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ABSTRACT

SEMANTICS AND EFFICIENT EVALUATION OF PARTIAL TREE-PATTERN
QUERIES ON XML

by
Xiaoying Wu

Current applications export and exchange XML data on the web. Usually, XML data are

queried using keyword queries or using the standard structured query language XQuery

the core of which consists of the navigational query language XPath. In this context,

one major challenge is the querying of the data when the structure of the data sources is

complex or not fully known to the user. Another challenge is the integration of multiple data

sources that export data with structural differences and irregularities. In this dissertation, a

query language for XML called Partial Tree-Pattern Query (PTPQ) language is considered.

PTPQs generalize and strictly contain Tree-Pattern Queries (TPQs) and can express a broad

structural fragment of XPath. Because of their expressive power and flexibility, they are

useful for querying XML documents the structure of which is complex or not fully known

to the user, and for integrating XML data sources with different structures. The dissertation

focuses on three issues. The first one is the design of efficient non-main-memory evaluation

methods for PTPQs. The second one is the assignment of semantics to PTPQs so that they

return meaningful answers. The third one is the development of techniques for answering

TPQs using materialized views.

Non-main-memory XML query evaluation can be done in two modes (which also

define two evaluation models). In the first mode, data is preprocessed and indexes, called

inverted lists, are built for it. In the second mode, data are unindexed and arrives continuously

in the form of a stream. Existing algorithms cannot be used directly or indirectly to



efficiently compute PTPQs in either mode. Initially, the problem of efficiently evaluating

partial path queries in the inverted lists model has been addressed. Partial path queries

form a subclass of PTPQs which is not contained in the class of TPQs. Three novel

algorithms for evaluating partial path queries including a holistic one have been designed.

The analytical and experimental results show that the holistic algorithm outperforms the

other two. These results have been extended into holistic and non-holistic approaches for

PTPQs in the inverted lists model. The experiments show again the superiority of the

holistic approach. The dissertation has also addressed the problem of evaluating PTPQs in

the streaming model, and two original efficient streaming algorithms for PTPQs have been

designed. Compared to the only known streaming algorithm that supports an extension of

TPQs, the experimental results show that the proposed algorithms perform better by orders

of magnitude while consuming a much smaller fraction of memory space.

An original approach for assigning semantics to PTPQs has also been devised. The

novel semantics seamlessly applies to keyword queries and to queries with structural

restrictions. In contrast to previous approaches that operate locally on data, the proposed

approach operates globally on structural summaries of data to extract tree patterns.

Compared to previous approaches, an experimental evaluation shows that our approach

has a perfect recall both for XML documents with complete and with incomplete data. It

also shows better precision compared to approaches with similar recall.

Finally, the dissertation has addressed the problem of answering XML queries using

exclusively materialized views. An original approach for materializing views in the context

of the inverted lists model has been suggested. Necessary and sufficient conditions have

been provided for tree-pattern query answerability in terms of view-to-query

homomorphisms. A time and space efficient algorithm was designed for deciding query



answerability and a technique for computing queries over view materializations using stack-

based holistic algorithms was developed. Further, optimizations were developed which (a)

minimize the storage space and avoid redundancy by materializing views as bitmaps, and

(b) optimize the evaluation of the queries over the views by applying bitwise operations on

view materializations. The experimental results show that the proposed approach obtains

largely higher hit rates than previous approaches, speeds up significantly the evaluation

of queries without using views, and scales very smoothly in terms of storage space and

computational overhead.
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CHAPTER 1

INTRODUCTION

Nowadays, massive amounts of data are published on the web on a daily basis from various

sources. Inevitably, web data is becoming increasingly heterogeneous. Extensible Markup

Language (XML) is by now the de facto standard for exporting and exchanging data on

the web due to its semi-structured characteristics: its inherent self-describing capability,

and its flexibility of organizing data [1]. As increasing amounts of information are stored,

exchanged, and presented using XML, it becomes increasingly important to effectively

and efficiently query XML data sources. The lack of precise yet flexible exploration

tools to query XML data sources directly impacts the usability and maintainability of the

information contained in the web data.

1.1 Tree-Pattern Queries for XML

In the XML model, data is represented in a tree structured form.Query languages for XML

are mainly based on the specification of structural patterns to be matched against the data

tree. In practice, these structural patterns are specified using XPath [2], a language that

lies at the core of the standard XML query language XQuery [3]. Usually, the structural

patterns are in the form of trees (Tree-Pattern Queries — TPQs).

1.1.1 The Problem of Query Dependency from Data Structures

The semi-structured XML data does not have to comply with a schema. Even if the data

comply with some schema, its structure could be complex [4] or might not be fully known

1
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to the user [5, 6, 7, 8]. Formulating a TPQ that will retrieve the desired results becomes

complex. The reason is that, as what will be explained below, the user has to specify an

order for the elements in every path of a tree-pattern query (TPQ) even though (a) the

user might not know this order, and (b) the user might not be interested in imposing an

order as a structural restriction in the query. Further, data sources usually export data on

the web under different structures even if they export the same information or information

from the same knowledge domain. Since elements may be ordered differently in these

structures, querying all these data sources in an integrated way becomes an issue: usually,

a single TPQ is not able to retrieve the desired information from all of them [9, 5, 6, 7].

Then, the user might have to specify a number of tree patterns, which in some cases can be

exponential on the number of elements in the query [10, 11].

Example 1.1.1 Consider an XML bibliography which contains several datasets on books.

These datasets organize books differently, grouped either by publisher, or by year, or by

author, or by subject. Suppose that the user wants to find the title of a book on the

subject XML published by O'Reilly in 2008). In addition, the user would like to impose

the following structural restrictions: (1) author is the child of book; (2) year and publisher

are ancestors of book; and subject is either an ancestor or a descendant of book. It is

not difficult to see that the requirements cannot be expressed by one TPQ, but they need a

set of TPQs. The set of eight TPQs for the above requirements are shown in Figure 1.1.

Node labels are abbreviated as shown in the figure. Double arrows indicate descendant

relationships and single arrows indicate child relationships. Each query pattern in the

figure represents two TPQs. If a node has a label of the form V(U), V is the label of the
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node in the first TPQ and U is the label of the node in the second TPQ. For simplicity, value

predicates ('XML', 'O'Reilly', and '2008') were omitted in the query patterns .

Figure 1.1 A set of eight TPQs for the query requirements in Example 1.1.1

TPQs constitute a very restricted fragment of XPath that involves forward axes (child

and descendant), wildcards, and predicates. For instance, the TPQs shown in Figure 1.1

involve descendant relationships which denote a path of zero or more elements between

two elements, and child relationships which indicate zero elements between two elements.

A TPQ can also have wildcard nodes (labeled by a `*') which indicate the presence of some

element in a path without specifying which one.

Even though TPQs provide some freedom in the specification of a tree structure

(e.g., through the use of descendant relationships and wildcards), they all have a common

restrictive structural requirement: in every root-to-leaf path, there is a total order for the

nodes. It is not possible in a TPQ to indicate that two nodes n 1 and n2 occur in a path

without specifying a precedence relationship between them: node n 1 has to precede node

n2 or vice-versa.

1.1.2 Limitations of Previous Approaches

Two different solutions have been suggested to deal with the dependence of queries for

XML from the structure of the data: one that adapts the unstructured keyword-search
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techniques to query tree-structured data [12, 9, 13, 14], and one that extends structured

TPQ languages with keyword search capabilities [15, 16, 5, 6].

The structureless keyword-based solution. The first solution modifies keyword-based

techniques used by search engines for HTML to distinguish between text (data) and elements

(metadata). It also modifies these techniques to return fragments of the documents that

contain the keywords, as is appropriate for XML, instead of links to documents [12, 9, 13,

14]. This solution offers a very convenient way for specifying queries, even for a naive

user. Nevertheless, its major limitation is that structural restrictions cannot be specified in

the query. Structural restrictions are necessary when querying tree-structured data for two

reasons: (a) they can express user requirements and therefore, refine the query answer, and

(b) they can express structural constraints that are known to hold in order to speed up the

evaluation of the queries.

The structural queries with keyword search extension solution. The second solution is

applied to extend structured query languages for XML to enable keyword search [15, 16,

5, 6]. However, these languages cannot avoid having a syntax which is complex for the

simple user [13, 9, 10, 11].

1.2 Partial Tree-Pattern Query Language

In this dissertation, a query language for XML, called Partial Tree-Pattern Query (PTPQ)

language, was considered. PTPQs were initially introduced in [7]. This language addresses

the problem of query dependence from the structure by allowing a partial specification of

tree patterns in queries. PTPQs generalize and strictly contain TPQs. They are flexible

enough to allow a large range of queries from keyword-style queries with no structure,



5

to keyword queries with arbitrary structural constraints, to fully specified TPQs. PTPQs

are not restricted by a total order for the nodes in a path of the query pattern since they

can constrain a number of (possibly unrelated) nodes to lie on the same path (same path

constraint). These nodes together form a partial path. PTPQs can express XPath queries

with the reverse axes parent and ancestor, in addition to forward child and descendant axes

and branching predicates. They can also express the identity equality (is) operator of XPath

(sharing of a node by two partial paths) by employing node sharing expressions. Overall,

PTPQs represent a broad fragment of XPath which is very useful in practice.

To provide some intuition, consider again the query requirements in Example 1.1.1.

They can be easily specified by a PTPQ shown in Figure 1.2. The PTPQ has two (partial)

paths surrounded by dotted lines. The nodes in a partial path are not necessarily related

through a total order: subject can precede book in a path or vice versa. Undirected edges

labeled by the symbol ti between two nodes from different partial paths indicate that these

two nodes coincide (that is, these two nodes denote a single node shared by the two partial

paths). For instance, in Figure 1.2, the two nodes labeled by book denote a common node

of partial paths 1 and 2. Note that this same query can be used to retrieve results from

different datasets which structure their data differently.

Figure 1.2 A PTPQ for the query requirements in Example 1.1.1
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1.3 Focus of the Investigation

This doctoral investigation focuses on three issues. The first one is the efficient evaluation

of PTPQs on XML data. The second one is on assigning semantics to PTPQs so that they

return to the user meaningful answers (that is, the queries are not matched to unrelated

parts of the XML document). The third one is on answering PTPQs on XML data using

materialized views. The investigation on the third issue started with TPQs which is the

restricted subclass of PTPQs.

1.3.1 Evaluation Issue

Finding all the matches of structural patterns in an XML tree is a key operation in XML

query processing. A recent approach for evaluating queries on XML data assumes that

the data is preprocessed and the position of every node in the XML tree is encoded [17,

18, 19, 20, 21]. Further, the nodes are partitioned, and an index of inverted lists called

streams is built on this partition. In order to evaluate a query, the nodes of the relevant

streams are read in the pre-order of their appearance in the XML tree. Every node in a

stream can be read only once. In the dissertation, this evaluation model is referred to as

indexed streaming model. Algorithms in this model [18, 19, 20, 22, 23, 21, 24, 25, 26, 27]

are based on stacks that allow encoding an exponential number of pattern matches in a

polynomial space. Another evaluation model is called streaming model. In the streaming

context, data arrive continuously, are unindexed, and can potentially be infinite. Because

of the limited storage space available, systems that query data streams require algorithms

that process data in only one sequential scan and deliver query results as soon as they

are available. Streaming processing is the only option in a number of applications such

as publish-subscribe systems, data monitoring in sensor networks, and managing network
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traffic information [28, 29, 30]. Further, many applications adopt streaming processing

because of the advantages it presents: (a) no preprocessing of the XML data is required,

(b) at every point in time, only the part of the data that is relevant to the evaluation of

the query needs to be stored in memory, and (c) the data is read only once, thus avoiding

multiple traversals of the XML document.

A broad fragment of XPath such as PTPQs can be useful only if it is complemented

with efficient evaluation techniques. This task is complex because, in the general case ;

PTPQs are directed acyclic graphs (dags). Existing non-main-memory evaluation algorithms

on XML data focus almost exclusively on path-pattern or tree-pattern queries. One motivation

of this doctoral research is to fill the gap in the efficient non-main-memory evaluation of

broad fragments of XPath that go beyond TPQs. We have dealt with this issue in stages.

Partial path query evaluation in the indexed streaming model. In the first stage of the

investigation, the problem of efficiently evaluating generalized path-pattern queries called

partial path queries in the indexed streaming model was addressed. Partial path queries are

PTPQs with a single partial path. They cannot be expressed by path or even tree-pattern

queries.

Example 1.3.1 Consider querying .the XML bibliography of Example 1.1.1. Suppose that

the user wants to find authors of a book on the subject XML published by O'Reilly in 2008

with the following structural restrictions: (1) author is the child of book; and (2) year,

publisher and subject are ancestors of book. It is not difficult to see that these requirements

cannot be expressed by a TPQ. However, they can be easily specified by a partial path

query. Such a query is shown as a directed graph in Figure 1.3. For simplicity, value

predicates were omitted in the query.
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Figure 1.3 A partial path query

Note that Olteanu et al. [31, 11] showed for queries in a class that comprises partial

path queries that they can be equivalently rewritten as sets of TPQs. However, such a

rewriting may lead to a number of TPQs which is exponential on the size of the initial

query [31, 11]. This result applies also to partial path queries. Clearly, it is inefficient to

evaluate a partial path query by evaluating an exponential number of TPQs.

Query evaluation algorithms for path-pattern or tree-pattern queries usually apply

either a top-down [18, 19, 20, 22, 23, 21, 24, 25, 26] or a bottom-up strategy [27]. When

a path-pattern or tree-pattern query is evaluated with the top-down strategy, a match on a

query node is decided based on the match of its parent query node. When a query is a dag,

a node can have multiple parents. For instance, node book in Figure 1.3 has year, subject,

and publisher as its parents. When a node has multiple parents, its match cannot be decided

until all its parent nodes have been matched. This makes the evaluation of these queries

more complex. With the bottom-up evaluation strategy for path-pattern or tree-pattern

queries, a node x in an XML tree is a match for a query node X if each child node Y of

X has a match y which satisfies with x the structural relationship between Y and X in the

query. This is not necessarily true when a query is a dag, since the matches of the sub-dags

rooted at the child nodes of X should coincide on the common nodes of the subdags in

the query. For instance, with the query of Figure 1.3, the matches of the sub-dags rooted

at year, subject, and publisher should coincide on book (and author). Such a verification
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process can be expensive [32]. Therefore, existing algorithms cannot be directly used for

partial path queries.

An indirect way of exploiting existing algorithms for dealing with query dags would

be to produce for a given partial path query Q, a set of path queries that together compute

Q. Such an attempt faces two obstacles: (a) as mentioned above the number of path queries

may be exponential on the number of query nodes, and (b) the best known algorithm

for evaluating path queries under the indexed streaming model (PathStack [20]) does not

account for repeated labels in a path query.

Therefore, existing algorithms cannot be used directly or indirectly to compute partial

path queries. To the best of our knowledge, there are no previous algorithms for evaluating

this generalized class of queries in the indexed streaming model.

In Chapter 4, three novel approaches were presented for evaluating partial path queries

with repeated labels. The first approach exploits a structural summary of the XML data to

evaluate an equivalent set of path-pattern queries for a given partial path query dag. The

second approach evaluates a given query dag by generating a spanning tree for the dag.

The third approach is a holistic algorithm that evaluates a given query dag directly against

the XML tree.

Partial tree -pattern query evaluation in the indexed streaming model. Based on the

work on partial path queries, the problem of developing efficient algorithms for PTPQs

in the indexed streaming model is addressed. In Chapter 5, an original polynomial time

holistic algorithm for PTPQs is presented. In order to assess its performance, two other

techniques are designed which evaluate PTPQs by exploiting the state-of-the-art existing
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algorithms for smaller classes of queries. An extensive experimental evaluation shows that

the holistic algorithm outperforms the other ones.

Partial tree-pattern query evaluation in the streaming model. The problem of developing

efficient algorithms for PTPQs on XML streams is also addressed. Two streaming algorithms

for PTPQs are designed and implemented. They are presented in Chapter 6. One algorithm,

called PSX, works in a lazy fashion. It uses a stack-based technique to compactly encode

query matches, thus avoiding query match enumeration. It also avoids processing matches

of the query dag that do not contribute to new solutions (redundant matches). Further,

it produces solutions incrementally instead of waiting until the whole XML document

streams are processed. Compared to the only known streaming algorithm that supports

an extension of TPQs, the experimental results show that the proposed algorithm performs

better by orders of magnitude while consuming a much smaller fraction of memory space.

Algorithm PSX is the first streaming algorithm that supports such a broad fragment of

XPath.

Current streaming applications have stringent requirements on query response time

and memory consumption because of the large (possibly unbounded) size of data they

handle. In order to keep memory usage and CPU consumption low for the PTPQ streaming

evaluation, another streaming algorithm called EagerPSX for PTPQs is designed (Section

6.5). Its key feature is that it applies an eager evaluation strategy to quickly determine when

node matches should be returned as solutions to the user and also to proactively detect

redundant matches. It is theoretically analyzed and experimentally tested on its time and

space performance as well as the scalability. It is compared with PSX. The results show

that EagerPSX not only achieves better space performance without compromising time
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performance, but it also greatly improves query response time for both simple and complex

queries, in many cases, by orders of magnitude.

1.3.2 Semantic Issue

To face the challenge of assigning semantics to XML queries so that they return meaningful

answers, most existing approaches exploit directly or indirectly the notion of Lowest

Common Ancestor (LCA) of a set of nodes in the XML tree. However, in most practical

cases, the information in the XML tree is incomplete (e.g., optional elements/values in

the schema of the document are missing), or irregular (e.g. different structural patterns

coexist in the same document) [33]. For instance, in the DBLP data set (data collected in

May 2006), almost 10% of the "book" entries and over 1% of "article" entries do not

have an author, while almost all "proceedings" entries do not have authors (this latter

one is reasonable and expected). In such cases, the approaches of the first solution (the

structureless keyword-based solution), even if they succeed in retrieving all the meaningful

answers, they comprise only a tiny percentage of meaningful answers in their answer set.

Most of the answers are meaningless. In other words, these approaches have low precision.

Consider, for instance, the XML bibliography shown in Figure 1.4. In the XML tree,

"book" does not have an author. Suppose that we want to find the publications on XML

authored by "Mary." Most existing approaches return "book" and "article" as answer,

which is meaningless. Our experiments in Chapter 7 with DBLP-based data sets show

that in some cases the precision falls below 1% for some approaches. Clearly, such a low

precision is a serious limitation for those approaches.

A recent approach (MLCAS [5, 6]) of the second solution (the solution that extends

TPQs with keyword capabilities) shows improved precision. However, the percentage
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Figure 1.4 An XML tree

of meaningful answers returned (i.e. the recall) is low. In the experiments presented

in Chapter 7, the recall of the MLCAS approach falls below 60% for several cases of

XML data. Clearly, the poor recall cannot be improved by further imposing structural

restrictions. This performance is not satisfactory for data integration environments for

which this approach is intended. In addition, it employs different semantics for the keyword

part (MLCAS) and the structured part of a query (XQuery). As a consequence, structural

restrictions in a query cannot be used to recuperate answers that are not returned by the

keyword search.

In Chapter 7, an original approach for assigning semantics to our PTPQ language

is presented. The novel semantics seamlessly applies to keyword queries and to queries

with structural restrictions. The originality of the proposed approach relies on the use

of structural summaries of the XML document for identifying structural patterns (TPQs)

for a given query. Meaningful TPQs that return meaningful answers were identified by

using a partial order between TPQs. Previous approaches identify meaningful answers by

operating locally on the data (usually computing Lowest Common Ancestors of nodes

in the XML tree). In contrast, the proposed approach operates globally on structural

summaries of data to compute meaningful TPQs. This overview of data gives an advantage

to the proposed approach compared to previous ones.
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1.3.3 Answering XML Queries Using Materialized Views

Answering queries using views is a well-established technique in databases. In this context,

two outstanding problems can be formulated. The first one consists in deciding whether

a query can be answered exclusively using one or multiple materialized views. Given

the many alternative ways to compute the query from the materialized views, the second

problem consists in finding the best way for computing the query from the materialized

views. In the realm of XML, there is a restricted number of contributions in the direction

of these problems due to the many limitations associated with the use of materialized views

in traditional XML query evaluation models.

In Chapter 8, the previous two problems are addressed under the indexed streaming

model. Together with holistic algorithms, the indexed streaming evaluation model has been

established as the prominent technique for evaluating queries on large persistent XML data.

This new context revises these problems since it requires new conditions for view usability

and new techniques for computing queries from materialized views. An original approach

for materializing views is suggested, which stores for every view node only the list of

XML nodes necessary for computing the answer of the view. Necessary and sufficient

conditions are specified for answering a TPQ using one or multiple materialized views in

terms of homomorphisms from the views to the query. In order to efficiently answer queries

using materialized views, a stack-based algorithm is designed which compactly encodes in

polynomial time and space all the homomorphisms from a view to a query. Further, space

and time optimizations are proposed, which use bitmaps to encode view materializations

and employ bitwise operations to minimize the evaluation cost of the queries. Finally, an

extensive experimentation is conducted which demonstrates that the proposed approach
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yields impressive query hit rates in the view pool, achieves significant time and space

savings and shows smooth scalability.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, a review of the state-of-the-art is

provided for query evaluation techniques on XML data, for the semantics of XML keyword

queries, and for answering XML queries using materialized views. In Chapter 3, the partial

tree-pattern query (PTPQ) language is formally defined. The same chapter comprises a

discussion of the expressiveness and the generality of the PTPQ language for specifying

queries on XML data. Three evaluation algorithms for evaluating partial path queries in

the indexed streaming model are presented in Chapter 4. Next, in Chapter 5, an original

polynomial time holistic algorithm for PTPQs in the indexed streaming model is designed.

In Chapter 6, two efficient algorithms for PTPQs in the streaming model are developed.

The novel semantics for the PTPQ language is discussed in Chapter 7. In Chapter 8, a

novel approach for answering XML queries using materialized views is presented. Finally,

Chapter 9 summarizes the obtained results, and provides a discussion of future work.



CHAPTER 2

STATE OF THE ART

This chapter provides a review of the state-of-the-art of evaluation techniques for queries

on XML data, on the semantics for XML keyword queries, and answering XML queries

using materialized views.

2.1 XML Query Evaluation

2.1.1 XML Streaming Evaluation

The majority of XPath streaming evaluation algorithms focus on tree-pattern queries (TPQs).

These algorithms broadly fall in three categories: the automata-based approach [34, 28],

the tree-based approach [35, 36], and the stack-based approach [37, 29, 30]. There is also a

particular case of XPath streaming evaluation algorithms called filtering algorithms. These

algorithms do not literally evaluate the input queries, but they task to determine which of

them have a nonempty output on an incoming data stream.

Automata-based algorithms (e.g. XSQ [34]) suffer from the problem of exponential

state blow-up. Tree-based algorithms (e.g. TurboXPath [35]) first build a parse tree for a

given TPQ and then find matches of the parse tree nodes on the data streams. TurboXPath,

in particular, uses smart matching arrays to avoid an exponential memory usage typical for

automata-based algorithms. Nevertheless, both automata-based and tree-based algorithms

have a worst case complexity which is exponential in the size of the query.

Stack-based approaches [37, 29, 30] exploit stack techniques [20] to compactly encode

query pattern matches in stacks, thus avoiding their enumeration and explicit storage during

15
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evaluation. They evaluate TPQs against XML streams in polynomial time and space, which

is a significant improvement over automata-based and tree-based algorithms.

However, the problem of the efficient streaming evaluation of subclasses of XPath

beyond TPQs has not been adequately addressed. Algorithm X aos [32] is presently the

only streaming algorithm that supports an XPath expression with child and descendant

axes and their symmetrical reverse axes parent and ancestor. X aos extends the tree-based

streaming algorithm TurboXPath.

Unfortunately, Xaos has three limitations. First, Xaos explicitly enumerates and stores

all pattern matches for a given query. When the data is recursive (more than one element

in a path has the same tag), the number of pattern matches can be exponential in the size

of query and data. Second, Xaos may store multiple copies of the same output, since a

single match of an output query node can participate in multiple matches of the query. As

a result, it needs an additional process to eliminate duplicate solutions at the final stage.

Third, Xaos does not deliver query answers until the entire stream is processed. In the case

of an infinite stream, the evaluation may be unnecessarily postponed infinitely. Because of

these limitations, this type of processing is inefficient and not viable for applications that

need to process infinite streams or require incremental outputs. In Chapter 6, we present a

streaming algorithm which not only supports a much larger fragment of XPath, but it also

does not have the limitations of Xaos . As we show later, it outperforms Xaos in terms of

both time performance and memory usage.

2.1.2 XML Indexed Streaming Evaluation

The indexed streaming evaluation model uses indexes built over the input data to avoid:

(1) preloading XML documents in memory, and (2) processing large portions of the XML
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documents that are not relevant to the query evaluation. Because of these desirable properties,

many query evaluation algorithms for XML have been developed in this model. These

algorithms broadly fall in two categories: the structural join approach [19, 38, 22, 23], and

the holistic twig join approach [20, 24, 39, 21, 40, 26, 39]. All these algorithms, however,

focus almost exclusively on TPQs.

The structural join approach first decomposes a TPQ into a set of binary descendant

or child relationships. Then, it evaluates the relationships using binary merge join. The

solutions for the binary relationships are "stitched" together to form the answer of the query.

This approach might not be efficient because it generates a large number of intermediate

solutions (that is, solutions for the binary relationships that do not make it to the answer

of the TPQ). Algorithms for structural join order optimization were introduced in [38].

Structural join techniques can be further improved using various types of indexes [22, 23].

The holistic twig join approach (e.g. TwigStack [20]) represents the state of the art

for evaluating TPQs. This approach evaluates TPQs by joining multiple input streams at

a time to avoid producing large intermediate solutions. Algorithm TwigStack was shown

optimal for TPQs without child relationships.

Several papers focused on extending TwigStack. For example, in [24], algorithm

TwigStackList evaluates efficiently TPQs in the presence of child relationships. Algorithm

iTwig Join extended TwigStack by utilizing structural indexes built on the input streams

[39]. Chen et al. [26] proposed algorithms that handle queries over graph structured

data. Evaluation methods of TPQs with OR predicates were developed in [40]. In [21],

the XR-tree index [23] is used to skip XML data elements that do not participate in the

query answer. Algorithm Twig' Stack was presented in [27] to avoid merge joining path

solutions needed by TwigStack.
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All the above algorithms are developed for TPQs and cannot be used nor extended

so that they evaluate PTPQs. The reason is that PTPQs are not mere tree patterns but dags

augmented with same-path constraints.

PTPQs were initially introduced in [7]. Their containment problem was studied in

[41] and PTPQ semantic issues were addressed in [8]. Relevant to our work are also the

evaluation algorithms for partial path queries [42, 43]. Partial path queries are not a subclass

of TPQs but they form a subclass of PTPQs.

