C i indicates that the optimal criterion chosen is to minimize

the total completion time on P parallel processors, where C

i

 denotes the completion time

of the measurement task Ti . This optimal criterion reflects the fourth goal listed in this

section. It is easy to see that the third goal is the sufficient and necessary condition of the

fourth goal, as described by Lemma 2.1. Therefore, Σ C i can cover both the third and

fourth goals.

Lemma 2.1. Minimizing the total completion time of a set of measurement tasks is equiv-

alent to minimizing the average waiting time of the measurement tasks in this set.

Proof For a measurement tasks set, the completion time of taskτ

i

 is:

26

where ea is the execution time of measurement task τi and wi is the waiting time of task TT.

Hence, the total completion time of the measurement tasks set is:

where m is the number of measurement tasks in the set and wavg is the average waiting

time of the tasks. Since the execution time of each measurement task is a constant, the sum

of the execution time E e, is a constant too. According to Equation 2.6, minimizing E

is equal to minimizing m x w avg , and thus is equal to minimizing wavg.

A scheduling algorithm can be further classified as preemptive or non-preemptive.

In preemptive scheduling, the execution of a task can be interrupted prior to completion

and resumed later. On the other hand, in non-preemptive scheduling, a task must be exe-

cuted to completion once execution has started. In general, measurement task scheduling is

regarded as non-preemptive scheduling as the measurement results are expected at comple-

tion and the measurement results may be time sensitive. Another issue with this problem

that differentiates it from the others is the potential conflict that measurement tasks have

with each other. This characteristic increases the complexity of the scheduling scheme be-

cause the tasks cannot be just sorted according to one parameter (e.g., deadline or execution

time of the task), but also the conflict with scheduled tasks has to be considered.

2.3.2 Related Work

Round robin is one of the simplest scheduling schemes [48, 74, 75] where the tasks are

executed by a fixed order in uni-processor systems and only one task is executed at a time.

This scheme requires the longest processing time for measurement tasks as it does not

admit concurrent execution.

Network Weather Service (NWS), a well-known network measurement infrastruc-

ture, adapts a token passing scheme [76] to ensure mutual exclusion between measurement

27

tasks. In this scheme, the measurement point that receives a token is entitled to execute a

measurement task. Afterwards, the measurement point releases the token to a successor.

However, this method does not allow concurrent execution of measurements.

Deadline driven scheduling (DSS), also known in the literature as the Earliest Dead-

line First (EDF) scheduling scheme [77], selects tasks based on their deadlines, and was

originally defined for uni-processor execution.

It is shown that the problem of determining whether a given periodic task system

is non-preemptively feasible on either a single processor or multiprocessors is NP-hard

in a strong sense [78], [79]. To provide network measurement scheduling, a scheduling

algorithm based on EDF that allows multiple concurrent executions, referred to as EDF-CE

[80], was recently proposed. This approach initializes a queue that stacks all pending tasks

to be processed in an EDF order, where the deadline is defined as the time before the task

must be executed again. Whenever a task is ready to be released or a task finishes execution,

the available tasks in the queue are scheduled. This method introduces the possibility of

overlapping multiple tasks in some time slots, but it does not consider the utilization ratio;

in other words, sorting the tasks in the pending queue with their deadlines ignores the fact

that the concurrent execution of multiple tasks greatly depends on the existing conflicts

between the tasks as much as on the tasks' deadlines.

2.3.3 Modeling of Network Measurement Scheduling Schemes

2.3.3.1 Definitions. Let τ = {τ1, τ2, ..., τn } represent the measurement tasks set with

up to n measurement tasks to be executed in the network. Here, T i is characterized by a

three-tuple of parameters:

• a (τ i): the time the measurement task is released, which is the task's arrival time.

• e (τ i): the execution time required by a measurement task to complete the measure-

ment

Figure 2.7 Illustration of network measurement tasks.

• p (Ti): the period of the measurement task, or the time to execute task T i after the pre-

vious instance. This parameter describes how often a measurement task is executed.

A timetable of periodic measurements is constructed by sequences of tasks, each of

which is executed again in p (Ti) units of time, and each task requires execution of e (Ti)

time units. The j th job (or repetition) of measurement task Ti is denoted as Tip. Thus, the

first job, 'To_ , of measurement task Ti occurs at time a (Ti); consecutive jobs generated by

occur exactly p (Ti) time units apart. Figure 2.7 illustrates an example delineating the terms

defined above.

In a set of periodic tasks where the tasks (and the number of them) do not change and

where each task can have any particular period, the combination of tasks' release times is

finite. This is, after a long period of time, because of the task periodicity, the combination

of release times repeats again. Therefore, for the measurement set T, the term hyperperiod

Ph is defined to be the period of time where all tasks in the set occur at different times

and without replication of the combination of release times. That is, all periodic tasks in

one hyperperiod are able to follow the same schedule as used in the previous hyperperiod.

29

The hyperperiod is defined as the least common multiple of the periods of all measurement

tasks in T.

Without loss of generality, the execution time e (Ti), initial available time a (Ti), and

the period p (Ti) are defined as integer multiples of a time unit which is referred to as a

time slot. The deadline of each job d (Tip) coincides with the period, that is, the job 7-,3

should be completed before the next job τi(j+i) is available to be executed. According to

this definition, Lemma 2.2 can be readily obtained:

Lemma 2.2. Given a measurement tasks set T = {τ1, τ2 , ..., τn}at any time instance,

there is at most one job available to be executed for any measurement task T i E T.

Proof. At any time instance, there must be a job available for execution at the beginning

of that period. If there are some jobs generated from previous periods still pending for

execution, those postponed jobs passed their own deadlines and they are considered as

missed jobs. Hence, there is at most one job for each measurement task at any time-

instance. 0

2.3.3.2 Modeling of Measurement Scheduling. The proposed scheduling algorithms

are based on graph theory. In the literature, there are some articles using graph coloring

to solve time slots assignment problem [81-83], but most of them are designed for single

processing, which are not fit for multi-task processing such as the network measurement

scenario.

Consider a measurement tasks set T = {Ti, T2, ... 70 to be executed in a network.

Each measurement task can be represented as a node (E V) in a graph and any two measure-

ment tasks are connected by a link (E E) if they are to be executed with mutual exclusion

on the measurement point or channel. These tasks are said to be adjacent to each other.

The graph G(V, E) that describes these nodes and links is called a conflict graph. Figure

.t-____ T~2 ----.r~ ~
",.

1"3 ~ ~
~----~----t.. ~

"';'

measurement
point 1

measurement
point 2

30

Figure 2.8 Illustration of the relationship between measurement tasks by a conflict graph.

2.8 illustrates an example of a conflict graph where two measurement tasks are to be exe-

cuted between measurement points 1 and 2 in a full-duplex connection. Assume that task

7] contends with 72 for the avai lable memory at measurement point 1, and at the same time,

it contends for the transmission channel with 73. Task 73 also contends with 74 for available

memory at measurement poirit 2. Therefore, these four tasks comprise a conflict graph with

three links. In this example, measurement tasks 7 1 and 74 (represented by shaded nodes) ,

or 72 and 73 (represented by un shaded nodes) can be concurrently executed.

In the considered network, there is a central controller to compute the schedule of all

measurement tasks and to send out the schedule information to each measurement point.

This central management mode is feasible and adopted in real network measurement frame-

works. Scheduling is requested each time when a new job is avai lable for execution and

when a job execution has been completed. These time instances are named as scheduling

points. There is a waiting queue to store the jobs available for execution. At each schedul

ing point, jobs stored in the waiting queue become eligible candidates for the scheduler.

Based on the confl ict relationship between the measurement tasks, these jobs that belong to

different measurement tasks construct a conflict graph at the job level. The conflict relation-

ship between jobs fo llows the same conflict relationship between measurement tasks. For

31

periodic tasks, the conflict relationship among them is known prior to performing schedul-

ing because the submitted tasks and the amount of resources they consume are both known

in advance. For on-demand tasks, the attributes of measurement tools are a priori so the

tasks' conflicts are known once an on-demand task emerges.

As the measurement results obtained by earlier periodic measurement tasks are used

to describe the current network performance, it is desired that the measurement tasks can be

completed as soon as possible after a task is available for execution. Therefore, the schedul-

ing problem is converted into a process to schedule the available jobs at each scheduling

point so as to minimize the job waiting time for execution. At the same time, the scheduling

of measurement jobs at one scheduling point is enunciated as the arrangement of the ver-

tices of graph G at the job level such that none of the nodes connected with each other are

scheduled for simultaneous execution. This process can be described as a vertex coloring

problem as follows.

Scheduling of Measurement Tasks: Given a conflict graph G(V, E) with vertices

V = V (G), assign each vertex a color out of the range [1, 2, . . . , k] such that no two

adjacent vertices have the same color.

Here, each color maps to one time slot. The color set to be used by a vertex v ij in the

conflict graph is mapped to the time range [tc , d(τ ii)] as described by Equation 2.8, where

t, is the current scheduling point and d (Try) is the deadline of the job mapped by vertex v ij .

That is, the scheduler only considers the time slots prior to a job's deadline.

Each measurement point is considered to have limited processing and storage (mem-

ory) capabilities, and each channel to have a limited bandwidth capacity. Therefore, the

load of intrusive probing packets in active measurement needs to be restricted within a

range, so as to minimize the disturbance of the measurement of the existing data traffic,

as described by M RC values. A consumption matrix is proposed to describe such con-

32

Figure 2.9 Consumption matrix.

straints. Denote the number of schedule slots and the number of the measurement jobs as

the column and row of a matrix as shown in Figure 2.9. The resource utilization objective

can be described as follows:

Resource Utilization of Measurement Tasks: Jobs of measurement tasks set T =

{τ1 , τ2 , ..., τn}with execution times e (τi), e(τ2),e (τn), can be represented as a phx n

consumption matrix A, where a row indicates the task and its duration in time slots and the

column indicates the time slot. The maximum number of rows is bounded by the amount

of processing resources constrained by Equation 2.4. Each column as circled in Figure 2.9

represents the consumption of network resources at that particular time slot.

The objective is to place the measurement tasks in the consumption matrix such that

Eni=1 Aij ≤ M RC, Vi E [1, 2, ... , ph], where ph is the hyperperiod duration, i.e., the total

consumption of resources by measurement tasks per time slot is within the measurement

resource constraint.

2.3.4 Proposed Scheduling Schemes

This section introduces the proposed scheduling schemes for periodic and on-demand mea-

surement tasks. The following definitions are used in the description of the proposed

schemes.

• Clique: a maximal set of adjacent vertices of graph G.

33

• Clique number: the number of vertices in the largest clique of G, denoted as w(G).

• Degree: degree of vertex v in graph G is the number of adjacent vertices of v in G,

denoted as dc (v); the maximum degree of graph G is the largest number of dG (v),

and it is denoted as (G).

2.3.4.1 Periodic Measurement Tasks Scheduling Scheme. Following the model of

the scheduling problem described above, the proposed algorithms consider the jobs stored

in the waiting queue for scheduling at each scheduling point. If a job can be scheduled in the

time range [current scheduling point, deadline o f job] without any conflict with already

scheduled jobs at any given time slot, this job is removed from the waiting queue and the

corresponding time slots for execution are marked in the consumption matrix; otherwise,

the job is kept in the waiting queue and waits for consideration at the next scheduling point.

Hence, the goal is to find a feasible scheme to schedule the maximum number of concurrent

jobs at each scheduling point, so that the most time space in the consumption matrix can

be utilized.

Consider available jobs in the waiting queue. Since their execution times are integer

multiples of a time slot and the time slot can be mapped to a vertex, each task can be divided

into a set of sub-vertices as follows:

In a conflict graph G(V, E) at the job level, each vertex vii that maps job τ ij has a set

of sub-vertices 	 .	 ri";), where a is the length of e(ri3) in time slots.

As the sub-vertices of vii represent the different but consecutive time slots of a task,

they are said to contend with each other (or to have a conflict with each other). These con-

flicts can be described by a complete sub-graph Gil as in the example shown in Figure 2.10.

Conflict graph G is further represented by its sub-vertices and it is denoted as G8 (V', E5).

The clique number of a sub-graph Gii is equal to the number of vertices in Gig . Here, G5

is the graph constructed by sub-vertices.

34

& I i
T

I2: : :LJ
!J~

waiting queue conflict relationship

U

Q9: sub-vertex Q : vertex

Figure 2.10 Example of sub-graph.

As each color represents one time slot, each sub-vertex in graph GS is a candidate

for a color assignment, so that any two adjacent sub-vertices must not possess the same

color. Each sub-vertex is restricted to allowed colors that satisfy the relationship denoted

by Equation 2.8. This is called the list coloring problem. To solve this problem, the sub-

vertices are sorted in the ascending order of their degree in graph GS:

(2.9)

The rationale to schedule jobs in this fashion is the expectation that a sub-vertex with

a small degree has a few confl icts; therefore, a large number of tasks might be scheduled

at the same time. In a network with a measurement scheduling environment, this can be

described by two aspects. For a sub-veltex vjj and its adjacent sub-vertex Vx:

• vjj and Vx map to the same job: Then, the low degree implies the job has a short

execution time. This part is represented as the execution time of the vertex e(Tij),

35

or by the clique number of the sub-graph w(Gij). Scheduling a job with a short

execution time will leave more available time slots for other jobs in the waiting queue.

• g/j and vx map to different job: Then, the low degree of the sub-vertex indicates the

job might have few conflicts with other available jobs in the waiting queue. Schedul-

ing a job with few conflicts allows additional jobs to be executed concurrently, thus

increasing the resource utilization.

The scheduling procedure is described below:

• Step 1. At current scheduling point t c , check if there is a new job available for

execution. If so, the new job is placed in the waiting queue.

