

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

HARDWARE SUPPORT FOR REAL-TIME NETWORK SECURITY AND
PACKET CLASSIFICATION USING FIELD PROGRAMMABLE GATE

ARRAYS

by
Nitesh Bhicu Guinde

Deep packet inspection and packet classification are the most computationally expensive

operations in a Network Intrusion Detection (NID) system. Deep packet inspection

involves content matching where the payload of the incoming packets is matched against

a set of signatures in the database. Packet classification involves inspection of the packet

header fields and is basically a multi-dimensional matching problem. Any matching in

software is very slow in comparison to current network speeds. Also, both of these

problems need a solution which is scalable and can work at high speeds. Due to the high

complexity of these matching problems, only Field-Programmable Gate Array (FPGA) or

Application-Specific Integrated Circuit (ASIC) platforms can facilitate efficient designs.

Two novel FPGA-based NID solutions were developed and implemented that not

only carry out pattern matching at high speed but also allow changes to the set of stored

patterns without resource/hardware reconfiguration; to their advantage, the solutions can

easily be adopted by software or ASIC approaches as well. In both solutions, the

proposed NID system can run while pattern updates occur. The designs can operate at 2.4

Gbps line rates, and have a memory consumption of around 17 bits per character and a

logic cell usage of around 0.05 logic cells per character, which are the smallest compared

to any other existing FPGA-based solution.

In addition to these solutions for pattern matching, a novel packet classification

algorithm was developed and implemented on a FPGA. The method involves a two-field

matching process at a time that then combines the constituent results to identify longer

matches involving more header fields. The design can achieve a throughput larger than

9.72 Gbps and has an on-chip memory consumption of around 256Kbytes when dealing

with more than 10,000 rules (without using external RAM). This memory consumption is

the lowest among all the previously proposed FPGA-based designs for packet

classification.

HARDWARE SUPPORT FOR REAL-TIME NETWORK SECURITY AND
PACKET CLASSIFICATION USING FIELD PROGRAMMABLE GATE

ARRAYS

by
Nitesh Bhicu Guinde

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Engineering

Department of Electrical and Computer Engineering

May 2010

Copyright © 2010 by Nitesh Bhicu Guinde

ALL RIGHTS RESERVED

APPROVAL PAGE

HARDWARE SUPPORT FOR REAL-TIME NETWORK SECURITY AND
PACKET CLASSIFICATION USING FIELD PROGRAMMABLE GATE

ARRAYS

Nitesh Bhicu Guinde

Dr. Sotirios Ziavras, Dissertation Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Alexandros Gerbessiotis, Committee Member 	 Date
Associate Professor of Computer Science Department, NJIT

BIOGRAPHICAL SKETCH

Author:	 Nitesh Bhicu Guinde

Degree:	 Doctor of Philosophy

Date:	 May 2010

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2010

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, December 2002

• Bachelor of Science in Electronics and Telecommunications Engineering,
Goa Engineering College, Goa University, Goa, India, July 1999

Major:	 Computer Engineering

Presentations and Publications:

N. Guinde and S. G. Ziavras, "Novel FPGA-Based Signature Matching for Deep Packet
Inspection," 4 th Workshop in Information Security Theory and Practices: Security and
Privacy of Pervasive Systems and Smart Devices, April 2010.

N. Guinde, X. Tang, R. Sutaria, S. G. Ziavras and C. N. Manikopoulos, "FPGA-based
static analysis tool for detecting malicious binaries," 2nd IEEE International Conference
on Computer and Automation Engineering, February 2010.

N. Guinde and S.G. Ziavras, "An Adaptable Platform for Network Intrusion Detection
Systems," 8 th New Jersey Universities Homeland Security Research Consortium
Symposium, Princeton University, New Jersey, Dec. 5, 2008, poster presentation.

iv

I dedicate this thesis to my parents, B. N. Guinde and Jyoti Guinde, and my lovely sister,
Natasha. Without their support, patience, consideration and above all, love, this work

would not have been possible.

v

ACKNOWLEDGMENT

I would like to thank my Professor Dr. Sotirios Ziavras for all the enthusiastic support

and advice he has given me and most importantly for taking me under his wings after the

sad demise of my previous professor, late Dr. Constantine Manikopoulos, who had

generously extended his support towards me after my PhD qualifying exam. I would also

like to thank my committee members: Dr. Roberto Rojas-Cessa, Dr. Edwin Hou, Dr. Jie

Hu, and Dr. Alexandros Gerbessiotis.

I am very grateful to my cousin Dr. Meeta Naik and her husband Dr. Guruprasad Naik for

the financial help they provided me with when needed the most, and also for being a

support away from my home. I would also like to acknowledge my lovely and wonderful

close-knit family back in Goa, including all my cousins, aunts and uncles. I would also

like to extend my gratitude to my cousin, Shailesh Guinde, and also to Dilip, who are my

real lifesavers. I would also like to thank all my friends and roommates here in US with

whom I shared a special bonding.

Lastly, I feel myself privileged to have such wonderful parents and an awesome sister

who have been very patient, understanding and really considerate during my doctorate-

pursuing journey. They have been rock solid wall of emotional as well as financial

support for me.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Motivation 	 1

1.2 Objective 	 1

1.3 Introduction to Signature Matching 	 1

1.4 Related Work(Signature Detection) 	 4

1.5 Introduction to Packet Classification 	 7

1.5 Related Work(Packet Classification) 	 10

2 SIGNATURE DETECTION USING FIXED-LENGTH SUB-PATTERNS 	 14

2.1 Fixed-length Method 	 14

2.1.1 Pre-Processing 	 14

2.1.2 Runtime Detection of Malicious Patterns 	 18

2.1.3 Appropriate Weight Distribution Prevents False Positives 	 20

2.1.4 Pattern Splitting 	 22

2.2 Hardware Implementation 	 23

2.3 Results and Comparison with Earlier Work 	 26

2.3.1 Pre-Processing and Simulation Results 	 26

2.3.2 VHDL System Synthesis/Implementation 	 29

2.3.3 Comparison with Earlier Approaches 	 30

3 SIGNATURE DETECTION USING VARIABLE-LENGTH SUB-PATTERNS ... 32

3.1 Variable-length Method 	 32

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.1.1 Pre-Processing 	 32

3.1.2 Run-time Pattern Detection 	 41

3.2 Eliminating Pattern Collisions and False Positives 	 49

3.2.1 Eliminating Pattern Collisions 	 49

3.2.2 Hashing and Eliminating Collisions for Sub-patterns 	 50

3.2.3 Eliminating False Positives for Patterns 	 52

3.3 Results and Comparisons with Earlier Work 	 54

3.3.1 Pre-processing and Simulation Results 	 54

3.3.2 VHDL System Synthesis/Implementation 	 57

	

3.3.3 Comparison with Earlier Approaches 62

4 EFFICIENT PACKET CLASSIFICATION ON FPGAS TARGETING AT
MANAGEABLE MEMORY CONSUMPTION 	 65

4.1 The Packet Classification Method 	 65

4.2 Pre-Processing Phase 	 66

4.2.1 Rule Grouping 	 66

4.2.2 Fragmentation Schemes 	 67

4.2.3 Pairing of Fields 	 69

4.2.4 Port Ranges 	 71

4.2.5 Choice of Fragmentation 	 71

4.2.6 Summation Tuples 	 72

4.3 Runtime Rule Matching 	 75

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.3.1 Group Block 	 76

4.3.2 Summation Block 	 80

4.3.3 Detection Block 	 81

4.4 Rule Splitting Method 	 83

4.5 Elimination of False Positives 	 84

4.6 Experimental Results 	 85

5 CONCLUSIONS AND FUTURE WORK 	 90

APPENDIX A PSEUDOCODE FOR CALCULATION OF PVN4, PVN3, PV, DV
AND EDV 	 91

REFERENCES 	 96

ix

LIST OF TABLES

Table Page

1.1 Sample packet forwarding services 8

2.1 GRP table size when varying N for the SNORT database 	 28

2.2 Pre-processing results for the SNORT database 28

2.3 Comparison with other designs (N/A: not available or not applicable) 	 31

3.1 Pre-processing results for adding 0 Patterns using Max Fragment_Length = 24 56

3.2 Comparison with other designs (N/A: not available or not applicable) 64

4.1 Sample rule-set 	 66

4.2 Results for various Classbench files 	 88

4.3 Comparisons with other works 	 88

LIST OF FIGURES

Figure	 Page

1.1 Example of a network where ISP (ISP1) is connected to a private network (N1)
and other ISP network (ISP2) 	 7

2.1 A set of six patterns separated into sub-patterns for N = 3 	 15

2.2 GRP tables for the patterns in Fig. 2.1, assuming N=3, L=3, m=3 and bw = 8 	 16

2.3 The pattern table for the patterns in Fig. 2.1 	 17

2.4 Processing a P-character input with an N-character shifting window 	 18

2.5 All possible "fictitious" patterns producing non-zero EDVs for tail "rds" 	 22

2.6 Hardware Architecture for N=3 	 23

3.1 Pattern sets before and after fragmentation 	 33

3.2 Character table for m=3 and bw=3 	 35

3.3 Summation tuples for the pattern set in Fig. 3.1; SUM= (Sums, Sum2, Sum3) 	 36

3.4 Summation m-tuples placed in TBRAM tables 	 37

3.5 (a) DSN3: The set of seven patterns from Fig. 1 separated into sub-patterns for
N = 3; (b) DSN4: The set of seven patterns separated into sub-patterns for N = 4 	 39

3.6 GRP tables for the patterns in Fig. 1, assuming (a) N=3 and L=4; (b) N=4 and
L=4 	 40

3.7 Summation Block 	 41

3.8 Bit Detection Unit for N= 4, 3 	 44

3.9 Block diagram of complete pattern detection 	 46

3.10 FRAM Block data structure 	 49

3.11 Pattern collisions in TBRAM 	 50

xi

LIST OF FIGURES
(Continued)

Figure Page

3.12 Hashing Block of the GRP3 RAM in BDN3 	 51

3.13 (a) Fictitious patterns which generate non-zero EDV; (b) Fictitious pattern
prevention using appropriate fragmentation 	

53

3.14 Pre-processing results for Max Fragment Length= 32, 24 and 16 	 55

3.15 Parameter values for system synthesis 58

3.16 Parameters needed to add a pattern 59

3.17 Total time to add the 621 new patterns 	 60

3.18 Linked list for updates with sub-pattern "abc" 	 62

4.1 Applying the two fragmentation schemes FRGA8 and FRAG7 	 68

4.2 Pairings and BV-EV vector generation for the SIP and DIP fields using
fragmentation scheme FRAG7 	

70

4.3 Comparison of various fragmentation schemes (pairs of bit choices are shown) 72

4.4 Weight tables 	 73

4.5 Summation tuples for the rule-set in Table 4.1; SUM= (Sums, Sum2, Sum3) 	 74

4.6 SIP-DIP block using FRAG8 (SIPDIP-FRAG8) 	 77

4.7 Detection example using FRAG8 	 78

4.8 Pairings for Group G13 	 80

4.9 Summation block 	 81

4.10 Address generation block for Group G13 	 82

4.11 Block diagram 	 82

4.12 Number of BRAMs needed for only GROUP blocks various numbers of rules . 86

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

FPGAs are characterized by low cost and short application development cycles. They

also provide a right compromise between flexibility of re-programming and capability in

operating at high speeds. Signature matching and packet classification are the most

computationally expensive operations in NID systems that also demand very high

processing speeds. In addition, these operations require new data uploads quite

frequently. Thus, FPGAs present us with ideal platforms for these kinds of applications.

1.2 Objective

The objective of this dissertation is to provide a fast co-processor to the NIDS especially

to perform the computationally intensive tasks of signature matching and header

classification. Because of similarities of packet classification with header classification

and since typically packet classification rules are significantly more than the header

classification rules, the former is a more challenging problem. Hence it is implemented

using a novel scheme on FPGAs.

This chapter first discusses the signature matching and then introduces the packet

classification.

1.3 Introduction to Signature Matching

There have been many computer network attacks in recent times which were difficult to

1

2

detect as the detection mechanism were based only on header inspection. Deep packet

inspection of the payload is needed to detect application level attacks. In the area of NID

systems, new vulnerabilities are identified on a daily basis and appropriate rules are

developed for defense. These rules may represent either new signatures or changes to

existing signatures. From October 2007 to August 2008, 1348 new SNORT rules were

added while 8170 rules were updated (on a daily or weekly basis). Therefore, for the sake

of security, decent NID systems should be able to handle rule updates (including

additions) without taking them off-line. Signature matching is also relevant to virus

detection where classic virus-detection techniques look for the presence of specific

command sequences inside the program [24]. These command sequences basically form

byte patterns. Thus, a pattern matching block becomes a critical component to subvert

any virus attacks. The application of pattern matching part of this thesis is in NID

systems but the approach could be extended to the virus detection area as well where new

signatures are added almost daily.

There have been several works on pattern matching for deep packet inspection

that attempt to identify malicious signatures. Most of the currently available deep packet

inspection systems employ pattern matching software running on general-purpose

processors. The Boyer-Moore [26] and Aho-Corasick [29] string matching algorithms

have been adopted in NID research. The Boyer-Moore algorithm performs matching from

right to left by aligning the pattern to be matched with the input stream in such a way that

the rightmost character of the pattern matches with the stream. It continues matching

from right to left, and if a mismatch is encountered, then it skips all the characters up to

the next alignment of rightmost characters. The Aho-Corasick algorithm builds a finite

3

state machine from keywords (i.e., chosen pattern pieces) and processes the input text

strings in a single pass. Fisk and Varghese [27] have presented a multi-pattern matching

algorithm that combines the one-pass approach of Aho-Corasick with the skipping feature

of Boyer-Moore. Tuck et al. [28] take a different approach to optimizing Aho-Corasick by

incorporating bitmap and path compression to reduce storage. The advantage of software

approaches is that the database of rules (i.e., the set of known malicious patterns) can be

updated easily, if needed. However, these software approaches do not adapt well for

hardware realizations even though their database of rules can be updated quite easily.

Their major disadvantage is the sequential software-driven matching process which is

very slow. Thus, the pattern matching process cannot keep up with fast network speeds;

as a result, some packets may be dropped while others may not be inspected at all.

Existing hardware-based solutions, FPGA or ASIC, on the other hand have the potential

to match network speeds but often suffer from flexibility issues related to database

updates. FPGAs often match network speeds at the cost of complete system

reconfiguration for pattern updates. The time penalty for complete system synthesis can

be on the order of several hours, while the penalty for full FPGA reconfiguration can be

many milliseconds or seconds [10]. Also, reconfiguration can be a tedious process

involving digital-circuit redesign to support new rules. Therefore, complete system

reconfiguration is not prudent for 24/7 active networks.

Common FPGA-based NID approaches aim to minimize the consumed area,

match the network speed and rarely reduce the time for updates. The majority of them

embed specialized state machines where each state represents an input sequence of

known characters; state transition information is stored in a location pointed to by the

4

next incoming character [5, 8]. Only a few papers [1-3, 25] discuss flexible solutions that

do not require FPGA reconfiguration when adding new patterns. The pattern matching

solutions presented in this dissertation attempt to minimize the consumed chip area while

operating at a high speed and also providing for reconfiguration-less runtime pattern

updates. A quantitative comparison with the majority of current approaches is included in

this dissertation. A quantitative comparison with [25] appears later in Section 1.4. In other

related work, Baker et al. [6, 7] applied graph-theoretic techniques to partition the rule set

into groups based on common character sequences; this approach reduces redundant

searches across patterns and consequently the required area consumption.

This dissertation contains two pattern matching methods, fixed-length sub-pattern

method and variable-length sub-pattern method. The ultimate objective for both the

designed circuits is to create a RAM address based on the incoming stream of characters.

If a malicious pattern is present then this address points to a value exclusive to the

respective pattern. This process reduces the search area to just one location. To compress

the stored information, a bit vector is created for each sub-pattern to denote its location in

the entire set of malicious patterns. The resulting dramatic compression in pattern storage

is due to the fact that a single bit now represents an entire sub-pattern. Also, this approach

ultimately condenses character-based pattern matching into position-based bit-vector

matching, a very efficient process. Applying simple AND-SHIFT operations on these bit

vectors, complete pattern detection is possible without the need for rigid state machines.

1.4 Related Work (Signature Detection)

The terms table and RAM are used interchangeably in this dissertation. The capabilities

of FPGAs have recently improved tremendously [19-21] so they are now frequently used

5

by NM systems. Sidhu et al. [5] proposed a straightforward algorithm to construct non-

deterministic finite automata (NFA) representing given regular expressions. Hutchings et

al. [8] implemented a module to extract patterns from the SNORT rule set [17] and then

generated their regular expressions for NFA realization. Lin et al. applied minimization to

the regular expressions for resource sharing [16]. To reduce data transfer widths, an 8-bit

character decoder provides 256 unique outputs; various designs [6, 7, 8, 9, 10] were

implemented. Since these designs hard-code the patterns into the FPGA fabric, runtime

updates are forbidden without complete FPGA reconfiguration. Content-addressable

memories (CAMS) that support updates were proposed by Gokhale et al. [12]. Sourdis et

al. [14] applied pre-decoding with CAM-based pattern matching to reduce the consumed

area. Yu et al. [15] used ternary content-addressable memory (TCAM) for pattern

matching. TCAM is a CAM with three possible states for a stored bit, namely '0', '1' and

`x' (don't care). However, CAM approaches require large amounts of on-chip memory

and have high power consumption since multiple comparators are activated in parallel;

they represent unfavorable choices for large rule sets.