2.2 Semantics for XML Keyword Queries

A number of papers deal with the assignment of meaningful semantics to keyword-based

query languages for XML [12, 9, 13, 5, 10, 6]. All of them are based on some variation

of the concept of Lowest Common Ancestor (LCA). Among them, the query language in

[13] allows also some primitive structural restrictions to be expressed. [5, 6] provide an

extension of XQuery to allow users to query an XML document without full knowledge

of the structure. It uses the concept of Meaningful Lowest Common Ancestor Structure

(MLCAS) of a set of nodes for assigning semantics to keyword queries. In Chapter 7, we

present an approach for assigning semantics to keyword queries with structural restrictions.

We analytically compare our approach with the three approaches in [12, 13, 5, 6] in Section

7.4 and experimentally in Section 7.5. Our approach shows better recall in all cases,

including cases where the XML data are incomplete. Among approaches with similar

recall, our approach shows better precision. In [10] the concept of Smallest Lowest Common

Ancestor (SLCA) is used to assign semantics to keyword queries. SLCAs are defined to

be LCAs that do not contain other LCAs. This semantics is similar to that of the MLCA

approach. For this reason, we do not directly compare it to ours.
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In order to cope with the low precision, some approaches extend the database

techniques with information retrieval techniques. In this direction, they rank the answers

of keyword search queries on XML documents according to their estimated relevance [13,

14]. Information retrieval systems using ranking functions may trade recall for precision.

The PTPQ language is a database query language. Therefore, it does not employ any

ranking functions. Its goal is to not miss any meaningful answer and to exclude as many

meaningless answers as possible.

Some languages employ approximation techniques to search for answers when the

initial query is too restricted to return any. They either relax the structure of the queries

or the matchings of the queries to the data [44, 45]. In contrast to our language, these

languages return approximate (not exact) answers.

Several papers focus on providing efficient algorithms for evaluating LCAs for

keyword queries [12, 9, 13, 5, 10, 6, 46]. Our approach is different and does not have

to explicitly compute LCAs of nodes in the XML tree. In contrast, it computes a number

of meaningful TPQs for PTPQs that involve keywords and/or structural restrictions. Since

TPQs can be evaluated using an XQuery engine, our approach can directly take advantage

of the various optimization techniques developed so far for XQuery [47, 19, 20].

2.3 Answering XML Queries Using Views

Because of the increasing importance of XML, a number of papers have recently addressed

the important problems of XML query rewriting using views and of XML view selection

[48, 49, 50, 51, 52, 53, 54, 55, 56, ?, 57]. A common assumption made by most of these

works is that a view materialization is a set of subtrees rooted at the images of the view



20

output nodes, or references to the base XML tree. In order to obtain the answer of the

original query, downward navigation in the subtrees is needed.

Two types of XML query rewriting problems, namely, equivalent rewritings and

contained rewritings have been considered. An equivalent rewriting produces all the answers

to the original query using the given view materialization(s), whereas a contained rewriting

may produce a subset of the answer to the query. The majority of the recent research efforts

have been directed on rewriting XPath queries using materialized XPath views. Among

them most works focus on the equivalent rewriting [49, 52, 53, 51, 55]. Balmin et al. [49]

presented a framework for answering XPath queries using materialized XPath views. A

view materialization may contain XML fragments, node references, full paths, and typed

data values.. A query rewriting is determined through a homomorphism from a view to

the query and the view usability (or query answerability) depends on the availability of

one or more of the four types of materializations. Mandhani and Suciu [52] presented

results on equivalent TPQ rewritings when the TPQs are assumed to be minimized. Xu et

al. [53] studied the equivalent rewriting existence problem for three subclasses of TPQs.

Tang and Zhou [51] considered rewritings for TPQs with multiple output nodes. However,

the rewritings are restricted to those obtained through a homomorphism from the view to

the query which maps the query output nodes to the view output nodes (output preserving

homomorphism).

The problem of maximally contained TPQ rewritings was studied in [58] both in the

absence and presence of a schema. All contributions in [49, 52, 53, 51, 58, 55] are restricted

to query rewritings using a single materialized view. A common constraining requirement

for view usability is the existence of a homomorphism that satisfies two conditions: (a) it

maps the view output node to an ancestor-or-self node of the query output node, and (b) it
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is an isomorphism on query nodes that are not descendants of the image of the view output

node.

The problem of equivalently answering XPath queries using multiple views has been

studied in [55, 56, 59, 57]. Anion et al. [55] considered the problem in the presence

of structural summaries and integrity constraints. As in [51], a query can have multiple

output nodes, and a rewriting is obtained by finding output preserving homomorphisms

from views to the query. Answers of views are tuples whose attributes include node ids

of the original XML tree, XML subtrees, and/or nested tuple collections. The answer to a

query is computed by combining the answers to the views through a number of algebraic

operations. The materialization scheme of storing node ids together with XML subtrees

is also adopted by [56, 59]. Both papers assumed that output preserving homomorphisms

exist among views and they presented rewriting algorithms which use intersection of view

answers on node ids.

Tang et al. [57] addressed the multiple view rewriting problem based on the

assumptions that structural ids in the form of extended Dewey codes [60] are stored with

view materializations. This way, the common ancestors of nodes in different view fragments

can be derived for checking view usability. Also, structural joins on the view fragments can

be performed based on Dewey codes to produce query answers. The paper also studied a

view selection problem defined as finding a minimal view set that can answer a given query.

In [50, 54] the equivalent rewriting problem has been addresses but for queries and views

which are XQuery expressions.

Phillips et al. [61] consider materializing intermediate query results as sets of tuples

in order to allow additional evaluation plans for structural joins. However, their context of
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view usability is very restricted and they do not address query answerability from materialized

views issues.



CHAPTER 3 

XML DATA MODEL AND PARTIAL TREE-PATTERN QUERY LANGUAGE 

In this chapter, we define the XML data model and the partial tree-pattern query (PTPQ) 

language. We also discuss the expressiveness and the generality of the PTPQ language for 

specifying queries on XML data .. 

3.1 XML Data Model 

XML data is' commonly modeled by a tree structure. Tree nodes are labeled and represent 

elements, attributes, or values. Let £ be the set of node labels. Tree edges represent 

element-sub element, element-attribute, and element-value relationships. Without loss of 

generality, we assume that only the root node of every XML tree is labeled by 'T' E £. We 

denote XML tree labels by lower case letters. To distinguish between nodes with the same 

label, every node in the XML tree has an identifier shown as a subscript of the node label. 

Figure 3.1 shows an XML tree. The triplets by the nodes will be explained below. 
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Figure 3.1 (a) An XML tree T, (b) The index tree ofT 
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For XML trees, we adopt the positional representation widely used for XML query

processing [19, 20, 21]. The positional representation associates with every node a triplet

(start,end,level) of values. The start and end values of a node are integers which can

be determined through a depth-first traversal of the XML tree, by sequentially assigning

numbers to the first and the last visit of the node. The level value represents the level of the

node in the XML tree. Interestingly, similar positional representation scheme is used for

processing class hierarchies in the area of Artificial Intelligence [62].

The positional representation allows efficiently checking structural relationships

between two nodes in the XML tree. For instance, given two nodes n 1 and n2 , n 1 is an

ancestor of n 2 iff n 1 .start < n 2 .start, and n2 .end < n1.end. Node n 1 is the parent of 7/2

iff n 1 .start < n 2 .start, n 2 .end < n 1 .end, and n 1 .level = n2.level — I.

In this dissertation, we often need to check whether a number of nodes in an XML

tree lie on the same path. This check can be performed efficiently using the following

proposition.

Proposition 3.1.1 Given a set of nodes n 1 , . , nk in an XML tree T, let maxStart and

minEnd denote respectively the maximum start and the minimum end values in the

positional representations of n1 , , nk. Nodes , nk lie on the same path in Tiff

maxStart < minEnd.

3.2 Partial Tree-Pattern Query Language

Syntax. A partial tree-pattern query (PTPQ) specifies a pattern which partially determines

a tree. PTPQs comprise nodes and child and descendant relationships between nodes. The

nodes are grouped into disjoint sets called partial paths. PTPQs are embedded to XML
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trees. The nodes of a partial path are embedded to nodes on the same XML tree path.

However, unlike paths in TPQs the child and descendant relationships in partial paths do

not necessarily form a total order. This is the reason for qualifying these paths as partial.

PTPQs also comprise node sharing expressions. A node sharing expression indicates that

two nodes from different partial paths are to be embedded to the same XML tree node.

That is, the image of these two nodes is the same — shared — node in the XML tree.

The formal definition of a PTPQ follows.

Definition 3.2.1 (PTPQ) Let Ai be an infinite set of labeled nodes. Nodes in N . are labeled

by a label in G. Let X and Y denote distinct nodes in N. A partial tree-pattern query is a

pair (S, N) where:

S is a list of n named sets p1 , , p„ called partial paths (PPs). Each PP p, is a finite set of

expressions of the form X/Y (child relationship) or X// Y (descendant relationship).

We write X[pi]/ Y [pi] (resp. X [pi] / / Y[pi]) to indicate that X[pi]/Y [pi ]

(resp. X pi]// Y [pi]) is a relationship in PP p,. Child and descendant relationships

are collectively called structural relationships.

N is a set of node sharing expressions X[pi] Y [pi ], where pi and pi are distinct PPs,

and X and Y are nodes in PPs pi and p i respectively such that both of them are labeled

by the same label in E.

Figure 3.2(a) shows a PTPQ Q i and Figure 3.2(b) shows the visual representation of

Q 1 . We use this representation later on in Section 5.3 to design a comparison algorithm for

evaluating PTPQs. Unless otherwise indicated, in the following, "query" refers to a PTPQ.

Note that the labels of the query nodes are denoted by capital letters to distinguish them
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PI' {R[PJlllA,[p,],B,[p,]!D[Pd}, 
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(a) PTPQQI 

(c) Query graph of 

Figure 3.2 A PTPQ and its three representations 
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from the labels of the XML tree nodes. In this sense, labell in an XML tree and label L in 

a query represent the same label. 

Semantics. The answer of a PTPQ on an XML tree is a set of tuples of nodes from the 

XML tree that satisfy the structural relationships and the same path constraints of the PTPQ. 

Formally: 

Definition 3.2.2 (Query Embedding) An embedding of a query Q into an XML tree T 

is a mapping M from the nodes ofQ to nodes ofT such that: (a) a node A[Pj] in Q is 

mapped by M to a node ofT labeled by a; (b) the nodes ofQ in the same PP are mapped 

by M to nodes that lie on the same path in T; (c) V X[PiJ!Y[Pi] (resp. X [PiJ! jY[Pi]) in 

Q, M(Y[Pi]) is a child (resp. descendant) of M(X[Pi]) in T; (d) V X [Pi] ~ Y[pj] in Q, 

M(X[Pi]) and M(Y[pj]) coincide in T. 
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We call image of Q under an embedding M a tuple that contains one field per node in

Q, and the value of the field is the image of the node under M. Such a tuple is also called

solution of Q on T. The answer of Q on T is the set of solutions of Q under all possible

embeddings of Q to T.

Graph representation for PTPQs. For our evaluation algorithm, we represent queries as

node labeled annotated directed graphs: a query Q is represented by a graph QG. Every

node X in Q corresponds to a node XG in QG, and vice versa. Node XG is labeled by the

label of X. Two nodes in Q participating in a node sharing expression correspond to the

same node in QG. Otherwise, they correspond to distinct nodes in QG. For every structural

relationship X// Y (resp. X/Y) in Q there is a single (resp. double) edge in QG. In

addition, each node in QG is annotated by the set of PPs of the nodes in Q it corresponds

to. Note that these annotations allow us to express same-path constraints. That is, all the

nodes annotated by the same partial path have to be embedded to nodes in an XML tree

that lie on the same path.

Figure 3.2(c) shows the query graph of query Q1 of Figure 3.2(a). Note that a node in

the graph inherits all the annotating PPs of its descendant nodes. Because of this inheritance

property of partial path annotations we can omit in the figures the annotation of internal

nodes in queries when no ambiguity arises. For example, in the graph of Figure 3.2(c),

node A is annotated by the PPs p1 , P2, and p3 inherited from its descendant nodes D, E,

and F.

Clearly, a query that has a cycle is unsatisfiable (i.e., its answer is empty on any XML

tree). Therefore, in the following, we assume a query is a dag and we identify a query with

its dag representation.
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3.3 Generality of Partial Tree-Pattern Query Language

Clearly, the class of PTPQs cannot be expressed by TPQs. For instance, PTPQs can

constrain a number of nodes in a query pattern to belong to the same path even if there

is no precedence relationship between these nodes in the PTPQ. Such a query cannot be

expressed by a TPQ. TPQs correspond to the fragment X{[],/,//} of XPath that involves

predicates([]), and child (/) and descendant (//) axes. In fact, it is not difficult to see

that PTPQs cannot be expressed either by the larger fragment XPt[[],/,//, \ \I" of XPath

that involves, in addition, the reverse axes parent ( \) and ancestor ( \ \ ). On the other

hand, PTPQs represent a very broad fragment XP{[],/, // \,\\,≈} of XPath that corresponds

to XP{[],/,//,\,\\ } augmented with the is operation 	 of XPath2 [1]. The is operator is

a node identity equality operator. The conversion of an expression in XP{[],/,//,\,\\,≈} 	 to

an equivalent PTPQ is straightforward. There is no previous indexed streaming evaluation

algorithm that directly supports such a broad fragment of XPath.

Note that as the next proposition shows, a PTPQ is equivalent to a set of TPQs.

Proposition 3.3.1 Given a PTPQ Q there is a set of TPQs Q 1 ,	 , Q,, in XPI[[],/,//} such

that for ever)) XML tree T, the answer of Q on T is the union of the answers of the Q is on

T.

As an example, Figure 3.2(d) shows the two TPQs for query Q 1 of Figure 3.2(a),

which together are equivalent to Q1 . Based on the previous proposition, one can consider

evaluating PTPQs using existing algorithms for TPQs. In Section 5.3.1, we present such

an algorithm. However, the number of TPQs that need to be evaluated can grow to be large

(in the worst case, it can be exponential on the number of nodes of the PTPQ). Therefore,

the performance of such an algorithm is not expected to be satisfactory.



CHAPTER 4

EVALUATING PARTIAL PATH QUERIES ON INDEXED XML STREAMS

In this chapter, we present our three evaluation algorithms for evaluating partial path queries

in the indexed streaming model. The chapter is organized as follows. Section 4.1 defines

the partial path query language and its properties. We describe data structures for the

indexed streaming evaluation in Section 4.2. We present our three evaluation algorithms in

Section 4.3, 4.4, and 4.4 respectively. Section 4.6 presents and analyses our experimental

results.

4.1 Partial Path Query Language

A partial path query specifies a path pattern where the structure (an order among the nodes)

may not be fully defined.

Syntax. In order to specify these queries, paths or even trees are not sufficient, and we need

to employ directed graphs.

Definition 4.1.1 A partial path query is a directed graph whose nodes are labeled by labels

in L, and every node is incident to at least one edge. There is at most one node labeled by

r and this node does not have incoming edges. Edges between nodes can be of two types:

child and descendant. ❑

In the rest of the paper, unless stated differently, "query" refers to "partial path query."

Query nodes denote XML tree nodes but we use capital letters for their labels. Therefore,

a query node labeled by A denotes XML tree nodes labeled by a. In order to distinguish

29
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between distinct query nodes with the same label, we use subscripts. For instance, A3 and 

A4 denote two distinct nodes labeled by A. If Q is a query, and X and Yare nodes in Q, 

the expressions X IY and XI IY are called structural relationships and denote respectively 

a child and descendant edge from X to Y in Q. 

Figure 4.1 shows four queries. Child (resp. descendant) edges are shown with single 

(resp. double) arrows. Query Ql is a partial path query which is also a path query since 

the structural relationships in the query induce a total order for the query nodes. Notice 

that a query graph can be disconn~cted, e.g. query Q4 in Figure 4.1 (d). Notice also that no 

order may be defined between two nodes in a query, e.g. between nodes A and C in Q3, or 

between nodes Al and A2 in Q4. 

A R 

t t 
C R A C AI C2 

~ (J~ ~(J t I~ 
E A C E CI E AJ 

(a) (b) (c) (d) 

Figure 4.1 Queries (a) Ql, (b) Q2, (c) Q3, (d) Q4 

Semantics. The answer of a partial path query on an XML tree is a set of tuples. Each tuple 

consists of XML tree nodes that lie on the same path and preserve the child and descendant 

relationships of the query. More formally: 

An embedding of a partial path query Q into an XML tree T is a mapping M from 

the nodes of Q to nodes of T such that: (a) a node in Q labeled by A is mapped by M to a 

node of T labeled by a; (b) the nodes of Q are mapped by M to nodes that lie on the same 

path in T; (c) 'if XIY Crespo XIIY) in Q, M(Y) is a child Crespo descendant) of M(X) in 

T. 
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We call image of Q under an embedding M a tuple that contains one field per node in 

Q, and the value of the field is the image of the node under M. Such a tuple is also called 

solution of Q on T and the value'of each field is called solution of the corresponding node 

in Q on T. The answer of Q on T is the set of solutions of Q under all possible embeddings 

of Q to T. 

Consider query Q2 of Figure 4.1. Notice that Q2 is syntactically similar to a tree-

pattern query (twig). However, the semantics of partial path queries is different: when 

query Q2 is a partial path query, the images of the query nodes R, A and C should lie on 

the same path on the XML tree. 

R 

~ 
A R R 

t {J~ tit 
C R A C AI C2 

~ {J~ ~{J t ,j~ 
E A C E CI E A2 

(a) (b) (c) (d) 

Figure 4.2 Queries of Figure 4.1 with the root R (a) Ql, (b) Q2, (c) Q3, (d) Q4 

Clearly, we can add a descendant edge from node R to every node that does not 

have incoming edges in a query without altering its meaning. Therefore, without loss of 

generality, we assume that a query is a connected directed graph rooted at R. Figure 4.2 

shows the queries of Figure 4.1 in that form. 

Obviously, if a query has a cycle, it is unsatisfiable (that is, it does not have a non-

empty answer on any database). Detecting the existence of cycle in a directed graph can be 

done in linear time on the size of the graph. In the following, we assume that a query is a 

directed acyclic graph (dag) rooted at node R. 
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4.2 Data Structures for Indexed Streaming Evaluation

In the indexed streaming evaluation model, the data is preprocessed and the position of

every node in the XML tree is encoded. Usually, for every label in the XML tree an

inverted list of the nodes with this label is produced. These lists are called streams. In

order to evaluate a query, the nodes of the relevant streams are read in the pre-order of their

appearance in the XML tree. Every node in a stream can be accessed only once. We present

in this section the data structures and operations we use for the evaluation of the queries.

Let Q be a query. For simplicity, we assume for now that Q is a tree pattern rooted at

R. We show in Section 4.5 how to handle queries that are dags. Let X be a node and L be

a label in Q. Function nodes(Q) returns all nodes of Q; label(X) returns the label of X in

Q; label(Q) returns the set of node labels in Q; occur(L) returns all nodes in Q labeled by

L. Boolean function isLeaf(X) returns true iff X is a leaf node in Q. Function parent(X)

returns the parent of X in Q; children(X) returns the set of child nodes of X in Q.

With every distinct node label L in Q, we associate a stream TL of the positional

representation (see Section 3.1) of the nodes labeled by L in the XML tree. The nodes

in the stream are ordered by their begin field. To access sequentially the nodes in TL , we

maintain a cursor CL . For simplicity, we may alternatively use CL to denote the node

pointed by pointer CL in TL . Operation advance(CL) moves CL to the next node in TL .

Function eos(CL) returns true if CL has reached the end of TL .

With every query node X in Q, we associate a stack Sx . A stack entry in Sx consists

of a pair: (positional representation of node from Tlabel	 pointer to an entry in stack Tlabel(X),

Sparent(X))• A pointer denotes a position in a stack. The expression Sx .k denotes the entry

at position k of stack Sx . The position of the bottom entry in a stack is 1. We use the

following stack operations: push(Sx ,entry) which pushes entry on the stack Sx, pop(Sx)
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which pops out the top entry from stack S x, and tap( S x) which returns the position of the 

top entry of stack Sx. 

r R/U 
TR 

R [fJ 

~ ~ SR 
CRt 

G, 

U~~' U I A, 
h, ij SA1 B/ 
I B, TA ~' SB1 TB 
b2 ~ 

~ ~ 

I CAt B2"'--U CBt 
B2 h] ij U-J2 SB2 I 

G2 A2 SA2 

(a) (b) (c) 

Figure 4.3 (a) Data path, (b) Query Q5, (c) Initial state of cursors and stacks 

Initially, all stacks are empty and every cursor CL points to the first node in TL . 

Figure 4.3(c) shows the initial state of cursors and stacks associated with the query Q5 of 

Figure 4.3(b) on the data path of Figure 4.3(a). Stream nodes are accessed through cursors 

and they are possibly stored in stacks. In Figure 4.3( c), cursor C A feeds stacks SAl and S A2 

and cursor CB feeds stacks SEl and SB2. During execution of the algorithm, the entries 

that stack S x can contain correspond to stream nodes in TzabeZ(X) before CZabeZ(X). 

The entries in a stack below an entry e correspond to nodes in the XML tree that are 

ancestors of the node corresponding to e. The pointer of an entry e in a stack Sx points 

to the highest among the entries in stack Sparent(X) that correspond to ancestors of e in the 

XML tree. At any point in time, stack entries represent partial solutions of the query that 

can be extended to the solutions as the algorithm goes on. An important feature of such a 

stack-based organization is that it encodes a potentially exponential number of solutions in 

a linear space. 
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4.3 IndexPaths-R: Leveraging Structural Indexes and Path Query Algorithms

Our first approach, called IndexPaths-R, endeavors to leverage existing algorithms for path

queries [20]. Given a partial path query Q, IndexPaths-R exploits a structural summary of

data, called index tree, to generate a set of path queries that together are equivalent to Q.

In order to evaluate these queries, it extends the algorithm in [20] for path queries so that it

can work on path queries with repeated labels.

4.3.1 Generating Path Queries from Index Trees

Given a partitioning of the nodes of an XML tree T, an index graph for T is a graph G such

that: (a) every node in G is associated with a distinct equivalence class of element nodes in

T, and (b) there is an edge in G from the node associated with the equivalence class A to

the node associated with the equivalence class B, iff there is an edge in T from a node in

A to a node in B. The equivalence class of nodes in T associated with each node in G is

called extent of this node. Index graphs have been referred to with different names in the

literature and they differ in the equivalence relations they employ to partition the nodes of

the XML tree. An 1-index [63, 64] considers as equivalent nodes in T that have the same

incoming path from the root of T. A 1-index is a tree . We define the index tree of T to be

a 1-index of T without extents. The index tree can be built by a single depth-first traversal

of T in time proportional to the size of T. Figure 3.1(b) shows the index tree for the XML

tree of Figure 3.1(a).

1-indexes are usually much smaller than the corresponding XML data. According

to the measurements of [55] on XML documents from different repositories, a 1-index is

1 1-indexes are similar to strong DataGuides [65] when the data is a tree.
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three to five orders of magnitude smaller than the corresponding XML data. Since index 

trees do not have extents, their size is insignificant compared to the size of the XML data. 

Given a query Q and an index tree I, we can generate a set P of path queries that 

is equivalent to Q by finding all the embeddings of Q into I. Any of the two algorithms 

presented later in this paper can be used to find the embeddings of a query to an index tree. 

However, even a naive approach would be satisfactory given the size of an index tree. 

R 

t 
A 

t 
c 

~ 
E 

(a) Embedding 1 (b) Embedding 2 

Figure 4.4 Two embeddings of query Q3 of Figure 4.2(c)on the index tree of Figure 
3.1 (b) and the corresponding path queries 

Figure 4.4 shows all the possible embeddings of the query Q3 of Figure 4.2(c) on 

the index tree of Figure 3.1(b) (there are two of them) and the corresponding path queries. 

There is an one-to-one correspondence between the nodes of a path query and the nodes 

of Q. Two consecutive nodes in a path query are linked through a child relationship if the 

corresponding nodes in the index tree are linked through a child relationship. Otherwise, 

consecutive nodes in a path query are linked through a descendant relationship. 

The next proposition shows that the answer of a partial path query can be correctly 

computed by the path queries generated. Its proof is straightforward. 

Proposition 4.3.1 Let T be an XML tree and I be its index tree. Let also Q be a partial 

path query and P={H, .. . , Pn } be the set of path queries generatedforQ on I. Then, the 

answer of Q on T is the union of the answers of all the PiS on T. 
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In practice, the number of the path queries for the query Q is expected to be small.

However, in extreme cases, it can be exponential on the number of nodes in Q. This is, for

instance, the case when the query does not specify an order for its non-root nodes and every

ordering of these nodes has an embedding on the index tree. Nevertheless, even in this case,

any one of the path queries generated represents a pattern that occurs in T. Therefore, it

will return a non-empty answer when evaluated on T.

4.3.2 An Algorithm for Path Queries with Repeated Labels

Algorithm PathStack [20] optimally computes answers for path pattern queries under the

indexed streaming model. However, it operates on a restricted class of path queries where a

label cannot appear more than once. In this section, we extend PathStack so that it works on

path queries with repeated labels. PathStack associates every query node with one stack and

one stream. Attempting to associate multiple streams per query label (one for each query

node with this label) would violate the indexed streaming model requirements since stream

nodes would be accessed multiple times during the evaluation. Therefore, we designed

Algorithm PathStack-R, which extends PathStack by allowing nodes with the same label to

share the same stream. Query nodes with the same label are associated with distinct stacks

but the same stream node might appear in multiple stacks.

Algorithm PathStack-R is presented in Listing 1. PathStack-R gradually constructs

solutions to a path query Q and compactly encodes them in stacks, by iterating through

stream nodes in ascending order of their begin values. Thus, the query nodes are matched

from the query root to the query leaf.

In line 2, PathStack-R calls function getNextQueryLabel. Function getNextQueryLabel

identifies the stream node with the minimal begin value among the nodes pointed to by the
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cursors. Line 3 calls procedure cleanStacks to remove from all stacks the nodes that are

not ancestors of the node under consideration in the XML tree. This way, partial solutions

encoded in stacks that cannot become solutions are excluded from further consideration.



38 

u 
b.l 

b, 

b N", I b, b; ((, 
S,,, SRI S., SA} 

(a) · States of stacks after (b) States of stacks after 

reading b2 reading a2 

Figure 4.5 Running PathStack-R on query Q5 of Figure 4.3(b) and the path of Figure 
4.3(a) 

Lines 4 and 5 call Procedure moveStreamToStack on all the occurrences of L in Q. 

Procedure moveStreamToStack is central to PathStack-R. It determines if the stream node 

CL under consideration qualifies for being pushed on a stack Sx , where label(X) = L. 

Node CL can be pushed on stack Sx if (1) X is the root, or (2) the structural relationship 

between CL and the top stack entry of X 's parent P satisfies the structural relationship 

between X and P in the query. This ensures that stream nodes that do not contribute to 

solutions will not be stored in stacks and processed. If multiple nodes in Q are labeled 

by L, we need to check if C L can be pushed on the stack of each occurrence of L in Q. 