• Step 2. Map the candidate jobs in the waiting queue to a conflict graph G and convert

G into sub-graph GS.

• Step 3. Sort the sub-vertices in the ascending order of their degree, as described by

Equation 2.9.

• Step 4. Schedule the first job as indicated by the sorted sequence. Any sub-vertex

selected to be scheduled will be colored with other sub-vertices belonging to the

same job Tip with consecutive colors. The used colors are the intersection set as

color sin-con f uct n [tc , d (Tip)] where [tc , d (Tip)] is the time interval from t, to d

col Or S in—con f het is the set of available colors possessed by the on-going conflict jobs,

and co/ Or Sin—con Pict is the complementary set of color S in—con f lict, i.e., the available

colors that can be used by vii i .

• Step 5. Check if the colored job and other on-going jobs violate the resource con-

straint M RC . If there is no violation, remove the colored job from the waiting queue,

remove the corresponding sub-vertices from the sorted sequence, and add the com-

pletion time of the job to the scheduling point list.

36

• Step 6. Color the next sub-vertex in the sorted sequence. Repeat Steps 4 to 5.

• Step 7. Go to the next scheduling point. Repeat Steps 1 to 6.

The algorithm of periodic measurement-tasks scheduling is described by the pseudo

code in Figure 2.11.

2.3.4.2 On-Demand Measurement Tasks Scheduling Scheme. During the execution

of the periodic measurement, a network administrator may request sporadic on-demand

measurement tasks to test specific network performance parameters at a particular time.

Furthermore, on-demand tasks might conflict with some periodic or on-demand tasks. Each

on-demand task has also defined execution and deadline times, and it is considered with

either a priority higher than or equal to that of the scheduled periodic tasks. The proposed

scheduling scheme for on-demand measurement tasks is able to handle both of these two

cases adaptively. The goal of scheduling on-demand tasks with higher priority is to execute

the on-demand tasks as soon as possible while minimizing the latency of the periodic tasks

caused by the insertion of on-demand tasks. On the other hand, scheduling on-demand

measurement tasks with the same priority as periodic tasks aims to shorten the average

waiting time for all measurement tasks including on-demand and periodic tasks.

The proposed method schedules all the tasks with higher priority first, and then

schedules the remaining on-demand and periodic tasks according to the ascending order

of the degree of sub-vertices, as explained below:

• Step 1. When a new on-demand task arrives at tc , check the priority type of the on-

demand task. If its priority is high, store this on-demand task to the waiting queue

of high priority tasks Qhigh . If the priority is equal to that of the periodic tasks, the

on-demand task is stored to Q regular .

• Step 2. Schedule all the candidate jobs in the waiting queue of high priority tasks

Q high . In the pre-computed schedule, all the jobs of periodic tasks that finish their

37

Figure 2.11 Pseudo code of scheduling algorithm for periodic measurement tasks.

38

execution before to and the jobs that are still being executed at time t, are dis-

carded/cancelled. The jobs that start processing after t, are considered as resched-

uled. Follow Steps 2 to 6 of the previous scheduling procedure for periodic tasks.

Note that the scheduling points are updated so the completion time of the scheduled

jobs in Qhigh are added into the scheduling points list. After this step, all the possible

jobs in Q high must be either scheduled or expired because there are no available time

slots to be scheduled before the job's deadline.

• Step 3. Add those jobs that start processing after t, in the pre-computed schedule to

the waiting queue of regular priority tasks Qregular. Schedule all candidate jobs in

Qregular following the previous scheduling procedure for periodic tasks.

Figure 2.12 shows an example to illustrate this scheduling procedure. In this exam-

ple, the on-demand task τ od conflicts with periodic tasks τ1 and τ3 , as shown in Figure

2.12.a. If the priority of τod is higher than that of other periodic tasks, then when it arrives

at tc , all periodic jobs that start the execution after tc are stored in Qregular while τod is

stored in Qhigh . Thus, τod is the first to obtain a schedule. As shown in Figure 2.12.b, τ od

is first scheduled and only the schedule of job τ 32 is changed. If τ od has same priority as

other periodic task, then τod and all periodic jobs that start the execution after t, are stored

in Qregular and sorted in the ascending order of sub-vertices' degree. As shown in Figure

2.12.c, τod is scheduled with longer waiting time than in Figure 2.12.b, but rescheduling for

other periodic jobs is unnecessary.

The algorithm of on-demand measurement tasks scheduling is described by the pseudo

code shown in Figure 2.13.

2.3.4.3 Computational Complexity Analysis. According to Lemma 2.2, there are at

most n jobs in the waiting queue if there are 71 tasks in the measurement tasks set. Us-

ing a simple sorting algorithm such as binary tree sort, the computational complexity of

sorting n jobs is n lg(n). In one hyperperiod, assume there are m scheduling points which

Figure 2.12 Example of scheduling on-demand measurement task: (a) pre-computed
schedule; (b) on-demand task has higher priority; (c) on-demand task has same priority
as periodic tasks.

40

Figure 2.13 Pseudo code of scheduling algorithm for on-demand measurement tasks.

41

indicate the time jobs arrive, then the computational complexity of the proposed algorithm

is mn lg(n). Denote C as the number of unique completion times of all jobs and K as

the total number of jobs to be executed in a hyperperiod. Then the following relationship

exists:

Therefore, the computational complexity of the proposed algorithm is n lg(n)Σn i=1ph/p(τi),

and thus the complexity can be decreased by limiting the upper-bound of ph . Some pre-

viously proposed methods aimed to achieve this goal [84], but this is out of scope of this

dissertation.

2.3.5 Simulation Results

The proposed algorithms are compared them with other scheduling algorithms for the per-

formance study.

2.3.5.1 Schemes for Comparison. The algorithms should be able to process multiple

measurement tasks at the same time for a fare comparison to the proposed algorithms for

their execution on an infrastructure with sufficient resources. All of these algorithms have

the same computational complexity as the proposed ones. These algorithms are described

next:

• Round-Robin The original round robin scheme is improved here to empower it with

the concurrent execution capability. The improved scheme selects tasks for execution

by following a pre-defined order. The scheme performs scheduling at each schedul-

ing point. At a scheduling point, all the available jobs waiting to be scheduled are

42

Figure 2.14 Illustration of the improved round robin scheduling algorithm.

43

selected in a pre-defined round-robin order. If there is no conflict with current on-

going task, the job is scheduled; otherwise, the job is kept in the queue to be con-

sidered/scheduled at the next scheduling point. This algorithm is described in Figure

2.14.

• Descending Order of Sub-Vertices' Degree (DOSD) This scheme, also introduced

here for comparison purposes, follows a similar procedure as described in Section

2.3.4.1 for the ascending order version, except that this scheme sorts the jobs in the

waiting queue in the descending order of the degree of the sub-vertices mapped to

the jobs, in Step 3.

2.3.5.2 Evaluation Method. The algorithms are compared in terms of the average nor-

malized waiting time of all jobs in one hyperperiod that is defined as below:

where w(τ ij) is the waiting time of the job Tip. w(τ ij)is formally defined as the

difference between the time that the job starts execution and the beginning time the job is

available to be executed. In the worst case, some measurement jobs may be missed due

to time expiration (i.e., the waiting time exceeds the task period). The waiting time of the

missed job is defined to be equal to its period time.

As the network performance is monitored by periodic measurement requests, the

measurement jobs are expected to be scheduled at desired sampling times that the interval

time between any two consecutive samplings is a constant. However, because of the conflict

of the network measurement tasks, the measurement jobs are scheduled at the time deviated

from the desired sampling times. The average normalized waiting time is used to reflect

how severe such deviation impacts the acceptance of the measurement sampling results.

For example, if a measurement task with period equal to 20 minutes waits for 1.5 minute

to start execution, the measurement result is still acceptable to be used as periodic samples.

44

However, if a measurement task with period 2 minutes waits for 1.5 minute for execution,

the measurement sample obtained is far from the expected measurement sampling time.

Another evaluation parameter is the execution success ratio of jobs to be executed,

which is defined as:

2.3.5.3 Simulation Results of Periodic Tasks Scheduling. In this simulation, the pe-

riod of the periodic measurement tasks is uniformly distributed in the range of [11,100]

time units, and the execution times of the periodic measurement tasks are uniformly dis-

tributed in the range of [2,10] time units. The initial time of task a (τ i) is randomly selected

in the range of [1,5] time units. The conflict probability value is increased from 0 to 1.0

with increments of 0.05. A conflict probability of 0 between two tasks means that there is

no conflict between them, therefore there is no edge connecting these two vertices in the

conflict graph. A conflict probability of 1.0 means that there is a conflict between any two

tasks, which corresponds to a fully connected conflict graph. There might be a high con-

flict probability in a real network where the ongoing measurement tasks demand network

resources for exclusive use. As an example, the simultaneous measurement of bandwidth,

delay, jitter and other parameters at a gateway in a small network could be a network per-

formance bottleneck as all measurement tools contend for the memory, processing time,

and uplink/downlink bandwidth of that gateway. To observe the maximum performance

of the scheduling schemes, the measurement resource is assumed to be large enough so

there is no MRC constraint on measurement tasks. The performance of the algorithms is

compared in 10 and 20 periodic tasks scenario. The simulation is run 1000 times (i.e., for

each time a random tasks set and the conflict relationship are generated) for each scenario.

Figure 2.15 shows the average normalized waiting times of 10 periodic tasks for these

schemes. The figure shows that the proposed scheme has the lowest average normalized

waiting times, and EDF-CE has the highest.

0.7r;=:=======".---~--~---,.
---*- Round robin
----EDF-CE

0.6 +DOSD

0.5

.~

.§ 0.4

.~

"2 0.3
.~
;;;
E 00.2
Z

0.1

-. Pro osed scheme

0.2 0.4 0.6 0.8
Conflict probability

Figure 2.15 Normalized waiting time for 10 periodic measurement tasks.

45

Figure 2.16 shows the success ratio of 10 periodic tasks of the compared schemes.

The figure shows that as the conflict probability increases, the success ratio of the schemes

decreases. Here, the success ratio of the proposed scheme is the highest among other

schemes as this scheme misses scheduling the fewest number of tasks as compared to the

other schemes, while DOSD, which sorts the task in the opposite order, has the lowest

success ratio. The combination that increases the success ratio seems to be the selection of

a small task and with a small number of conflicts.

Figure 2.17 shows the normalized waiting times of these schemes with 20 tasks.

The outcome for 20 tasks is similar to the case with 10 tasks, where the proposed scheme

achieves the lowest waiting time. The advantage of using the proposed scheme is more

pronounced for scenarios with a larger number of tasks.

Figure 2. 18 shows that the proposed scheduling scheme and the EDF-CE scheme

provide similar execution success ratio, which is the highest success ratio as compared

to round robin and DOSD schemes. It can be seen that when the conflict probability is

lower than 0.5, the performance of all algorithms is similar, but as the conflict probability

0'95~~j
0.9

o
'E 0.85
::l
~ 0.8
il
,12 0.75
)j
~ 0.7

0.65 L--+---R-o-u-nd-ro-b-in-~
____ EDF- CE

0.6 +DOSD

~-e-~~P~ro~p~o~se~d~s~c~he~m~e~~ ___ ~ ____ ~ ___ ~
0.550 0.2 0.4 0.6 0.8

Conflict probability

Figure 2.16 Execution success ratio for 10 periodic measurement tasks.

0.9r======~--~--~~-----jII
-k- Round robin

0.8 ---- EDF-CE
+DOSD

0.7 --- Proposed scheme

0.1

0.2 0.4 0.6 0.8
Conflict probability

Figure 2.17 Normalized waiting time for 20 periodic measurement tasks.

46

0.9

0.8
o

.~

'" 0.7
~
8
~ 0.6
c
.2
@ 0.5

tll
0.4 r "":-;::--,----,,-;------, -*- Round robin

-+- EDF- CE
0.3 -+-DOSD

~.==p=r=op~o=sc~d=S=Ch=e=m=e~~ ____ -7~ ____ -7~ ____ ~
0.20 0.2 0.4 0.6 0.8

Confl icl probability

Figure 2.18 Execution success ratio for 20 periodic measurement tasks.

47

increases. the performance differences of the schemes become more pronounced. As an

interesting observation. when the conflict probability is I. where no more than one job can

be executed at a time by any of the schemes. the waiting time and success ratio of the

schemes show differences. The low success probability of DOSD is expected as it selects

jobs with long execution time first. and the remaining time wi ll then be left to a large

number of tasks that may be delayed close to or beyond the end of their periods; therefore.

a large number of jobs are missed. In the proposed scheduling algorithm. the degree of

a sub-vertex is decided by the length of the execution time of the job. so that scheduling

by the ascending order of the degree means that the job with the shortest execution time

is scheduled first. This selection can potentially save a larger number of time slots for the

subsequent jobs in the waiting queue. Therefore. the performance of this algorithm is also

the highest with the conflict probability of 1.0.

Another scenario is simulated that the execution times of periodic measurement tasks

are non-uniformly distributed. The periodic measurement task set is composed of 10 mea-

surement tasks. The execution time of 5 measurement tasks are uniforml y distributed in

0.8F:====:=:==,....----~--~--,
-*- Round robin
tf EDF- CE

0.7 -+-DOSD
-.- Proposed scheme

0.6

o

E 0.5

.§

.~ OA

~ 0.3
~

E
a
Z 0.2

0.1

0.2 OA 0.6 0.8
Conflict probability

48

Figure 2.19 Normalized wallmg time for 10 periodic measurement tasks with non·
uniformly distributed execution times.

the range of [2, I 0) time units while the execution time of the rest of 5 tasks are randomly

selected in the range of [8,10) time units. The period of the tasks is uniformly distributed

in the range of [II, I 00) time units. The initial available time of a task is randomly selected

in the range of [1,5] time units . The simulation is run 1000 times.