The lookup mechanism in Dharmapurikar et al. [1] employs a hash table and

several Bloom filters for a set of fixed-length strings to be searched in parallel by

hardware. It may produce false positives and also accesses a slow off-chip memory after

a Bloom filter match. The CRC functions in Pnevmatikatos et al. [3, 22] reduce the

number of logic cells and the memory space. Patterns are first decomposed into varying-

length fragments (for a maximum of 17 characters). They use a wide input, hashing a

fixed number of characters from the 17-character input stream separately for different

length fragments and then look up for the fragments in separate RAMs. Their approach

6

limits compression opportunities due to actual storage of wide patterns into the memory

for final comparison. Thinh et al. applied the Cuckoo hashing scheme in pattern matching

[25]. Their design uses varying-length sub-patterns and supports runtime updates. It

yields a good compression in terms of stored bits and logic cells per character. However,

if a collision shows up while inserting a pattern, Cuckoo attempts to recalculate the

hashing key. When the number of recalculation iterations is maxed out, signifying that a

key cannot be generated for distinct placement, rehashing is needed for all the keys,

including those for sub-patterns stored previously. This process may then suffer from

unpredictable penalties. In contrast, the designs (both fixed-length and variable length)

implemented in this dissertation have higher flexibility in resolving collisions faster. This

will be explained in the later chapters.

The Cho et al. [2] pattern matching co-processor facilitates updates. Modules that

detect sub-patterns forward the respective sub-pattern indices to state machines

registering state transitions for contained patterns. The designs presented in this thesis

employ a first-stage component similar to that in [2], where the hashing of fixed-length

character streams can identify sub-patterns. However, both the designs utilize fewer logic

resources and have smaller memory consumption per character in the SNORT database

than all of aforementioned designs. Another major advantage in both the designs is that

the pattern matching modules do not normally need to increase in size with an increase in

the number of malicious patterns.

7

1.5 Introduction to Packet Classification

In general, Internet routers support packet forwarding of best-effort services in a first-

come first serve basis, where the same amount of service is provided to any packet.

However, the next-generation routers are required to provide different quality of services

and supporting functions, such as admission control, resource reservation, per-flow

queuing, and fair scheduling for different applications. Additional services also include

Virtual Private Network (VPN) service, distributed firewalls, IP security gateways, traffic

based billing, among others. The following example shows a case for differentiated

services. Consider a small network shown in Figure l.1.

Figure 1.1 Example of a network where ISP (ISP1) is connected to a private
network (N1) and other ISP network (ISP2).

Here ISP1 network is a service provider network with gateway routers I and J. ISP1 and

ISP2 are connected via a network access point (NAP). Consider that ISP1 provides

different services to its customer as shown in Table 1.l. Such enhancements require

packet classification to determine the flow a packet belongs to based on one or more

8

fields in the packet header. A flow usually is characterized by header fields source IP,

destination IP, source port, destination port and protocol field of a packet. A per-flow

service table in routers typically consists of a large number of rules arranged in an order

where the best matching rule is placed first (at the top). A rule is a combination of d

header fields (in most cases d equals five header fields) and an action associated to the

combination. The action could be to drop the packet or to provide certain services, as an

example.

Table 1.1 Sample packet forwarding services

Service Example

Packet Filtering Deny all traffic on interface
Accounting and billing Treat al1 video traffic from network NI on interface J

as highest priority and perform accounting for the
traffic

Policy routing Send al1 voice-over-IP traffic arriving from NI via
interface L

In packet classification, three types of matching can be performed with these

fields: 1) Exact matching: the fields in the header of the packet should match exactly the

respective fields in the rule. 2) Prefix matching: a prefix and a prefix mask are provided

by the rule for the longest match with fields in the packet. 3) Range matching: A range is

provided by the rule and a match is found if the header information in the packet falls

within this range. Due to the rapid growth in the size of rule sets for packet classification

and increases in the link rate, multi-field based packet classification has become a

fundamental challenge for high-speed designs. Of course, a software-oriented solution

cannot satisfy the required processing speeds. Hence, efficient hardware implementations

using ASIC devices or FPGAs have recently received substantial attention [31-34]. Some

9

of the best packet classification algorithms targeting at the matching of d fields, where

d>3, have O(log n) time complexity at the cost of O(n d) space, or 0((logn) d-1) search time

at the cost of O(n) space, where n is the number of stored rules [46].

Researchers usually apply either an algorithmic or an architectural solution

towards high performance in packet classification. However, sometimes hybrid

approaches are pursued that involve a combination of these solutions. Such solutions are

typically classified as decomposition based or decision-tree based. The former solutions

search multiple fields in parallel and then combine the results, thus they are good

candidates for hardware implementation. Decision-tree based solutions, like Hi-cuts [30],

take a geometric view of the packet classification problem. The search space is reduced at

each node of the decision tree based on information from one or more fields in the rule. A

decision tree is built by choosing a dimension (i.e., a field) and also the number of cuts to

make in the chosen dimension by using local optimization decisions. At every node a cut

involves only one field. The cutting process is performed at each level and recursively on

the children at the next level until the number of rules associated with each node at a

level falls below a threshold.

FPGAs are bound by their limited number of resources, a disadvantage which is

exacerbated further by continuous increases in rule-set sizes that beg for scalable

hardware solutions. This implies the need for high on-chip rule-set compression that

could ideally eliminate all off-chip memory accesses. Although packet classification has

been recently researched by various groups, the ultimate goal of this dissertation is to

achieve a comprehensive on-chip FPGA-based solution that does not require external

10

memory accesses, while also being able to efficiently support more than 10,000 rules

with a currently available FPGA device.

A novel approach where the rule-set is broken up at static time into combinations

of smaller patterns involving two fields is proposed and implemented in this dissertation.

The run-time system attempts to match pairs of fields at a time and these matching results

are then combined to produce an address in an on-chip memory where a complete match,

if present, can be verified. The rules are initially separated at static time into groups based

on the presence of valid fields. A field is considered valid if its value is not "don't care."

Using position-based vectors and partial matches, the groups are searched in parallel for

the incoming packet headers and a running sum is generated that depends on the position

vectors. This sum generates a unique address in the memory that verifies a match if this

sum matches a pre-stored value. A final decision also involves rule priority. Compared to

existing hardware-oriented solutions, this solution reduces drastically the on-chip

memory consumption while also being able to match network speeds. It is also scalable,

allowing the incorporation of many fields in the packet classification process.

1.6 Related Work (Packet Classification)

Lakshman and Stiliadis [43] proposed a scheme in which each rule is searched in parallel

in every individual field using a prefix trie, and the result of the search is a bit vector

(BV) where each bit represents a rule. A bit is set if the corresponding rule is matched in

this field; it is reset otherwise. The intersection of all BVs via their bit-wise AND

operation indicates the rule that matches the incoming packet. Although the scheme

provides high throughput, the memory efficiency is very low, which makes it

11

cumbersome for large rule sets. Baboescu et al. [42] employed the BV scheme assuming

that for large rule-sets a packet can match not more than a few rules; a new aggregated bit

vector scheme was devised using recursive aggregation of bit maps, and rule

rearrangements for less memory space and higher speed. Ternary content addressable

memories (TCAMs) [44, 45] also have been used in classification. Nevertheless, TCAMs

are not scalable in terms of clock rate, power consumption or circuit area. Most of the

TCAM-based solutions also have difficulty in converting ranges into prefixes. By

combining TCAMs and the BV algorithm, Song et al. [40] presented the BV-TCAM

architecture for packet classification. A TCAM is used for prefix or exact matches,

whereas a multi-bit trie implemented as a Tree Bitmap [41] is used for source or

destination port lookup. Their analysis involved 222 SNORT header rules.

Bloom filters [34, 37, 38] are popular due to their constant time requirements and

low memory consumption. However, false positives are possible that require a secondary

off-chip memory to check the authenticity of potential matches at a much slower rate.

Trie-based schemes, like hierarchical tries, set-pruning tries [49] and grid-of-tries [50]

work well for two-dimensional classifiers; however, as the number of dimensions

increases their complexity increases too. Gupta and McKeown [47] and Taylor [48] have

surveyed a large number of classification techniques. They concluded that very rarely

will a packet match multiple rules. Using heuristics with real databases, Gupta and

McKeown [47] developed the Recursive Flow Classification (RFC) algorithm that splits

the packet header into many chunks of contiguous bits and then represents each one of

them with a reduced number of action bits. A recursive process of action combining at

run time yields the final action to be performed on the packet. The amount of storage for

12

RFC increases rapidly as the classifier size increases; it uses about 4 Mbytes to store

15,000 rules. Also, the heuristics-based HiCuts [30] approach has low memory

requirements, consuming around 1 Mbyte for 1700 rules.

Taylor et al. [35] introduced Distributed Crossproducting of Field Labels (DCFL),

a decomposition-based algorithm that employs independent search engines for different

fields. They perform a distributed set membership query using a network of aggregation

nodes; each query performs an intersection on the set of possible field combinations

matched by the packet and the set of field combinations specified by filters in the filter

set. Their design makes use of Bloom filters, thus it suffers from false positives.

Papaefstathiou et al. [43] proposed a memory-efficient decomposition-based packet

classification algorithm that employs multi-level Bloom filters to combine the search

results from all the fields. Their FPGA implementation, called 2sBFCE [34], can support

4K rules with 178 Kbytes of memory consumption. However, the design takes 26 clock

cycles on the average to classify a packet, resulting in a low throughput of 1.875 Gbps.

Hypercuts [36] is another heuristics-based approach similar to Hi-cuts except that

it allows cuttings on multiple fields per step, thus resulting in a fatter and shorter decision

tree. Jiang and Prasanna [31] modified the hypercuts algorithm to build a pipelined

design in the form of a balanced tree. They reduce rule duplications in hypercuts by using

an internal node to store the rules which are present in all of its children nodes and by

also cutting precisely the range of to-be-matched fields. The design involves a tree

pipeline that forms a decision tree and a rule pipeline that contains the rule lists for a

node. Their implementation of 10K rules consists of 11 tree pipeline stages, 8 rule

pipeline stages and a total of 12 rule pipelines. The memory consumption of their design

13

is quite substantial, using around 407 Xilinx Virtex-5 Block RAM (BRAM) memories

(36Kbits per BRAM) out of which 612 Kbytes are taken by the rule lists and the

pipelined tree configuration.

The rest of the dissertation is organized as follows. Chapter 2 covers the

discussion of the fixed-length sub-pattern method. Chapter 3 presents the variable-length

sub-pattern method. Chapter 4 introduces the packet classification process. Concluding

remarks along with a discussion on future work are finally presented in Chapter 5.

CHAPTER 2

SIGNATURE DETECTION USING FIXED-LENGTH SUB-PATTERNS

2.1 Fixed-length Method

A database of known malicious patterns is assumed and the objective is to design an

FPGA-based pattern matching engine that can facilitate runtime updates without the need

for hardware reconfiguration. This reliable engine should not produce false positives.

Without loss of generality, the implementation is tested with the complete set of

signatures in the SNORT database [17]. In summary, statically each pattern is broken up

into fixed-length sub-patterns and then the position of each sub-pattern in all of the

encompassing patterns is encoded into a common bit vector. '1' in this vector represents

the presence of the sub-pattern in the respective position of a pattern while '0' denotes

otherwise. For each new sub-pattern match in the input, a '1' bit is stored into a detection

vector. Bit-wise AND -SHIFT operations on this vector move the 1' with every new

sub-pattern match. Another bit vector shows the position of each sub-pattern as a tail in

one or more patterns. If a new sub-pattern match at the respective position can potentially

represent the end of a pattern, then a hardware-based verification process is invoked to

confirm the veracity of a complete pattern match. The entire process is described in the

following sub-sections.

2.1.1 Pre-Processing

The static-time preprocessing divides each pattern into contiguous sequences of N-

character sub-patterns; the only exception may be the sub-pattern in the tail of a pattern

that may instead include from one to N-1 characters (if the number of characters in the

14

15

pattern is not a multiple of N). N is fixed before the separation process. Section 2.3 shows

the analysis for the SNORT database which confirms that the best choice is N=3.

Identifying the position of sub-patterns in patterns is crucial to the algorithm. Once all of

the patterns have been separated into their sub-patterns, all distinct N-character sub-

patterns are stored into a table called GRP(N). Similarly, tables GRP(i), for i = N-1,

are created where GRP(i) stores all of the i-character sub-patterns that appear as tails in

patterns. All of the GRP(i)'s, for i = N, collectively denoted as GRP. Let L be the

maximum sub-pattern offset for a given pattern set. A bit vector (BV) and an end vector

(EV) are then created for every sub-pattern in GRP; each vector is L bits long. BV shows

the position of the sub-pattern in all the patterns, except the tail, that contain it. That is, if

a particular sub-pattern appears only in the sub-pattern positions 2 and 4 of the same or

two different patterns, then its BV will contain "010100....0". The EVs store information

about pattern tails. If a sub-pattern forms the tail of a pattern, then it will contain '1' in

the respective position of its EV vector. Members of GRP(i), for i= 1,..., N-1, appear

only as tails and hence require only an EV without the need for a BV. Every record is

assigned a unique m-tuple of weights represented by vector W = {weight 1, weight2,...,

weightm}; let bw be the bits per weight. A set of six patterns is assumed and their sub-

pattern separation for N=3 is shown in Fig. 2.1.

Figure 2.1 A set of six patterns separated into sub-patterns for N = 3.

16

Fig. 2.2 shows the GRP tables created for these patterns assuming N=3, L=6, m=3 and

bw=8. It can be inferred from Fig. 2.1 that L=6.

Figure 2.2 GRP tables for the patterns in Fig. 2, assuming N=3, L=3,
m=3 and bw = 8.

An m-tuple of weights is then calculated for each stored pattern by summing up

weight-wise the m-tuples of its contained sub-patterns. The result is stored in a pattern

table at the address denoted by the pattern address. These summation m-tuples of sub-

patterns and patterns will eventually help the sub-pattern and pattern detection processes.

The baseaddress field of a sub-pattern in GRP contains valid information only if it

appears as a tail. Its value is added to the sub-pattern offset to generate a pattern address

pointing to a location in the pattern table that contains weight summation m-tuples. Fig.

2.3 shows the summation m-tuples (i.e., triplets since m=3) for the patterns in Fig. 2.1;

their components are represented by Sum], Sum2 and Sum3. It also shows the address of

the pattern summation tuples in the pattern RAM. Sub-pattern "ng" appears at offset 4 in

the tail of pattern 5. Address 4 in the pattern table is already occupied by pattern 3 and

17

the next available location has address 7. Hence, the baseaddress of "ng" is set to 3 (since

3+4=7).

Figure 2.3 The pattern table for the patterns in Fig. 2.1.

If two or more patterns have different tails at the same offset, then the baseaddress

and offset fields of their tail sub-patterns receive such values that their summation points

to distinct/available locations in the pattern table. To minimize the size of this table, a

modulo Z operation is used when adding fields, where Z is the size of the pattern table

(Z=16 in this example). However, if two or more patterns have the same tail sub-pattern

at the same offset, then a collision will result. To remove collisions, a smaller collision

RAM is used in addition to the pattern RAM. Patterns 4 and 6 have a common tail "rds"

at the same offset, thus the collision RAM is used to place pattern 6 as shown in Fig. 2.3.

The hash field in the GRP table is used to separate the placement of pattern summations.

The collision RAM is addressed by hashing the summation tuples and hash field is used

to select the appropriate summation tuples as inputs to the hashing function. Since no two

patterns generate identical summation m-tuples, this clause is used to select the

18

appropriate order of tuples as inputs to the hashing function. In the worst case, pattern

splitting method to resolve collisions (explained later) can be used.

2.1.2 Runtime Detection of Malicious Patterns

A malicious pattern could start at any character offset in the input stream. Up to N

characters at a time are investigated for known sub-patterns stored in the GRPs. A shift

register (window) of N characters interfaces the input stream. Each cycle samples 1 to n

consecutive characters in this window, where n is the total number of available characters

(n=N for a full window); sub-pattern matches are attempted against the N GRP tables. On

a sub-pattern match, the respective sub-pattern record is forwarded from the GRP table to

a detection unit; otherwise, zero is transmitted. N detection units can deal with the N

possible character strings in this window. A sub-pattern record is made up of BV, EV, m-

tuple Weights, baseaddress and the hash field.

Figure 2.4 Processing a P-character input with an N-character
shifting window.

Let C1 , C

2

,..., Cp be an input stream of P characters, as in Fig. 2.4. The characters

enter the window from the left. The window is divided each time into N sub-windows

containing from 1 to N characters; they are denoted by T n , where n=1, ..., N. For

example, if a full window contains characters CN-1 to C 2N-2, then sub-window TN will

contain characters CN-1 to C 2N-2, sub-window T 2N-2 will contain characters C N to C 2N-2, and

19

so on. Every sub-window's content is then looked up in the GRP tables for a match. If a

sub-pattern match is found, then its GRP record is read out and forwarded to the

appropriate detection unit; otherwise, zero is forwarded. Thus, in every cycle each

detection unit receives either a GRP record or zero.

