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ABSTRACT

TYPE-1 DIABETES RISK PREDICTION
USING MULTIPLE KERNEL LEARNING

by
Paras Garg

This thesis presents an analysis of multiple kernel learning (MKL) for type-1 diabetes

risk prediction. MKL combines different models and representation of data to find a

linear combination of these representations of the data. MKL has been successfully been

implemented in image detection, splice site detection, ribosomal and membrane protein

prediction, etc. In this thesis, this method was applied for Genome-wide association study

(GWAS) for classifying cases and controls.

This thesis has shown that combined kernel does not perform better than the

individual kernels and that MKL does not select the best model for this problem. Also,

the effect of normalization on MKL as well as risk prediction has also been analyzed.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to analyze the performance of multiple kernel learning for

Genome wide association study (GWAS) to predict the risk of Type 1 diabetes.

For evaluating the performance, training/testing study was conducted with 10

random splits and Linear, Gaussian and Polynomial kernels were used as base kernels.

The classification accuracy and ability of MKL for feature and model selection have been

reviewed in this thesis.

1.2 Background Information

Genetic variation—differences in the coding and non-coding portions of DNA causes

unique phenotypes in the population. It can also contribute to a personalized

susceptibility to disease (Roukos, 2008). The current strategy for revealing the genetic

basis of disease susceptibility is to carry out a genome-wide association study (GWAS)

with a million or more single nucleotide polymorphisms (SNPs) that capture most of the

common variation in the human genome (Moore, 2010). Exhaustive analysis of human

SNPs has led to the identification of interesting SNP markers for certain disorders.

1.2.1 GWAS and its Applications

GWA studies were made possible by the sequencing of the human genome using High

through put analysis and next generation sequencing (Wellcome Trust Case Control

Consortium, 2007) that discovered millions of common SNPs and documented the

1
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correlation structure or linkage disequilibrium of the alleles at those loci. The GWA

Study by WTCCC is a case-control design in which allele frequency in patients is

compared to the disease free group. WTCCC provided the associated SNPs for common

diseases such as diabetes type 1, type II, bipolar disorder, etc.

Besides identifying genes influencing disease susceptibility or phenotypic

variation, another often suggested utility of GWAS is that these discoveries will facilitate

implementation of personalized medicine, in which preventive and therapeutic

interventions for complex diseases are tailored to individuals based on their genetic

profiles. Personalized medicine already exists for monogenetic disorders such as

Huntington disease, phenylketonuria (PKU) and hereditary forms of cancer, in which

genetic testing is the basis for informing individuals about their future health status and

for deciding upon specific, often radical interventions such as lifetime dietary restrictions

and preventive surgery. (Janssens & Duijn, 2008).

1.2.2 Challenges with GWAS for Common Complex Diseases

The genetic origin of common complex diseases differs essentially from that of

monogenic disorders. Unlike monogenic disorders, such as Huntington disease, PKU and

hereditary cancers, complex diseases result from the joint effects of multiple genetic and

environmental causes, with each factor having only a minor contribution to the

occurrence of disease (Janssens & Duijn, 2008).

Recent studies have reasoned the low predictive value of a larger number of

multiple weak susceptibility variants. First, when multiple genes are considered

simultaneously, one typically finds that all individuals in a population carry at least one

or more risk genotypes, even those persons with a lower than average risk of disease.
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Second, the more the risk genotypes, the higher the risk of disease, but substantial

variation in disease risk may be seen between individuals with the same number of risk

genotypes resulting from differences in effect sizes between risk genotypes.

One of the paradigms in complex genetics is that the genetic prediction of

common diseases can be substantially improved if genetic variants with strong effects are

identified, either on their own or in interaction with other variants or with environmental

factors, i.e. gene—gene or gene—environment interaction. Discovering complete causal

mechanisms of common diseases implies the identification of specific combinations of

causal factors among all possible combinations, namely identifying those combinations

that inevitably lead to disease.