Figure 2.19 shows the average normalized waiting times under non-uniform distribu

tion in the execution time of the 10 tasks. The large number of tasks with long execution

times is not beneficial to the proposed scheme, but the proposed scheme sti ll achieves the

lowest normalized waiting time among all compared schemes. The round-robin scheme

achieves similar normalized waiting times (although slightly higher) to those of the pro

posed scheme. The other schemes are favored by this distribution of execution times, but

their normalized waiting times are larger than those of the proposed scheme. This indicates

that the measurement samples generated by scheduling schemes in comparison are more

biased from the regular measurement sampling points, so that the jitter of the time intervals

between any two inter-sampling points is large.

0'9:r~:-J 0.9
.20.85
:;;
~ 0.8
u a 0.75
g
'§ 0.7

" "' 0.65

0.6 -*- Round robin
___ EDF- CE

0.55 +OOSD

~.===Pr=op~o=se~d=S=Ch=e=m=e~~ ____ ~~ ____ ~~ ____ ~
0.50 0.2 0.4 0.6 0.8

Conflict probabi lity

49

Figure 2.20 Execution success ratio for 10 periodic measurement tasks with non
uniformly distributed execution times.

Figure 2.20 shows the execution success ratios of these schemes for tasks with non

uniformly distributed execution times. The results show that the execution success ratios of

all these schemes are lower than the values obtained under execution times with a uniform

distribution. The consideration of a larger number oftasks with long execution times makes

the scheduling schemes less efficient, and more tasks miss their executions. Nevertheless,

the results show that the proposed scheme achieves the highest execution success ratio.

2.3.5.4 Simulation Results of On-Demand Tasks Scheduling. The scenario that the

scheduling of periodic tasks combined with on-demand tasks is also simulated. The per-

formance is evaluated according to the average waiting time instead of average normali zed

waiting time of the jobs since there is no period for the on-demand tasks. In this scenario,

there are 10 periodic tasks, and on-demand tasks are created at arbitrary time slots. The

periodic tasks are combined with on-demand tasks that are created at arbitrary time slots,

where the arrival of an on-demand measurement task is created with a probability of 0.05

~60ir=~==~~==~~----~------~-----'
'c -*- Round robin
, -e- EDF-CE
~

:E 50 -+-DOSD
- ___ Proposed scheme
J:l
S
] 40

~
t 30 o
~
o
~

'E 20

.~

~IL~~ ~
~ «

0.2 0.4 0.6 0.8
Conflict probability

so

Figure 2.21 Average waiting time for on-demand measurement tasks of on-demand tasks
in a combination with periodic tasks.

for each time slot. For scheduling (and execution), the priority of on-demand tasks is set to

be equal to that of periodic tasks.

The execution and period times are uniformly distributed in the ranges of [2,10) and

[11,100) time slots, respectively. As in the previous section, the conflict probability among

all measurement tasks (including both periodic and on-demand tasks) increases from 0 to

1.0 with steps of 0.05. The simulation runs for 500 times.

Figure 2.21 shows the average waiting times measured only on the on-demand tasks.

The results indicate that the proposed algorithm can achieve the lowest waiting time for

on-demand tasks among the considered algorithms as all task are considered with the same

priority levels. However, different from the cases with periodic tasks only, the round-robin

scheme shows the lowest performance (the longest average waiting time) as some tasks

cannot be re-organized with the addition of on-demand tasks because periodic tasks would

still follow the pre-determined round-robin order. However, the other schemes follow sim

ilar trends as those observed for periodic tasks only.

40~~~~===J~----~----~----,
~ --+- Round robin
'§ 35 ---- EDF- CE
v -+-DOSD
.5 Proposed scheme
~ 30
-'"
~

" .~ 2S
-g
·c
v
~20
o
v

E 15

"" .5
"@ 10
3

~ :~~~~~~~~~~~~::~~~~----~ ! 5

0.4 0.6 0.8 0.2
Conflict probability

51

Figure 2.22 Average waiting time of periodic tasks when they are combined with on
demand tasks.

Figure 2.22 shows the average waiting times of the periodic tasks only, under this

scenario. The results show that the periodic tasks undergo similar average waiting times

as in the case of periodic tasks only, and the round-robin scheme and the proposed scheme

achieve the lowest average waiting times. The performance of round-robin is high in this

scenario as the pre-determined order followed by this scheme isolates the periodic task

from the arrivals of on-demand tasks . The proposed scheme, however, accommodates the

on-demand tasks and still achieves an efficient outcome, or the lowest average waiting

times.

Figure 2.23 shows the normalized waiting times of the periodic measurement tasks.

This graph also corroborates the previous observations, where the periodic tasks have simi

lar results to the case of only periodic tasks, with the proposed scheme achieving the highest

performance and the EDF-CE scheme achieving the lowest performance.

0.8rr========;-~--~--~-------.
--*- Round robin

~O.7
~

-'"
~
;; 0.6

~ ·c
8. 0.5
~
o
~ g 0.4

g>
:!; 0.3
~

"Q

.~ 0.2 ..
E
~ 0. 1

___ EOF- CE

+OOSO
-*- Proposed scheme

0.2 0.4 0.6 0.8
Conflict probabili ty

S2

Figure 2.23 Normalized waiting time of periodic tasks when they are combined with on
demand tasks.

2.4 Summary

QoS routing is a basic and important function to fulfill QoS provisioning in current net

works. However the lack of accurate link state information can jeopardize the QoS routing

outcomes. This chapter presents a framework for distributed measurement of link state pa

rameters that can be implemented in the next generation routers. The framework makes an

emphasis on active probing, where routers launch various measurement processes to evalu-

ate the QoS state for each service class between the router itself and the neighboring routers .

In order to avoid interference of active probing on the measurement mechanism and the ex-

isting traffic while guaranteeing the measurement accuracy, scheduling of measurement

processes are analyzed. Based on graph coloring theory, it is proposed to describe the mea

surement tasks relation by using a conflict graph, and to convert this scheduling problem

into a graph coloring problem. Two algorithms are proposed to schedule tasks according

to the ascending order of the degree of sub-vertices in the conflict graph , one for period ic

measurement tasks , and another for on-demand measurement tasks. Each sub-vertex rep-

resents one basic time unit for the execution time of the task. The resu lts showed that the

53

proposed scheduling schemes provide the shortest average waiting time for cases where

periodic tasks are considered in the network as well as when on-demand task are added

in a network with existing periodic tasks. The proposed schemes also achieve the highest

utilization of network resources as shown by achieving the highest execution success ratios

in the presented results. In addition, the schemes are able to schedule the on-demand tasks

with either higher or equal priority with respect to that of the periodic measurement tasks.

CHAPTER 3

EFFICIENT AND RELIABLE DISSEMINATION OF LINK STATE

INFORMATION

This chapter presents a novel scheme called Per-Hop pArtial-Spanning Tree Adjust (PASTA)

approach to enhance the efficiency and reliability of link state dissemination. In the pro-

posed approach, link states are distributed through the spanning tree, which is updated at

each hop by considering the latest local QoS states. This approach can also guarantee that

every node is notified as long as it remains connected to rest of the network. Combined with

multiple spanning trees method, the reliability and fastness of the dissemination is further

improved. The complexity analysis and implementation feasibility are also discussed.

3.1 Introduction

Currently implemented dissemination mechanisms are based on flooding link-states adver-

tisement (LSA) packets, such as OSPF [12]. In these mechanisms, the routers send their

own LSA packets and forward those created by other routers to all the neighbors until every

router in the network area knows the updated link states. The time at what this occurs in the

network is called convergence time. Flooding mechanisms are robust enough to guarantee

that link states get disseminated even in the case of link and node failures as long as every

node in the network remains connected.

On the other hand, link states are defined by various QoS parameters in QoS-enabled

network. Considering the growth of both QoS parameters and the scale of the Internet,

dissemination of the large amounts of QoS link state information generates a significant

dissemination overhead by flooding methods. The dissemination overhead has the potential

to occupy a significant amount of transmission bandwidth that can diminish the network

utilization by user's data traffic. Furthermore, the link states may have been stale when

54

55

a new LSA arrives to the destination node because of congestion in the transmission. To

minimize the overhead, various implementation schemes attempt to reduce the state update

frequency. As for example, the OSPF protocol uses a state refreshing time of 30 minutes.

However, approaches like this also reduce the timeliness of link state update, which may

cause false routing. Therefore, dissemination efficiency and accurate state awareness is

hard to achieve with flooding-based algorithms.

To overcome the large overhead of dissemination for flooding schemes, some router

vendors have proposed to reduce the flooding of already disseminated and unchanged in-

formation [85]. Other policies for link-state update have been proposed. In threshold-based

policy, a state update is triggered only when the percentage change in the link state value

exceeds the predefined threshold [86]. In class-based policy, the range of link state values

is partitioned into classes and an update is triggered whenever the link state changes suffi-

ciently to cross a class boundary [86, 87]. However, these approaches reduce the dissemi-

nation overhead at the expense of increasing the convergence time and link state accuracy

degradation [88]. As another alternative, link-state dissemination based on spanning-tree

has been considered. A localized flooding approach where the dissemination network is

based on a spanning-tree scheme instead was proposed [89]. To decrease the communica-

tion overhead to maintain the tree, a protocol called Topology Broadcast based on Reverse

Path Forwarding (TBRPF) was proposed [90]. This protocol uses Reverse Path Forwarding

(RPF) to broadcast the link states through the spanning tree in the reverse-path direction.

The construction of the tree is based on the path with the minimal number of hops from

every node to the source of the update.

Although the dissemination overhead is reduced, the above spanning-tree-based ap-

proaches have not considered the continuous update of the spanning tree itself in a QoS

environment, thus the tree keeps using the same links even the QoS states of those links

deteriorate, which causes longer convergence time or even dissemination failure. The ex-

ample in Figure 3.1 illustrates the drawback of such spanning-tree-based methods. In this

56

Figure 3.1 An example of the outdated spanning tree.

spanning tree, the information travels from node V1 to node V2(V1-> V2), as the bold-

line link in Figure 3.1(a). The delay state of the link (V1 -> V2) changes from 5 ms to 20

ms, and that of link (V1 -> V4) changes from 10 ms to 4 ms. If node V1 realizes the state

changes of the outgoing links (V1 -> V2 and V1-> V4), the optimal spanning tree would use

(V1 -> V4), as Figure 3.1(b) shows. However, the existing spanning-tree-based schemes let

nodes use existing spanning tree as described in Figure 3.1(a). In this case the node is not

sensitive to the local state change, or saying, the spanning tree is not adaptive with the link

changes. The spanning tree is recomputed after the last convergence is completed, which

means every node receives the updated link state advertisement message. Therefore, the

convergence time in this example increases to 15 ms (20 ms-5 ms) instead of decreasing to

6 ms (10 ms-4 ms).

Different from spanning-tree schemes, flooding schemes is designed to broadcast

LSA packets throughout network. Hence, the links with best performance (shortest delay,

largest available bandwidth etc.) are always utilized. Without considering the potential

57

congestion caused by flooding overhead, the convergence time of a flooding approach is

the shortest for state dissemination algorithms.

Reliability of the link state dissemination is another crucial requirement to support

QoS networks. Spanning-tree-based approaches have not been considered for providing

reliability, that a dissemination tree may be susceptible to failure if a single link fails.

For example, if a single link or node fails, then the tree might become partitioned into

two or more subtrees, and the link state information generated from one subtree may be

unreachable to the rest of the network even if the network is still interconnected by links

that are not included in the dissemination tree. In the graph shown at the top of Figure

3.1, if the link (V2 V3) fails, then the spanning tree becomes partitioned into sub-trees

V1 , V2 and V4 V3, V5. Therefore, the LSA packets cannot be forwarded from one subtree to

another.

A novel approach, called Per-hop pArtial-Spanning-Tree Adjustment (PASTA) scheme,

is proposed to minimize both the link-state dissemination overhead and the convergence

time. Furthermore, to provide reliability to the dissemination tree, the back-trace scheme

and the multiple spanning tree (MST) scheme are proposed. In the proposed schemes, the

weight of a link is defined by its QoS state. These schemes are able to find and update a

feasible link-state dissemination tree with smaller delay and more transmission bandwidth

compared to the original tree. Because network nodes are aware of the QoS state of their

outgoing links in the proposed schemes, the spanning tree can be updated partially at each

hop according to the latest local states combined with the stored and current states received

from other nodes.

In the reminder of this chapter, Section 3.2 describes preliminary definitions and

terms. Section 3.3 introduces the PASTA, MST, and back-trace schemes. Section 3.4

estimates the dissemination overhead and computation complexity of these mechanisms.

Section 3.6 presents the summary.

58

3.2 Preliminary Definition

Throughout the remainder of this chapter, the following terms are used indistinctly: node,

router, and vertex, and edge and link.

• Cospanning tree: the cospanning tree T* of a spanning tree T of a graph G is a

subgraph of G. It has all the vertices of G and exactly those edges of G that are not

in T [91].

• Component: a maximal connected subgraph of a graph. That is, between any two

nodes in the same component, there is always a path connecting them. However,

there is no path connecting two nodes which are in different components [91]. An

isolated node by itself is treated as a single component.

• Edge cut: A set of edges that if the set are removed from a connected graph, will

disconnect the graph into one or more components.

• Minimum edge cut: An edge cut such that there is no other edge cut containing fewer

edges. If any edge is placed back in graph G, G will be reconnected.