The N sub-pattern detection units are denoted by dk, for k =1, ...,N. Every

detection unit contains a detection vector DV, an end detection vector EDV and an m-

tuple ACC of accumulated weights. The L-bit DV vector keeps track of individual sub-

pattern matches; its MSB is originally set to '1' whereas the remaining bits are initialized

to '0'. The offsetd field shows the position of the only `1' in DV. The L-bit EDV vector is

initialized to zero and detects a tail match. ACC is initially set to all zeroes. Pattern

detection involves simple SHIFT, AND, COMPARE and ACCUMULATE operations on

the binary vectors and weight m-tuples arriving from GRP. Consider any detection unit d

(d=d1, d2, ...,dN). Let EVGRP, BVGRP, WGRP and baseaddressGRP represent arriving sub-

pattern values from GRP. The detection unit then performs the following operations ("&"

and ">>" denote concatenation and shift, respectively) where n is :

EDVd = DVd AND EVGRP ;

DVd = 1' & (DVd AND BVGRP >> 1) ; if n=N, then the record will have BV

= DVd 	; otherwise

ACCd = ACCd WGRP 	; if (DVd AND BVGRP) neq 0 and n=N

= 0	 ; if (DVd AND BVGRP) eq 0 and n=N

= ACCd 	; if n ≠ N

Tempd = ACCd + WGRP	; if EDVd neq 0

20

pattern address = baseaddress + offsetd +1 ; if EDV d neq 0

If (DVd AND BVGRP) is non-zero, then the m-tuple of the incoming sub-pattern record is

added to the existing ACC m-tuple; otherwise, ACC is reset to zero. Also, the offsetd

field is incremented if (DV d AND BVGRP) is non-zero and the sub-pattern record source

is GRP(N). If EDV d is non-zero, it signifies the presence of a pattern, and hence the

incoming m-tuple is added to ACC and the resulting m-tuple is stored in the Temp d

temporary m-tuple. Tempd must be compared with the pattern summation m-tuple in the

pattern table for a match. The baseaddress of the tail sub-pattern that produced a non-zero

EDV is then added to offsetd ('1' is also added to take care of the tail sub-pattern match

offset), an address is generated and the summation m-tuples stored in that location are

then compared against the values in Tempd. A match denotes the presence of a malicious

pattern. Pattern matching takes place in the pattern verification unit that contains the

pattern table. The input source to the overall detection unit varies with the window cycle

e.g., if at one instance the detection unit receives an input from GRP(2), then at the next

cycle it will receive input from GRP(3), and so on, until GRP (N) is reached after which

the input source will be set again to GRP(1). Collision pattern RAM is also searched

simultaneously for the summation tuple match by hashing the summation m-tuples using

the hash field from the record. The hash field is used to select the inputs for hashing.

2.1.3 Appropriate Weight Distribution Prevents False Positives

Assume a tail sub-pattern that appears at the same offset off in a random input pattern and

a GRP-stored malicious pattern. Also, each sub-pattern at offset i in this input, for i=1, 2,

21

..., off, appears at the same offset position in the set of stored patterns. A non-zero EDV

value will be generated for this input. If the Temp result is identical to the malicious

pattern's weight summation m-tuple (sum ' , sum2, ...,summ), then a false positive will be

produced (the final decision is based on a comparison of m-tuples). Hence, it is

imperative to assign unique sub-pattern weights that do not produce a malicious pattern's

summation m-tuple when permuting stored sub-patterns while preserving their offsets in

the respective malicious patterns.

Prevention of false positives was guaranteed by the weight assignment process. It

was found that the majority of SNORT patterns, around 67%, have lengths less than or

equal to fifteen characters; in fact, around 40 % have lengths less than or equal to nine.

Pattern length was used to order them in descending order. The sub-patterns appearing in

patterns longer than fifteen characters were assigned weights on the higher side in order

to produce very high summation m-tuples for these patterns. The sub-patterns appearing

in patterns of up to nine characters were assigned weight values on the lower side in order

to produce low pattern summation weight tuples. The remaining sub-patterns were

assigned weight values in the mid range. There are many common sub-patterns in these

three pattern groups. If a sub-pattern appeared in a longer pattern as well as short

patterns, then it was given a larger weight. Sufficient bit widths for sub-pattern and

summation tuples were chosen to reduce the complexity.

Consider the example with tail "rds" from patterns 4 and 6 in Fig. 2.1 to illustrate

how "fictitious" patterns are created and how summation m-tuples for these patterns are

generated. All "fictitious" patterns for this tail are shown in Fig. 2.5, along with the

produced summation m-tuples (i.e., triplets since m=3). The summation triplets stored in

22

the pattern table for patterns 4 and 6 differ from these triplets (see Fig. 2.3), thus false

positives cannot be generated by this tail. Such a calculation of summation tuples is

carried out for every tail in the database to check out if a false positive is possible. If so

then, either the pattern splitting method(explained in the next section) or the weight tuple

values of a sub-pattern are changed to avoid such a scenario.

2.1.4 Pattern Splitting

Consider an extremely rare case where a single pattern's all sub-patterns show up in the

input at the wrong offsets while its tail is still present at the correct tail offset. Also, these

sub-patterns appear in identical-with-this-input offsets in other patterns. The static-time

process then deals with this case as shown in the following small example with three

patterns:

(1) "abc def 123"; (2) "ssh abc 465"; (3) "def tra 678".

If the incoming flow contains "def abc 123", a false positive will be triggered for a

pattern 1 match. Such a possibility is eliminated by splitting pattern 1 into two smaller

patterns "abc d" and "ef1 23". Appropriate weights are then assigned to the modified set:

23

(1) "abc	 d";	 (2) "ssh	 abc	 465";	 (3) "def	 tra	 678";	 (4) "ef1 	 23".

The final decision for detecting the original pattern 1, which is now a combination of the

new patterns 1 and 4, is moved to higher layers i.e. in software on the host. SNORT does

not contain such patterns. This method could also be applied while placing summation

tuples in the pattern and collision RAMs for patterns that cannot be placed successfully

using hashing.

2.2 Hardware Implementation

N=3 (i.e., a window with up to three bytes or 24 bits) is assumed. The block diagram of

the implementation is shown in Fig. 2.6.

Figure 2.6 Hardware Architecture for N=3.

Hashing: Analysis of the current SNORT pattern set was performed and it was found

that GRP(N) records are predominant and require a bigger RAM compared to the other

GRP(i), for i=1, 2,..., N-1. Separate hash functions and RAMs are used for different GRP

24

tables. There is no real need for hashing with GRP(1) due to the uniqueness of C3 that

requires 2 8 (i.e., 256) distinct locations. The hash functions apply simple XOR-ADD

operations to the input to generate an address; they do not need separate key inputs. Three

RAMs per GRP table are used which are addressed in parallel using different functions

which are a mix of one level and two level hashing. The details of hashing are out of

scope here. If a pattern contains a sub-pattern which cannot be placed in any non-vacant

position of the RAM, then pattern splitting method as explained above is used.

Detection Unit: Detection is carried out using simple bitwise AND, SHIFT and ADD

operations (i.e., accumulation operations) on bit vectors (DV, EDV) and weights (W).

The design reduces the problem complexity by applying compression to the data as it

converts N consecutive characters (i.e., 8N bits) of a sub-pattern into a single bit in a

vector representing a long pattern. In the implementation, SNORT patterns are

represented with a 41-bit vector (the longest pattern in the current SNORT contains 122

characters whereas 3x41=123). The design uses a simple pipelined structure where on

every clock cycle bit vectors are used to potentially produce existing sub-pattern

addresses and accumulated sums of weights. The bit vector of a sub-pattern coming from

the sub-window switch block is bitwise ANDed with DV and then right shifted by one bit

with a '1' entering from the left-hand side. DV is also ANDed with the incoming EV of

the sub-pattern record and is stored in the 41-bit end detection vector (EDV). If the result

of the AND operation between DV and BV is non-zero, then the weights associated with

this record are accumulated into ACC. Otherwise, the accumulation registers are reset to

zero. If EDV is non-zero, then the accumulated weights along with the pattern address are

25

forwarded to the controller block (discussed below) to confirm the validity of a match.

There are also four sets of offsetd counters, ACC m-tuples and Temp m-tuples in the

offset count block to keep track of the position of up to four '1"s in DV. One offsetd

counter is initially enabled after being reset to the default '1'. If the result of a (DV AND

BV) operation is non-zero, the '1' in the MSB position of the result is shifted to the right

and another `1' enters into the MSB from the left. This results in the first offsetd being

incremented to '2' and the next offsetd being enabled after being reset to its default value

of '1'. Thus, the first offsetd counter keeps track of the '1' which is now in position two

while the second offsetd counter keeps track of the '1' currently in MSB. These counters

are used to subvert special case attacks. Consider the four patterns:

(1) "abc 123 xyz klm 8"; (2) "123 xyz klm 65";(3) "xyz klm ppp"; (4) "klm trs

788 23";

It can be seen that pattern 1 has commonalities with patterns 2, 3 and 4. However, they

are not the same. For the input text "abc123xyzklmppp", pattern 3 will be triggered. But

it could also be induced that at an instant there will be four '1' bits in DV at positions 1,

2, 3 and 4. These counters take care of such a scenario and the respective ACC and Temp

m-tuples work correspondingly. It is highly unlikely to come across such a combination

of patterns. A script on SNORT pattern was ran and it was inferred that there could be at

most two 1's in DV in a clock cycle. Thus, only two offsetd counters are needed to

subvert such attacks. However, four counters were kept for future updates in the SNORT

signatures. Also, since logic in the implementation is drastically reduced, adding more

counters to the logic will not make a big difference to resource usage. In extreme cases

pattern splitting approach can be used. Patterns longer than 123 characters can be broken

26

up into smaller patterns for storage as explained for the case of false positives. For

example, a pattern of 126 characters can be broken up into two patterns of length 123 and

3 characters, respectively, and this pattern can then be detected using the condition that

the first and second patterns should be matched consecutively by the same detection unit

within three window shifts.

Address Generation unit: It employs a hash function and adders to generate the pattern

address for the collision RAM by using the hash field and the summation tuples from the

detection units. It also contains FIFOs to take care of non-zero EDVs from more than one

detection units during the same clock cycle.

Controller: It gets the accumulated weight m-tuples from the sub-pattern detection

blocks. It reads the respective values from the pattern RAM and compares them with the

incoming values. If a match is found, then it informs the next layer.

2.3 Results and Comparison with Earlier Work

2.3.1 Pre-processing and Simulation Results

All the patterns in the available SNORT rule set (version v2.8, March 30 th , 2009) were

chosen for analysis to prove the viability of the proposed fixed-length sub-pattern pattern

matching design. This version of SNORT has 15,445 rules with 6456 distinct patterns;

the longest pattern contains 122 characters and the median length is 12 characters. The

pre-processing job on these patterns was carried out off-line using two C-program scripts.

The first script identifies the unique character sub-patterns, and creates their

27

corresponding sub-pattern records, hash keys, record addresses, and pattern addresses

along with their summation m-tuples. This information is stored into the on-chip RAM.

These records are also kept in an off-line database to facilitate efficiency in future

updates involving new patterns. To add new patterns, the second C-program script is run

that differs from the first script only in that the available database information is

compared with the sub-patterns extracted from the new patterns. For each newly

extracted sub-pattern that already exists in the database, its newly generated bit vectors

are bitwise ORed with those of its identical sub-pattern in the database; the results are

stored in the on-chip RAM as well as modified in the database. If a newly extracted sub-

pattern is not present in the database, then the new sub-pattern along with its bit vectors

and other relevant information are stored in the GRP table and pattern RAM. These

scripts could be run by the system administrator on the console. It is clear that a hardware

implementation requires a fixed N. A trade-off is needed between the hardware

complexity and the desired amount of on-chip data compression since L and the number

of GRP records decrease with increases in N (hence, the memory consumption

decreases). However, as N is increased the logic consumption increases since more

detection units are needed. Also bigger switching fabric is needed to forward the GRP

vectors to the appropriate detection units in a cyclic manner. For a good choice of N,

effects of N on the number of GRP records were studied for SNORT. Since the longest

pattern has 122 characters, L could easily be obtained by dividing 122 by N. The results

are shown in Table 2.1.

28

Table 2.1 GRP table size when varying N for the SNORT database

N L GRP GRP GRP GRP GRP Total
(5) (4) (3) (2) (1) GRP

records
3 41 - - 10135 705 175 11015
4 31 - 11235 821 588 126 12770
5 25 11181 976 717 524 143 13541

The hardware realization uses N=3 since it minimizes the number of GRP records

and requires the least number of detection units. A choice of N <3 will not obviously

have any benefits. The only drawback is the size of the bit vectors which will be 41 bits

for the current set of SNORT rules. But this will be nullified by the width of sub-patterns

to be stored in GRP.

To test the design for future pattern additions, experiments were carried out in two

parts. In Part I, the sub-patterns were generated, their respective weights and the pattern

addresses for 6149 patterns from the SNORT rule set. In Part II, once the former GRP

records were loaded into the on-chip RAMs and the design operated under normal

conditions, a modification of the already loaded set of patterns was enabled by adding the

remaining set of 307 patterns. Information extracted for Parts I and II of the experiments

is shown in Table 2.2.

Table 2.2 Pre-processing results for the SNORT database.

(Number of) Part I Part
II

Total

Patterns 6149 307 6456
Characters 100,800 4086 104,886

GRP(3) records 9842 293 10135
GRP(2) records 693 12 705
GRP(1) records 175 0 175

29

2.3.2 VHDL System Synthesis/Implementation

The synthesis and simulation of the design worked flawlessly for both parts of testing.

For the bit vectors, L was set to 41 bits. Also, the off-line experiments for weight

assignments to m-tuples revealed that unique summation tuples could be carried out with

m=3 and bw = 6 bits. Thus, the largest possible summation weight requires 12 bits (since

26 x 41 < 2 12). For the 10,135 GRP(3) records, it was deduced that there were only 971

distinct BVs. Hence, the BVs were moved into a separate smaller RAM with 1024

locations. Thus, instead of storing a 41-bit BV for every record, only a 10-bit pointer per

record was stored, which resulted in considerable memory savings. The same was done

for EVs corresponding to only 137 distinct vectors, requiring an 8-bit pointer to a

separate RAM. For GRP(2) records the total number of distinct EVs obtained was 142

which can be stored in a RAM of 256 locations. VHDL was used to program the

architecture. BRAMs were used to store the GRP records and the summation triplets of

the patterns. The hardware synthesis was done using Synplify Pro 9.1 as well as Xilinx

ISE. The implementation applies pipelining with a maximum delay of 31 clock cycles.

The input arrives at the rate of one character per cycle. The input buffer can hold three

bytes that are hashed to access the GRP RAMs. The design was implemented on a Virtex

II Pro (XC2VP70) FPGA. For bw=10, it employs 114 18-Kbit BRAMs (Block RAMs),

7538 Flip Flops and 6133 LUTs, and operates at 300.1 MHz. These numbers for bw=6

(the suggested implementation based on the results in Table III), are 100 BRAMs, 6409

Flip Flops, 5321 LUTs and 300.3 MHz. A random pattern generator also interleaves

patterns from the SNORT database. The design was tested in three phases. The first phase

involved simulation of the VHDL code. The second phase focused on the post-synthesis

30

output of the Xilinx synthesis and Synplify Pro tools. The third phase involved the post-

place and route output generated by the Xilinx Place and Route tools. Due to the dual-

ported BRAMs in the design, and the fact that reading and writing are independent of

each other, BRAM updates can proceed while packets are being processed. New patterns

will not be available in matching until the pattern RAM is updated.

2.3.3 Comparison with Earlier Approaches

Table 2.3 shows a comparison with the most prominent efforts in the area of pattern

matching with FPGAs or ASICs. The first three designs force complete reprogramming

of the FPGA to load new patterns and hence do not employ BRAM. The results assume

an input channel of eight bits, thus providing a common platform for comparison. The

fixed-length sub-pattern design employs freely available SNORT database (of March

30th, 2009). The approach in [1] uses on-chip memory only for Bloom filter table

realization. It stores all the patterns in slow off-chip RAM of several Megabytes capacity.

It can be concluded that the fixed-length sub-pattern design provides very substantial

memory compression (i.e., in terms of stored bits per input character) compared to other

methods that also facilitate runtime updates. It also operates at a high frequency and

requires the least logic cell usage per character, while also yielding very high throughput.

Table 2.3 Comparison with other designs (N/A: not available or not applicable).

Design,
Year

FPGA
Device Patterns Chara-

cters MHz
Through-

put
(Gbps)

BRAM
Mem

(Kbits)

Logic cells/
character

BRAM
bits/

character
Baker [7], 2004 V2 Pro 100 361 8263 250 l.790 0 0.35 0

Sourdis [14],
2004 V2 3000 1466 18,031 335 2.680 0 0.97 0

Clark [10],
2004 Virtex 8000 1512 17,537 253 2.024 0 1.7 0

Gokhale [12],
2002

Virtex E
1000 N/A 640 N/A 2.180 24 15.19 37.5

Cho [2], 2005 ASIC 2107 22,340 893 7.144 864 0.5 38.6
Lockwood [1],

2006 Virtex-4 2259 N/A 250 1.96 94 N/A N/A

Pnevmatikatos
[3], 2006

V2 Pro
XC2VP30 2187 33,613 306 2.448 702 0.06 21.4

Fixed-length
sub-pattern

method,
2009 (bw=6)

V2 Pro
XC2VP70 6456 104,886 300.3 2.402 1818 0.050 17.74

32

CHAPTER 3

SIGNATURE DETECTION USING VARIABLE-LENGTH SUB-PATTERNS

3.1 Variable-Length Method

The sub-pattern extraction method proposed here represents a major improvement over

earlier fixed-length method. The latter method assumed a fixed length for sub-patterns

whereas this new method deals with variable-length sub-patterns. Also, the fixed-length

method involved a slow offline process to guarantee avoidance of false positives in the

decision process; the process creates all possible fictitious patterns that contain all

possible combinations of known sub-patterns and tails, so its complexity grows

exponentially with the population of the latter. In contrast, this variable-length method

reduces drastically this offline processing time as it does not generate all possible

combinations (more details follow in Section 3.2).