1.3 SNP Analysis

One of the ways of identifying the combination of factors (SNPs) associated with the

common disease is to rank them according to their prediction risk score under some

assumption or model. The most commonly used model is Chi square which is basically a

probability based method under some threshold.

The chi-square statistic has also been referred to as genotypic 2 degree-of-

freedom test. Define six random variables each of which is binomially distributed Xi

B(n; pi) where n is the total number of subjects and pi is the probability of success for Xi.

Each of these corresponds to the number of case or control subjects with 0, 1, or 2 copies

of the allele of interest. The expected value of each Xi is given by E(Xi) = npi. It can then

be shown that the statistic below follows the chi-square distribution with 2 degrees of

freedom. This is called the chi-square statistic.



Table 1.1 Contingency Table for SNP Data for Case and Controls

To apply this statistic for detecting SNPs from associated regions, let the disease

type be denoted by the random variable D and genotype by G. If it is assumed that these

are independent then P(D;G) = P(D)P(G). These are easy to calculate from counts in the

contingency table. For example,

Similarly, the expected values of each Xi can be calculated under the null

hypothesis and consequently the chi-square statistic. For example, the expected value of

X1 is given by,

under the null hypothesis. The corresponding p-values can be obtained by referring to the

chi-square distribution with 2 degrees of freedom. SNPs with the least p-values deviate

from the independence assumption and therefore are of interest.

4



CHAPTER 2

MACHINE LEARNING

2.1 Support Vector Machines

Support vector machines (SVMs) have exhibited superb performance in binary

classification tasks. Intuitively, SVM aims at searching for a hyperplane that separates the

two classes of data with largest margin (the margin is the distance between the

hyperplane and the point closest to it). (Vapnik, 1998; Li, Zhang, & Ogihara, 2004). Let

the sample be X = x i, ❑ (xi )} where yi  = +1 if xi  C Cl and yi  = -1 if xi  E C2. (Alpaydin,

2004).

The equation of hyperplane is:

Hence, for optimal hyperplane, the hyperplane must best separate the instance

with some distance away (margin).

It can be rewritten as

The two variables, wT and w0, can be calculated by using

ρ  is the margin which is to be maximized for optimal hyperplane. In other words,

||w|| has to be minimized. This is defined in the paper by Vapnik 1995; Cotes and Vapnik

1995).

5
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In finding the optimal hyperplane, this optimization problem is converted to a

form whose complexity depends upon the number of training instances and not on the

dimension d. The primal is converted to a new formulation using the Langrange

multipliers.

where, is error for soft margin of the hyperplane.

Its dual is:

Kernel Trick

If a problem is non linear, instead of fitting a non linear model, the problem can be

mapped to a new space by doing a non linear transformation using suitably chosen basis

functions and then use a linear model in this new space. This linear model in new space

represents the non linear model in the original space (Taylor & Cristianini, 2004).

The decision function is
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2.2 Multiple Kernel Learning (MKL)

Basic algebraic operations such as addition, multiplication and exponentiation preserve

the key property of positive semi-definiteness, and thus, allow a simple but powerful

algebra of kernels (Lanckriet et al. 2004). For example, given two kernel functions K 1

and K2, inducing the embeddings φ1(x) and φ2 (x), respectively, it is possible to define the

kernel K = K1 + K2, inducing the embedding φ(x) = [φ 1(x), φ2(x)]. Of even greater

interest, parameterized combinations of kernels can be considered. In particular, given a

set of kernels K = {K1, K2, . . . the linear combination can be formed.

with βk ≥ 0 and Σκh=1 βk = 1 , where each kernel kk uses only a distinct set of

features.

In 2004, Lanckriet et al. have shown that multiple kernel learning can improve the

performance of the classifier over single kernel. All the kernels can also involve different

kernel functions such as Gaussian or polynomial kernel using different parameters.

Within this framework, the problem, the problem of data representation is transferred to

the choice of βk.