3.3 QoS-Based Link State Dissemination Schemes

3.3.1 Formulation of Link-State Dissemination Problem

Given a network topology G(V, E), for each directed edge e E E, the weight/state of e

at time tj is denoted as w(e, t3) or w(e). At each node, the QoS states of all the links are

kept in matrix Wi (G) for node i. The matrix is also denoted as Wi (G, t3), where tj is the

time of the last link state update. In addition, wP (e) and wc (e) denote the previous state

and current state of the link, respectively; WP (G) and Wc(G) denote the previous state and

current state of the graph G, respectively. The spanning tree is denoted as To (q), where o is

the root node of the initial spanning tree which is built right after state matrix at each node

is initialized. q is the root node of the current updated spanning tree. To (q, Wq (G)) means

the tree is built from the state matrix Wo (G) at node q.

59

According to above definitions, given that node i obtains the latest link states of the

network Wi (G, ta) at time ta , the spanning tree Ti (i) may be built at this node based on

1471 (G). At this moment, 1471 (G, ta) is the current state of graph G, so it is equal to Wic(G):

If local link state w,(ei) changes at time tb:

According to the conventional spanning-tree-based dissemination algorithm, as in

TBRPF, node i disseminates this update of e3 along the tree Ti (i) . However, since the tree

is built according to Equation 3.1, the tree might be outdated:

60

There are three types of constraints to characterize performance matrix of a network

that are also used to build the dissemination tree: concave, additive, and multiplicative

[92]. For any path p(l1,l2 , , In) which means the path p is composed of n elements:

l1, l2, ..., ln, the constraint on w(p) for path p is explained as:

A concave constraint is determined by the bottleneck of the path, for instance, the

minimum available bandwidth of the path. An additive constraint, where delay and jitter

are examples, is determined as the sum of the state of each link in a path. Here delay is

considered as the most important QoS parameter as the convergence time of link-state dis-

semination is in function of link delays. A multiplicative constraint, such as packet-loss

ratio, is determined as the product of the states of the links on the path, and it can be con-

verted to be an additive constraint by a logarithmic conversion. Without losing generality,

additive constraints are considered in the following case analysis.

Assume that node i is the root node of the original spanning tree, and node k is one

of the nodes of the tree. In this dissertation the out-of-current-tree links are called external

links. The possible cases of the link state, in which wk (ej) can change, are:

1. e3 Ti (i) and wk(e3) > wPk (ei)

This case means that the current state of external link(s) degrades. Therefore, there

is no need to update the current spanning tree.

2. ei Ti (i) and u(ej) < wPk (ei)

In this case, the external links can provide better service than before. Therefore,

update of the tree is necessary.

61

Figure 3.2 An example to illustrate case 4.

3. ei E Tj (i.) and /4(ei) > wPk (ej)

Then the performance of the spanning tree Ti (i) worsens because the state of edge el

degrades. Thus, update of the spanning tree is necessary.

4. ei E Ti(i) and wVei) < w IP,(e j)

In this case the performance of the spanning tree improves. However, it is possible

the state change of the link may result in the optimal dissemination path changes. As

the example shown in Figure 3.2, when the weight of edge V2 V3 decreases from

7 to 3, the spanning tree Tv, (VI) as depicted in Figure 3.2 (b) is prior to the original

spanning tree depicted in Figure 3.2 (a). Hence, it is required to update the spanning

tree.

From the above analysis, it can be seen that all the cases, except for case 1, need the

adjustment of the spanning tree.

62

3.3.2 PASTA Link-State Dissemination Algorithm

PASTA algorithm is proposed in this section. Based on a spanning tree, PASTA is designed

to reduce the amount of overhead that the flooding algorithms has and to reduce the large

convergence time of existing spanning tree algorithms.

It is considered that at the initialization stage of link-state dissemination, the nodes do

not have all link-state W(G) from every node, but only those of their local links and their

neighbors. The spanning tree cannot be built without complete link states of the network.

Therefore, at the initial step the link states are broadcasted by flooding. After this initial

step, flooding is no longer performed and the mechanism to update the tree follows the

proposed PASTA algorithm.

The PASTA adjustment procedure is described by the flow chart as illustrated in

Figure 3.3. This procedure follows four stages.

3.3.2.1 Initialization Stage After the initial flooding phase at time t o , the current link

states are disseminated throughout the network, so every node builds a state matrix:

3.3.2.2 Rebuilding the Tree at the Original Root Node As every node is aware of the

states of its own outgoing links, the dissemination can be triggered from any node in the

network. Assume that node Vk E V is the root node of the tree, and it triggers the next link

state dissemination process. After time interval A > a, if one of node Vk's output links e,

Figure 3.3 Flow chart of the PASTA algorithm.

63

64

changes the state from wk (ei , to) to wk (e„ to + A), so:

The parameter a is the minimum threshold time to perform the next link state update,

as defined in the OSPF protocol. That is, the minimum interval between two consecutive

updates cannot be smaller than a to prevent unnecessary continuous updates from a node.

Normalized link-state change, (e,), is:

According to the policy of the threshold-based scheme to trigger a link-state update

process [86], the spanning tree update must use a threshold Uth to avoid frequent updates

owning to the small fluctuations in the link state. Following this rule, the update policy is

explained as:

• Δ(e,)≥Uth,state dissemination triggered by nodeVk

• Δ(ei) <Uth,no dissemination triggered by nodeVk

Given an state change Δ(ei) >Utththis node would have generate a LSA packet

to disseminate the new link state ?D v!, to + A). Before the LSA dissemination, node

Vk updates the recorded link states as in Equation 3.5. Based on the updated matrix

Wyk (G, to + A), the root node Vk computes the dissemination spanning tree Tv, (Vk):

65

Therefore, the tree might be rebuilt (with the same root node) depending on the latest

link states. After that, the tree structure Tvk (Vk) and the updated link state wvk (ei, to + A))

are marked into the LSA packets, which are forwarded to Vk 's child node Vic ±i.

3.3.2.3 Tree-Adjustment at A Child Node During the LSA transmission phase, the

state of the outgoing link ei connected to Vk+l may change at time t 1 as wvk+ , (ei , t 1).

Therefore, is introduced as a threshold time to update the link state and then consider the

following two cases:

In the first case, the LSA packet arrives to node Vk+1 within time t 1 + /3. Then,

the spanning tree TVk (Vk) may be adjusted based on the states marked in LSA sent by the

parent and the current local link state. The tree is denoted as Tv, (Vk+1) if there is a tree

update. The tree is updated according to the following Equation 3.8:

However, because some nodes of the spanning tree have been updated during dis-

semination, the notified nodes and the edges connected to them can be excluded from the

update process. Therefore, the above Equation 3.8 can be simplified:

66

where Gw.- is the graph where node Vk and the edges connected to node Vk are removed.

The spanning tree TVk (Vk + 1) replaces the old tree TVk (Vk) in the received LSA packet.

The LSA packet is updated withW Vk+l (e3 , t 1) in addition to the updated information of

wvk (ei , to + A) already included. The new LSA packet is then forwarded to the next node

of Tv, (Vk+1). In this way, one LSA packet is able to disseminate several state changes

along the node.

The second case is when the LSA packet arrives to node Vk+1 after time t 1 +

The same procedure as in the previous case is followed, except that the forwarded LSA

packet does not include the local state wyk+ , (e3 , t 1), because at time t 1 +0, a new link state

dissemination, which is independent from the current dissemination TV k (Vk) , is generated

according to a spanning tree TVk (Vk+1), which uses Vk+1 as the original root node.

3.3.2.4 Acknowledgement to the Parent Node In the OSPF protocol, each newly re-

ceived LSA is acknowledged. This is usually implemented by sending link state acknowl-

edgment (ACK) packets. Considering that, the child node here is proposed to send an ACK

packet back to the parent node once the child node successfully receives an LSA packet.

Furthermore, the current updated link state WVk+l (e i , t 1) is marked so included in the ACK

packet and sent back to the parent Vk from child node Vk±i. If the ACK packet has been

sent already, for instance, from the parent node to the grandparent, a separate LSA packet

is generated and is sent back.

After the LSA packet is transmitted to the next child node, Steps 2 to 4 are performed

iteratively until all the nodes in the network are notified.

PASTA algorithm is illustrated with the following example. As shown in Figure

3.4, assume that node V1 is the current disseminating node. VI_ computes the adjusted tree

Tv, (V1) based on the information of the network without the connection to parent node V0 .

Hence, node V1 becomes the temporary root node of the tree Tvo (Vi). Then, the LSA packet

is forwarded from V1 to the child node through the partially adjusted tree Tvo (V1). Assume

67

Figure 3.4 Spanning tree adjustment and acknowledgement from node V1 .

that the change of edge ej is above Uth . Then the current state w c (ej) is also marked in this

LSA packet so that the next hop can obtain the latest link-state from both ancestors V 0and

V1 . At the same time, the ACK packets that carry the state of w

c (e

j) are sent back to V 0.

3.3.3 Back-Trace Algorithm

If the current node cannot reach its child (i.e., isolated node) because either the edge in

between fails or the link-state is poor and cannot forward the link state dissemination,

a recovery algorithm, called back-trace, is proposed. The back-trace algorithm has the

objective to build a tree split by a link failure or by a link that cannot deliver LSA packet.

Following the PASTA algorithm described in Section 3.3.2.3 and based on the graph

Gvk+,, if current node Vk+2 cannot find a path to forward the LSA to its child node Vk+3,

it generates a fail report and send it to the parent node Vk+1. The fail report lists the event

trap that which node fails to receive the new LSA. The parent node Vk+l attempts to find a

68

Figure 3.5 An example of back-trace algorithm.

path to Vk+3 and to disseminate all the updated link states (including those from child Vk+2

sent through the ACK packet) to this grandchild. If node Vk+1 cannot find such a path,

it continuously sends the fail report back to its parent, if any. This procedure is executed

iteratively until a node can successfully forward the LSA packet to the isolated node or

until the root node is reached (this means that all the nodes fail to reach Vk+3). Figure 3.5

depicts a simple example of back-trace algorithm.

Because the current node is required to acknowledge the parent node about the status

of the received LSA, as in the PASTA algorithm through ACK packet, the fail report and

the state of the isolated child node are marked in the ACK packet and sent back to the

parent node. If no ACK packet is sent from current node, a separate ACK packet may be

generated by the current node to deliver the fail report and the state of the isolated node.

3.3.4 Multiple Spanning Tree (MST) Algorithm

To evaluate the reliability of the scheme, the following criteria is defined according to [93]:

Criterion I: Given a network topology G(V, E), for any link e that is not the minimum

edge cut of G, if the link state information is still reachable to all nodes V after e is removed

from G, this link state dissemination scheme is regarded as reliable.

This definition can be used to verify that a single spanning tree in [89, 90] is not

reliable if there is only one edge between two nodes. Furthermore, if the edge is removed,

69

the graph becomes multiple components. The PASTA algorithm assisted by the back-trace

algorithm provides high reliability by avoiding the selection of local failed links. However,

it is necessary to further enhance the reliability from the protection perspective.

Lemma I: Given a network G(V, E), a subnet G' (V, E') is regarded as a reliable

topology (RT) iffor any edge e E	 {e} Ec/ ut exists as long as {e} Ecut exists, where

ut and Ecut are the minimum edge cut of G' (V, E') and G(V, E).

A reliable topology here is a subnet over which the link state dissemination is reli-

able as defined by Criterion I. Also by this criterion, it can be concluded that a link state

information dissemination approach is reliable if the number of members in the minimum

edge cut in the dissemination graph is not smaller than two. If the network does not have a

minimum edge cut with only one member, all of its subnets that contain same nodes set V

do not have the one-member minimum edge cut either. Each link in the RT has alternative

edges. Thus, finding a reliable dissemination depends on having a reliable subnet topol-

ogy or RT. However, this problem needs to be solved through a spanning cycle process

[91], which is NP-hard and unable to achieve fast convergence. Hence, the work presented

in [93] is extended, by proposing to update link states through multiple spanning trees in

terms of Lemma II, so called multiple spanning tree (MST) algorithm.

Lemma II: Consider a connected network G(V, E), and assume T (V, g) is a span-

ning tree of G, and T(V, g) is the cospanning tree of G. Then T (V, E (/)) may include h

(h > 1) components C1(1/ , E1),G2(V2 , E2),... , h(Vh, Eh) with spanning trees T 1 (17] , ED,

T2(V2, . . . , Th(Vh, 4), respectively. Thus, the topology G' (V, E') formed by T(V, g)

and Ti (V,, E), with i = 1, . . . , h, is an RT of G(V, E).

The tree building procedure is described by an example shown in Figure 3.6. After

the spanning tree T(V, g) is selected, the remainder links and all nodes constructs two

components Gi E1), G2 (V2 , E2). The spanning tree of each component can be de-

rived as Ti (Vi ,	 T2(V2,	 . Thus T(V, 4), and Ti (Vi ,	 , T2 (V2 E0 are the RT of

G(V, E). The link state information dissemination on this topology is reliable.

Figure 3.6 Example of RT build-up procedure.

70

71

Figure 3.7 Illustration of a minimum edge cut of G(V, E): {e1 e2, ... en }.

The above tree combination can be proved as a RT by contradiction. First, as-

sume that there is a link e E E' that satisfies {e} = E'cut and {e} Ecut, where E

and E,,,t are the minimum edge cut set of G'(V, E') and G(V, E). Then assume Ecitt =

{e, e l , e2 , . , en} as Figure 3.7 shows. After edge e is removed, G'(V, E') is divided into

two parts Gidi (Vd„ E' 1) and C'd2 (Vd2 , Ed1 2). It can be derived that el) e2) • • • en E', oth-

erwise eh ... ,en still connect C'd1 and Cd2 after e is removed from E', then {e} is not a

minimum edge cut set of G'(V, E'), and the assumption {e} E,' ut is contradicted.

