
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A COMPARISON OF SOFTWARE ENGINES FOR SIMULATION OF
CLOSED-LOOP CONTROL SYSTEMS

by
Sanket D Nikam

A wide array of control system design and simulation software engines is available in

market. It includes MATLAB-Simulink, LabVIEW, Maple-MapleSim, Scilab-Scicos,

VisSim and Mathematica-Control Professional Suite (CPS). Among all of them

MATLAB-Simulink is dominant and widely used software engine. The main aim of this

study is to implement different state space control methods for non-linear Furuta

pendulum system in each one of them and to compare performance against

MATLAB-Simulink.

Different parameters like learning curve, interoperability, flexibility, control

design tools, documentation and tech support are considered for efficiency comparison. It

is shown that MapleSim has multi-body intuitive physical modeling (acausal) approach

faster than Simulink with unique control animation feature. It is found that MapleSim has

the ability to generate differential equations from acausal modeling. It was verified that

differential equations generated by MapleSim were similar to original equations.

Scilab-Scicos is cost-efficient being open source engine with all control design and

simulation capability similar to Matlab-Simulink. LabVIEW has better front end and

back end for control design simulation at the cost of steep learning curve. VisSim has

complete symbolic modeling approach with great flexibility and ease of learning.

Mathematica's Control System Professional does not have symbolic modeling capability.

It is observed that CPS has a cumbersome approach for modeling non linear systems.

A COMPARISON OF SOFTWARE ENGINES FOR SIMULATION OF
CLOSED-LOOP CONTROL SYSTEMS

by
Sanket D Nikam

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

May 2010

APPROVAL PAGE

A COMPARISON OF SOFTWARE ENGINES FOR SIMULATION OF
CLOSED-LOOP CONTROL SYSTEMS

Sanket D Nikam

Dr. Bernard Friedland, Dissertation Advisor Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. David Haessig, Committee Member 	 Date
Adjunct Professor of Electrical and Computer Engineering, NJIT

Dr. Mengchu Zhou, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Sanket Deepak Nikam

Degree:	 Master of Science

Date:	 May 2010

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2010

• Bachelor of Engineering in Instrumentation & Control,
Vishwakarma Institute of Technology, Pune University, India, 2007

Major:	 Electrical Engineering

Dedicated to my parents, family members and teachers whose motivation has always
been everlasting inspiration in my every endeavor...

ACKNOWLEDGMENT

I would like to express deep sense of gratitude towards Dr. Bernard Friedland for

believing in my potential and providing me an opportunity to work on this thesis. I am

really grateful to Dr. Friedland for motivating me to work on this thesis. His valuable

guidance throughout the course of thesis is backbone of this success story. I would take

this opportunity to thank Dr. David Haessig and Dr. Mengchu Zhou for being members

of thesis committee and their guidance throughout the course of study.

I would like to specially thank Dr. Gilbert Lai, Mr. Ted Shapiro and

Mr. Gavin Fitzpatrick from Maplesoft for their kind technical support and guidance

during evaluation of MapleSim. I am really obliged to Mr. Peter Darnell from Visual

Solutions for providing exclusive guidance regarding VisSim. Also, I would like to thank

Dr. Ramine Nikoukhah from INRIA for his valuable advice during troubleshooting of

Furuta Pendulum application in Scilab-Scicos. I would like to sincerely thank whole team

from National Instruments including Dr. Jeannie Falcon, Mr. Tom Robbins and Mr. Andy

Chang for resolving my complex queries related to control design and simulation in

LabVIEW. Mr. Andy Dorsett and Dr. Aravind Hanasoge from Mathematica helped me a

lot to learn more about Control System Professional suite. I would like to thank both of

them for giving better insight about capabilities of Control System Professional. My

sincerest gratitude to roommates and friends for their immense moral support. Last but

not least I am very much indebted to my father Dr. Deepak Nikam and my mother Mrs.

Vaijayanti Nikam because of whom I could pursue my graduate studies in United States

of America.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background Information 	 1

2 DYNAMICS OF NON-LINEAR FURUTA PENDULUM 	 3

2.1 Physical System Description 	 3

2.2 Equations of Motion by Lagrangian Method 	 4

3 RESULTS OF VARIOUS SOFTWARE ENGINES 	 7

3.1 MATLAB-Simulink 	 7

3.1.1 Open Loop Analysis 	 8

3.1.2 Full State Feedback design by Pole Placement 	 17

3.1.3 Full State Feedback design by LQR	 22

3.1.4 Full Order Observer Design using Kalman Filter 	 27

	

3.2 LabVIEW 32

3.2.1 Open Loop Analysis 	 32

3.2.2 Full State Feedback design by Pole Placement 	 40

3.2.3 Full State Feedback design by LQR	 43

3.3 Scilab-Scicos 	 46

3.3.1 Open Loop Analysis 	 46

3.3.2 Full State Feedback design by Pole Placement 	 53

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2.3 Full State Feedback design by LQR 	 56

3.2.4 Full Order Observer Design using Kalman Filter 	 59

3.4 Maple-MapleSim 	 63

3.4.1 Open Loop Analysis 	 63

3.4.2 Full State Feedback design by Pole Placement 	 81

3.4.3 Full State Feedback design by LQR 	 85

3.4.4 Full Order Observer Design using Kalman Filter 	 92

	

15 VisSim 98

3.5.1 Open Loop Analysis 	 98

3.5.2 Full State Feedback design by Pole Placement 	 102

3.5.3 Full State Feedback design by LQR 	 105

	

4 COMPARISON ANALYSIS 108

5 CONCLUSION 	 117

REFERENCES 	 119

viii

LIST OF TABLES

Table	 Page

4.1 The Comparison Summary of Various Software Engines 	 24

4.2 The Interoperability Summary of Various Software Engines 	 116

ix

LIST OF FIGURES

Figure	 Page

2.1 Furuta pendulum physical system 	 3

3.1 Simulink open loop block diagram 	 10

3.2 Simulink model for non linear Furuta pendulum system 	 11

3.3 Simulink open loop output for the arm angle and the pendulum angle with initial
conditions [1.57, 0.1] on angles 	 12

3.4 Simulink open loop output for the arm velocity and the pendulum velocity with
initial conditions [1.57, 0.1] on angles 	 14

3.5 Simulink block diagram for Full State Feedback design by Pole Placement 	 18

3.6 Simulink Pole Placement output for the arm angle and the pendulum angle with
initial conditions [1.57, 0] on angles 	 19

3.7 Simulink Pole Placement output for the arm velocity and the pendulum velocity
with initial conditions [1.57, 0] on angles 	 20

3.8 Simulink output for control signal generated with Pole Placement 	 21

3.9 Simulink block diagram for Full State Feedback design by LQR 	 23

3.10 Simulink LQR output for the arm angle and the pendulum angle with initial
conditions [1.57, 0] on angles 	 24

3.11 Simulink LQR output for the arm velocity and the pendulum velocity with
initial conditions [1.57, 0] on angles 	 25

3.12 Simulink output for control signal generated with LQR 	 26

3.13 Simulink block diagram for full order Observer design with Kalman Filter 	 28

3.14 Simulink Kalman Observer output for the arm angle and the pendulum angle
with initial conditions [1.57, 0] on angles 	 29

3.15 Simulink Kalman Observer output for an Arm velocity and a Pendulum velocity
with initial conditions [1.57, 0] on angles 	 30

LIST OF FIGURES
(Continued)

Figure	 Page

3.16 Simulink output for control signal generated with Kalman Observer 	 31

3.17 Using LabVIEW in Model-Based control design 	 33

3.18 Open Loop block diagram of Furuta Pendulum VI 	 35

3.19 Block diagram of Furuta Pendulum subsystem 	 36

3.20 Front panel of the open loop Furuta Pendulum VI 	 38

3.21 State-space model of the Furuta Pendulum by the 'Linearize Subsystem' tool of
LabVIEW	 40

3.22 MathScript design steps for the Pole Placement control 	 41

3.23 Block diagram of the Pole Placement VI for the Furuta Pendulum 	 42

3.24 Front panel of the Pole Placement VI for the Furuta Pendulum 	 43

3.25 MathScript design steps for LQR control 	 44

3.26 Block diagram of the LQR VI for the Furuta Pendulum 	 44

3.27 Front panel of the LQR VI for the Furuta Pendulum 	 45

3.28 Scicos open loop block diagram of the Furuta Pendulum 	 47

3.29 Scicos SuperBlock containing non linear model of the Furuta Pendulum 	 48

3.30 Scicos open loop output for the arm angle (Black) and the pendulum angle
(Green) with initial conditions [1.57, 0.1] on angles 	 50

3.31 Scicos open loop output for the arm velocity (Black) and the pendulum velocity
(Green) with initial conditions [1.57, 0.1] on angles 	 51

3.32 Scicos block diagram for Full State Feedback design by Pole Placement 	 54

3.33 Scicos Pole Placement output for the arm angle (Black) and the pendulum angle
(Green) with initial conditions [1.57, 0] on angles 	 55

xi

LIST OF FIGURES
(Continued)

Figure	 Page

3.34 Scicos Pole Placement output for the arm velocity (Black) and the pendulum
velocity (Green) with initial conditions [1.57, 0] on angles. 	 55

3.35 Scicos block diagram for Full State Feedback design by LQR 	 57

3.36 Scicos LQR output for the arm angle (Black) and the pendulum angle (Green)
with initial conditions [1.57, 0] on angles 	 58

3.37 Scicos LQR output for the arm velocity (Black) and the pendulum velocity
(Green) with initial conditions [1.57, 0] on angles 	 58

3.38 Scicos block diagram for full order Observer design with Kalman Filter 	 60

3.39 Scicos Kalman Observer output for the arm angle (Black) and the pendulum
angle (Green) with initial conditions [0.78, 0] on angles. 	 61

3.40 Scicos Kalman Observer output for the arm velocity (Black) and the pendulum
angle (Green) with initial conditions [0.78, 0] on angles 	 62

3.41 Scicos output for the control signal generated with Kalman Observer 	 62

3.42 MapleSim Acausal model of the Furuta Pendulum 	 65

3.43 MapleSim probe outputs for the open loop Acausal model 	 66

3.44 The Furuta Pendulum custom component for open loop model 	 77

3.45 MapleSim block diagram for full state feedback with Pole Placement 	 83

3.46 MapleSim probe outputs for the Pole Placement design 	 84

3.47 MapleSim block diagram for full state feedback with LQR 	 90

3.48 MapleSim probe outputs for the LQR design 	 91

3.49 MapleSim block diagram for full order observer using Kalman Filter 	 92

3.50 MapleSim probe outputs for the Kalman Observer design 	 97

3.51 VisSim open loop block diagram for the Furuta pendulum 	 99

xii

LIST OF FIGURES
(Continued)

Figure 	 Page

3.52 VisSim open loop output for the arm angle and the pendulum angle with initial
conditions [1.57, 0.1] on angles 	 101

3.53 VisSim open loop output for the arm velocity and the pendulum velocity with
initial conditions [1.57, 0.1] on angles 	 101

3.54 VisSim block diagram for full state feedback design by Pole Placement 	 103

3.55 VisSim Pole Placement output for the arm angle and the pendulum angle with
initial conditions [1.57, 0] on angles 	 103

3.56 VisSim Pole Placement output for the arm velocity and the pendulum velocity
with initial conditions [1.57, 0] on angles 	 104

3.57 VisSim block diagram for full state feedback design by LQR 	 105

3.58 VisSim LQR output for the arm angle and the pendulum angle with initial
conditions [1.57, 0] on angles 	 106

3.59 VisSim LQR output for the arm velocity and the pendulum velocity with initial
conditions [1.57, 0] on angles 	 106

LIST OF SYMBOLS

9 	 Arm Angle

0 	 Pendulum Angle

Arm Velocity

Pendulum Velocity

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of the investigations reported in this thesis is to compare control design and

simulation efficiency of various software engines such as MATLAB-Simulink,

LabVIEW, VisSim, Scilab-Scicos, Maple-MapleSim and Mathematica-CSP. For

comparison study the Furuta pendulum with non-linear dynamics was chosen as

comparison platform. MATLAB-Simulink was chosen as reference being widely used

and dominant software engine for closed-loop control design and simulation. Different

state space Control techniques such as Full State Feedback with pole placement, Full

State Feedback with LQR and Kalman Full Order Observer were considered and were

implemented in each of these software engines. Based on different parameters like

learning curve, flexibility, control design tools, documentation, tech support and cost;

control design and simulation results of these different engines were compared with

MATLAB-Simulink.

1.2 Background Information

There are many software engines available for analysis and simulation of control and

dynamic systems. MATLAB-Simulink has been most dominant and widely accepted

software for control design, control simulation, analysis and modeling of dynamic

systems. Other softwares have been evolved with different approaches for modeling,

design and simulation of control for dynamic systems. Some software engines have

1

2

advantages and disadvantages over each other. Most of the control system engineers are

not familiar with key features offered by other software engines other than MATLAB-

Simulink. An attempt has been made in this thesis to highlight prominent features of

other softwares in comparison with MATLAB-Simulink as far as modern control

techniques such as state space Control are concerned. It is expected that comparison

study in this thesis would help control engineers to understand capabilities, advantages

and disadvantages of different control design and simulation softwares. Based on

outcomes of this thesis it would be easier for control engineers to pick correct and

efficient software engine as per their requirements of application. It would also serve as

comprehensive feedback to vendors of these various software engines. It could be treated

as case study to introspect these software engines for concerned vendors. For this case

study Furuta Pendulum a Non-linear dynamic system with considerable amount of

complexity has been used to demonstrate control design and simulation comparison study

with reference to MATLAB-Simulink.

CHAPTER 2

DYNAMICS OF NON-LINEAR FURUTA PENDULUM

In this chapter, the physical description and dynamics of non-linear Furuta pendulum

were presented. Physical descriptions consist of block diagram, physical arrangement and

different physical parameters associated with Furuta pendulum. This chapter also focuses

on equations of motion derived using Lagrangian method for Furuta pendulum.

2.1 Physical System Descriptions

The Furuta pendulum, or rotational inverted pendulum, consists of a driven arm which

rotates in the horizontal plane and a pendulum attached to that arm which is free to rotate

in the vertical plane. Figure 2.1 shows physical arrangement of Furuta pendulum system.

