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ABSTRACT

STUDY OF METHODS TO PREDICT VOLTAGE COLLAPSE

by
Niki Patel

One of the problems that must be addressed for a secure power system operation is the

voltage collapse problem. The ever increasing size and connectivity of the power grid

have lead to making the problem more multifarious. Widespread blackouts, similar to the

one that occurred in the northeast in August 2003, could result from failure to address the

problem.

This thesis presents an overview of the voltage collapse problem and reviews

some existing methods to calculate voltage collapse indicators.

Thevenin and Maximum Power Transfer Theorems are used to provide indicators

of the proximity of the system to voltage collapse. The maximum power that could be

transferred to a load node is predicted by these theorems and then the load at a load bus is

gradually increased to determine the maximum constant power factor load that would

result in voltage collapse.

The limitations of the presented method are discussed and a framework for

quantifying its effectiveness is presented.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to review some methods to predict voltage collapse in the

power system, analyze them and address some of the limitations these method projects.

1.2 Background Information

In this era of increasing dependency on electricity, it is very important to have a constant,

uninterrupted system. The cost to the society of a major power outage could be in

billions of dollars. The present day power supply is more complex than ever before and

hence its operation in an economic and secure fashion offers the engineer formidable

problems. Among these problems is maintaining a stable voltage profile to avoid loss of

stability and voltage collapse.

1.2.1 Voltage Collapse

Voltage collapse can be defined as the rapid and uncontrollable drop of bus voltage due

to increase in load at a bus or group of busses, generally characterized by inadequate

reactive support in a high-load area. Voltage collapse could be caused also by a sudden

change in the system, such as a line outage.

With the rest of the system conditions remaining unchanged, if the load at a

particular bus is varied, the voltage at that bus will also vary. Also, the node voltage at

other buses varies due to this change in load. Hence, it can be said that, voltage at a load

bus is partially dependent on the power delivered to that node. This power can be broken

1
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into segments of active and reactive powers and hence the equations can be stated as:δV/δP

and δV/δQ where P is active power, Q is reactive power and V is the voltage at that node.

These last expressions cannot be expressedly evaluated because V cannot be expressed as

an analytic function of P and Q.

It is really hard to predict a voltage collapse as it has similar characteristics as that

of a voltage drop due to alteration of operating condition. The main symptoms of voltage

collapse are low bus voltages, flow of more reactive power, and shortage of reactive

support as well as heavy load on the system. Therefore, a proper diagnosis of the

underlying factors causing low voltage is very important. The consequences of a voltage

collapse is system outage as it often takes a long while to restore the system and a large

area remains without supply for some time.

1.2.2 Voltage Stability

Many a times, the term voltage collapse and voltage instability are overlooked as a

similar phenomenon. At this point, it is necessary to make a statement clarifying the thin

line of difference between the two terms. In a power system, there might be disturbances

created leading to a gradual decrease in voltage profile at various buses. This is termed as

voltage instability, while voltage collapse is an unfeasible value of voltage whose

magnitude is decreasing fast. Voltage instabilities might lead to voltage collapse. In fact

it can be said that, during a disturbance caused in the power system, there is a point in

time where the voltage becomes uncontrollable. This shows that actual voltage collapse

may occur later than occurrence of Voltage instability.
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1.2.3 Importance in Present Day Scenario

As mentioned in IEEE committee paper, 'Voltage Collapse Mitigation — Report to IEEE

Power System Relaying Committee' [1], the problems associated with voltage control

are not new for the power system industry but the problems in the past were primarily

associated with the transfer of power from remote generation sites to load centers. These

problems were addressed by specific control and / or protection schemes dedicated to the

particular transmission system.

From the 1990s, the combined effects of inter-utility power transfers, wholesale

wheeling (an arrangement in which electricity is transmitted from a generator to a utility

through the transmission facilities of an intervening system) and difficulty in building

new transmission facilities have resulted in operating transmission systems closer to their

voltage or reactive limits. Interestingly, voltage control problems are now appearing in

more tightly meshed transmission systems and over wide areas. Maintaining adequate

network voltage with reduced transmission margins has become a major source of

vulnerability for many interconnected systems.

Voltage instability is a threat to utility sector in both developed as well as

developing countries as it takes several hours to be restored to a normal system imparting

a great monetary as well as non-monetary loss.

1.3 Assessment of Voltage Collapse

To assess voltage collapse, there are two main categories: Static and Dynamic. There are

different events that affect the speed and probability of voltage collapse. A few of them

are equipment outages or faults due to equipment outages, load disturbances, etc.
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Load disturbances can either be fast like a sudden outage of a large block of load

or slow, gradual random load fluctuation. The slow load fluctuation can be treated as a

static phenomenon as the voltage changes in small discrete steps of steady states while

the fast load change as well as equipment outage or faults due to it are to be counted in

the dynamic phenomenon.

The disturbances that require dynamic analysis are leading causes for transient

instability but they may cause voltage instability only if the voltage values after the

disturbance are low, the transient voltage dips are too long or the voltage equilibrium

attained after the disturbance is unstable and adding any reactive power support that that

bus will lower the voltage at that bus.

1.4 Brief Account of Voltage Collapse Indicators

Static simulators are usually used for planning and operating purposes to determine

things like reactive support requirements as well as system loading capabilities. Time

domain simulations are also used for voltage stability analysis.

Earlier, to investigate voltage unstable conditions, attempts were made to improve

the solution of static load flow programs applied to heavily loaded power systems having

low voltage profiles. At higher loads and near to the point of voltage collapse there is no

real steady state solution to load flow; hence it was difficult to arrive at a solution. Table

1.4 shows two different voltage magnitude and delta results for the same operating

conditions with different initial estimates, proving that multiple solutions exists for power

flow results. Also, looking at these sets of voltage magnitudes and delta values, it shows

that those are just analytical results and does not lie in the voltage stability region for it to

have practical possibility of such system. Later, it was observed that the dual solutions in
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a 2-Bus system (i.e., two voltage profiles for same operating conditions) converge to a

single point beyond which it becomes impossible to solve power flow.

Table 1.1 Multiple Solutions of a Load Flow Analysis

Bus VmInitial
Vm solution

Vm initial
Vm solution

1 1.06 1.06 1.06 1.06

2 -0.562 -0.0057 1.057 0.9835

3 1.055 1.0198 -0.098 0.0104

4 1.019 0.8845 1.019 0.8955

5 1.02 0.8818 1.02 0.8728

6 1.05 0.9854 1.05 0.7295

7 1.062 0.8246 1.062 0.9509

8 1.036 0.7587 1.036 0.7919

9 1.056 0.6475 1.056 0.9199

10 1.051 0.4407 1.051 0.9285

11 1.045 1.045 1.045 1.045

12 1.01 1.01 1.01 1.01

13 1.07 1.07 1.07 1.07

14 1.09 1.09 1.09 1.09

As stated in IEEE committee paper, 'Voltage Collapse Mitigation - Report to

IEEE Power System Relaying Committee' [1], certain early indicators used the distance

between these two solution points as an indicator of proximity to voltage collapse. The

distance decreases as the point of maximum permissible load approaches. This paper

used the Voltage - Power (VP) diagram shown in Figure 1.1 to explain the method.
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Figure 1.1 Voltage — Power diagram.

The VP curves do not take into consideration the reactive power component of the

load. To include the reactive component a third dimension is added as shown in Figure

1.2.

Figure 1.2 Voltage — Power diagram including reactive power.
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It was observed that there are many possible trajectories and various points of

voltage collapse. Also the active and reactive power margins depend on the initial

operating point and the trajectory leading to collapse. Numerous other attempts have been

recorded to find more accurate voltage collapse proximity indicators. Most of them are

based on measuring a state and deriving certain parameters which indicate the stability or

closeness to instability of that system.

Although it is useful to derive parameters based on measurements of system

conditions to avoid situation where a voltage collapse might occur, it is difficult to

calculate the system condition and derive parameters in real time. The derivation and

analysis of these parameters need to be very rapid to initiate corrective actions fast

enough to avoid collapse under emergency conditions which arise due to sudden

equipment failure or fast load change.

As pointed by IEEE committee paper, 'Voltage Collapse Mitigation — Report to

IEEE Power System Relaying Committee' [1], to avoid the above mentioned problem, it

is advisable to have a few critical parameters which can be directly measured to quickly

indicate proximity to collapse in real time. For example, the sensitivity of the generated

reactive powers with respect to the load parameters can be used as an indicator. As the

system approaches collapse, small increase in load results in large increase in reactive

power absorption which is to be supplied by dynamic sources of reactive power in that

region. At the point of collapse, the rate of change of generated reactive power at key

sources with respect to load increases at key buses tends to infinity. This sensitivity

matrix can be calculated in off-line studies but could be a problem in real time

applications because of the need of system wide measurement information. The norm of
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such a sensitivity matrix represents a useful proximity indicator but it is still relatively

difficult to interpret. It is not the generated reactive power, but its derivatives with respect

to loading parameters which becomes infinite at the point of imminent collapse.

One of the other directly measuring indicators are power margins themselves —

margins of active or reactive power on an individual bus or may be a group of buses

when a restricted number of load parameters are allowed to freely change. If the system is

stable, any additional reactive power will increase the voltage and any decrease in it will

decrease the voltage. The system would be most stable at light loads where there is

chance of additional load increase before the reserves of reactive power gets exhausted.

For loads with requiring the reactive load equal to the reactive reserve of the system, the

voltage is marginally stable. For heavy loads, there is need of additional reactive power to

be injected in the system to allow the voltage to be balanced and the system to be stable.

Hence, the measure of the reactive reserve available in a system gives an indication of the

margin between stability and instability.