3.1.1 Pre-Processing

Initially, patterns of length greater than a preset Max Fragment Length number of

characters are split into fragments (i.e., sequences of at most Max_Fragment_Length

characters). Although the longest pattern in SNORT contains 213 characters (this is the

newer SNORT version used for this method), 80% of them contain less than or equal to

24 characters. This fragmentation creates fragments of length less than or equal to this

value. It is shown later in this chapter that this fragmentation reduces the size of the

hardware design considerably. From now on, the term "original pattern" or "O Pattern"

will denote a pattern in pattern set before fragmentation. The term "pattern" and

"fragment" will denote patterns from the new pattern set obtained after fragmentation of

33

O_Pattern. For the example in this chapter, it is assumed that Max Fragment_Length is

16. Fig. 3.1 shows sample original pattern set with patterns denoted by 0 Pattern 1 to

O_Pattern 6. O_Pattern 1, which contains 18 characters, is fragmented into two patterns

(patterns 1 and 7) having 9 characters each. Normally, end of a O_Pattern is fragmented

into two equal halves. If O_Pattern is more than twice the Max Fragment_ Length, then

the pattern is split in such a way that fragments of lengths Max_Fragment_Length

characters each are produced (except for the last two tail fragments which will have

almost identical lengths in terms of number of characters). For example, if a pattern

contains 33 characters then its three produced fragments will normally have lengths of

16, 9 and 8 characters, respectively. This approach targets adequate processing time for

the detection of the last two tail fragments. However, in some special cases this

fragmentation rule is not followed; these cases are presented in Section 3.2.

Figure 3.1 Pattern sets before and after fragmentation.

After fragmentation, next stage of pre-processing is carried out. This stage involves two

steps. The first step assigns distinct weights to all the ASCII characters. The second step

generates two distinct bit vector sets for the known set of malicious patterns.

STEP 1 (WEIGHT ASSIGNMENT): The i th ASCII character, for 0 ≤ i ≤ 255, is

assigned a unique m-tuple of weights represented by vector W = {weight 1, weight2,

weightm}; let bw be the number of bits in a weight element. These weight m-tuples are

34

placed in a character table addressed to by the ASCII code of the character (an example

is shown in Fig. 3.2).

Using these weight tuples, a summation m-tuple for each pattern is calculated in the new

pattern set after fragmentation of the original set. Consider pattern "Badcommand"

(pattern 3 in Fig. 3.1). The summation tuple for this pattern is calculated at static time in

the following steps:

1) Split this new pattern into groups of three contiguous characters, except for the last

tail group that is left with one character (three looks like an arbitrary number in this

example; the choice of this number is discussed in another section):

"Bad" "com" "man" "d"

2) To derive the summation m-tuples for each of these character groups, apply the

following position-weighted, element-wise summations involving the respective weight-

tuples of constituent characters:

SUM("Bad") = W("B") + 2 * W("a") + 4 * W("d");

SUM("com") = W("c") + 2 * W("o") + 4 * W("m");

SUM("man") = W("m") + 2 * W("a") + 4 * W(«n");

SUM("d") = W("d").

3) To derive the summation tuples for pattern 3 in Fig. 3.1, apply the following element-

wise summations involving the respective elements of weight tuples for the encompassed

groups:

SUM("Badcommand") = SUM("Bad") + SUM("com") + SUM("man") + SUM("d").

35

Figure 3.2 Character table for m=3 and bw=3.

This summation method is carried out on all the patterns. Fig. 3.3 shows the tuples for a

chosen character table. The position of individual characters in the group of three is taken

into account to create different sums (i.e., weight tuples) for patterns like "Badcommand"

and "daBcommand" that contain identical, but permuted characters. However, sometimes

there may be patterns with identical, but permuted groups of characters, like "Bad123"

and "123Bad", which will result in identical sums since the position of groups is not

accounted for in the final summation. This case is identified in the pre-processing stage

and is dealt with by appropriately fragmenting one of them; e.g. "123Bad" could be

broken into "123B" and "ad". There is no need for position-based summation for groups

when producing the m-tuples of patterns since there is substantial flexibility in the

selection of encompassed groups during pre-processing (as discussed in detail later in this

chapter).

36

Figure 3.3 Summation tuples for the pattern set in Fig. 3.1;
SUM= (Sum1, Sum2 , Sum3).

Once the summation m-tuple of a pattern are pre-calculated, the m-tuple are

stored in a table at a location which is produced by a hash function on this summation m-

tuple. For the example, 16 distinct tables are created to deal with 16 types of patterns

containing one to 16 characters, respectively. However, since some patterns of certain

lengths are lesser in population than others, their summation m-tuples are stored into one

table instead of having separate tables for each of these lengths. In the example of Fig.

3.1, the summation m-tuples of 9-character patterns are placed into TBRAMO and the rest

of the patterns containing 10, 11 and 15 characters into the common table TBRAM1. The

weights of characters are chosen in a way that ensures unique summation m-tuples for the

patterns in a common TBRAM. In addition to the summation m-tuples, two bit values are

stored, start_fragbit and no_jragbit , and acollision_TBRAM_pointeras shown in Fig.

3.4. If the start_fragbit is '1' and no_fragbit is '0' then this is the first fragment of a

longer O_Pattern. If the start_fragbit is '0' and no_fragbit is '1' then the pattern is a

complete O_Pattern with no fragmentation. Both start fragbit and no fragbit are '0' if

the pattern is a fragment of a longerO_Pattern but is not present at the start. If a pattern

appears as the first fragment in a O_Pattern and as another fragment in another

37

0 Pattern, then the chosen fragmentation is changed during pre-processing in order to

remove this case.

TBRAM Record: (Sum 1 , Sum 2, Sum 3 , start_fragbit, no_fragbit, Collision_TBRAMpointer); Pattern 1 in
Fig. I will have start_fragbit = 'l'; Pattern 7 will have no fragbit='0' and start_fragbit ='0'; Patterns 2 to
6 will have start_fragbit = '0' and no_fragbit='1'; "collision_TBRAM pointer" points to the first record
in a linear list of four other TBRAM records placed sequentially in case of collision.

Figure 3.4 Summation m-tuples placed in TBRAM tables.

There is a separate FRAM memory block in the 0 Pattern match unit which is used to

represent the sequences of fragments (i.e., patterns that constitute long 0 Patterns). This

is explained later in the O_Pattern match unit block section. A small collision_TBRAM

stores the records of patterns that map to the same location in a TBRAM. The

collision TBRAM_pointer points to the first record in the collision list stored in the

collision TBRAM. The maximum number of records per collision stored in

collision_TBRAM varies with the implementation. According to the analysis performed

for this implementation, it suffices to set the maximum number of pattern collisions to

five (one record in TBRAM and a maximum of four records stored sequentially in

collision_TBRAM). If more records are mapped to the same location in a TBRAM, then

patterns are fragmented further to place them in exclusive locations in TBRAM (this

process is explained later in Section 3.2).

3 8

STEP 2 (BIT/END VECTOR GENERATION): The static-time pre-processing divides

each pattern into contiguous sequences of 1- to N-character sub-patterns. Two sets of

sub-patterns are created for the same pattern set using N=3 and N=4. They are denoted as

DSN3 and DSN4, respectively, and are handled exclusively without sharing. A point to

note is that this splitting of patterns into sub-patterns is not connected to the grouping of

three consecutive characters for calculating the summation m-tuples as explained earlier.

Fig 3.5.a and Fig. 3.5.b show the breaking of patterns into sub-patterns for N=3 and

N=4, respectively. Identifying the position of sub-patterns in patterns is crucial to the

algorithm. Once all of the patterns have been separated into their sub-patterns, all distinct

N-character sub-patterns are stored into a table called GRP(N). If a sub-pattern appears

multiple times, then only one position is reserved for this sub-pattern in GRP(N).

Similarly, tables GRP(i), for i = 1, ..., N-1, are created where GRP(i) stores all of the i-

character sub-patterns that appear in the patterns. All of the GRP(i)'s, for i = 1, N, are

collectively denoted as GRP. A table may be empty if there is no sub-pattern of the

corresponding length. Patterns could be divided into sub-patterns of any number of

characters from 1 to N, however they are broken in such a way that the number of sub-

patterns per pattern are minimized. This is not a rigid rule as there are exceptions when

dealing with collisions. Such exceptions are discussed in Section 3.2.

39

Figure 3.5 (a) DSN3: The set of seven patterns from Fig. 1 separated
into sub-patterns for N = 3; (b) DSN4: The set of seven patterns
separated into sub-patterns for N = 4.

A bit vector (BV) and an end vector (EV) is created for every sub-pattern in GRP. BV

shows the position of the sub-pattern in all the patterns that contain it, excluding their tail.

That is, if a particular sub-pattern appears only in the sub-pattern positions 2 and 4 of the

same or two different patterns, then its BV will contain "010100....0". Multiple

appearances of a sub-pattern in the same position of multiple patterns are registered only

once in its BV. The EV vectors store information about the tails of patterns. If a sub-

pattern forms the tail of a pattern, then it will contain '1' in the respective position of its

EV vector.

For example, if two patterns exclusively end with a common sub-pattern in sub-pattern

positions 2 and 3, respectively, then the EV vector of this sub-pattern will be

"01100....0". BV is L bits long and EV is L+1 bits long, where L+1 is the maximum

number of sub-patterns in a pattern. This is because EV will always store "1" for the tail.

As seen later, using the two sub-pattern sets DSN3 and DSN4 to derive their BV and EV

40

vectors, the possible presence of a pattern match can be detected. This along with a

pattern summation tuple match is then used to confirm a pattern match. Although only

three bits for BV and four bits for EV are needed in the case of DSN4, L=4 has been used

for both DSN3 and DSN4 for flexibility in breaking a pattern into non-tail sub-patterns of

less than N characters (sub-patterns at offsets 2 and 3 in pattern 7 of Fig. 3.5.a). This

approach helps in placing sub-pattern records in exclusive memory locations as discussed

later in Section 4.2 for the purpose of eliminating sub-pattern collisions. The BV's and

EV's for the sub-patterns in DSN3 and DSN4 are shown in Fig. 3.6.a and Fig. 3.6.b.,

respectively.

Figure 3.6 GRP tables for the patterns in Fig. 1, assuming (a)
N=3 and L=4; (b) N=4 and L=4.

41

3.1.2 Run-time Pattern Detection

The summation m-tuples in the TBRAMs are stored as explained above. The BV's and

EV's are generated and the weight m-tuples for every character are stored in the character

tables. Pattern detection unit is now explained in the following paragraphs.

The detection unit is made up of the Summation Block, Bit Detection Units, Pattern

Match Unit and 0 Pattern Match Unit.

a) Summation Block: There are Max Fragment_ Length individual accumulation units,

the same as the maximum length in characters of a pattern (i.e., fragment of an

O_ Pattern). For the example with Max Fragment_Length =16 there are sixteen

accumulation units, ACC1 to ACC16, as shown in Fig. 3.7, which receive the weight m-

tuple as input from the character table for each arriving character and generate the

summation m-tuples for the 16 possible patterns corresponding to the most recent

character arrivals. ACC 1 always creates the summation m-tuple for one character while

ACC2 creates the summation m-tuple for two characters, and so on. These sixteen

accumulated values are then forwarded to the pattern match unit in parallel for every

character input.

Figure 3.7 Summation Block.

42

For an arbitrary complete stream "abcdefghij" at a cycle t, of ten consecutively arriving

characters, where "a" is the first character, the accumulation units generate summation m-

tuples in the following manner:

ACC 1 t= W("j");

ACC2t = W("i") + 2*W("j") = ACC1t-1 +2* W("j");

ACC3t =W("h") + 2*W("i") + 4*W("j") =ACC2 t-1+ 4*W("j");

ACC4t = ACC3 t-1 + W("j");

ACC5t = ACC4 t-1 + 2*W("j");

ACC10 t = ACC9 t-1 +W("j");

ACC1 1 t, ACC12

t

,..., ACC16t =0;

In the next clock cycle suppose a character "x" is inputted then the accumulations will

now have the following result

ACC1 1+1 = W("x") ;

ACC2t+1 = ACC 1 t +2* W("x") ;

ACC10t+t = ACC9 t +W("x")

ACC11 t+1 = ACC10 t + 2*W("x")

ACC12

t+1

,..., ACC16t =0;

b) Bit Detection Units: The input stream of characters arrive at the bit detection units

one at a time in parallel. There are two bit detection units for the DSN3 and DSN4

43

generated vectors and are denoted as BDN3 and BDN4, respectively. BDN3 has the

GRP(1), GRP(2) and GRP(3) tables generated using N=3 (Fig. 3.6.a) whereas BDN4 has

GRP(1), GRP(2), GRP(3) and GRP(4) tables generated using N=4 (Fig 3.6.b.). Every

record in a GRP table contains the sub-pattern itself and the corresponding BV and EV

vectors. Every bit detection unit has a shift register (window) of N characters that

interfaces the input stream. Each cycle samples 1 to i consecutive characters in this

window, where i is the total number of available characters (i=N for a full window); all

possible sub-pattern matches are attempted against the N GRP tables. The input is hashed

to generate addresses in the GRP tables, except for the GRP(1) table which can be

addressed directly using the ASCII character. Thus, there are N-1 hashing blocks HB(i),

for i = 2 to N, in both of the bit detection units, as shown in Fig. 3.8. The hashing

implementation is simple and made up of XOR and ADD operations on the incoming

input. The method used to eliminate sub-patter collisions in hashing is explained in

Section 3.2. On a sub-pattern match, the respective BV and EV are forwarded from the

GRP table to the AND-SHIFT-OR unit; otherwise a zero-vector ("000...0") is forwarded.

The AND-SHIFT-OR unit has its own bit vectors, namely, detection vector DV and end

detection vector EDV. The (L+1)-bit DV vector keeps track of individual sub-pattern

matches. The (L+1)-bit EDV vector detects pattern tails. The MSB of DV is originally set

to '1' (in fact it is always '1') whereas the remaining bits are initialized to '0'. There are

N different DV and EDV vectors which take care of a pattern starting at any of the N

different offsets in the input stream of characters. These N vectors represent N different

phases that repeat in a cyclic manner for every character input.

44

Pattern detection involves simple SHIFT, AND, OR and COMPARE operations on these

binary vectors. The SHIFT operation is where the DV bit vector is right shifted

(represented by >>) by one with a '1' entering into the MSB (equivalent to ORing of

"1000...0"). In addition to DV and EDV, there is one position bit vector PV per DV that

keeps track of the character offset in a partial pattern match. The bit detection units,

BDN3 and BDN4, output two more position bit vectors PVN3 and PVN4, respectively

that keep track of a complete pattern match. PVs indicate the character offsets of patterns

corresponding to a '1' in DV while PVN4 and PVN3 indicate the character offset of the

pattern corresponding to a '1' in EDV. PV contains Max Fragment_ Length bits. The

position of a `l' in PVN3 or PVN4 indicates the length of the pattern matched by the

BDN3 or BDN4, respectively. Thus, an AND operation on these vectors indicates the

length of the common, final pattern match which still needs to be verified by checking the

accumulated sum in the TBRAMs.

Figure 3.8 Bit Detection Unit for N=4, 3.

Bit Detection Unit for N=4 (BDN4): For detection in BDN4 which has BV and EV

generated using N= 4, there are four PV, DV and EDV vectors. The four DV vectors

45

reflect on partial pattern matches, EDVs reflect on pattern tail matches and PVs reflect on

the length of a pattern match (pseudocode to calculate all these bit vectors is shown in the

Appendix A). The DVs and EDVs are calculated using the following formulas (Note: to

make BV and DV of equal length, a '0' is appended as the least significant bit of BV

before performing all the AND and OR operations):

DV1 = "100...0" OR (((DV2 AND BV3) OR (DV3 AND BV2) OR (DV4 AND BV1) OR
(DV1 AND BV4)) >> 1); for offset (modulo) N = 1; i.e., offset=1, 5, ...,etc

EDT1 = ((DV2 AND EV3) OR (DV3 AND EV2) OR (DV4 AND EV1) OR (DV1 AND
EV4)); for offset (modulo) N = 1; i.e., offset =1,5, ...,etc

DV2 = "100...0" OR (((DV3 AND BV3) OR (DV4 AND BV2) OR (DV1 AND BV1) OR
(DV2 AND BV4)) >> 1); offset (modulo) N = 2; i.e., offset= 2, 6, 10,..., etc

EDV2= ((DV3 AND EV3) OR (DV4 AND EV2) OR (DV1 AND EV1) OR (DV2 AND
EV4)); offset (modulo) N = 2; i.e., offset= 2, 6, 10, ..., etc

DV3= "100...0" OR (((DV4 AND BV3) OR (DV1 AND BV2) OR (DV2 AND BV1) OR
(DV3 AND BV4)) >> 1); offset (modulo) N = 3; i.e., offset=3, 7, 11, ..., etc

EDV3 = ((DV4 AND EV3) OR (DV4 AND EV2) OR (DV2 AND EV1) OR (DV3 AND
EV4)); offset (modulo) N = 3; i.e., offset=3, 7, 11, ..., etc

DV4= "100...0" OR (((DV1 AND BV3) OR (DV2 AND BV2) OR (DV3 AND BV1) OR
(DV4 AND BV4)) >> 1); offset (modulo) N = 1; i.e., offset= 4, 8, 12, ..., etc

EDV4= ((DV1 AND EV3) OR (DV2 AND EV2) OR (DV3 AND EV1) OR (DV4 AND
EV4)); offset (mod) N = 1; i.e., offset= 4, 8, 12, ..., etc.