The values of the coefficients α , β  and b can be obtained by solving the dual of

the following optimization problem (Schölkopf & J. Smola, 2002):



Bach et al (2004) derived this dual formulation and wrote equivalently:
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It the above optimization problem, the l, 1-norm of β  is constrained to one, while

one is penalizing the l2-norm of wk in each block k separately. The idea is that l1-norm

constrained or penalized variables tend to have sparse optimal solutions, while l2-norm

penalized variables do not (e.g., Rätsch, 2001, Chapter 5.2). Thus the above optimization

problem offers the possibility to find sparse solutions on the block level with non-sparse

solutions within the blocks.

Sonnenburg et al. (2006) used semi definite programming (SLIP) to find the

optimal solution to the problem:



CHAPTER 3

METHODS

3.1 Problem Statement

MKL has been successfully implemented for classification problems such as image

detection, splice site detection, prediction of structure and function of proteins etc. The

objective of this thesis was to analyze the strength of MKL in genomics for risk

prediction for type-1 diabetes. This paper focuses on answering the following questions:

1. Can MKL produce a kernel that has significantly higher prediction
accuracy than the base kernels?

2. Can MKL be used to identify the most significant features/models based
on the weights f3?

3.2 Dataset

The Wellcome Trust Case Control Consortium (WTCCC, 2007) provides two set of

controls and on set of cases for type 1 diabetes. Individuals, whose genotypes were

included in the study were living within England, Scotland and Wales ('Great Britain')

and the vast majority had self-identified themselves as white Europeans.

Same method was used, for filtering the SNPs that where regarded problematic by

the WTCCC. This left with 1480 individual from British Birth Cohort, 1458 from UK

Blood Service Control Group and 1963 cases for type 1 diabetes with 422,006 SNPs.

This dataset was converted to encoded matrix of 0, 1 and 2's by standard encoding (Price

et. al). In this thesis, 0, 1 and 2 represents two, one and zero copies of risk alleles.

9



Raw data

10

Cases {

Controls {

A/T C/T C/G A/C C/G

AA TT CG CC GG
AT TT CG CC GG
TT CT GG AC CC
TT TT GG AA CC

Numerical conversion according to the copies of risk alleles
A/T C/T C/G A/C C/G

0 2 1 2 2

1 2 1 2 2

2 1 2 1 0

2 2 2 0 0

Chi Square rankin

Cases {

Controls {

C/G A/T A/C C/G C/T

2 0 2 1 2

2 1 2 1 2
0 2 1 2 1
0 2 0 2 2

Base Kernel (Linear here)
Each cell represents the dot product of two vectors

Case 1 Case 2 Control 1 Control 2
Case 1 13 13 6 6
Case 2 13 14 8 8

Control 1 6 8 10 10
Control 2 6 8 10 12

Multiple Kernel Learning

Figure 3.1 Toy example to illustrate the process of the experiment. The
raw SNP data is converted to 0, 1 and 2 encoding, which is then ranked
by Chi square. Various kernels and nuber of features are used in the
experiment
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3.3 Base Kernels

For MKL, three standard kernel functions: Linear, Polynomial (Degree=1, 2) and

Gaussian (7 =1.2, 2, 5) were used.

3.4 Implementation

Due to large amount of data, the feature selection method was implemented in C

program. After ranking according to their p value, top x2 ranked 1000 SNPs were

selected for this analysis. The command line implementation of MKL was used that is

available at http://www.shogun-toolbox.org/ . The base kernels were generated using 20,

40, 60, 80, 100, 200, 400, 600, 800 and 1000 top x2 ranked SNPs. Each of the kernels was

normalized. For normalization, general formatting and data selection, Perl scripts were

used.



CHAPTER 4

RESULTS

4.1 MKL and SVMlight

In order to learn a single kernel with MKL classifier (for consistency), the results of

Shogun MKL single kernel with SVMlight results has been compared. In (Sonnenburg,

2006), it has been stated that when K (number of kernels) is equal to 1, the MKL problem

reduces to original SVM dual. Therefore, to verify this statement, kernel were learned

with SVMlight as well as Shogun MKL at C=1, 0.001. In this case, the un-normalized

kernels were used.