It is impossible to directly measure the reactive reserve in a system, but there are a

few methods which can estimate the reserve available. Out of this, one method is to find

the dynamic sources of reactive power supply that is playing a significant role in

supporting the voltage in a specific area that may be subject to voltage collapse. One may

also compute the significance of dynamic sources, measure their unused Var capability

and compute the reserve reactive power from it.

Most of the systems do not take into account the operating limits such as reactive

power generation limits, loads which are sensitive to voltage, etc.
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Short term load forecasting techniques might also be used in order to access the

most likely direction of the load changes and corresponding margins.

Other method, commonly used is to monitor low voltage area for a prolonged

period. Actions such as tap changing or load shedding are taken under such conditions.

Although the limitation of this method is that the low voltage will persist over a complete

region, this method is widely used for years and has been reliable. However, it is rare

condition to be in danger of imminent voltage collapse and hence, experience under a

wide variety of system conditions is not available.

Monitoring the limiters would also give an indication of impeding collapses as

when reactive power limiters on generators or synchronous condensers operate to

maintain the machines within their capabilities these machines could not do any more to

support system voltage. Also, when system studies define the critical reserves and levels,

measurement of remaining reserves can give a dependable warning of the approach of

voltage instability.



CHAPTER 2

REVIEWING EXISTING METHODS

The first step towards developing a method for predicting a voltage collapse situation is

to study the existing methods and the problems associated with those methods.

The paper, presented by T.K. Abdul Rahman and G. B. Jasmon, 'A new

technique for voltage stability analysis in power system and improved loadflow algorithm

for distribution network' [2], gives an idea of a new technique to determine the static

voltage stability of load buses in a power system for a certain operating condition and

hence identifies the load buses which are close to voltage collapse.

A voltage stability index with respect to a load bus is formulated from the voltage

equation derived from a two bus network and it is computed using Thevenin equivalent

circuit of the power system referred to a load bus. This index indicates how far the load

buses are from their voltage stability limits and hence identifies the critical buses.

They have listed the following methods for stability analysis:

• Using reduced system model to derive voltage stability for stressed power station.

• Developing line stability factors to identify critical lines.

• Voltage stability index from minimum singular value of the power flow Jacobian
matrix.

• Space theory: Identifying the phenomenon of voltage collapse and bifurcation points
from singularity of the power flow Jacobian matrix.

• Using the Thevenin equivalent circuit with respect to the load bus concerned and
applying the concept of maximum power transfer theorem, a voltage collapse
proximity indicator is derived from the ratio between the load impedance and the
Thevenin impedance in the equivalent circuit.

10
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The voltage stability factor is derived from the voltage equation for a two bus

network which is computed by applying it to a Thevenin equivalent circuit looking across

each load bus.

Buses with values of voltage stability factors close to 1.0 are identified as the

critical buses.

For deriving the mathematical formulation for the voltage stability index, the

voltage equation derived from improved distflow loadflow technique is used. Disflow is a

technique which uses set of recursive equations for estimating the power loss reduction

due to branch exchange in a radial network. It does not require admittance matrix

calculation & also takes less iteration to converge. For deriving this equation, a two bus

model is used and then it is extended to a generalized form. This voltage equation is as

follows:

From the above voltage equation as well as using the basic power flow equations,

the load flow index L is derived. Its equation is as follows:
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L must be kept less than 1.0 to maintain voltage stability. If L exceeds 1.0, the

voltage at the referred bus becomes imaginary which indicates that voltage collapse has

occurred in the system.

Also, from the maximum power transfer theorem, it can be derived that to

maintain a secure system at load bus i, the ratio Zs / Z L ≤  1.0.

In the paper, Can voltage security indices predict voltage collapse problems in

large-scale power networks?, the writer R. Fischl and F. Mercede [3], points out that

there are number of methods like evaluating steady state instability; load flow

infeasibility; static bifurcation of equilibria; dynamic bifurcation of the stability region;

and multiple load flow solutions. These methods use some type of Voltage Collapse

Indicator which can be generalized as a function of measureable variables, reference

values and their weights.

The paper gives the necessary conditions for a voltage collapse indicator to

indicate the collapse effectively. The steady state operating point as well as the dynamic

operating point both should be taken into consideration.

They conclude that Voltage collapse indicator cannot predict the voltage collapse

correctly because in order to correctly identify the voltage collapse phenomenon, it is

necessary that the non-linear dynamic model should include pertinent generator and load

component models, such as models for generator flux decay effects and voltage regulator

dynamics, automatic tap changing under load (TCUL) transformers and any other

relevant load dynamics.

The type of voltage collapse phenomenon the indicator predicts depends on

whether the steady state operating point or the dynamic operating point is considered.
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In the paper, "Voltage Collapse Proximity Indicator: Behavior and Implications"

the authors, A.M. Chebbo, M.R. Irving and M.J.H. Sterling [4], considers the problem of

voltage stability and investigates a proposed voltage collapse proximity indicator

applicable to the load points of a power system. The indicator is based on optimal

impedance solution of 2-Bbus system.

The indicator so proposed is generalized and applied to an actual system. Finally,

the performance of this new indicator is investigated over both the stable and the unstable

regions, as the load at a particular node or the system load increases.

The paper shows a study of various methods proposed like use of convergence in

Newton Raphson Load flow calculations to estimate voltage stability limit, using indices

to estimate how far a given operating condition is from the voltage stability limit, load

voltage stability margin, reactive power margins, voltage to load sensitivity, generation to

load sensitivity, minimum singular value of the Jacobian matrix of the power flow

equations as a global voltage stability index as well as generalized eigen value approach.

Some limitations of all these methods were also studied. Based on the

computational procedures, the methods suffer from the following drawbacks:

• Some methods use the quantitative results of the two bus theory, which is not always
true for multiple generators model

• Few methods do not take into account the reactive power generation limits

• Repeated load flow calculations is time consuming as well as it might be inadequate
due to the potentially unreliable behavior of load flow algorithms in the vicinity of
voltage collapse. It is linked to the singularity of the Jacobian matrix; a fact related to
the existence of close multiple load flow solutions.
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Next, the paper presents the problem formulation for two bus system. The

evaluation is limited to study of the phenomenon of voltage collapse associated with

operation at a limit of the maximum power to be transmitted.

The maximum power transferred to the load is obtained when δPt/δZi = 0, which

corresponds to Zl/Zs = 1.

This approach is generalized to an actual network with the aid of Thevenin's

theorem. A general conclusion about the conditions for maximum power transfer is

drawn. Any network of linear elements and energy sources (and, approximately, any real

generator and its associated circuitry) can be represented by a series combination of an

ideal voltage V and an impedance Z. In the simplest case, these are the open circuit

generator voltage V, and the Thevenin's equivalent impedance of the network Z,. For a

network with n buses, the Thevenin's equivalent impedance looking into the port between

bus i and the ground is Zii angle β i .Therefore, at load bus i, the Thevenin's equivalent

impedance is Zii angle β i and therefore for permissible power transfer to the load at bus

it must have

The collapse of the system at load bus i occurs when the impedance of the load is

equal to the equivalent impedance looking into the port between bus i and the ground.

Basically, for a secure system the condition is as shown in Equation 2.1.

Zii/Z i was therefore taken as the measure of voltage stability at node i.
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The method use to investigate the proposed indicator was:

1. Compute a load-flow solution at the operating point to obtain the system power
and voltage profile;

2. Linearise the system load and generator active and reactive powers, by
representing them as shunt elements with appropriate signs;

3. Evaluate the admittance matrix [Y] and invert it to obtain the impedance matrix
[Z] ;

4. Determine the Thevenin impedance seen at node i (Zit);

5. Determine the voltage collapse proximity indicator (Z 1, /Z 1);

6. Evaluate the predicted critical power and critical voltage;

7. Increase system loading, run the load-flow program; if divergence occurs, then
stop; otherwise go to step (2).

The testing was conducted under the following conditions:

• Without limitations on the reactive-power output of the generators

• With limitations on the reactive-power output of the generators

• With limitations on the reactive power output of the generators, and with
artificially increased line charging and reactive-power sources.
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The conclusion drawn from the tests were:

• At light loads the voltage collapse proximity indicator behaves nearly linear with
the load; as the load increases, non-linearity starts to appear.

• The actual voltage curve and critical voltage curve intercept each other, or tend to
interception at the predicted critical point.

• The value of indicator does not indicate the amount of voltage level to collapse,
but the value of predicted critical power and critical voltage at that point can give
a true indication of how far is it from collapse.

• The critical power prediction is acceptable and very accurate for single-load
change and is an approximation for system — load change.

For single — load change the accuracy of predicted critical power improves as the

load increases and the prediction is very accurate in the vicinity of the critical power.

Also, additional reactive resources lead to a higher critical power and critical voltage and

the indicator provides increasingly accurate predictions as reactive resources become

exhausted.

For system — load change the voltage collapse indicator gives more accurate

prediction for unlimited case. The more reactive power that can be injected into the

system to overcome reactive power of the load, the better the prediction becomes. The

critical power predicted is less accurate than for the single — load change, and the voltage

collapse proximity indicator is more sensitive over the operating region.

In the IEEE Transaction paper 'Use of Local Measurements to Estimate Voltage -

Stability Margin' by Khoi Vu, Miroslav M. Begovic, Damir Novosel and Murari Mohan

Saha, it has been shown that for a given power transfer at the most two voltage solutions

exists as the phasor equation is quadratic.
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Figure 2.1 Local bus and the rest of the system treated as a Thevenin equivalent,
source [7].