Offset in these formulas represents the position of a character in the input. At any offset

only one DV-EDV-PV set is active. That is, the result of all the AND-OR operations in

one DV-EDV-PV set, suppose DV1-EDV1-PV1 are stored; then for the next character

input DV2-EDV2-PV2 will be active. This continues in a cyclic manner. This unit sends

PVN4 to the pattern match unit (see the pseudocode in the Appendix A for calculating

46

PVN4). PVN4 contains '1' in the position representing that of the pattern being found if

the active EDV is non-zero; otherwise, it is zero.

Bit Detection Unit for N=3 (BDN3): BDN3 is identical to BDN4 except that there are

three PVs, DVs and EDVs since N = 3; hence it has three phases. It also forwards its own

character offset pointer PVN3 to the pattern match unit.

c) Pattern Match Unit: This unit takes in the ACC inputs from the summation block and

also the PV inputs from BDN3 and BDN4. If the EDVs from both the bit detection units

are non-zero while having a common offset pointer (i.e., a non-zero bit in the same

position of PVN4 and PVN3), then BDN3 and BDN4 have detected a possible pattern

match of identical length starting at the same position. The pattern match unit forwards

the appropriate summation m-tuple (in the above example it will forward ACC9

containing the summation m-tuple of pattern "Passwords") outputted by the summation

block to the FIFO queues at the input of the TBRAM block.

Figure 3.9 Block diagram of complete pattern detection system.

47

Due to the pre-processing of the patterns, the PVN4 AND PVN3 operation will not

generate a non-zero output every clock cycle. There will be a minimum gap of five clock

cycles. No more than two bits of PV will ever be non-zeros, out of which only one can be

because of a true pattern. The summation m-tuple is hashed and the output is used as an

address for the TBRAM which is looked up to check if the summation m-tuple matches

the pre-stored one at that location. Collision TBRAMs are looked into to see if there is a

match. The veracity of a match is confirmed if there is a final match. The address of the

TBRAM for a match, if found, is then forwarded to the O_Pattern match unit. The block

diagram of the complete system is shown in Fig. 3.9.

d) O_Pattern Match Unit: This unit contains the FRAM block and uses appropriate

delay cycles to join appropriately, matches of patterns that constitute an O_Pattern. The

FRAM block is addressed by hashing the matched pattern address output of the

TBRAMs. If the start fragbit value of a pattern matched in TBRAM is '1' and no_fragbit

is '0' , then this is the first fragment of a longer O_pattern, and thus the FRAM block is

looked up to find out the remaining fragments of the O_pattern. The FRAM block

consists of two RAMs (FRAM1 and FRAM2). FRAM1 stores address pointers to the

locations in FRAM2 and the respective TBRAM addresses of the first fragment of

fragmented O_patterns. FRAM2 stores the subsequent fragments' TBRAM addresses. If

there is a match in FRAM1, then FRAM2 is accessed to fetch the subsequent fragments

using the pointer to FRAM2. Using appropriate delay cycles the fragments are connected

in the O_Pattern match unit to match the longer pattern. The data structure used for

FRAMs is shown in Fig. 3.10.

48

The first node of a pattern is stored in FRAM1 and the others are stored in FRAM2. The

maximum number of nodes which can have the same prefix fragment is set to four. If the

number is more than four, then the final pattern concatenation process is moved to

software. The link is disconnected and start_fragbit and no_fragbit are set to '1'

("start fragbit = 1" and "no_fragbit = 1") for that fragment in TBRAM which means that

the joining of fragments for that O_Pattern is done at the higher layer i.e. the software in

the host. Although in the SNORT database there exist quite a few O_Patterns with

common prefixes, in the experiments conducted for this method, there were no common

prefix fragments because of the choice of Max_Fragment_Length=24; this choice makes

fewer O_Patterns to be fragmented since more than 80% of the O_Patterns have lengths

less than or equal to 24 characters. Also, O_Patterns having common prefixes and

containing more than 24 characters have different lengths and hence the rule of dividing

the O_Pattern into fragments of almost equal lengths causes the later to contain different

patterns (O_Pattern 5 in Fig. 3.10). Thus normally there are no two or more O_Patterns

with the same pattern prefix in FRAM2. If the O_Pattern is not fragmented ("start_fragbit

= 0" and "no_fragbit = 1"), then the O_Pattern match unit forwards the TBRAM address

directly to the higher software layer indicating a match.

Figure 3.10 FRAM Block data structure.

3.2 Eliminating Pattern Collisions and False Positives

3.2.1 Eliminating Pattern Collisions

A collision in the pattern RAM will show up if multiple patterns hash to the same

location in the TBRAMs. As explained before, a collision TBRAM is kept to take care

of collisions. The number of collisions allowed is set at five. But if the list in the

Collision_TBRAM is full with four summation m-tuples, then the pattern is fragmented

differently. Fig. 3.11 shows an example using pattern 3 and pattern 4 of Fig. 3.1. Now if

there is another pattern "abcdefghij" which has to be added at runtime and hashes to

location 4 in TBRAM1, while the linear list is full with four records in it, then the new

pattern is broken up as per convenience into appropriate fragments (i.e., patterns) that

remove this collision.

49

50

Figure 3.11 Pattern collisions in TBRAM.

Some of the choices for fragmentation are ("abedef' and "ghij", "abc" and "defghij",

"abed" and "efghij", and "abc", "defg" and"hij"). Note that this process also fragments

the patterns. In Fig. 3.1, the criterion of fragmenting an O_pattern into patterns was the

length. But now, patterns of the new pattern set (i.e., Fig. 3.1) are fragmented to avoid

collisions. Once this fragmentation is complete, new summation m-tuples for these newly

formed patterns are stored appropriately. These cases are rare since an optimal placement

of patterns can be achieved at static time using appropriate values for the weight tuples;

such a case can only be encountered for the addition of new patterns at run time.

3.2.2 Hashing and Eliminating Collisions for Sub-patterns

Plain hash functions containing XOR and ADD operations are used to place the sub-

patterns in the GRP RAMs. For the sake of efficiency, separate hash functions and RAMs

are used for different GRP tables. There is no real need for hashing with GRP(1) due to

the uniqueness of single characters that requires 2 8 (i.e., 256) distinct locations. The hash

functions apply simple operators to the input to generate an address; they do not need

separate key inputs. The character window containing N characters are hashed separately

using N characters for GRP(N), N-1 characters for GRP(N-1) and so on as shown before.

51

The important requirement for the design is that the GRP RAMs should output BV and

EV ever clock cycle. Hence collisions in the GRP RAMs have to be avoided. A maximum

of four hashing functions in a hash block HB(i), for i=2, ...,N are used (this number

varies depending on the size of the GRP RAM needed and also to take advantage of the

Xilinx Block RAMs that come in 18 Kbit chunks). The outputs of the hash functions

access the corresponding RAMs in the GRP(i) RAMs, for i= N-1. Fig. 3.12 shows a

hashing block for a GRP(3) RAM in bit detection unit BDN3. The four RAMs in the

GRP(3) RAM take care of collisions.

Figure 3.12 Hashing Block of the GRP(3) RAM in BDN3.

Since there are different length sub-patterns, there is an additional flexibility of splitting

the pattern into sub-patterns in such a way that avoids collisions. For example, if the

arbitrary pattern "abcdef' has to be added, and the pattern split is "abc"-"def" and "abc"

cannot be placed into any of the four GRP(3) RAMs because of collision (i.e., all four

RAMs have no vacancy in the hashed location of "abc") then the way the pattern is split,

is changed. For example, it can be split as {"a"-"bc"-"def'} or {"ab"-"c"-"def"} or {"a"-

"bcd"-"ef"} or in some other way such that the sub-pattern records can be placed in non-

vacant locations in the GRP RAMs.

52

3.2.3 Eliminating False Positives for Patterns

Once the whole process of weight distribution and BV-EV generation for DSN3 and

DSN4 is done, pattern-related false positives are checked with the following method and

if found at static time, then appropriate action to eliminate them is taken. False positives

will be possible only if there exists a fictitious pattern for which both EDVs (in BDN3

and BDN4) are non-zero, the AND operation of their position vectors (PVN3 and PVN4)

produces non-zero resultant vector, and also the summation m-tuples are identical to a

true pattern. Also, the length of the two patterns should fall into the same group; i.e.,

patterns of different lengths which are placed together and their summation m-tuples are

stored in the same TBRAM. In Fig. 3.13.a, fictitious patterns which will generate non-

zero EDVs are shown. It can be deduced from the Fig. 3.13.a that a fictitious pattern with

non-zero EDV can be generated only if the first offset of a pattern in one set (suppose

DSN4) has identical characters to the first offset and partial part or a whole part of the

second offset in another set(suppose DSN3). For example, the first pattern in Fig. 3.1 for

N=4 has "exec" at the first offset and the first pattern in BDN3 has "exe" at first offset.

Now a pattern (other than first one) in BDN3 which has a sub-pattern that starts with

character "c" at the second offset ahs to be searched. Pattern 3 has "corn" at the second

offset. Thus, if a string like "execommand" comes in, then a non-zero EDV in BDN3 and

BDN4 will be generated, with identical PVs. It has to be ensured that the sum generated

by such a fictitious pattern is not the same as any of the true patterns in TBRAM that

stores the patterns of 10 characters (as "execommand"). This is possible with careful

assignment of m-tuple weights. This can also be countered by fragmenting the pattern or

by breaking the pattern into sub-patterns differently.

53

Suppose that the first fictitious pattern generates a false positive and is difficult to

avoid such a situation even by changing the weight m-tuples of the characters. Such a

situation can be easily avoided by fragmenting the original pattern 1 into two separate

pattern fragments "exec" and "utema" of length 4 and 5, respectively. This is then

broken into sub-patterns as shown in Fig 3.13. b. It can now be seen that the above given

fictitious pattern cannot be generated with the new pattern set.

Figure 3.13 (a) Fictitious patterns which generate non-zero EDV;
(b) Fictitious pattern prevention using appropriate fragmentation.

Fragmenting the patterns again looks similar to the approach in Section 3.2.2;

however, here different problem of false positives is targeted. This approach is only for

adding new patterns. For the SNORT database, the sub-pattern creation method for N=4

and N=3 along with the uniqueness of the summation m-tuples avoids false positives.

54

3.3 Results and Comparisons with Earlier Work

3.3.1 Pre-processing and Simulation Results

All the patterns in the available SNORT rule set (version v2.8, July 29 th , 2009) were

chosen for analysis to prove the viability of the proposed pattern matching design. This

version of SNORT has 6455 distinct patterns; the longest pattern contains 213 characters

and the median length is 12 characters. Some analysis to selecting

Max_Fragment_Length was done. It can be easily inferred that the LUT usage in the

target FPGA will increase with an increase in Max_Fragment_Length since the number

of ACC units will increase. However as Max _ Fragment Length is increased, the number

of patterns that are fragmented will decrease since the design can now provide pattern

matching for a longer fragment.

Fig. 3.14 shows pre-processing results for various fragment lengths. The LUT

usage for an implementation performed will almost remain constant irrespective of the

number of patterns that are added. Thus, the concern is for BRAM usage since this is

where compression can be obtained. The pre-processing job on these patterns was carried

out off-line using a C-program script. The script identifies the unique character sub-

patterns, creates their corresponding sub-pattern records and assigns unique weight m-

tuple to every ASCII character. It then calculates the summation m-tuple for every

pattern. A grouping of three consecutive characters for summation was used. The

difference between using three character grouping and any other higher number of

characters grouping is that the summation tuple value will be higher in the latter case

thereby requiring more bits per summation tuple. However, three-characters grouping are

sufficient to produce exclusive summation tuples in this case.

Max_Fragment_Length= 32
DSN4
GRP4 records: 10,439
distinct BV-EV pointers: 329
GRP3 records: 939
distinct BV-EV pointers: 57
GRP2 records: 866
distinct BV-EV pointers: 65

DSN3
GRP3 records: 9176
distinct BV-EV pointers: 623
GRP2 records: 859
distinct BV-EV pointers: 129

Number of fragments: 6829
FRAM records
FRAM]: 946; FRAM2: 1206

Max_Fragment_Length= 24
DSN4
GRP4 records: 10,419
distinct BV-EV pointers: 225
GRP3 records: 971
distinct BV-EV pointers: 38
GRP2 records: 902
distinct BV-EV pointers: 52

DSN3
GRP3 records: 9794
distinct BV-EV pointers: 501
GRP2 records: 845
distinct BV-EV pointers: 110

Number of fragments: 7155
FRAM records

FRAM1: 1275; FRAM2:1581

Max_Fragment_Length= 16
DSN4
GRP4 records: 10,311
distinct BV-EV pointers: 125
GRP3 records: 1091
distinct BV-EV pointers: 27
GRP2 records: 981
distinct BV-EV pointers: 57

DSN3
GRP3 records: 10077
distinct BV-EV pointers: 226
GRP2 records: 823
distinct BV-EV pointers: 45

Number of fragments: 8566
FRAM records
FRAM]: 2005; FRAM2: 3507

55

Figure 3.14 Pre-processing results for Max_Fragment_Length= 32, 24 and 16.

If two patterns belonging to the same TBRAM group have the same summation

m-tuple then the weight m-tuple value of the character is changed and the summation

tuples are re-calculated. If after a fixed number of attempts a solution is not obtained, the

pattern is fragmented and the check is repeated. Once the check is done successfully,

pattern addresses are generated such that the pattern can be placed with no more than four

collisions. These records are also kept in an off-line database to facilitate efficiency in

future updates involving new patterns. To add new patterns, the available database

information is compared with the sub-patterns extracted from the new patterns. For each

newly extracted sub-pattern that already exists in the database, its newly generated bit

vectors are bitwise ORed with those of its identical sub-pattern in the database; the results

are stored in the on-chip RAM as well as they are modified in the database. If a newly

extracted sub-pattern is not present in the database, then the new sub-pattern along with

56

its bit vectors and other relevant information are stored in the GRP table and the pattern

RAM. The script could be run by the system administrator on the console.

To test the design for future pattern additions, experiments were carried out in two

parts. In Part I, sub-patterns, their respective vectors and the pattern addresses for 5834

patterns from the SNORT rule set were generated. These patterns contained a total of

96,977 characters. In Part II, once the former GRP records were loaded into the on-chip

RAMs and the design operated under normal working conditions, a modification of the

already loaded set of patterns was enabled by adding the remaining set of 621 patterns.

Information extracted for Parts I and II of the experiments conducted is shown in Table

3.1.

Table 3.1 Pre-processing results for adding ()patterns using Max_Fragment_Length =
24

(Number of) Part
I

Part
H

Total

0 Patterns 5834 621 6455
Characters 96,977 8786 105,763

DSN4

GRP(4) records 9486 933 10419
GRP(3) records 803 168 971
GRP(2) records 776 126 902
GRP(1) records 126 1 127

DSN3

GRP(3) records 9125 669 9794
GRP(2) records 707 138 845
GRP(1) records 170 2 172

Number of FragmentsFRAM1 1217 58 1275

Number of Fragments
FRAM2

1520 61 1581

57

3.3.2 VHDL System Synthesis/Implementation

The synthesis and simulation of the design worked flawlessly. The design was

implemented with Max_Fragment_Length of 24 characters. The parameters for the

design with 24 characters for Max_Fragment_Length are discussed in this section. The

length of BV for BDN3 and BDN4 was set to 8 bits and EV was set to 9 bits. Also, the

off-line experiments for weight assignments to m-tuples revealed that unique summation

m-tuples could be carried out with m=3 and bw = 3 bits which will also give a unique

summation m-tuple to patterns. While calculating summation three characters are

grouped at a time. With the maximum value of 7 per weight tuple, a group can have a

maximum value of 49 per group (7 +2*7 + 4*7). With a maximum of 8 groups possible,

the largest possible summation weight requires 9 bits. For the 10,419 GRP(4) records, it

was deduced that there are only 225 distinct BV-EV combinations. Hence, the BV-EV

combination was moved into a separate smaller RAM with 256 locations. Thus, instead

of storing an 8-bit BV and 9-bit EV for every record, only an 8-bit pointer per record is

now stored which points to this BV-EV combination and results in considerable memory

savings. The same was done for other records of BDN4 and BDN3. Fig. 3.15 shows the

chosen parameter values for system synthesis. For GRP(1), a BV and EV pointer are not

needed since BV and EV are stored directly in the record. The maximum number of

collisions allowed in TBRAM0 is set at 3 while in other TBRAMs it is set to 5.

Patterns of varying lengths are grouped into a single TBRAM in such a way that

they are equally distributed in the TBRAMs. Fig. 3.15 shows the different TBRAMs and

the grouping of patterns of different lengths placed in them. For pattern of lengths 1 to 3

58

characters and most of the 4-character patterns, GRP tables are used. Since they are

already stored in one of these tables using a single bit field in the GRP RAM can identify

whether the GRP record is also a pattern of interest. Hence a separate TBRAMS for them

is not needed. VHDL was used to program the architecture. BRAMs were used to store

the GRP records and the summation triplets of the patterns. BRAMs were also used to

weight triplets and FRAM records. It's a pipelined design with a latency of 21 clock

cycles. The bit detection units have a latency of 11 clock cycles. The pattern match unit

has a maximum latency of 5 clock cycles and the O_Pattern match unit has a maximum

latency of 5 clock cycles.

Figure 3.15 Parameter values for system synthesis.

The hardware synthesis was done using Synplify Pro 9.1 as well as Xilinx ISE, with the

parameters shown in Fig. 3.15. The design was implemented on a Virtex II Pro

(XC2VP70) FPGA. For Max_ Fragment_Length=24, it employs 102 18-Kbit BRAMs

(Block RAMS), 5162 Flip Flops and 5569 LUTs, and operates at 300.1 MHz. A random

59

pattern generator also interleaves patterns from the SNORT database. The design was

tested in three phases. The first phase involved simulation of the VHDL code. The second

phase focused on the post-synthesis output of the Xilinx synthesis and Synplify Pro tools.