Table 4.1 Comparison of SVMlight and Shogun MKL

C 20 40 60 80 100 200 400 600 _800 1000
Svmlight
linear 1 78.84 79.00 79.25 79.74 79.96 81.26 81.28 80.00 78.58 76.27

MKL Linear
Unnormalized 1 78.84 79.02 79.29 79.80 80.02 81.22 81.32 80.43 78.58 76.27

SVM light
linear 0.001 77.15 77.78 77.80 78.27 78.43 79.76 80.92 81.16 80.98 80.47

MKL Linear
Unnormalized 0 . 001 77.15 77.78 77.80 78.27 78.45 79.74 80.92 81.16 80.96 80.47

Table 4.1 shows the prediction accuracy for SVMlight and MKL with various

numbers of features. It can be clearly seen that both the methods display similar

accuracies. Though, MKL solves the same dual as done by SVMlight, there is small

variation (-+0.02) in their accuracies. This variation can be explained due to the fact that

MKL uses SLIP to solve the quadratic dual problem and this makes MKL slower than

SVMlight during optimization. Hence it is verified that Shogun MKL works same as

SVMlight when the number of kernels is equal to 1.

12
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4.2 Comparison of Standard Kernels

Before running MKL, the prediction accuracies standard kernels: Linear, Polynomial and

RBF have been compared with various numbers of features (Table 4.2). It can be

observed that the linear kernel performs the best among other kernels. The polynomial

classifier (degree 2 and 3) shows moderate performance with high number of feature,

however, it suffers with less number of features. On the other hand, RBF kernel with

gamma=1.2, 2 and 5 have shown poor performance. Though the results for RBF with

gamma=1.2 does produce predictive accuracy >70% , it keeps on decreasing with

increasing number of SNPs.

Table 4.2 Prediction Accuracies for Various Models and Features (SNPs)

Model
/SNPs 20 40 60 80 100 200 400 600 800 1000
Linear 78.84% 79.00% 79.25% 79.74% 79.96% 81.26% 81.28% 80.00% 78.58% 76.27%
Poly (d=2) 71.65% 48.76% 55.85% 56.50% 56.13% 71.69% 75.97% 76.48% 77.05% 77.19%
Poly (d=3) 42.28% 53.22% 52.99% 55.95% 55.62% 72.40% 76.62% 77.33% 77.15% 77.62%
RBF
(y=1.2) 77.68% 71.94% 70.12% 67.46% 63.12% 60.06% 59.88% 59.88% 59.88% 59.88%
RBF (y=2) 75.56% 69.69% 67.68% 65.30% 61.57% 59.92% 59.88% 59.88% 59.88% 59.88%
RBF (y=5) 75.23% 69.37% 67.33% 64.91% 61.42% 59.92% 59.88% 59.88% 59.88% 59.88%

Figure 4.1 Comparison of various models with increasing number of
features (SNPs).
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As seen in Figure 4.1, the linear kernel displays slight increase in accuracy

initially, which marginally drops with low number of SNPs. This is because; with higher

number of SNPs there are high chances of adding noise to the data. The polynomial

kernel (degree 2 and 3) follow similar line with initial major drop in performance and

then it increases to 75%. With RBF kernels, there is gradual decrease in prediction

accuracy till features <100 and then it reaches the minimum (59.88%). The discriminant

values for RBF kernel suggest that with higher number of features, the discriminant

values are all negative for all the subjects; in other words, the data points are on one side

of the hyperplane. This means that RBF kernels (gamma=1.2, 2, 5) is unable to classify

even a single feature correctly.

As the conclusion of above results, linear kernel for most of part of the

experiment as it indicate better performance than polynomial and RBF kernels.