It was shown that if one of the solutions is P then the other solution will be the

conjugate of (E - V). At Maximum Power Transfer, the two solutions become equal and

from that came the equation,

A further increase in power demand would yield no solution. From Equation 2.2 it

is clear that,

Equation 2.3 is one of the essential conditions for Equation 2.2 to be true, but it is

not the only condition for Equation 2.2. to be valid. In short, Equation 2.3 occurs when

the power is maximum, but Equation 2.3 alone might not always deliver maximum

power.

Zapp , the apparent impedance, is the ratio between voltage and current phasors

measured at that bus. Equation 2.3 holds true regardless of the load characteristics. | Zth|

is plotted as a circle and the second part of the equation Zapp separates the load plane into
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two regions. As the load varies, Zapp traces a path in the plane. When the Zapp point

crosses thevenin circle, voltage instability occurs. Therefore, they proved that to know

the closeness to a voltage collapse point, one has to calculate the distance of Zapp (of

present time) to the Thevenin circle.

Figure 2.2 Maximum power is reached when the apparent impedance of the load
bus hits the Thevenin Circle, Source [7].

They also point out that although this theme has its own merit and is unique as it

is tailored for relay application and involves only local measurements, but it requires all

network information and so can be only implemented at control center with

communication link to sub-stations. Also, in an actual dynamic power-system, voltage

collapse can occur before the maximum power transfer static limit has been arrived at.



CHAPTER 3

LOAD FLOW ANALYSIS

3.1 MULTIPLE SOLUTION OF LOAD FLOW PROBLEM

Although, voltage collapse is a dynamic phenomenon, it can be treated as static problem

if the parameters of the system change slowly. Hence load flow calculations have been

one of the most used methods to determine proximity to voltage collapse.

Normally, if Newton - Raphson method is used, the iterative solution is arrived at

in a few iterations and hence a limit on the maximum number of iterations is defined to

be somewhere around 20. For a real power system, with large number of unknowns, the

iterations do not converge in the defined number of iterations to be tried and a solution is

not achieved. This does not always mean that the system failed or is out of stability. In

the power flow program used, if maximum number of iteration was reached for a certain

operating condition, it was then tried to get a solution with higher number of iterations.

When the number of iterations was increased, solution was achieved, although not always

acceptable.

The non-linear load flow equations can provide multiple solutions. Usually, only

one of the solutions corresponds to stable operating point in the system and others

corresponds to unstable operating points of equilibrium which are analytically possible

but practically they are not feasible in real power system operation.

In intention to prove the above mentioned fact, the loads at certain buses were

increased gradually. The maximum number of allowable iterations was also kept much

higher. The results were monitored. Each load increase would provide an analytically

19
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possible solution. Although the voltages obtained so were of values not feasible in a real

power system.

3.1.1 Example with 14-Bus System to Show Multiple Solutions

Load at Bus 4 in the 14-Bus system was increased gradually and the voltage magnitude

as well as angle delta were plot against the multiplier (the amount of load increase). The

result is as shown in Figure 3.1. The procedure was repeated with another set of initial

values and the result thus obtained is shown is Figure 3.2 showing a new set of solution at

hid load values.

Figure 3.1 Depicting divergence of Load Flow solutions at large load at Bus 4 in a
14-Bus system.
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Figure 3.1 also shows how the solutions diverge from the set of solutions obtained

at lower loads. It proves the fact that at large loads the voltages go out of range of the

stability. After the point of maximum load, that Bus 4 is able to withstand without the

voltage going out of the practically possible range of values, the next solution obtained

by load flow is an unreasonable value of voltage. It shows that at unreasonable loads, the

solution of load flow also becomes unreasonable.

Figure 3.2 Depicting existences of multiple unreasonable solutions with
unreasonable starting values for Load Flow.
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3.1.2 Example with 14-Bus System to Impractical Solutions for Unreasonable Initial
Values

Figure 3.1 and Figure 3.2 also show that, if the initial estimated values of bus voltages are

changed to unreasonable values, the result obtained with same loads (operating condition)

are different, proving the fact that load flow has multiple solutions in multi-dimensional

model.

Table 3.1 Unreasonable Solution of Load Flow Analysis for Unreasonable Initial Values

Vm -Initial
values

Vm-LF
Solution

Vm-Initial
values

Vm-LF
Solution

1.06 1.06 1.06 1.06

1 13.2389 0.67 -225.6458

0.992 -0.5517 1 49.5939

-0.78 -1.1987 -0.35 -13.8823

-0.95 2.5983 1 -19.8699

1 -0.0049 -1 21.3069

0.578 1.1491 0.98 -19.5107

1 0.1406 -0.743 -9.3394

-0.87 -1.7833 1 -60.0208

1 -6.2082 1 -100.2786

1.045 1.045 1.045 1.045

1.01 1.01 1.01 1.01

1.07 1.07 1.07 1.07

1.09 1.09 1.09 1.09
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The fact can also be proven using Table 3.1. The load was made 10,000 times the

initial value and so the number of iterations that took to attain the following results were

also very high. The first two columns show a certain initial estimates (unreasonable

values) and the solution obtained thereafter. The 3r d and the 4th column show another set

of unreasonable initial estimates for the same operating conditions and its corresponding

load flow solution (at about 10,000 times the initial load). Both the solutions obtained are

unreasonable, but proves the fact that there are multiple solutions of a load flow analysis.

3.2 Finding Maximum Limit for Load that a Bus Can Deliver

Both P and Q were increased by a factor on each bus. The attempts lead to the conclusion

that, the voltage at the bus, whose load was increased, decreased the most. The voltage

values at other buses are affected negligibly. The decrease was more dramatic as the

voltage stability margins were reached. The delta values increased too with the increase

in load. A few of the results for certain buses are shown in the Table 3.2 through Table

3.7 as well as the graphs are shown in Figures 3.3 to 3.5. The base case load at Bus 4,

Bus 6 and Bus 10 are multiplied by the multiplying factor shown one by one in each case.



Table 3.2 The Solution Voltage Vector V„, in p.u. for Increase in Load at Bus 4 in
14-Bus System

Multiplying
factor

.1
2 5 10 14 15 16

Bus

1 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600

2 1.0453 1.0438 1.0383 1.0245 1.0027 0.9897 0.0025

3 1.0531 1.0529 1.0521 1.0499 1.0463 1.0441 0.0110

4 1.0282 1.0214 0.9960 0.9299 0.8215 0.7550 -0.0986

5 1.0351 1.0297 1.0083 0.9475 0.8416 0.7751 -1.3059

6 1.0464 1.0458 1.0438 1.0389 1.0312 1.0266 0.5891

7 1.0458 1.0425 1.0307 1.0002 0.9507 0.9206 0.5585

8 1.0180 1.0158 1.0078 0.9875 0.9553 0.9359 0.3977

9 1.0285 1.0251 1.0128 0.9816 0.9320 0.9021 -0.3320

10 1.0283 1.0254 1.0150 0.9888 0.9472 0.9221 0.0293

11 1.0450 1.0450 1.0450 1.0450 1.0450 1.0450 1.0450

12 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100

13 1.0700 1.0700 1.0700 1.0700 1.0700 1.0700 1.0700

14 1.0900 1.0900 1.0900 1.0900 1.0900 1.0900 1.0900
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Table 3.3 The Solution Delta Vector in Degrees for Increase in Load at Bus 4 in
14-Bus System

Multiplying
factor 1 2 5 10 14 15 16

Bus

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 -15.22 -17.68 -25.54 -41.33 -61.22 -71.64 -41944.61

3 -15.72 -18.12 -25.76 -41.21 -60.82 -71.17 -49488.48

4 -10.39 -13.11 -21.77 -39.10 -60.72 -71.92 -40557.82

5 -8.98 -11.10 -17.84 -31.22 -47.54 -55.70 -2786.34

6 -15.74 -18.15 -25.83 -41.33 -60.96 -71.30 -48371.28

7 -13.47 -16.10 -24.50 -41.31 -62.31 -73.19 -61133.06

8 -16.40 -18.92 -26.92 -43.01 -63.23 -73.79 -37022.34

9 -15.09 -17.67 -25.91 -42.42 -63.04 -73.75 -98768.27

10 -15.33 -17.88 -26.00 -42.29 -62.68 -73.29 -85819.08

11 -4.95 -6.14 -9.97 -17.67 -27.09 -31.69 -4366.43

12 -12.61 -14.68 -21.32 -34.75 -51.48 -59.96 15391.17

13 -14.88 -17.26 -24.85 -40.21 -59.71 -70.01 -50164.97

14 -13.47 -16.10 -24.50 -41.31 -62.31 -73.19 -61133.06

25
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Figure 3.3 Variation of V,„ and Delta with increase in P & Q simultaneously at
Bus 4 for 14-Bus system.