The order of pushing CL on stacks is crucial. In order to prevent CL from 'seeing' its own 

copy in a parent stack, moveStreamToStack is called on the occurrences of L in Q in their 

leaf-to-root order (line 4). We illustrate this with in Example 4.3 .1 below. 

Whenever the incoming stream node CL is pushed onto the stack of the leaf node, 

we know the stacks contain at least one solution to the query. At that time, Procedure 

showSolutions is invoked to output them (lines 6-8). Procedure showSolutions iteratively 

outputs encoded solutions sorted on the nodes of the query in a leaf to root order. The 

details are omitted here and can be found in [20]. 
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Example 4.3.1 Consider the path query Q5 in Figure 4.3(b) on the data path shown in

Figure 4.3(a). When a l is read, it is not pushed on SA 2 , since the push condition is not

satisfied: the parent stack SB2 is empty. When b2 is read, it is pushed first on the stack SB2

and then on stack SR I . The state of the stacks at this moment is shown in Figure 4.5(a). For

simplicity, the stack for the query root R is omitted. Note that if we do not check whether

b2 can be pushed onto stacks in this order, then we won't be able to push b 2 on stack SB2 •

The reason is that b2 and the top entry of stack SB1 (which would also be b 2 ) would not

satisfy the child relationship between B2 and B 1 in Q5. This would result in missing one

solution for Q5. Figure 4.5(b) shows the state of the stacks after a2 is pushed on stack

SA2 . At that time, Procedure showSolutions is invoked to output the answer of Q5 which is

{ra1b1b2a2, ra1b2b3a2}.

4.3.3 Analysis of IndexPath-R

Given a node X in a path query Q, we call the path from the root of Q to X ancestor path

of X. For example, the ancestor path of B 1 in the query Q5 in Figure 4.3(b) is R//A1//B1 .

Given a stream node x of an XML tree T, we say that x matches X iff x is the image of X

under an embedding of the ancestor path of X to T.

Proposition 4.3.2 Let X be a query node in Q and x be a stream node with the same label.

Node x is pushed on stack Sx iff x matches X.

Proof. We prove the proposition by induction on the level of the query node X in Q. If the

level of X is 1, X is the root R of Q. The proposition holds trivially because x is the root

node r and it is always pushed onto SR. Let's assume now that the level of X is > 1 and Y

is the parent of X in Q.
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Only if part: Procedure moveStreamToStack pushes stream node x on stack Sx only if x

and the top entry y of the parent stack Sy satisfy the relationship between X and Y in

Q. By the induction hypothesis y matches Y. Therefore, if x is pushed on stack Sx , it

matches X. Note that this is true even if X and Y have the same label since in this case,

moveStreamToStack attempts to push x first to Sx then to Sy .

If part: Since x matches X, there must exist one stream node that matches the parent Y of

X and that node and x satisfy the structural relationship between Y and X in Q. Assume y

is such a stream node with the largest level in T above x. By the induction hypothesis, when

x is considered, y is the top entry of Sy. Since x and y satisfy the structural relationship

between X and Y, Procedure moveStreamToStack will push x on Sx . Note that this is true

even if x and y have the same label since in this case, moveStreamToStack attempts to push

x first to Sx then to Sy. ❑

As a result of Proposition 4.3.2, Algorithm PathStack-R will find and encode in stacks

all the partial (if X is a non-leaf node in Q) or complete (if X is a leaf node in Q) solutions

involving x. When at least one complete solution is encoded in the stacks, procedure

showSolutions is invoked to output them. Therefore, Algorithm PathStack-R correcly

finds all the solutions to Q.

We next provide time and space complexity results. Given a path query Q and an

XML tree T, let input denote the sum of sizes of the input streams, output denote the size

of the answer of Q on T, and |Q| denote the number of nodes in Q. The recursion depth

of a query node X in T is the maximum number of nodes in a path of T that match X

[36]. We define the recursion depth of Q in T, denoted recurDepth, as the maximum of
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the recursion depths of the query nodes of Q in T. Clearly, recurDepth is bounded by the

maximum number of occurrences of a query label in a path of T.

Theorem 4.3.1 Algorithm PathStack-R correctly evaluates a path query Q with repeated

labels on an XML tree T. The algorithm uses O(recurDepth x space. It has CPU

time complexity O((input + output) x R| and disk I/0 complexity O(input + output).

Proof. The space complexity of PathStack-R depends mainly on the number stack entries

at any point during execution. Since the worst-case size of any stack during execution is

bounded by recurDepth, PathStack-R has space complexity O(recurDepth x |Q |).

We assume that query stacks fit in memory and all stack operations are conducted

in memory. Thus the disk I/O complexity of PathStack-R consists of two parts: the I/O

of accessing stream nodes, and the I/0 of outputting query solutions. Since we always

advance the cursors (using advance) and never backtrack, it takes O(input) to access the

stream nodes. As no any intermediate solutions are produced during execution, outputting

query solutions takes O(output). Therefore, the disk I/O complexity of PathStack-R is

O(input + output).

The CPU time complexity of PathStack-R depends mainly on the time spent on

getNextQuerylabel, the time spent on cleanStacks, the number of calls to moveStreamToStack,

and the time to produce solutions. Assuming a priority queue is used for getting the cursor

with the minimum begin value, the total time spent on calls to function getNextQuerylabel

is O(input x log|label(Q)|) = O(input x log|Q|). For each new stream node under

consideration, procedure cleanStacks checks the top stack entry of every query node of Q.

Thus, the total time spent on calls to cleanStacks is O(input x |Q|). For each stream node,

procedure moveStreamToStack is invoked at most maxOccur times, and each invocation
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takes constant time. Procedure showSolutions takes |Q | time on producing each solution.

As Algorithm PathStack-R does not generate any intermediate solutions, the time it spends

on producing all the solutions is O(output x 	 D. Therefore, PathStack-R has time

complexity O((input + output) x 	 1=1

Clearly, assuming that the size of the query is insignificant compared to the size of

data, PathStack-R is asymptotically optimal for path queries with repeated labels.

The correctness of the approach IndexPaths-R follows from Theorem 4.3.1 and

Proposition 4.3.1. One advantage of this approach is that if a partial path query Q does

not have any path queries on the index tree of T, we know that Q has empty answer on T

without explicitly evaluating Q on T.

4.4 PartialMJ-R: a Partial Path Merge Join Algorithm

Algorithm PartialMJ-R is a stack-based algorithm. Given a partial path query Q, it

extracts a spanning tree Q, of Q. Then, it evaluates each root-to-leaf path of Q, concurrently.

Solutions for each root-to-leaf path of Q, are merge-joined by guaranteeing that (a) they

lie on the same path in the XML tree, and (b) they satisfy the structural relationships that

appear in Q but not in Qs.

Figure 4.6(b) shows the graph of a query Q6 and Figure 4.6(c) shows a spanning

tree Q6s of Q6. Edge C4 //B6 of Q6 is missing from Q6s . Solutions for each of the two

root-to-leaf paths of Q68 lying on the same path of the XML tree can be merged to produce

a solution for Q6, if they coincide on R and A 1 and satisfy the structural constraint C4//B6.

PartialMJ-R is shown in Listing 2. Compared to PathStack-R, PartialMJ-R has two

important differences: (1) in line 1, PartialMJ-R produces a spanning tree Q, for the given
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partial path query Q and records the set of structural relationships that are present in Q

but are missing in Qs ; (2) in line 10, PartialMJ-R calls procedure joinPathSolutions to

merge-join solutions for a root-to-leaf path in Q, with solutions for other root-to-leaf paths

produced earlier. Each leaf node X of Q, is associated with a list pathSoln[X] which stores
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Figure 4.6 (a) Data path (b) Query Q6 (c) Q6'S spanning tree Q68 

solutions ofthe root-to-Ieaf path in Q s that ends in X. To facilitate the merge-join process, 

solutions stored in pathSoln[X] are sorted on the nodes of the query path in root-to-Ieaf 

order. At any point in time, all, the solutions in pathSoln[X] lie on the same path in the 

XMLtree. 

For each stream node C L under consideration, PartialMl-R calls procedure clean 

(line 4). Procedure clean not only removes from all the stacks the nodes that are not 

ancestors of CL in the XML tree (lines 2-3), but also removes from each ofthe pathSoln[X] 

the solutions whose nodes are not ancestors of CL (1ines 4-5). For the latter one, it suffices 

to compare CL with the node in each solution which is a match ofthe leaf node ofthe query 

path. 

Similarly to PathStack-R, PartialMl-R calls procedure moveStreamToStack on each 

occurrence of L in the spanning tree Qs in a bottom-up way, that is, in the post-order of its 

appearance in Qs (line 6). 

When an occurrence X of L is a leaf node of Qs, the stacks for the corresponding 

root-to-Ieaf path in Qs contain at least one solution to the path. At that time, PartialMl-R 

calls procedure showSolutionsWithBlocking to produce them and then stores them in solns 
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(line 8). Procedure showSolutionsWithBlocking iteratively produces encoded solutions

sorted on the nodes of the path in root-to-leaf order. The details are omitted here and can be

found in [20]. If at this time for every other leaf node Y of Q 8 , pathSoln[Y] is not empty

(line 9), PartialMJ-R calls procedure joinPathSolutions to merge-join the newly produced

solutions in solns and the previously produced solutions stored in each pathSoln[Y] and

return only the results that satisfy the structural relationships in £ (line 10). Note that

because of the execution of procedure clean, all the solutions in solns and pathSoln[Y]

are guaranteed to lie on the same path of the XML tree. Further, since every time solutions

to Q are produced, they involve the newly pushed node CL , PartialMJ-R is guaranteed not

to generate duplicate solutions.

Compared to the approach IndexPaths-R, Algorithm PartialMJ-R evaluates the query

by populating query stacks in one single pass of input streams. Nevertheless, this approach

may generate many intermediate solutions. A solution of a root-to-leaf path in Q is called

intermediate, if it does not participate in any final solution of Q. There are two reasons

for a path solution to be intermediate: (1) it cannot be merged with other path solutions

on a same data path, or (2) it can be merged but the result does not satisfy the structural

constraints in Q that are not present in Q 3 .

Example 4.4.1 Consider evaluating the query Q6 of Figure 4.6(b) on the data of Figure

4.6(a). Figure 4.7 shows the partial solutions of each query path of Q63 and the merge-join

results when the stream nodes b 4, c7, and b8 are processed. When c 7 is read, the result

of merge joining the partial solutions sole = {ra 1 a6 c7 , ra5 a6 c7 } and pathSoln[B6] =

{ra 1 b2 c3 b4 } is {ra1 a6 c7 b2 c3 b4 }. This result is not returned as a solution of Q6, since c7

and b4 does not satisfy C4/ /B6 . When b8 is read, the result of merge joining the partial
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solutions soln = {ra1b2c3b8} and pathSoln[C4] = {ra1a6c7 , ra5 a6 c7 } is {7. raia6c7b2c3bs}.

This result is returned as the final answer of Q6. The partial solutions {ra5 a6 c7 } and

{ra 1 b2 c3 b4 }, which are outputs for the query path R/ / Ai/ /A2/C4 and R/ / Ai/ / B3/C5/ / B6

in Q68 respectively, do not participate in the answer of Q6. Therefore they are intermediate

solutions.

Data node 	 Solutions added 	 Solutions added 	 Join Results

processed 	 to pathSoln[C4] 	 to pathSoln[B6]

Figure 4.7 Outputs of PartialMJ-R on Q6 and data in Figure 4.6

Clearly, the intermediate solutions affect negatively the time and space worst case

complexity of PartialMJ-R. When Q is a path, PartialMJ-R reduces to PathStack-R and

does not produce intermediate solutions. Nevertheless, despite possible intermediate solutions,

PartialMJ-R is sound and complete for evaluating partial path queries as the following

theorem states.

Theorem 4.4.1 Algorithm PartialMJ-R correctly evaluates partial path queries with repeated

labels on XML trees.

The proof of the theorem follows directly from the description of the algorithm and

Proposition 4.3.2.
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4.5 PartialPathStack-R: a Holistic Algorithm

To overcome the problem of intermediate solutions of Algorithm PartialMJ-R, we developed

a holistic stack-based algorithm called PartialPathStack-R for the evaluation of partial path

queries. In contrast to PartialMJ-R, PartialPathStack-R does not decompose a query into

root-to-leaf paths. Instead, it matches the query graph to an XML tree as a whole. In this

way, it avoids merge-joining path solutions. Also, unlike PathStack-R, PartialPathStack-R

exploits multiple pointers per stack entry to avoid redundantly storing the same stream

nodes in different stacks.

4.5.1 Preliminaries

As concluded in Section 4.1, a partial path query Q can be represented as a dag rooted at

R. Let X denote a node and L denote a label in Q. We use for queries the functions defined

in Section 5.1 with the following difference: Boolean function isSink(X) replaces function

isLeaf(X) and returns true if X is a sink node (i.e., it does not have outgoing edges in Q).

Also, function parents(X) replaces function parent(X), and returns the parent nodes of X

in Q (X can have multiple parent nodes when Q is a dag).

As before, we associate every distinct node label L with a stream TL and maintain

a cursor CL, for that stream. However, we now associate a stack SL with every distinct

node label L (and not with every node in Q labeled by L). Initially, all stacks are empty

and every cursor CL, points to the first node in TL . During execution of the algorithm,

the entries that stack Si, might contain correspond to stream nodes in TL before CL. The

structure .of a stack entry is now more complex in order to record additional information.

Before describing the structure of stack entries, we define an important concept,

which is key to understanding PartialPathStack-R.
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Definition 4.5.1 Let Q be a partial path query, X be a node in Q, and T be an XML tree.

The sub-dag of Q that comprises X and all its ancestor nodes is called ancestor query of

X and is denoted as Qx . We say that a node xi in T plays the role of X if xi is the image

of X under an embedding of Qx to T.

A node in TL can play multiple roles, each of which corresponds to a node in occur (L)

An entry e in stack SL  corresponds to a node in TL and has the following three fields:

1. (begin, end, level): the positional representation of the corresponding node in TL .

2. prevPos: an array of size |occur(L)| whose fields are indexed by the nodes in

occur(L). Given a node X E occur(L), prevPos[X] is a pointer to the highest

entry in SL below e that plays the role of X . Following these pointers, we can access

from e all the entries below e in SL that play the role of X in leaf-to-root order in

the XML tree. If X is the only node labeled by L (in which case, all the entries in S1

play a single role), prevPos[X] refers to the entry just below e.

3. ptrs: an array of size k whose fields are indexed by the parent nodes P 1 , , Pk of

all nodes labeled by L in Q. ptrs[P] points to the highest among the entries in stack

Slabel(Pi)that (a) play the role of Pi, and (b) correspond to ancestors of e in the XML

tree. It is possible that for some Pi , ptrs[Pi] is null. However, if e plays the role of a

node X E occur(L), then ptrs[Pi] is not null for every Pi, E parents(X). Further, it

is possible that some or all of P. E parents(X), label(Pi) = L. In this case, ptrs[Pi ]

points to an entry below e in the same stack SL.

The expression SL .k denotes the entry at position k of stack SL. The expression

SL .k.ptrs[Pi] denotes the position of the entry in stack Slabel(Pi) recorded in the field

ptrs[Pi] of the entry SL.k.
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With every stack SL, we associate an array lastPosL whose fields are indexed by the

nodes in occur(L). For a node X E occur(L), lastPosL[X] records the position of the

highest entry in stack SL that plays the role of node X. Therefore, starting from the position

lastPosL [X], we can access all the entries in SL that play the role of X in leaf-to-root order

in the XML tree. Clearly, if X is the only node labeled by L, lastPosL[X] refers to the top

entry in stack SL.

As with previous two algorithms, during the execution of Algorithm PartialPathStack-

R, the following properties hold: (1) The entries in all the stacks correspond to nodes

located on the same path in the XML tree, and (2) Stack entries represent partial solutions

of the query that can be extended to final solutions as the algorithm goes on. In what

follows, we might not distinguish between an entry in a stack and its corresponding stream

node.

4.5.2 The Algorithm

Algorithm PartialPathStack-R is presented in Listing 3. Given a partial path query Q,

PartialPathStack-R processes stream nodes in ascending order of their begirt values and

constructs partial and final solutions to Q. It exploits a topological order of the query

nodes (i.e., a linear order of the query nodes which respects the partial order induced by

the structural relationships of the query). Given a topological order, the nodes in Q are

identified by their position in the topological order with 1 denoting the root node of Q.

Algorithm PartialPathStack-R calls procedure cleanStacks (line 4) introduced in

Algorithm PathStack-R (Listing 1). For an incoming stream node CL, cleanStacks pops

out from all the stacks the nodes that are not ancestors of CL in the XML tree.
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In line 5, Algorithm PartialPathStack-R calls function constructCandEntry( L) shown

in Listing 4. For the stream node CL under consideration, constructCandEntry( L) finds all

the roles that CL can play and records the information in a variable candEntry. Variable
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candEntry has the structure of an entry in stack SL and represents a candidate entry for

SL . For a query node X E occur(L), node CL plays the role of X iff for each parent
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P of X, there exists an entry entry in stack Slabel(P) such that the structural relationship

between entry and CL satisfies the structural relationship between P and X in the query

(lines 9-15 in constructCandEntry). Note that it is not necessary to exhaustively visit

the entries in Slabel(P) to find entry. The existence of entry can be determined in constant

time by just using the value of lastPoslabel(P)[P] (lines 10-12). If node CL plays the role

of X, then for every parent P of X, a pointer to the position lastPos label(P ) [P] of stack

Slabel(P) is generated and recorded first in a temporary array pptrs (line 17) and then in the

corresponding fields of candEntry.ptrs (lines 19-20). The current value of lastPosL[X]
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is recorded in candEntry.prevPos[X] (line 21). Finally, lastPosL [X] is updated to reflect

the position of candEntry in stack SL after it is pushed there (line 22).

PartialPathStack-R uses the information returned by constructC andEntry(L) to

determine if node CL is qualified for being pushed on stack SL . Node CL can be pushed on

SL iff it plays a role of at least one query node in occur (L) (lines 6-7 in PartialPathStack-R).

This way, only stream nodes that could eventually be part of solutions are pushed on stacks.

The timing for producing solutions is important in order to avoid generating duplicate

solutions. Whenever node CL that plays the role of a sink node in the query (lines 9-11)

is pushed on a stack, and for every sink node in the query there is an entry in the stacks

that plays this role (line 12), it is guaranteed that the stacks contain at least one solution

to the query. Subsequently, procedure outputSolutions (Listing 5) is invoked to output all

the solutions that involve CL (lines 14 and 18). Note that since every time solutions are

produced, they involve the newly pushed node CL , PartialPathStack-R does not generate

duplicate solutions.

A solution of a query is a tuple of nodes in the XML tree which are images of the

query nodes under an embedding of the query to the XML tree. Procedure outputSolutions

gradually produces the nodes in each solution in an order that corresponds to the reverse

topological order of the query nodes. This way, the image of a query node is produced in a

solution after the images of all its descendant nodes in the query are produced. Procedure

outputSolutions takes three parameters: outputSinkNodes, curNode, and stackPos. Parameter

outputSinkNodes denotes the set of those sink nodes of the query that are roles of the newly

pushed node CL . Parameter curNode denotes the query node currently under consideration.

Parameter stackPos denotes the position in stack Slabel(curNode) currently under consideration.

A solution under construction by outputSolutions is recorded in an array solution indexed
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by the query nodes. The image of curNode recorded in solution[curNode] is the position

of an entry in stack Slabel(curNode)• Procedure outputSolutions calls itself recursively on the

query nodes. When called on query node curNode-1 (denoted as m), the following three

cases are distinguished:

1. If node m is in outputSinkNodes (which implies that m is a sink node), only the

entry in stack Slabel(m) pointed to by lastPos label (m) [m] is used as image of m for

constructing solutions (line 6). As mentioned previously, this guarantees no duplicate

solutions will be generated.

2. If node m is a sink node not in outputSinkNodes, the chain of entries that play the

role of m in stack Slabel(m), starting with the entry pointed to by lastPoslabel(m)[m],

are used as images of m for constructing solutions (lines 8-12).

3. If node 'in is an internal query node, the highest entry e in stack Slabel(m) that can be

used in a solution as an image of m is the lowest ancestor in the XML tree of the

images of the child nodes of m in the query. Since the child nodes of m have already

been processed, their images are recorded in the array solution. Entry e is identified

by the lowest position in stack Slabel(m) pointed to by pointers from stack entries that

are images of the child nodes of m in the solution under construction (line 14). The

chain of entries that play the role of m in stack Slabel(m) starting with e are used as

images of m for constructing solutions (lines 15-18).

Procedure outputSolutions shown in Listing 5 deals with the case where no child

edges are present in Q. When child edges are present in Q, we need to check the existence

of outgoing child edges from each internal query node m, and modify the recursive calls
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of outputSolutions on m (lines 15-18): only a single recursive call of outputSolutions

(outputSinkN odes, m, i) is needed, where i is the position computed by line 14.

Example 4.5.1 Figure 4.8 shows a running example for PartialPathStack-R, where, for

simplicity, the stack for the query root R is omitted. We also do not show the lastPos and

prevPos of query nodes with a single occurrence in the query. We use for Q6 the following

topological order: R, A1, A2, B3, C4, C5, B6. The input streams are TA: al, a5, a6, TB:

b2, b4, b8, and Tc: c3 , c7. The initial value for the input stream cursors CA, CB, and Cc

in that order is a l , b2 , c3 . The state of the stacks after. c 3, b4, a5 , a6, c7, and b8 are read

is shown respectively in the Figures 4.8(a)-(f). After c 3 is read (Figure 4.8(a)), there is

no entry in stack SA that plays the role of A2. Therefore lastPos A [A2] is 0. Similarly,

lastPosB [B6 ] for stack SB and last Pose [C4 ] for stack Sc are both 0. After a5 is read

(Figure 4.8(c)), given that a5 plays the role of A2 in addition to the role of A 1 , its entry

has an outgoing pointer that points to a l (A 1 is the parent of A2), which is the last entry

in SA playing the role of A l . The position of a5 in SA is recorded in both lastPosA[A 1 ]

and lastPosA[A 2 ]. Before lastPosA[A1 ] is updated, its value (the position of u l in SA) is

recorded in prevPos[A 1 ] of u5 . This indicates that a l is the highest entry in SA below a5

that plays the role of A l . Finally, when b8 is read (Figure 4.8(f)), given that b8 plays the

role of B6, the entry for b8 has two outgoing pointers which respectively point to c 3 and

c7 in stack Sc (C4 and C5 are the parents of B6). The stack position of b8 is recorded in

lastPosB [B6]. Since B6 is a sink node of Q6, b8 triggers the generation of solutions. Note

that when A l is processed by outputSolutions, a l is chosen as a value for A l in the solution

under construction since a l is below a5 in stack SA (line 14 in outputSolutions). The final

answer for Q6 is {ra1a6c7b2c3b8}.
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•

4.5.3 Analysis of PartialPathStack-R

Proposition 4.5.1 A stream node x is pushed on stack Si, iff x plays the role of a query

node X labeled by L.

Proof. The only if part is straightforward given that Algorithm PartialPathStack-R pushes

x to stack SI, only if there exists a query node X labeled by L such that, for each parent Y

of X, the highest entry in the stack for Y that plays the role of Y satisfies the corresponding

relationships between Y and X in the query.

The if part: If x is the node r, then 3t plays the role of the query node R and will be

pushed on SR. The proposition is trivially true. For a non-root stream node x, we prove the

proposition by contradiction.

Let's assume x plays the role of a query node X labeled by L but is not in stack Si,.

Then, for at least one parent Y of X, procedure constructCandEntry did not find a stream

node that plays the role of Y. Since x plays the role of X, there must exist one stream node

that plays the role of Y and the structural relationship between that node and x satisfies

the structural relationship between Y and X in the query. Let y be the closet to x stream

node above x in T, and let Y be labeled by M. There can be two reasons for procedure

constructCandEntry not finding a stream node that plays the role of Y: (a) y is in stack

Sm , but its position is not recorded in lastPosm[Y]. However, since y plays the role of Y

and it is the latest node pushed on stack SAy, its position is recorded in lastPosm [Y] by

Procedure constructCandEnoy, a contradiction. (b) y is not in Sm. But then, by applying

the same reasoning recursively, we can conclude that the stream node r that plays the role
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of R but not in stack SR contradicting our assumption. Therefore, if x plays the role of a

query node X labeled by L, it must be pushed on stack SL•

As a result of Proposition 4.5.1, Algorithm PartialPathStack-R will find and encode

in stacks all the partial or complete (x plays the role of a sink node in Q) solutions involving

x. When at least one complete solution is encoded in the stacks, procedure ouput S olutions

is invoked to output them. Therefore, Algorithm PartialPathStack-R correcly finds all the

solutions to Q.

Following we provide the time and space complexity of Algorithm PartialPathStack-

R. Given a partial path query dag Q and an XML tree T, let height denote the bight of T,

indegree denote the maximum number of incoming edges to a query node, and |Q denote

the size of Q. Other parameters are the same for the analysis of PathStack-R.

Theorem 4.5.1 Algorithm PartialPathStack-R correctly evaluates a partial path query Q

on an XML tree T. The algorithm uses O(height x |Q') space. It has the CPU complexity

O ((input + output) x |Q') and the disk I/O complexity O (input + output).

Proof. The disk I/O complexity of PartialPathStack-R is the same as PathStack-R, which

is O(input + output).

The space complexity depends mainly on how many stack entries are stored at a given

point in time and the number of pointers associated with these entries. Note that for each

stream node, it has at most one physical copy stored in a stack at any time, even that stream

node plays multiple roles. The total number of stack entries at any time is thus O(height).

For each stack entry, the maximum number of outgoing pointers is O (|Q D. Therefore, the

worst case number of pointers in stacks is bounded by height x
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Since PartialPathStack-R does not generate any intermediate solutions, the CPU time

complexity of PartialPathStack-R depends mainly on the time spent on getNextQuerylabel,

the time spent on cleanStacks, the number of calls to constructCandEntry, and the number

of calls to outputSolutions to output solutions. As Algorithm PathStack-R, PartialPathStack-

R spends O(input x log|label(Q)|) = O(input x log|Q|) on calls to function

getNextQuerylabel and O(input x |) total time on calls to cleanStacks. For each stream

node, Procedure constructCandEntry takes time in O(|Q| ). Procedure outputSolutions

spends O(outdegree) on each query node, due to the line 13 that finds the lowest stack

position among pointers from its child nodes, thus it takes O(output x |Q|) to produce

all the outputs. Therefore, PartialPathStack-R has the CPU time complexity O((input

output) x |(2|). ❑

Clearly, if the size of the query is insignificant compared to the size of data,

PartialPathStack-R is asymptotically optimal for partial path queries with repeated labels.

Note that when a partial path query is a path, PartialPathStack-R uses less space than

Algorithm PathStack-R does. The reason is that, in Algorithm PathStack-R, some stream

nodes might have multiple copies in different stacks. Thus the number of entries of every

stack may reach height at a time. For PartialPathStack-R, the total number of entries of all

the stacks is bound by height at any time.