Figure 2.1 Furuta pendulum physical system.

3

4

The motion of the system is uniquely defined by the angular displacement q of the arm

from the reference point and the angle 0 that the pendulum rod makes with respect to the

vertical plane. The Furuta pendulum was first developed at the Tokyo Institute of

Technology by Katsuhisa Furuta and his colleagues. The pendulum is underactutated and

extremely non-linear due to the gravitational forces and the coupling arising from the

Coriolis and centripetal forces. For the Furuta pendulum, m is the mass of the pendulum

bob, J is the moment of inertia of the arm, r is the radius of the arm, L is the length of the

pendulum rod, 9 is the angular displacement of the arm, 0 is the angle of the pendulum

rod with respect to vertical plane and u=e - the motor voltage. [1]

2.2 Equations of Motion by Lagrangian Method

The equations governing the motion of a complicated mechanical system, such as an

inverted pendulum on rotational arm, can be expressed very efficiently through the use of

a method developed by the eighteenth-century French mathematician Lagrange. The

differential equations that result from the use of this method are known as Lagrange's

equations and are derived from Newton's laws of motion.

The fundamental principle of Lagrange's equations is the representation of the

system by a set of generalized coordinates having been selected as 9 and 0. After having

defined the generalized coordinates, the kinetic energy T is expressed in terms of these

coordinates and their derivatives 0 and 9, and the potential energy V is expressed in

terms of the generalized coordinates [2]. Next the Lagrangian function is formed,

L = T 	 ,, θ , ,19 .)— V (co ,9)

And finally, the Lagrange's equations for this system are written,

5

(2.1)

(2.2)

The Lagrangian function for Furuta Pendulum is written as,

Writing the above equations in matrix form [2],

6

(2.3)

For control design and simulation purposes following physical parameter values were

considered:

J=0.001N-m-sec2 L=0.2m r=0.3m m=0.05kg g=9.8m/sec²

Equation 2.3 was implemented in each software engine as discussed in Chapter 3.

CHAPTER 3

RESULTS OF VARIOUS SOFTWARE ENGINES

Chapter 3 deals with control design and simulation steps involved in implementation of

State space control techniques like Full State Feedback with pole placement, Full State

Feedback with LQR and Full Order Observer with Kalman Filter. This chapter presents

control design and simulation results of various softwares engines such as

MATLAB-Simulink, LabVIEW, Scilab-Scicos, Maple-MapleSim, VisSim and

Mathematica-Control System Professional (CSP) suite.

3.1 MATLAB-Simulink

MATLAB is a high-level technical computing language and interactive environment for

algorithm development, data visualization, data analysis, and numeric computation.

Simulink is an environment for multi domain simulation and

Model-based design for dynamic and embedded systems. MATLAB has dedicated

Control System Toolbox which has been used to design state space control for the Furuta

pendulum. It provides an interactive graphical environment and a customizable set of

block libraries that let you design, simulate, implement, and test a variety of time-varying

systems, including communications, controls, signal processing, video processing, and

image processing. Section 3.1 explains in detail open loop analysis as well as closed loop

state space control analysis for non-linear Furuta pendulum system.

7

8

3.1.1 Open Loop Analysis

Open loop analysis starts with modeling of Furuta pendulum system in Simulink based

on available dynamics which are explained in Chapter 2. Simulink software models,

simulates, and analyzes dynamic systems. It enables you to pose a question about a

system, model the system, and see what happens. With Simulink, it

is easy to build models from scratch, or modify existing models to meet system needs.

Simulink supports linear and non-linear systems, modeled in continuous time, sampled

time, or a hybrid of the two.

Simulink provides a graphical user interface (GUI) for building models as block

diagrams, allowing drawing models as with pencil and paper. Simulink also includes a

comprehensive block library of sinks, sources, linear and non-linear components, and

connectors. If these blocks do not meet system needs, however, it also allows creating

customized blocks. The interactive graphical environment simplifies the modeling

process, eliminating the need to formulate differential and difference equations in a

language or program. Model-based design is a process that enables faster, more cost-

effective development of dynamic systems, including control systems. In Model-based

design, a system model is at the center of the development process, from requirements

development, through design, implementation, and testing. The model is an executable

specification that is continually refined throughout the development process. After model

development, simulation shows whether the model works correctly. [3]

Initial steps of this process are performed outside of the Simulink software before

building Furuta pendulum model. Furuta pendulum system has been defined in

Section 2.1. In Section 2.2 whole system has been developed in terms of mathematical

9

equations of motion with associated system parameters. In order to model Furuta

pendulum in Simulink it is necessary to create M-file (furuta.m) containing function

`furuta'. Function `furuta' defines mathematical equations for acceleration components

(dv) related to arm and pendulum. M-file is a script containing MATLAB commands.

MATLAB has separate Editor to create and debug M-files, which are programs to run

MATLAB functions. The Editor provides a graphical user interface for text editing as

well as for M-file debugging. It also contains Furuta pendulum system parameters and

definition of state variables.

M-file (inside MATLAB Fcn block in Figure 3.1.1):-

%% function dv=furuta(x)
function dv=furuta(x)
%% Data %%
J=.001;
L=.2;
r=.3;
m=.05 ;

g=9.8;
c1=m*L*r;
c2=m*L^2;

c3=c2/2;
c4=m*g*L;
a=.01;
%% end of data
%%%%%%%%%%%% definitions of variables
ph=x(1); 	 % phi not used
th=x(2); 	 % theta
dph=x(3); 	 % phi dot
dth=x(4); 	 % theta dot
%%%%%%%%%%% right-hand side
f1=-c1*sin(th)*dth^2 -c2*sin(2*th)*dth*dph - a*dph + u ;
f2=c3*sin(2*th)*dph^2 +c4*sin(th);
f=[f1 ; f2];
M=[J+c2*(sin(th))^2+m*r^2,-c1*cos(th);

-c1*cos(th),c2] ;

dv=inv(M)*f ;
end

10

Figure 3.1 Simulink open loop block diagram.

Figure 3.1 shows Simulink block diagram for open loop model of Furuta

pendulum system. It consists of Furuta pendulum subsystem. A subsystem is a set of

blocks that have been replaced by a single block called a Subsystem block. A Subsystem

block represents a subsystem of the system that contains it. The number of input ports

drawn on the Subsystem block icon corresponds to the number of in port blocks in the

subsystem. Similarly, the number of output ports drawn on the block corresponds to the

number of out port blocks in the subsystem.

11

Figure 3.2 Simulink model for non linear Furuta pendulum system.

Figure 3.2 shows Simulink model for non linear Furuta pendulum dynamic

system. It consists of various Simulink blocks like MATLAB Fcn block, Integrators and

Mux. The MATLAB Fcn block applies the specified MATLAB `furuta' function to the

input. The output of the function must match the output dimensions of the block or an

error occurs. This MATLAB Fcn block contains MATLAB function `furuta' defined

earlier in furuta.m file. The dialogue box of MATLAB Fcn block has been used to

specify MATLAB function `furuta'.

The Integrator block outputs the integral of its input at the current time step. The

Integrator equation represents the output of the block y as a function of its input u and an

initial condition yo, where y and u are vector functions of the current simulation time t. As

shown in Figure 3.2 Simulink model of the Furuta pendulum employs two cascaded

Integrator blocks to give positions and velocities associated with arm and pendulum

respectively. Input to first Integrator block is function `dv' which is matrix of dimension

12

2* 1. Output of first integrator gives velocities of arm and pendulum. Similarly, output of

second Integrator block gives positions of arm and pendulum. The Mux block combines

its inputs into a single vector output. An input can be a scalar or vector signal. All inputs

must be of the same data type and numeric type. The elements of the vector output signal

take their order from the top to bottom, or left to right, input port signals. So output of

Mux block after second integrator is a state vector containing arm angle, pendulum angle,

arm velocity and pendulum velocity. It feeds back this vector along with control signal

`u' to MATLAB Fcn using another Mux block. The Scope block displays its input with

respect to simulation time. [3]

Figure 3.3 Simulink open loop output for the arm angle and the pendulum angle with
initial conditions [1.57, 0.1] on angles.

13

Once modeling of Furuta Pendulum system with Simulink has been done, system

is all set for running simulation. The simulation was run for 10 seconds. As shown in

Figure 3.3, transient responses for the positions of the arm and the pendulum have been

obtained. As per initial condition the arm position takes off from 1.57 radians and after

few oscillations it settles down to its stable vertically downward position. The pendulum

rod starts with 0.1 radians as per given initial condition and it moves through angle of

3.14 radians and it settles there after tumbling down from the initial position. Since there

is no control in this simulation, the arm could not balance the inverted pendulum with the

given initial conditions. Initial conditions are specified on second Integrator i.e., [1.57,

0.1] which gives out positions. Open loop simulation validated facts about positions of

arm and pendulum rod as per requirements.

Arm Velocity
Pendulum Velocity

14

Figure 3.4 Simulink open loop output for the arm velocity and the pendulum velocity
with initial conditions [1.57, 0.11 on angles.

Figure 3.4 shows transient responses for arm and pendulum velocities which have

been obtained after running simulation for 10 seconds. As per Furuta pendulum open

loop behavior both arm and inverted pendulum should settle down after some time. As

obtained in Figure 3.4 both arm velocity and pendulum velocity are settled to zero

approximately after 2.7 seconds with few initial vigorous oscillations. The velocity

behavior of Furuta pendulum has been validated with Simulink open loop simulation.

15

Linearization:

MATLAB Control System Toolbox code to obtain the linearized state space dynamics of

the system is `linmod'. Linmod computes a linear state space model by linearizing each

block in a model individually. Following command has been executed to obtain

linearized State space model of Furuta Pendulum. [4] [5]

>> [A, B, C, D] =linmod (' FurutaDyn)

`Linmod' obtains linear models from systems of ordinary differential equations described

as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using

Inport and Outport blocks. The linearized dynamics of the Simulink open loop

`FurutaDyn' model as shown in Figure 3.1.2 are obtained as below:

'o 0 1 0" r 	 0

A =
0 0 0 1

B =
0

0 147 —10 0 1000

0 269.5 —15 0, \1500)

1 	 0 0 0" r 0 \

C
0	 1 0 0

D =
0

0	 0 1 0 0

0	 0 0 1) 0)

[A, B, C, D] = linmod (' FurutaDyn ' , x, u) obtains the linearized model

of system around an operating point with the specified state variables x and the input u.

Since x and u are omitted, the default values are zero.

16

Stability:

The stability of a system is determined by the location of its poles. MATLAB command

e ig (A) returns a vector of the eigen values of matrix A. [5]

>> eig(A)

ans =

0

-21.4831

13.2097

-1.7267

Since one of the eigen values is in the right half of s-plane the Furuta pendulum is

unstable, confirming the physics. The rank of Controllability matrix is equal to the order

of A. Hence there is no uncontrollable state and the system is completely controllable.

The rank of Observability matrix is equal to 4 i.e., the order of A. Hence there is no

unobservable state and the system is completely observable. Since Furuta pendulum

system is completely controllable as well as observable it is all set for closed loop

analysis with state space control techniques.

17

3.1.2 Full State Feedback design by Pole Placement

Section 3.1.2 presents Full State Feedback control design with Pole Placement for the

Furuta pendulum system. It also shows simulation results obtained with Pole Placement

control design. For Pole Placement given the multi-input Furuta pendulum system and a

vector 'eel' of desired self-conjugate closed-loop pole locations, MATLAB command

`place' computes a gain matrix 'G' such that the state feedback u= -Gx places the

closed-loop poles at the locations of 'eel'. In other words, the eigen values of A-BG

match the entries of 'eel' . Complete M-file to compute Full State Feedback gain `G' is

as shown below. [5]

M-file:

%%%% Linearized Model Using linmod %%%%%%1
[A,B,C,D]=linmod('FurutaDynl)
%%%%%%%%%%% Pole Placement %%%%%%%%%%%%%
eig(A)
ec1=[-10+10j -10-10j -1 -5.56]
G=place(A,B,ecl)
Output:
G=

-0.0227 	 0.4193 	 -0.0390. 	 0.0371

G = place(A,B,ecl) computes a feedback gain matrix 'G' that achieves the desired

closed-loop pole locations -10+10j, -10-10j, -1, and -5.56, assuming all the inputs of the

plant are control inputs. The length of 'eel' must match the row size of A. The MATLAB

command 'place' works for multi-input systems and is based on an algorithm that

uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the

closed-loop poles to perturbations in A or B. [6]

Full State Feedback by Pole Placement

state

Furuta Pendulum

Control Velocities

Gain Positions

18

Figure 3.5 Simulink block diagram for Full State Feedback design by Pole Placement.

Simulink block diagram for Pole Placement control is as shown in Figure 3.5.

Furuta pendulum subsystem contains non linear model of Furuta system. The gain block

multiplies the input by a constant value (gain). The input and the gain can each be a

scalar, vector, or matrix. The value of the gain has been specified in the gain parameter.

The multiplication parameter lets you specify element-wise or matrix multiplication. For

matrix multiplication, this parameter also lets you indicate the order of the multiplicands.

The gain vector G = [-0.0227 0.4193 -0.0390 0.0371] will be multiplied with state vector

x. [6]

Arm Angle
Pendulum Angle

19

Figure 3.6 Simulink Pole Placement output for the arm angle and the pendulum angle
with initial conditions [1.57, 0] on angles.

Above Figure 3.6 shows transient responses for arm and pendulum positions with

Pole Placement. When the arm is made to return from 90 ° (n/2 radians) offset, it first

moves in the opposite direction by a small angle and finally comes to steady state in

about 6 seconds. The pendulum first falls down through a small angle and finally settles

down in about 2 seconds. Settling time of arm is longer than pendulum because arm has

to compensate for change in positions of pendulum.

Arm Velocity
Pendulum Velocity

20

Figure 3.7 Simulink Pole Placement output for the arm velocity and the pendulum
velocity with initial conditions [1.57, 0] on angles.