Table 3.4 The Solution Voltage Vector V m in p.u. for Increase in Load at Bus 10 in
14- Bus System

Multiplying
factor

1
2 5 10 17 18 19

Bus

1 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600

2 1.0453 1.0387 1.0173 0.9738 0.8683 0.8300 -0.9323

3 1.0531 1.0526 1.0509 1.0472 1.0379 1.0343 -0.0168

4 1.0282 1.0256 1.0168 0.9989 0.9567 0.9425 -0.0007

5 1.0351 1.0329 1.0255 1.0103 0.9739 0.9616 1.0478

6 1.0464 1.0452 1.0415 1.0337 1.0141 1.0069 -0.0190

7 l .0458 1.0415 1.0275 0.9980 0.9232 0.8957 0.0000

8 1.0180 1.0133 0.9976 0.9650 0.8824 0.8516 -0.0139

9 1.0285 1.0212 0.9969 0.9465 0.8191 0.7715 0.0676

10 1.0283 1.0157 0.9748 0.8924 0.6943 0.6227 -0.1300

11 1.0450 1.0450 1.0450 1.0450 1.0450 1.0450 1.0450

12 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100

13 1.0700 1.0700 1.0700 1.0700 1.0700 1.0700 1.0700

14 1.0900 1.0900 1.0900 1.0900 1.0900 1.0900 1.0900
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Table 3.5 The Solution Delta Vector in Degrees for Increase in Load at Bus 10 for
14-Bus System

Multiplying
factor

1
2 5 10 17 18 19

Bus

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 -15.22 -16.34 -19.82 -26.32 -39.21 -42.94 57619.62

3 -15.72 -16.66 -19.60 -25.12 -36.26 -39.59 28066.66

4 -10.39 -10.84 -12.24 -14.76 -19.23 -20.33 18326.96

5 -8.98 -9.39 -10.67 -12.99 -17.24 -18.34 -805.36

6 -15.74 -16.69 -19.65 -25.18 -36.30 -39.59 29396.93

7 -13.47 -14.34 -17.04 -21.98 -31.23 -33.66 825109.52

8 -16.40 -17.44 -20.69 -26.74 -38.78 -42.28 173815.24

9 -15.09 -16.18 -19.61 -25.98 -38.57 -42.18 150859.31

10 -15.33 -16.65 -20.82 -28.73 -45.40 -50.70 371940.57

11 -4.95 -5.17 -5.85 -7.09 -9.36 -9.94 7151.68

12 -12.61 -12.99 -14.15 -16.27 -20.19 -21.21 30798.58

13 -14.88 -15.80 -18.69 -24.11 -35.07 -38.35 28295.59

14 -13.47 -14.34 -17.04 -21.98 -31.23 -33.66 825109.52
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Figure 3.4 Variation of V,„ and Delta with increase in P & Q simultaneously at
Bus 10 in 14-Bus system.



Table 3.6 The Solution Voltage Vector V m in p.u. for Increase in Load at Bus 6 in
14-Bus System

Multiplying
factor

1 2 5 10 18 19 20

Bus

1 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600

2 1.0453 1.0451 1.0435 1.0374 1.0036 0.9890 -0.1476

3 1.0531 1.0481 1.0321 0.9996 0.9113 0.8872 -0.0095

4 1.0282 1.0260 1.0181 0.9998 0.9336 0.9096 -61.9248

5 1.0351 1.0325 1.0233 1.0017 0.9222 0.8929 -33.9306

6 1.0464 1.0349 0.9980 0.9253 0.7350 0.6846 -4.8436

7 1.0458 1.0446 1.0401 1.0278 0.9757 0.9557 0.0101

8 1.0180 1.0123 0.9929 0.9497 0.8097 0.7652 -10.9814

9 1.0285 1.0275 1.0232 1.0096 0.9457 0.9205 21.6309

10 1.0283 1.0276 1.0241 1.0127 0.9556 0.9322 12.5122

11 1.0450 1.0450 1.0450 1.0450 1.0450 1.0450 1.0450

12 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100

13 1.0700 1.0700 1.0700 1.0700 1.0700 1.0700 1.0700

14 1.0900 1.0900 1.0900 1.0900 1.0900 1.0900 1.0900
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Table 3.7 The Solution Delta Vector in Degrees for Increase in Load at Bus 6 in
14-Bus System

Multiplying
factor

1 2 5 10 18 19 20

Bus

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 -15.22 -16.81 -21.84 -31.52 -57.16 -64.84 -126215.49

3 -15.72 -17.81 -24.43 -37.11 -70.19 -79.86 -144347.83

4 -10.39 -11.06 -13.16 -17.15 -26.89 -29.46 -65969.61

5 -8.98 -9.63 -11.71 -15.63 -25.17 -27.65 -185672.40

6 -15.74 -17.98 -25.06 -38.64 -74.12 -84.44 -119249.11

7 -13.47 -14.51 -17.80 -24.07 -39.95 -44.41 -208241.13

8 -16.40 -18.09 -23.39 -33.41 -58.59 -65,67 -769173.24

9 -15.09 -16.32 -20.23 -27.67 -46.69 -52.12 -146365.15

10  -15.33 -16.68 -20.93 -29.06 -50.20 -56.37 -52881.33

11 -4.95 -5.28 -6.30 -8.26 -13.10 -14.38 -8861.96

12 -12.61 -13.14 -14.83 -18.06 -26.20 -28.42 9241.08

13 -14.88 -16.72 -22.55 -33.76 -63.56 -72.49 -121049.89

14 -13.47 -14.51 -17.80 -24.07 -39.95 -44.41 -208241.13
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Figure 3.5 Variation of Vm and Delta with increase in P 8z, Q simultaneously at
Bus 6 in 14-Bus system.

3.3 Restricting the Load Flow Solutions in the Range of Voltage Stability

When the load flow was conducted keeping the same operating conditions with high load

values and different initial voltage values, the results showed that the load flow

calculations led to a new set of voltage values each time. All these values were

unacceptable for an actual power system.

These unstable solutions included certain lower voltage solution usually showing

voltage instability as well as few higher voltage solutions with angles shifted by 180

degrees related to angle instability,
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It should also be noted that the point where the voltage goes below stability limit

arises before the point where the power flow solutions diverge from their normal

trajectory. Also at this point, even though the solution converges, it takes a large number

of iterations to give the solution. This also proves the need of having a check on the

voltage limits in the power flow program to ensure voltage stability and to give results

which are practically possible.

It is now important to alter the load flow program by a criterion which would lead

to solutions which are acceptable and practically feasible. Therefore, limits of +1- 20%

change on the voltage values were imparted on the iterative solutions. Using this

program, attempt was made to find out the load limits at every bus, by manually

increasing the load at a bus each time until the point of divergence or voltage instability

was reached. The Matlab program for the power flow with voltage limits is shown in

Appendix D.

3.4 Dependency of Voltage Solutions on P leadload and Quad

An attempt was made to check the dependency of voltage values on active and reactive

loads individually. Hence using the same program as in Appendix D, only active load

values and then only reactive load values were modified. These were increased until the

point voltage stability limits were reached. The results were again as expected. Voltage

fell out of the stability limit of 0.8 p.u. and 1.2 p.u. as loads were increased or it could be

said that as power delivered by the bus increased beyond the capacity, the voltage fell

below stability limits.

The limit where individually only active power delivered was increased, was

much higher than when just reactive power delivered was increased. It is because of the
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fact that voltage values are majorly governed by reactive power than by active power. AC

systems are dominated by reactance and there is a close connection between voltage

control and reactive power, but active and reactive powers both share the leading role in

the effect on the voltage values.

Figure 3.6 DC System, source [5].

For normal operating conditions, the coupling between active power and phase

angles as well as reactive power and voltage magnitudes holds perfectly true. However, it

is not completely extendable to extreme loading conditions such as voltage instability

scenarios. A wonderful example is given in the book, 'Voltage stability of electric power

systems' by Thierry Van Custem, Costas Vournas [5], to illustrate there is no "cause and

effect" relationship between reactive power and voltage instability. They considered a

system as shown in figure 4.1 made up of a DC voltage source E feeding through a line

resistance R and a variable load resistanceR t . It was assumed that Rt varies automatically

with the help of a control device, so as to achieve a power consumption setpoint 130 . From
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the well known theorem of Maximum power transfer, the maximum power that could be

E 2
transferred to the load corresponds to the condition Rt = R and is given by max = 4R

Figure 3.7 Voltage instability in a DC system, source [5].

If the demand P, is made larger than Pi,. the load resistance will decrease below

R and voltage instability will result after crossing the maximum power point. A typical

simulation for this case was also shown as in Figure 4.2

The simple exemplar has the major characteristic of voltage instability, although it

does not involve reactive power. Hence as concluded in [5], in the actual AC power

system, reactive power makes the picture much more complicated but it is certainly not

the only source of problem.

Also, for a bus (Bus 4 for the 14-Bus system in appendix A) since reactive power

was injected i.e., negative value of reactive power load, the voltage increased instead of
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decreasing when the reactive power injection was increased. A further increase in the

reactive power injection led the voltage at that bus to rise above voltage limit (1.2 p.u.).

The results showing the effects as discussed are formulated in the following graphs.

Figure 3.8 Effect of increasing active and reactive power both simultaneously on voltage
magnitudes and delta at Bus 4 with voltage limits applied.

When active and reactive power both are increased by a common multiplying

factor simultaneously, the maximum power that could be delivered to the load before the

voltage goes beyond stability limits is 669.2 — j54.6 MVA.
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Figure 3.9 Effect of increasing only active power on the voltage magnitudes at Bus 4
with voltage limits applied.

When only active power was increased, with a constant reactive power of - 3.9

Mvar, the maximum active power that could be delivered to load in the voltage stability

region was 621.4 MW.
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Figure 3.10 Effect of increasing only reactive power on voltage magnitude at Bus 4 with
voltage limits applied.

Similarly, the maximum reactive power that could be injected at the bus without

disturbing the voltage stability and delivering a constant active power of 47.8 MW is -

491.4 Mvar. Note that the negative sign is because reactive power was injected at this

bus.
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3.5 Results for Increasing Both P and Q for All Buses Simultaneously

In practical systems, loads do not vary on a single bus at a time, but there will be random

increase or decrease at various buses of the system. The worst case will be increase of

load at all buses simultaneously. To see the effect of such an increase, the load (Both P

and Q) was increased simultaneously on all buses gradually. The figure below shows the

variation of V,„ at all load buses for the 14-Bus system with respect to the multiplier — the

factor by which the load is increased.