4.6 Experimental Evaluation

We ran a comprehensive set of experiments to measure the performance of IndexPaths-

R, PartialMJ-R and PartialPathStack-R. In this section, we report on their experimental

evaluation.
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Setup. We evaluated the performance of the algorithms on both benchmark and synthetic 

datasets. For the benchmark dataset, we used the Treebank [66] XML document. This 

dataset consists of around 2.5 million nodes having 250 distinct element tags and its 

maximum depth is 36. This dataset includes multiple recursive elements. We used two 

synthetic datasets (SD 1 and SD2 ). They are random XML trees generated by IBM's XML 

Generator [67], based on the DTD shown in Figure 4.9. The parameter M axRepeats (that 

determines the maximum number a node appears as a child of its parent node) was set to 

4. The parameter numLevels (that determines the maximum number of tree levels) was 

set to 12 for SD1 , and 20 for SD2 • The XML trees used in both SD1 and SD2 consist 
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of 1.5 million nodes. By construction, the two synthetic datasets include highly recursive

structures. For each measurement on the synthetic datasets, five different XML trees of

the same number of nodes were used. Each displayed value in the plots is the average over

these five measurements.

On each of the three datasets, we tested the eight queries shown in Figure 4.10.

Queries Q 1 to Q4 include only descendant relationships, while queries Q5 to Q8 include

child relationships as well. Our query set comprises a full spectrum of partial path queries,

from simple path-pattern queries to complex Bags. The queries are appropriately modified

for the Treebank dataset, so that they can all produce results. Thus, node D2 is removed,

and node labels R, A, B, C and D correspond to FILE, S, VP, NP and NN, respectively,

on Treebank.

We implemented all algorithms in C++, and ran our experiments on a dedicated Linux

PC (AMD Sempron 2600+) with 2GB of RAM.

Execution time on fixed datasets. We compared the execution time of IndexPaths-R,

PartialMJ-R and PartialPathStack-R for evaluating the queries in Figure 5.7 over the three

datasets. For queries Q 1 and Q5, which are path-pattern queries, we also measured the

execution time of algorithm PathStack-R.

Figure 4.11(a), 4.11(b) and 4.11(c) present the evaluation results. Figure 5.3.2 shows

the number of solutions obtained per query in each dataset.

As we can see, PartialPathStack-R has the best time performance, and in many cases

it outperforms either IndexPaths-R or PartialMJ-R by a factor almost 3. Its performance is

stable, and does not degrade on more complex queries and on data with highly recursive

structures.
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As expected, all algorithms perform almost as fast as PathStack-R in the case of the

path-pattern queries Q 1 and Q5. The execution time of IndexPaths-R is high for queries

with a large number of path queries generated from the index tree, that is, for queries Q3,

Q4, Q7 and Q8.

The performance of PartialMJ-R is affected by the existence of intermediate solutions.

For example, when evaluating Q2 on the synthetic dataset SD2 , PartialMJ-R shows the

worst performance (Figure 4.11(c)), due to the large amount of intermediate solutions

generated.

The performance of both PartialMJ-R and PartialPathStack-R in all datasets is affected

by the number of solutions. This confirms our complexity results that show dependency of

the execution time on the input and output size (number of solutions). In the case of queries

Q2 and Q4 on SD2 (Figure 4.11(c)), where the number of solutions is high (Figure 5.3.2),

the execution time of PartialMJ-R strongly increases.

Execution time varying the input size. We compared the execution time of IndexPaths-R,

PartialMJ-R, and PartialPathStack-R as the size of the input dataset increases. Figures

4.12(a), 4.12(c), and 4.12(e) report on the execution time of the algorithms increasing the

size of the synthetic dataset SD2 for queries Q2, Q4 and Q8, respectively, of Figure 4.10.

PartialPathStack-R consistenly has the best performance.

Figures 4.12(b), 4.12(d), and 4.12(f) present the number of solutions of Q2, Q4 and

Q8, respectively, increasing the size of the dataset. As we can see, an increase in the input

size results in an increase in the output size (number of solutions). When the input and

the output size go up, the execution time of the algorithms increases. This confirms the
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Figure 4.11 Evaluation of queries on the three datasets. 
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complexity results that show dependency of the execution time on the input and output 

SIze. 

We also observe that as the input and the output size increase, the execution time of 

PartialPathStack-R increases very slowly. In the experimental evaluation of query Q4, the 

output size (Figure 4.12(d» increases sharper than in the evaluation of query Q2 (Figure 

4.12(b». The execution time of PartialPathStack-R is only slightly higher in the evaluation 

of Q4 (Figure 4.12(c» than in the evaluation of Q2 (Figure 4.12(a». In contrast, the 

execution time of PartialMl-R is strongly affected. The reason is that, for PartialMl-R, 
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Figure 4.12 PartialMJ-R vs PartiaIPathStack-R, varying the size of the XML tree. 
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an increase in the output size is accompanied by an increase in the number of intermediate 

solutions produced during evaluation. Notice also that IndexPaths-R is extremely slow in 

Q4 as it includes the evaluation of a large number of equivalent path queries. 

Query Q8 is more "restrict" than Q4 due to the child relationships (Figure S.6(d)). 

It produces only a small number of solutions (Figure 4.12(f)). Given the small number 
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of solutions, and consequently a small number of intermediate solutions in PartialMJ-R,

PartialMJ-R and PartialPathStack-R have the similar performance (Figure 4.12(e)).



CHAPTER 5

EVALUATING PARTIAL TREE-PATTERN QUERIES ON XML INVERTED

LISTS

In this chapter, we present an original polynomial time holistic algorithm for PTPQs in the

indexed streaming model. The chapter is organized as follows. Section 5.1 describes data

structures for PTPQ indexed streaming evaluation. We present our evaluation algorithms

in Section 5.2. Section 5.3 presents and analyses our experimental results.

5.1 Data Structures and Functions for PTPQ Evaluation

We present in this section the data structures and operations we use for PTPQ evaluation in

the inverted lists model.

Query functions. Let Q be a query, X be a node in Q, and p, be a partial path in Q. Node

X is called sink node of pi , if pi annotates X but no any descendant nodes of X in Q. We

make use of the following functions in the evaluation algorithm. Function sinkNodes(pi)

returns the set of sink nodes of pi . Function partialPaths(X) returns the set of partial paths

that annotate X in Q and PPsSink(X) returns the set of partial paths where X is a sink

node. Boolean function isSink(X) returns true iff X is a sink node in Q (i.e., it does not

have outgoing edges in Q). Function parents(X) returns the set of parent nodes of X in Q.

Function children(X) returns the set of child nodes of X in Q.

Operations on inverted lists. With every query node X in Q, we associate an inverted list

Tx of the positional representation of the nodes labeled by x in the XML tree. The nodes

in Tx are ordered by the their start field (see Section 3.1). To access sequentially the nodes
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in Tx , we maintain a cursor. We use Cx to denote the node currently pointed by the cursor

in Tx and call it the current match of X. Operation advance(X) moves the cursor to the

next node in T. Function eos(X) returns true if the cursor has reached the end of T.

Stacks. With every query node X in Q, we associate a stack Sx . An entry e in stack Sx

corresponds to a node in Tx and has the following two fields:

1. A field consisting of the triplet (sturt, end, level) which is the positional representation

of the corresponding node in Tx .

2. A field ptrs which is an array of pointers indexed by parents(X). Given P E parents(X),

ptrs[P] points to the highest among the entries in stack Sp that correspond to ancestors

of e in the XML tree.

Stack operations. We use the following stack operations:

push(Sx ,entry) which pushes entry on the stack Sx , top(Sx ) which returns the top entry

of stack Sx, and bottom(Sx ) which returns the bottom entry of stack Sx . Boolean function

empty(Sx ) returns true iff Sx is empty.

Initially, all stacks are empty, and for every query node X, its cursor points to the first

node in T. At any point during the execution of the algorithm, the entries that stack Sx

can contain correspond to nodes in Tx before the current match Cx . The entries in a stack

below an entry e are ancestors of e in the XML tree. Stack entries form partial solutions of

the query that can be extended to become the solutions as the algorithm goes on.

Matching query subdags. Recall that Cx denotes the current match of the query node

X. Below, we define a concept which is important for understanding the query evaluation

algorithm.
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Definition 5.1.1 (Current Binding) Given a query Q, let X be a node in Q and Q x be

the subdag (subquery) of Q rooted at X. The current binding of Q is the tuple p of current

matches of the nodes in Q. Node X is said to have a solution in 0, if the matches of the

nodes of Qx in /3 form a solution for Qx.

If node X has a solution in /3, then the following two properties hold: (1) Cx is the

ancestor of all the other current matches of the nodes in Qx , and (2) current matches of the

query nodes in Qx in the same partial path lie on the same path in the XML tree.

When all the structural relationships in Q are regarded as descendant relationships,

we can show the following proposition.

Proposition 5.1.1 Let X be a node in a query Q where all the structural relationships are

regarded as descendant relationships, {Y1, • • • ,Yk} be the set of child nodes of X in Q, and

{pi . . p„} be the set of partial paths annotating X in Q. Let also 0 denote the current

binding of Q. Node X has a solution in /3 if and only if the following three conditions are

met:

1. All Ys have a solution in 0.

2. Cx is a common ancestor of all Cy es in the XML tree.

3. For each partial path pj , the current matches of all the sink nodes ofp j that are descendants

of X lie on the same path in the XML tree.

The proof follows directly from Definition 5.1.1. Clearly, if X is a sink node, it

satisfies the conditions of Proposition 5.1.1, and therefore, it has a solution in 0.

As an example for Proposition 5.1.1, consider evaluating query Q3 of Figure 6.18(b)

on the XML tree of Figure 6.8(a). Suppose the cursors of R, A, B, D, C, E, G, and F are

at r, al , b1, d1, c1 , el, g1, and fl , respectively. By Proposition 5.1.1, node D has a solution
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in the the current binding 3 of Q3, since (1) child nodes E and F both have a solution

in 3; (2) b 1 is a common ancestor of e l and f1  ; and (3) E and F are the only descendant

sink nodes of D in partial paths p 1 and p2 , respectively. However, node B does not have

a solution in ,3 because the condition 3 of Proposition 5.1.1 is violated: g1 and fl , which

respectively are the current matches of the descendant sink nodes G and F in partial path

P2, are not on the same path in the XML tree.

5.2 PTPQ Evaluation Algorithm

The flexibility of the PTPQ language in specifying queries and its increased expressive

power makes the design of an evaluation algorithm challenging. Two outstanding reasons

of additional difficulty are: (1) a query is a dag (which in the general case is not merely

a tree) augmented with constraints, and (2) the same-path constraints should be enforced

for all the nodes in a partial path in addition to enforcing structural relationships. In this

section, we present our holistic evaluation algorithm PartialTreeStuck, which efficiently

resolves these issues. The presentation of the algorithm is followed by an analysis of its

correctness and complexity.

5.2.1 Algorithm PartialTreeStack

Algorithm PurtialTreeStack operates in two phases. In the first phase, it iteratively calls

a function called getNext to identify the next query node to be processed. Solutions to

individual partial paths of the query are also computed in this phase. In the second phase,

the partial path solutions are merge-joined to compute the answer of the query.
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Function getNext Function getNext is shown in Listing 6. It is called on a query

node and returns a query node (or null). Starting with the root R of the query dag Q,

function getNext traverses the dag in left-right and depth-first search mode. For every

node under consideration, getNext recursively calls itself on each child of that node. This

way, getNext first reaches the left-most sink node of Q. Starting from that sink node, it

tries to find a query node X with the following three properties:

1. X has a solution in the current binding /3 of Q but none of X's parents has a solution in

3.

2. Let P be a parent of X in the invocation path of getNext. The current match of X, i.e.,

Cx , has the smallest sturt value among the current matches of all the child nodes of P

that have a solution in ,3.

3. For each partial path pi annotating X, Cx has the smallest start value among the current

matches of all the nodes annotated by pi that have a solution in /3.

Node X is the node returned by getNext(R) to the main algorithm for processing. The

first property guarantees that: (1) Cx is in a solution of Qx , and (2) a query node match

in a solution of Q is always returned before other query node matches in the same solution

that are descendants of it in the XML tree. The third property guarantees that matches of

query nodes annotated by the same partial path are returned in the order of their start value

(i.e., according to the pre-order traversal of the XML tree).

During the traversal of the dag, function getNext discards node matches that are

guaranteed not to be part of any solution of the query by advancing the corresponding

cursors. This happens when a structural constraint of the dag or a same-path constraint is

violated.



Listing 6 Function getNext(X)
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Figure 5.1 Traversal of a query dag by getN ext 

Dealing with the query dag. Since Q is 'a dag, some nodes of Q along with their subdags 

could be visited multiple times by getN ext during its traversal of Q, This happens when 

a node has mUltiple parents in Q, Figure 5.1 shows a scenario of the traversal of a query 

dag by getN ext, where node X has parents PI ) ... ) Pk . Function getN ext will be called 

on X from each one of the k parents of X. To prevent redundant computations, a boolean 

array, called knownSoln, is used . Array knownSoln is indexed by the nodes of Q. Given 

a node X of Q, if knownSoln [X] is true, get N ext has already processed the subdag Qx 

rooted at X, and X has a solution in the current binding f3 of Q. In this case, subsequent . 

calls of getN ext on X from other parents of X are not pro'cessed on the subdag Qx since 

they are known to return X itself. 

The traversal of the query nodes is not necessarily in accordance with the pre-order 

traversal of the query node matches in the XML tree. It is likely that the current match of a 

node X already visited by getN ext has larger start value than that of a node that has not 

been visited yet. If this latter node is an ancestor of X and has a match that participates in a 

solution of Q, this match should be returned by getN ext before the match of X in the same 

solution is returned. In order to enforce this returning order, we let getN ext "jump" to and 

continue its traversal from an ancestor of X before X is returned (lines 19-20 in getN ext). 
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The target ancestor node of X is chosen as shown in the example below: consider again

the dag of Figure 5.1. The path from the root R to X in bold denotes the invocation path

of getNext from R to X. The invocation path is recorded in an array invPath associated

with each query node (line 4). Assume P 1  is the node under consideration by getNext, and

P1 has no solution in /3. Assume also that P2 has not yet been returned by getNext but has

a solution in 13. Function getNext on P1 will return the lowest ancestor of P2 among the

nodes of invPath[Pi ] (which is node W). This enforces getNext to go upwards along the

invocation path of P1 until it reaches W. From there, getNext continues its traversal on

the next child V of W.

The same technique is also used when there is an unvisited node Z annotated by a

partial path that also annotates X, but the current match Cz of Z has a smaller start value

than C. The existence of such a node is detected using the sink nodes of Q (lines 21-22).

This technique ensures that the matches of nodes in a same partial path are returned by

getNext in the order of their start value.

Dealing with the same-path constraint. Let X denote the node currently under consideration

by getNext. After getNext finishes its traversal of the subdag Qx and comes back to X,

it invokes procedure updateSPStatus (lines 12 and 25). Procedure updateSPStatus

(shown in Listing 7) checks the satisfaction of the same-path constraints for the subdag

Qx, and updates the data structures SP and SPY (described below) accordingly to reflect

the result of the check.

Data structure SP is a boolean array indexed by the set of partial paths annotating X

in the query Q. For each partial path pi , SP pi] indicates whether the same-path constraint

for p, in Qx is satisfied by the matches of nodes in Qx (i.e., whether the matches of the



Listing 7 Procedure updateSPStatus(X)
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nodes that are below X and are annotated by pa in Q lie on the same path in the XML tree).

Let nodes denote the sink nodes of pi in Qx (line 2 in updateSPStatus). In order to check

the same-path constraint for pi, it is sufficient to check whether the matches of sink nodes

in nodes lie on the same path in the XML tree. Note that the match of a sink node can be

its current match or the one that has already been returned by getN ext and is now in its

stack.

Procedure updateSPStatus uses function onSamePath to check if the matches

of a set of query nodes lie on the same path in the XML tree (lines 6 and 11). This

check is based on Proposition 3.1.1. If the same-path constraint is not satisfied, procedure

advanceUntilS P is invoked to advance the cursors of the nodes in nodes until the current

matches of the nodes lie on the same path in the XML tree or one of the cursors reaches

the end of its list. In the latter case, it is guaranteed that there are no new solutions for Q.

Hence, a boolean flag noMoreSolns is set to false in order for PartialTreeStack to end

the evaluation (line 5 in advanceUntilS P). During each iteration in advanceUntilS P, the

node in nodes whose current match has the smallest end value is chosen and its cursor is

advanced (lines 2-3). This way of advancing the cursors guarantees that all the matches of

the nodes in nodes that satisfy the same-path constraint will be eventually detected. Figure

5.2 shows an example of cursor movement during evaluation that results in the current

matches of the sink nodes of a query to lie on the same path.

Every non-root query node Y in Q is associated with a two-dimensional array SPY .

The first dimension of SPY is indexed by the parents of Y in Q, while the second one is

indexed by the partial paths annotating Y in Q. For every parent X of Y and partial path

pi, if the same-path constraint for pi in Qx is satisfied, S PY [X, pi ] stores the current match

of node (line 18 in updateSPStatus). node denotes the sink node of pi in the subdag Qx
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Figure 5.2 A sequence of cursor movements resulting in the current matches of sink nodes 
A, Band C of Q2 to lie on the same path 

whose current match has the smallest end value (line 3). Otherwise, SPy [X, Pi] is set to 

null (line 18) . Note that node is not necessarily a node in Qy but can be a node in the 

subdag rooted at a sibling of Y under the common parent X. Array SPy is updated by 

procedure 'L/pclateS P Status when the parent X of Y is under consideration by getN ext, 

and Y has a solution in the CUlTent binding of Q. SPy [X, Pi] is possibly reset to mdl when 

the cursor of node Y is advanced and the current match Cy is on a different path than the 

match stored in SPy [X, Pi] (Procedure r-esetSP Flags shown in Listing 8) . 

Array S Py records the execution states that are needed to prevent redundant 

computations of getN ext. For a selected node Y, the non-null values of SPy indicate 

that node Y has a solution in the current binding of Q and should be returned by getN ext 

(lines 23-24 in getNext). In this case, no call to procedure updateSPStat'us is needed. 

Main Algorithm Listing 8 shows the main part of PaTtialTr-eeStack. The main part 

repeatedly calls getN ext( R) to identify the next candidate node for processing (line 4). 

For a selected node X, Par-tialTr-eeStack removes from some stacks entries that are not 

ancestors of Cx in the XML tree (line 9) . The cleaned stacks are: (1) the stack of X, (2) 
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the parent stacks of X, and (3) the stacks of sink nodes of every partial path of which X is

a sink node (lines 6-8).

Subsequently, PartialTreeStack checks if for every parent P of X, the top entry

of stack SP and Cx satisfy the structural relationship between P and X in the query (line
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10). If this is the case, we say that Cx has ancestor extensions. Then, PartialTreeStack

creates a new entry for Cx and pushes it on Sx (line 11).

If X is a sink node of a partial path p, and the stacks of all the sink nodes of pi are

non-empty (lines 12-13), it is guaranteed that the stacks contain at least one solution of pi .

Subsequently, procedure outputPPSolutions is invoked to output all the solutions of pi that

involve Cx (line 14). Procedure outputPPSolutions iteratively generates the solutions for

pi which are encoded in the stacks. Such a procedure can be found in [43].

Finally, procedure mergeAllPP Solutions is called to merge-join all the partial path

solutions in order to form the answer of the query (line 17). The details are simple and are

omitted here in the interest of space.

5.2.2 An Example

We evaluate query Q3 of Figure 6.18(b) on the XML tree of Figure 6.8(a) using Algorithm

PartialTreeStack. The answer is shown in Figure 5.3(c). In Figure 5.5 and Figure 5.4,

we show respectively, different snapshots of the query stacks and the contents of arrays

SPA, SPB, and SPD, during the execution of the algorithm. Initially, the cursors of R, A,

B, D, C, E, G, and F are at r, a l , b 1 , d1 , c1 , el, g1, and fl , respectively. Before the first call

of getNext(R) returns r, g 1 is discarded by advanceUntilSP because g 1 and fi are not

on the same path. Right after the eighth call returns e l , the stacks contain solutions for the

partial path pi , and are produced by outputPPSolutions (Figure 5.5(a)). At this time, the

cursors of R, A, B, D, C, E, G, and F are at oo, oo, b2, d2, c2, e2, g2, and f2 respectively.

In the next call, getNext first goes up from D to R, then continues on B because b2 is the

ancestor of d2 . This call finally returns g2 since g2 .start < d2.start. Subsequently, the

solutions for the partial path p 2 are produced (Figure 5.5(b)). The eleventh call returns g3
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Figure 5.3 (a) An XML tree T, (b) Query Q3, (c) the answer of Q3 on T 

SP Calls of getNext(R) 

1 2 3 4 5 9 10 11 12 

SPA [R,PI] e l el e l el 

SPA[R,P2] ,92 ,92 ,92 ,92 

SPB[R,PI ] e l el e l 

SPB[R,P2 ] ,92 ,92 ,92 

SPD[A ,PI] el el el e l e l C2 C2 C2 C2 

SPD[A,P2] h h h h h 12 12 12 12 

SPD[B ,Pl] e l e l el el el e2 e2 e2 

SPD[B ,P2 ] ,92 ,92 ,92 ,92 ,92 12 12 12 
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Figure 5.4 The contents of SPA, SPB , and SPD for Q3 during execution of 
P artialTTeeStack 

instead of d2 because g3.staTt < d2 .staTt. After 12 and C2 are returned, the solutions for 

P2 and PI are generated respectively in that order (Figure S.S(c)). Finally, these partial path 

solutions are merge-joined to form the answer of Q3 (Figure S.3(c)). 
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Figure 5.5 Three snapshots of the execution of PartialTreeStack on query Q3 and the 
XML tree T of Figure 5.3 (the numbers labeling the pointers denote the call to getN ext(R) 
as a result of which these pointers were created) 

5.2.3 Analysis of Partial TreeS tack 

Correctness. Assuming that all the structural relationships in a PTPQ Q are regarded as 

descendant, whenever a node X is returned by getN ext(R), it is guaranteed that the current 

match e x of X participates in a solution of subdag Qx . These solutions of Qx constitute 

of a superset of its solutions appearing in the answer of Q. Moreover, getN ext( R) always 

returns a match before other descendant matches of it in a solution of Q. In the main part 

of PaTtialTTeeStack, e x is pushed on Sx iff e x has ancestor extensions. Whenever e x 

is popped out of its stack, all the solutions involving e x have been produced. Based on 

these observations, we can show the following proposition. 

Proposition 5.2.1 Given a PTPQ Q and an XML tree T, algorithm PaTtialTreeStack 

correctly computes the answer of Q on T. 

Complexity. Given a PTPQ Q and an XML tree T, let IQI denote the size of the query 

dag, N denote the number of query nodes of Q, P denote the number of partial paths of 

Q, IN denote the total size of the input lists, and OUT denote the size of the answer of 

Q on T. The ancestor dag of a node X in Q is the subdag of Q consisting of X and its 

ancestor nodes. In [36], the recursion depth of X of Q in T is defined as the maximum 
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number of nodes in a path of T that are images of X under an embedding of the ancestor

dag of X to T. We define the recursion depth of Q in T, denoted by D, as the maximum

of the recursion depths of the query nodes of Q in T.

Theorem 5.2.1 The space usage of Algorithm PartialTreeStack is O(|Q| x D).

The proof follows from the fact that: (1) the number of entries in each stack at any

time is bounded by D, and (2) for each stack entry, the size of ptrs is bounded by the

out-degree of the corresponding query node.

When Q has no child structural relationships, Algorithm PartialTreeStack ensures

that each solution produced for a partial path is guaranteed to participate in the answer

of Q. Therefore, no intermediate solutions are produced. Consequently, the CPU time

of PartialTreeStack is independent of the size of solutions of any partial path in a

descendant-only PTPQ query.

The CPU time of PartialTreeStack consists of two parts: one for processing input

lists, and another for producing the query answer. Since each node in an input list is

accessed only once, the CPU time for processing the input is calculated by bounding the

time interval between two consecutive cursor movements. The time interval is dominated

by updating array SPX for every node X and is O(|Q| x P). The CPU time on generating

partial path solutions and merge-joining them to produce the query answer is O((/N

OUT) x N).

Theorem 5.2.2 Given a PTPQ Q without child structural relationships and an XML tree

T, the CPU time of algorithm PartialTreeStack is O(IN x	 x P + OUT x N).

Clearly, if the size of the query is insignificant compared to the size of data,

PartialTreeStack is asymptotically optimal for queries without child structural relationships.
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5.3 Experimental Evaluation

We ran a comprehensive set of experiments to assess the performance of PartialTreeStack.

In this section, we report on its experimental evaluation.

5.3.1 Comparison Algorithms

As mentioned ealier, no previous algorithms exist in the inverted list model for the class of

PTPQs. In order to assess the performance of PartialTreeStack, we designed, for comparison,

two approaches that exploit existing techniques for more restricted classes of queries.

The first approach, called TPQGen, is based on Proposition 3.3.1. Given a PTPQ Q,

TPQGen: (1) generates a set of TPQs which is equivalent to Q, (2) uses the state-of-the-art

algorithm [20] to evaluate them, and (3) unions the results to produce the answer of Q.

The second approach, called PartialPathJoin, is based on decomposing the given

PTPQ into a set of queries corresponding to the partial paths of the PTPQ (partial path

queries). For instance, for the PTPQ Q 1 of Figure 3.2(a), the partial path queries corresponding

to the partial paths p1 , p2 , and p3 of Figure 3.2(b) are produced. Given a PTPQ Q,

PartialPathJoin: (1) uses the state-of-the-art algorithm [43] to evaluate the corresponding

partial path queries, and (2) merge-joins the results on the common nodes (nodes participating

in the node sharing expressions) to produce the answer of the PTPQ.

5.3.2 Experimental Results

Setup; We ran our experiments on both real and synthetic datasets. As a real dataset, we

used the Treebank [66] XML document. This dataset consists of around 2.5 million nodes

and its maximum depth is 36. It includes deep recursive structures. The synthetic dataset is

a set of random XML trees generated by IBM's XML Generator [68]. This dataset consists
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of 1.5 million nodes and its maximum depth is 16. For each measurement on the synthetic 

dataset, 10 different XML trees were used. Each value displayed in the plots is averaged 

over these 10 measurements. 

On each of the two datasets, we tested the 4 PTPQs shown in Figure 5.6. Our query 

set comprises a full spectrum of PTPQs, from a simple TPQ to complex dags. The query 

labels are appropriately selected for the Treebank dataset, so that they can all produce 

results. Thus, node labels R, A, B, C, D, E, F and G correspond to FILE, EMPTY, S, 

v P, SBAR, P P, N P and P RP, respectively, on Treebank. 

R R R R 

~ ~ {} ~ 
A A A A 

#~ tf~\ #~ tf~\~ 
R f) H D G H f) J) H F 

~ ~ ~ ~ [pzi ~ U l)J c E C E C E 

~ ~ [Pll :\ ~tfU 'V Ij ~, 

F G F F G E G 
[PI] [P21 [PI] [pjl [P21 [pjl [pc l 

(a) EQI (b) EQ2 (c) EQ3 (d) EQ4 

Figure 5.6 Queries used in the experiments. 