Transient responses for arm velocity and pendulum velocity have been observed

for Pole Placement as shown in above Figure 3.7. Velocity components for both of them

are initially high but it settles down in accordance with position components. Clearly,

arm velocity goes to zero in about 6 seconds and pendulum velocity goes to zero in about

2 seconds. Both position and velocity profiles validate fact that Pole Placement control

design worked successfully to balance inverted pendulum on rotational arm.

21

Figure 3.8 Simulink output for control signal generated with Pole Placement.

Above Figure 3.8 presents control signal profile obtained with Pole Placement

design. The control signal is initially a little high, but it soon becomes zero. The arm

position comes to steady state in about the same time as the control signal exists i.e., 6

seconds. This shows the perfect coordination of the states with the control signal.

22

3.1.3 Full State Feedback design by LQR

Section 3.1.3 describes Full State Feedback control design using Linear-quadratic (LQ)

state-feedback regulator for state-space system. It also presents simulation results for

LQR control design. M-file for LQR design is as shown below.

M-file:

%%%%%% 	 Linearized Model Using linmod %%%%
[A, B, C, D] =linmod (' FurutaDyn)
%%%%%%%%%%%% Full-State Feedback Using LQR
q1=1000
q2=100000
Q=diag ([q1, q2,0,0])
R=1
[G, M, Elq] =lqr (A, B, Q, R)
Output :
Q =

	

1000 	 0	 0 	 0

	

0 	 100000 	 0 	 0

	

0 	 0 	 0 	 0

	

0 	 0 	 0 	 0

R =

1

G=

-31.6228 339.9081 -25.6565 	 17.7497

MATLAB command [G, M, Elq] =lqr (A, B, Q, R) calculates the optimal gain

matrix G. In addition to the state-feedback gain G, lqr returns the solution s of the

associated Riccati equation and the closed-loop eigen values e = eig(A-B*G). Here `G'

is derived from `S' using M. State weighing matrix Q has been chosen such that it weighs

Full State Feedback with LQR

Control Positions

Constant Furuta PendulumCompensate

Gain

C=eye(4)

2 '

Velocities

23

pendulum angle greater than that of an arm angle since pendulum angle has greater

impact on overall system performance. [4] [5] [6]

Figure 3.9 Simulink block diagram for Full State Feedback design by LQR.

Simulink block diagram for LQR control is as shown in Figure 3.9. Gain block

contains 'C' matrix which feeds back all output states with negative feedback.

Compensator subsystem contains another Gain block which contains optimal gain G

calculated using above M-file. Constant block provides zero as reference input.

Arm Angle
Pendulum Angle

24

Figure 3.10 Simulink LQR output for the arm angle and the pendulum angle with initial
conditions [1.57, 0] on angles.

Above Figure 3.10 shows transient responses for arm and pendulum positions

with LQR control. When the arm is made to return from 90° (n/2 radians) offset, it first

moves in the opposite direction by a small angle and finally comes to steady state in

about 4 seconds. The pendulum first falls down through a small angle and finally settles

down in about 2 seconds. It has been observed for LQR design an arm position comes to

zero quicker than Pole Placement control.

Arm Velocity
Pendulum Velocity

25

Figure 3.11 Simulink LQR output for the arm velocity and the pendulum velocity with
initial conditions [1.57, 0] on angles.

Transient responses for arm velocity and pendulum velocity have been observed

for LQR as shown in above Figure 3.11. Velocity components for both of them are

initially high in opposite direction but it settles down quickly in accordance with position

components. Clearly, arm velocity goes to zero in about 2.2 seconds and pendulum

velocity goes to zero in about 1.1 seconds. It shows that LQR control design is faster

than that of Pole Placement control. Both position and velocity profiles validate fact that

LQR control design worked successfully to balance inverted pendulum on rotational arm.

26

Figure 3.12 Simulink output for control signal generated with LQR.

Figure 3.12 shows profile of control signal generated with LQR design. Controls

signal looks pretty higher initially and distorted around zero level. Pole Placement control

signal was much smoother than that of LQR control.

27

3.1.4 Full Order Observer Design using Kalman Filter

Section 3.1.4 presents Full Order Observer design with Kalman filter. It also describes

simulation results for Kalman Observer. M-file to design Full State Feedback gain and

Observer State space dynamics is as shown below.

M-file:

% %%%%%% Full State Feedback Using LQR
q1=1000
q2=100000
Q=diag([q1,q2,0,0])
R=1
[G,M,Elq]=lqr(A,B,Q,R)

% % % %%% Full Order Kalman Filter
V=0.02
W=eye(2)
C=[1 0 0 0;0 1 0 0]
[K, P, EKF]=1qe(A,B,C,V,W)
Cc=G
Ac=A-B*G-K*C
Bc=K
Dc=[0,0]
Ecom=eig(Ac)
comp=ss (Ac, Bc, Cc, Dc)
tf(comp)

MATLAB command 1 1 qe ' designs Kalman estimator for continuous-time systems with

unbiased process noise w and measurement noise v with co-variances. In above M-file

[K, P, EKF]= 1 qe (A,B,C,V, W) returns the observer gain matrix K such that the

stationary Kalman filter produces an optimal state estimate x_e of x using the sensor

measurements y. [4] [5]

Furuta—Full Order Observer

Control Positions

state

Compensator Furuta Pendulum

Velocities

28

Figure 3.13 Simulink block diagram for full order Observer design with Kalman Filter.

The gain block contains matrix C= [1 0 0 0; 0 1 0 0] which feedbacks an arm and

pendulum position to Kalman Observer. Compensator sub-system contains state space

model block as shown in Figure 3.13 for an Observer dynamics. Kalman Observer

dynamics Ac, Bc, Cc, Dc have been specified inside parameter spaces of state space

model. Observer system matrix contains state feedback gain matrix `G' and Observer

gain matrix `1(' i.e. Ac=A-B*G-K*C. [6]

29

! ! ! ! t::;, ! ! ! t ! ! !! ::!!
1 1 1 1 l! 1 1

2_5 r--- .- --- - ~ - -- ----- ~-- ------r --- -- ---~ - ----- --~ -- --- -- -~",,---.L.-.---L.--_r:;- - --- ---.....

: : : : : : Arm Angle
: : : : : : Pendu lum Angle
iii ii i

21-- --- --- -r-------- r--------~ --- --- --r------ --r-- --- -- -r'----..-------.-----' ---- ----
I I I I I I

! ! ! ! ! !
iii iii . ,

L5 r-- ----- -:-- --- -- --r-- -- --- -:- ----- ---:- --- --- --:- -- --- -- -:--- --- ---:----- --- -:- -- ---- -:-- --- ---.-
i : ~ ! ! ! : ! !
!! !!!:!!

~ ! ! ! !!:!!
.,8 , ---- --- - ~ - -- --- -- ~-- -- --- - ~ --- -- ---~ --- --- --~ -- --- -- -~- ---- ---~-- -- --- -~ --- -- ---1----- ----

~ ! ! ! ! ! ! ! ! ! @ I I I I I I • , I

~(0_' -l\-- --. -i(----- --t-- -- ----i --- ---__ L - -- - -- --: -- --- -- _L_ - - -- - __ L_ -- --- _L_ -- - - -- -: - --- ----

< i i 1 i
o --- - .. L_ ----~~-==~-+-----!!----+------if----+----f----I

i~ ! i i
1I !! 1 v , !! ! .

-0_5 ------- -:-- -------:--- ------: --- -----: ------ --: -- --- ---:- - ------- : -- ------:- --------:-- --- ---

! ! ! ! ! ! : ! !
i . iii I ii 1
iii ii i ii i

-1 -- -- - -- -:- -- - - - -- :--- -- --- -: --- -- - --:- - -- - -- --:- -- --- -- - :-- - - -- - -- :--- -- --- - : - -- - - -- -!-- --- ----
! ! ! ! ! ! : : ~
~ ~ ! ! ! ! : !
: : : : : : : :
ii i iii i i i

-L50!;----7------,2!;------+3 ---74 ----!---~6---~7----:a---,---:g.:--~ta

Time

Figure 3.14 Simulink Kalman Observer output for the arm angle and the pendulum
angle with initial conditions [1.57, 0] on angles.

Transient responses for an arm position and pendulum position with Kalman Full

Order Observer in feedback are as shown in Figure 3. 14. Assuming both sensors of equal

accuracy, spectral density v is taken to be of a small value. With an initial condition of

90° (rc12 radian), the arm moves to a small angle in the opposite direction and then comes

to steady state in about 3.2 seconds. The pendulum also deflects by some angle before

coming to zero in about of 2 seconds. Since both positions are settled at zero it verifies

fact that Kalman Observer design successfully balanced inverted pendulum on an arm.

10,-----,-----,-----,-----,-----,-----,-----,-----,-----,-----, :! : !
1 i ,---~I~----~----~I -,

1 i Arm Velocity i! endulu~ velocit~
I I I I • I I I I

S .-----~--------~--------~ -------~--------}--------~-------4-------- ~--------~-------:

'" .~
'u o
Q)
;> 0 - - --- -T-:::-::-:-=-=1'r~--:.---+-----;---:.----:.----:.----~---_l

i a !
:; !
o(0

c:: :
~ :

o
o
o

~ 1 I 1
.~ ------j--------r--------r-------j--------r--------r-------1--------r--------r-------

I I I I I I I I I

1 1 1 1 ~ 1 1 1 1
I I I I • I I I I
I I I I I I I I I
I I I I • I I

: 1 1 1 : 1 :
I , I I • I I

~ ! ! ! : ! !
1 1 1 1 : 1 1
I I I I • , ,

! ! ! ! ~ ! ! I I
.10 r- ______ J ________ t ________ L _______ J ________ ! ________ L ___ ____ J ________ L ________ ~ ______ _

.,s0~----..l..-----_=_i ----7_ i---7-----7'-i ----7_ i -----=-----7'-i ____ -!-i ____ --:'.
Tim 10

30

Figure 3.15 Simulink Kalman Observer output for the arm velocity and the pendulum
velocity with initial conditions [1.57, 0] on angles.

Figure 3. 15 shows transient responses for an arm velocity and pendulum velocity

with Kalman Observer in feedback. These are estimated arm and pendulum velocity

states from an arm and pendulum positions feedbacks. Position and velocity profiles

validate fact that Kalman Observer can estimate velocity states based on position

feedbacks and in turn it could successfully balance inverted pendulum on an arm.

! ! 1 ! t ! ! ! ! 04 r-- -- --- --1--- -- --- ... - -------.... -- --- -- ~-- -- --- -.6 -------- - --- -- - __ -- -- ___ -+ ________ I- ______ _

. ! ~ ! ! ! ! ! ! !
I I I I I I I
I I, I I I I

1 ~ 1 : 1 : 1
• I I I I I I

: : : 1 1 1 1 : :
0 .3 1- -- --- --l- -- -- --- 1- -------r -- --- -- 1-- -- --- -1-------- r- --- -- --r -- --- -- 1------- -r --- ----..

: : : 1 : 1 1 : :
: : : : I : : I :

: : : : I : : I :

0 .2·-- -- --- --!--- -- --- ~- -------~ -- ----- ~- - -- --- - ~ -------- ~- --- -- - ~ ________ ~----- -- _~ ___ ___ _
I I I I I I I I I
I I I I I I I I I

: : : 1 1 1 : : :
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I I I

0 .1 - -- --- --:--- -- -- - ~- -------~ -- --- - - -!- - -- -- - -~ --- _____ :.. _ - _____ -! ________ ! ___ _____ :.. ___ ___ _
:: : I :

:: : : , ,
: :
1 :

) - -----. -:--------1--· ·· : ~
o ': :, ' b :
c: : I :

o 1 :
U I I I I I

~. I - -- - .-- --1--- -- ---.!- -------t- -- --- -- ..!-- -- --- -.! --- _____ !.. _______________ -. ________ ~ ______ _
I I I I I I I I ,

: : : : : I : I :

: : ~ :: : !
l : : : l : l
I I , , I I , I I

-0.2 - -- - -- --:--- -- --- .;. - -------:- -- --- -- ~-- -- --- -.;. -- ______ :- _______ -: ________ .;. ____ ____ :- ______ _
I I I I I I I • f ,

:
: , ,

• ~ • I ~ I I I I

-03 - -- --- --!--- -- --- f- -------~ -- --- -- ~-- -- --- -f -------- ~- --- -- -~- -- --- -- f------- -~ --- ----
, I , , I I I I I
I I I I I I I I I

! ! : ! ! ! ! ! :
I I I I I I I I I

! ! ! ! : ! ! ! :
I I I I I I I I I

-0.4 - -- --- --:--- -- ---..:.- -------~ -- --- -- ~-- -- --- -..:. -------- ~- - -- -- -~ ________ ..:. ________ ~ ______ _
I I I I I I I I I

iii Iii iii
o 2 5 7 10

Time

Figure 3.16 Simulink output for control signal generated with Kalman Observer.

31

Above Figure 3. 16 shows control signal generated by Kalman Full Order

Observer. The control initially follows a transient with oscillations about zero. It fi nally

reaches zero at 2.2 seconds. At this moment a steady state is attained by the system.

Control signal looks pretty high initially. It has been observed that states settle to steady

state in accordance with Observer control signal.

32

3.2 LabVIEW

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a software

package from National Instruments. The LabVIEW platform provides specific tools and

models to solve specific applications ranging from designing control algorithms to

deploying to hardware and can target any number of platforms from the desktop to

embedded devices. LabVIEW has dedicated control design and simulation tool boxes for

the frequency domain analysis, State space analysis and stochastic analysis. [7]

3.2.1 Open Loop Analysis

Control design and simulation are based on Virtual Instrumentation (VI) approach in

LabVIEW. Virtual instrumentation is applicable in different types of applications,

starting from the design to prototyping and deployment. LabVIEW streamlines the

system design with a single graphical development platform. VI approach is based on

the Model-based control design. It involves the four phases as mentioned below:

1. developing and analyzing a model to describe a plant

2. designing and analyzing a controller for the dynamic system

3. simulating the dynamic system

4. deploying the controller [8] [9]

Figure 3.17 shows different ways in which LabVIEW toolkits offer solutions to

each step in the Model-based control design process. In the case of Furuta pendulum,

Control Design and Simulation toolkits have been used to demonstrate different State

space control techniques.