Figure 3.11 Variation of V,„ with respect to the multiplier when P and Q both are
increased simultaneously for all load buses in a I4-Bus system.
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The results show that the curve diverges at very slight increase in load. When load

was varied on a single bus at a time, the load limits achieved at those buses were in range

of 9 to 61 times the initial system load given in the data, while in this case with

simultaneous increase, the system collapses just with an increase of about 3 to 4 times the

actual load of the system. This can be summarized with the Table 4.7

Table 3.8 Comparison Between the Breakdown Point with increase in Load at
Single Bus and at All Buses Simultaneously

Bus K

Multiplier when the
system collapses

with load increase
on Bus K

Multiplier when
the system

collapses with
load increase on

all bus
simultaneously

2 61 4

3 30 4

4 16 4

5 81 4

6 20 4

8  9 4

9 9 4

10 19 4

The Bus 7 has been omitted in the table as it has zero '0' load in the system data

and hence when load was increased in multiples of system data load, the load on Bus 7
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was still '0'. The bus voltage at Bus 7 drops because of the loads on other buses showing

dependency of all variables on each other.

It is evident from the above discussion that, in practical system, the case may vary

from increase in just a single bus at a time to all bus at a time. Hence the maximum load

that a bus can deliver varies between 4 times to about 60 times.



CHAPTER 4

Z-THEVENIN APPROACH

One of the methods to calculate an index for knowing voltage collapse point is using

Maximum power transfer theorem.

The maximum power transfer theorem states that, to obtain maximum external

power from a source with a finite internal resistance, the resistance of the load must be

made the same as that of the source.

The maximum power transfer theorem can be extended to AC circuits with

reactance. The condition achieved for that is Z-load = Z-thevenin*.

Figure 4.1 System for Calculating Z-thevenin at Bus K.

42
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4.1 Algorithm for Calculating Z-Thevenin of the System with respect to a Load Bus

1. Assume the load at the bus being considered, Bus K = 0;

2. Get Y-bus, Vm  and delta using load flow analysis with linedata and the modified
busdata of step 1;

3. Get Sload (KVA) in rectangular form;

4. Represent the load at every load bus except Bus K by an admittance

Yload = S/Vm2 ;

5. Modify Yii, i c N1, i ≠ K, such that Yii= Yii, + Yload(i);

6. Delete the axes corresponding to all generator buses including the slack bus;

7. Invert to get Z-bus with load.

8. Z-thevenin for Bus K is ZKK.9.

Repeat steps 1 to 8 for all buses in the set NI.

Figure 4.2 Thevenin Equivalent Circuit for System in Figure 4.1.
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A study verifying the above algorithm was carried out with 14-Bus system and

the results are as shown in Table 4.1. The Matlab program used to find Z-thevenin is

provided in Appendix G.

Table 4.1 Z-thevenin Values for Load Buses of 14-Bus System

Load Bus No Z-thevenin

2 0.0578 + 0.1345i

3 0.0913 + 0.1443i

4 0.0112 + 0.0419i

5 0.0105 + 0.0433i

6 0.0487 + 0.0895i

7 0.0077 + 0.0806i

8 0.0922 + 0.2110i

9 0.0198 + 0.1087i

10 0.0443 + 0.1426i

4.2 Applying Maximum Power Transfer Theorem

According to the Maximum Power Transfer Theorem, the conjugate of the Z-thevenin

values obtained in Table 4.1 was used as load at that particular bus to calculate the power.

The apparent power S-load is the power between nodes A and B in figure 4.2.

For the condition in Equation 4.1, the equation for S load can be written as,
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Also, power factor for the same could be found out as,

The results obtained are shown in Table 4.2. The Matlab commands are presented

as part of Z-thevenin program in Appendix G.

Table 4.2 P load and Qload Values Obtained for Load Z-thevenin*

Load Bus No Pload Qload
Power
Factor

2 4.7719 -11.1119 0.3946

3 3.1030 -4.9050 0.5346

4 23.6042 -88.1150 0.2588

5 25.2650 -103.8902 0.2363

6 5.7380 -10.5397 0.4782

7 35.6348 -374.7277 0.0947

8 2.9592 -6.7701 0.4005

9 14.0370 -77.0992 0.1791

10 6.1138 -19.6588 0.2970



CHAPTER 5

CONSTANT POWER FACTOR CONCEPT

5.1 Extending Maximum Power Transfer Theorem
to Constant Power Factor Concept

The Maximum Power Transfer concept gives maximum P load values possible for the

system to supply at a particular bus. What about Q load? The power factor values so

obtained are also not possible for a practical system. To take into account the above

matters, the load that can be delivered by a bus was found by considering constant load

power factor. The condition for maximum power transfer under constant power factor is

derived below.
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The results obtained from the equations are in Table 5.1

Table 5.1 Maximum Load Values for Constant Power Factor

Load
Bus No

Power
Factor

Pload from
Equation 4.13

2 0.8893 1.8909

3 0.9673 1.8534 0.4861

4 0.9967 9.11 0.7433

5 0.9785 8.1628 1.7185

6 0.963 3.1137 0.8713

8 0.948 1.3446 0.4512

9 0.8715 2.6745 1.505

10 0.8406 1.7275 1.1133

5.2 Comparison with Maximum Load Limits Obtained from Manual Load Increase

From the various methods that were verified and examined in this paper, Table 5.2, Table

5.3 and Table 5.4 summarizes the results for the maximum limit of load that a bus can

deliver.

The columns 3 and 4 of Table 5.2 are the maximum power value in p.u. obtained

by manually increasing the load at each bus & verifying using load flow and the one

obtained from Equation 4.13 under the condition for constant power factor.

The columns 3 and 4 of Table 5.3 are Q load values in p.u. corresponding to the

maximum power value obtained by manually increasing the load at each bus & verifying

using load flow and the one obtained from Equation 4.14 under the condition for constant

power factor.



Table 5.2 Comparison of Maximum Power Values

Bus No Load Power
Factor

Maximum Power in
p.u. with Voltage

beyond limit -
manual increase

Pload from coast pf
derivation

2 0.8893 1.7850 1.8909

3 0.9673 1.7690 1.8534

4 0.9967 lead 7.1700 9.11

5 0.9785 5.7760 8.1628

6 0.963 2.5650 3.1137

7 NaN 2.1600 NaN

8 0.948 1.1920 1.3446

9 0.8715 2.3600 2.6745

10 0.8406 1.6200 1.7275

Table 5.3 Comparison of ()load for Maximum Power Results

Bus No
Load Power

Factor

Qload in p.u. with
voltage beyond
limit - manual

increase

Qload from
Pload*tan(phi)

2 0.8893 0.9180 0.9711

3 0.9673 0.4640 0.4841

4 0.9967 lead -0.5850 0.7462

5 0.9785 1.2160 1.7273

6 0.963 1.1020 1.2128

7 NaN 2.1600 NaN

8 0.948 0.4000 0.4497

9 0.8715 1.3280 1.5012

10 0.8406 1.0440 1.1111
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The columns 3 and 4 of Table 5.4are bus voltage when maximum power value is

obtained by manually increasing the load at each bus & Thevenin voltage used while

verifying using load flow in p.u.

Table 5.4 Comparison of Voltage Values for Maximum Power Results

Bus No
Load

Power
Factor

V. for the maximum
load in column 3 & 4

V-thevenin
calculated

2 0.8893 0.6486 1.0501

3 0.9673 0.6574 1.0644

4 0.9967
lead

0.7550 1.0299

5 0.9785 0.7414 1.0316

6 0.963 0.6846 1.0573

7 NaN 0.6182 1.0450

8 0.948 0.7291 1.0448

9 0.8715 0.6956 1.0541

10 0.8406 0.6227 1.0414

Next the values obtained for maximum power by manually increasing the load

only upto the point where the bus voltage falls in +1- 20% stability region were compared

with the ones in columns 4 of Table 5.2. The corresponding reactive load values and

voltage values were also observed. The results are shown in Table 5.5

The limit for manual increase in load was obtained at the breakdown point. A

breakdown point can be defined as the point from which the solutions diverged than the

actual curve the solutions formed. At this point the load flow takes large number of
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iterations to converge. It is worth noting that the voltage values at the bus obtained for

maximum attainable power is below the voltage stability limit. This shows that there is a

possibility of voltage collapse to occur before system attains maximum power.

Table 5.5 Comparison of Power and Voltage Values for Maximum Power Results within
Voltage Stability Limit

Bus No
Load

Power
Factor

Maximum
Power in pat.
with Voltage
in stability

limit -
manual
increase

Bus Voltage
for maximum

power

Pload from
const pf

derivation

V-
thevenin

calculated

2 0.8893 1.4350 0.8018 1.8909 1.0501

3 0.9673 1.4030 0.8162 1.8534 1.0644

4 0.9967
lead 6.6920 0.8215 9.11 1.0299

5 0.9785 5.0160 0.8272 8.1628 1.0316

6 0.963 2.1600 0.8011 3.1137 1.0573

7 NaN 1.7600 0.8008 NaN 1.0450

8 0.948 1.0430 0.8006 1.3446 1.0448

9 0.8715 1.7700 0.8519 2.6745 1.0541

10 0.8406 1.2600 0.8024 1.7275 1.0414

The difference in the value of maximum Power is due to two reasons. The

calculations made in both methods had different load values at the bus as well as the

voltage values are different. Since the load at the bus whose Z-thevenin is calculated is

removed during the calculation for V-thevenin, the actual system voltage is about 20%
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lower than V-thevenin. Also, Z-load values governed by Equations 4.5 and 4.12, is

affected by the change in Z-thevenin if the load was considered in the system like in the

manual increase case. The decrease in Z-thevenin would be around 2 - 4%. This will

affect the total impedance in the Thevenin circuit as well as the load impedance since

both these impedances are based on Z-thevenin values. The power is directly proportional

to square of Voltage, inversely proportional to the square of current as well as directly

proportional to the load impedance. Considering all the decrements, the decrease in the

value of power delivered to the load from the one that is calculated using Equation 4.13 is

of about 25-30%. Let the percentage decrease be called factor X.