We implemented all algorithms in C++, and ran our experiments on a dedicated Linux 

PC (Core 2 Duo 3GHz) with 2GB of RAM. 

Query execution time. We compare the execution time of TPQGen, PartialPathJoin and 

PartialTreeStack for evaluating the queries in Figure 5.6 over the two datasets. Figures 

5.7(a) and 5.7(b) present the evaluation results. As we can see, PartialTreeStackhas the 

best time performance, and in most cases it outperforms either TPQGen or PartialPathJoin 
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by a factor almost 2. Its performance is stable, and does not degrade on more complex 

queries and on data with highly recursive structures. 

The execution time of TPQGen is high for queries with a large number of TPQs, 

for example, EQ2. Query EQ2 is equivalent to 10 TPQs. TPQGen shows the worst 

performance when evaluating EQ2 on both datasets (Figure S.7(a) and S.7(b)). 

PartialPathloin finds solutions for each partial path of the query independently. It 

is likely that some of the partial path solutions do not participate in the final query answer 

(intermediate solutions). The existence of intermediate solutions affects negatively the 

performance of PartialPathloin. For example, when evaluating EQ4 on the synthetic data, 

PartialPathloinshows the worst performance (Figure S.7(b)), due to the large amount of 

intermediate solutions generated. 

Execution time varying the input size. We compare the execution time of the three 

algorithms as the size of the input dataset increases. Figure S.8(a) reports on the execution 

time of the algorithms increasing the size of synthetic dataset for query EQ3. PartialTreeStack 

consistenly has the best performance. Figure S.8(b) presents the number of solutions of 

EQ3 increasing the size of the dataset. As we can see, an increase in the input size results 
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in an increase in the output size (number of solutions). When the input and the output 

size go up, the execution time of the algorithms increases. This confirms the complexity 

results that show dependency of the execution time on the input and output size. However, 

the increase in the execution time of TPQGen and PartialPathJoin is sharper than that of 

PartialTreeStack. The reason is that PartialPathJoin is also affected by the increase in the 

number of the intermediate solutions, while the performance of TPQGen is affected by the 

evaluation of 6 TPQs equivalent to EQ3. 

Execution time varying the input depth. We also compare the execution time of the 

three algorithms as the depth of the input dataset increases. Figure S.9(a) reports on the 



86

execution time of the algorithms increasing the input depth of synthetic dataset (its size is

fixed to 1.5 million nodes) for query EQ 3 . In all the cases, PartialTreeStack outperforms

the other two algorithms. Figure 5.9(b) presents the number of solutions of EQ 3 increasing

the input depth. As we can see, with the input depth increasing from 12 to 18, the output

size increases from 0.4M to 46M. When the output size goes up, the execution time of

the algorithms increases. This again confirms our previous theoretical complexity results.

We also observe that as the input depth increases, the execution time of PartialTreeStack

increases very slowly. In contrast, the increase of the execution time of PartialPathJoin

is sharper than that of the other two algorithms. The reason is that, for PartialPathJoin,

an increase in the output size is accompanied by an increase in the number of intermediate

solutions produced during evaluation. TPQGen does not increase sharper than

PartialPathJoin. However, the execution time of TPQGen is strongly affected by the

number of TPQs equivalent to the PTPQ, which in the worst case is exponential in the

size of the PTPQ.



CHAPTER 6

EVALUATING PTPQS ON XML STREAMS

In this chapter, we present an efficient algorithm for PTPQs in the streaming model. The

chapter is organized as follows. In Section 6.1, we extend the PTPQ definition in Section

3.2 with output nodes and wildcard nodes. Section 6.2 introduces data structures used for

our streaming evaluation algorithms. Algorithm PSX is shown and analyzed in Section

6.3. Section 6.4 presents and discusses experimental results for PSX. Section 6.5 introduces

and analyzes Algorithm EagerPSX. Experimental and comparison results for EagerPSX

are presented in Section 6.6.

6.1 Data Model and Partial Tree Pattern Query Language

XML data is commonly modeled by a tree structure. Tree nodes are labeled by labels

and represent elements, attributes, or values. Tree edges represent element-subelement,

element-attribute, and element-value relationships. Let L be the set of node labels. Without

loss of generality, we assume that only the root node of every XML tree is labeled by r C L.

We denote XML tree labels by lower case letters. To distinguish between nodes with the

same label, nodes in the XML tree may have a numeric identifier shown as a subscript of

the node label.

6.1.1 Query Language

Syntax. A partial tree-pattern query (PTPQ) specifies a pattern which partially determines

a tree. PTPQs comprise nodes and child and descendant relationships among them. Their
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nodes are grouped into disjoint sets called partial paths. PTPQs are embedded to XML 

trees. The nodes of a partial path are embedded to nodes on the same XML tree path. 

However, unlike paths in TPQs the child and descendant relationships in partial paths do 

not necessarily form a total order. This is the reason for qualifying these paths as partial. 

PTPQs also comprise node sharing expressions. A node sharing expression indicates that 

two nodes from different partial paths are to be embedded to the same XML tree node. That 

is, the image of these two nodes is the same (shared) node in the XML tree. The formal 

definition of a PTPQ follows. 

Definition 6.1.1 (Partial Tree-Pattern Query) We assume an infinite set of labeled nodes. 

The nodes in this set can be labeled by a wildcard (*) or by a label in L. Let X and Y 

denote distinct nodes. A partial tree-pattern query is a quadruple (P, S, N, 0) where: 
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P is a list of n names p i. , . . . , pm called partial path names.

S is a list of n sets S i , ... , S, where set Si is called partial path (PP) and is named by

pi . Since their names are distinct, we identify PPs with their names. Each PP p, is a

finite set of expressions of the form X /Y (child relationship) or X/ /Y (descendant

relationship). No node occurs in two different PPs. We write X[pi]/Y[ pi] (resp.

X[pi]/ /Y[pi]) to indicate that X[pi]/Y[pi] (resp.

X[pi] / /Y[pi]) is a relationship in PP pi. Child and descendant relationships are

collectively called structural relationships.

N is a set of expressions X[pi ] Y [pj ] where pi and pj are distinct PPs and X and Y

are nodes from p, and pj respectively such that: (a) at least one of them is labeled by a

wildcard, or (b) both of them are labeled by the same label in G.

o is a distinguished node in one of the PPs called output node.

Figure 6.1(a) shows a PTPQ Q 1 . Value predicates are omitted for simplicity. Figure

6.1(b) shows the visual representation of Q 1 . Note that the labels of the query nodes are

denoted by capital letters to distinguish them from the labels of the XML tree nodes. In

this sense, label l in an XML tree and label L in a query represent the same label. Unless

otherwise indicated, in the following, "query" refers to a PTPQ.

Semantics. The answer of a query on an XML tree is a set of solutions, where each solution

is the image of the output node in a match of the query on the XML tree. A formal definition

follows.

We say that an XML tree node labeled by a matches a query X if X is labeled by a

wildcard (`*') or by A.
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Definition 6.1.2 (Query Embedding) An embedding of a query Q into an XML tree T is 

a mapping M from the nodes ofQ to nodes ofT such that: (a) a node in Q is mapped by 

M to a matching node ofT; (b) the nodes ofQ in the same PP are mapped by M to nodes 

that lie on the same path in T; (c) 'V X[Pil!Y[Pi] (resp. X [Pi]/ /Y[Pi]J in Q, M(Y[Pi]) is 

a child (resp. descendant) of M(X[Pi]) in T; (d) 'V X[Pi] ~ Y[pj] in Q, M(X[Pi]) and 

1I1(Y[pj]) coincide in T. 

The image of the output node of Q under an embeddings of Q to T is a solution of Q 

on T. The answer of Q on T is the set of all the solutions of Q on T. 

We represent queries as node and edge labeled directed graphs: a query Q is 

represented by a graph QG. Every node X in Q corresponds to a node XG in QG. Node XG 

is labeled by the label of X, if this label belongs to L. Every node XG in QG corresponds 

to one or more nodes in Q which have the same label or are labeled by '*'. Node XG is 

labeled by '*' if all the nodes in Q it corresponds to are labeled by '*'. Otherwise, it is 
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labeled by the label in r of one of the nodes in Q it corresponds to. In addition, node

XG in G is annotated by the set of PPs of the nodes in Q it corresponds to. Two nodes

in Q correspond to distinct nodes in QG, unless they participate in the same node sharing

expression in Q. For every structural relationship X/Y or X/ /Y in Q there is an edge e in

QG from XG to YG. Edge e is labeled by 'I' if there is a child relationship from a node X'

to a node Y' in Q and X' and Y' correspond to XG and YG in QG, respectively. Otherwise,

e is labeled by .

Figure 6.1(c) shows the query graph of query Q 1 of Figure 6.1 (a). In the figures,

edges labeled by 'I' (VP) are shown as single (double) line edges. For simplicity of

presentation, the annotations of some nodes might be omitted and it is assumed that a node

inherits all the annotating PPs of its descendant nodes. For example, in the graph of Figure

6.1(c), node YEAR is assumed to be annotated by the PPs pi, p2, and p3 inherited from

its descendant nodes NAME, ARTICLE, and DESCRIPTION. Figure 6.4 shows the

two embeddings of the query graph of Q 1 on the two XML, trees of Figure 6.3. The answer

of query Q 1 on the two XML trees consists of the two article nodes. Note that as this

figure illustrates, the same query can be used to retrieve results from two XML trees that

have different structures.

Clearly, a query that has a cycle is unsatisfiable (that is, its answer is empty on any

XML tree). Therefore, in the following, we assume a query is a directed acyclic graph

(dag) and we identify a query with its dag representation.

6.1.2 Generality of Partial Tree Pattern Query Language

Clearly, the class of PTPQs cannot be expressed by TPQs. For instance, PTPQs can

constraint a number of nodes in a query pattern to belong to the same path (same -path
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constraint) even if there is no precedence relationship between these nodes in the PTPQ.

Such a query cannot be expressed by a TPQ. TPQs correspond to the fragment XP{II,/,//,*}

of XPath that involves predicates([]), child (/) and descendant (//) axes, and wildcards (*).

In fact, it is not difficult to see that PTPQs cannot be expressed either by the larger fragment

XP{FI , / , // , \ , \\ , *} of XPath that involves, in addition, the reverse axes parent ( \) and ancestor

( \ \ ). On the other side, PTPQs represent a very broad fragment XP{[],/,//,\,\\,*,≈} of XPath

that corresponds to XP {[],/,//,\,\\,*}augmented with theis —same—nodefunction (2--)

of XPath2 [1]. The is — same — node function is a node identity equality operator. The

conversion of an expression in XP{[],/,//,\,\\,*,≈} to an equivalent PTPQ is straightforward.

There is no previous streaming evaluation algorithm that directly supports such a broad

fragment of XPath.

Note that as the next proposition shows, a PTPQ is equivalent to a set of TPQs. These

TPQs can be obtained by considering all the allowable orderings of the nodes in the partial

paths of the PTPQ.

Proposition 6.1.1 Given a PTPQ Q there is a set of TPQs Q1,

(2,-, in XP{[[],/,//,*} such that for every XML tree T, the answer of Q on T is the union of

the answers of the Q is on T.

Proof sketch. The proof is easy if we observe that the TPQs Q 1 , ... Q7 , are those that can

be produced by adding descendant relationships to Q in all possible ways.

As an example, Figure 6.2 shows the two TPQs for query Q 1 of Figure 6.1, which

together are equivalent to Q1 . The TPQ of Figure 6.2(a) is obtained by adding AUTHOR//

SUBJECT to Q1 , while the TPQ of Figure 6.2(b) is obtained by adding SUBJECT//

AUTHOR to Q1 . Based on the previous proposition, one could consider evaluating PTPQs

using existing streaming algorithms for TPQs. Unfortunately, the number of TPQs that
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need to be evaluated can be exponential on the number of nodes of the PTPQ. Therefore,

previous streaming algorithms cannot be used for efficiently evaluating PTPQs.

6.2 Data Structures for PTPQ Streaming Evaluation

Open and close events. In a streaming evaluation, the XML document tree T flows in as

a stream of open and close events. The appearance of events corresponds to the preorder

traversal of the XML document tree. For each element node in the tree, an open event is

produced when the open tag of the node is encountered and the node is called open from

then on until it closes. After the subtree rooted at that node is processed, a close event is

produced when the close element tag of that node is encountered. At this time the node

closes. Each event carries the name and level of the corresponding element node in the

tree. For example, suppose the incoming XML is a path with three elements: /a l /b1 /b2 .

The sequence of events for this XML path is: (a1 ), (b1 ), (b2 ), (/b2 ), (/b 1 ), (/al ). The

first three denote open events and the last three denote close events. For simplicity, the

level information is omitted here. An XML node is current if it is open but none of its

descendant nodes is open. The path in T from the root to the current node is called current

path. Clearly, a current path consists of all the open nodes in T at that time.

Query functions. Let X be a node in a PTPQ Q and R be the root of Q. When X is the

output node of Q, the ancestor nodes of X are called backbone nodes of Q, and the rest of

the nodes of Q are called predicate nodes. Note that because of the generality of the class

of queries considered, the backbone nodes of Q do not necessarily lie on the same path of

the query dag. The backbone nodes of Q form a dag whose single root is R and whose
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single sink node is the output node. Given a partial path pi in Q, we call a node in Q a sink

node of p„ if pi annotates X but does not annotate any descendant nodes of X in Q.

We make use of the following functions in the evaluation algorithm. Function

PPsSink(X) returns the set of partial paths where X is a sink node. Function parents(X)

returns the set of parent nodes of X in Q. Function PChildren(X) returns the set of

predicate child nodes of X in Q, and function BSiblings(X) returns the set of backbone

sibling nodes of X in Q. By removing the descendant edges from the dag of the backbone

nodes of Q, we can logically partition it into a set of paths, each path involving only child

edges. A path can be trivially be a single node. Let X be a node in a path p of the partition.

Function host(X) returns the leaf node of p, if p does not contain the output node of Q, and

null otherwise.

Example 6.2.1 Consider the PTPQ Q 1 shown in Figure 6.1(c). Its backbone nodes are:

YEAR, AUTHOR, SUBJECT, ARTICLE. The predicate nodes are: NAME,

DESCRIPTION. Nodes NAME, ARTICLE, and DESCRIPTION are the only

sink nodes of partial paths p 1 , p2, and p3 , respectively. Some instances of functions PPsSink

and host:

PPsSink(NAME) = {p 1 }, PPsSink(ARTICLE) = {p2 },

PPsSink(AUTHOR) = 0, host(YEAR) =Y EAR,

host(AUTHOR) = AUTHOR, host(ARTICLE) = null

Query matches. We use the notion of candidate match of a query node which is based

on the notion of ancestor match of a query node. These notions are useful for describing

and understanding the algorithm and for showing its correctness. We define them here and

provide a proposition that relates solutions to candidates matches of nodes.
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Definition 6.2.1 (Ancestor Match) Let X be a node in a PTPQ Q and x be a node in an

XML tree T that matches X. Node x is called an ancestor match of X, if either X is the

root node of Q, or for every parent Y of X in Q, Y has an ancestor match y in T such that:

(a) If Y/ X E Q, y is the parent of x in T, and (b) If Y/ /X E Q, y is an ancestor of x in T.

We say that a node x of an XML tree T sustains the partial path p., of a PTPQ Q, if

there exists an embedding of the nodes of Q to T that maps all the nodes in Q annotated by

pi to the path from the root of T to x.. The concept of sustainability relates to the same-path

constraint since if node x sustains a partial path pi there are nodes in the path of x that

satisfy the same-path constraint for pi .

Definition 6.2.2 (Candidate Match) Let x be a node in an XML tree T, and X be a node

in a PTPQ Q. Node x is a candidate match of X, iff the following conditions are satisfied:

(a) x is an ancestor match of X, (b) dpi E PPsSink(X), x sustains p„ and (c) VY E

PChildren(X), x has a descendant in T which is a candidate match of Y.

A candidate match x of X is a candidate output if X is the output node of Q. Let

QB denote the dag of the backbone nodes of Q, and x be a candidate output of Q in T.

Then, there is an embedding of QB to the path from the root of T to x. The path formed by

the images of the nodes of QB under such an embedding is called output path for x. The

following proposition provides conditions for a candidate output to be a solution of Q.

Proposition 6.2.1 Let x be a candidate output of Q in T. Node x is a solution, iff there

is an output path for x in T such that every node on the path is a candidate match of the

corresponding backbone node(s).

The proof of Proposition 6.2.1 follows from Definitions 6.1.2 and 6.2.2.



96

Example 6.2.2 Consider the PTPQ Q 1 of Figure 6.1(c) and the left XML tree of Figure 6.3.

It is easy to see that the XML tree nodes year, author, and subject are ancestor matches

of query nodes YEAR, AUTHOR, and SUBJECT, respectively. Tree node article is

an ancestor match of query node ARTICLE, since ART IC LE 's parents AUTHOR and

SUBJECT have ancestor matches author and subject, respectively, both of which are

ancestors of article in the XML tree. Further, node article sustains partial path p2 , since

there is an embedding of the nodes of Q 1 to the XML tree that maps all the nodes annotated

by p2, that is, YEAR, AUTHOR, SUBJECT, and ARTICLE, to the XML path p :

/ year 'author / subject/ article (see the embedding 1 of Figure 6.4(a)). Therefore, node

article is a candidate match of query node ARTICLE (the condition (c) of Definition

6.2.2 is trivially satisfied). Similarly, the XML tree nodes year, author, and subject are

candidate matches of their corresponding query nodes. Also, node article is a candidate

output, and the XML path p is the output path for article. Finally, node article is a solution

of Q 1 since every node on path p is a candidate match of the corresponding backbone node

(Proposition 6.2.1).

Stacks. With every query node X in Q, we associate a stack S. Each entry in stack Sx

corresponds to an open node x in T and is a 3-tuple (XMLNode, SPFlags, PCFlags). For

an entry e of Sx , field e.XMLNode is the tree node x. Field e.SPFlags is a boolean array

indexed by the partial paths in PPsSink(X). Given pi E PPsSink(X), e.SPFlags[p i ]

indicates whether x sustains pi . Field e.PCFlags is a boolean array indexed by the nodes

in PChildren(X). Given Y E PChildren(X), e.PCFlags[Y] indicates whether x has a

descendant in T that is a candidate match of Y.

If X is a backbone node, we associate with e an additional field candList which stores

a list of candidate outputs (these are closed nodes) that are descendants of x in T. Let
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MaxBChild denote the maximum number of backbone child nodes of a node in Q. When

MaxBChild > 1 (in which case the backbone nodes of Q form a dag), each candidate

output c in e.candList is a 2-tuple (XMLNode, BFlags). Field c.XMLNode is a candidate

match of the output node. Field c.BFlags is a boolean array indexed by the backbone

nodes of Q. Given a backbone node Y, c.BFlags[Y] indicates whether c.XMLNode has

an ancestor in T that is a candidate match of Y. When MaxBChild = 1, each candidate

output c in e.candList is a 1-tuple (XMLNode).

Stack operations. We use the following stack operations: boolean function empty(Sx)

which returns true iff stack Sx is empty, push(Sx , e) which pushes e on stack Sx, pop(Sx)

which pops the top entry from Sx and returns it, and top(Sx ) which returns the top entry

of stack Sx . In what follows, we might not distinguish between an entry in a stack and its

corresponding node in T.

6.3 Evaluation Algorithm

The flexibility of the PTPQ language in specifying queries and its increased expressive

power compared to TPQs makes the design of an evaluation algorithm challenging. Two

outstanding reasons of additional difficulty are: (1) a query is a dag (which in the general

case is not merely a tree) augmented with constraints, and (2) the same-path constraints

should be enforced for all the nodes in a partial path in addition to enforcing structural

relationships. In this section, we present our evaluation algorithm which efficiently resolves

these issues. The presentation of the algorithm is followed by an analysis of its correctness

and complexity.

6.3.1 Overview
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Let Q be the input query to be evaluated on a stream of events for an XML tree T.

We assume that a topological order (i.e., a linear order of the query nodes which respects

the partial order induced by the structural relationships of the query) for the nodes of Q

is fixed with the root node R of Q being the first node. Our algorithm is called Partial

TPQ Streaming evaluation on XML (PSX) and is shown in Listing 9. Algorithm PSX

is event-driven: as events arrive, event handlers (which are the procedures startEval or

endEval), are called on a sequence of query nodes that match the current node.

More specifically, when the algorithm receives an open event for a tree node x, it

calls procedure startEval on all the query nodes in Q that match x. For each such node

X, startEval examines whether x can be pushed on stack Sx and whether the current node

sustains the partial paths that annotate X. In order to prevent x from 'seeing' a copy

of itself on parent stacks of X, the query nodes that match x should be considered in

their reverse topological order. When the algorithm receives the close event of x, it calls

procedure endEval on the same query nodes but now it considers them in their forward

topological order. For instance, consider evaluating the query //A//* on the XML path
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/a1/a2/a3. When (a2 ) comes, node * is considered before A. When (/a2 ) comes, node A

is considered before *. For each query node X in the list, endEval pops the entry of x from

Sx and checks if x is a candidate match of X. If this is the case and X is a backbone node,

each candidate output stored in the entry for x is propagated to an ancestor of x in a stack,

or is returned to the user if X is the root of Q.

Algorithm PSX has three main features: (1) it retains in memory only elements that

are relevant for query evaluation, (2) it avoids processing redundant matches, and (3) it

keeps only one copy of each candidate output in the stacks during execution. Another

important feature which is especially useful in streaming environments is that the solutions

are incrementally generated rather than being accumulated and delivered after the entire

stream has been processed. We elaborate these features below.

6.3.2 Open Event Handler

Procedure startEval, shown in Listing 10, is invoked every time an open event for a tree

node x arrives. At this time, all the ancestor nodes of x have arrived and x is the current

node.

Filtering irrelevant data. Let X be a query node that matches x. Procedure startEval

checks if x qualifies for being pushed on stack Sx (lines 1-3). Node x can be pushed on

Sx only if x is an ancestor match of X. This check would require examining whether every

ancestor of X in Q has an ancestor match on the path from the root of T to x. Fortunately,

the stack-based organization allows this checking to be done efficiently, with its cost being

bounded by the in-degree of the query dag Q. The reason is that only the descendant
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or child relationships between x and the top entries of the parent stacks of X need to be

checked.

Avoiding redundant matches. Because the answer of a query comprises only the

embeddings of the output node of the query, we might not need to identify all the matches

of the query pattern when computing the answer of the query. In this sense, we take

advantage of the existential semantics of the query during evaluation: whenever a matching

of a predicate node in the query is found, other matches of the same node that do not

contribute to a possible new matching for the output node can be ignored. For instance,

consider evaluating the query Q2 of Figure 6.5(b) on the XML tree of Figure 6.5(a).

The nodes a l , b 1 , e l and f1 which are matches for the predicate nodes A, B, E and

F, respectively, contribute to the match d 1 of the output node D. The nodes a2 , , an,

e2, , en, f2, • • • , which are also matches of the predicate nodes can be

ignored, since they all contribute to the same match d 1 of the output node. Note that these

nodes correspond to O(n4 ) embeddings of the query with the same match for the output

node. Avoiding these redundant matches of the predicate nodes saves substantial time and

space.

Our algorithm exploits this observation using the concept of redundant match of a

predicate node. Let X be a predicate node in Q. An ancestor match x of X is redundant

for the evaluation if a node x' that precedes x in T is a candidate match of X and all the

ancestor matches of X's parents in Q that are ancestors of x are also ancestors of x'. During

the evaluation of the algorithm, an ancestor match x of a predicate node X is identified as

redundant if the boolean field PCFlags[X] associated with the top entry of each parent

stack of X has been set to true. In the previous example, e2 is a redundant match of node
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E, since it is an ancestor match of E and when (e2 ) is read, c 1 .PCFlags[E] has been set to

true by e l . Redundant matches (which can be nested at arbitrary levels) are not stored and

processed by our algorithm (line 4 in startEval). Note that previous streaming algorithms

in [32, 35, 37, 29] do not take advantage of this observation and process all the nodes in

the XML tree regardless of their redundancy. For instance, in evaluating the sub-query

R//C[E//F]//D of Q2 over the XML tree of Figure 6.20(a) using Algorithm X aos [32]

(Xaos cannot support the PTPQ Q 2 ), a number of O(n2 ) matches of the pattern E//F will

be unnecessarily accumulated in memory. The streaming algorithms in [30] take advantage

of the existential semantics of the query during evaluation, but they are restricted to TPQs.

Once startEval determines that x is not a redundant match, it creates a new stack

entry for x and pushes it on Sx (line 6). At this time, the stacks contain the ancestor

matches of query nodes that lie on the current path. If x is a candidate output, the matches
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of the backbone nodes encode the set of output paths for x in T that the algorithm could 

follow upwards,to determine whether x is a solution (see Proposition 6,2.1). For instance, 

consider again evaluating the query Q2 of Figure 6.S(b) over the XML tree of Figure 6.S(a) . 

Figure 6.S(c) shows the snapshots of stacks after (d l ) is read and an entry for ell is pushed 

on stack SD. Black boxes in the boolean arrays PCFlags and SP Flags associated with 

stack entries denote fields which are true. Node d l is a candidate output. The algorithm 

could follow upwards the path /r"/ C2/ dl or the path /r"/ cd dl to determine whether ell is a 

solution. 

Checking the same path constraint. Procedure startEval proceeds to check whether the 

current node x sustains the partial paths annotating X in Q (lines 7-8) and updates the 

boolean array SPFlags accordingly (lines 9-]0). In order to do this, it suffices to check if 

the stacks contain an entry for every sink node of these partial paths. For instance, consider 

again the example shown in Figure 6.5. After the entry for bl is pushed on stack SB, the 

stacks SA and SB respectively contain an ancestor match of the sink query nodes A and 

B of the partial path Pl' Therefore, the current node bl sustains PI (see Section ??). As 

. . 
a result, r.SP Flagsl17IJ is set to true. Note that the checking time is bounded by the 

maximum number of sink nodes in a partial path of Q. It is of course constant when Q is a 

TPQ. 

---~---
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6.3.3 Close Event Handler

Procedure endEval, shown in Listing 11, is invoked every time a close event for a tree node

x comes. At that time all the descendant nodes of x in T have arrived and x is the current

node. Let X be a query node that matches x and s be the top entry of stack Sx . If the

node s.XMLNode is the same as x (line 4), entry s is popped out from Sx (line 5), and

procedure mergeFlags is called to copy the truth values of the boolean arrays s.SPFlags

and s.PCFlags to the new top entry of Sx (lines 6-7). For instance, consider the example

shown in Figure 6.5. After entry c 2 is popped out from stack Sc, PCFlags[E] is set to

true for the new top entry c l . Function isCandMatch is then invoked to determine if s is a

candidate match of X (line 8). In order to do so, function isCandMatch essentially applies

Definition 6.2.2.