Developing a
Plant Model

System Identification
Toolkit

Control Design

Control
Toolkit

Simulation

LabVIEW
Simulation

Module

Deployment

LabVIEW Real-Time
Module

LabVIEW

33

Figure 3.17 Using LabVIEW in Model-Based control design. [8]

The Control Design toolkit contains following palettes which provide full range of

functions useful for the state space control design. LabVIEW palettes are similar to

Simulink block library containing multi domain tools.

• The State space Model Analysis palette, with the following functions [8]:

o Controllability Matrix

o Observability Matrix

o Grammians

o Canonical State-Space Realization

o Balance State-Space Model (Diagonal)

o Balance State-Space Model (Grammians)

o Controllability Staircase

o Observability Staircase

o State Similarity Transform

• The state feedback design palette, with the following functions:

o Ackermann

o Pole Placement

o Linear Quadratic Regulator

o Kalman Gain

34

o State Estimator

o State-Space Controller

o Augment Output with States

Developing the Furuta Pendulum Model using LabVIEW:

LabVIEW programs are called virtual instruments (VIs). Controls are inputs and the

indicators are outputs. Each VI contains three main parts:

Front Panel — How the user interacts with the VI.

Block Diagram — The code that controls the program.

Icon/Connector — Means of connecting a VI to other VIs.

LabVIEW allows the user to build an interface by means of a set of tools and

objects. The user interface is known as the front panel. The front panel allows adding

code using graphical representations of the functions to control the front panel objects.

The block diagram contains this code. In some ways, the block diagram resembles a

flowchart. Users interact with the front panel when the program is running. Users can

control the program, change inputs, and see the data updated in real time. Controls are

used for the inputs such as, adjusting a slide control to set an alarm value, turning a

switch on or off, or to stop a program. Indicators are used as outputs. These may include

data, program states, and other information. Every front panel control or indicator has a

corresponding terminal on the block diagram. When a VI is run, values from the controls

flow through the block diagram, where they are used in the functions on the diagram, and

the results are passed into other functions or indicators through 'wires'. The Controls

palette has been used to place controls and indicators on the front panel. The Controls

35

palette is available only on the front panel. The Functions palette has been used to build

the block diagram. The Functions palette is available only on the block diagram. [9] [7]

Figure 3.18 shows block diagram of VI for the Furuta pendulum. It consists of

different blocks like non-linear Furuta model subsystem, Index Array Function, Build

array Function and Sim Time Waveform Function. Further non-linear Furuta model has

been expanded in Figure 3.20. It consists of Integrators, MathScript node, Index Arrays

and Build Array functions and controls for initial conditions on the arm angle and the

pendulum angle.

~ 1! 100 II
Halt? ~

IDId .. OO

Ph1i Initia~ ~ Phi Initial
I DDL .

~ Th Initial

Th Initial

states ~I---'"

Figure 3.18 Open Loop block diagram of Furuta Pendulum VI.

I Error ~

The MathScript window provides an interactive environment where the equations

can be prototyped and the calculations can be made. The MathScript node enhances

LabVIEW by adding a native text-based language for the mathematical algorithm

implementation in the graphical programming environment. The M-file scripts created in

other math software such as MA TLAB can be run with MathScript. The MathScript

36

allows you to pick the syntax you are most comfortable with to solve the problem.

Equations can be instrumented with the MathScript node for parameter exploration,

simulation, or deployment in a final application. MathScript has ability to import and

export m-files by right-clicking on the node. [7]

1 %%Need to construct Array of X
2 x = [ph, th, dph, dth, ul;
3
4 %% Data%%
5 J= .ool;
6 L= 2 ;
7 r= 3 ;
8 m= .05;
9 9=9.8;

10 c1=m*L*r;
11 c2=m*LJ\2;
12 c3=c2/2;
13 c4=m*g*L;
14 a= .Ol;
15 %% end of data
16 %%%%%%%%%%%% definition
17 ph=x(1); % phi not used
18 th=x(2); % theta
19 dph=x(3); % phi dot
20 dth=x(4); % theta dot
21 u=x(5); % control variable (mot
21
.,01 ~ I /II ~

~!

Initial va lues

Figure 3.19 Block diagram of FUluta Pendulum subsystem.

...

.....

?!

Concatenate
Inputs to Create
4x1 states ates

:i::llil . DBL]

Figure 3.19 shows MathScript node which contains similar M-file script that has

been used inside MAT LAB Fcn block of Simulink. The MathScript node defines the

dynamics and equations of motions of the non-linear Furuta Pendulum. The MathScript

node doesn' t require to form function 'Furuta' like the MATLAB Fcn block. The

MathScript node requires specifying inputs and outputs for equations of motions of the

37

Furuta pendulum system. The inputs and output for the Furuta pendulum MathScript

node are defined in the scalar form. It is necessary to define proper data type for the

output `dv' of the MathScript node. As shown in Figure 3.20 ph, th, dph, dth and u are

the inputs and dv is the output as defined in Section 2.2. Data type of `dv' has been set to

1D array. Acceleration component `dv' is a 2*1 matrix which goes through series of

cascaded Integrators.

The first integrator generates the angular velocities and the second integrator

generates the angular positions. The integrator integrates a continuous input signal using

the ordinary differential equation (ODE) solver specified in simulation. Integrator accepts

vector as well as scalar input similar to Simulink integrator. The initial conditions have

been defined as user defined control on front panel for the arm angle and the pendulum

angle. Outputs of both the Integrators have been given to the Build Array Function block.

It concatenates multiple arrays or appends elements to an n-dimensional array. Build

Array Function allows adding inputs by right clicking on it. Build Array Function

operates in one of the two modes depending on selection of 'Concatenate Inputs' from

the shortcut menu. After selection of 'Concatenate Inputs', the function appends all

inputs in order, forming an output array of the same dimensionality as the highest

dimension array input wired. It is similar to Mux block of Simulink. Output of Build

Array Function gives an array of 4*1 dimension containing four states of the Furuta

pendulum system. Further, outputs of these Integrators have been feedback to MathScript

node via Index Array Functions.

When the state array which is an output of the Build Array Function has been

wired to this Index Array function, the function resizes automatically to display index

38

inputs for each dimension in the array. One Index Array Function has been used for each

of the Integrator function. 0 and 1 have been specified as indexes for both Index Array

Functions. These indexes extract individual position and velocity components to be given

as inputs to MathScript node. Outside of the Furuta Pendulum s~bsystem another Index

Array Function has been used which generates the position and the velocity states of the

Furuta pendulum. These states have been displayed using the Sim Time Waveform

Function and waveform chart. The Sim Time Waveform Function plots a value versus the

simulation time on a waveform chart. Sim Time Waveform function is similar to scope

block in Simulink. [7]

u Phi Initial

~ 0 11.5708
Halt?

Th Initial

~ 01

Simulation Time

Phi.

Theta.

10 o

Figure 3.20 Front panel of the open loop Furuta Pendulum VI.

dPhi •

~heta •

10
Simulation Time

Figure 3.20 shows front panel of Lab VIEW for the open loop Furuta Pendulum

VI. It consists of waveform charts, user control for control signal 'u' and initial condition

controls for the arm angle and the pendulum angle. For open loop response simulation of

the Furuta Pendulum control signal 'u' has been set to O. With initial conditions 1.5708

39

radian on the arm angle and 0.1 radian on the pendulum angle, wave charts on front panel

of LabVIEW showed same transient responses as Simulink scope. The pendulum fall

down by moving through an angle of 3.14 radian. After few oscillations arm settled down

to its initial position. Also, both the arm velocity and the pendulum velocity settled down

to zero which corresponds to the angular positions.

Linearization:

The Control Design and Simulation tool box of LabVIEW contains the tool 'Linearize

Subsystem' for linearization of subsystem. As shown in Figure 3.20 the non-linear model

of Furuta Pendulum has been saved as another VI known as furuta non-linear model. The

Linearize Subsystem tool dialogue box allows selecting this new VI for linearization

process. This tool also provides various options to provide trimmed operating points,

initial inputs, initial outputs and initial states. After clicking on 'Linearization' tab it

gives state space model of the Furuta Pendulum system as shown in Figure 3.21. It

doesn't match with the state space model obtained in MATLAB with `linmod' command.

[7]

40

Figure 3.21 State-space model of the Furuta Pendulum by the 'Linearize Subsystem'
tool of LabVIEW.

3.2.2 Full State Feedback design by Pole Placement:

The Section 3.2.2 presents full state feedback control design by pole placement for the

Furuta Pendulum system. The Control Design and Simulation tool box of LabVIEW has

been used for Pole Placement design. This section also shows simulation results obtained

with LabVIEW for Pole Placement control design.

41

Figure 3.22 MathScript design steps for the Pole Placement control.

As shown in Figure 3.22 MathScript node has been used to calculate the full state

feedback gain `k'. MathScript node accepts MATLAB functions similar to the M-file

that has been used to calculate full state feedback gain 'G'. Front panel shown in Figure

3.23 provides comparison between caculation of full state feedback gain using state space

model obtained with MATLAB as well as LabVIEW. It has been verified with results

that controller gain values are same with reshuffled order. With LabVIEW user can not

control state variable numbers that is output matrix 'C'. After remapping of gain vector,

controller gain k= [-0.0227 0.4193 -0.0390 0.0371] has been used with the CD

State Feedback Controller VI to implement state feedback control law u= -Kx. The CD

State Feedback Controller VI implements a state-space controller where the controller

action equals —Controller Gain States.

Full State Feedback by Pole Placement'

Controller Gain

Single Output

Th Initial

anglesPhi Initial,

42

Figure 3.23 Block diagram of the Pole Placement VI for the Furuta Pendulum.

Figure 3.23 shows the block diagram of the pole placement VI for the Furuta

Pendulum system. It is similar to open loop VI of the Furuta Pendulum except CD State

Feedback Controller VI in feedback loop. Figure 3.25 shows front panel of the Pole

Placement VI for the Furuta Pendulum system. It shows transient responses of the arm

position (Phi), pendulum position (Theta), arm velocity (dPhi), pendulum velocity

(dTheta) and control signal (u). All these transient responses are same as compared to

Simulink.

43

Figure 3.24 Front panel of the Pole Placement VI for the Furuta Pendulum.

3.2.3 Full State Feedback design by LQR:

The Section 3.2.3 describes Full State Feedback control design using Linear-quadratic

(LQ) state-feedback regulator for state-space system. It also presents simulation results

for LQR control design. Figure 3.25 shows MathScript node block which has been used

to calculate full state feedback gain 'G' using linear quadratic equations. The `lqr'

command from MATLAB is compatible with MathScript node. As a result, whole M-file

code which was used in MATLAB has been imported in MathScript node. The front

panel shown in Figure 3.25 gives LQR controller gain vector that is

G= [-25.6565 17.7497 -31.6228 339.9081]. It is similar as compared to MATLAB LQR

full state feedback gain vector except reshuffled order. This change in order is due to

difference in state space model. After remapping of gains,

G = [-31.6228 339.9081 -25.6565 17.7497] has been used as LQR controller gain.

LQR Controller Gain

44

LQR Controller Gain

Figure 3.25 MathScript design steps for LQR control.

!Full State Feedback design by LORI

Controller Gain

Single Output

Figure 3.26 Block diagram of the LQR VI for the Furuta Pendulum.

45

Figure 3.27 Front panel of the LQR VI for the Furuta Pendulum.

Figure 3.26 shows the block diagram of the LQR VI for the Furuta Pendulum

system. It is same as the Pole Placement VI of the Furuta Pendulum with CD State

Feedback Controller VI in feedback loop. Figure 3.27 shows front panel of the LQR VI

for the Furuta Pendulum system. It shows transient responses of the arm position (Phi),

pendulum position (Theta), arm velocity (dPhi), pendulum velocity (dTheta) and control

signal (u). All these transient responses are same as obtained in Simulink.

46

3.3 Scicos-Scilab

The Section 3.3 presents the open loop and the close loop analysis of the Furuta

Pendulum system using an open source Scicos-Scilab software engines. Scicos is a

graphical dynamical system modeler and simulator developed in the Metalau project at

INRIA, Paris-Rocquencourt center. Scicos is developed in and distributed with the

scientific software package ScicosLab. ScicosLab is a free software package providing a

multi-platform environment for scientific computation. ScicosLab is an extended Scilab

version, the latest stable and tested version of Scicos . With Scicos, it is possible to create

block diagrams to model and simulate the dynamics of hybrid dynamical systems and

compile models into executable code.

Scilab is a high-level, numerically oriented programming language. The language

provides an interpreted programming environment, with matrices as the main data type.

By utilizing matrix-based computation, dynamic typing, and automatic memory

management, many numerical problems may be expressed in a reduced number of code

lines. As the syntax of Scilab is similar to MATLAB, Scilab includes a source code

translator for assisting the conversion of code from MATLAB to Scilab. Scilab is

available free of cost under an open source license. [10]

3.3.1 Open Loop Analysis

The Section 3.3.1 presents the open loop analysis of the Furuta Pendulum using

ScicosLab 4.4b7. It shows modeling of the Furuta Pendulum using Scicos tools. Scicos

(Scilab Connected Object Simulator) is a Scilab package for modeling and simulation of

dynamical systems including both continuous and discrete sub-systems. It is quite

47

similar to Simulink and LabVIEW Simulation module. The blocks that are used to build

the mathematical model to be simulated are organized in palettes. Figure 3.28 shows

Scicos block diagram of the open loop Furuta pendulum model. It has been devised using

different blocks like Constant block, SuperBlock, Demux and Scope from

palettes. The SuperBlock opens up a new Scicos window for editing a new block

diagram. This diagram describes the non linear model of Furuta Pendulum. This

SuperBlock is similar to subsystem block of Simulink. The Constant block is a constant

value generator. It generates control signal with zero value which is input to the Furuta

Pendulum SuperBlock. The Scope block is used to plot the position and velocity signals

as the simulation runs. The outputs of the SuperBlock are states which are passed through

Demux block. It splits the state vector into angular positions and angular velocities. [10]

[12]

Figure 3.28 Scicos open loop block diagram of the Furuta Pendulum.