Table 5.6 Comparison of Power Values for Maximum Power Results Considering Factor
X of 25%

Bus No
Load
Power
Factor

Maximum Power in
pu with Voltage in

stability limit -
manual increase

Pload from const
pf derivation
considering

factor X = 25%

2 0.8893 1.4350 1.4182

3 0.9673 1.4030 1.3901

4 0.9967 lead 6.6920 6.8325

5 0.9785 5.0160 6.1221

6 0.963 2.1600 2.3353

7 NaN 1.7600 NaN

8 0.948 1.0430 1.0085

9 0.8715 1.7700 2.0059

10 0.8406 1.2600 1.2956
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The Table 5.6 shows the comparison between the maximum power values

obtained by manual increase of load limited to the solutions which are in voltage stability

region and considering factor X to be 25% for the maximum power obtained by constant

power factor method. This values are quite close approximation to the ones in column 3,

but yet not exactly same.

5.3 Conclusive Remarks

The following points can be summarized from the work in this thesis:

Non - Convergence of Newton — Raphson Load Flow Analysis is not a reliable

indicator about occurrence of Voltage Collapse. At heavy loads Load Flow may converge

and give impractical solutions.

New criterion has been developed in the thesis for maximum power transfer at

constant power factor. This criterion takes into account the reactive power load during

maximum power transfer & hence has closer approximation to the practical maximum

power a bus can deliver in an actual system. It could be a base for further research on

how does contingencies affect Z-thevenin & the maximum power limit for the load buses

in that case.



APPENDIX A

DATA FILES USED FOR ANALYSIS

Tables A.1 to A.4 are the data tables used during the study. The bus type '1' means slack

bus, '0' means load bus and '2' means generator bus.Figure A.1 is the diagram for the

14-Bus system used during the study.

Table A.1 Busdata for 14-Bus System

Bus Bus
Type

Voltage
in p.u.

Delta in
degrees

Pload in
MW

Qload in
Mvar

Pgen in
MW

Qgen  in
Mvar

1 1 1.06 0 0 0 232.4 -16.9
2  0 1.057 -14.79 3.5 1.8 0 0
3 0 1.055 -15.07 6.1 1.6 0 0
4 0 1.019 -10.33 47.8 -3.9 0 0
5 0 1.02 -8.78 7.6 1.6 0 0
6 0 1.05 -15.16 13.5 5.8 0 0
7 0 1.062 -13.37 0 0 0 0
8 0 1.036 -16.04 14.9 5 0 0

9 0 1.056 -14.94 29.5 16.6 0 0
10 0 1.051 -15.1 9 5.8 0 0
11 2 1.045 -4.98 21.7 12.7 40 42.4
12 2 1.01 -12.72 94.2 19 0 23.4
13 2 1.07 -14.22 11.2 7.5 0 12.2
14 2 1.09 -13.36 0 0 0 17.4
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Table A.2 Linedata for 14-Bus System

Bus
from

Bus to Resistance Reactance Susceptance

1 11 0.01938 0.05917 0.0528

1 5 0.05403 0.22304 0.0492

11 12 0.04699 0.19797 0.0438

11 4 0.05811 0.17632 0.034

11 5 0.05695 0.17388 0.0346

12 4 0.06701 0.17103 0.0128

4 5 0.01335 0.04211 0

4 7 0 0.20912 0

4 9 0 0.55618 0

5 13 0 0.25202 0

13 2 0.09498 0.1989 0

13 3 0.12291 0.25581 0

13 6 0.06615 0.13027 0

7 14 0 0.17615 0

7 9 0 0.11001 0

9 10 0.03183 0.0845 0

9 8 0.12711 0.27038 0

10 2 0,08205 0,19207 0

3 6 0.22092 0.19988 0

6 8 0.17093 0.34802 0
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Table A.3 Busdata for 30-Bus System

Bus Bus
Type

Voltage
in p.u.

Angle in
degrees

Pload in
MW

Qload in
Mvar

Pgen in
MW

Qgen in
Mvar

1 1 1.06 0 0 0 260.2 -16.1

2 2 1.043 -5.48 21.7 12.7 40 50
3 0 1.021 -7.96 2.4 1.2 0 0
4 0 1.012 -9.62 7.6 1.6 0 0
5 2 1.01 -14.37 94.2 19 0 37

6 0 1.01 -11.34 0 0 0 0
7 0 1.002 -13.12 22.8 10.9 0 0

8 2 1.01 -12.1 30 30 0 37.3

9 0 1.051 -14.38 0 0 0 0

10 0 1.045 -15.97 5.8 2 0 0

11 2 1.082 -14.39 0 0 0 16.2

12 0 1.057 -15.24 11.2 7.5 0 0

13 2 1.071 -15.24 0 0 0 10.6

14 0 1.042 -16.13 6.2 1.6 0 0

15 0 1.038 -16.22 8.2 2.5  0 0
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Table A.3 Busdata for 30-Bus System (Continued)

Bus
Bus
type

Voltage
in p.u.

Angle in
degrees

Pload in
MW

Qload in
Mvar

Pgen in
MW

Qgen in
Mvar

16 0 1.045 -15.83 3,5 1.8 0 0
17 0 1.04 -16.14 9 5.8 0 0
18 0 1.028 -16.82 3.2 0.9 0 0

19 0 1.026 -17 9.5 3.4 0 0
20 0 1.03 -16.8 2.2 0.7 0 0
21 0 1.033 -16.42 17.5 11.2 0 0

22 0 1.033 -16.41 0 0 0 0

23 0 1.027 -16.61 3.2 1.6 0 0

24 0 1.021 -16.78 8.7 6.7 0 0

25 0 1.017 -16.35 0 0 0 0
26 0 1 -16.77 3.5 2.3 0 0
27 0 1.023 -15.82 0 0 0 0

28 0 1.007 -11.97 0 0 0 0

29 0 1.003 -17.06 2.4 0.9 0 0
30 0 0.992 -17.94 10.6 1.9 0 0
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Table A.4 Linedata for 30-Bus System

Bus from Bus to Resistance Reactance  Susceptance

1 2 0.0192 0.0575 0.0528

1 3 0.0452 0.1652 0.0408

2 4 0.057 0.1737 0.0368

3 4 0.0132 0.0379 0.0084

2 5 0.0472 0.1983 0.0418

2 6 0.0581 0.1763 0.0374

4 6 0.0119 0.0414 0.009

5 7 0.046 0.116 0.0204

6 7 0.0267 0.082 0.017

6 8 0.012 0.042 0.009

6 9 0 0.208 0

6 10 0 0.556 0

9 11 0 0.208 0

9 10 0 0.11 0

4 12 0 0.256 0

12 13 0 0.14 0

12 14 0.1231 0.2559 0

12 15 0.0662 0.1304 0

12 16 0.0945 0.1987 0

14 15 0.221 0.1997 0
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Table A.4 Linedata for 30-Bus System (Continued)

Bus from Bus to Resistance Reactance Susceptance

16 17 0.0524 0.1923 0

15 18 0.1073 0.2185 0

18 19 0.0639 0.1292 0

19 20 0.034 0.068 0

10 20 0.0936 0.209 0

10 17 0.0324 0.0845 0

10 21 0.0348 0.0749 0

10 22 0.0727 0.1499 0

21 22 0.0116 0.0236 0

15 23 0.1 0.202 0

22 24 0.115 0.179 0

23 24 0.132 0.27 0

24 25 0.1885 0.3292 0

25 26 0.2544 0.38 0

25 27 0.1093 0.2087 0

28 27 0 0.396 0

27 29 0.2198 0.4153 0

27 30 0.3202 0.6027 0

29 30 0.2399 0.4533 0

8 28 0.0636 0.2 0.0428

6 28 0.0169 0.0599 0.013
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Figure A.1. 14-Bus Diagram.
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APPENDIX B

POWER FLOW AND ITS VERIFICATION

One of the important parts of the thesis was to have a proper power flow analysis tool to

verify all the methods and try all possibilities of improvisation.

Starting with all the basic Matlab programs provided by Dr. Walid Hubbi, a final

load flow program was developed and verified. This program would take line data as well

as bus data (the one used are specified in Appendix A) as the input and by using Newton

Raphson method of power flow analysis would give a final solution of Voltage V m  and

angle delta.

The convergence criterion could also be specified and the solutions will be

calculated accordingly maintaining accuracy up to certain specified decimal points. All

the work presented in this thesis was calculated on the accuracy of the order of le.

The maximum number of iterations could also be specified in the power flow

program. A normal range of number of iterations for getting reasonable solutions is about

10 iterations at the max. It should be brought to notice of the reader at this point, that in

this thesis, the verifications including non - reasonable solutions had no limit to

maximum number of iterations. Certain unreasonable solutions were obtained at more

than a thousand iterations, but by looking at the results it could easily be told that for any

iterative load flow analysis, taking more than 20 iterations, was certainly giving

unreasonable solutions.

The basic verification of this program was done using data from the book, Power

System Analysis by John J. Grainger and William D. Stevenson, Jr. Example 9.5 with

input line data is given in table 9.2 on page 337 and input bus data is given in table 9.3 on
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page 338. (Same listed below in the format of data input in the power flow program

developed in Matlab)

Table B.1 Linedata from Example 9.5

Bus to
Bus
from

Resistance Reactance Susceptance

1 2 0.01008 0.0504 0.05125

1 3 0.00744 0.0372 0.03875

2 4 0.00744 0.0372 0.03875

3 4 0.01272 0.0636 0.06375

Table B.2 Busdata from Example 9.5

Bus Bus
Type

Voltage
in p.u.