4.3 MKL Performance

In this section, the first part of the objective has been examined; whether MKL performs

better than the individual kernels or not. This experiment was divided in two parts:

1. MKL with various standard kernels as base kernels

2. MKL with various numbers of features as base kernels

4.3.1 MKL with Various Standard Kernels as Base Kernels

In this case, linear, polynomial (degree 2 and 3) and RBF (gamma = 1.2, 2 and 5) were

uesd as the base kernels for Shogun MKL. As suggested by Sonnenburg, all the kernels

were normalized for consistency. The Table 4.3 shows the results of these base kernels

compared with linear normalized kernel. In both the cases, the value of c was equal to 1.
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Table 4.3 Comparison MKL with Linear, Polynomial and Gaussian (RBF) as Base
Kernel to Linear Normalized Kernel

20 40 60 80 100 200 400 600 800 1000
MKL
L+P2+P3+G(1.2)
+G(2)+G(5)

79.47 78.49 78.53 78.68 78.72 79.63 80.14 80.53 80.53 79.84

Linear Normalized 78.68 79.33 79.43 79.47 79.71 80.43 81.32 81.12 80.57 80.37

MKL does not provide better prediction accuracy over individual kernel. The only

improvement was observed with 20 features. In all other cases, MKL predictions were

low by 0.5% to 1% in comparison with linear kernel.

4.3.2 MKL with Various Numbers of Features as Base Kernels

Since MKL with various standard kernels failed to provide any improvement, various

numbers of features were used as base kernels for MKL. In this case, the effect of

normalization on prediction accuracies has also been analyzed. The value of c was equal

to 1 and 0.001.

Table 4.4 Comparison of MKL with Various Number Features to Individual Linear
Kernels (Normalized and un-normalized).

C 20 40 60 80 _100 200 400 600 800 1000 MKL
Linear
Unnormalized 1 78.84 79.02 79.29 79.80 80.02 81.22 81.32 80.43 78.58 76.27 76.27

Linear
Normalized 1 78.68 79.33 79.43 79.47 79.71 80.43 81.32 81.12 80.57 80.37 81.36

Linear
Unnormalized 0.001 77.15 77.78 77.80 78.27 78.45 79.74 80.92 81.16 80.96 80.47 80.47

linear
normalized 0.001 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87 59.87

For un-normalized kernel, MKL was unable to predict better than the individual

kernel. For C=1, the MKL produces the worst kernel among all the kernels. For c=0.001,

MKL performs lower than the best performing individual kernel. Normalization has

major impact on the prediction accuracy. With C=1, MKL performs as well as the best
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performing kernel (Figure 4.2). However, with c=0.001, the accuracy for various number

of features is —60%. This is probably because, with normalization, all the data points

reduce to a unit sphere which causes loss of the information.

Figure 4.2 Comparision of MKL and linear kernel with (c=1 and 0.001).
a) Nomalized b) Unnormalized.
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4.4 Feature and Model Selection

In this section, second objective has been examined; whether weights 13 determined my

MKL can be used to select most significant features. According to the hypothesis, MKL

must provide higher weight to the most significant feature. A similar study was

conducted by Suard et.al. (2007), where they used MKL for pattern recognition using

various representations of image such as pixel value, gradient norm, wavelet and

histograms of gradients. They concluded that MKL provide higher weight to the most

important representation. Similar study has been conducted in this thesis for GWA study.

4.4.1 Weights 3 and Model selection

For model selection, linear, polynomial (degree = 2,3) and RBF (gamma = 1.2, 2, 5) were

used. According to the null hypothesis, linear kernel must be weighted higher by MKL

over other kernels as it performs better than other kernels, individually. The value of C

was equal to 1.