The third phase of testing involved the post-place and route output generated by the

Xilinx Place and Route tools.

GRP(i) record(i = 2, 3, 4):
Word 1: Sub-pattern, BV-EV pointer
Word 2: Bit Vector, End Vector
GRP(1) record:
Word 1: Bit Vector, End Vector

Pattern Record:
Word l: TBRAM record
Word 2: FRAM1 record (If pattern is fragmented)
Word 3: FRAM2 record

Figure 3.16 Parameters needed to add a pattern.

The process to insert a new pattern is as follows. The AMIRIX PCI board used in

the implementation has a 64-bit data bus. Due to the dual-ported BRAMs in the design,

and the fact that reading and writing are independent of each other, BRAM updates can

proceed while packets are being processed. Various record fields are grouped for the 64-

bit bus. The different words needed to add a GRP record are shown in Fig. 3.16. A 64-bit

word can be loaded into the BRAM in one clock cycle. Weight tuples for all the 256

byte-character patterns, once assigned during the initial phase when the database is

loaded, are not tampered with. All the placement of the patterns and fragmentation was

based on these weight values. New patterns will not be available in matching until the

pattern RAM is updated (after all the involved sub-pattern records are updated). Hence,

the sub-patterns and BV-EV pointers are added first followed by the BV-EV values,

60

FRAM records, if any, and then the summation tuples. When a new pattern is added, it is

only needed to place the new GRP records, if any, or edit the old ones and also place the

pattern sums and FRAM records if the pattern is a fragmented one.

Figure 3.17 Total time to add the 621 new patterns.

It takes up to two clock cycles to add as well as update a sub-pattern record in the

GRP(4), GRP(3) or GRP(2) RAM. It takes up to one clock cycle to add as well as update

a sub-pattern record in the GRP(1) RAM. Similarly, it takes one clock cycle to add the

61

pattern summation tuples. Now, if an O_Pattern is fragmented, then the information of

the pattern fragments (pattern addresses in the TBRAM as shown in Fig. 3.10) is stored

in the FRAMs. This will be equal to twice the number of fragments in terms of clock

cycles (one for the summation m-tuple of the fragment and the other to store its address

information in FRAM). The addition of the 621 new patterns takes 14.855 μtsec. The

details are shown in Fig. 3.17.

To remove a pattern, the process is as follows. The respective entry in the pattern

RAM is first invalidated in a single clock cycle. Its constituent sub-pattern records are

then accessed subsequently. For every sub-pattern, a two-dimensional linked list is kept

on the host; the first dimension contains its BV bits whereas the second dimension

contains the pointers to the patterns that contain it in the corresponding bit offset.

Fig. 3.18 shows the list for sub-pattern "abc" (from DSN3) in a hypothetical set of

patterns. This figure shows that "abc" is present in position 1 of pattern 1, and position 2

of patterns 2 and 13. Now assume the deletion Of pattern 13 that contains this sub-pattern.

Since "abc" is also present at the same offset in pattern 2, its BV will not be changed.

However, to delete pattern 1, after the summation tuples for pattern 1 are invalidated in

pattern RAM, the node for "abc" in position 1 is then deleted (as shown in Fig. 3.18. b).

The other sub-patterns are removed in the same manner in subsequent clock cycles. To

modify a pattern, the old pattern is deleted and then the modified pattern is added. The

flexibility of updating or changing a pattern in the database without re-calculating

hashing keys works to the design's advantage as compared to the approach in [25].

62

Figure 3.18 Linked list for updates with sub-pattern "abc".

3.3.3 Comparison with Earlier Approaches

Table 3.2 shows a comparison with the most prominent efforts in the area of pattern

matching with FPGAs or ASICs. As discussed in the previous chapter, the first three

designs force complete reprogramming of the FPGA to load new malicious patterns and

hence do not employ BRAM. The results assume an input channel of eight bits (i.e., the

incoming rate is one character per clock cycle), thus providing a common platform for

comparison. The variable-length design is the most comprehensive so far as it employs

the largest freely available SNORT database (of July 29 th , 2009).

The approach in [1] uses on-chip memory only for Bloom filter table realization.

lt stores all the patterns in slow off-chip RAM of several Megabytes capacity. Since

Cho's [2] is an ASIC implementation, it has a large clock frequency at the cost of rigidity

to updates. Also, another ASIC solution in [23] involves memory tiles where a 2-bit input

selects one of four finite state machines. Although [23] does not list the number of

patterns in the implementation, it contains a comparison with the design proposed in [14]

that assumes 1466 rules with 18,031 characters. The work in [23] uses 3200 Kbits of

63

memory, yielding a memory consumption ratio of 181.7 bits per character which is quite

high compared to the variable-length design (see Table 3.2). Also, the updating process in

the variable-length design is very simple as it does not require intricate knowledge of the

design. An off-line script just simply creates sub-pattern records and pattern addresses. It

can be easily concluded that the design provides very substantial memory compression

(i.e., in terms of stored bits per input character) compared to other methods that also

facilitate runtime pattern updates. It also operates at a substantially high frequency and

requires by far the least logic cell usage per character, while also yielding very high

throughput. Finally, the analysis is comprehensive as it involved a larger number of

SNORT signatures than earlier approaches.

Table 3.2 Comparison with other designs (N/A: not available or not applicable).

Design,
Year

FPGA
Device Patterns Characters MHz

Through-
put

(Gbps)

BRAM
Memory
(Kbits)

Logic
cells/

Character

BRAM
bits/

character
Baker [7],

2004
(no new rules)

Virtex-II
Pro
100

361 8263 250 1.790 0 0.35 0

Sourdis [14],
2004

(no new rules)

Virtex-II
3000

1466 18,031 335 2.680 0 0.97 0

Clark [10],
2004

(no new rules)

Virtex
8000

1512 17,537 253 2.024 0 1.7 0

Gokhale [12], 2002 Virtex E
1000

N/A 640 N/A 2.180 24 15.19 37.5

Cho [2],
2005

ASIC 2107 22,340 893 7.144 864 0.5 38.6

Lockwood [1], 2006 Virtex-4 2259 N/A 250 l.96 94 N/A N/A

Pnevmatikatos [3], 2006
Virtex-II

Pro
XC2VP30

2187 33,613 306 2.448 702 0.06 21.4

Variable-Length sub-pattern
method,

2009
(Max Fragment_Length=24)

Virtex-H
Pro

XC2VP70
6455 105,763 300.1 2.408 1836 0.052 17.77

CHAPTER 4

EFFICIENT PACKET CLASSIFICATION ON FPGAS TARGETING AT
MANAGEABLE MEMORY CONSUMPTION

4.1 The Packet Classification Method

The packet classification problem is treated as a pattern matching problem involving two

fields of the packet header at a time. Assume four consecutive fields Fl, F2, F3 and F4 in

a rule. The method compresses at static time the information that appears in every

possible pair of fields in the rule-set by extracting fragments of 8 and 7 contiguous bits,

and then encoding the position of 8-bit and 7-bit fragments in these pairs using

position/bit vectors. An accumulated sum also is created for individual fields by adding

up unique weight tuples previously assigned to 8-bit and smaller fragments in the fields

of the rule-set. For example, for a source IP field which has 32 bits, 32 distinct

accumulated sums are created. Using the position vectors, multiple matches of field pairs

(i.e., F1-F2, F1-F3, F1-F4, F2-F3, F2-F4 or F3-F4) are identified simultaneously.

Individual match results are then combined for field pairs by adding up individual field

sums to produce a combined sum; the ultimate verification for a rule match is successful

if the combined summation value is the same as the pre-stored value in the FPGA's

BRAMs for this rule. The BRAM address for the rule is a function of the combined sum

when considering all of its valid fields.

Packet classification method is explained with the help of the following brief

example rule-set. Assume the packet classification rules of Table 4.1 involving five

fields: source IP, destination IP, source port, destination port and protocol. The number

65

66

following the 'I' in the SIP and DIP fields is the mask which signifies the number of

valid bits in the field. Since the protocol normally requires exact matching, pre-

processing is not employed for the creation of position vectors.

Table 4.1 Sample rule-set

ID Source IP

(SIP)

Destination IP

(DIP)

Source port

(SP)

Destination

port (DP)

Protocol Group

1 90.24.13.4/32 51.63.17.19/32 1023 :1024 413 :413 TCP 15

2 89.24.13.4/32 5.6.7.9/32 1023 :1024 103 :109 TCP 15

3 11.71.19.14/23 23.98.128.80/21 0:1023 0:5 TCP 15

4 163.92.37.190/32 11.24.179.56/32 0 : 65535 8080:8080 TCP 13

5 97.166.41.112/31 182.125.194.192/23 0 : 65535 29301 : 29301 TCP 13

6 27.26.30.130/19 246.67.55.211/25 0 : 65535 3106 : 3108 TCP 13

7 19.14.103.41/32 1.6.0.0/0 1023 :1024 100 :101 TCP 11

8 1.6.0.0/0 5.6.7.9/32 1023 :1024 13 :13 TCP 7

9 101.121.77.33/25 23.98.128.80/21 0 : 65535 0 :65535 TCP 12

10 11.23.131.145/29 5.6.7.9/0 0:1023 0:65535 UDP 11

11 0.0.0.0/0 0.0.0.0/0 0:1023 13:13 TCP 3

12 0.0.0.0/0 0.0.0.0/0 0 :65535 0 :65535 Any 0

4.2 Pre-Processing Phase

4.2.1 Rule Grouping

The rules are initially separated into groups during pre-processing phase based on their

number of valid fields; a field in a rule is considered valid if its content is not a don't

care. For example, the first rule in Table 4.1 has all of the four fields valid and, hence, is

placed in group G15 (i.e., "1111" in binary is "15" in decimal). Similarly rule 4 has the

first, second and fourth fields valid and, hence, is placed in group "1101" or G13.

67

4.2.2 Fragmentation Schemes

The binary representation of the value in each field of each rule is then fragmented using

two schemes that involve eight and seven contiguous bits, respectively. We denote these

fragmentation schemes as FRAG8 and FRAG7, respectively. Using two fragmentation

schemes aids the process of filtering out falsely generated bit vector matches. This

process is explained in detail later.

FRAG8 and FRAG7 split the field pattern into 8-bit and 7-bit fragments

respectively till the tail is reached. Fig. 4.1 shows the first field of rule 3 being

fragmented according to both schemes. Since this field in rule 3 contains 23 valid bits,

the tail will contain 7 bits. This fragmentation is then used to create a Bit Vector (BV)

and an End Vector (EV) for every fragment value/pattern obtained. More specifically,

BV shows the position of this fragment pattern in the field, actually for all the rules that

eventually contain it, excluding their tail. That is, if a particular fragment pattern appears

only in positions 1 and 3 of the same field in the same or different rules, then its BV will

be "0110...0". The EV vectors store information about the tail fragments of patterns in

fields. If a fragment appears as a tail, then it will contain '1' in the respective position of

its EV vector. Multiple appearances of a fragment pattern in the same position (tail or

non-tail) of multiple rules are registered only once in this pattern's BV or EV. The

lengths of BV and EV depend on the fragmentation scheme, and also on the length of the

field in bits. In Fig. 4.1, the field shown is the Source IP which is a 4-byte field and hence

BV generated for it will be 3 bits long in FRAG8 and 4 bits long in FRAG7 scheme

(since tail fragments are not included in it). Similarly length of EV will be 4 bits and 5

bits in FRAG8 and FRAG7 scheme respectively. In Fig. 4.1, the decimal value/pattern 11

68

appears in the first fragment and hence its BV will be "100" and the pattern 23 has a BV

of "010" since it appears in the second 8-bit position (assuming just one rule in the set).

Figure 4.1 Applying the two fragmentation schemes FRGA8 and FRAG7.

For a given fragmentation scheme, say FRAG8, these BV and EV vectors are

stored in separate tables corresponding to their lengths. The BV and EV vectors of SIP

field for fragments of 8 bits are stored in table SIPS. Similarly, EVs of tail fragments

having i bits are stored in table SIPi, where i=1, 2, ..., 7. SIP7-SIP1 only contain EVs

since these fragments will appear only as tails. This same procedure is carried out for the

FRAG7 fragmentation scheme that splits fields into 7-bit fragments and creates its own

SIP7-SIP I tables. For FRAG7, SIP7 contains both BVs and EVs, and the rest of the

tables contain only EVs. Similarly DIP, SP and DP fields are fragmented and the

respective DIPi, SPi and DPi tables are created. As remaining rules are fragmented, the

BV-EV vectors in the tables are appended and/or updated. Distinct tables are created for

the distinct groups G15-G1.

69

4.2.3 Pairing of Fields

For every rule during pre-processing, operations are performed on all field pairs using

both fragmentation schemes. The various pairings for the G15 group are: SIP-DIP, SIP-

SP, SIP-DP, DIP-SP, DIP-DP, SP-DP. Similarly, for G3 there is only one pair SP-DP,

and so on. Groups like G1, G2, G4 and G8 which has only one valid field and hence they

are not paired and will be looked up directly using their BV-EV and summation tuples.

The pairing process is now looked at with an example. For simplicity, the SIP and DIP

fields are considered for rules 1 and 3 only. Both rules belong to G15, thus their BVs and

EVs per pair are stored in common tables. The information regarding field pairing is

stored in the SIP-DIP tables as follows. The BV and EV vectors for the first field, SIP, is

generated as discussed before. The BV and EV vectors for the second field are calculated

by combining the fields to get the correct offset values for the second one. For every table

corresponding to the first field, there will be up to 8 tables under FRAG8 and 7 tables

under FRAG7 that can contain information about the second field. This is because in a

pair, the first field can contain 1 to 8 fragments (for FRAG8); thus, the information

regarding the second field in the pair is stored in the respective table set (i.e., the bit

length with which the first field had ended). For the pairing of SIP and DIP, the tables are

denoted in the second field as SIP1-DIP to SIP8-DIP for the FRAG8 scheme and SIP1-

DIP to SIP7-DIP for FRAG7, where SIP1 indicates information (BV, EV) about the first

field that ended in a 1-bit fragment and the SIP1-DIP tables contain the information about

the DIP field rules for which the first field (SIP) ended in a 1-bit fragment. In some cases

the tables may be empty, thus not requiring any memory for storage. Fig. 4.2 shows the

SIP and SIP-DIP tables for rules 1 and 3 with FRAG7. The first field of rule 1 ends in a

70

4-bit fragment and, hence, the DIP information of the second field in rule 1 is stored in

the SIP4-DIP tables which are made up of DIP7 and DIP4 (since there are valid

fragments of length 7 and 4 in DIP). Similarly the first field in rule 2 ends with a

fragment of 2 bits and, hence, the DIP information for rule 2 is stored in the SIP2-DIP

tables. SIP7 does not have a corresponding DIP table because none of the two rules

considered has a SIP field ending with 7 bits. Since FRAG7 is illustrated in this figure,

the BV vector of DIP in the second field can start at offset 2 and can go up to offset 9.

Thus, the BV vector for the second field will contain 8 bits. Similarly the EV offsets vary

from 2 to 10 and, hence, will have 9 bits. The tables are updated with new information

accordingly as and when more rules are considered.

Figure 4.2 Pairings and BV-EV vector generation for the SIP and DIP fields using
fragmentation scheme FRAG7.

71

4.2.4 Port Ranges

Since the fields are represented as patterns, the port ranges are converted into the prefix

format. For example, if there is a rule with the SP specified as the range 0:1024 then this

is represented as 0000000000000000:0000010000000000, which is transformed into the

two prefix patterns {000000xxxxxxxxxx} and {0000010000000000}. The procedure of

creating the BVs and EVs under the FRAG8 and FRAG7 fragmentation schemes is then

carried out in the same way as previously shown. The pairing process on fields is also

carried out as discussed above. This pairing process may result in the duplication of some

rules which will force storage of multiple summation tuple lookups per rule (explained

later) but as seen later in the results, the effect of such kind of duplication is not much on

the memory consumption.

4.2.5 Choice of Fragmentation

Two fragmentation schemes are used because they collectively help in filtering out false

detection alerts during the verification phase that employs a pre-calculated lookup table.

Although fictitious matches may still be possible, most of them are normally filtered out.

The choice of 7 and 8 bits for simultaneous fragmentation was made based on

experimental results. As shown in Fig. 4.3, any number of bits lesser than 7 for

fragmentation increases the time in clock cycles for the next packet to be inputted into the

system, which directly affects the throughput. On the other hand, any choice greater than

8 bits almost doubles the memory usage. Thus, the 8-bit and 7-bit fragmentations present

a good tradeoff between throughput and memory usage.

72

Figure 4.3 Comparison of various fragmentation schemes (pairs of
bit choices are shown).

4.2.6 Summation Tuples

Once all of these operations have been performed on the rule-set, the tables containing

the BVs and EVs will be available for every group. There is a separate block which

contains unique weights for the field fragments ranging from 1 to 8 bits in length. There

is one block per field and there are 8 different weight tables WTI to WT8 in each block as

shown in Fig. 4.4. The weight block takes one byte of input for addressing and every

weight table picks up the appropriate number of most significant bits of the byte. Every

value in the weight table is assigned a random m-tuple of weights represented by vector

W = {weight1, weight2, weightm}; let bw1 , bw2, bwm be the respective number of

bits in each weight element. The objective here is that summation of all the bws' should

be such that we can create an exclusive weight tuple for every fragment in a table and

also give some leeway for generating an exclusive summation value per rule. Since 8-bit

per fragment is used, the summation of bws should be a minimum of 8 bits (for all the

256 possible fragments) but a leeway of 2 additional bits is kept in every table. This

makes it 10 bits per element in the WT8 table with a distribution of 4 bits, 3 bits and 3

73

bits for bw1 , bw2 and bw3 respectively. m=3 is chosen since this gives the pre-process

phase a good control over weight tuples and also any number greater than 3 will then

need more adders and comparators as will be inferred later during the description of the

design.