Angle in
degrees Pload in MW

Qload in
Mvar

Pgen in
MW

Qgen in
Mvar

1 1 1 0 50 30.99 0 0

2 0 1 0 170 105.35 0 0

3 0 1 0 200 123.94 0 0

4 2 1.02 0 80 49.58 318 0

The convergence criteria was set to 0.00001 and maximum number of iterations

to 20.

The solutions converged after 4 iterations. The result obtained for V,, and Delta

was same as that in the book in Figure 9.4 on page 358.
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Table B.3 Result from Power Flow Program for Example 9.5

Yin in p.u. Delta in degrees

1 0

0.9824 -0.9761

0.969 -1.8722

1.02 1.5231

Also to be noted here is that the initial estimates of voltage and delta should be

reasonable values. It could be either some real time data available for the operating

condition or a flat start of V m = 1 p.u. and delta = 0 degrees.



APPENDIX C

MATLAB PROGRAM FOR BASIC LOAD FLOW ANALYSIS

The main program for power flow analysis is put up in this Appendix. The sub — routines

are also included as part of this Appendix. This whole program, including the sub —

routines is used as a sub — routine for the programs presented in the following

Appendices.

ffinction[Vm,delta]=pflow3(busdata,linedata,convergence_criterion, max_num_of iteration)

load busdata;
load linedata;
load convergence_criterion;
load maxnumof iteration;

crit= convergence_criterion;
max_iter= max_num_of_iteration;
nbus = length(busdata(:,1));
d=busdata(:,2)==2; 	 %Finding out how many generator buses
ngen=sum(d); 	 % ngen = of generator busses, type 2

bus_kind=busdata(:,2);
Vm=busdata(:,3); 	 % Vm is the vector of the voltage magnitudes, it contains specified voltages, initial
estimate or best available estimate.

delta=busdata(:, 4);
Pload=busdata(:,5); % Data has values in MW
Q_load=busdata(:,6); % Data has values in Mvar
P_generated=busdata(:,7); % Data has values in MW
Q_generated = busdata(:,8); % Data has values in Mvar
delta = pi/180*delta; % Data has delta in degrees & hence converted to radians

basemva=100 ;
P_net_pu=(P_generated-P_load)/basemva; % Converting values in pu
Q_net_pu=(Q_generated-Q_Ioad)/basemva; % Converting values in pu
S_net_pu = P_net_pu + j*Q_net_pu;

[Y]= ybus(linedata); % Finding the Y-bus
maxerror = 1;
iter = 0;
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% Start of iterations
while maxerror >= crit & iter <= max_iter % Test for max. power mismatch

[pcal,qcal] = pqcal(Y,Vm,delta)

[Jacobian, DIM] = jacobian2(Y, Vm, delta, qcal, pcal, nbus,ngen);

[mismatch]=DPDQ(P_net_pu,Q_net_pu,pcal,qcal,nbus,ngen);

correction=Jacobian\mismatch;

[Vm,delta]=update(Vm, delta, correction, nbus, ngen);

maxerror=max(mismatch);

iter = iter+1;
end

if iter >= max_iter & maxerror > crit
fprintf('\nWARNING: Iterative solution did not converge after ')
fprintf('%g', iter), fprintf(' iterations.\n\n')

elseif maxerror <=crit
fprintf('\nIterative solution converged after ')
fprintfl'%g', iter), fprintf(' iterations.\n\n`)
else

end
delta=delta* 180/pi;

The following are the sub-routines called in the power flow:

Y-bus — Sub-routine to calculate Y-bus of the system.

function [Y] = ybus14(line) %declaring function[Y] that takes as input linedata and outputs Y-matrix.

nl = line (:,1); % extracting column 1 from the linedata file. n1 is line from bus

nr = line (:,2); % extracting column 2 from the linedata file. nl is line to bus

R = line (:,3) %extracting the resistance in column 3 from the linedata file.

X = line (:,4) %extracting the line reactance from column 4

B = line (;,5); %extracting half of the total line susceptance from column 8 OF line FILE

nline = length (line (:,I)) %declaring the total # of lines

nbus = max (max (n1), max (nr)); %defining the toal no of nodes
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Z = R + j*X % declaring the impedance
y = ones (nline,1)./Z ;
Y= zeros (nbus,nbus);

for n = 1:nbus %defining a for loop to find the diagonal elements of Y-matrix.

for k = 1:nline
if nl (k)==n || nr (k)	 n

Y (n,n) = Y (n,n) + y(k) + (j*B(k));
else end

end
end

for k = 1:nline %defining a loop to find the off-diagonal elements of Y-matrix.

Y (nl(k), nr(k))=Y(nl(k),nr(k))-y(k);
Y(nr(k),n1(k))=Y(nl(k),nr(k));

end

The sub-routine to calculate active and reactive power is as follows:

function[pcal,qcall = pqcal(Y,v,delta)

vcom = v.*cos(delta) + j*v.*sin(delta)
current = Y*vcom;
icon] = conj(current);
s = vcom. *iconj;
peal = real(s);
qcal imag(s);
return

The sub-routine to calculate Jacobian matrix is as follows:

function[Jacobian, DIM] = jacobian2(Ycomp, Vm, delta, qcal, peal, nbus,ngen)
theta=angle(Ycomp);
g=real(Ycomp);
b=imag(Ycomp);
Y=abs(Ycomp);

for i=1:nbus
for jj=1:nbus

Al 1(i,jj)=0.0;
Al 2(i,jj)=0.0;
A21(i,jj)=0.0;
A22(i,jj)=0.0;

end
end

66



67

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
%now calculate off-diagnal elements
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
for i=1:nbus

for jj=1:nbus
All(i,jj)=-(Vm(i)*Vm(jj)*Y(i,jj))*sin(theta(4)+delta(jj)-delta(i));
A 1 2(i ,jj)=(Vm(j j)*(Vm(i)*Y (i,j j)))*cos(theta(4)+delta(jj)-delta(i));

A21(i,jj)=-(Vm(i)*Vm(jj)*Y(i,jj))*cos(theta(i,jj)+delta(jj)-delta(0);
A22(i,jj)=-Vm(jj)*(Vm(i)*Y(i, jj))*sin(theta(i,jj)+delta(jj)-delta(i));

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 13/0%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%°/0 13/0%%%
%now calculate all diagnal elements
%%%%%%%%%%%%%%%%%%%%°/0%%%%%%%%%%%%%%%%%%%%%%%% c/0%%%%%
%%%%%%%%%%%%%%

for i=1:nbus
Al1(i,i)=-qcal(i)-(Vm(i))^2*b(i,i);

A12(i,i)=pcal(i)+(Vm(i))^2*g(i,i);
A21(i,i)=pcal(i)-(Vm(i)^2)*g(i,i);
A22(i,i)=qcal(i)-(Vm(i)^2)*b(i,i);

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% °/o%%%%%%
%%%%%%%%%%%%%%
%Deleting the rows and columns corresponding to the slack bus
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
for i=1:nbus-1

for jj=1:nbus-1
jkll(i,jj)=A11(i+ljj+1);
jkl2(i,jj)—Al2(i+1,jj+1);
jk21(i,jj)=A21(i+1,jj+1);
jk22(i,jj)=A22(i+ljj+1);

end
end

DIM 2*nbus -2 -ngen;	 %Determine the size of the Jacobian Matrix.
A_temp [Al 1 jkl2; jk2I jk22];
for ii 1 : DIM	 % Grab the proper number of rows for the Jacobian Matrix.

for jj = 1 : DIM	 % Grab the proper number of Columns for the Jacobian Matrix.

Jacobian(ii,jj)= A_temp(ii,jj);
end

end
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The sub- routine to calculate mismatch vector whose dimension is same as the number of

unknowns is as follows:

function [mismatch}=DPDQ(p_net,q_net,pcal,qcal,nbus,ngen)

DIM=2*nbus-2-ngen;
defta_p = p_net - pcal;
delta_q = q_net - qcal;

for ii=1:nbus-1
mismatch(i0=delta_p(ii+1);

end

for ii=nbus:DIM
mismatch(i0=delta_q(ii-nbus+2);

end

mismatch=mismatch'

The last sub-routine to update the values of V m and delta is as follows:

function [Vm,delta]=update(Vm, delta, correction, nbus, ngen);

n_load_nodes = nbus-1-ngen;

for i=2:nbus
delta(i) =delta(i) + correction(i-1);

end

for j=2:n_load_nodes+1
Vm(i)= Vm(i)*(correction(nbus+i-2)) + Vm(i);

end



APPENDIX D

MATLAB PROGRAM FOR POWER FLOW WITH VOLTAGE MAGNITUDE

STABILITY LIMITS

The Matlab program for power flow with a 20% limit on voltage magnitude value is as

under. The only difference is in the main program, the sub-routines are same as in

APPENDIX C.

function[Vm, delta, pcal, qcal, iter] = pflow3 (busdata_new, linedata, convergence_criterion,
max_num_of_iteration)

load busdata new;
load linedata;
load convergence_criterion;
load max_num_of_iteration;

crit= convergence_criterion;
max_iter= max_num_of_iteration;
nbus = length(busdata_new(:,1));
d=busdata_new(:,2)=2; 	 %Finding out how many generator buses
ngen=sum(d); 	 % ngen = # of generator busses, type 2

bus_kind=busdata_new(:,2);
Vm=busdata_new(:,3);
delta=busdata_new(:,4);
% Vm is the vector of the voltage magnitudes, it contains specified voltages, initial estimate or best
available estimate.