Table 4.5 Weights 0 from MKL with Various Models as Base Kernel
SNPs/Models Linear Poly (d=2) Poly (d=3) RBF (1.2) RBF (2) RBF (5)
20 0 0 0.044768 0.921149 0 0.034082
40 0 0 0.066979 0.847248 3.2E-06 0.085769
60 0 0 0.078481 0.791593 7.72E-05 0.129849
80 0 0 0.083845 0.696262 0.000198 0.219695
100 0 0 0.100046 0.613535 0.000432 0.285987
200 0 8.89E-07 0.134695 0.388294 0.004594 0.472415
400 6.67E-07 1.78E-06 0.167613 0.271271 0.275391 0.285722
600 3.33E-07 1.11E-06 0.18945 0.266188 0.269227 0.275135
800 2.22E-07 1.11E-06 0.221311 0.256693 0.257779 0.264216
1000 1.11E-07 8.89E-07 0.255235 0.246111 0.246715 0.251938

Table 4.5 shows the weights f3 assigned by MKL. For lower number of features,

it can be observed that MKL provides 0 weight to linear kernel, which has the best

performance individually. On the other hand, RBF (gamma=1.2) which has the lowest
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performance, gets the highest weight. With higher number of features, RBF kernels and

polynomial kernel with degree 3 are weighted almost equally while linear kernel still

recieves the lowest weight.

4.4.2 Weights f and Feature selection

In this case, linear kernel was used with features 20,40, 60, 80, 100, 200, 400, 600, 800

and 1000. Comparison of normalized as well as un-normalized kernel with c=1 and 0.001

has been reported in this section.

Table 4.6 Weights 13 from MKL with Various Features (SNP) as Base Kernel

Linear
Unnormalized

Linear
Normalized

Linear
Unnormalized

linear
normalized

C 1 1 0.001 0.001
20 0 0.21076 0 0.566349
40 0 0.021115 0 0.24646
60 0 0 0 0.16797
80 0 1.50E-06 0 0.016291

100 0 0.004116 0 0.002712
200 0 3.70E-06 0 7.12E-05
400 0 0 0 4.31E-05
600 0 0 0 3.73E-05
800 0 0 0 3.39E-05

1000 1 0.764003 1 3.23E-05

For un-normalized kernel, c=1 and 0.001, MKL weights the kernel from 1000

features the highest i.e., 1, which means that this kernel is the only important kernel

among all. When compared with individual kernel (Table 4.6), kernel from 1000 feature

has the lowest prediction accuracy. This can be explained with the fact that MKL does

have some issue with data ambiguity and data stability with un-normalized kernels.
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With normalized kernel, for C=1, 1000 feature kernel still obtained the highest

weight, however, it assigned some weight to 20 and 40 feature kernel too. According to

the hypothesis, 400 and 600 feature kernel must receive the highest weights as they are

more significant than the other features (table 4.6). In this case also, these kernel obtained

13 as O.



CHAPTER 5

CONCLUSION

In this thesis, the performance of MKL was analyzed with GWA study for type 1

diabetes. The kernel learned using combination of various base kernels, failed to provide

better performance than the individual kernel. Also, MKL was unable to select the most

important features and models. Unlike the performance in other classification problems

(such as, image recognition, splice site detection and protein function prediction), MKL

performed lower than the individual base kernels for GWA study.

Comparison of normalized and un-normalized kernels shows that normalization

greatly affects the prediction accuracy as well as MKL performance. When un-

normalized kernel with various features was used as base kernels, it assigned weight (3 as

1 to the kernel from highest number of features. This can be either due to data ambiguity

or data instability. Bach et al. (2007) also suggested that in practice normalization leads

to bad predictive performance.

20
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APPENDIX A

SCRIPTS FOR FORMATTING THE DATA AND RUNNING SHOGUN MKL

This appendix includes the perl scripts used for formatting of data for the input for

SVMlight and Shogun MKL software. The script for running Shogun MKL has alson

been provided.