If X is a backbone node, s possibly stores a list of candidate outputs that are

descendants of x. Recall that the backbone stacks encode all the output paths which the

algorithm could use to determine if candidate outputs are solutions. In each of these paths,

the nodes which are ancestor matches of the backbone nodes might become candidate

matches. Whether the candidate outputs will eventually become solutions depends on

whether an output path can be found consisting of nodes that are candidate matches of

the backbone nodes. If no such path exists, the candidate outputs will be discarded. In any

case, the matching information about x and the candidate outputs stored in s is propagated

up along an output path encoded in the stacks. We detail this process below.

Handling a candidate match. If x is a candidate match of the query node X, procedure

endEval considers four cases depending on the type of X. The last three cases are handled

through a call to procedure upwardPropagate.
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(1) if X is the root node R of Q, the candidate outputs stored in entry s are simply returned

to the user (line 10 of procedure endEval).

(2) if X is a predicate node of Q, for each parent P of X,

top(Sp).PCFIag[X] is set to true. This indicates that a candidate match of X has

been found (lines 1-3 of procedure upwardPropagate).

(3) if X is the output node of Q, by definition, x is a candidate output. At this time, it

can not be determined, based on the part of T seen so far, whether x qualifies to be

a solution. Before such a decision can be made, x must be stored. The entries in the

parent stack(s) of X can be used to store x. Note that it is possible that X has more

than one parent node in Q. The stack for each of the parent nodes contains entries that

are ancestors of x in T. Each of those entries lies on an output path for x. Clearly,

attaching a copy of x even only to the top entry of each parent stack of X would lead

to duplicate outputs, when there are multiple output paths for x consisting of backbone

node candidate matches. To avoid duplicate outputs, procedure upwardPropagate

propagates x only to the top stack entry which is the lowest ancestor of x among the

top entries of the parent stacks of X (lines 5-7).

(4) if X is a backbone node of Q, as in case (3), the problem we face is where to propagate

the candidate outputs in s.candList after entry s is popped out from its stack. Recall

that MaxBChild is the maximum number of backbone child nodes of any node in Q.

If MaxBChild = 1, the list of candidate outputs is propagated to the top entry of the

parent stack of X (lines 9-10). This cannot be done when MaxBChild > 1, since it

could lead to false outputs. The reason is that X may have a sibling backbone node Y

for which the existence of a candidate match that is an ancestor of the candidate outputs

in s.candList may have not yet been determined. For instance, consider evaluating the
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query Q3 of Figure 6.6(b) (borrowed from [32]) on the XML tree of Figure 6.6(a).

After entry z4 is popped out from stack Sz , and is identified as a candidate match of Z,

z4 .candList (= {w6 }) should not be propagated to the top entry r of the parent stack

SR, since it is not known at this time if w6 has an ancestor which is a candidate match

for Y.

We provide a solution to the problem by exploiting the data structure designed for

candidate outputs. Recall that each candidate output c in s.candList is a 2-tuple

(XMLNode, BFlags) and that for each backbone node Y e Q, c.BFlags[Y] is used

to indicate whether a candidate match of X that is an ancestor of c in T has been found

(see Section 6.2). Using this data structure, the propagation of a candidate output c

proceeds in two steps. In the first step, c.BFlag[X] is set to true (line 10). In the

second step, c is propagated to the lowest ancestor among the top entries of the parent

stacks of X or among the top entries of selected sibling stacks of X (lines 11-27). If

none of these choices is applicable, c is discarded. Notice that an iteration over each

candidate output in s.candList is needed here (line 9), since the values of BFlags

can be different for each candidate output. For instance, consider again the example of

Figure 6.6. Figure 6.6(c) shows a snapshot of stack S Y during execution, where each

of the candidate outputs in y1.candList has a different BFlags value. For simplicity,

for each candidate output, only the fields of Y and Z of its BFlags are shown in the

figure.

Note that an invariant of the upward propagation is that whenever a candidate output

c is propagated to a stack of a backbone node X, for any backbone node Y which is a

descendant of X in Q, c.BFlags[Y] has been set to true.
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(a) (b) (e) 

Figure 6.6 (a) XML Tree, (b) Query Q3, (c) Candidate outputs in Yl.candList with 
different BFlags values 

Handling a non-candidate match. If x is not a candidate match of X, the candidate 

outputs in s.candList should be propagated along an output path that does not comprise x. 

Those candidate outputs could be propagated to an ancestor node of x either in the same 

stack 5 x, or in the stack of a sibling backbone node of X; or in the stack of a descendant 

backbone node of X. This operation is handled by calling procedure downwardPropagate 

(line 14 in procedure endEval). 

Let Y be the node host(X) (line 1 in procedure downwardPropagate). By definition, 

node Y is the closest descendant-or-selfbackbone node of X such that 'iZ E BChildren(Y), 

Yj jZ E Q. The candidate outputs in s.candList are propagated to the entry, among the 

top stack entries of Sy and the stacks of the backbone siblings of Y, which is lowest 

ancestor of x (lines 2-4). If no such entry exists, the candidate outputs are discarded. For 

instance, consider again the example of Figure 6.6. When (/Y5) is read, Y5 is identified 

as a non-candidate match of Y. Therefore, candidate output W6 is downward propagated 

to Z4 in stack 5z since host(Y) = Y and Z is the sibling backbone of Y. Note that if 

instead of propagating W6 to the top stack entry (Z4) of the sibling backbone node Z of Y, 

we propagate it to the new top stack entry Yl of Sy, we will lose the information that W6 
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(a) (b) 

Figure 6.7 (a) Query Q~, (b) Query Q~ 

has an ancestor Z4 which is a candidate match of Z. As another example, suppose that we 

replace the edge 'II' between Y and W in Q3 by 'I' to form the query Q~ of Figure 6.7(a). 

We evaluate Q~ on the XML tree of Figure 6.6(a). When (/Y5) is read, WG is discarded 

since function host returns null on Y. As a third example, consider evaluating the query 

Q~ of Figure 6.7(b) on the XML tree of Figure 6.6(a). When (/Y5) is read, WG is downward 

propagated to Yl in stack Sy since host(Y) = Y, and Y has no sibling backbone nodes. 

The downward propagation does not update the array BFlags ofthe candidate outputs 

in s.candList. It handles the candidate outputs in batch rather than individually, no matter 

whether M axBChild > lor not. 

Note that in both the upward and downward propagations, the candidate outputs 

stored in the popped entry of the current node are propagated to at most one stack entry. 

This way, for each candidate output, there is only one copy stored in the stacks during 

execution. This technique eliminates the need to explicitly perform duplicate solution 

removal which is required in the streaming algorithms for TPQs presented in [34, 32, 29]. 

6.3.4 An Example and Comparison with Previous Approaches 

As an example, we evaluate query Q3 of Figure 6.8(b) on the XML tree of Figure 6.8(a) 

using Algorithm P S X. The answer returned is {W7}. In Figure 6.9, we show different 



/' 

I 
v, 
'r-----
Y2 U9 

~ 
U3 Z4 Z6 

I /'--.. 
Ws \-Vl V8 

(a) 

Figure 6.8 (a) XML tree, (b) Query Q3 

R 
o 

ef\ 
Yo oZ 

1\,1\ 
uo We oV 

[P,] [P2] [P3] 

(b) 

------ -----

109 

snapshots of the query stacks during the execution of the algorithm. For simplicity, for 

each candidate output, only the fields for Y and Z in BFlags are shown in the figure. 

Black boxes in the boolean arrays PCFlags and SP Flags (abbreviated as PC and SP 

in the figures) associated with stack entries denote fields which are true. Similarly, for the 

boolean array BFlags associated with candidate outputs. 

When (U3) is read, since U3 is not a redundant match of node U, a new entry for U3 

is created and pushed on stack Su (lines 4 and 6 of staTtEval). As U is the only sink node 

in partial path PI, node U3 sustains Pl. Therefore, U3.SP Flags[pIJ is set to tTue (line 10 of 

staTtEval). When (/'U3) is read, U3 is popped out from Su (line 5 of endEval). Since U3 

is a candidate match of node U, and U is a predicate child of Y, Y2.PCFlags[UJ is set to 

tTue (lines 1-3 of procedure upwaTdPTopagate in endEval). 

When (W5) is read, it can be determined that W5 sustains partial path P2. Thus 

W5'SP Flags [P2J is set to tTue. When (jW5) is read, since W5 is a candidate match of 

the output node W, a new candidate output for W5 is created. It is appended to z4.candList 

since 2:4 is the lowest ancestor of W5 (lines 6-7 of upwaTdPTopagate). 

When (j Z4) is read, since Z4 is not a candidate match of Z (it has no children 

matching V) and there are no entries below Z4 in stack S Z, Z4 along with its candList 

(= {W5} ) is discarded (line 14 of endEval). 
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Figure 6.9 Snapshots of stacks during the evaluation of PSX on Q3 and the XML tree of
Figure 6.8

When (/y8 ) is read, since v8 is a candidate match of node V, and V is a predicate

child of Z, z6.PCFlags[V] is set to true. When (/z6 ) is read, since z6 is a candidate match

of Z, for each candidate output in z 6 .candList (= {w 7 }), its field BFlags[Z] is set to true

(line 13 of upwardPropagate). Then, since its field BFlags[Y] is false, the candidate

output w 7 is appended to the candlist of its lowest ancestor y 1 (lines 18-20).

When (/y2 ) is read, since y2 is a candidate match of Y, the field BFlags[Y] of

the candidate output w 7 in y2 .candList is set to true. As a result, fields BFlags[Y] and

BFlags[Z] associated with the candidate output w 7 are set to true, and 'w7 is appended to

r.candList (line 16). Subsequently, since r is a candidate match of R, r.candList {w 7 })

is returned to the user when (/r) is read( lines 9-10 of endEval).

As a comparison, we consider evaluating the same query Q3 and the XML tree of

Figure 6.8 using Algorithm Xaos [32]. Note that even though Xaos can evaluate this query,

it cannot support queries as general as PTPQs. The XPath expression for query Q3 is

/ /Y[U]//W[\\Z /V]. Algorithm Xaos builds a parse tree for this XPath expression. Also,

it constructs a dag for the XPath query in which all reverse axes are converted into their

symmetrical forward axes. The dag is used to determine whether an XML document node
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is an ancestor match of a dag node but pattern matches are constructed based on the parse

tree. Xaos uses propagation techniques to construct pattern matches during evaluation.

Specifically, after (/w5 ) is read, it optimistically propagates node z4 to w5 by assuming z4 is

a real match of Z (i.e., it matches the sub-query rooted at Z in the parse tree). Subsequently,

node w5 is propagated to nodes y1 and y2 . At this time, Xaos determines that y2 is a real

match of Y and propagates it to node r. After (/z4 ) is read, it can be determined that z4

is not a real match of Z since it has no child match for V. As a result, node z4 is removed

from 'w5. The undo propagation is then recursively applied to entries w 1 , y1, y2, and r.

Clearly, such undo operation affects negatively the time and memory space performance

of Xaos . X„os produces the query solutions after all the XML document nodes have been

scanned. The query solutions are produced by traversing the matches of the query and by

projecting them on the query output node. However, Xaos may redundantly store multiple

copies of the same output in different matches of the query. For this reason, an additional

effort is needed to eliminate duplicate solutions at the final stage. In our example, two

matches of the query are constructed: [R : r[Y : y2[U : u 3 , W : w7 [Z : z6 [V : v8]]]] and

[R : r[Y : y 1 [U : up, W : w7 [Z : z6 [V : v8 ]]]]]. Projecting each of them on the output node

W returns the solution w7 twice.

Notice that to evaluate query Q3, SPEX [69] has to first decompose it into three

subqueries: two path queries Y/U and Z/V and one single-join dag {Y, Z}//W. Each

subquery is evaluated separately and the solutions are composed. In a more recent version

of SPEX [11], Q3 has to be transformed to two TPQs similar to those shown in Figure

6.2, which are again evaluated separately.
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6.3.5 Analysis

Correctness. The following proposition characterizes the population of stacks during

execution.

Proposition 6.3.1 Let x be the current node on an open event of an XML tree T. Procedure

startEval correctly pushes x onto the stacks of the query nodes that match x while avoiding

redundant matches.

Proof. Let X be a query node in Q that matches x. Procedure startEval first determines

if x is an ancestor match of X using Definition 6.2.1. Node x is not pushed on stack Sx

if it is not an ancestor match of X. If X is not a predicate node, x cannot have redundant

matches and is pushed directly on stack Sx. Otherwise, procedure startEval proceeds to

check if the ancestor match x is a redundant match of X. Subsequently, x is pushed on Sx

only if it is not redundant. ❑

The next proposition characterizes the transformation of candidate outputs into solutions

during execution.

Proposition 6.3.2 Let R be the root of Q, X be the output node of Q, and x be an entry

in stack Sx . Procedure endEval returns x to the user as a solution only if x is eventually

propagated to an entry in SR which is a candidate match of R.

Proof. The claim trivially holds if X equals R. Note that procedure endEval determines if

a stream node in T is a candidate match of its corresponding node in Q only when the end

event of that stream node is read (line 8). If x is not a candidate match of X, x is discarded

by endEval. Let x be a candidate match of X. Procedure upwardPropagate is invoked

to appropriately propagate x to the top stack entry y of a parent Y of X in Q (line 5).
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When the end event of y is read and y is found to be a candidate match of Y, two

cases are considered: (1) Y is the root R. In this case, procedure endEval returns x along

with the other candidate outputs in y.candList to the user (line 10). (2) Y is a non-root

backbone node of Q. In this case, procedure upwardPropagate is invoked to propagate

x to its lowest ancestor which is the top stack entry of a sibling backbone node of Y or a

parent of Y, depending on whether ancestors of x have been found to be candidate matches

for the sibling backbone nodes of Y (lines 9-20).

If y is not a candidate match of Y, procedure downwardPropagate is invoked (line

14). Let Z be the query node host(Y). Node x along with other candidate outputs in

y.candList is downward propagated to the top stack entry of Z or of a sibling backbone

node of Z. If Z is null or the stack is empty, all the candidate outputs in y.candList

including x are discarded.

The above propagations of x continue until either x is discarded or is returned to the

user. 	 ❑

The correctness of Algorithm PSX follows from the previous two propositions.

Space and time complexity. Given a query Q and an XML tree T, Figure 6.10 shows the

list of parameters used for the complexity analysis. Among them, the recursion depth is

defined as follows. The recursion depth of a query node X in T is defined in [36] as the

maximum number of nodes in a path of T that are ancestor matches of X. We define the

recursion depth D of Q in T as the maximum recursion depth of the query nodes of Q in

T.

The space complexity of Algorithm PSX is composed of two parts. The first part is

the space consumed by the stacks. Since the number of entries in each stack at any given
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Description

Number of nodes and edges in Q

Number of nodes in Q

Max. no. of PPs in Q which share a query node as a sink node

Maximum number of sink nodes in a partial path of Q

Maximum number of backbone children of any node in Q

Maximum number of backbone siblings of any node in Q

Height of T

Number of nodes in T

Recursion depth of Q on T

Figure 6.10 Complexity parameters
time is bounded by D, and the size of each stack entry is bounded by the out-degree of

the corresponding query node, the space used by stacks is O(D x p|). The second part is

used for storing candidate outputs whose number is bounded by |TS. When B > 1, each

candidate output is associated with a boolean array BFlags of size O(N). Therefore, the

total space needed for the candidate outputs when B > 1 is O(|T| x N). When B = 1, the

total space needed for the candidate outputs is O(|T|).

The time complexity of Algorithm PSX is determined by the time for accessing stack

entries, and the time for processing candidate outputs.

For a current node x, let X be a query node that matches x. Procedure startEval and

endEval spend respectively O(f anin(X) + f anout(X) + M x P) and O(f anin(X) +

f anout(X) + P) on accessing stack entries, where fanin(X) and f anout(X) denote

respectively the in-degree and out-degree of X in Q. Since the number of query nodes that

match the current node is O(N), the total time spent on accessing stack entries for each

node in T is O(|Q + N x M x P), which is dominated by O(|Q| x M x P).
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Candidate outputs are processed by procedure endEval. When B = 1, each candidate

output is visited exactly once regardless of whether it is returned to the user or discarded.

Thus, the total time spent on candidate outputs is O(|T|). When B > 1, the total time spent

on candidate outputs for the upward propagation is O(|T| x S x H), since each candidate

output can be propagated H times and each propagation takes O(S) on finding the target

stack entry.

Theorem 6.3.1 Algorithm PSX correctly evaluates a query Q on a streaming XML document

T. When B= 1, Algorithm PSX uses O(|T|+ D x P|) space and O(|T| x |Q| x M x P)

time. When B > 1, it uses O(|T|x N 	 x |Q|) space and O(|T|x N|x 1t1 x P+ S x H))

time.

If Q is a tree-pattern query (TPQ), the values of parameters P, M, B, and S are 1,

and O(|Q |) equals N. In this case, the time and space complexity of Algorithm PSX are

O(|T|x |Q|) and O(|T| D x |Q|), respectively. Therefore, they are equal to the time

and space complexity of the best known streaming algorithms [30] (the space used in [30]

consists of caching space which is O(D x |Q | ) and buffering space which is O(|T|)). Note

however that the streaming algorithms in [30] support only TPQs while PSX supports a

broad fragment of XPath that strictly contains TPQs.

6.4 Experimental Evaluation

We have implemented Algorithm PSX  in order to experimentally study its execution time,

memory usage, and scalability. Since there are no other streaming algorithms that support

such a broad fragment of XPath, we compare PSX with Algorithm X,,os [32]. Even though

X„os cannot support PTPQs, it supports a subclass of XPath broader than TPQs, since it
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can evaluate TPQs extended with reverse axes. As X aos is not publicly available at this

time, we implemented it based on the algorithm described in [32].

6.4.1 Experimental Setup

We implemented both algorithms (PSX and X,,) in Java. We used the SAX XML

parser [70], a event-based parser that scans XML document trees and produces a stream

of events. All the experiments reported here were performed on an Intel Core 2 CPU 2.13

GHz processor with 2GB memory running JVM 1.6.0 in Windows XP Professional 2002.

Each experiment was run five times and each value displayed in the plots is averaged over

these five measurements.

We evaluated the performance of the algorithms on three datasets whose statistics are

shown in Figure 6.11. The first one is a benchmark dataset using XMark¹  with factor

= 1. This dataset does not include recursive elements. The second one is a real data from

the Trcebank project2 . This dataset includes multiple recursive elements. The third one

is a synthetic dataset generated by IBM's XML Generator3 with NumberLevels = 8 and

11/laxRepeats = 4, based on the DTD shown in Fig. 6.12. By construction, this dataset

includes highly recursive structures.

On each one of the three datasets, we tested 5 PTPQs. The queries on the synthetic

dataset are shown in Figure 6.13. The queries on the other two datasets are analogous

in structure to those for the synthetic dataset and are adapted for their respective dataset.

We use the following naming convention for those queries: the queries are named NQ i ,

i = 1,	 ,5, where N.'X' denotes the XMark dataset, N=1" denotes the treebank

1 http://monetdb.cwi.nl/xml/

2 http://www.cis.upenn.edu/~treebank

3 http://www.alphaworksibm.com/tech/xmlgenerator
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dataset, and N='S' denotes the synthetic dataset. NQl and NQ2 are TPQs, while NQ3 

to NQ5 are 'pure' PTPQs, i.e., they cannot be expressed by a single TPQ. Notice that 

even though NQ5, for instance SQ5, is syntactically similar to a TPQ, it is in fact a pure 

PTPQ because both nodes Band C are annotated by the same partial path Pl. This implies 

that these two nodes and their ancestor nodes lie on the same path. PSX supports all 

five queries of each dataset but Xaos only supports the first three. Xaos takes as input an 
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XPath expression. In general, a given query can be equivalently represented by more than 

one XPath expression. For instance, I I AI B I le [1 Ell I D (which involves only forward 
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axes) and //B[\A]//C[E]//D (which involves also reverse axes) are equivalent XPath

expressions for SQ1. In the experiments, for each of the first two queries (TPQs), we used

two XPath expressions: one with only forward axes and one with both forward and reverse

axes. We tested Xaos on both types of XPath expressions for the same query in order to

examine the behavior of Xaos in the presence and absence of reverse axes. Note that the

behavior of PSX is not affected by the syntax of the XPath expressions, since the input of

the algorithm is a dag.

6.4.2 Query Execution Time

We compare the execution time of PSX, Xaos , and Xaos -F (Xaos on XPath expressions

with only forward axes). Figure 6.23 shows the results of the three datasets (notice the

logarithmic scale used for the Y-axis). As we can see, PSX has the best time performance,

and in most cases it outperforms X aos by at least one order of magnitude. The performance

of PSX is stable, and does not degrade on more complex queries and on data with highly

recursive structures.

X„os is more expensive than both PSX and Xaos -F in all the cases it applies. Its

performance degrades significantly on recursive data and complex queries. For instance,

when evaluating SQ 3 on the synthetic dataset (Figure 6.23(a)), X aos was not able to finish

within 7 hours. This can be explained as follows. First, X aos exhaustively enumerates

matches of a query pattern which can be exponential in the size of the query. Second, X aos

does not consider the existential semantics of the query during evaluation.

Although Xaos -F suffers from the same two drawbacks of X aos , it performs better

than Xaos in the cases it applies. The reason is that in the presence of reverse axes in

the input XPath expression, Xaos may accumulate false pattern matches which have to be
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Figure 6.16 Query execution time on Treebank data with increasing size

cleaned through 'backtracking' . This additional computation penalizes its performance.

For example, when evaluating XQ 2 on the XMark dataset with the XPath expression

/ / quantity[\\item[/ /maill\ 1 X\*], Xaos accumulates also all the false matches to quantity.

This results in poor performance compared to Xaos-F (Figure 6.14(a)).

6.4.3 Memory Usage

We compare the maximum memory usage of PSX, Xaos , and Xaos -F. Figure 6.24 shows

the results on the three datasets. The following observations can be made. First, PSX uses

substantially less memory than Xaos and Xaos-F in all the cases (recall that Xaos can support

only the first three, and X,08 -F only the first two queries). The memory usage of PSX

on both XMark and Treebank datasets is stable, ranging from 1MB to 4MB (Figures
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6.15(a) and 6.15(b)). It increases up to 133A1B for query SQ2 on the systhetic dataset 

(Figure 6.24(a)). This can be explained by the following: 

(l) Since the X M aT k dataset has no recursive structures, the recursion depth of all the 

queries on this dataset is 1. Thus, at any point of time, there is at most one entry stored 

in each query stack. (2) Although the TTeebank dataset has deep recursive structures, 

the number of solutions returned by the queries is small (up to 265 for TQ5). (3) The 

synthetic dataset has highly recursive structures. Further, almost all the nodes in this dataset 

are relevant to the queries. Thus, the number of pattern matches that could potentially 

contribute to query answers is expected to be large (it can be exponential in the size of data 

and queries). Since any streaming algorithm has to store those potentially useful matches, 

the memory usage is expected to be high. This expectation is confirmed by the large number 
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of solutions returned by the queries on this dataset which ranges from 7K (for query SQ5 )

to 200K (for query SQ 2 ). Note that in SQ 2 , the output node is labeled by * (wildcard),

which explains the large number of solutions. The difference on the memory usage for

PSX on SQ 1 to SQ5 is due to the different structure of the queries. These results are in

line with the space complexity of PSX stated in Theorem 6.3.1. Both Xaos and Xaos -F use

less memory for SQ 2 than for SQ 1 , while PSX uses more memory for SQ 2 than for SQ 1 .

The reason is that the memory usage of X008 and Xaos-F depends on the number of pattern

matches of the query (all stored in memory by these algorithms) which are more for SQ 1

than for SQ 2 . In contrast, PSX avoids storing redundant query matches. It stores mainly

query matches that contribute to a solution and these increase from 63K for SQ1  to 200k

for SQ2.

Xaos consumes more memory space than Xaos-F in all the cases they apply. In

particular, when evaluating TQ 1 on the Treebank dataset, X„, consumes about 40 times

more space than Xaos-F (Figure 6.15(b)). The reason is that, as mentioned earlier, the

presence of reverse axes in an XPath expression may lead to the generation of false pattern

matches, and this increases the memory consumption of X„,.

6.4.4 Scalability

We also measured the scalability of PSX, Xaos , and Xaos-F as the size of the input datasets

increases. Figure 6.25 reports on the execution time of the algorithms increasing the size

of Treebank XML data for three different queries TQ 2 , TQ3 , and TQ 4 . The scale of both

X-axis and Y-axis is logarithmic. The performance of the queries on the other datasets

is similar and is omitted here. The results show that as the input data size increases,
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the execution time of PSX increases very slowly for both simple and complex queries,

whereas the performance of X„,, degrades sharply in all the cases it applies.

Figure 6.26 shows the maximum memory usage increasing the size of Treebank XML

data for the previous three queries. When the data size increases from 1MB to 82MB, the

memory usage of PSX is relatively constant. Xaos-F uses slightly more memory than

PSX for TQ2 (Figure 6.17(a)). In contrast, the memory consumption of Xa os increases

much faster than the data size.

In summary, the experimental results show that Algorithm PSX is practically efficient

with guaranteed polynomial time and space complexity in the size of the data and query. It

is capable of evaluating a broader structural fragment of XPath than any existing streaming

algorithm. Compared to the only known streaming algorithm that supports TPQs extended

with reverse axes, PSX performs better by wide margin and shows much better scalability

for processing both simple and complex queries on XML data with deep recursive structures.

6.5 The Eager Evaluation Algorithm

Algorithm PSX evaluates query predicates and returns solutions to the user only when

close events are encountered. This evaluation strategy is called lazy in [29, 30]. The lazy

strategy makes the evaluation process natural. The query response time and memory space

usage of Algorithm PSX can be improved at a small expense of the execution time. This

can be achieved by an evaluation strategy which eagerly determines (that is, before the

corresponding close events of query predicates are encountered) whether node matches

should be returned as solutions to the user. It also proactively detects redundant matches.

We call this strategy 'eager', and we present below an algorithm, called EagerPSX, that

implements it.
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In fact, stringent requirements on query response time and memory usage are important

or even necessary for a number of streaming applications, including transaction monitoring

systems [71] and sensor network systems [72]. These applications typically deliver data

in streams that are produced continuously and represent real-world events, like financial

tickers and traffic accidents, which need to be responded to.

We present below a motivating example which is used later to illustrate how differently

EagerPSX identifies redundant matches and returns solutions.

Example 6.5.1 Consider evaluating query Q4 of Figure 6.18(b) on the XML tree of Figure

6.18(a) using Algorithm PSX. Figure 6.19 shows different snapshots of the query stacks

during the execution of the algorithm. Algorithm PSX  returns {w5 , w7 , w9} as answer

when (/r) is read. Candidate outputs 'w 5 and w7 are propagated along the path z3y2z1r

while candidate output w9 is propagated along the path z8y2 z1 r in order to become solutions.

However, when (u6 ) is read, we have enough information to determine that node w5 is a

solution of Q4 and could be returned to the user immediately. Similarly, nodes w 7 and

w9 can be returned as solutions as soon as they arrive. Therefore, we only need to store

one candidate output w 5 in memory instead of three as Algorithm PSX does. Also, we

can determine that node z3 is not useful for computing query solutions once (v4 ) is read.