P_load=busdata_new(:,5);
Q_load=busdata_new(:,6);
P_generated=busdata_new(:,7);
Q_generated busdata_new(:,8);

delta = pi/180*delta;
basemva=100 ;
P_net_pu=(P_generated-P_load)/basemva;

Q_net_pu=(Q_generated-Q_load)/basemva;
S_net_pu = P_net_pu + j*Q_net_pu;

[Y]= ybus(linedata)
maxerror = 1;
iter = 0;
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limit1 = 1.2; %Maximum permissible limit of voltage magnitude
limit2 = 0.8; %Minimum permissible limit of voltage magnitude

% Start of iterations

while maxerror >= crit && iter <= max_iter && max(Vm) < limit! && min(Vm) > limit2 % Test for max.
power mismatch
% the delta vector must be in radians.

[pcal,qcal] pqcal(Y,Vm,delta);

[Jacobian, DIM] = jacobian2(Y, Vm, delta, qcal, peal, nbus,ngen);

[mismatch]=DPDQ(P_net_pu,Q_net_pu,pcal,qcal,nbus,ngen);

correction=Jacobian\mismatch;

[Vm,delta]=update(Vm, delta, correction, nbus, ngen);

maxerror=max(mismatch);
iter = iter+1;
end

if iter >= max_iter & maxerror > crit & max(Vm) < limit! & min(Vm) > limit2
fprintf('\nWARNING: Iterative solution did not converge after ')
fprintf('%g', iter), fprintf(' iterations.\n\n')

elseif maxerror <=crit
fprintI('\nIterative solution converged after ')
fprintf('%g', iter), fprintf(' iterations.\n\n')

elseif max(Vm) > limit]
fprintf('\nWARNING: bus voltage above stability limit after' )

fprintf('%g', iter), fprintf(' iterations.\n\n')

elseif min(Vm) < limit2
fprintf('\nWARNING: bus voltage below stability limit after' )

fprintf( 1%g', her), frintf(' iterations.\n\n')

else
end

delta=delta* 1 80/pi



APPENDIX E

MATLAB PROGRAM FOR PLOTTING VARIATION WITH RESPECT TO

LOAD CHANGE AT A SINGLE BUS AT A TIME

The following Matlab program will plot the variation of voltage magnitude as well as

angle with respect to multiplier by which the load is increased as well as show the

relation with the Pload and Qload. The graph is useful to track a point from where the

solution diverges from the normal flow of reasonable values. Also note that the increase

in load here means simultaneous increase in both P load as well as Q load. Same program

might be used to increase only P load or only Qload by omitting certain commands.

% to plot Vm, Peal, Qcal & delta versus multiplier on same graph for 1 bus at a time

load busdata
load linedata
load convergence_criterion
load max_num_of _iteration
busdata_new = busdata;

xxx = 0;
bb = 9; % Bus number — change it for the graphs at desired bus
mul = 9; % Can gradually increase this mumber to find out a point of maximum load

for multiplier = 1:1:mul;
XXX = xxx + 1;
P_load=busdata(:,5); Q_load=busdata(:,6);
Qload_new(bb,l) = Q_Ioad(bb,1) * multiplier;

Pload_new(bb,1) = P load(bb,1) * multiplier;

% for a load node with '0' initial load add multiplier instead of'*'

busdata_new(bb,5) = P_Ioad_new(bb,1);
busdata_new(bb,6) = Q_Ioad_new(bb,1);
save busdata new;

% Run load flow routine to find Vm & delta for the particular load
saved in busdata new

[Vm, delta, peal, vat iter] = pflow3 (busdata_new, linedata, convergence_criterion,
maxnum_of_iteration);
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% Adding a column to the respective tables of Vm, Delta, P_load as well as Q_load for each increament in
load

P_load_jncrements(xxx,1) = P_load_new(bb,1);
Q_load_increments(xxx,1) = Q_Ioad_new(bb,1);
tablet(:, xxx) = Vm;
table2(:,xxx) = delta;
multipliertable(xxx,1) = multiplier;

peal_table(:,,xxx)= pcal;
qcal_table(:,xxx) = qcal;
iter_tabel(xxx,1) = iter;

end
% Using the tables made in the previous step to generate the graph

plot(multipliertable(:,1),tablel(bb,:),multipliertable(:,1),
pcal_table(bb,:),multipliertable(:,1),qcal_table(bb,:),
multipliertable(:,1),table2(bb,:))

axis([0 mul -2.0 1.3])

title ('Variations with respect to multiplier when P & Q is incresed simultaneously at bus 9') % change bus
number according to the bus

xlabel('Multiplier')
ylabel('Vm, Peal, Qcal in p.u. and delta in radians')



APPENDIX F

MATLAB PROGRAM TO SIMULATANEOUSLY INCREASE LOAD AT ALL

BUSES OF THE SYSTEM

The following program is used to gather data when the load (both P_ load and () load) at all

buses in the system is increased by a multiplier simultaneously.

load busdata
load linedata
load convergence criterion
load max num of iteration

busdata_new = busdata;

xxx = 0;
mul = 4.2;

for multiplier = 1:0.2:mul;
xxx = xxx + 1;

P_load=busdata(:,5);
Q_load=busdata(:,6);

Q_load_new(:,1) = Q_load(:,1) * multiplier;
P_load_new(:,1) = P_load(:,1) * multiplier;

busdata_new(:,5) = P_load_new(:,1);
busdatanew(:,6) = Q_load_new(:,1);

save busdata_new;

[Vm, delta, peal, qcal, iter] = pflow3 (busdata_new, linedata, convergence_criterion,
max_num_of_iteration);

pload_increments(:,xxx) = P_load_new(:,1);
Q_load_increments(:,xxx) = Q_load_new(:,1);

table1 (:, xxx) = Vm;
table2(:,xxx) = delta;

multipliertable(xxx,1) = multiplier;

pcal_table(:,xxx)= peal;
qcal_table(:,xxx) = qcal;

iter_tabel(xxx,1) = iter;

end
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for bb = 2:10 % bb = load buses 2 to 10

subplot(2,5,bb-1);
plot (multipliertable(:,1),tablel(bb,:),': rs','LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...

'MarkerSize',3)
axis([0 mul 0 1.2])
xlabel('Multiplier)
ylabel('Vm')

end

title ('Variation of Vm and delta with respect to multiplier when P & Q is incresed simultaneously for all
buses')
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APPENDIX G

MATLAB PROGRAM FOR CALCULATING Z-THEVENIN

AND EXTENSION TO MAXIMUM POWER TRANSFER

AND CONSTANT POWER FACTOR CONCEPT

The Matlab routine to calculate Z-thevenin for a system is given in this appendix. The

load at the bus whose Z-thevenin is to be found should not be included in the equivalent

circuit.

for bb = 1:9 % for all load buses

% Run load flow to get Vm & Delta and Y-bus for the given system

load busdata
load linedata
load convergence criterion
load maxnumof iteration

busdata(bb+1,5) = 0; % for excluding the load at the bus whoose Z-thevenin is calculated

busdata(bb+1,6) = 0; % for excluding the load at the bus whoose Z-thevenin is calculated

[Vm, delta, Y] = pflow4(busdata,linedata,convergence_criterion, max_num_of iteration);

Table_Vm(:,bb) = Vm % to store solution at all bus
Vth(bb,1) = Vm(bb+1,1) % V-thevenin for the bus for whihc find Z-thevenin is found

% Calculate Y_Ioad

delta = (pi/180)*delta;

Vm_real = (Vm .* cos(delta));
Vm_img = (Vm .* sin(delta));
Vm_rect = complex(Vm_real, Vm_img);

P_Ioad= busdata(:,5);
Q_load= busdata(:,6);

S = complex(P_load, Q_load); % Load Power
S = S./100;
Yload = conj(S)./(Vm_rect .* Vm_rect);



% Calculating Y_bus & Z-thevenin

Y_load = diag([Y_load]);
Y_bus = Y + Y_load;
Y_reduced = Y_bus(2:10, 2:10);
Z_bus_reduced = inv(Y_reduced); % 9 X 9 matrix only for load bus
Z_th_reduced(bb,1) = Z_bus_reduced(bb,bb)
end

% Power factor for actual load

load busdata;

Pload= busdata(:,5);
Q_load= busdata(:,6);

S_actual = complex(P_load, Q_load);
S_real = real(S_actual);
S_img = imag(S_actual);
S_mag = sqrt((S_real.*S_real)+(S_img.*S_img));

pf actual = P_load./S_mag
%pf actual(7,1) = 1.0
phi_actual = acos(pf actual)

% New Load power and its power factor by making load equal to conj of Z-thevenin

temp = (Vth./(conj(Z_th reduced)+ Z_th_reduced))
S_new = ((temp.*temp).*conj(Z_th_reduced(1:9,1)))

S_new_real = real(S_new);

S_new_img = imag(S_new)

S_new_mag = sqrt((S_new real.*S_new_real)+(S_new_img.*S_new_img))

pf new = S_new_real./S_new_mag
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% New Load Power using the derivation for constant power factor

R_th = real(Z_th_reduced)
X_th = imag(Z_th_reduced)
Z_th_mag = sqrt((R_h.*R_th)+(X_th.*X_th))

RI = Z_th_mag .* pf_actual(2:10,1)
XI= 	 tan(phi_actual(2:10,1))
12 = ((Vth .* Vth)./((R_th + RI).*(R_th + RI) + (X_th + XI).*(X_th + XI)))

P_load_constpf = .* RI
Q_load_constpf = P_load_constpf .* tan(phi_actual(2:10,1))
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