A.1 To Format the Original Data File to SVMLight Format
########################################################################
#Purpose: To format the original data file to SVMLight format
#Input: <Kernel_File> <randclass> <trueclass> <ouput_training_file> <output_test_file>
#Output: Formatted training and testing file
########################################################################

$kernel=shift; $rand=shift; $true_file=shift; $train file=shift; $test_file=shift;

#Reading the data file
open(IN, $kernel);
while(<IN>){ chomp $_; @s=split(As+/,$_);
for(my $i=0;$i<scalar(@s); $i++){ K[$j][$i]=$s[$i]; $j++; }

close IN;
$total=$j; $dim=@s;

#Reading randclass file
open(IN, $rand); $j=0;
while(<IN>){ chomp $_; @s=split(As+/,$_);
for(my $i=0;$i<scalar(@s); $i++){ $train[$j][$i]=$s[$i]; } $j++; }
close IN;
$total_train = $j;

#Reading true class file
open(IN, $true file); $j=0;
while(<IN>){ chomp $_; @s=split(As+/,$_);
for(my $i=0;$i<scalar(@s); $i++){ $true[$j][$i]=$s[$i]; $j++;}
close IN;

$k=0; $flag=0;
#Separating training and testing IDs using randclass file
for(my $i=0; $i<$total; $i++){

#flag 1 means the entry found in randclass (training set)
for(my $j=0; $j<$total train; $j++){if($train[$j][1]==$i){ $flag=1; }1
if($flag==0) $test[$k][0]=$true[$i][0]; $test[$k][1]=$true[$i][1]; $k++; }
$flag=0;



}
$total_test=$k;

#Retrieving training data using the training IDs
for($i=0; $i<$total train; $i++){ for($j=0; $j<$dim; $j++){
Strainkernel[$i][$j]=$K[Strain[$i][1]][$j]; } }

#Retrieving test data using the test IDs
for($i=0; $i<$total test; $i++){ for($j=0; $j<$dim; $j++){
$test_kernel[$i] [$j]=$K[$test[$i] [1 ]] [$j ] ; 11

$dim=shift;
open(OUT, ">$train_file");
for(my $i=0; $i<$total_train; $i++){

$z=$i+1;
if($train[$i][0]==0) { $c1 = "-1 "; }

else { $cl = "$train[$i][0] "; }

for(my $j=0; $j<$dim; $j++){
if($j==0){ print OUT $cl; }
print OUT ($j+1);
print OUT ":";
printf OUT "%.5f ", $train_kernel[$i][$rank[$j]];;
print OUT " ";

}

print OUT "\n";
}

close OUT;
print "\n";
open(OUT, ">$test_file");
for(my $i=0; $i<$total_test; $i++){

$z=$i+1;
if($test[$i][0]==0) { $cl = "-1 "; }
else { $cl = Itest[$i][0] "; }

for(my $j=0; $j<$dim; $j++){
if($j==0){ print OUT $cl; }
print OUT ($j+1);
print OUT ":";
printf OUT "%.5f ", $test_kernel[$i][$rank[$j]];
print OUT " ";

}

print OUT "\n";
}

close OUT

22
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A.2 To Convert the Original SNP Dataset to the Input for Shogun MKL

########################################################################
#Purpose: To convert the original SNP dataset to the input for Shogun MKL
#Input: <Original Data <randclass> <trueclass> <Formatted Training File> <Formatted
Testing File> <Dimension>
#Output: Formatted Training File, Formatted Testing File and true class file with testlabel
file
########################################################################

$kernel=shift; $rand=shift; $true_file=shift; $train file=shift; $test_file=shift;

#Reading the data file
open(IN, $kernel); while(<IN>){ chomp $ _; @s=split(As+/,$ j;
for(my $i=0;$i<scalar(@s); $i++){ $K[$j][$i]=$s[$i]; $j++; } close IN;
$total=$j; $dim=@s;
$j=0;

#Reading the randclass file
open(IN, $rand); while(<IN>){ chomp $_; @s=split(As+/,$J;
for(my $i=0;$i<scalar(@s); $i++){ $train[$j][V]=$s[$i]; $j++; } close IN;
$total_train = $j;
$j=0;

#Reading the trueclass file
open(IN, $true_file); while(<IN>){ chomp $_; @s=split(As+/,$_);
for(my $i=0;$i<scalar(@s); $i++){ $true[$j][$i]=$s[$i]; $j++; } close IN;