48

Figure 3.29 shows the Furuta Pendulum SuperBlock. It consists of different

blocks like Scifunc, Integrators and Mux. The integrator is used to time-integrate signals

that are time-derivatives of the state-variables of the system. The integrator outputs are

then state-variables of the system. The initial conditions for the arm and the pendulum are

set on the second integrator. The Mux block (on the Branching palette) is used to merge

number of scalar signals into to be plotted in one Scope. The Scifunc block can realize

any type of Scicos block. The function of this block is defined interactively using

dialogue boxes and in Scilab language. During simulation, these instructions are

interpreted by Scilab; the simulation of diagrams that include these types of blocks is

slower. It is similar to MATLAB Fcn block available in Simulink. The Scifunc block

contains non linear dynamics of and equations of motion of the Furuta pendulum system.

[12] [13]

Figure 3.29 Scicos SuperBlock containing non linear model of the Furuta Pendulum.

49

Different parameters like number of input-out ports have been specified inside dialogue

box of Scifunc block. It also contains following Scilab code describing equations of

motions of the Furuta pendulum. [10] [11]

J=.001;
L=.2;
r=.3;
m=.05;
g=9.8;
c1=m*L*r;
c2=m*L^2;
c3=c2/2;
c4=m*g*L;
a=.01;
//
x=u1

ph=x (1) ; 	 // phi
th=x (2) ; 	 // theta
dph=x (3) ; 	 // phi dot
dth=x (4) ; 	 //theta dot
u=x (5) ;
f1=-c1*sin (th)*dth^2 -c2*sin (2*th) *dth*dph - a*dph + u ;
f2=c3*sin (2*th) *dph^2 +c4*sin (th) ;
f= [fl; f2] ;
M= [J+c2* (sin (th)) ^2+m*r^2, -c1*cos (th) ;

-c1*cos (th) , c2] ;
dv=inv (M)*f ;
y1=dv

Figure 3.31 shows the transient responses for positions of the arm and the

pendulum. As per initial condition the arm position takes off from 1.57 radians and after

few oscillations it settles down to its initial position. The Pendulum rod starts with

0.1 radians as per given initial condition and it moves through angle of 3.14 radians and it

settles there after tumbling down from initial position. This position behavior of the

Furuta Pendulum is exactly same as observed in Simulink open loop simulation.

50

Arm ang I e(BI ack) & Pendulum ang I e(Green)

Figure 3.30 Scicos open loop output for an Arm angle (Black) and a Pendulum angle
(Green) with initial conditions [1.57, 0.1] on angles.

Figure 3.30 shows transient responses for the arm and the pendulum velocities

which have been observed after running simulation for 10 seconds. As per Furuta

Pendulum open loop behavior both arm and inverted pendulum should settle down after

some time. As shown in Figure 3.31 both the arm velocity and pendulum velocity are

settled to zero approximately after 2.7 seconds with few initial vigorous oscillations. The

velocity behavior of the Furuta pendulum in Sciocs is exactly same as observed with

Simulink open loop simulation. Both position and velocity open loop behavior of the

Furuta system in Scicos is exactly similar to Simulink open loop outputs.

Arm Velocity(Black) & Pendulum Velocity(Green)

51

Figure 3.31 Scicos open loop output for the arm velocity (Black) and the pendulum
velocity (Green) with initial conditions [1.57, 0.1] on angles.

Linearization:

Scilab has lincos' command similar to `linmod' command in MATLAB for linearization.

The lincos command constructs a linear state-space system by linearizing a model given

as a Scicos diagram. The output is a Scilab data structure of type continuous-time state-

space linear system. The state space model is obtained by executing below Scilab

commands. The state space model obtained in Scilab is same as that of LabVIEW. [10]

Scilab Code:

-load pend.cos

-lincos(scs m)

ans =

	

ans(1) 	 (state-space system:)

!lssABCDX0 dt !

ans(2) = A matrix =

- 10. 	 0. 	 0. 	 147.
- 15. 	 0. 	 0. 	 269.5

	

1. 	 0. 	 0. 	 0.

	

0. 	 1. 	 0. 	 0.

ans(3) = B matrix =

1000.
1500.
0.
0.

ans(4) = C matrix =

	

0. 	 0. 	 1. 	 0.

	

0. 	 0. 	 0. 	 1.

	

1. 	 0. 	 0. 	 0.

	

0. 	 1. 	 0. 	 0.

ans(5) = D matrix =

0.
0.
0.
0.

ans(6) = X0 (initial state) =

0.
0.
0.
0.

ans(7) = Time domain =

52

53

3.3.2 Full State Feedback design by Pole Placement

The Section 3.3.2 presents full state feedback control design with Pole Placement for the

Furuta Pendulum system. The Control Design Toolbox of Scilab has been used for Pole

Placement design. It also shows simulation results obtained with Scicos for Pole

Placement control design. Block parameters can be modified by opening the block

dialogs. This can be done using the Open/set button. Most blocks have dialog menus

which can be used to set or modify block parameters. These parameters can be defined

using valid Scilab expressions. Scilab variables can be used in the definition of these

expressions if they are already defined in the context of diagram. These expressions are

memorized symbolically, and then evaluated. [11]

The context of the diagram can be edited by selecting the Context button. The

context is evaluated by the Eval button. This is necessary only if the context modification

includes a change in the value of a variable previously used in the definition of a block

parameter. Scilab. has 'ppol' command which returns a gain matrix K such that the eigen

values of A-B*K are desired pole locations. The pair (A, B) must be controllable. If the

desired poles are complex numbers then it must appear in conjugate pairs. The Scilab

code to compute gain matrix K has been shown below. It has been used in the context of

the Figure 3.32 to run the Pole Placement control. It is quite similar to M-file script of

MATLAB. [11] [14]

Scilab Code:

54

Figure 3.32 Scicos block diagram for Full State Feedback design by Pole Placement.

Figure 3.32 shows the block diagram of Pole Placement control for the Furuta

Pendulum system. It is same as compared to the Simulink Pole Placement block diagram.

The Gain block multiplies the input state vector by matrix gain. After remapping of gain

matrix, K = [-0.0227 0.4193 -0.0390 0.0371] has been used to implement state feedback

control law u= -Kx. Figure 3.33 shows transient responses of the arm position and the

pendulum position. The position behavior of the Scicos transients is same as that of

Simulink. Figure 3.34 shows velocity transients of the Furuta pendulum system for the

designed Pole Placement control. It is same as obtained in Simulink. The Scope block of

Scicos has Graphics Editor which provides great flexibility for axes labeling, simulation

time, polyline color and defining figure title. This is an advantage over Simulink scope

block. [12] [14]

55

Figure 3.33 Scicos Pole Placement output for the Arm angle (Black) and the Pendulum
angle (Green) with initial conditions [1.57, 0] on angles.

Figure 3.34 Scicos Pole Placement output for the Arm velocity (Black) and the
pendulum velocity (Green) with initial conditions [1.57, 0] on angles.

56

3.3.3 Full State Feedback design by LQR:

The Section 3.3.3 describes Full State Feedback control design using Linear-quadratic

(LQ) state-feedback regulator for state-space system. The Control Design Toolbox of

Scilab has been used to design LQR control. It also presents simulation results for LQR

control simulated using Scicos blocks. The Scilab code to design LQR control is as

shown below. It has been used in the context of the Figure 3.37. [14]

The Scilab command `lqr' computes the linear optimal LQ full-state gain for the

plant P12=[A,B2,C1,D12] in continuous or discrete time. P12 is a syslin list (e.g.

P12=syslin('c',A,B2,C1,D12)). The cost function is 12-norm of z'*z with

z=C1 x + D12 u i.e. [x,u]' * BigQ * [x;u]

where	 [C1']	 [Q S]

BigQ= [] * [C1 D12] = []

[D12']	 [S' R]

57

The gain K is such that A + B2*K is stable. X is the stabilizing solution of the Riccati

equation. After remapping of gain matrix, K = [-31.6228 339.9081 -25.6565 17.7497] has

been used in the Gain block. Figure 3.35 shows the block diagram of LQR control for the

Furuta pendulum system. It is same as the Pole Placement control of the Furuta pendulum

with Scicos. [14]

Figure 3.35 Scicos block diagram for Full State Feedback design by LQR.

58

Figure 3.36 Scicos LQR output for the arm angle (Black) and the pendulum angle
(Green) with initial conditions [1.57, 0] on angles.

Figure 3.37 Scicos LQR output for the arm velocity (Black) and the pendulum velocity
(Green) with initial conditions [1.57, 0] on angles.

59

Figure 3.36 shows transient responses of the arm position and the pendulum

position. It validates the fact that the inverted pendulum has been balanced on the arm.

The position behavior of the Scicos transients is same as that of Simulink. Figure 3.37

shows velocity transients of the Furuta pendulum system for the designed LQR control.

The arm and the pendulum velocities settle to 0 in accordance with angular positions. All

these transient responses are same as obtained with Simulink LQR simulation.

3.3.4 Full Order Observer Design using Pole Placement

The Section 3.3.4 presents Full Order Observer design with Kalman filter. It also

describes Scicos simulation results for Kalman Observer. The Scilab code to design

feedback gain and Observer state space dynamics is as shown below. It has been used in

the context of Figure 3.41.

The Scilab command `obscont' returns the observer-based controller associated

with a nominal plant P with matrices [A,B,C,D] (syslin list). The full-state control gain is

Kc and the filter gain is Kf. These gains have been computed using pole placement.

A+B*Kc and A+Kf*C are (usually) assumed stable. This Obsever design is based on

pole placement. Figure 3.38 shows block diagram of Observer based control design for

60

the Furuta Pendulum. The gain block contains matrix C= [1 0 0 0; 0 1 0 0] which feeds

back the arm and the pendulum position to Observer. The Observer sub-system contains

state space model block which contains observer dynamics Ac, Bc, Cc, Dc. [11] [14]

Figure 3.38 Scicos block diagram for full order Observer design with Kalman Filter.

The transient responses for the arm position and the pendulum position with the

full order Observer in feedback are as shown in Figure 3.39. With an initial condition of

0.78 radians, the arm moves to a small angle in the opposite direction and then comes to

the steady state in about 2 seconds. The pendulum also deflects by some angle before

coming to zero in about 2 seconds. Since both positions are settled at zero it verifies the

fact that Observer design successfully balanced inverted pendulum on the arm. Figure

3.40 shows transient responses for the arm velocity and the pendulum velocity with

Observer in feedback. These are the estimated arm and pendulum velocity states from the

arm and the pendulum positions feedbacks. The position and velocity profiles validate the

61

fact that Observer can estimate velocity states based on position feedbacks and in turn it

could successfully balance inverted pendulum on the arm.

Figure 3.39 Scicos Kalman Observer output for the Arm angle (Black) and the Pendulum
angle (Green) with initial conditions [0.78, 0] on angles.

Figure 3.41 shows control signal generated by Full Order Observer. The control

initially follows a transient with oscillations about zero. It finally reaches zero after few

oscillations. At this moment a steady state is attained by the system. It has been observed

that states settle to steady state in accordance with Observer control signal.

62

Figure 3.40 Scicos Kalman Observer output for the Arm velocity (Black) and the
Pendulum angle (Green) with initial conditions [0.78, 0] on angles.

Figure 3.41 Scicos output for the control signal generated with Kalman Observer.

63

3.4 Maple -MapleSim

The Section 3.4 presents the Maple-MapleSim software packages from Maplesoft which

are powerful systems that can be used to solve mathematical problems from simple to

complex. The MapleSim is a modeling environment for creating and simulating complex

multi-domain physical systems. It allows you to build component diagrams that represent

physical systems in a graphical form. Using both symbolic and numeric approaches,

MapleSim automatically generates model equations from a component diagram and runs

high-fidelity simulations.

3.4.1 Open Loop Analysis

MapleSim has two different approaches for modeling dynamic systems. 1) Conventional

mathematical symbolic modeling. 2) Multi body `Acausal' modeling. The signal-flow

approach used by traditional modeling tools requires system inputs and outputs to be

defined explicitly. In contrast, MapleSim allows using physical interconnections based on

links to connect interrelated components without having to consider how signals flow

between them. When simulated by software, block diagrams can either be 'Causal' or

`Acausal'. Acausal model represents physical configuration of system where as Causal

model represents mathematical functions of system. Many simulation tools are restricted

to causal (or signal-flow) modeling. In these tools, a unidirectional signal, which is

essentially time-varying, flows into a block. The block then performs a well-defined

mathematical operation on the signal and the result flows out of the other side. This

approach is useful for modeling systems that are defined purely by signals that flow in a

single direction, such as control systems. Modeling how real physical components

64

interact requires a different approach. In Acausal modeling, a signal from two connected

blocks travels in both directions. With MapleSim it is possible to start with Acausal

model and get system equations. It is also possible to start modeling with equations of

motion for particular system. [16]

The Furuta Pendulum Acausal Modeling:

MapleSim has this unique feature of Acausal modeling with physical multi body

components. Figure 3.42 shows the Acausal model of the Furuta pendulum. It consists of

various mechanical components which forms the complete Furuta Pendulum system.

A stationary frame with a fixed displacement and orientation relative to ground has been

used as support to the arm. A fixed frame is attached rigidly to the mechanical ground.

A Revolute is a joint which allows one rotational degree of freedom about a given axis.

A Revolute joint, sometimes called a pin or hinge, with the two bodies and body-fixed

reference frames that it connects. [16]

A Revolute joint allows a single relative rotation of the two frames; this joint type

prevents all other relative rotations and translations. The initial conditions of 1.57 radians

and 0.1 radians have been defined on two revolute joints. The rigid body frame with a

fixed displacement and orientation relative to a rigid body center of mass (CoM) has been

used. It is connected to the revolute to form the arm of the Furuta Pendulum. The Rigid

Body Frame is a body-fixed frame that is used to define locations of interest on the body

where it is connected. The position and orientation relative to the center of mass must be

defined for each body-fixed frame. The Angle Sensor component generates an output

signal proportional to the absolute angle of the attached rotational flange. [16]

Furuta Pendulum Acausal Model

Pendulum Angle

rad

_Pendulum Velocity

RadPerSec

Figure 3.42 MapleSim Acausal model of the Furuta Pendulum.