Thus, denote s (s E Vd 1) and t (t E Vd2) as two nodes connected by e l . Since e l E'

and spanning tree 4 E E' , e l exists in cospanning tree 4 = — Eo. On the other hand,

there is {e} = Ec and so does e E E. Then, after removing spanning tree 40 , e l belongs

to one of the components G,(Vz , Ei) and still connects the divided parts Gud 1 (Vd1 Eld i) and

Cd2 (Vd2 , Ed 2). Therefore, the assumption is contradictory and the claim is true for Lemma

II. Based on this Lemma, G'(V, E') combined with multiple spanning trees is also RT.

3.3.5 Spanning Tree Selection Algorithm at Each Node

By using the PASTA mechanism, a partial spanning tree can be rebuilt at each node. Cur-

rently, the most widely used approaches for building a routing tree are Dijkstra's algorithm

Figure 3.8 The example of the LDF algorithm.

and Prim's algorithm. Both of them construct a new tree without recurring to the infor-

mation of the last (and obsolete) tree, so the spanning tree structure is not stable and the

computation load is relatively high.

In [94], it is proposed to construct the spanning tree according to the difference of

the decrement of the distance from the root node to the other nodes. This approach reduces

the access times to each node in the network so the computation load diminishes and some

area of the old spanning tree can be kept in the new tree. It is called largest-decrement-first

(LDF) algorithm in this dissertation. A simple example describes the LDF scheme. The

initial spanning tree is shown as the top graph in Figure 3.8. Then, the weight of the edge

V3 changes from 7 to 3 because a change of the link state. According to the Dijkstra's

algorithm, node V2 is first accessed since its temporary shortest distance to the root V I is

smaller than that of V4. Then V5 is accessed through V2 with distance 17. However, after

later selecting V4 , the path to V5 needs to be reselected as (V1 , V4 , 175) because of the shortest

distance of 14. In contrast, if the LDF scheme is used, V4 is first selected as the distance has

the largest reduction (i.e., 3) and it becomes the closest node. Then V5 is selected because

it has the second largest deduction (i.e., 2). Finally, V2 is chosen (distance reduces by 1).

73

Derived from this method, the spanning tree selection algorithm is described by the

pseudo code in Figure 3.9. Assume that the only constraints on the link state dissemination

are the available bandwidth of the link and the convergence delay bound. Other parameters

can be used.

3.4 Complexity Analysis

This section analyzes the complexity of the proposed schemes and it is compared with that

of the existing schemes.

3.4.1 Overhead Complexity

In the flooding algorithm, the overhead of dissemination is proportional to number of links

and the number of service classes. Given G(V, E) with S service classes, the dissemination

overhead complexity of flooding mechanism is estimated as O(S|V||E|), where |V| and

|E| are the number of nodes and edges inG.If m link state updates occur within a time

period P, the total overhead complexity is O(mS|V||E|).

As for the single spanning tree algorithm, which uses a single link between any two

nodes, a total of 'VI — 1 links are used for dissemination. Therefore, the overhead is

O(S(|V| - 1)). For mlink state updates, the overhead is O(mS(|V| - 1)).

In the PASTA algorithm, with r multiple spanning trees, the overhead is r S (|V| - 1) .

It can be seen that PASTA lightly sacrifices overhead, but in average, a network would

only need a couple of spanning trees to provide the required reliability, so the overhead

complexity is not increased significantly. Moreover, for in link state updates within time

period P, the overhead complexity is xrS(|V| - 1). Here, the parameterxE [1, . . . , m]

and x = 1 mean that only one LSA packet is used to disseminate all link states and the LSA

arrives before the local state exceeds the time threshold /3. Thus, the overhead complexity

of the PASTA-MST algorithm is equal to or smaller than that of a single-spanning tree

algorithm. The following example may give some light to the above point. Considering

Spanning tree selection algorithm

74

Figure 3.9 Pseudo code of spanning tree selection algorithm.

Figure 3.10 The topology of 32-node network.

75

Figure 3.11 The single tree for link state dissemination in a 32-node network.

Figure 3.12 The trees generated by the PASTA algorithm in a 32-node network.

76

the 32-node network as depicted in Figure 3.10, there are 54 bidirectional links in this

network. Given one single update from each node during a short period, if using the blind

flooding method, all nodes transmit LSA packets through all 54 links, so there are at least

54 * 32 = 1728 update packets transmitted through the network. On the other hand, with

single spanning tree algorithm, a tree will be generated to transmit the LSA packets. One

possible tree is shown in Figure 3.11. The total LSA packets generated from each node

to its neighbor nodes on the tree are 31, which means the dissemination overhead for this

update is 31. If the PASTA-MST algorithm is used, the primary tree and the partial back up

tree are indicated by the solid line and the black dashed line, respectively, in Figure 3.12.

The number of LSA packets generated by the nodes on the primary tree for one single

update is at most 31, and the LSA packets on the partial second tree are at most 20, so the

dissemination overhead is a number of packets smaller than or equal to 51.

3.4.2 Time Complexity

The time complexity of the PASTA algorithm is determined by how the elements are stored

in queue. If the queue is implemented as a linear data structure, the time complexity of the

flooding algorithm is 0(1V1). For existing single-spanning tree algorithm, as the complete

spanning tree which covers all the nodes in whole network each time it is rebuilt, the time

complexity of each node is 0(1V1 2) by using Dijkstra's algorithm or the Prim's algorithm.

Therefore, the time complexity, including all the nodes in whole network is Oa V1 3). Com-

pared to flooding and single-spanning tree algorithm, multiple spanning trees are adjusted

at every hop in the PASTA-MST algorithm. The edges already used in the dissemination are

discarded in the computation. Assume that either the Prim's or Dijkstra algorithm is used at

each node to compute the spanning tree update. Then the time complexity of PASTA-MST

for the whole network is:

77

Compared to a linear process, a binary heap structure is a more efficient and practical

option. With a binary heap structure, the time complexity of the LDF algorithm per node

is O(|E|lg(|V|)), so by using the LDF algorithm, the time complexity of PASTA-MST

algorithm for the whole network is:

Therefore, the time complexity of PASTA-MST algorithm has the same order as the

existing single-spanning-tree-based algorithm at each node.

On the other hand, the accuracy of the PASTA-MST algorithm is greatly improved as

the node utilizes the current local states to construct the new spanning tree, so an optimal

dissemination path can be selected. Moreover, since more than one spanning tree is used

to disseminate the link states, the destination nodes obtain the LSA packets from different

routes. The convergence time is counted as the time difference when a node first issues an

LSA until the time the last node receives the LSA. Hence, the efficiency of the dissemina-

tion is also improved by using multiple spanning trees in the PASTA-MST algorithm.

3.5 Simulation Analysis

To estimate the performance, a simulation is built to compare the proposed schemes with

the blind flooding algorithm and the conventional spanning-tree-based algorithm that uses

one spanning tree to disseminate the link states. The network is randomly generated with

an average degree of nodes equal to or smaller than three. The delay of a link is randomly

generated between 1 to 100 time units. The link delay is used as a parameter to assign link

weight values. The simulation is run for 10,000 times while a unique network topology is

generated each round.

Firstly, the scenario where the network is stable during each dissemination cycle is

simulated. In this case, there is at most one link change the value of its delay. Figure 3.13

78

jGJ Flooding. Conventional Spanning-Tree-Based 0 PASTA I

1200
1100

II 1000 -'" u
~ 900 "-
C 800 v
E 700 v

'€ 600 v
> 500 "0
~
~

400 0

~ 300 .0
E
~ 200
Z

100
0

,'. " ;" .;" "."
,,.; ~- _ 'i'; ;' ".- "i; " _ f---':

" ..;, ,.' "-::. " 'fCc" • ,. ~

.,' "f' ,;, I"~ ,", ' -.' /'., "
I-----'

,~~],f -;c .,. ,7 ~
.' 0':,. ,. '~. , .,/!" -.,- --; Ie-- I--

"":' ,'" .- "'B., , ,
~

~." " .,,~:, 'r '---- I--"-"n' I'

I
I--

, ,. 1il1
f----,

-. "",,"'. [i .)1Ut . ; __ ,,;'f' • ;",-, Ibn", w-,,:
5 10 15 20 25 30 35 40 45 50

Number of nodes

Figure 3.13 Comparison of average overhead for different dissemination methods with
one link changing events.

shows the comparison of the average overhead among these three schemes for a network

with nodes 5, 10, 15 to 50 nodes, with a increase step of 5 nodes. It is easily seen from the

figure that the flooding method causes the most severe dissemination overhead. The PASTA

and conventional spanning-tree-based algorithms have almost the same amount overhead

for each network, This is because both of them use a tree structure to disseminate the link

states.

Figure 3.14 depicts the simulation results of the average convergence time by these

algorithms, for the cases when the dissemination process is processed successfully. From

this fi gure, it can be seen that all three methods have similar convergence times, but the

flooding algorithm takes the shortest time to fini sh dissemination while the conventional

spanning-tree-based algorithm takes slightly longest convergence time among all three al

gorithms, It is because almost all the links in this scenario keep the link state, so in most

cases PASTA shares the same dissemination route as conventional spanning-tree-based al-

gorithm uses.

800

700

600

" 500
'2
~ 400
E

;:: 300

200

100

o

10 Flooding II Conventional Spanning-Tree-Based o PASTA I

*-, , .: .'" ". , ,< .~.' _., ,."

i .:.,'"
" .' " ;' > ,. \

~ I: D, '," ·>t/:, .t;' ,; . ". ' ;c r--

, l-

"' .~. P l- I-
.' ."J~ ~ J ~ I-

r l- I- r.- ~ r r
I"

UIL
I- j:- I- r I- r r '
lL l1.. LL LL ' LL

5 10 15 20 25 30 35 40 45

Number of nodes

79

I-

I-

-

-

-

~

50

Figure 3.14 Comparison of average convergence time for different dissemination methods
with one link changing events.

However, note that in some simulation cases, the dissemination process didn ' t con-

verge because the link used for dissemination failed and it was no longer avail able. The

parameter number of dissemination fa ilure events is used to evaluate this attribute for each

algorithm. As Table 3. 1 depicts, the fl ooding and the proposed PASTA algorithms share the

lowest dissemination failure rate. Both of them suffer from sporadic dissemination failure

in case that the generated network includes the isolated node or when crucial link (e .g., a

minimum edge cut contains onl y one member) in the network fail s. On the other hand , the

conventional spanning-tree-based algorithm has the highest fa ilure rate, since this scheme

is not able to adjust the dissemination path when the link on the spanning tree fails.

Another scenario that the link state of the network dynamically changes, which is

more realistic, is also simulated. Here the number of link-state changing events is propor

tional to the number of nodes in the network (6 times of the number of nodes). In Figure

3. 15, it can be observed that the fl ooding algorithm and PASTA algorithm spend simi-

lar time to fini sh di ssemination, both of which are smaller than the convergence time of

the conventional spanning-tree-based algorithm. The reason is that the fl ooding algorithm

80

Table 3.1 Number of Dissemination Failure Events for Different Dissemination Methods.

Nodes PASTA Flooding Conventional Spanning-Tree-Based

5 2769 2769 4012

10 196 196 1187

15 16 15 634

20 7 7 465

25 3 3 392

30 3 3 322

35 2 2 271

40 2 2 239

45 1 1 212

50 0 0 189

always broadcast the message through all possible links so the links with lowest delay

are always utilized to transmit LSAs. On the other hand, the conventional spanning-tree-

based algorithm is not as timely as the PASTA algorithm to adjust the dissemination routes.

Therefore, PASTA is more efficient to find the shortest-delay link during dissemination than

the conventional spanning-tree-based algorithm.

Figure 3.16 represents the results of average amount of overhead that these three

schemes cost under this scenario. Similar to the first scenario, the flooding algorithm has

a large dissemination overhead. On the contrary, PASTA and conventional spanning-tree-

based algorithms have a smaller overhead compared to the flooding algorithm.

Following up the specific example given in Section 3.4, the 32-node network as de-

picted in Figure 3.10 is considered here. The delay of a link is uniformly distributed be-

tween 1 to 100 time units. The simulation is run for 10,000 rounds. Assume in each

dissemination round, there are k changes of delay on links where k ≥ 1. Moreover, the

81

!E] Flooding III Conventional Spanning-Tree-Based 0 PASTA I

1000

900

800

700

'" 600
'2 ,

500 v
E
;:: 400

300

200

100

0
5 10 15 20 25 30 35 40 45 50

Number of nodes

Figure 3.15 Comparison of average convergence time for different dissemination methods
with multiple link changing events,

10 Flooding III Conventional Spanning·Tree·Based 0 PASTA I
1200

II 1000
'"

~

----c
" u

~
Co ..
C v 800 --'
E
v
~

'" 600 v I;---- -
>

"0
~
~
0 400 "
$

, ..

S ,
200 Z

0

, ..
------,

C""'C ,IR Jl -=w.:;.-, .,--, lion , 1~1w-i IIIIrl

5 10 15 20 25 30 35 40 45 50

Number of nodes

Figure 3.16 Comparison of average overhead for different dissemination methods with
multiple link changing events,

82

I r:l Flooding III Conventional Spanning-Tree-Based 0 PASTA I

285

280

275

265

260

255
5 \0 15 20 25 30

Number of link changes

Figure 3.17 Comparison of average convergence time for 32-node network with simulta
neousl y link changing.

root node of the spanning tree is randomly selected In each round. Firstly, the scenario

that all link changes happen on the same time slot is simulated. Figure 3.17 illustrates the

average convergence time for flooding, conventional spanning-tree-based algorithm, and

the PASTA algorithms when the link state changing does not cause dissemination failure.