#Separating training from testing
$k=0; $fiag=0;
for(my $i=0; $i<$total; $i++) {
for(my $j=0; $j<$total train; $j++){ if($train[$j][1]==$i){ $flag=1; } I
if($fiag==0) $test[$k][0]=$true[$i][0]; $test[$k][1]=$true[$i][1]; $k++; }
$flag=0;

}
$total_test=$k;

#for(my $i=0; $i<$total_train; $i++){ print "$train[$i][0] $train[$i][1] "; }

#for(my $i=0; $i<$total_test; $i++){ print Itest[$i][0] $test[$i][1] "; }

for($i=0; $i<$total train; $i++){
for($j=0; $j<$dim; $j++){ $train kernel[$i][$j]=$K[$train[$i][1]][$j]; }

if($train[$i][0]==0){ $train_label[$i]=1;} else {$train_label[$i]= - 1;}
}
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for($i=0; $i<$total_test; $i++){ for($j=0; $j<$dim; $j++){
$test_kernel[$i][$j]=$K[$test[$i][1]][$j]; }
if($test[$i][0]==0){ $test_label[$i]=1;} else {$test_label[$i]=-1;}

}

#Printing the training data in the file
while($dim=shift) {
print "\n";
open(OUT, ">$train_file$dim");
for(my $j=0; $j<$dim; $j++){

$str=""•
for(my $i=0; $i<$total_train; $i++){ $str.= $train_kernel[$i][$j]." "; }
chop $str; print OUT $str; print OUT "\n";

}

close OUT;

#Printing the testing data in the file
open(OUT, ">$testfile$dim");
for(my $j=0; $j<$dim; $j++){

$str=""•
for(my $i=0; $i<$total_test; $i++){ $str.= $test_kemel[$i][$j]." "; }
chop $str; print OUT $str; print OUT "\n";

}

close OUT;
}

#Printing the training and testing labels
open(OUT, ">truelabel"); $temp = join(" ", @train_label); print OUT Itemp\n"; close
OUT;
open(OUT, ">testlabel"); $temp = join(" ", @test_label); print OUT "$temp\n"; close
OUT;



A.3. Script to Run Shogun MKL

set_labels TRAIN truelabel
clean_features TRAIN
clean_features TEST
set kernel COMBINED 60

add_kernel 1 LINEAR REAL 20
add_features TRAIN train20
add_features TEST test20
set_kernel_normalization SQRTDIAG

add_kemel 1 LINEAR REAL 20
add_features TRAIN train40
add_features TEST test40
set_kernel_normalization SQRTDIAG

add_kernel 1 LINEAR REAL 20
add_features TRAIN train60
add_features TEST test60
set_kernel_normalization SQRTDIAG

add_kernel 1 LINEAR REAL 20
add_features TRAIN train80
add_features TEST test80
set_kernel_normalization SQRTDIAG

add_kernel 1 LINEAR REAL 20
add_features TRAIN train 100
add_features TEST test100
set_kernel_normalization SQRTDIAG

add_kernel 1 LINEAR REAL 20
add_features TRAIN train200
add_features TEST test200
set_kernel_normalization SQRTDIAG

add_kernel 1 LINEAR REAL 20
add_features TRAIN train400
add_features TEST test400
set_kernel_normalization SQRTDIAG

add_kernel 1 LINEAR REAL 20
add_features TRAIN train600
add_features TEST test600
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set kernel normalization SQRTDIAG

add kernel 1 LINEAR REAL 20
add features TRAIN train800
add features TEST test800
set_kernelnormalization SQRTDIAG

add kernel 1 LINEAR REAL 20
add features TRAIN train1000
add features TEST test1000
set_kernel_normalization SQRTDIAG

new classifier MKL_ CLASSIFICATION
c 1
train_classifier
output = classify
weights_norm = get_subkernel_weights
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