The Angular Velocity Sensor component generates an output signal proportional

to the absolute angular velocity of the attached flange. Same combination of Revolute,

Rigid Body Frame, Angular Sensor and Angular Velocity Sensor block has been used to

form inverted pendulum connected to the arm. This whole mechanical system represents

the Furuta Pendulum. Figure 3.43 shows the position and velocity transients for open

loop simulation. These transients are exactly same as obtained in Simulink.

65

66

Pendulum Angle: radArm Angle: rad

Arm V elo city: RadP erS ec Pendulum Velocity: RadP erSe c

Figure 3.43 MapleSim probe outputs for the open loop Acausal model.

67

Generating Equations from the Acausal Furuta Pendulum Model:

MapleSim has unique feature of generating system equations from the Acausal model of

the system. A topological representation maps readily to its mathematical representation

and the symbolic capability of MapleSim automates the generation of system equations.

When MapleSim formulates the system equations, several mathematical simplification

tools are applied to remove any redundant equations and multiplication by zero or one.

The simplification tools then combine and reduce the expressions to get a minimal set of

equations required to represent a system without losing fidelity. As a result, it was found

that there were discrepancies as compared to original available dynamics of the Furuta

Pendulum. Due to this capability of MapleSim, it was possible to analyze and rectify

equations of motion for the Furuta Pendulum. The Maple worksheet to develop equations

of motion for the Furuta Pendulum has been discussed below.

Maple Equation Worksheet [151:

Description

Use this template as a starting point for performing
advanced analysis on MapleSim physical models. This
template allows you to retrieve equations to gain insight
into the behavior of your model.

Note: The ability to retrieve equations is currently
limited to continuous subsystems.
Model Diagram

68

Model Equations

cos('DFPSubsys 1 inst.theta _R1 (t))(cos('DFPSubsys 1 inst.theta_R1'

thetaR2 V)) L K m(

K (cos('DFPSubsys 1 inst.theta_R1' (6) 'DFPSubsys 1 inst. theta I

K 'DFPSubsys 1 inst. theta R1 _dot' (t) sin ('DFPSubsys 1 inst.theta

theta R2 _dot (t)) cos('DFPSubsys 1 inst.theta_R1 (t))sir('DFPSu

K (sin('DFPSubsys 1 inst.theta_R1' (t)) 'DFPSubsys 1 inst. theta R

C DFPSubsys 1 inst. theta R1 dot' (t) cos('DFPSubsys 1 inst. theta

'DFPSubsys 1 inst. theta R2 dot' K1

Number of equations in the system:
nops (eq)

8

Take a look at the first one:
eq [1]

Define simple name for viewing:
sMap := 'DFPSubsys I inst.theta_R1' = theta] ,
'DFPSubsys I inst.theta_R2' = theta2 ,

'DFPSubsys 1 inst.theta_R1 _dot' = theta 1 d ,
'DFPSubsys 1 inst.theta_R2_dot' = theta2d ,
'DFPSubsys 1 inst.theta_R1 _ddot' = theta I dd ,
'DFPSubsys 1 inst.theta_R2_ddor theta2dd :

Apply name change and simplify

69

Creating Furuta Custom Modeling Component:

It is possible to create custom modeling components based on mathematical models with

equations of motion. It is also possible to create a custom component to contain a

particular subsystem by implementing system equations. By using the Custom

Component Template, which is a Maple worksheet available through the MapleSim

templates dialog box, the non linear Furuta pendulum custom component has been

developed. It defines the equations of motion associated with the Furuta System and the

parameters that determine the behavior of the system. Different ports have been added to

the component and associated port variable mappings have been defined. Further, the

70

Furuta custom component has been generated and made it available in MapleSim to be

used as subsystem in simulation. The Maple worksheet to create the Furuta custom

component has been discussed below. [16]

Maple Custom Component Worksheet [15]:

Description

This file implements
Furuta Pendulum.

Component Description

Enter the name
the component. 	 The
characters 	 (for

Component Name:

Component Equations

the nonlinear dynamic equations of the

to 	 display 	 in MapleSim after 	 you 	 generate
name must not contain spaces or special

example, 	 & and *).

I Furuta

System variable: sys variable name used for

storing system object

Parameter
variable:

params variable name used for

parametersstoring component

Initial
Conditions
variable:

initialconditions variable name used for

storing initial equations

Defining Matrix Dynamics Equations

math := ((.I + c2 . sin(theta(t)) ² + m· r²|-c1 · cos(theta(t))), (-c1

•cos(theta(t))|c2))

71

72

73

omponent Analysis

Use any
tools to
equations
above.

of the following
test and analyze the

that you entere

K from to

s using

input signal:

ote: The signal is only
applied to the first input.
Use Dynamic Systems for full
simulation control.

74

40

20

0

~F~
.g
:::I 40 it::
C
~
0:)

~ (,0

80

)00

120

L---------------------------------4

75

Component Ports

Port Type :

Port Name: !Uin

Port Components:
value U(t)

Component Generation

Source Details

imodel Furuta

I
parameter Real J 0.1000000000e-2 "J";

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

Real

Real

Real

Real

Real

Real

Real

Real

Real

r = 0.3000000000eO "r";

m 0.5000000000e-1 "m";

c1 0.3000000000e-2 "c1";

c2 0.2000000000e-2 "c2";

c3 0.1000000000e-2 "c3";

c4 0.9800000000e-1 "c4";

a = 0.1000000000e-1 "a";

psiO = O.OeO "psiO";

thetaO = O.OeO "thetaO";

Real psi (start = psiO, fixed=true);

Real theta (start = thetaO, fixed=true);

Real vpsi (start = 0);

Real vtheta (start = 0);

Real apsi;

Real atheta;

Real u;

annotation (

Coordsys(

---- - ----

76

extent=[-100, -100; 100, 1001,

grid=[2, 21,

Figure 3.44 shows the MapleSim block diagram for the open loop simulation. The

Furuta custom component generated with above Maple worksheet has been used as the

Furuta model subsystem. The Probes have been used to obtain state transient responses.

Probe is similar to Scope block of Simulink. The Constant block has been used to

generate control signal 'u' that is zero in this particular case.

Furuta Custom Component Open Loop Model

Arm Angle

radian

Pendulum Angle

radian

77

FurutaModel Arm Velocity

RadPerSec

Pendulum Velocity

RadPerSec

Figure 3.44 The Furuta Pendulum custom component for open loop model.

Linearization:

MapleSim provides pre-built Maple worksheet for linearizing the non linear Furuta

Pendulum model to give state space model representation of the system. The linearization

process for the Furuta Pendulum with Maple worksheet has been discussed below.

Maple Linearization Worksheet:

Description
Use this template to retrieve and linearize the MapleSim
subsystem. The linearized model can be saved as a linear
systems object in the MapleSim document folder. This
linearized model can then be retrieved and used by other
templates.

78

Note: The
limited to
(RealInput)

ability to
continuous
and signal

linearize the models is currently
subsystems with defined signal input
output (RealOutput) ports.

Model Diagram

The Furuta Pendulum model block diagram has been imported
to this section.

Model Summary
Use the navigation controls on the toolbar above the model
diagram, select your subsystem and then click the System
Update button to retrieve the subsystem. This may take
some time. Specify the input ports and output ports that
will be used to generate the linearized subsystem.
Note: To proceed, you must click the System Update button
after selecting your subsystem.

Model name: !NonlinearFu I

-Specified Inputs and Outputs for the System

System Inputs:

I' Main. NonlinearFuruiaPenduluml. Rll'

Linearization

System Outputs:

, Main.NonlinearFurutaPendulum1.R01 '
, Main.NonlinearFurutaPenduluml.R02'
, Main.NonlinearFurutaPendulum1.R03'
'Main. Non linea rFuruiaPendulurnl. R04'

Unknown lOs:

Select whether to calculate the trim point automatically or
specify the trim point manually. The manual specification
of the trim point is done into the Trim Point Specification
subsection below.
(l!l Automatically Calculate the Trim Point (t) Specify the Trim Point

Trim Point Specification

Specify the trim point

State Trim

Main.NonlinearFurutaPenduluml.DFPSubsyslinst.theta_Rl' (t) = 0,
Main.NonlinearFurutaPenduluml.DFPSubsyslinst.theta_R2' (t) = 0,
Main.NonlinearFurutaPenduluml.DFPSubsysl inst.theta _ Rl_ dot' (t) = 0,
Main.NonlinearFurutaPenduluml.DFPSubsysl inst.theta _ R2 _dot' (t) = 0]

Input Trim

'Main.NonlinearFurutaPenduluml.R11' (t) = 0]

alue

10

Variable Map

79

This describes the mapping of the variables in the original
system to the variables of the linearized model.
~ State Mapping ~ Input Mapping ~ Output Mapping

80

Linear i zed Model
This describes the s t ate-space form of the l inearized
mode l .
l!I Matrix A ~ Matrix B l!I Matrix C ~ Matrix D ~ All Matrices

O. 1. O. O. O. 1. O. O. O. O.

O. K 10. 147.1500000 O. 1000. O. O. 1. O. O.

o. O. O. 1.
,

O.
,

O. o. O. 1.
,

O.

O. K 15. 269.7750000 O. 1500. O. 1. O. O. O.
,

Save the Model

I n order to save t he corresponding l i near system ob j ect to
the document fo l der, enter the name of the model and the
description of the system and then click the Save button.

Name

Descript ion

Model : NonlinearFurutaPenduluml

States :

x [l] (t)

x [2] (t)

x[3] (t)

x[4] (t)

Inputs :

'Main.NonlinearFurutaPendul uml.RI1 ' (t)

81

3.4.2 Full State Feedback design by Pole Placement:

The Section 3.4.2 presents the full state feedback control design with Pole Placement for

the Furuta Pendulum system using Maple worksheet. The Control Design tool box of

Maple has been used for Pole Placement design. It also shows the simulation results

obtained with MapleSim for Pole Placement control design. The Maple work sheet to

calculate the full state feedback gain using Pole Placement design has been discussed

below.

Maple Linear Systems Worksheet [151:

Description

This template allows you to retrieve the linear systems
object, stored as an .msys file, from the MapleSim document
folder. Then you can construct your own design or analysis
document using the power of Maple technical document.

Reset Template

Model Diagram

The Furuta Pendulum model block diagram has been imported
to this section.

Model Input

Select a linear system object from the list.
LinearizedFurutaPendulum.msys.

Name
LinearizedFurutaPendulum

82

Description

Model :NonlinearFurutaPenduluml 	 A

States :

x[1] (t)

x[2] (t)

x[3] (t)

x[4] (t)

Inputs :

'Main.NonlinearFurutaPenduluml.RI1'(t)

These are the state-space matrices that correspond to the
linear system object selected above.

Enter the name of the desired Dynamic System object below,
and then click the button to create the object.

Assign to Variable: 	 sys

Design and Analysis

with(DynamicSystems)
[AlgEquation , BodePlot, CharacteristicPolynomial , Chirp,

Coefficients, ControllabilityMatrix , Controllable, DiffEquation ,

DiscretePlot , FrequencyResponse , GainMargin , Grammians,

ImpulseResponse , ImpulseResponsePlot , IsSystem,

MagnitudePlot , NewSystem, ObservabilityMatrix , Observable ,

PhaseMargin , PhasePlot, PrintSystem, Ramp, ResponsePlot ,

RootContourPlot , RootLocusPlot , Routh Table ,

SSModelReduction , SSTransformation , Simulate, Sinc , Sine,

Square , StateSpace , Step, StepProperties , System,

System Options , ToDiscrete, TransferFunction , Triangle, Verify,

ZeroPoleGain , ZeroPolePlot]

83

Full State Feedback with Pole Placement

Pendulum Angle

Pendulum Velocity

RadPerSec

Figure 3.45 MapleSim block diagram for full state feedback with Pole Placement.

84

P endulum Angle: radArm Angle: rad

Pendulum Velocity: RadPerSec

Arm Velocity: RadPerSec

Figure 3.46 MapleSim probe outputs for the Pole Placement design.

Figure 3.45 shows MapleSim block diagram for the Pole Placement design

simulation. It consists of the Matrix Gain block which contains the gain vector calculated

above using Maple worksheet. It is followed by Gain block which contains gain of `-1' to

provide negative feedback. Figure 3.46 shows probe outputs for the position and velocity

transient responses. These transients are exactly same as obtained with Simulink.

85

3.4.3 Full State Feedback design by LQR

The Section 3.4.3 presents the full state feedback control design with LQR for the Furuta

Pendulum system using Maple worksheet. The Control Design tool box of Maple has

been used for the LQR design. It also shows the simulation results obtained with

MapleSim for the LQR control design. The Maple work sheet to calculate the full state

feedback gain using LQR design has been discussed below.

Maple Linear System Worksheet [15]:

Description

This template allows you to retrieve the linear systems
object, stored as an .msys file, from the MapleSim document
folder. Then you can construct your own design or analysis
document using the power of Maple technical document.

Reset Template

Model Diagram

The Furuta Pendulum model block diagram has been imported
to this section.

Model Input

Select a linear system object from the list.
LinearizedFuruta msys v

Name

LinearizedFuruta

86

Description

Model :NonlinearFurutaPendulum1 	 A

States :

x[1] (t)

x[2] (t)

x[3] (t)

x[4] (t)

Inputs :

'Main.NonlinearFurutaPenduluml.RI1'(t)

These are the state-space matrices that correspond to the
linear system object selected above.

Enter the name of the desired Dynamic System object below,
then click the button to create the object.