The reason is that at this point, we can determine that both nodes z 1 and z3 are candidate

matches of Z. Any candidate output, such as w 5, that can become a solution following the

output path ry2 z3 can instead follow the output path rz 1 y2 . This way, w5 can be returned

to the user earlier. Further, even though z3 is a match of the backbone node Z, it can

be identified as redundant and discarded. This allows us to save not only computations
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but also memory space. This type of query redundancy is related to redundant matches of 

backbone nodes. 
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To further show the importance of identifying redundant backbone node matches,

let's consider evaluting query Q2 of Figure 6.20(b) on the XML tree of Figure 6.20(a).

Recall that a query match is redundant if it does not contribute to a possible new matching

for the output node. From the discussion of Section 6.3.2, we know that nodes a l , b1 , e l and

f1 which are matches for the predicate nodes A, B, E and F, respectively, contribute to the

match d 1 of the output node D, whereas nodes a2 , , an, b2, • • • bn, e2, • , en, f2, fn

are redundant predicate node matches since they all contribute to the same match d 1 of

the output node D. These redundant matches occur because of the existential semantics of

query predicates. As we can see from the figure, the backbone node C has n matches {c 1 ,

. . cm } . These matches participate in rt output paths ( rc1d1, rcnd1 ) for node d 1 . Note

that before nodes c2, c,, are read, both r and c 1 have already satisfied their predicates.

Therefore, any match of the output node D that is a descendant of c 1 (e.g., d 1 ) can be

identified as a solution and thus should be returned to the user right away. The nodes {c2,

. . cn} need not be stored in the stack of C. Keeping these nodes in memory unnecessarily

delays the output of query solutions, and wastes computation time and memory space. It is

important to note that redundant backbone node matches contribute to a number of pattern

matches which in the worst case can be exponential on the size of the query.

6.5.1 Algorithm Eager PSX

Algorithm EagerPSX has the same body as Algorithm PSX shown in Listing 9. The

only difference is that the open and close event handlers startEval and endEval are

replaced by startEvalEager and endEvalEager which are shown in Listings 12 and

13, respectively.
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The Structure of Stack Entries For the purpose of the eager evaluation, we extend the

structure of the stack entries introduced in Section 6.2. Every extended stack entry stores

sufficient information for efficiently checking redundant (backbone and predicate) matches

and determining candidate matches as well. More specifically, let Q be a query, X be a node

in Q, and Sx be the stack for X. Each entry e in stack Sx is a 8-tuple (XMLNode, SPFlags,

PCFlags, CandList, down, up, parPtrs, childPtrs). The first four fields are described in

Section 6.2. We describe below the last four fields.

e.down is a boolean variable which is true iff c.X 114 LN ode (i.e., x) has been found to be

a candidate match of X.

e.up is a boolean variable which is true iff every P c parents(X) has a candidate match

on the path from the root of T to x. To facilitate the computation of its value, we

associate with e an auxiliary field parFlags (not listed among the eight fields above).

Field e.parFlags is a boolean array indexed by the nodes in parents(X). Given P

parents(X), e.parFlags[P] indicates whether P has a candidate match on the path

from the root of T to x.

e.parPtrs is an array of pointers indexed by the parent nodes of X in Q. Given P E

parents(X), e.parPtrs[P] points to the highest among the entries in stack Sp that

correspond to ancestors of e in T.

e.childPtrs is an array of pointers indexed by the backbone child nodes of X in Q. Given

Y E BChildren(X), Pointer e.childPtrs[Y] points to the highest entry e' among the

entries in stack SY that correspond to descendants of e in T such that e' .parPtrs[X]=e.

It is null if no such e' exist.

We illustrate in Figure 6.21 these stack entry fields when (z 3 ) is read during the eager

evaluation of query Q4 of Figure 6.18(b) on the XML tree of Figure 6.18(a). For ease of
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Figure 6.21 An illustration of stack entries during the evaluation of Q4 on the XML tree 
of Figure 6.18 using EagerP S X 

illustration, fields SP Flags, PCFlags, and CandList are omitted in the figure . For every 

stack entry, we show the 'up and the down fields as boxes which are black if the field is true 

and white otherwise. Field down keeps track of whether the corresponding XML node has 

been found to be a candidate match of a query node. For example, consider entries T 

and Zl in stacks SR and Sz , respectively. T.down ~ tTue because node R has no predicate 

children and thus T trivally satisfies the cand idate match requirements for R, while zl .down 

= fals e because .at this point of computation, it is not possible to determine whether Zl has 

a descendant node that matches node V (node V4 has not been read yet). Field 'LlP keeps 

track of whether the corresponding XML node has ancestor nodes which have been found 

to be candidate matches of all the parent nodes of the query node in consideration. For 

instance, T.'LlP = tTue because T trivally satisfies the above requirement while Zl.UP = tTue 

because i· is a candidate match of R. A parent pointer in paTPtTs array of a stack "entry of 

a query node is shown in the figure by a solid arrow pointing to the top entry of the stack 

of the parent node. For example, Zl has a parent pointer in paT Ptr s [R] pointing to r. A 

child pointer in childPtr s array of a stack entry of a query node is shown in the figure 

by a dashed arrow pointing to the closest descendant of the entry in T that matches the 

corresponding child query node. For example, r has a child pointer childPtrs [Z] pointing 



130

Open Event Handler The open event handler Procedure startEvalEager is shown in

Listing 12. As the case of PSX, it starts by checking whether the current node x is an

ancestor match of query node X (lines 1-3).

Checking redundant matches. Procedure startEvalEager proceeds to check whether x is

a redundant match of X via a call to Function isMatchRedundant. The main difference of

this function compared to the one in Procedure startEval (Listing 10) is that it also detects

redundant matches for backbone nodes (lines 3-5). For instance, in the example of Figure

6.20. When (c2 ) is read, r and c l (the top entry in stack Sc ) satisfy their predicates. Then,

c2 is identified as redundant for C and is not pushed onto Sc.

Setting up a new stack entry. Once startEvalEager determines that x is not a redundant

match, it creates a new stack entry for x and pushes it on Sx (lines 6-7). Subsequently,

procedure updateStackEntry is invoked to set up the fields for e (line 8). Procedure

updateStackEntry first updates the pointers parPtrs and childPtrs for e (lines 1-6).

Then, it updates fields par Flags and up (lines 7-11). Finally, if X is an internal node (i.e.,

it is not a sink node of any partial path of Q) and X has no predicate children, then x is a

candidate match of X and therefore e.down is set to true (lines 12-13).

If X is the output node of Q and e.down and e.up are set to true by procedure

updateStackEntry, then x can be identified as a solution and is returned to the user (lines

9 - 10 in startEvalEager).

Figure 6.21 described earlier shows the structures of stack entries after (z3 ) is read.

This snapshot is constructed as follows: First, (r) is read and since r is an ancestor match

of the query root R, a new stack entry for r is created and is pushed onto SR. Then, as a

result of a call to updateStackEntry, e.up and e.down are set to true. When (y2 ) is read,
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two pointers are constructed: one is par Ptrs[R] pointing from y2 to r in stack SR, and the

other is childPtrs[Y] pointing from r to y2 . Also, y2 .up is set to true. Finally, when (z3 )

is read, no child pointer childPtrs[Z] from r to z3 is created since there is such a pointer

from r to z 1 .

Traversing the query dags. Besides determining whether the current node x sustains

the partial paths annotating X in Q (lines 11-14), procedure startEvalEager also checks

whether the top entry of any sink node of a partial path pi is a candidate match (line 15).

If it is the case, procedure dagTraversal is invoked to traverse two dags G,,i and GB in

that sequence (line 18). The purpose of the dag traversal is to examine whether there are

matches that are solutions. Dags Gpi and GB are sub-dags of Q rooted at an ancestor

node of X and consist of predicate nodes and backbone nodes, respectively. Procedure

dagTraversal first calls procedure bottomUpTraversal to traverse dag GPI recursively

in a bottom-up way. During the traversal, bottomUpTraversal evaluates the predicates

of the matches encoded in the query stacks and updates stack entries and ancestor stack

entries by following the parent pointers. Then, depending on the results returned from

bottomUpTraversal, procedure dagTraversal possibly calls procedure

topDownTraversal to traverse the nodes of dag GB recursively in a top-down manner. For

each node under consideration, topDownTraversal examines its stack entries to determine

whether there are candidate outputs (associated with the stack entries) that can be returned

as solutions to the user, and updates these stack entries and their descendant stack entries

by following child pointers. During each traversal, redundant matches are detected and

pruned. A traversal is terminated when either there are no more matches to examine, or a
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match that has already been examined is encountered. Because of lack of space, we omit

here more details on the two procedures 4 .

Example 6.5.2 Consider evaluating query Q4 of Figure 6.18(b) on the XML tree of Figure

6.18(a). Figure 6.22 shows the snapshot of the query stacks. When (v4) is read, v4 is

identified as a candidate match of V, and therefore procedure bottomUpTraversal is

invoked to traverse the sub-dag (path in this case) Z / /V starting with V. After setting

v4 .down to true, bottomUpTraversal goes up to Z. Then, it evaluates the predicates for

entries z3 and z1 in stack Sz in that order. Since z3 and z 1 are both candidate matches of

Z, it sets z3 .down and zi .down to true. Procedure bottomUpTraversal ends its traversal

at z 1 and returns z 1 to the calling procedure dagTraversal. Given that z 1 .down and z 1.up

are true, procedure topDownTraversal is invoked to traverse the sub-dag (path in this

case) Z / /W starting with Z. Since z 1 .candList is empty, no solutions are returned at this

time. Procedure topDownTraversal proceeds to remove the entries above z 1 in stack Sz

(only z3 in this case) since they constitute redundant matches. It terminates its traversal on

W since stack SW is empty.

When (w5 ) is read, a new stack entry for w5 is constructed and pushed onto stack S W .

Also, parent pointers and child pointers to and from stack entry z 1 and y2 are constructed

for the new entry w 5. When (u6) is read, procedures bottomUpTraversal and

topDownTraversal are invoked to traverse the sub-dags Y //U and Y//W, respectively.

As a result, both y2 .down and w5 .up are set to true. At this time, node w5 can be identified

as a solution and is returned to the user. When (w7 ) and (w9 ) are read, both w7 and w9

are returned as solutions right away before other nodes are read. Notice that when (z8 ) is

read, it is identified as a redundant match and thus it is ignored.

4The full version of the algorithm and its description can be found in http://web.njit.edu/~ xw43/paper/eagerAlgo.pdf
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Figure 6.22 Snapshots of stacks during the evaluation of EagerPSX on Q 4 and the XML 
tree of Figure 6.18 

Close Event Handler Procedure endEvalEager is shown in Listing 13. It differs from 

Procedure endEval in Listing 11 in that: (1) since child pointers are now used, they have to 

be updated whenever the entries they point to are popped out from their stacks (lines 6-10), 

and (2) the work performed before by procedures meTgeFlags and isCandAlatch is now 

performed by procedure boitomUpTTaveTSal called by startEvalEager. 

6.5.2 Analysis 

Let Q be a query and T be an XML tree. For the complexity analysis of EagerPSX, 

we refer to the parameters listed in Figure 6.10. 

As with Algorithm PSX, the space complexity of EagerPSX is composed of two 

parts. One part of the space is consumed by the stacks. Since the number of entries in each 

stack at any given time is bounded by D, and the size of each stack entry is bounded by 

the out-degree and the in-degree of the corresponding query node, the space used by the 

stacks is O(D x [QI). The other part is used for storing candidate outputs whose number 

is bounded by [T[. When B > 1, each candidate output is associated with a boolean array 

BFlags of size O(N). Therefore, the total space needed for the candidate outputs when 

B > 1 is O([T[ x N). When B = 1, the total space needed for the candidate outputs is 

O([T[). 
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As we can see, EagerPSX has the same worst case space complexity as PSX. However,

EagerPSX achieves better space performance because it applies evaluation strategies to

eagerly determine whether node matches should be returned as solutions to the user and to

proactively detect and prune redundant matches.

The time complexity of EagerPSX is determined by the time for accessing stack

entries, and the time for processing candidate outputs. For a current node x, let X be

a query node matching x. Procedure endEval spends O(f anin(X)) on accessing stack

entries. Leaving apart the calls to Procedure dagTraversal, Procedure startEval spends

O(f anin(X)+ f anout(X)+ M x P) on accessing stack entries.
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Let c denote a stack entry for a query node Y. During its lifetime, the total time

spent on e by procedures bottomUpTraver sal and topDownTraversal is O fanin(Y) +

f anout(Y) + P) and O(f anin(Y) + fanout(Y)), respectively. Therefore, Procedure

dagTraversal spends O(f anin(Y)+ f anout(Y)+P) time on each stack entry. In summary,

for each node in T, EagerPSX spends O(|Q| x M x P) on accessing stack entries.

The time on processing candidate outputs is dominated by procedure endEval, and is

the same as that of PSX in the worst case.

Theorem 6.5.1 Algorithm EagerPSX correctly evaluates a query Q on a streaming XML

document T. When B = 1, Algorithm EagerPSX uses O(|T|+ D x|Q|) space and O(|T| x

|(2| x 1L7 x P) time. When B > 1, it uses O(|T| xN+Dx |Q|) space and O(|T| x (|Q| x

MxP+SxH))time.

Eager streaming algorithms have been presented in [34, 30] but they are restricted to

TPQs. Besides supporting a class of queries that are more expressive than TPQs, our eager

algorithm EagerPSX is, to the best of our knowledge, the first one that detects and avoids

processing different types of redundant query matches during streaming evaluation.

6.6 Experimental Evaluation

We have implemented Algorithm EagerPSX in order to study its execution time, memory

usage, and scalability. In this section, we experimentally compare EagerPSX with

Algorithms PSX and X„os [32]. As mentioned before, X aos is chosen for comparison

because even though it does not support a broad fragment of XPath as PSX and EagerPSX

do, it nevertheless supports a restricted type of dag queries.

All the experiments were carried out on the same machine used for the experiments

described in Section 6.4 with the same experimental settings, datasets and queries. Each
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(a) Execution time	 (b) Time to 1st solution (seconds)
denotes an execution that didn't finish within 7 hours; 'N/A . denotes incapacity of the algorithm to support the query

Figure 6.23 Query execution time and response time on synthetic dataset

(a) Max. runtime memory usage	 (b) Max. stored candidate outputs

Figure 6.24 Memory usage on synthetic dataset

experiment was run five times and each value displayed in the plots is averaged over these

five measurements. In the interest of space, in the following we only report the results on

the synthetic dataset. We obtain similar results on the other two datasets.

6.6.1 Query Execution Time

We compare the execution time of EagerPSX, PSX and Xaos . The execution time

consists of data and query parsing time and query evaluation time. Figure 6.23(a) shows
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the results on the synthetic dataset. As we can see, PSX has the best time performance,

and in most cases it outperforms Xaos by at least one order of magnitude. EagerPSX uses

slightly more time than PSX, due to the overhead incurred by the traversals of the query

dags for finding solutions. The performance of both EagerPSX and PSX is stable, and

does not degrade on more complex queries and on data with highly recursive structures.

Xaos is more expensive than both EagcrPSX and PSX in all the cases it applies.

Its performance degrades significantly on recursive data and complex queries. For instance,

when evaluating SQ 3 on the synthetic dataset (Figure 6.23(a)), X„os was not able to finish

within 7 hours.

6.6.2 Query Response Time

We compare the query response time of EagerPSX, PSX and Xaos . The query response

time represents the time elapsed from the moment the query is issued to the moment the first

solution is received. Figure 6.23(b) shows the query response time results on the synthetic

dataset. As we can see, EagerPSX gives the best query response time for both simple and

complex queries. Compared to PSX and Xaos , EagerPSX reduces the response time by

orders of magnitude. EagerPSX starts delivering query solutions almost immediately

after a query is posed.

PSX returns solutions to the user when the end event of a node matching the root of

a given query arrives. The worst case occurs when the only node matching the query root is

the document root. For this reason, even though PSX performs best in terms of execution

time, its query response time cannot compete with that of EagcrPSX.

Xaos delivers query solutions only after the entire XML document is processed.

Given that it also has the longest execution time, its query response time is the worst among

the three.
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6.6.3 Memory Usage

We compare the memory usage of EagerPSX, PSX and Xaos . We measure the memory

usage in terms of maximal runtime memory consumption. We also measure the memory

usage in terms of maximal number of candidate outputs stored at any point of time during

execution.

Runtime memory consumption. Figure 6.24 shows the maximal memory consumption of

the three algorithms on the synthetic dataset. As we can see, EagerPSX uses substantially

less memory than Xaos in all the cases (recall that Xaos can support only the first three

queries). The memory usage of EagerPSX is stable for both simple and complex queries.

PSX consumes more run time memory than EagerPSX in all the test cases (up to

1.3 times on query SQ 2 ). The reason is three fold: (1) PSX cannot avoid storing redundant

matches of backbone nodes during execution, (2) PSX has to store solutions in memory

until the end event of the query root matches arrives, and (3) as we show below, PSX

stores in memory more candidate outputs than EagerPSX.

Number of stored candidate outputs. Figure 6.24(b) shows the maximal number of

stored candidate outputs for the three algorithms on the synthetic dataset. Among the three

algorithms, EagerPSX stores the lowest number of candidate outputs. This is expected,

since EagerPSX employs the eager evaluation strategy which allows it to identify whether

a candidate output is a solution as early as possible.

Compared to PSX, Xaos enumerates and stores all the matches of the query. Therefore,

Xaos has to store multiple copies of the same candidate output. This is the case with

query SQ1 . in Figure 6.24(b). PSX and Xaos identify the same 63864 candidate outputs.
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However, P SX stores each candidate output only once, while Xaos ends up storing 94696 

copies of candidate outputs. 

Note that in the best case, Eager-PSX avoids storing any candidate outputs and 

returns as solution to the user every candidate ouput as soon as it is identified as such. 

This is the case with SQ2 in Figure 6.24(b), where EageTPSX does not need to store 

any candidate output at all, while PSX and Xaos have to store approximately 200K nodes. 

Note also that in all the cases of Figure 6.24(b), PSX stores more candidate outputs than 

Eager-P S X, and this is in accordance with the higher runtime memory consumption of 

PSX compared to Eager-PSX displayed in Figure 6.24. 
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6.6.4 Scalability

We also measured the scalability of EagerPSX, PSX and Xaos as the size of the input

datasets increases. Figure 6.25 reports on the execution time of the algorithms increasing

the size of synthetic XML data for two different queries: SQ 2 (a TPQ) and SQ4 (a dag

query). The scale of both X and Y axes is logarithmic. For the case of SQ4 , only results for

EagerPSX and PSX are reported, since Xaos cannot support this query. The results show

that PSX always has the best time performance and EagcrPSX closely follows PSX.

As the input data size increases, the execution time of EagcrPSX and PSX increases

very slowly for both queries, whereas the execution time of X,os increases sharply in the

case it applies.

Figure 6.26 shows the runtime memory consumption increasing the size of synthetic

XML data for the previous two queries. The memory consumption of X aos increases

faster than that of both EagerPSX and PSX. PSX uses slightly more memory than

EagerPSX.

In summary, the experimental results show that Algorithm EagerPSX is efficient

on a broad fragment of XPath. Compared to Xaos, the only known streaming algorithm that

supports TPQs extended with reverse axes, EagerPSX performs better by a wide margin

in terms of time and space performance and scalability. It is runtime competitive with our

lazy algorithm PSX for PTPQs, while achieving better space performance and greatly

reducing the query response time for both simple and complex queries on XML data with

deep recursive structures. Therefore, EagerPSX can be very useful for current streaming

applications that have stringent requirements on query response time and memory

consumption.



CHAPTER 7

ASSIGNING SEMANTICS TO PARTIAL TREE-PATTERN QUERIES

In this chapter, we define our novel semantics for the PTPQ language. The chapter is

organized as follows. Section 7.1 presents the data model and the query language. Index

graphs and complete TPQs for a PTPQ are introduced in Section 7.2. In Section 7.3,

we present our novel semantics for the PTPQ language. Our approach is compared with

previous one in Section 7.4 and experimentally evaluated in Section 7.5.

7.1 Data Model and Query Language

For the purpose of defining semantics to partial tree-pattern queries, we make some

modifications to the data model and the PTPQ language presented in Chapter 3.

Data Model. Let E be an infinite set of elements that includes a distinguished element r,

X be an infinit set of variables, and V be an infinit set of values. Variables range over

elements, and play the role of wildcards in tree-pattern queries. Here, we use variables to

distinguish between different wildcard nodes. Symbols e, x, and v (possibly with indices)

refer systematically to an element, a variable, and a value respectively. The term construct

(denoted c) refers either to an element or a variable.

As is usual, we model XML documents as trees. Nodes in an XML tree are labeled by

elements or values. In particular, the root node of an XML tree is the only node labeled by

element r. Values can label only leaf nodes. Attributes of elements in an XML document

are modeled as (sub)elements. For simplicity we assume that the same element does not

141
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label two nodes on the same path (that is, the XML trees are not recursive). We discuss in 

the next section how this restriction can be relaxed. 

Figure 7.1 shows three XML trees Tb T2, and n from different data sources that 

record bibliographic information in different formats (a slight extension of an example 

introduced in [5,6]). Tl and T3 categorize the data based on the publication year, while T2 

categorizes the data based on the type of publication (article or book). Still, in Tl the year 

of the publications is specified as a child element of a "bib" node, while in T3 there is no 

"bib" node, and the "book" and "article" nodes are children of a "year" node that indicates 

their year of publication. We are interested in retrieving information by issuing the same 
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Figure 7.1 An XML Tree T 

query against all these data sources, even though information is structured differently in 

each one of them. Therefore, we view all these XML trees as one tree T rooted at T. 

Query Language. We make following extensions to the PTPQ defined in Definition 6.1.1 : 

(1) each node is possibly annotated with a set of value predicates; and (2) at least one partial 

path is defined to the output path. Below is the full definition of the query language: 
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Definition 7.1.1 (PTPQ) A Partial Tree-Pattern Query (PTPQ) is a triple Q = (P, S, O),

where:

(a) P is a nonempty set of triples (p, A, 7Z) called Partial Paths (PPs).

p is the name of the PP. The names of the PPs in Q are distinct. Therefore, we identify

PPs in Q with their names.

A is a set of predicates of the form c = V, where V, the annotation of c, is a set of

values {v i , . ,vk }, k > 1. The meaning of predicate c = V is that c = v 1 or . . . or

c = vk .

R. is a set of expressions of the form ci cj (child precedence relationship), ci Gj

(descendant precedence relationship), and c.„ cj (descendant-or-self precedence

relationship), where constructs ci and cj are distinct. In particular, R. comprises a

descendant-or-self precedence relationship r c, for every predicate c = V in A.

The expression 4] denotes the construct c in PP p.

(b) S is a set of expressions of the form 4 i1 c3 pj ], where p, and pj are PPs in P.

These expressions are called node sharing expressions. Roughly speaking, they state

that the node labeled by construct ci in PP p, and the node labeled by construct c j in

PP pj coincide (the two PPs share this node). Set S can be empty.

(c) O is a set of PPs in P. These PPs are called output PPs of Q. ❑

We graphically represent PTPQs using graph notation. Each PP of a PTPQ Q is

represented as a (not necessarily connected) graph of nodes identified with, and labeled by,

the constructs of the PP. If a node n in the graph has an annotation V in Q, it is labeled

by the predicate c = V instead of the construct c. The name of each PP is shown by

the corresponding PP graph. The names of the output PPs of Q are shown boxed. Child,
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descendant and descendant-or-self precedence relationships in a PP are depicted using the

arrows 	 and 	 respectively, between the corresponding nodes in the PP graph. In

particular, descendant precedence relationships of the form r c and r c in a PP are

shown only with the presence of node c in the PP graph. Variable names are prepended by

a * sign, while values are shown between quotes. A node sharing expression ci [pi] cj[pj]

is represented by an edge between node c i of the PP graph pi and node cj of the PP graph

p 7 labeled by the symbol.

Suppose that we want to find the title and year of publications authored by "Mary" [5,

6]. We are not interested to restrict the type of publication we are looking for, and actually

we do not know what type of publications are recorded in the XML data. Further, assume

that we know that title and author are not categorization features in our XML document(s),

and therefore they should appear below any categorization element. We formulate this

PTPQ as shown in Figure 7.2. Symbols x and y denote variables, while p 1 and p2 are

the output PPs of the PTPQ. As another example, consider the query that finds additional

authors of publications of which "Mary" is an author and also the title and year of those

publications. In this case, assume that we expect author "Mary" and the other author to be

sibling nodes and descendants of a publication node which has a descendant node "title".

We do not have any idea about the placement of node "year" besides the fact that it should

relate in some way to the publication. This PTPQ is shown in Figure 7.3.

The answer of a PTPQ is based on the concept of PTPQ embedding.

Definition 7.1.2 An embedding of a PTPQ Q to an XML tree T is a mapping M of the

constructs of the PPs of Q to nodes in T such that:
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(a) An element e of Q is mapped by M to a node in T labeled by e; a variable v of Q is 

mapped by M to a node in T labeled by any element. 

(b) The constructs of a PP in Q are mapped by j\IJ to nodes in T that are on the same path. 

(c) If a construct C has an annotation V in a PP p (that is, a predicate C = V is specified 

in p), then the image of c[P] under M has a child node labeled by a value in V. 

(d) V Ci [P] ~ Cj [P] in Q, A1(cj [P]) is a child of j\IJ(Ci[P]) in T ; V Ci(P] => Cj[P]' in Q, 

NI(cj [P]) is a descendant of M(Ci [P]) in T ; and V Ci [P] ==> Cj[P] in Q, M (cj [p]) is a 

descendant of M( Ci [P]), or M(Ci [P]) and M(cj [P]) coincide in T. 

o 

We call image of a PP p in Q under M, denoted M(p), the path from the root of 

T that comprises all the images of the constructs of p under M and ends in one of them. 

Notice that more than one PP of Q may have their image on the same root-to-Ieaf path of 

T (M does not have to be a bijection). The concept of image of a PP is extended to apply 

to PTPQs in a straightforward way. 

We initially define the answers of a PTPQ on an XML tree as follows. 

Definition 7.1.3 The answer set A of a PTPQ Q on an XML tree T is the set of subtrees 

ofT formed by the images of the output PPs of Q under all possible embeddings of Q to 
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T. The subtrees comprise also the child value nodes of the elements. The subtrees in A are 

called answers of Q on T. 

Figure 7.4 shows the images of PTPQ Q1 of Figure 7.2 under three of the possible 

embedding of Q1 to the XML tree T of Figure 7.1. The values of the elements are 

additionally included in the images for clarity. The images of the output PPs of Q in the 

figures are shown with thicker arrow edges. More specifically, Figures 7.4(a), (b) and (c) 

correspond to embeddings of Q1 to the XML trees T1, T2 and T3 respectively that constitute 

tree T of Figure 7.1. 

r r r , f f 
bib 
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f 
year 

/f 
year book 
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book 
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"1999" title author 

f ! 
year title author 
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"XML" "Mary" "1999" "XML" "Mary" 

(a) (b) (e) 

Figure 7.4 The images of Q1 under three of the embeddings of Q1 on T. The answer of 
Q1 in every image is shown with thicker arrows. 