Figure 4.4 Weight tables.

Using these weight tuples a summation m-tuple is calculated for each field in the

rule using 8 bits per fragment; tails can have less than or equal to 8 bits. Consider rule 10

in Table 4.l with the two valid fields {11.23.131.145/29; 0:1023}. As seen earlier a port

range of 0:1023 turns into a pattern "000000X" with the most significant 6 bits being

common per range and the rest being don't cares. The summation m-tuple is calculated

for this rule at static time in the following steps:

1) Split the fields into 8-bit fragments assuming FRAG8:

Field 1: "00001011" "00010111" "10000011" "10010";

Field 3: "000000"

74

2) To derive the summation m-tuples for each of these fields, apply the following

position-weighted, element-wise summations involving the respective weight-tuples of

the constituent fragments:

SUM(Field1) = WT8("11") + 2 * WT 8 ("23") + 4 * WT8 ("131") + 8 * WT5 ("18") ;

SUM(Field3) = WT6 ("0") ;

The weight-tuple tables for every field are different and can have different weight tuples

for the same fragments since the exclusivity principle is on per table basis.

3) Once the individual summation m-tuples per field are calculated, they are summed up

along with the protocol value (in binary) of the rule to obtain the final summation m-tuple

for the rule.

SUM(rule 10) = SUM(Fieldl) + SUM(Field3) + Protocol

This summation method is applied to all the rules. The summation tuples act as addresses

for table lookups in relation to the incoming packet. Fig. 4.5 shows the chosen

summation tuples for the rules in Table 4.1.

Sum1 Sum2 Sum3
Rule 1: 108 88 129
Rule 2: 175 121 144
Rule 3: 85 46 91

Figure 4.5 Summation tuples for the rule-set in Table
4.1; SUM= (Sum1, Sum2, Sum3).

Once the summation m-tuples of a rule are pre-calculated, they are stored along

with the rule ID and the action to be taken for the rule in a table at a location which is

produced by a hash function on this summation m-tuple. For the example rules set in

75

Table 4.1, up to 16 distinct tables are created to deal with 16 groups of rules. However,

since some rules of certain groups are lesser in population than others, storage for their

summation m-tuples can be combined into one table instead of having separate tables for

each of these groups. Also, if the protocol field for the rule is 'any,' which means that the

rule must be triggered independent of the protocol, then the summation m-tuples are

stored without using the protocol field in a separate table that is accessed simultaneously.

The weight m-tuples are assigned in such a way that the summation m-tuples do not

produce false positives. The weight block is independent of the FRAG blocks and works

independently of them. Also, there is no pairing or grouping of fields in relation to this

block. Its purpose is to generate summation m-tuples for all possible bit lengths per field.

4.3 Runtime Rule Matching

The information about the position of the individual fragments in a rule pair is encoded in

the vector tables, as shown in Fig. 4.2. The summation m-tuples for every rule are also

stored in the tables separately. Now a way is devised find out if the incoming packet

fields match the rules by using the BV and EV vectors in the SIP-DIP tables and

simultaneously creating an address; the latter will depend on the incoming packet header

and will employ the weight m-tuples in such a way that it can point to the summation m-

tuples in the summation tables. The incoming fields are forwarded to the fragmentation-

based tables of every group containing the BV and EV vectors and also to the weight

tables containing the weight tuples. The BV-EV operations are explained first which

involve OR, AND, and SHIFT operation on the BV-EV vectors.

76

4.3.1 Group Block

Every Group explained before have individual pairing blocks. These pairing blocks

perform the function of detection of the individual fields. Every pairing block consists of

BV-EV tables (as explained before) and EQi blocks in which pairing detection takes

place and where i= 1, ..., 8 for FRAG8 scheme and i=1, ..., 7 for FRAG7 scheme. The

operations in pairing block are explained using the SIP-DIP pair (pairing block shown in

Fig. 4.6) and FRAG8 scheme and FRAG7 scheme. EQ8 contains a DV(8) vector which

detects the non-tail fragments of the pair in the incoming packet header and a EDV(8)

vector which detects the tail fragment of the pair. DV(8) is initialized to "100...0" for SIP

side of the EQ8 block and for the DIP block, it is initialized to "01111000" since the

source IP field in the rule can be of the form s1x.x.x.x , s1.s2x.x.x, s 1 .s2.s3x.x or

s1.s2.s3.s4x where s 1 , s2, s3 and s4 represent the prefix part of a source IP with a

maximum of 8 bits in them, and hence the second field in a SIP-DIP pair can start from

any of the 2nd to 5 th position in the offset vectors. DV(8) has the same length as EV. The

following equations are performed in a EQ8 block("&" represents concatenation and

">>" represents a right shift operation):

DV(8)n+1= (DV(8)n AND (BV(8) & '0')) >> 1 ; DV(8) is present only for SIP8

EDV(8) 1+n = DV(8)n AND EV(8) ;

where n is a particular clock cycle. At every clock cycle, using a fragment of the input

packet field the tables are accessed, and the corresponding BV and EV vectors are

outputted into EQ8. Since the other tables contain only EVs, blocks EQ1 to EQ7 perform

the following equations:

EDV(i)n+1= (DV(8)n AND EV(i)) >> 1 ; for i= 1, 2, • • • ,7.

77

DV(8) from EQ8 is outputted to all the blocks EQ1 to EQ7. The outputs of the

EQ blocks are the EDVs. A non-zero EDV signals a potential match in the field. For

example, in FRAG8 scheme if the EDV(8) of SIP is non-zero in the third clock cycle

then it implies that a SIP prefix of length 24 bits is matched.

Figure 4.6 S1P-DIP block using FRAG8 (SIPDIP-FRAG8).

The Pvector blocks take in EDVs from EQ blocks, and generate Pvectors which

are long bit vectors containing the position of the prefix matched. For example Pvector

for SIPDIP blocks(for FRAG8 and FRAG7 schemes) will be 32 bits long. Likewise there

will 32 different Pvectors P(1) to P(32) representing the 32 prefix bits of SIP. The prefix

information of DIP part of the pair is represented in the 32 bits of the vector. For example

if P(l) of SIPDIP has the 31 s` bit as '1' then it implies that there is a match in 1 bi of SIP

and 31 bits of DIP.

78

The Pvector8 block shown in Fig. 4.6 generates four 32-bit vectors for the SIP

prefixes of 8, 16, 24 and 32 bits in the first to fourth clock cycles; they are denoted by

P(8), P(16), P(24) and P(32), respectively. Likewise Pvector7 block generates vectors

P(7), P(15), P(23) and P(31) in the four clocks cycles. An example where a packet with

source IP: 11.71.19.14 and destination IP: 23.98.128.80 arrives is now illustrated in the

following description with the operations taking place in SIP-DIP-FRAG8 block. It can

be seen from the rule-set that rule 3 has the first two fields of interest in the incoming

packet. Fig. 4.7 shows the operations taking place in the SIP-DIP-FRAG8 block.

Figure 4.7 Detection example using FRAG8.

EDV(7) is non-zero in the 3 rd clock cycle which means that the SIP value with prefix

length 23 was found. To make sure that the second field was also found, since the

information is stored in terms of pairs, the EDVs coming out of the DIP blocks are also

79

looked into. It could be noticed that the EDV(5) value of DIP in the 3 rd clock cycle is

non-zero, implying that the non-zero EDV of SIP have to be right-shifted by 3 bits and

then ANDed with EDV(5). This operation results in a non-zero vector. Thus, the match

cane be represented by having the 21 st bit of the P(23) vector as non-zero. The same set

of operations are applied in the SIP-DIP-FRAG7 block; by ANDing the two vectors

P(23) will be non-zero with the 21 st bit set to '1'.

The pairing of blocks in individual groups is now looked into to show how it is

arranged to make a decision about the complete rule. Let us take Group G13 where the

valid fields are SIP, DIP and DP. Thus, the different table blocks will be SIP-DIP, SIP-

DP and DIP-DP. The FRAG8 and FRAG7 fragmentation schemes are needed for the

SIP-DIP tables whereas only one of the schemes for SIP-DP and DIP-DP is sufficient

because SIP8-DIP8 (FRAG8) and SIP7-DIP7 (FRAG7) represent SIP and DIP using both

schemes and hence the representation of DP7 and DP8 can be optimized using only SIP8-

DP8 and DIP7-DP7, or SIP7-DP7 and DIP8-DP8. Fig. 4.8 shows the block diagram for

the G13 pairings.

The intersection blocks for SIP-DIP blocks perform the AND operation of the

vectors coming out of SIPDIP-FRAG8 and SIPDIP-FRAG7. The intersection block for

SIP-DIP-DP finds the common bits in the 3 fields and forwards the values to the Address

generation block (described later in this section) for selecting the summation tuples

generated by the summation block. For example, if a particular incoming packet header

matches 24 prefix bits of SIP, 23 prefix bits and 27 prefix bits of DIP simultaneously, and

16 prefix bits of DP in the FRAG blocks, then the intersection blocks will forward two

vectors of 14 bits in length (since the SIP and DIP prefix length can be encoded in 5 bits

80

each and the DP prefix length can be encoded in 4 bits) to the address generation block.

The first vector will be the concatenation of ("10111", "10110", "1111") for SIP=24,

DIP=23 and DP=16 and the second vector will be the concatenation of ("10111",

"11010", "1111") for SIP-24, DIP=27 and DP=16.

Figure 4.8 Pairings for Group G13.

4.3.2 Summation Block

The summation part of the detection takes place in the summation block. This block

contains adders and shifters. The summation block pre-calculates the summation m-

tuples in parallel while the BV and EV calculations are going on in the Group blocks, and

stores them in temporary registers (SUM BANK block) in the various groups. Fig. 4.9

shows the summation block.

81

Figure 4.9 Summation block.

4.3.3 Detection Block

The detection of a rule in a packet header is performed by combining the Group block,

summation block and the Address generation block.

Address Generation Block: It consists of the SUMF and SUMT blocks. Fig. 4.10 shows

the address generation block for G 13. The vector obtained from the intersection blocks is

used to access the summation values from the SUM BANKS, which are added and hashed

to access the summation m-tuples. The summation m-tuples table (SUMT) contains the

summation m-tuples, the rule ID and the action to be taken on the packet. Every group

forwards its best rule ID and eventually the best rule ID from all the groups is used to

take action on the packet. Since the rules are ordered (i.e., the lowest ID represents the

best matching), it is known which one to select. One of the summation m-tuples table is

accessed directly without the protocol added to the summation, whereas the other table is

accessed with the protocol field added.

Figure 4.10 Address generation block for Group G13.

The concentration of rules is such that some groups will have more rules than others.

Hence, some of the groups are combined and accommodated into common summation

m-tuple tables. The final block diagram of the architecture for the packet classification is

shown in Fig. 4.11. It can be seen in this diagram that G1 -G12 have been clubbed

together into one block. This is pertaining to the summation m-tuples (i.e., if the number

of rules falling into these categories is very less then it does not warrant separate SUMF

blocks). The architecture is flexible in terms of which groups need to implemented

separately depending on the population of rules in the groups.

82

Figure 4.11 Block diagram.

83

4.4 Rule Splitting Method

The summation m-tuples are placed in the RAMs in such a way that there are no

collisions. This is ensured by appropriately adjusting the weight tuples which in turn has

an effect on the summation m-tuples. With appropriate allocation of bits per weight and

the eventual summation m-tuples, the summation m-tuples can be placed in such a way

that collisions are avoided. There are a maximum of four RAMs in a group that are

accessed in parallel to check if there are matching m-tuples. The summation m-tuples are

placed in these RAMs at locations which are a function of the summation m-tuples. The

hash functions are simple XOR and modulo add functions which can be easily

implemented in hardware. In cases where it is very difficult to place the m-tuples in non-

vacant locations, rule splitting method is used. The data structure stored in this case is

slightly different than the normal one. Consider the following rule (SIP: "123.4.5.89";

DIP: "135.6.7.0/23"; SP: 0:65535; DP: 1023:1023; Protocol: 6) with rule ID 1000. This

rule falls in the G13 category. If this rule cannot be placed into the RAM, which means

that the summation m-tuples for the rule do not point to a vacant location in the RAM,

then the rule is split into at least two parts (can be more) and then linked together. For

example, the aforementioned rule can be broken into (SIP: "123.4.5.89"; DIP:

"135.6.7.0/23") and stored into the G12 group, if possible without collision, and then

DP:1023 is place separately into the G1 group. The information about the split is also

stored. The summation m-tuples are placed in separate RAMs; if a match is found, then

the other links are also looked into. For the above example, the summation m-tuples in

the G12 RAM will be stored along with the rule ID and the group number of the second

part of the rule (which is G1) and the new rule ID (which is assigned to the second part

84

during the split). This rule splitting method could also be used to control the number of

1 's in Pvector so that the pipelines in the design are not filled up, thereby having a

positive effect on the throughput. The rules are easily spaced out into different groups by

using a constraint on the number of 1 's in a Pvector at any given time. This is done by

generating a binary tree and checking the number of rules which can reflect a '1' in

Pvector. There are different SUMT blocks for different sets of Pvectors, which makes it

better since not more than five 1 's in Pvectors were encountered for the rule set which

was implemented for this dissertation.

4.5 Elimination of False Positives

The weight assignment process makes sure that any two genuine rules have different

summation m-tuples. A false positive is then possible only if a fictitious combination of

fragments (where at least one of the fragment is not part of the rule but is from a different

rule) cause a non-zero EDV and at the same time generate a summation m-tuple which is

same as one of the genuine rule. During pre-processing the population of rules in a group

is further sub-divided and rules are clubbed together based on the length of the prefix in

the field or fields to create an even distribution of summation m-tuples in the RAMs. An

example is now looked at with a set of rules whose summation m-tuples are placed in the

same set of RAMs. The possibility of false positive generation is investigated for two of

the rules:

85

SIP DIP SP DP

1 97.166.41.112/32 182.125.194.192/32 0:65535 0:65535

2 27.26.30.130/32 127.206.10.2/32 0:65535 0:65535

3

Assume an incoming packet with (SIP: 97.166.41.112) and (DIP: 127.206.10.2).

This packet contains an SIP that matches the 1 st rule and a DIP that matches the 2nd rule.

The position-based encoding of the bit vectors for the two rules will produce a non-zero

EDV because the header fragments will match partially more than one rule. If the

summation m-tuple generated by this header is equal to some genuine summation m-tuple

in the same set of RAMs, then the latter rule will be triggered. Thus, during pre-

processing phase, all possibilities of such fictitious non-zero EDVs are checked and it is

ensured that they do not generate a genuine summation m-tuple that will cause a false

rule to be triggered. This is accomplished by either tweaking the weight m-tuples or

applying the aforementioned rule splitting method. However, the majority of such cases

are filtered out because of using simultaneously two fragmentation schemes (FRAG7 and

FRAG8); a packet may match an incorrect rule under a scheme but it does not often

match any rule under both the schemes simultaneously.

4.6 Experimental Results

Classbench [51] was used to generate rule-sets. Optimizations were performed in the

implementation stage; for example, if a particular table had less than 8 members, then the

use of RAM was avoided and only comparators were used instead to save the memory. If

a particular group, say G 15, had very few rules (less than 100), then the rule splitting

method was used to separate the rules and place them in the corresponding groups instead

86

of allocating a separate set of blocks for them (it would have consumed more resources).

Fig. 4.12 shows the number of BRAMs needed for various numbers of rules. The BRAM

consumption shown in the figure is only in GROUP blocks that store the bit vectors and

not in the SUMT blocks. From the figure it can be deduced that the memory needed for

storing bit vectors in the GROUPS flattens as the number of rules are increased, thus

indicating that the memory needed for packet classification grows linearly with the

number of rules.

Figure 4.12 Number of BRAMs consumed by group blocks as a function
of the rule population.

The design is a pipelined structure and has a worst case latency of 23 clock

cycles. It takes 5 clock cycles to retrieve the EV-BV pair and 3 clock cycles for the DV-

EDV calculations. A decision tree for the rules was created and it was found that there

could be a maximum of five 1's in a Pvector; however, the real number is 3 since

Pvectors are further separated into different SUMT blocks of summation tables which are

independent of each other based on the prefix lengths. Still considering 5 as the worst

case number, 7 clock cycles (5 + 2 FIFO latency) will be needed for the last non-zero

Pvector to go into the summation selection block SUMF. This is then followed by add

87

operations, hashing and RAM access, which take another 5 clock cycles. The final

comparison of rule IDs take 3 clock cycles. Thus, the total latency for the worst case rule

classification is 23 cycles. The Group block, SUMT block and the SUMF block work

independently of each other and are interfaced with appropriate length FIFOs at their

input. Hence when one of the block is working on a packet header the other blocks can

work on a different packet header. Thus a new packet can be inputted into the design

every 8 clock cycles.