Design and Analysis

with(DynamicSystems)

[AlgEquation , BodePlot, CharacteristicPolynomial , Chirp,

Coefficients , ControllabilityMatrix , Controllable, DiffEquation ,

DiscretePlot, FrequencyResponse , GainMargin , Grammians,

ImpulseResponse , ImpulseResponsePlot , Is System,

MagnitudePlot , NewSystem, ObservabilityMatrix , Observable ,

PhaseMargin , PhasePlot , PrintSystem, Ramp, ResponsePlot ,

RootContourPlot , RootLocusPlot , Routh Table ,

SSModelReduction , SSTransformation , Simulate, Sinc, Sine,

Square, StateSpace , Step, StepProperties , System,

SystemOptions , ToDiscrete , TransferFunction , Triangle, Verify,

ZeroPoleGain , ZeroPolePlot]

87

tate Mapping/Transformation
he output vector of the original nonlinear system is
efined as:

ecOutput := (Psi (t), theta(t). PsiRate(t), thetaRate (t))

88

Given the output matrix C from the linear system, we know
that:

So we can use this relationship to define the appropriate Q
and R matrices, as well as do the inverse mapping for the
gain block.
As an example, applying the similarity transform:

We get the same state space system as MATLAB.

LQR Design

The Q and R matrices for the LQR controller are defined as
follows:

89

The gain value,K for the LQR controller is defined as
follows

The C matrix of the linear model defined in variable sys:-c

The K matrix after the re-mapping process is shown below.

Kctrl := K.sys:-c
[-31.622776325326412,9339.90913743586861,5

-25.643484531377907,817.741023034759564)

NonIiearFurutaPendulum LQRConfroller,

Arm Velocity

RadPerSec

_Pendulum Velocity

RadPerSec

90

Full State Feedback with LQR
_Arm Angle

_Pendulum Angle

Figure 3.47 MapleSim block diagram for full state feedback with LQR.

Figure 3.47 shows the MapleSim block diagram for the LQR design simulation. It

consists of the Matrix Gain block which contains the gain vector calculated above using

Maple worksheet. It is followed by Gain block which contains gain of `.-1' to provide

negative feedback. The LQR Controller subsystem contains both of these gain blocks.

Figure 3.48 shows the probe outputs for the position and velocity transient responses.

These transients are exactly same as obtained with Simulink.

Pendulum Angle: rad

91

Arm Angle: rad

Pendulum V elo city: RadPerSec

Figure 3.48 MapleSim probe outputs for the LQR design.

92

3.4.4 Full Order Observer Design using Kalman Filter

The Section 3.4.4 presents the full order observer design with Kalman Filter for the

Furuta Pendulum system using Maple worksheet. The Control Design tool box of Maple

has been used for the Kalman Observer design. It also shows the simulation results

obtained with MapleSim for the Kalman Observer design. The Maple worksheet to

calculate the Kalman observer gain has been discussed below.

Maple Linear System Worksheet [15]:

pescription

Irhis template allows you to retrieve the linear systems
pbject, stored as an .msys file, from the MapleSim document
~older. Then you can construct your own design or analysis
~ocument using the power of Maple technical document.

l[bReset:TemRlat~~1

'1odel Diagram

T'he Furuta Pendulum model block diagram has been imported
o this section.

'1odel Input

Select a linear system object from the list.
rrl;iiiE;ariiZedFilrutfum.sys~1

~ame

LinearizedFuruta

pescription
Model : NonlinearFurutaPenduluml

States :
x[l) (tl
x[2) (tl
x [3) (tl
x[4) (tl

Inputs :
' Main.NonlinearFurutaPenduluml.RI1 ' (tl

93

These are the state-space matrices that correspond to th
linear system object selected above.

@l!l Matrix A @l!l Matrix B @l!l Matrix C I) Matrix D tI All Matrices

o. 1. o. o. o. 1. o. o. o. o.
o. K 10. 147.1500000 o. 1000. o. o. 1. o. o.
o. o. o. 1. o. o. o. o. 1. o.
o. K 15. 269.7750000 o. 1500. o. 1. o. o. o.

Enter the name of the desired Dynamic System object below,
then click the button to create the object.

[~~~____._m___.m_m.m.]

Design and Analysis

with (DynamicSystems)

[AlgEquation, BodePlot, CharacteristicPolynomial, Chirp,

Coefficients, ControllabilityMatrix, Controllable, DifJEquation ,

DiscretePlot, FrequencyResponse , GainMargin , Grammians,

ImpulseResponse, ImpulseResponsePlot , IsSystem,

MagnitudePlot, NewSystem, ObservabilityMatrix , Observable,

PhaseMargin , PhasePlot , PrintSystem, Ramp, ResponsePlot ,

RootContourPlot, RootLocusPlot, Routh Table ,

SSModelReduction , SSTransformation, Simulate, Sinc, Sine,

Square , StateS pace , Step, StepProperties, System,

SystemOptions, ToDiscrete, TransferFunction , Triangle, Verify,

ZeroPoleGain, ZeroPolePlot]

with (ControlDesign);

[Characterize, CohenCoon ,DominantPole, Feasible Gains ,

GainPhaseMargin , Kalman, LQR, LQRContinuous ,

LQRDiscrete, LQROutput, Parameterldentify, RegionPoles,

StateFeedback ,StateObserver, ZNFreq, ZNTimeModijied]

Designing the Kalman filter

Formulating the new system matrices
Coordinate transformation matrix:

New system A matrix with ordering corrected

New input B matrix:

(Formulate the measurement C matrix

Formulating the new system

94

Constructing the covariance matrices

Calling Kalman filter design command

95

Constructing the state space observer from the observer
gain:

FurutaPendulum
Observe r

96

0 0 0

0 0 0

0 0 0

0 0 0

000

000

Estimator pole location:

LinearAlgebra : -Eigenvalues (Kfilter: -a)

-3.59398275262242839k 2.39549761273298323

-3.59398275262242839- 2.39549761273298323

-18.49914264113108691- 5.44257123807761367

-18.4991426411310869- 5.44257123807761367

Full Order Observer with Kalman Filter

thetaRate

RadPerSec

PsiRate

RadPerSec

Figure 3.49 MapleSim block diagram for full order observer using Kalman Filter.

PsiRate. RadP erSec
—	 thetaRate. RadP erSec

Figure 3.50 MapleSim probe outputs for the Kalman Observer design.

Figure 3.49 shows the MapleSim block diagram for the Kalman Observer

design simulation. It consists of the State space model block which contains the observer

state space model obtained using above Maple worksheet. It is followed by Gain block

which contains gain of `-.1' to provide negative feedback. The Observer subsystem

contains the Observer dynamics. Figure 3.50 shows the probe outputs for the position and

velocity transient responses. These transients are exactly same as obtained with Simulink.

97

98

3.5 VisSim

VisSim is a block diagram language for creating complex nonlinear dynamic systems

from Visual Solutions. VisSim has highly tuned math engine that executes dynamic

model directly with no compilation delay. In addition to accelerating development with

rapid turnaround for changes, VisSim's fast execution speed is perfect for model based

operator training, off-line controller tuning and hardware-in-the-loop testing. Its efficient

C code generator makes it an ideal platform for model-based embedded system

development.

3.5.1 Open Loop Analysis

The Section 3.5.1 presents modeling of the Furuta Pendulum with VisSim for the open

loop analysis. By combining the simplicity and clarity of a block diagram interface with a

high-performance mathematical engine, VisSim provides fast and accurate solutions for

linear, nonlinear, continuous time, discrete time, SISO, MIMO, multi-rate, and hybrid

systems. With VisSim's wide selection of block operations and expression handling,

complex systems can be quickly entered into VisSim.

Figure 3.5.1 shows the non linear Furuta Pendulum model which has been built

using various VisSim blocks. VisSim doesn't support implementation of mathematical

functions like MATLAB Fcn block. It has expression block that allows entering a C

expression or matrix data that VisSim parses and acts upon. But for non linear dynamic

systems like Furuta Pendulum having complicated equations of motion it is not possible

to implement it with expression block. Hence, various VisSim arithmetic blocks have

been used to implement the non-linear Furuta pendulum model. [17]

Fi
gu

re
 3

.5
0

V
is

Si
m

 o
pe

n
lo

op
 b

lo
ck

 d
ia

gr
am

 f
or

 th
e

Fu
ru

ta
 p

en
du

lu
m

.

■D

100

The variable blocks have been used to define various system parameters within

VisSim work space. The variable block lets defining and transmitting a signal throughout

diagram without the use of wires. The variables of same name share same signal

throughout VisSim diagram. It also accepts arithmetic and trigonometric functions.

The * block produces the product of the input signals. Inputs can be scalars or vectors.

The const block generates a constant signal. The const block accepts alphanumeric text

strings and matrix data. The scalarToVec block reduces wiring clutter by combining

input signals into a single vector wire. This has been used usually as prerequisite for

performing vector and matrix algebra. Similarly, the vecToScalar block separates a

single vector wire into individual output signals. The invert block inverts a square matrix

using singular value decomposition. The invert block accepts one vector input and

produces one vector output. The multiply block performs a matrix multiplication. The

multiply block accepts two vector inputs and produces one vector output. The integrator

block performs numerical integration on the input signal using the integration algorithm.

It doesn't support vector input hence four different integrators have been used in

cascaded form to extract position and velocity components. The slider block allows

mouse input to dynamically modify a signal value during a simulation, between a lower

and upper bound in 1% and 10% increments. The slider block displays the current value

applied to the signal. It is very useful for varying different system parameters during

simulation. As shown in Figure 3.50 these various blocks have been connected logically

as per equations of motion to give position and velocity states of the Furuta

pendulum. [17]

101

Figure 3.51 VisSim open loop output for the Arm angle and the Pendulum angle with
initial conditions [1.57, 0.1] on angles.

Figure 3.52 VisSim open loop output for the arm velocity and the pendulum velocity
with initial conditions [1.57, 0.1] on angles.

102

Figure 3.51 shows the transient responses for positions of the arm and the

pendulum. As per initial condition the arm position takes off from 1.57 radians and after

few oscillations it settles down to its initial position. The pendulum rod starts with

0.1 radians as per given initial condition and it moves through angle of 3.14 radians and it

settles there after tumbling down from initial position. This position behavior of the

Furuta pendulum is exactly same as obtained in Simulink open loop simulation.

Figure 3.52 shows transient responses for the arm and the pendulum velocities

which have been observed after running simulation for 10 seconds. The velocity behavior

of the Furuta pendulum in VisSim is exactly same as obtained with Simulink open-loop

simulation. Both position and velocity open loop behaviors of the Furuta system in

VisSim are exactly same as Simulink open loop outputs.

3.5.2 Full State Feedback design by Pole Placement:

The Section 3.5.2 presents Full State Feedback control design with Pole Placement for

the Furuta Pendulum system. VisSim doesn't have dedicated control tool box for

designing state space control algorithms thus the Control System toolbox of MATLAB

has been used for pole placement design and then VisSim engine has been used for

simulations. This Section also shows simulation results obtained with VisSim for Pole

Placement control design.

103

Figure 3.53 VisSim block diagram for full state feedback design by Pole Placement.

Figure 3.54 VisSim Pole Placement output for the arm angle and the pendulum angle
with initial conditions [1.57, 0] on angles.

104

Figure 3.55 VisSim Pole Placement output for the arm velocity and the pendulum
velocity with initial conditions [1.57, 0] on angles.

Figure 3.53 shows the block diagram of Pole Placement control for the Furuta

Pendulum system. It is similar to the Simulink Pole Placement block diagram. The Gain

block multiplies the input state vector by matrix gain. After remapping of gain matrix,

G = [-0.0227 0.4193 -0.0390 0.0371] has been used to implement state feedback control

law u= -Gx. The vsum block produces a single value summation of all the elements in the

matrix. The vsum block accepts one vector input and produces one scalar output. Further,

the -X block negates the input signal. Input can be scalar, vector, or matrix.

Figure 3.54 shows transient responses of the arm position and the pendulum position. The

arm position starts with initial 1.57 radians and it settles down to 0 after smooth

transition. Also, the pendulum rod starts with 0.1 radian position and it settles down to 0.

It validates the fact that the inverted pendulum has been balanced on the arm. The

105

position behavior of the Scicos transients is exactly same as that of Simulink. Figure 3.55

shows velocity transients of the Furuta Pendulum system for the designed Pole Placement

control. The arm and the pendulum velocities settle to 0 in accordance with angular

positions. All these transient responses are same as compared to Simulink. [17]

3.5.3 Full State Feedback design by LQR:

The Section 3.5.3 presents Full State Feedback control design with LQR for the Furuta

Pendulum system. VisSim does not have dedicated control tool box for designing state

space control algorithms thus the Control System toolbox of MATLAB has been used for

LQR design and then VisSim engine has been used for simulations. This Section also

shows simulation results obtained with VisSim for LQR control design.

[-31.6228 339.9081 -25.6565 17.7497] 	 G -

Figure 3.56 VisSim block diagram for full state feedback design by LQR.

106

Figure 3.57 VisSim LQR output for the arm angle and the pendulum angle with initial
conditions [1.57, 0] on angles.

Figure 3.58 VisSim LQR output for the arm velocity and the pendulum velocity with
initial conditions [1.57, 0] on angles.

107

Figure 3.56 shows the block diagram of LQR control for the Furuta pendulum

system. It is similar to the VisSim Pole Placement block diagram. The Gain block

multiplies the input state vector by matrix gain. After remapping of gain matrix,

G = [-31.6228 339.9081 -25.6565 17.7497] has been used to implement state feedback

control law u= -Gx. Figure 3.57 shows transient responses of the arm position and the

pendulum position for the LQR control. The position behavior of the Scicos LQR

transients is exactly same as that of Simulink. Figure 3.58 shows velocity transients of the

Furuta pendulum for the LQR control. The velocity behavior of the Scicos LQR is

exactly same as that of Simulink. [17]

CHAPTER 4

COMPARISON ANALYSIS

This chapter presents analysis of the comparison study of the various software engines.

MATLAB-Simulink has been considered as reference for this comparison study for

simulation of closed-loop control systems. This comparison study considers various

performance parameters such as control design tools, learning curve, flexibility, tech

support and documentation. It also gives information about interoperability of these

various software engines. Different distinguishing features of these software engines have

been discussed in this chapter.

Control Design Tools

This section presents comparison analysis of control design tools available with various

software engines.

• MATLAB-Simulink: MATLAB has a dedicated Control System toolbox to

design state space control for non-linear dynamic systems.

• Scilab-Scicos: Scilab-Scicos is an open source work-alike of MATLAB-Simulink.