The results show that the average convergence time of link state distribution by PASTA and

flooding algorithm are almost the same, and both are shorter than that of the conventional

spanning-tree-based algorithm. It can be seen that the time difference between conven

tional spanning-tree-based algorithm and PASTA/flooding increases when the number of

link changes increase. It is because the larger the link changes, the larger the possibility of

delay increment on the conventional spanning tree, but the PASTA algorithm can adjust the

tree to fit for the current situation so the convergence time is not affected much.

The dissemination overhead between these three algorithms in above scenario is also

compared. As depicted in Figure 3.18, the dissemination overhead of PASTA and conven

tional spanning-tree-based algorithms is significantly smaller than that of flooding algo-

rithm.

450

'" .ll 400
~
0. 350
C
v
E 300
:l
'E 250
>

-g 200
~
o
~ 150
.ll
§ 100
Z

83

I [] Flooding III Conventional Spanning-Tree-Based 0 PASTA I

5 10 15 20 25 30

Number of link changes

Figure 3.18 Comparison of average overhead for 32-node network with simultaneously
link changing.

Then the failure probability of each link is set as 0.01. The simulation is run for

10,000 rounds. The dissemination failure rate is used to compare the robustness of the

algorithm rate, which is defined as the number of dissemination failure events divided by

the total number of dissemination rounds . Table 3.2 shows the comparison results, from

which it can be seen that conventional spanning-tree-based algorithm is more frangible than

the other two.

The second scenario simulated is that the links states can change on various time

slots . Figure 3.19 compares the average convergence time for flooding, conventional spanning-

tree-based algorithm and PASTA when the link changing does not cause dissemination fail-

ure. Similar to the results of the above scenario, here the average convergence time of the

distribution by PASTA and flooding are both shorter than that supported by conventional

spanning-tree-based algorithm. The time differences between conventional spanning-tree

based algorithm and PASTAlflooding are also larger when the number of link changes

increase.

84

Table 3.2 Dissemination Failure Rate for 32-node Network with Simultaneously Link
Changing.

Number of li nk changes PASTA Flooding Conventional Spanning-Tree-Based

1 0 0 0.58%

5 0 0 2.87%

10 0 0 5.73%

15 0 0 8.60%

20 0 0 11.51%

25 0 0 14.36%

30 0 0 17.24%

10 Flooding • Conventional Spanning-Tree-Based 0 PASTA 1
285

280

275

'" 270 '2 ,
~

~ 265

260

255

250
5 10 15 20 25 30

Number of link changes

Figure 3.19 Comparison of average convergence time for 32-node network with link
changing on various time slots.

500

~ 450

~ 400

~ 350 c
~

E 300
1A
'f: 250
~

--g 200
~
o .ll 150

§ 100
;Z 50

o

I [3 Flooding III Conventional Spanning-Tree-Based 0 PASTA I

, '0&''';'.' .• ,: ;';':;'\l!";~~ "i.'S~ , '';)1' ' , "'iI! ' '~I. ", ~1li,

I '!I· <,
'c

,
~ ,

I" iiili
,-

\~ :.J "
. ; T: . ,~-::: -c:

I ~ I . ,
IiI - ~. "', "

• I., " "
,. --;- Ir~F '. i ~ , . -- -. -... . ,

~.,

I:' ," "" r.4i,'; ~" ·· I~ , '0' ,0

. -.- ' ..
!JRn i\lat I , IW-l . . 1"" . f£l ' 111in'

5 10 15 20 25

Number of link changes

85

"",:, 'T:'

.~
',->'

' .
,; f,----'--'

~
f--

I ~
' -;;;;-

- . f--'
E-l
30

Figure 3.20 Comparison of average overhead for 32-node network with link changing on
various time slots,

Figure 3.20 illustrates the comparison results of dissemination overhead between the

algorithms in this scenario. It is easily seen that PASTA and conventional spann ing-tree

based algorithms have a smaller overhead than the flooding algorithm,

Via setting the failure probability of each link as 0,01 and running the simulation for

10,000 times, the fai lure rate of the algorithms is compared in such scenario. As described

in Table 3.3, conventional spanning-tree-based algorithm has a larger dissemination failure

rate than PASTA and flooding algorithm, which indicates its robustness is much less than

the latter two algorithms.

The above simulation results further approves that PASTA algorithm is more efficient

to disseminate the links states with lower overhead than flooding algorithms, and more

robust than conventional spanning-tree-based algorithm, The convergence time of PASTA

is almost at same level as flooding algorithm, which is the fastest among all the algorithms

compared here,

86

Table 3.3 Dissemination Failure Rate for 32-node Network with Link Changing on Vari-
ous Time Slots

Number of link changes PASTA Flooding Conventional Spanning-Tree-Based

1 0 0 0.58%

5 0 0 2.87%

10 0 0 5.72%

15 0 0 8.60%

20 0 0 11.50%

25 0 0 14.33%

30 0 0 17.22%

3.6 Summary

In this chapter, a novel per-hop based partial spanning-tree adjustment (PASTA) algorithm

is proposed to overcome the inefficiency problem of the current single-spanning-tree ap-

proaches. Combined with multiple spanning tree distribution and back-trace algorithm, this

scheme is able to provide protection in case of the unavailability of the link in each span-

ning tree. The spanning tree is searched by the QoS performance of the links, so the link

with fast transmission and high reliability capability is always selected. Through the analy-

sis of the overhead cost and time complexity, it is proved that PASTA has the same order of

complexity as other tree-based link state distribution algorithms, but its convergence time

and reliability are greatly enhanced, and its overhead is kept low when compared to flood-

ing based algorithms. A multiple spanning tree scheme for reliability and the back-trace

mechanism for reconstructing a disconnected tree were proposed. All these mechanisms

are used together for efficiently disseminate link-state information in a QoS network.

CHAPTER 4

OSPF-BASED ADAPTIVE AND FLEXIBLE QOS ROUTING

In this chapter, a QoS-enabled routing scheme is proposed to avoid false routing or low

network utilization when using service vectors presented in Chapter 2. The routing scheme

is based on OSPF protocol so as to guarantee feasible deployability of service vectors in

existing networks. Furthermore, a network architecture is introduced to integrate security

into the set of QoS parameters.

4.1 Introduction

As analyzed in Chapter 1, Intserv and Diffserv are two paradigms that differ in the level

of accuracy on service provisioning and QoS granularity for a scalable implementation.

Therefore neither one can satisfy a large number of service requirements and provide high

service granularity at the same time. One way to solve this problem is by using a nested

Diffserv model, where each group of flows can have a subset of requirements. This model

can be combined with the explicitly endpoint admission control (EEAC) scheme [22] that

represents the nested-Diffserv service levels as service vectors (SVs). The EEAC scheme

can be performed in two phases: the probing (or exploring) phase, to determine link state,

and the data transmission phase, which is performed after the probing (and call acceptance)

processes. In the probing phase, the end host sends probing packets to the destination host

to collect the SV information, which includes the service states of the routers along the

end-to-end path. After receiving feedback information from the end server and retriev-

ing the state from the probing packets, the end host compares all possible service class

combinations for this specific path, and computes the utilization and cost to find the most

suitable service classes to be used at each router per flow basis. The selected service vec-

tor is marked in the data packets during the data transmission phase. Each router checks

87

88

the vector, and provides the cost of the corresponding QoS service in it. This EEAC-SV

model improves the QoS granularity to O(pq), where p is the number of routers and q is

the number of service classes in the network (or end-to-end path). The flexibility feature

increases the probability of minimizing the cost for the user and network utilization for the

service provider. However, this scheme, as other EAC models, assumes that the path is

pre-selected so that the probing path and data transmission path are always fixed. This as-

sumption simplifies the analysis, but it may not be accurate in the case of considering a real

networks. The reason is that in routing mechanisms, the above QoS provisioning scheme

may not be able to provide the flexibility achievable by EEAC if SVs are not considered in

the path calculation.

Here, OSPF is considered as the widely used QoS routing model. In Section 4.2,

two examples of link-state routing are presented to show that the combination of OSPF and

EEAC may cause false routing, which results in low utilization of the network resources

and in high cost. To solve this problem, it is proposed here to select SVs during the path

selection phase based on OSPF. The performance of different service classes of a link can

be detected by the neighboring routers and disseminated by PASTA in a timely fashion.

Furthermore, the concept of security-enabled QoS concept (SQoS) and a solution to achieve

the optimal path selection are also presented introduced in this chapter.

4.2 Drawbacks of EEAC with Path Selection

Without loss of generality, OSPF can be used to select a path for the EEAC scheme. The

weight of link is defined in OSPF to be inversely proportional to the capacity of the link

[12]. This configuration cannot reflect the accurate QoS state of the network. [88, 95]

extended OSPF by redefining the weight of link to reflect QoS performance of link, such

as delay or available bandwidth. However, none of the above OSPF protocols can make the

EEAC and other EAC algorithms survive from false routing.

89

Figure 4.1 shows an example of a simple network with routers N = (N1 , N2 , N3 , N4 , N5 , N6) .

Assume the delay of the path is determined by the QoS requirement. The service class

S	 (S1 , 82, 83, S4) is thus categorized by the delay of the link as shown below. The cost

C of the service is represented as:

Here, W2 , i E (1, 10), as shown in the graph, is the weight of each link recorded by OSPF.

Assume that a flow from N 1 to N6 has a delay request of less than 25 ms. OSPF will select

shortest path as Pi = (N1 , N2 , N6) according to the addition of weights on the path. The

EEAC-SV scheme then executes the probing processes along P 1, but no SV may satisfy

the delay request for less than 25ms, so that the request is denied. However, the rest of the

paths, such as P2 = (N11 N5 , N6) and P3 = (N1 , N3 , N5 , N6) , can satisfy the user's request

with the proper service class selection. Furthermore, it is easy to see that the SV (S 2 , S2)

with P2 and with the lowest cost (C = 3 + 3 = 6) is the optimal solution. Therefore, the

EEAC-SV scheme suffers of false routing in this case.

As another example, the link weight is set as the function of delay, as shown in the

brackets in Figure 4.1, or:

90

N2

N l
W2 = 2 {8} W5=5{8 }

S2, S3, S4 S2, S3, S4

W 10 = 3{3}

NJ
SI, S2, S3, S4

N4

Figure 4.1 Network topology of the first example

Then p. = (NI , N3 , N., N6) is the shortest path found by OSPF, which makes EEAC select

(S], S2, S2) or (S2, SI, S2) as the solution (where the cost is 12). However, the optimal

answer in this case is P2 = (NI , N5 , N6) with service (S2, S2) in tandem (where cost is 6) .

The non optimal solution increases the cost and diminishes the network utilization.

4,3 OSPF -based Adaptive and Flexible QoS Provisioning

To overcome the above problem, a new architecture based on OSPF is proposed. In this

description, the weight of link i (Wi) is proposed to be represented as a vector that contains

all the available service classes the link can provide, documented as :

Wi= (S"S2""Sk)

s.t. (S], S2 , " ,Sk) E S (4 1)

Generally, the service class in a QoS model is defined in functi on of various QoS param

eters. Denote the service class as Si = (Q;, Qr, ... , Qn, where QI. j E (1, ... , k) is the

j'h QoS component in the i'h service class. For instance, a service class may be defined as

91

(delay, jitter, packet loss, available bandwidth). In this way, different service classes share

the common network resources, so they can be compared by the QoS parameters and sorted

in a linear order. In the proposed model, only the highest available service class needs to

be marked as the weight of the link. However, the services of the lower classes can also be

provided. Here, the amount of data used to represent the state class is reduced, that is, the

overhead of link state update is decreased. Same as in the original OSPF protocol, the link

states are exchanged by link state advertisement (LSA) packets among the routers in the

network, so that every router has the same QoS link state database. When the user's request

comes, the edge router, i.e. source node, selects the shortest path that satisfies Equation 2.3

in Chapter 2. All the service classes lower than or equal to the weight of the link are candi-

dates for selection. The edge router here is different from that in generic QoS routing in the

sense that the router not only selects the path the data go through but also the service classes

of the link as requested. If the user's requirement can be satisfied, the SV as the selected

service classes are marked into the data packets during data transmission. The traversed

routers read the service class from each packet and provide the corresponding service. If

no SV can be found to fulfill users' demand, the request is denied.

As for the link-state update, the router estimates the state of the connected link and

launches the state update mechanism when any of the states change. However, the estima-

tion of the performance of each service cannot be accurate because if the state is updated too

frequently these updates generate large traffic overhead. Besides, to prevent the LSA pack-

ets and the following data packets from increasing their overhead, the values of the QoS

parameters in each service class are divided into several service levels, so that [log 2 M1

bits can represent M service classes.

OSPF sets a link to disseminate its state information every 30 minutes [12]. This

update interval may be too large for the architecture discussed here, because the dynamic

changes of the QoS parameters may cause the state already known to other routers to be-

92

come outdated. For such purposes, the update is triggered when the state of a link crosses

a boundary of service level, which is called as a class-based triggering mechanism [86].

4.4 Combination of Security and QoS

It is well known that the security level of a given communication depends on the individ-

ual user. Therefore, it is difficult to evaluate security uniformly and classify its service

level [96]. In order to shape the problem, the security protection capability of the router is

estimated and it is linearly mapped to the level of security satisfaction of users. The most

widely considered security capabilities of the router can be listed as encryption, DoS detec-

tion, authentication, and virus filtering [97]. Besides these, more security components can

be extended in this framework. In this chapter the following criterion is created to evaluate

them, but other standards are equally applicable:

• Encryption Ke : measured by the bit-length of the encryption key (e.g., 64 bits, 128
bits) and strength of cryptographic algorithm (e.g., RSA, DES).