Table 4.2 shows the memory consumption for different rule-sets created by

Classbench [51]. The memory consumption is for the whole design and not for just some

of the modules. Also, the number of rules due to port duplication is because as explained

earlier if suppose there is a rule with port range 0:1024, then there will be two

summations generated for the same rule, one with the port range 0:1023 easily

represented with "000000x" and the second being 1024 represented with

"0000010000000000". The hardware design was implemented using VHDL and was

synthesized using Synplify Pro. The design was implemented for the acl3 file of

Classbench[51]. It consumes 43,487 logic cells on a Virtex II Pro xc2VP70 and 46,450

flip-flops with 128 BRAMs. Only 151 Kbytes are used to store the rules and the bit

vectors. 9, 7 and 7 bits were used for the three summation tuples, respectively, creating a

total of 23 bits for summation. A total of 10 bits per three tuples of weight were used,

using 4 bits for the 1 st tuple and 3 bits each for the 2 nd and 3rd tuple. The memory

consumption is the least among all the earlier designs. The design can run at 242.1 MHz

which is the highest operating frequency of all the designs that is known till now. The

throughput for the design in the worst case (assuming 40 bytes per packet) is 9.68 Gbps.

88

Table 4.2 Results for various Classbench files

File Number
of rules

Number	 of
rules due to
port
duplication

Number
of BRAMs

acl1 10,246 13841 111
acl2 10,553 20144 141
acl3 10205 17106 133
acl4 10107 16184 127
acl5 8123 10433 108

Table 4.3 Comparisons with other works

Design FPGA
Device Frequency Number

of rules
Memory
(Kbytes)

Thoughput
(Gbps)

[31] Virtex-5 125.4 MHz 9603 612 80.23

[32] Cyclone-3 128 MHz 10,000 286 3.41

[34] Virtex-4 153 MHz 4000 178 1.88

[33] Virtex II
Pro N.A. 128 221 16

The Packet
Classification
Method

V i rtex II
Pro

242.lMHz 10,205 151 9.68

Table 4.3 shows a comprehensive comparison of our design with others. It can be

noticed that the design consumes the least memory even though it deals with more than

10,000 rules. In relation to [2], it can be noticed that although the design performs around

8 times slower, [2] uses dual-port memories with 407 Virtex-5 BRAMS which come in

36Kbit blocks. Since the Virtex-II Pro BRAMs come in 18Kbit blocks, [2] uses 814

18Kbit blocks whereas the packet classification design implemented in this dissertation

use only 128 such BRAMs. The memory in the design is present in the Group blocks, and

the SUMT blocks. As the number of rules grow more than 10,000, the memory curve for

the Group block starts flattening out (Fig. 4.12) implying that the memory needed for

storing BVs and EVs does not grow with the new rules. The only requirement of memory

89

for supporting new rules is for storing of new summation m-tuples. This also implies that

the design memory increases only linearly with the growth in rule-set.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Two novel designs for pattern matching with FPGAs have been proposed and

implemented in this dissertation that can be utilized by NID systems. These approaches

can also be exploited by other pattern-matching oriented applications, such as the

detection of virus signatures. They are memory-oriented, high-throughput, compression-

based designs that incorporate simple pattern detection techniques. Both approaches

differ substantially from earlier approaches since they do not require long-distance

routing of information inside the processing chip. Another major advantage of the two

approaches is that they both support runtime updates for the set of stored patterns without

a need to reprogram the FPGA. This is a necessity for NID systems operating at a 24/7

schedule as the database of stored malicious patterns may require frequent updates. The

evaluation involved in both designs was comprehensive, involving a larger number of

signatures than earlier approaches.

This dissertation has also proposed a novel method of packet classification which

has the highest operating frequency among all known designs, and has a good balance

between throughput and memory usage for more than 10,000 rules. It was shown that the

memory consumption grows linearly with the number of rules which is a good indication

of the design's scalability. Future work can focus on making this design capable of

handling a new packet in every clock cycle which will further improve its throughput.

90

APPENDIX A

PSEUDOCODE FOR CALCULATION OF PVN4, PVN3, PV, DV AND EDV

• Assume Bit Detection Units BDN4 and BDN3 with N= 4 and N=3, respectively.

• DV and EDV are (L+1)-bit vectors.

• tempDV and tempEDV are temporary vectors of L+1 bits.

• tempPV, PVB and PVE are temporary vectors of Max Fragment_ Length bits

• One of the N-vector combinations of DV-EDV-PV is active in every clock cycle.

It is the i-th vector in the following code for the i-th iteration of the FOR_i loop..

• The following loop is executed in every clock cycle.

FOR.): for i= 1 to N loop

{

tempDV= "000...0"; tempEDV= "000...0";

// initialize vectors to 0

PVB= "000...0"; PVE= "000...0"; tempPV= "000...0"

//The following for loop takes care of the AND-OR operations in the DV and EDV

equations

FOR N: for k=1 to N loop

{

if (k i)

//this if loop selects the appropriate BV and EV to be ANDed with DVk

X= N-k+i;

91

92

//X variable stores the appropriate subscript of BV, EV to be ANDed with DVk

else

X= i-k;

end if;

tempDV = tempDV OR (DVk AND BVx);

//tempDV stores temporary value of active DV

tempEDV=tempEDV OR (DVk AND EVx);

// tempEDV stores temporary value of active EDV

// the following program statements are used to update the length of the partially matched

pattern due to the presence of sub-patterns.

tempPV= "000...0"; 	 // reset the temporary vector

if (DVk(0) AND BVx(0)) 0

// this means that a possible first sub pattern of a pattern is detected; length of the sub-

pattern is X characters.

tempPV(X) = '1'; // make that bit 1 ';

else

tempPV = "000..0";

end if;

PVB= PVB OR tempPV;

// assign the length of first sub pattern to PVB.

tempPV= "000...0"; 	 // reset the temporary vector

//BV is an L-bit vector used to search for sub patterns except tails;

93

//Now we look for the sub patterns other than the first using the BV output

FOR DL: for v in 1 to L-1 loop

{

if (DVk(v) AND BVx(v)) 0

{

// The following loop is used to move the offset position of the partial matched pattern by

same number of bits as the matched sub pattern length to the right, thus increasing the

length of the partially matched pattern by X bits. The appropriate PVk is shifted. The sub

pattern is found if the above DV AND BV operation is non-zero.

FOR DV: for m in v to N*v+N-1 loop

{

tempPV= "000...0"; // reset tempPV

if (m+v< Max_Fragment_Length)

tempPV(m+X) = PVk(m);

end if;

PVB= PVB OR tempPV;

//store the calculation result in PVB

}

end for FOR_ DV;

}

end if;

}

end for FOR DL;

94

tempPV= "000...0";

// The calculations below are the same as the ones above except that we now get the

length of a complete pattern match instead of partial matches; search for tails and the

vector is moved by (length of the tail) bits. The resultant '1' in the PVE vector indicates

the length of the complete pattern.

if DVk(0) AND EVx (0) neq 0

tempPV(X) = 1;

else

tempPV = "000..0";

end if;

PVE= PVE OR tempPV;

FOR EL: for v in 1 to L loop

{

if (DV

k

(v) AND EVx (v)) 0

{

FOREV: for m in v to N*v+N-1 loop

{

tempPV= "000... 0";

if (m+v< Max Fragment Length)

tempPV(m+X) = PVk(m);

end if;

PVE= PVE OR tempPV;

}

95

end for FOR_EV;

}

end if;

}

end for FOR_EL;

}

end for FOR_N;

PV, = PVB;

//Assign the PVB which contains the length of the partial pattern matched to the active

PV

DV; "100...0" OR (tempDV >>1);

//Perform shift and OR operations and assign the temporary vectortempDV to the active

DV; Similarly, assign tempEDV to the active EDV

EDVi = tempEDV;

//for BDN4 N=4 and hence the length of the matched complete pattern is given by PVN4

while in BDN3 it is given by BDN3. Hence, assign PVE to PVN4 for N=4 and to PVN3

for N=3, respectively.

PVN3=PVE; // In BDN3

PVN4 = PVE; // In BDN4

REFERENCES

[1] S. Dharmapurikar and J. Lockwood, "Fast and Scalable Pattern Matching for
Network Intrusion Detection Systems," IEEE Journal Selected Areas Comm., Vol. 24,
Oct. 2006, pp. 1781-1792.
[2] Y. Cho and W. Mangione-Smith, "A Pattern Matching Co-processor for Network
Security," Annual ACM/IEEE Design Automation Conference, 2005.
[3] D. Pnevmatikatos and A. Arelakis, "Variable-Length Hashing for Exact Pattern
Matching," International Conference on Field Programmable Logic and Application,
Aug. 2006, pp. 1-6.
[4] C. Wu, S. Wen, N. Huang, and C. Kao, "A Pattern Matching Coprocessor for Deep
and Large Signature Set in Network Security System," IEEE GlobeComm, 2005.
[5] R. Sidhu and V.K. Prasanna, "Fast Regular Expression Matching using FPGAs,"
IEEE Symposium on Field-Programmable Custom Computing Machines, 2001.
[6] Z. Baker and V.K. Prasanna, "Automatic Synthesis of Efficient Intrusion Detection
systems on FPGAs," 14th International conference on Field Programmable Logic and
Applications, 2004.
[7] Z. Baker and V.K. Prasanna, "A Methodology for Synthesis of Efficient Intrusion
Detection Systems on FPGAs," 12th IEEE Symposium Field-Program. Custom
Computing Machines, 2004.
[8] B.L. Hutchings, R. Franklin, and D. Carver, "Assisting Network Intrusion
Detection with Reconfigurable Hardware," IEEE Symp. Field-Programmable Custom
Computing Machines, 2002.
[9] I. Sourdis and D. Pnevmatikatos, "Fast, Large-Scale String Match for a 10Gbps
FPGA-based Network Intrusion Detection System," International Conference on Field
Programmable Logic and Applications, Lisbon, Portugal, Sept. 2003.
[10] C.R. Clark and D.E. Schimmel, "Scalable Parallel Pattern-Matching on High-
Speed Networks," IEEE Symp. Field-Programmable Custom Computing Machines, Napa
Valley, CA, April 2004.
[11] Y.H. Cho, S. Navab, and W.H. Mangione-Smith, "Specialized Hardware for Deep
Network Packet Filtering," 12 th International Conference on Field Programmable Logic
and Applications, Montpellier, France, Sept. 2002, pp. 452-461.
[12] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett,
"Granidt: Towards Gigabit Rate Network Intrusion Detection Technology," 12th
Conference Field Programmable Logic and Applications, Montpellier, France, Sept.
2002, pp. 404-413.
[13] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks, "Internet
Worm and Virus protection in Dynamically Reconfigurable Hardware," Military and
Aerospace Programmable Logic Devices Conference, 2003, p. E10.M.
[14] I. Sourdis and D. Pnevmatikatos, "Pre-decoded CAMS for Efficient and High-
speed NIDS Pattern Matching," 12th Annual IEEE Symposium on Field Programmable
Custom Computing Machines, 2004, pp. 258-267.
[15] F. Yu, R. H. Katz, and T.V. Lakshman, "Gigabit Rate Packet Pattern Matching
using TCAM," 12th IEEE International Conference on Network Protocols, 2004, pp.
174-183.

96

97

[16] C. Lin, C. Huang, C. Jiang, and S. Chang, "Optimization of Pattern Matching
Circuits for Regular Expression on FPGA," IEEE Transactions on Very Large Scale
Integration Systems, Vol. 15, Dec. 2007.
[17] SNORT® Open Source Network Intrusion Prevention and Detection System,
http://www.snort.org
[18] H. Roan, W. Hwang, and C. Dan Lo, "Shift-Or Circuit for Efficient Network
Intrusion Detection Pattern Matching," International Conference Field Programmable
Logic and Applications, 2006.
[19] X. Wang and S.G. Ziavras, "Performance Optimization of an FPGA-based
Configurable Multiprocessor for Matrix Operations," IEEE International Conference on
Field-Programmable Technology, Tokyo, Japan, Dec. 15-17, 2003.
[20] X. Xu and S.G. Ziavras, "A Coarse-grain Hierarchical Technique for 2-
dimensional FFT on Configurable Parallel Computers," IEICE Transactions on
Information and Systems, Vol. E89-D, No. 2, Feb. 2006, pp. 639-646.
[21] S.G. Ziavras, A. Gerbessiotis, and R. Bafna, "Coprocessor Design to Support MPI
Primitives in Configurable Multiprocessors," Integration, the VLSI Journal, Vol. 40, No.
3, 2007, pp. 235-252.
[22] G. Papadopoulos and D. Pnevmatikatos, "Hashing + Memory = Low Cost, Exact
Pattern Matching," Intern. Conf on Field Programmable Logic and Application, Aug.
2005, pp. 39-44.
[23] L. Tan and T. Sherwood, "A High Throughput String Matching Architecture for
Intrusion Detection and Prevention," 32nd Annual International Symposium on Computer
Architecture, June 2005, pp. 112-122.
[24] M. Christodorescu and S. Jha, "Static Analysis of Executables to Detect
Malicious Patterns," 12th USENIX Security Symposium, 2003, Vol. 12.
[25] T.N. Thinh, S. Kittitornkun, and S. Tomiyama, "Applying Cuckoo Hashing for
FPGA-based Pattern Matching in NIDS/NIPS," International Conference on Field-
Programmable Technology, Dec. 2007, pp. 121-128.
[26] R.S. Boyer and J.S. Moore, "A Fast String Searching Algorithm,"
Communications of the ACM, 20(10), 1977, pp. 761-772.
[27] M. Fisk and G. Varghese, "Applying Fast String Matching to Intrusion Detection"
Technical Report in preparation, successor to UCSD TR, CS2001-0670, Univ. of
California, San Diego, 2001.
[28] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, "Deterministic Memory-
Efficient String Matching Algorithms for Intrusion Detection," 23rd Conference of the
IEEE Communications Society (Infocomm), March 2004.
[29] A.V. Aho and M.J. Corasick, "Efficient String Matching: An Aid to Bibliographic
Search," Communications of the ACM, Vol. 18, No. 6, 1975, pp. 333-340.
[30] P. Gupta and N. McKeown, "Packet classification using hierarchical intelligent
cuttings," in Proc. Hot Interconnects VII, Aug. 1999.
[31] W. Jiang and V. Prasanna, "Large-scale wire-speed packet classification on
FPGAs," Proc. of the ACM/SIGDA international symposium on Field Programmable
Gate arrays, 2009
[32] A. Kennedy, X. Wang, Z. Liu, and B. Liu, "Low power architecture for high
speed packet classification," in Proc. Architectures for Network and Communications
Systems, 2008.

98

[33] G.S. Jedhe, A. Ramamoorthy, and K. Varghese, "A scalable high throughput
firewall in FPGA" in Proc. Field-Programmable Custom Computing Machines(FCCM),
2008.
[34] A. Nikitakis and I. Papaefstathiou, "A memory-efficient FPGA-based
classification engine" in Proc. Field-Programmable Custom Computing
Machines(FCCM), 2008.
[35] D.E. Taylor and J.S. Turner, "Scalable packet classification using distributed
crossproducing of field labels," in Proc. INFOCOM, 2005.
[36] S. Singh, F. Baboescu, G. Varghese, and J. Wang, "Packet classification using
multidimensional cutting," in Proc. SIGCOMM, pages 213-224, 2003.
[37] S. Dharmapurikar, H. Song, J.S. Turner, and J. W. Lockwood, "Fast packet
classification using bloom filters," in Architectures for Network and Communications
Systems, pages 61-70, 2006.
[38] I. Papaefstathiou and V. Papaefstathiou, "Memory-efficient 5D packet
classification at 40 Gbps," in Proc. INFOCOM, pages 1370-1378, 2007.
[39] I. Sourdis, "Designs & Algorithms for Packet and Content Inspection," PhD
thesis, Delft University of Technology, 2007.
[40] H. Song and J.W. Lockwood, "Efficient packet classification for network
intrusion detection using FPGA," In Proc. FPGA, pages 238-245, 2005.
[41] W. Eatherton, G. Varghese, and Z. Dittia, "Tree bitmap: hardware/software IP
lookups with incremental updates," In SIGCOMM Comput. Commun. Rev., 34(2):97-
122, 2004.
[42] F. Baboescu and G. Varghese, "Scalable packet classification," in Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 199-210, 2001.
[43] T.V. Lakshman and D. Stiliadis, "High-Speed Policy-based Packet Forwarding
Using Efficient Multi-dimensional Range Matching," in Proceedings of ACM
SIGCOMM, pages 191-202, September 1998.
[44] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, "Algorithms for
advanced packet classification with ternary CAMs," in Proc. SIGCOMM, pages 193-
204, 2005.
[45] F. Yu, R.H. Katz, and T.V. Lakshman, "Efficient multimatch packet classification
and lookup with TCAM," in IEEE Micro, 25(1):50-59, 2005.
[46] M.H. Overmars and A.F. Van der Stappen, "Range searching and point location
among fat objects," in Journal of Algorithms, 21(3), pp. 629-656, November 1996.
[47] P. Gupta and N. McKeown, "Algorithms for packet classification," in IEEE
Network, vol. 15, pp. 24-32, Mar/Apr 2001.
[48] D.E. Taylor, "Survey and taxonomy of packet classification techniques," in ACM
Comput. Surv., vol. 37, no. 3, pp. 238-275, 2005.
[49] P. Tsuchiya. "A search algorithm for table entries with non-contiguous
wildcarding," unpublished report, Bellcore.
[50] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel. "Fast and Scalable Layer
Four Switching," in Proc. of ACM Sigcomm, pages 203-14, September 1998.
[51] D. Taylor and J. Turner, "ClassBench: A Packet Classification Benchmark", in
IEEE Infocom'05, March 2005.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Signature Detection Using Fixed-Length Sub-Patterns
	Chapter 3: Signature Detection Using Variable-Length Sub-Patterns
	Chapter 4: Efficient Packet Classification on FPGAS Targeting at Manageable Memory Consumption
	Chapter 5: Conclusions and Future Work
	Appendix A: Pseudocode for Calculation of PVN4, PVN3, PV, DV, and EDV
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