Scilab has a Control System toolbox similar to MATLAB. Most of the Scilab

commands are similar to MATLAB with some differences in syntax. Palette

blocks in Scicos are very much similar to Simulink library components.

• Maple-MapleSim: Maple has a Control System toolbox with predefined Maple

worksheet templates. Maple worksheets are equipped with all tools necessary

108

109

• tools to design state space control. Maple Control System toolbox has tight

integration with Maple documentation tools to organize control design.

• LabVIEW: LabVIEW has a separate Control Design and Simulation toolbox.

LabVIEW contains dedicated Virtual Instruments (VIs) for state space control

design and simulation. LabVIEW has MathScript node which is capable of

handling M-file scripts from MATLAB.

• VisSim: VisSim does not have a dedicated control design toolbox for state space

control design. However, it does have frequency domain control design analysis.

Learning Curve

MATLAB-Simulink being widely known software engine has best learning curve

amongst all. Since, MATLAB-Simulink is known software engine it is considered as

reference to decide learning curve for other software engines.

• Scilab-Scicos: Scilab-Scicos, being an open source work-alike for

MATLAB-Simulink, has a very good learning curve. With available

documentation and previous knowledge of MATLAB-Simulink, it is relatively

easy to learn Scicos-Scilab.

• Maple-MapleSim: MapleSim has a good learning curve as compared to

MATLAB-Simulink. Due to the unique unconventional multi-body modeling

approach of Maple-MapleSim, it takes some time to get acquainted with

MapleSim physical components.

• LabVIEW: LabVIEW has the steepest learning curve amongst all. There are

numerous VIs in control design toolbox of LabVIEW for state space control

110

design. With LabVIEW, understanding and implementation of those VIs took

considerably longer time than that of Simulink.

• VisSim: VisSim has easy learning curve as compared to Simulink. VisSim has

complete block diagram approach for dynamic system modeling. This discrete

approach makes VisSim easier to learn as compared to the others.

Tech Support

MathWorks, National Instruments, MapleSoft and INRIA have special tech support

teams dedicated to serve technical questions of the user community. All of them have

structured multi tier tech support system. Technical questions regarding control system

domain are handled by control system domain experts. VisSim also has a separate tech

support team, but it does not have structured multitier tech support like all the others.

MathWorks, National Instruments and MapleSoft have telephone tech support facilities

which are the most efficient way to debug and learn more about these software engines.

Being a thesis student, MapleSoft and VisSim provided me with exclusive technical

support. In case of ordinary users it will be matter of investigation.

Documentation

This section compares quality of documentation available with these software engines to

gain required expertise. Different types of documentation such as books, on-line

documentation and in-line help documentation have been referred for each software

engine.

111

• MATLAB-Simulink: MATLAB and Simulink both have thorough documentation

in their help menu. The Control System toolbox help documentation of MATLAB

has extensive examples explaining use of different commands for the state space

control design techniques. There are numerous books available which illustrate

control design with MATLAB-Simulink.

• Scilab-Scicos: Scilab-Scicos has a standard book available to get started with

fundamentals [10]. Scilab has good help documentation to get acquainted with

Control System toolbox. However, Scilab-Scicos documentation lack appropriate

illustrations with examples for implementing Scilab Control System toolbox

commands for user defined applications.

• Maple-MapleSim: Maple has a good help documentation to get started with

control design toolbox and multi body modeling approach. Again, depth of

contents could be more precise to give better insight into unique physical

modeling with MapleSim. There is no standard book available on Maple-

MapleSim. The Maple control design worksheet help documentation is good as

compared to MATLAB control design toolbox.

• LabVIEW: In order to design state space control in LabVIEW, it has in detail help

and on-line documentation available for Virtual Instruments (VIs). Due to

intricacy in documentation content it is difficult to understand implementation of

these VIs as compared to implementation of Simulink blocks. There are a few

standard books available which could be useful to know more about LabVIEW.

Extensive on-line documentation is available to learn basics of LabVIEW.

112

• VisSim: VisSim has brief in-line help documentation of different blocks as

compared to Simulink documentation. VisSim help documentation does not

illustrate much about implementation part of these available VisSim blocks. There

is no standard book available illustrating use of VisSim for control theory.

Flexibility

This is the most crucial criterion to compare different software engines with reference to

MATLAB-Simulink.

• MATLAB-Simulink: This software engine has been known for its flexibility and

tight integration between MATLAB and Simulink.

• Maple-MapleSim: MapleSim has an edge over Simulink in terms of user

friendliness and flexibility in implementing dynamic system models and its state

space control. Because of this reason, it has been weighted with an asterisk. The

unique ability of MapleSim to model dynamic systems with physical components

distinguishes it from Simulink. MapleSim modeling is much efficient and time

saving than that of Simulink due to its intuitive nature. Acausal modeling adds

great deal of flexibility with availability of multi body physical component

library, Parameter Box, Maple Worksheet templates as attachments to MapleSim

model and 3-D modeling animation.

• Scilab-Scicos: Scilab-Scicos software engine is an open source work-alike of

MATLAB-Simulink with very good flexibility. Scilab has intricate syntaxes for

its commands as compared to MATLAB, which makes it relatively less flexible

than MATLAB.

113

• LabVIEW: LabVIEW has overall fair flexibility as compared to

MATLAB-Simulink. For LabVIEW Virtual Instruments it is necessary to define

different data types by user which makes it less flexible as compared to Simulink

blocks. For modeling of a dynamic system with LabVIEW, it is necessary to

scalarize vector operations. Unlike Simulink, it does not support vector operations

in modeling. Scalarization hampers flexibility in modeling of non linear dynamic

system like the Furuta pendulum as compared to the Simulink modeling approach.

• VisSim: VisSim has very good flexibility in modeling dynamic systems. VisSim

has less complicated component library with availability of frequently used block

icons on task bar for drag and drop convenience. Thou VisSim does not support

vector operations, VisSim arithmetic blocks and variable blocks make it easy to

implement system equations.

Table 4.1 depicts the comparison summary of various software engines

considered. The magnitude weighing has been used on the scale of 1 to 5.

Table 4.1 The Comparison Summary of Various Software Engines

Simulation
Engines

Control
Design
Tools

Learning
Curve Flexibility

Tech
Support

Documentation

MATLAB-
Simulink

1 1 1 1 1

Scilab-
Scicos

1 2 2 1 3

Maple-
MapleSim

1 3

LabVIEW 1 5 4 1 3

VisSim 5 2 2 2 4

1- Best 2-Very Good 3-Good 4-Fair 5-Limited

114

Interoperability

Table 4.2 presents the interoperability summary of various software engines considered.

Interoperability defines compatibility of software engines with each other. There are

different conversion tools available in some of these software engines to integrate

advantages of two different software engines.

• Scilab-Scicos: Scilab has built-in MATLAB-to-Scilab conversion application tool

to import MATLAB scripts into Scilab. However, there is no gateway to import

Simulink models into Scicos so one has to build a new model. It was found that

overall Scilab-Scicos software engine is about 70% compatible to

MATLAB-Simulink.

• Maple-MapleSim: Maple has an add-on product called `BlockImporter' to import

Simulink models into MapleSim. But the `BlockImporter' tool does not support

the Fcn block of Simulink in which nonlinear dynamics of Furuta pendulum have

been implemented. `BlockImporter' could not convert original Furuta pendulum

Simulink model into MapleSim. There is a standard list of supported Simulink

blocks given by MapleSoft. Overall, it was found that there is Maple-MapleSim

has about 50% compatibility with MATLAB-Simulink. To export MapleSim

model into Simulink it has an add-on module known as Simulink Connector

Toolbox. As for the internal process, MapleSim first generate the equations while

running the simulation. Part of that process is to determine the order in which to

solve the equations for the simulation. This results in a set of ordered execution

sequence. At this point, for the export, MapleSim convert these sequences of

expressions into the appropriate code syntax. Together with the generated code,

115

MapleSim also generates m-script file that can be executed within Simulink to

compile and generate the mdl file that uses the compiled DLL binary in Simulink

model diagram. Another supported platform is export to LabVIEW EMI, SIT and

VeriStand. There is 100% export compatibility from

Maple-MapleSim to MATLAB-Simulink as well as to LabVIEW.

• LabVIEW: Based on conversion of the Simulink model of the Furuta pendulum

into an equivalent LabVIEW VI, LabVIEW has been assigned 40% compatibility

with MATLAB-Simulink. LabVIEW has a Simulation Model Converter Dialog

Box. This dialog box is used to convert a Simulink model (.mdl) file, developed

in Simulink simulation environment, into a LabVIEW VI that contains a

simulation diagram. As part of the conversion process, the Simulation Model

Converter uses MATLAB application software and the Simulink application

software to compile .mdl file and execute any of .m files that have been specified

in the dialog box. This tool does not support MATLAB Fcn block of Simulink so

it could not successfully convert the Furuta pendulum Simulink model into

LabVIEW VI.

• VisSim: VisSim has been assigned 40% compatibility with MATLAB-Simulink.

VisSim has a Simulink File Import tool for importing Simulink models into

VisSim block diagram format. This tool does not support MATLAB Fcn block of

Simulink as a result it could not convert original Simulink model of the Furuta

pendulum into VisSim block diagram.

116

Table 4.2 The Interoperability Summary of Various Software Engines

Simulation
Engines
Output ►
Input+

MATLAB
Simulink

Scilab
Scicos

Maple
MapleSim

LabVIEW VisSim

MATLAB
Simulink

100% 70% 50% 40% 40%

Scicos
Scilab

70% 100% No No No

MapleSim
Maple

100% No 100% 100% No

LabVIEW No No No 100% No

VisSim No No No No 100%

CHAPTER 5

CONCLUSION

The comparison study of software engines for simulation of closed-loop control systems

elicited several facts regarding performance of these software engines. The software

engines such as Scilab-Scicos, LabVIEW, Maple-MapleSim and VisSim have been

compared with reference to MATLAB-Sirnulink. These software engines have been

evaluated with regard to various performance criteria by implementing state space control

techniques for non linear Furuta pendulum using each one of them. Scilab-Scicos

package is an open source work-alike of MATLAB-Simulink. With available

documentation and previous knowledge of MATLAB-Simulink; it is easier than other

software engines to design and simulate state space techniques with Scilab-Scicos.

Scicos-Scilab is the most cost efficient among all others being free open source software

alternative to MATLAB-Simulink.

MapleSim has multi body physical modeling (Acausal) which is unique and

efficient in saving time for modeling as compared to Simulink. MapleSim has unique

ability of generating equations of motion from the `Acausal' models of the dynamic

systems. Except for MapleSim, all software engines require starting with differential

equations. MapleSim could detect discrepancies in original available Furuta pendulum's

equations of motion after comparing with generated equations with Maple worksheet.

With MapleSim it is possible to simulate 3-D animation of a dynamic system model and

its control. It gives better insight into control simulation as compared to other simulation

engines. MapleSim has the very efficient documentation and control design interface as

117

118

compared to others. MapleSim has most convenient structure to organize control

design documentation. LabVIEW has a most intuitive user interface known as 'Front

panel' as compared to others. It is also equipped with a wide array of control design and

simulation tools. It is experienced that the LabVIEW learning curve is the steepest as

compared to other software engines. VisSim has great flexibility and ease of learning as

compared to Simulink. Unlike MATLAB, it does not have control tool box for state space

control design. Above all, Maple-MapleSim software engine is equipped with some

unique features for simulation of closed- loop control systems.

REFERENCES

[1] Wikipedia. "Furuta Pendulum."Internet:http://en.wikipedia.org/wiki/Furuta_pend
ulum, July 2008

[2] Cazzolato, B.S and Prime, Z (2008) "The Dynamics of the Furuta Pendulum",
Technical Report, The University of Adelaide.
Internet:http://www.mecheng.adelaide.edu.au/robotics novell/projects/2004/Pend
ulum/Furuta Pedulum Internal report.pdf

[3] MathWorks. "Simulink User's Guide." Internet:
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/bselk7m-
1.html, March 2010.

[4] MathWorks. " Control System Toolbox ™ 8 Reference." Internet:
http://www.mathworks.com/access/helpdesk/help/pdf doc/control/reference.pdf,
March 2010.

[5] MathWorks. " Control System Toolbox™ 8 User's Guide." Internet:
http://www.mathworks.com/access/helpdesk/help/pdfdoc/control/usingcontrol.pdf
, March 2010.

[6] Bernard Friedland.Control system design: an introduction to state-space methods.
Mineola, NY : Dover Publications, 2005, c1986.

[7] National Instruments. LabVIEW Tutorial Manual. Austin, TX, January 1996.

[8] National Instruments. LabVIEW Control Design Toolkit User Manual. Austin, TX,
February 2006.

[9] National Instruments. "Introduction to LabVIEW in 3 Hours for Control Design and
Simulation." Internet: http://zone.ni.com/devzone/cda/tut/p/id/5855

[10] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah.

Modeling and Simulation in Scilab/Scicos. New York : Springer Science+Business
Media, 2006.

[11] Finn Haugen. "Master Scilab." Internet:
http://home.hit.no/~finnh/scilab_scicos/scilab/, April 2008.

[12] Finn Haugen. "Master Scicos." Internet:
http://home.hit.no/~finnh/scilab scicos/scicos/index.htm, April 2008.

[13] Ramine Nikoukhah, Serge Steer. "SCICOS- A Dynamic System Builder and
Simulator User 's Guide - Version 1.0." INRIA, France, June 1997.

[14] 1NRIA. " ScilabManual." Internet: http://www.scilab.org/download/5.2.2/manual_
scilab-5.2.2 en US.pdf.

[15] Maplesoft. Maple™ 13- The Essential Tool for Mathematics and Modeling User
Manual. Waterloo, Canada, 2009.

[16] Maplesoft. Maplesim™ 3- High-Performance Multi-Domain Modeling and
Simulation User 's Guide. Waterloo, Canada, 2009.

119

[17] Visual Solutions, Inc. VisSim User's Guide. Westford, Massachusetts, 2009.

120

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Dynamics of Non-linear Furuta Pendulum
	Chapter 3: Results of Various Software Engines
	Chapter 4: Comparison Analysis
	Chapter 5: Conclusion
	References

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

	List of Symbols