• Virus scanning Kt,: measured by the number of viruses and worms that the anti-virus
software can detect and the false-alarm ratio.

• DoS detection K,: measured by the false positive ratio of intrusion detection system
(IDS) under uniform DoS attack testing.

• Authentication Ka : measured according to the robustness of the authentication mech-
anism. It might contain a weak or strong password, biometric, and smart cards with
on-board display and input interfaces.

Here, link security state is expressed as a vector Ka , Kv ,Kd , Ka . From the user's

viewpoint, the security of link i is the addition of the above four components:

Assume there are n links in the path under study, and that the security level of the path is

the link with minimum security:

93

i E (1, 2, 3, 4) is the sensitivity weight of individual security component, as a user

is concerned about the different security components that are specific to a given situation.

As security protection capability mentioned here is considered to change at lower rates

than the other QoS parameters, the security values are updated with a low frequency, such

as once every 24 hours. During each update interval, this value is considered to remain

constant in each service class. This decreases the computation work of routers and produces

no increases in the complexity of the link state update.

Equation 2.3 in Chapter 2 is utilized for service vector selection. The cost of the

security service Si in each router is related to the processor occupancy time and strength

level CC (Si), the occupied memory Cm (Si), the bandwidth Cb(Si), and the disk space

Cd(Si) for a database to store virus or DoS attack patterns. The cost function of security

service is the sum of all of them:

4.5 Path Selection Algorithm Analysis

Generally data flows can specify their QoS requirements in terms of four parameters: the

available bandwidth B„q , the maximum jitter request Jreq , the maximum delay request

Dreq , and the minimum security requirement Kreq . The path and SV selection problem

thus can be described as the problem to maximize Equation 2.3 in Chapter 2 as long as it is

eligible for the selected path p3,

From the user perspective, the utility function U reflects the degree of users' satis-

faction to the QoS service. Users' QoS requirement can be elastic or inelastic. With elastic

demand the user can tolerate some degree of service deterioration if QoS provisioning is

lower than the user expected constraint; while inelastic ones means otherwise. Here only

94

WI = 51 W2 = S2

51,52, 53 5 2,53

Figure 4.2 The illustration of virtual links with service class .

inelastic QoS requirements are considered so U is either I or O. Maximizing Equation 2.3

in Chapter 2 is equivalent to minimize cost function C (i.e. the multi-constrained least cost

routing with multi-service is selectable), which is an NP-complete problem [28] . Firstly

consider the several service classes in each link. To convert their multiple-to-one relation-

ship to one-to-one mapping, each service class is regarded as a virtual link, as Figure 4.2

shows.

To simplify the above problem, the users' constraints are categorized into two differ

ent classes. The algorithm is analyzed with each type of constraints. The combination of

those algorithms gives the solutions but that is beyond the scope of this chapter. One class

is called concave or bottleneck constrained, such as the cases for available bandwidth, and

security. This can be solved by using an extension of the Dijkstra algorithm as in Figure

4.3. Assume a directed graph G = (V, E), where V is the set of nodes and E is the set of

links. sand d are the source node and destination node, respectively. For the m'h service

class and lEI links in the graph G, the time complexity of the pre-process part is O(m lEI) ;

the time complexity of main-selection part is O(n2
) . Thereby the total complexity of this

algorithm is O(n2), which has the same order of complexity as Dijkstra algorithm.

The other class is called as additive constrained, such as delay and jitter are. Assume

the set of feasib le paths from node s to d is F. The cost function is C. Then the problem is

Figure 4.3 The path selection algorithm for concave constraint.

95

96

defined as:

With respect to the lowest cost, the problem is known as Delay-Constrained-Least-

Cost (DCLC). Many mechanisms are proposed to solve it in polynomial time, among which

k-shortest paths (KSP) is a good solution. The proposed KSP scheme here is based on

Jimenez and Marzal's Recursive Enumeration Algorithm (REA) [98]. The idea is to list

k shortest paths from s to d with increasing costs of weight in a directed graph. The

algorithm first invokes Dijkstra's shortest path algorithm to build the shortest path tree.

Each path from s to current node v is the concatenation of the path from s to pre(v) and

the link (pre(v), v), while pre(v) is the adjacent predecessor node. The kth shortest path

π k (V) is thus selected from the candidate set C k (v) according to the following generalized

Bellman's equation:

where πk-1 (u) = πg(u) • v and L(π) is the weight of the path 7r.

The above recursive computation to obtain the k shortest paths solution is finished

in O(m + K n log(m/n)) time. To avoid the worst case whenKis large, the following

algorithm is proposed here for the DCLC problem. Once the delay constraint is above

the threshold, the kth longest path is tracked based on the longest path tree instead of the

shortest one.

Figure 4.4 The path selection algorithm for additive constraint.

97

98

Figure 4.5 Average number of iterations of the proposed algorithm in 32-node network.

The algorithm depicted in Figure 4.4 is simulated in a 32-node bidirectional network

in [99] by running 10,000 requests. Each link is replaced by three virtual links to represent

the service classes. Without loss of generality, the delay of the virtual link is uniformly

distributed from 1 to 500. The source and destination node is 1 and 30. Here, h is set

to 0.5. The delay constraint set is from 150 to 1500 with 50 between intervals. Figure

4.5 shows the average number of iterations k, where k is found without setting the upper

bound of k and considering that there are optimal feasible paths. The figure shows that the

number of iterations is not large and has not unlimited increase when the delay constraint

increases. In reality, as the service class is distributed uniformly among links, the variety

of construction paths decreases. This means that the number of k is actually smaller than

that shown in the figure.

4.6 Summary

In this chapter an extended OSPF framework is presented that SVs and path selection are

integrated into one phase to provide the flexibility of QoS and high utilization of the net-

99

work. An efficient routing algorithm as well as the combination of security and QoS is

introduced. To overcome the complexity of deployability of new mechanisms, SVs are

embedded into OSPF routing to guarantee feasible deployability into existing networks.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this dissertation, the issue of QoS provisioning in next generation network has been

addressed. The main contributions are:

1. Observing the importance of network measurement in QoS provisioning. The issue

of active and passive measurement has been investigated. The framework of active

measurement for QoS classes is proposed in the dissertation. A scheduling scheme

has been proposed to resolve measurement tasks conflict problem.

2. For the purpose of fast and reliably disseminating link state information throughput

the networks with low overhead, an efficient link state dissemination scheme has been

proposed. This scheme enables each hop on the distributing tree to adjust the path

according to latest link information, combined with back-trace scheme and multi-

spanning-tree approach.

3. In QoS routing, multiple constraints need to be considered and high granularity of

routing paths is required to improve network utilization. A KSP-based QoS routing

algorithm is provided in this dissertation.

5.2 Future Work

The author will continue the ongoing work on QoS provisioning in next generation net-

works. Based on the proposed network framework, the author will focus on designing and

implementing the network measurement tools and network provisioning strategy. More-

over, the author would like to implement the past research to wireless networks.

100

APPENDIX A

TEST RESULTS OF PING AND PIPECHAR

The table shown below records the test results of Ping and Pipechar in Chapter 2.

Table A.1 Test Result of Ping and Pipechar.

Load

(R1 --> R2)

Load

(R2 --> R1)

Ping Pipechar

Average

RTT(ms)

Available

bandwidth(Mbps)

Minimal one-way

delay(ms)

Average

RTT(ms)

60% 60% fail fail fail fail

0 60% 0.509 13.884 6.70 14.12

50% 50% fail fail fail fail

0 50% 0.505 18.036 5.11 12.20

40% 40% 28.455 fail fail fail

0 40% 0.511 26.766 3.47 8.37

30% 30% 0.828 fail fail fail

0 30% 0.316 32.892 2.94 7.17

20% 20% 0.406 fail fail fail

0 20% 0.290 39.933 2.53 6.25

10% 10% 0.291 39.691 2.54 6.31

0 10% 0.263 48.913 2.20 5.10

0 0 0.252 58.347 1.97 4.60

101

APPENDIX B

TEST RESULTS OF PATHLOAD

The table shown below records the test results of Pathload in Chapter 2.

Table B.1 Test Result of Pathload.

Load

(R1 -+ R2)

Load

(R2 --3 R 1)

Pathload

Available bandwidth(Mbps) Measurement Time(sec)

60% 60% fail N/A

0 60% 96.00-97.50 6.80

50% 50% 72.40-96.60 7.45

0 50% 95.70-97.20 6.83

40% 40% 95.30-96.80 6.81

0 40% 95.80-97.30 6.78

30% 30% 95.40-96.90 6.83

0 30% 95.70-97.20 6.81

20% 20% 95.90-97.40 6.80

0 20% 95.80-97.30 6.89

10% 10% 95.90-97.40 6.80

0 10% 95.80-97.30 6.81

0 0 95.80-97.30 6.81

102

REFERENCES

[1] Y. Xu and R. Guerin, "Individual QoS versus aggregate QoS: a loss performance study,"
IEEE/ACM Trans. Networking, vol. 13, pp. 370-383, Apr. 2005.

[2] X. Xiao and L. Ni, "Internet QoS: a big picture," IEEE Network Mag., vol. 13, pp. 8-18,
Mar. 1999.

[3] Y. Joo, V. Ribeiro, A. Feldmann, A. C. Gilbert, and W. Willinger, "TCP/IP traffic dy-
namics and network performance: a lesson in workload modeling, flow control, and
trace-driven simulations," in ACM SIGCOMM Computer Communication Review,
Apr. 2001, pp. 25-37.

[4] S. Floyd and V. Paxson, "Difficulties in simulating the internet," IEEE/ACM Trans. Net-
working, vol. 9, pp. 392-403, Aug. 2001.

[5] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, "On the self-similar nature of ether-
net traffic (extended version)," IEEE/ACM Trans. Networking, vol. 2, pp. 1-15, Feb.
1994.

[6] IETF working group on IP Performance Metrics (ippm). [Online]. Available:
http://www.ietf.org/html.charters/ippm-charter.html

[7] V. Paxson, G. Almes, J. Mandavi, and M. Mathis, "Framework for IP performance
metrics," RFC 2330, IETF, May 1998. [Online]. Available: http://www.ietf.org/rfc/
rfc2330.txt

[8] General Aspects of Quality of Service and Network Performance in Digital Networks, in-
cluding ISDNs, ITU-T Recommendation 1.350, Mar. 1993.

[9] Internet Protocol Data Communication Service - IP Packet Transfer and Availability Per-
formance Parameters, ITU-T Recommendation Y.1540, Mar. 2000.

[10] Network performance objectives for IP-based services, ITU-T Recommendation Y.1541,
Feb. 2006.

[11] End-User Multimedia QoS Categories, ITU-T Recommendation G.1010, Nov. 2001.

[12] J. Moy, "OSPF version 2," RFC 2328, IETF, Apr. 1998. [Online]. Available:
http://www.ietf.org/rfc/rfc2328.txt

[13] IETF working group on Open Shortest Path First IGP (ospf). [Online]. Available:
http://www.ietf.org/html.charters/ospf-charter.html

[14] IETF working group on Common Control and Measurement Plane (ccamp). [Online].
Available: http ://www.ietf. org/html . charters/cc amp- charter.html

[15] IETF working group on Integrated Services (intserv). [Online]. Available: hap:
//www.ietf.org/html.charters/OLD/intserv- charter.html

103

104

[16] IETF working group on Differentiated Services (diffserv). [Online]. Available:
http://www.ietf.org/html.charters/OLD/diffserv-charter.html

[17] IETF working group on Resource Reservation Setup Protocol (rsvp). [Online]. Available:
http://www.ietf.org/html.charters/OLD/rsvp- charter. html

[18] J. Babiarz, K. Chan, and F. Baker, "Configuration guidelines for DiffServ service classes,"
RFC 4594, IETF, Aug. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4594.txt

[19] Y. Bernet et al., "A framework for integrated services operation over Diffserv networks,"
RFC 2998, IETF, Nov. 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2998.txt

[20] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang, "Endpoint admission control:
Architectural issues and performance," in Proc. ACM SIGCOMM Conf., no. 4, Aug.
2000, pp. 69-81.

[21] F. Kelly, P. Key, and S. Zachary, "Distributed admission control," IEEE J. Select. Areas
Commun., vol. 18, pp. 2617-2628, Dec. 2000.

[22] J. Yang, J. Ye, S. Papavassiliou, and N. Ansari, "A flexible and distributed architecture for
adaptive end-to-end QoS provisioning in next-generation networks," IEEE J. Select.
Areas Commun., vol. 23, pp. 321-333, Feb. 2005.

[23] V. Sharma and M. Suma, "Estimating traffic parameters in Internet via active measure-
ments for QoS and congestion control," in Proc. IEEE GLOBECOM, Nov. 2001, pp.
2527-2531.

[24] P. Barford and J. Sommers, "Comparing probe- and router-based packet-loss measure-
ment," IEEE Internet Computing, vol. 8, no. 5, pp. 50-56, Sep. 2004.

[25] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi, "CapProbe: a simple and ac-
curate capacity estimation technique," in ACM SIGCOMM Computer Communication
Review, Oct. 2004, pp. 67-78.

[26] "Cisco IOS NetFlow," White Paper, Cisco, Oct. 2007. [Online]. Available: http:
//www.cisco.com/en/US/products/ps6601/prod_white_paperslist.html

[27] N. Brownlee, C. Mills, and G. Ruth, "Traffic flow measurement: Architecture," RFC
2722, IETF, Oct. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2722.txt

[28] Z. Wang and J. Crowcroft, "Quality of service routing for supporting multimedia applica-
tions," IEEE J. Select. Areas Commun., vol. 14, no. 7, pp. 1228-1234, Sep. 1996.

[29] R. Guerin and A. Orda, "QoS based routing in networks with inaccurate information: the-
ory and algorithms," IEEE/ACM Trans. Networking, vol. 7, no. 3, pp. 350-364, Jun.
1999.

[30] D. Ghosh, V. Sarangan, and R. Acharya, "Quality-of-service routing in IP networks," IEEE
Trans. Muitimedia, vol. 3, pp. 200-208, Jun. 2001.

105

[31] W. Tsai, C. Ramamoorthy, W. Tsai, and 0. Nishiguchi, "An adaptive hierarchical routing
protocol," IEEE/ACM Trans. Networking, vol. 38, pp. 1059-1075, Aug. 1989.

[32] L. Ciavattone, A. Morton, and G. Ramachandran, "Standardized active measurements on
a tier 1 IP backbone," IEEE Commun. Mag., vol. 41, pp. 90-97, Jun. 2003.

[33] T. Tsugawa et al., "Inline bandwidth measurements: Implementation difficulties and their
solutions," in IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Ser-
vices (E2EMON), May 2007.

[34] G. D. Santos et al., "UAMA: a unified architecture for active measurements in IP networks;
End-to-end objetive quality indicators," in IEEE/IFIP Integrated Network Manage-
ment Symposium, May 2007, pp. 246-253.

[35] M. Zhanikeev et al., "Active performance measurement for IP over all-optical networks,"
in IEEE/IFIP Int. Conf. in Central Asia on Internet, Sep. 2006.

[36] M. Zhanikeev and Y. Tanaka, "A testbed for agent-based multi-purpose extensible active
measurement," in Int. Conf. on Testbeds and Research Infrastructures for the Devel-
opment of Networks and Communities (TRIDENTCOM), Mar. 2006.

[37] M. Mushtaq and T. Ahmed, "Adaptive packet video streaming over P2P networks using
active measurements," in Proc. IEEE Computers and Communications Symposium,
Jun. 2006, pp. 423-428.

[38] R. Mishra and V. Sharma, "QoS routing in MPLS networks using active measurements,"
in IEEE Conf on Convergent Technologies for Asia-Pacific Region (TENCON), Oct.
2003, pp. 323-327.

[39] M. Zangrilli and B. Lowekamp, "Comparing passive network monitoring of grid applica-
tion traffic with active probes," in Proc. Int. Workshop on Grid Computing (GRID),
Nov. 2003, pp. 84-91.

[40] M. Aida, K. Ishibashi, and T. Kanazawa, "CoMPACT-Monitor: change-of-measure based
passive/active monitoring weighted active sampling scheme to infer QoS," in Proc.
Applications and the Internet (SAINT) Workshops, Feb. 2002, pp. 537-542.

[41] P. Calyam, D. Krymskiy, M. Sridharan, and P. Schopis, "Active and passive measurements
on campus, regional and national network backbone paths," in Proc. IEEE Conf. on
Computer Communications and Networks (ICCCN), Oct. 2005, pp. 537-542.

[42] K. Mase and Y. Toyama, "End-to-end measurement based admission control for VoIP net-
works," in Proc. IEEE Int. Conf. Commun., Apr. 2002, pp. 1194-1198.

[43] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, "Bandwidth estimation: Metrics, mea-
surement techniques, and tools," IEEE Network Mag., vol. 17, no. 6, pp. 27-35, Nov.
2003.

[44] M. Luckie and A. McGregor, "IPMP: IP measurement protocol," in Proc. Passive and
Active Measurement (PAM) Workshop, Apr. 2002, pp. 168-176.

106

[45] S. Shalunov and B. Teittelbaum, "One-way active measurement protocol (OWAMP),"
RFC 3763, IETF, Apr. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3763.txt

[46] Z. Qin, R. Rojas-Cessa, and N. Ansari, "Distributed link-state measurement for QoS rout-
ing," in Proc. Military Communications Conf., Oct. 2006.

[47] Y. Labit, P. Owezarski, and N. Larrieu, "Evaluation of active measurement tools for band-
width estimation in real environment," in IEEE/IFIP Workshop on End-to-End Moni-
toring Techniques and Services (E2EMON), May 2005, pp. 71-85.

[48] Active measurement project (AMP). National laboratory for Applied Network Research
(NLANR). [Online]. Available: http://www.nlanr.net/

[49] F. Strohmeier, H. Dorken, and B. Hechenleitner, "Aquila distributed QoS measurement,"
in In Proc. of COMOCON8 Conference, 2001, pp. 177-185.

[50] Pipechar. [Online] . Available: http ://www- didc.lbl.gov/NCS/

[51] Pathload. [Online]. Available: 	 http://www.ce.gatech.edu/fac/Constantinos.Dovrolis/
bw- est/pathload.htm%1

[52] K. Anagnostakis, M. Greenwald, and R. Ryger, "Cing: measuring network-internal delays
using only existing infrastructure," in Proc. IEEE INFOCOM, Mar. 2006, pp. 2112-
2121.

[53] A. Downey. Clink: a tool for estimating internet link characteristics. [Online]. Available:
http://allendowney.com/research/clink/

[54] K. Lai and M. Baker, "Nettimer: A tool for measuring bottleneck link bandwidth," in Proc.
of the USENIX Symposium on Internet Technologies and Systems, Mar. 2001.

[55] C. Dovrolis, P. Ramanathan, and D. Moore, "What do packet dispersion techniques mea-
sure?" in Proc. IEEE INFOCOM, Apr. 2001, pp. 905-914.

[56] Pathchar. [Online]. Available: http://www.caida.org/tools/utilities/others/pathehar/

[57] J. Sommers, P. Barford, and W. Willinger, "Laboratory-based calibration of available band-
width estimation tools," Microprocess. Microsyst, vol. 31, pp. 222-235, Jun. 2007.

[58] R. S. Prasad, C. Dovrolis, and B. A. Mah, "The effect of layer-2 store-and-forward devices
on per-hop capacity estimation," in Proc. IEEE INFOCOM, Apr. 2003, pp. 2090-
2100.

[59] B. Melander, M. Bjorkman, and P. Gunningberg, "A new end-to-end probing and analysis
method for estimating bandwidth bottlenecks," in Proc. IEEE GLOBECOM, Nov.
2000, pp. 415-420.

[60] G. Almes, S. Kalidindi, and M. Zekauskas, "A one-way delay metric for IPPM," RFC
2679, IETF, Sep. 1999. [Online] . Available: http://www.ietf.org/rfc/rfc2679.txt

107

[61] IETF working group on Network Time Protocol (ntp). [Online]. Available: http:
//www. ietf. org/html . charters/ntp- charter.html

[62] OWAMP. Internet2. [Online]. Available: http://e2epi.internet2.edu/owamp/

[63] J. Choi and C. Yoo, "One-way delay estimation and its application," Elsevier Computer
Commun., vol. 28, no. 7, May 2005.

[64] G. Almes, S. Kalidindi, and M. Zekauskas, "A one-way packet loss metric for IPPM,"
RFC 2680, IETF, Sep. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2680.txt

[65] C. Estan, K. K. adn D. Moore, and G. Varghese, "Building a better NetFlow," in Proc.
ACM SIGCOMM Conf, no. 4, Aug. 2004.

[66] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson, "Design principles for ac-
curate passive measurement," in Proc. Passive and Active Measurement (PAM) Work-
shop, Apr. 2000.

[67] Traffic monitoring using sFlow. sFlow. [Online]. Available: http://www.sfiow.org/
sFlowOverview.pdf

[68] IETF working group on Remote Network Monitoring (rmonmib). [Online]. Available:
http://www.ietf.org/html.charters/OLD/rmonmib- charter.html

[69] "Smartbits: White papers," Spirent Inc. [Online]. Available: http://www.spirent.com/
Solutions-Directory/Smartbits.aspx

[70] N. Nu and P. Steenkiste, "Evaluation and characterization of available bandwidth probing
techniques," IEEE J. Select. Areas Commun., vol. 21, no. 6, pp. 879-894, Aug. 2003.

[71] E2E piPEs. Internet2. [Online]. Available: http://e2epi.internet2.edu/e2epipes/

[72] J. Sommers and P. Barford, "An active measurement system for shared environments," in
Proc. ACM SIGCOMM Conf on Internet Measurement (IMC), Oct. 2007.

[73] R. Graham, E. Lawler, J. Lenstra, and A. Kan, "Optimization and approximation in deter-
ministic sequencing and scheduling: A survey," in Annals of Discrete Mathematics,
1979, pp. 5:287-326.

[74] T. McGregor, H. Braun, and J. Brown, "The NLANR network analysis infrastructure,"
IEEE Commun. Mag., vol. 38, pp. 122-128, May 2000.

[75] S. Kalidindi and M. Zekauskas, "Surveyor: An infrastructure for internet performance
measurements," in Internet Global Summit(INET), Jun. 1999.

[76] R. Wolski, N. Spring, and C. Peterson, "Implementing a performance forecasting system
for metacomputing: The network weather service," in Supercomputing, Aug. 1997.

[77] C. Liu and J. Layland, "Scheduling algorithms for multiprogramming in a hard real-time
environment," Journal of the ACM, vol. 20, no. 1, pp. 46-61, Jan. 1973.

108

[78] K. Jeffay, D. Stanat, and C. Martel, "On non-preemptive scheduling of periodic and spo-
radic tasks," in Proc. IEEE Real-Time Systems Symposium, Dec. 1991, pp. 129-139.

[79] Y. Cai and M. Kong, "Nonpreemptive scheduling of periodic tasks in uni- and multipro-
cessor systems," Algorithmica, vol. 15, no. 6, pp. 572-599, Jun. 1996.

[80] P. Calyam et al., "Enhanced EDF scheduling algorithms for orchestrating network-wide
active measurements," in Proc. IEEE Real-Time Systems Symposium, Dec. 2005.

[81] I. Gopal, M. Bonuccelli, and C. Wong, "Scheduling in multibeam satellites with interfering
zones," IEEE Trans. Commun., vol. 31, no. 8, pp. 941-951, Aug. 1983.

[82] W. Chen, P. Sheu, and J. Yu, "Time slot assignment in TDM multicast switching systems,"
in Proc. IEEE INFOCOM, Apr. 1991, pp. 1296-1305.

[83] A. Bagchi and S. Hakimi, "Data transfers in broadcast networks," IEEE Trans. Computers,
vol. 41, no. 7, pp. 842-847, Jul. 1992.

[84] J. Goossens and C. Macq, "Limitation of the hyperperiod in real-time periodic task set
generation," in Proc. RTS Embedded System (RTS'01), 2001, pp. 133-147.

[85] "OSPF flooding reduction," Cisco IOS Software, May 2000. [Online]. Available:
http://www.cisco.com/en/US/docs/ios/12_1t/12_1t2/feature/guide/dt_ospff.pdf

[86] G. Apostolopoulos et al., "Quality-of-service based routing: A performance perspective,"
in Proc. ACM SIGCOMM Conf., Oct. 1998, pp. 17-28.

[87] G. Cheng and N. Ansari, "ROSE: A novel link state information update scheme for QoS
routing," in Proc. IEEE High Performance Switching and Routing, 2005, pp. 24-28.

[88] G. Apostolopoulos et al., "QoS routing mechanisms and OSPF extensions," RFC 2676,
IETF, Aug. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2676.txt

[89] J. Moy, "Flooding over a subset topology," Internet draft, IETF, Feb. 2001. [Online].
Available: http ://to ols . ietf. org/id/draft-ietf- ospf- subset- flood-00.txt

[90] B. Bellur and R. Ogier, "A reliable, efficient topology broadcast protocol for dynamic
networks," in Proc. IEEE INFOCOM, vol. 1, Mar. 1999, pp. 178-186.

[91] K. Thulasiraman and M. Swamy, Eds., Graphs: Theory and Algorithms. New York:
Wiley-Interscience, 1992.

[92] K. Long, S. Cheng, and J. Ma, "Internet QoS: architectures, strategies and mechanisms,"
High Technology Letters 7 (1), pp. 13-21,2001.

[93] N. Ansari, G. Cheng, and R. Krishnan, "Efficient and reliable link state information dis-
semination," IEEE Commun. Lett., vol. 8, pp. 317-319, May 2004.

[94] P. Narvaez, K. Siu, and H. Tzeng, "New dynamic SPT algorithm based on a ball-and-string
model," IEEE/ACM Trans. Networking, vol. 9, pp. 706-718, Dec. 2001.

109

[95] B. Fortz and M. Thorup, "Optimizing OSPF/IS-IS weights in a changing world," IEEE J.
Select. Areas Commun., vol. 20, no. 4, pp. 756-767, May 2002.

[96] A. D. Kermytis, V. Misra, and D. Rubenstein, "SOS: Secure overlay services," Columbia
University, Tech. Rep. EE200415-1, Feb. 2002.

[97] A. Chakrabarti and G. Manimaran, "Internet infrastructure security: A taxonom," IEEE
Network Mag., vol. 16, pp. 13-21, Nov. 2002.

[98] V. M. J. Pelayo and A. M. Varo, "Computing the k shortest paths: A new algorithm and
an experimental comparison," in Proc. 3rd Int. Workshop on Algorithm Engineering
(WAE'99), Lecture Notes in Computer Science 1668, Jul. 1999, pp. 15-29.

[99] S. Chen and K. Nahrsted, "On finding multi-constrained paths," in Proc. IEEE Int. Conf.
Commun., Jun. 1996, pp. 874-899.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Dedication
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Network QoS Measurement Architecture and Scheduling of Measurement Tasks
	Chapter 3: Efficient and Reliable Dissemination of Link State Information
	Chapter 4: OSPF-Based Adaptive and Flexible QoS Routing
	Chapter 5: Conclusions and Future Work
	Appendix A: Test Results of Ping and Pipechar
	Appendix B: Test Results of Pathload
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