Observe that the language is able to retrieve with one query the title and year of the 

publications of Mary from different parts of the XML tree, even though these parts structure 

the data in different ways. 

The previous definition of the answer set of a PTPQ accepts any possible embedding 

of Q to T. This generality allows embeddings that do not relate elements and values in the 

way the user was expecting when formulating the query. We call the answers corresponding 

to these embeddings meaningless answers. For instance, each of the images of Q1 shown 

in Figure 7.4 correctly corresponds to a publication (a book in this case) authored by 

"Mary". However, this is not the case with the images of Q1 in Figure 7.5 under three other 
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embeddings of Q1 into T. In each one of them, year and/or title values do not correspond 
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Figure 7.5 The images of Q1 under three of the embeddings of Q1 on T. The answer of 
Q1 in every image is shown with thicker arrows. 

to a publication authored by "Mary" even though these values appear in an answer with 

"Mary". In Section 7.3, we will present a technique that excludes these subtrees and returns 

answers to the user that are meaningful. 

7.2' Evaluating PTPQs Using Complete TPQs 

We show now how PTPQs can be evaluated using TPQs. We first discuss index graphs 

for XML trees. Then, we use index graphs to construct a set of complete TPQs whose 

answers, taken together, form the answer of a given PTPQ. Besides allowing us to evaluate 

PTPQs, the .Gomplete TPQs of a PTPQ provide the basis for defining meaningful semantics 

for PTPQs in the next section. 

7.2.1 Index Graphs 

Given a partitioning of the nodes of an XML tree T, an index graph for T is a graph G such 

that: (a) every node in G is associated with a distinct equivalence class of element nodes 

in T, and (b ) there .is an edge in G from the node associated with the equivalence class a 

to the node associated with the equivalence class b, iff there is an edge in T from a node in 
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a to a node in b. Index graphs have been referred to with different names in the literature 

including "path summaries", "path indexes" and "structural summaries". They differ in the 

equivalence relations they employ to partition the nodes of the XML tree which includes 

simulation and bismulation [63, 64] or even semantic equivalence relations [7]. Index 

graphs have been extensively studied in recent years in both the "exact" [65, 63, 73] and 

the "approximate" flavor [74, 64], A common characteristic of those approaches is that 

the index graph is used as a back end for evaluating a class of path expressions without 

accessing the XML tree. To this end, the equivalence classes of the XML tree nodes are 

attached to the corresponding index graph nodes. 

For the needs of PTPQs we define index graphs where the equivalence classes are 

formed by all the nodes labeled by the same element in the XML tree. Figure 7.6 shows 

the index graph G of the XML tree T of Figure 7.1. 

T 

year 

title a 0 author 

Figure 7.6 Index graph G 

In contrast to other approaches, the equivalence classes of the XML tree nodes are 

not kept with the index graph. Therefore, PTPQs are ultimately evaluated on the XML tree. 

Even though the index graph for an XML tree is not a schema in the form of a DTD or an 

XML Schema, we take advantage of it in the same way schema information is exploited in 

relational databases. We use index graphs to support the evaluation of a PTPQ through the 

generation of a set of complete TPQs. 
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7.2.2 Complete TPQs for a PTPQ

If G is the index graph of an XML tree T, we say that T underlies G. Given a PTPQ Q

and an index graph G, Q can be evaluated by computing a set of complete TPQs whose

answers, taken together, are equal to the answer of Q on any XML tree underlying G. By

complete TPQ we mean a TPQ that involves only child relationships and no variables (and

therefore, completely specifies a tree pattern). Intuitively, a complete TPQ satisfies both:

the structural and value constraints of the PTPQ, and the structural constrainst of the index

graph.

Definition 7.2.1 Let Q be a PTPQ and G be an index graph. A complete TPQ (CTPQ) for

Q on G is a TPQ U without variables (wildcards) and descendant precedence relationships

which is rooted at a node labeled by r and satisfies the following conditions:

(a) There is a mapping M from the nodes of Q to the nodes of U that respects paths,

labeling elements, precedence relationships, and node sharing expressions. If V 1 , . , Vk

are the annotations of all the nodes in Q that are mapped to the same node n in U, n

is annotated by V1 fl ... n Vk. Two nodes in a path in U are not labeled by the same

element, and every leaf node of U is the image of a node of Q under M. The output

nodes of U are the images under M of the nodes of the output PPs of Q. Notice that

it is possible that all the nodes of two distinct PPs of Q are mapped by M to nodes on

the same path in U.

(b) There is a mapping M' from the nodes of U to the nodes of G that respects labeling

elements and child precedence relationships. 	 ❑
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Figure 7.7 shows two of the CTPQs of the PTPQ QI of Figure 7.2 on the index graph 

G of Figure 7.6. The output nodes have their labels boxed. For simplicity of presentation, 

the paths are not named. 
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author= . .~ 
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Figure 7.7 Two CTPQs for QI on G: (a) UI, and (b) U3 

Clearly, a CTPQ can be seen as a PTPQ (without variables and descendant or 

descendant-or-self precedence relationships) where the node sharing expressions are defined 

by the common nodes of different root-to-Ieaf paths. The output PPs of the corresponding 

PTPQ are defined by the paths of the CTPQ that comprise output nodes. Then, we can 

define the answer of a CTPQ to be to the answer of the corresponding PTPQ. We can now 

show the following proposition. 

Proposition 7.2.1 Let Q be a PTPQ, G be· an index graph, and UI , .. . , 

k ::::: 1, be all the CTPQs of Q on G. Let also A, AI, ... , Ak be the answer sets of 

. . . , Uk> respectively, on an XML tree underlying G. Then 

o 

Therefore, the answers of a PTPQ Q on an XML tree T can be computed by determining 

the set U of all the CTPQs of Q on the index graph that underlies T and by computing the 

answers of each CTPQ in U on T. 
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Consider the the XML tree T (Figure 7.1) and its index graph G (Figure 7.6). Consider

also the PTPQ Q 1 (Figure 4), and its CTPQs, U1 and U3, on G (Figure 7.7). One can see

that the answer of Q 1 on T shown in Figure 7.4(a) is also an answer of CTPQ U1 . Similarly,

the answer of Q 1 on T shown in Figure 7.5(c) is also an answer of CTPQ U3.

Note that the approach presented in this paper can be easily extended to handle

recursive XML trees. In this case, CTPQs for a PTPQ are generated using an index tree

instead of an index graph. An index tree is a tree structure similar to an 1-index¹ [63] with

the exception that no pointers to the data are stored in the index. The absence of cycles

in the index allows one to deal with the presence of multiple nodes labeled by the same

element in the same PSP of a PTPQ.

7.3 Using Complete TPQs to Exclude Meaningless Answers

In this section, we assign semantics to our PTPQ language that returns meaningful answers.

In contrast to previous approaches which exclude embeddings of the query to the data tree

[12, 13, 5, 6], our approach excludes CTPQs of a PTPQ. In this sense, our approach relies

both on data and on structural patterns of data, instead of relying exclusively on data.

Based on the results of the previous section, we consider that, given an XML tree T

(and its index graph G), the answer of a PTPQ is the union of the answers of its CTPQs

on G. However, some of these CTPQs may return meaningless answers. Consider, for

instance, again, the PTPQ Q 1 (Figure 7.2) and the XML tree of Figure 7.1 along with its

index graph G in Figure 7.6. The CTPQ U3 (Figure 7.7(b)) of Q 1 on G returns (among

others) the answer of Figure 7.5(c) which is meaningless. Therefore, this CTPQ of Q 1

should not be used for computing the answers of Q i . Analogously to query answers, we

1 1-indexes coincide with strong DataGuides when the data is a tree.
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characterize a CTPQ of PTPQ Q on G as meaningful with respect to T if it returns a 

meaningful answer on T. Otherwise, it is characterized as meaningless with respect to T. 

In order to formally define meaningful CTPQs we need to introduce a transformation for 

CTPQs. 

7.3.1 A Transformation for Complete TPQs 

Let Q be a PTPQ, T be an XML tree and G be its index graph. Figure 7.8 shows two 

CTPQs, U and U', of a PTPQ Q on an index graph G. CTPQ U comprises three subtrees 

TR 

CTPQU 

.. ·a/ 
..... ~ 

.. ~t:Y 

\ 
~ .... 

CTPQU' 

Figure 7.8 Transformation T R transforms the CTPQ U to the CTPQ U' 

Ta, Tb and Te. Ta is the subtree of U rooted at the node labeled by a, Tc is a subtree of 

U rooted at the node labeled by c, and n is the subtree of Tc; rooted at a node labeled by 

b. Subtrees Ta and Tb can be empty (that is, they can trivially contain only their root node 

a and b respectively). The node labeled by c can coincide with the root of U. However, 

the node labeled by a cannot coincide with the node labeled by c, and the node labeled by 

b cannot coincide with the node labeled by c (that is, the node labeled by c is an ancestor 

of the nodes labeled by a and b). Labels a and b can be equal. Subtree T~ in U' is a tree 

identical to n except that its root is labeled by a instead of b. CTPQ U' can be obtained 

from U by removing the subtree Te below the node labeled by c, and by making T~ a subtree 
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of the node labeled by a. We define the transformation TR on CTPQs as a transformation

that transforms a CTPQ of the form of U into a CTPQ of the form of U'. Notice that CTPQ

U' has at least one node less than CTPQ U.

We formally define meaningful CTPQs in the next subsection but we provide some

intuition now on the transformation TR. Consider a CTPQ U' resulting by applying TR

to a CTPQ U. Our intention is to characterize U as meaningless with respect to T, and to

exclude it from consideration in computing the answers of Q, if U' returns an answer on T.

To understand this idea, observe that there is a 1-1 mapping f from the nodes of U' to the

nodes of U that respects node labels and child precedence relationships (with the exception

of the child precedence relationships from the node labeled by a in TO. Then, the following

proposition holds:

Proposition 7.3.1 Assume that CTPQ U' results by applying transformation T R to a CTPQ

U. If n' is the lowest common ancestor (LCA) of the nodes nil , ... n'k in U', and n is the

LCA of the nodes f . , f (74) in U then n is not a descendant of f (n') in U. ❑

Since, there is an image of Q under an emdedding to T (and therefore an answer

of Q on T) that closely relates the nodes as determined by U', any image of Q under an

emdedding to T (and the corresponding answer) that relates the nodes in the looser way

determined by U is not meaningful, and should be excluded from generating an answer.

To clarify the use of transformation TR, we show next some applications of it on

the CTPQs of our running example. We consider PTPQ Q 1 (Figure 7.2) on index graph G

(Figure 7.6) that underlies the XML tree T (Figure 7.1). Figure 7.9 shows three CTPQs U1 ,

U2 and U3 of Q 1 on G. Dotted lines denote the subtrees Ta , Tb, and T, of transformation
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T R as they are graphically shown in Figure 7.8. The CTPQ U2 will be excluded from 

consideration in the evaluation of Ql on T because TPQ U1 returns an answer on T. 

U
2 bi: r TR U

1 

r r TR bi: r U
3 

Y'" A h;~k • yeM.,/i book .. yeM A,rtie" 
• boFT-title . T. .K . title • b~FTtitle . T. 

author= .•. . • . . . c author= . •.. .• .. author= .• . .•. . . c 

{Mary}··Ta.···n·.. {MarY}:·T
a

· ... ··Tt {MarY}T
u 

····.·n·· 

Figure 7.9 CTPQs for Ql: U2 and U3 are meaningless 

Similarly to U2, CTPQ U3 will be excluded from consideration. Notice that in the 

case of CTPQ U2 , the roots of Ta and Tb are labeled by the same element "book", while in 

the case of CTPQ U3 they are labeled by different elements "book" and "article". 

Figure 7.10 show applications of transformation T R in sequence. The CTPQ Ua is 

excluded from consideration because of the CTPQ U5 . Then, the CTPQ U5 is also excluded 

because of the CTPQ U4 . 

Finally, Figure 7.11 shows some other applications of transformation T R in sequence. 

Notice that Tb in Figure 7.11(c) (and consequently T; in Figure 7.11(d)) are empty. Observe 

that the CTPQ U8 has an extra branch from the root with respect to CTPQ U7 . 

7.3.2 Determining the Meaningful Complete TPQs 

Next, we formally define the concept of meaningful CTPQ of a PTPQ on an index graph. 

Consider a PTPQ Q, an XML tree T, and its index graph C. Let U be the set of CTPQs of 

Q on C. We define a binary relation -< on U as follows: for every U, U' E U, U' -< U if and 
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Figure 7.10 CTPQs for Ql: U6 and U5 are meaningless 
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Figure 7.11 CTPQs for Ql: Ug and U8 are meaningless 

T 

(d) 

only if U' can be obtained by applying a sequence of transformations T R to U. Clearly, -< 

is a strict partial order. 

Definition 7.3.1 A CTPQ U E U is called meaningless with respect to T if there is another 

CTPQ u' E U such that (a) U' -< U, and (b) U' has an answer on T. Otherwise, it is called 

meaningful with respect to T. o 

We can now update the definition of the answer set of a PTPQ given in Section 7.1. 

We provide a new definition for the answer set of aPTPQ so that it comprises only answers 

of meaningful CTPQs. The new definition is based on Proposition 7.2.1 and Definition 

7.3.1. 

Definition 7.3.2 Let Q be a PTPQ, T be an XML tree and G be an index graph. Let 

also U1 , ... , Uk, k ~ 1, be the meaningful CTPQs of Q on G with respect to T. If 
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A, A 1 , 	 , Ak are the answer sets of Q, U1 , • • 	 Uk, respectively, on T, then A =

Uie[1,k] Ai. 	 ❑

Consider the CTPQ U3 shown in Figure 7.7(b). As mentioned in Section 7.3.1, U3,

evaluated on the XML tree T of Figure 7.1, returns the meaningless answer of Figure

7.5(c). CTPQ U3 is also shown in Figure 7.9 and it is characterized by Definition 7.3.1 as

meaningless. Therefore, it will not be used to generate answers for the PTPQ Q 1 (Figure

7.2) on T. In contrast, CTPQ U 1 of Figure 7.7(a) returns only the meaninful answer of

Figure 7.4(a). CTPQ U1 , is also shown in Figure 7.9. One can se that Transformation

TR cannot be applied to U1 . Therefore, it is correctly characterized by Definition 7.3.1 as

meaninful, and will be used to generate answers for the PTPQ Q 1 on T. One can check that

when it comes to evaluate Q 1 on T, Transformation TR excludes all CTPQs for Q 1 on G

(Figure 7.6) except the CTPQs U1, U4 and U7 of Figures 7.9, 7.10, 7.11, respectively, and

the variations of those CTPQs where label "book" is replaced by "article".

Since the meaningful CTPQs are TPQs, their evaluation can be implemented on top

of an XQuery engine and benefit from the extensive optimization techniques that have been

developed up to now for XQuery [47, 19, 20].

7.4 Comparison with Previous Approaches

In this section, we compare the semantics of our query language with the semantics of three

other well known query languages for XML that aim at excluding meaningless answers

[12, 13, 5, 6]. In most practical cases, the information in the XML tree is incomplete (e.g.

optional elements/values in the schema of the document are missing), or irregular (e.g.
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different structural patterns coexist in the same document). Therefore, we also take this

parameter into account in our comparison.

Schmidt et al. [12] suggest the meet operator to let the users query an XML document

without knowledge of the elements and the structure. Queries are sets of keywords to be

matched against the values of the XML document. This approach exploits the structure of

the XML tree and is based on merely computing the Lowest Common Ancestor (LCA) of

the nodes in the XML tree that match the keywords. The computation of the LCAs is done

bottom up. When the LCA of a set of nodes that match the keywords is computed, these

nodes are excluded from further consideration. The meet operator might fail to return a

meaningful answer when a node is a descendant of another node of similar type (logical

hierarchy) and the information in the XML tree is not complete.

Consider, for instance, the XML tree of Figure 7.12 and a keyword query consisting

of the keywords "Mary", "title" and "year". This approach considers only keywords that

are values but we allow also keywords that are elements in this example as this does not

affect the computation of LCAs. The meet operator will fail to return the subtree rooted

at the node labeled by bib which is the meaningful answer. The reason is that another

LCA node is identified first (the node labeled by "book") and the subtree rooted at this

node is excluded from further consideration. The meet operation will also fail to exclude

meaningless answers in case of incomplete information even for a flat XML tree (that is,

a tree that does not contain logical hierarchies). Consider, for instance, the same keyword

query and the XML tree T1 of Figure 7.1. The meet operator will return the meaningless

answer shown in Figure 7.5(b).

XSEarch [13] is a semantic search engine for XML. It uses a simple query language

that allows keyword specifications (values and/or elements) and a primitive structural
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restriction (a node labeled by an element keyword has a descendant node labeled by a value 

keyword), The answers are subtrees that contain the keyword labeled nodes. XSEarch uses 

the concept of Interconnection Relationship to capture the meaningful XML subtree for a 

set of nodes that match the keywords, Two nodes TLI and TL2 are interconnected ifthe subtree 

rooted at their LCA does not contain two nodes labeled by the same element. Nodes nl 

and n2 can have the same label though. The interconnection relationship is extended to 

multiple nodes through an all-pair or a star n-ary relationship. XSEarch allows only query 

answers where the nodes matched by the keywords are all-pair or star related. Intuitively, 

nodes in the XML tree represent entities and element labels represent their type. Nodes 

with the same label represent entities of the same type. Descendant nodes of a node n 

are assumed to belong to the entity n represents. Two nodes that are meaningfully related 

should not belong to different entities of the same type. XSEarch difficultly fails to return 

a meaningful answer. 

However, XSEarch usually fails to exclude meaningless answers even if the XML 

tree is flat, and does not have incomplete information. Consider the keyword query Ql 

specifying the elements "title" and "year" and the value "Mary" on the XML tree of Figure 
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7.1. XSEarch fails to exclude the meaningless answer of Figure 7.5(c). The reason is that

any two of the nodes that match the keywords are interconnected (in contrast, XSEarch

succeeds in excluding the meaningless answer of 7.5(a) because this one contains two nodes

which are both elabeled by "bib"). Similarly, query Q 1 issued against the XML tree of

Figure 7.12 which has a logical hierarchy fails to exclude the several meaningless subtrees-

answers rooted at the node labeled by the "book".

Li et al. [5, 6] extend XQuery to enable users to query XML documents without

full knowledge of the structure. This work is closer to ours compared to the previous two

because it allows the user to specify extensive structural restrictions in a query besides

keywords. To compute a query, this approach finds the LCA node of the set of nodes that

match the keywords, and treats the subtree rooted at this node as the context for query

evaluation. It employs a particular version of LCA, called Meaningful Lowest Common

Ancestor Structure (MLCAS). The MLCAS of two nodes ra t and n2 (and therefore that of

any superset of those two nodes) does not exist if two other nodes of the same type (that

is, nodes labeled by the same element) have an LCA which is a descendant of the LCA of

n 1 and n2 . The MLCAS approach fails to return meaningful answers when the XML data

contains logical hierarchies even if there is no incomplete data in it. Consider, for instance,

query Q 1 specifying the elements "title" and "year" and the value "Mary" on the XML tree

of Figure 7.13. Under the MLCAS semantics, the answer set of the query does not contain

the subtree-answer rooted at the node labeled by element "bib" (shown with bold arrows in

Figure 7.13), which, intuitively, is the answer the "most related" to query Q i . The answer

set will contain only the subtree-answer rooted at the node labeled by "reference". When

the XML data is incomplete, the MLCAS approach fails to exclude meaningless answers.
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For instance, the keyword query Q 1 specifying the elements "title" and "year" and

the value "Mary" on the XML tree of Figure 7.1 will return the meaningless answer of

Figure 7.5(b) because there are articles in the XML tree T that have only a title (and no

author) and articles that have an author (and no title). Another drawback of this approach

is that the semantics for the keyword queries (MLCAS) is different than the semantics for

the structural queries (XQuery). Therefore, the structural restrictions cannot be taken into

account in determining the meaningful answers of a query in the first place. If a meaningful

answer of a query is not contained in the subtrees returned by the keyword search part of the

query, it cannot by recovered by further evaluating the structural part of the query. Notice

that, in contrast, in our approach both the structural restrictions and the keywords in a query

determine the meaningful TPQs that, in turn, compute the answers of a query.

Our approach successfully returns all the meaningful and eliminates all the meaningless

answers of the examples discussed in this section. Its success is due to the original way it

uses to evaluate the meaningful answers of a query. Previous approaches identify meaningful

answers by operating locally on the data by computing LCAs of nodes in the XML tree.

In contrast, our approach operates globally on structural summaries of data (index graphs)

to compute meaningful TPQs. This overview of data gives an advantage to our approach

compared to previous ones.

7.5 Experimental Evaluation

We implemented our approach (abbreviated as PTPQ), and we experimentally compared it

to previous approaches on two aspects: the quality of the returned results, and the efficiency

of their computation.



161

7.5.1 Quality

In order to asses the quality of our approach, we implemented the three approaches discussed

in Section 7.4 (Meet [12], XSEarch [13], and MLCAS [5, 6]). We ran detailed experiments

to compare their Recall (defined as the proportion of relevant materials retrieved) and

Precison (defined as the proportion of retrieved materials that are relevant). These parameters

have been used for years for measuring the quality of keyword search in information

retrieval systems. As our language is a database language, we did not use ranking functions

combined with threshold values to trade recall for precision (or vice versa).

Experimental Setting We used real-world DBLP data of the size of 324 MB collected

from http://dblp.uni-trier.de/xml/ in May 2006. To simplify the document for the experiments,

we retained only three publication types: "book", "article", and "inproceedings". For each

publication type, we retained only the properties "title", "authors", and "year". As the

original DBLP data is flat, for evaluation purposes, we restructured it into three types of

data sets that comply respectively with the schemas shown compactly as dags in Figure

7.14. All subelements of publications in the three schemas are optional as in the original

Figure 7.14 Three schemas for the DBLP data: (a) Type 1, (b) Type 2, (3) Type 3

DBLP schema. Publications of the schema Type 1 do not have references. Publications
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of schemas Type 2 or Type 3 may have references. We consider also references to be

publications. Therefore, schemas Type 2 and 3 contain logical hierarchies. One difference

between schema Type 2 and Type 3 is that publications of schema Type 3 are categorized

by year.

Besides the structure of the document, the "incompletness" of the data also affects

the effectiveness of the keyword based searches. We define a publication in the data

set as complete if it has all the subelements "title", "year", and "author", otherwise it is

incomplete. For the experiments, we considered data sets that have different percentages of

incomplete publications.

The data sets for the three schema types are generated as follows. A program loads a

set of sampled "book", "article", and "inproceedings" elements each with three subelements

"author", "title", and "year" from the original DBLP data. Another program randomly

chooses a set of publications among them for removal of some of their subelements. One

or at most two subelements can be removed from each publication. The percentage of

incomplete publications for different publication types can be specified through input

parameters. Finally, an XML creator reassembles the publications to an XML document.

The structure of the generated XML file, determined also by an input parameter, can be any

one of the three types shown in Figure 7.14.

As the distinction between keywords that are values and keywords that are elements is

insignificant for the semantics of the queries in all approaches, in our experiments, we query

only for elements. We used keyword queries that comprise at least two of the elements

"title", "year", and "author". We also ran experiments on queries with more than three

keywords and the results were similar. We also considered two of the previous keyword

queries with structural restrictions. We used these queries to experimentally compare only
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our approach (PTPQ) and the MLCAS approach since these are the only two that allow the

specification of non-primitive structural restrictions.

For all three LCA-based approaches, we consider that the answer of a query is the

subtree whose leaves are the nodes that match the keywords and whose root is their LCA

(the way it is defined in each approach). Thus two distinct matchings of the keyords with

the same LCA determine two different answers. For each query and each type of data set,

we wrote a fully specified query in XQuery that expresses what the user is seeking. We

used the answers of these queries as a reference for computing precision and recall.

For each query and each type of data set, we have run the four approaches on six

XML documents with increasing percentage of incomplete publications in the range from

0 (all the publications are complete) to 50% (half the publications are incomplete).

We ran the experiments on a Pentium 2.40GHz computer with 512MB of RAM

running Windows XP Professional. We implemented all keyword search techniques in Java

and used the SAX API of the Xerces Java Parser for the parsing of XML files. Berkeley

DB XML 2.2.13 was used to store XML files and run XQuery.

7.5.2 Experimental Results for Keyword queries with or without structural restrictions

Keyword queries without structural restrictions We first consider keyword queries

without structural restrictions. Figure 7.15 shows precision and recall of the two keyword

query {author, year} for the three types of documents varying the percentage of incomplete

publications in the documents.

Both XSEarch and PTPQ have perfect recall on all types of documents both for

complete and incomplete data. Meet has also perfect recall on Type 1 and 2 documents

but performs slightly worse on Type 3 documents when the data is not complete. MLCAS
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has also perfect recall on type 1 documents. In contrast, its recall is degraded on Type 2 

documents and it drops below 60% on Type 3 documents both for complete and incomplete 

data. This is due to the fact MLCAS cannot handle the logical hierarchies appearing in Type 

2 and 3 documents. 
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PTPQ shows perfect precision on Type 1 document (no logical hierarchies). Its

precision starts above 60% for complete data and goes slightly up as the percentage of

incomplete publications increases on Type 2 and 3 documents. The opposite trend is

followed by Meet and MLCAS on all types of documents. They start at 100% with

complete data and drop as the percentage of incomplete publications increases. The precision

of XSEarch is, in general, low and is not affected significanyly significantly by the increase

of the percentage of incomplete information.

Figure 7.16 shows the precision and recall of the two-keyword query {title, author}

for the three types of documents varying the percentage of incomplete publications in the

documents. We omit the plots of the query {title, year} as they are analogous to those of

the query {title, author}.

All four approaches show in Figure 7.16 similar trends to those shown in Figure

7.15a Meet and XSErch show on the average even lower precision. Their recall is perfect

for all types of documents both for complete and incomplete data. Interestingly, the recall

of MLCAS improves when the percentage of incomplete publications increases, reaching

100% for a percentage of 50% of incomplete publications. The reason is that when the

number of incomplete publications increases, a number of "book", "article", and

"inproceedings" elements (which are missed anyway by the MLCAS approach) are not

anymore correct answers.

Figure 7.17 shows the precision and recall of the three-keyword query {title, author,

year} for the three types of documents varying the percentage of incomplete publications

in the documents. The trends are similar to those of two-keyword queries with a slight

degradation of the recall of Meet, and an average degradation of the precision of XSEarch

and Meet.
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Experimental Results for Keyword Queries with Structural Restrictions We now 

consider queries that involve also structural restrictions. We use two of the previous keyword 

queries where the "author" and "title" keyword elements are both child nodes of some 

(the same) element. This structural restriction can be formulated on the keyword queries 

{author, title}, and {title, author, year}. We call the first one Qs2 and the second one Qs3. 
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Figure 7,18 shows the precision and recall of query Q s2 for Type 3 documents varying 

the percentage of incomplete publications in the document (for Type 1 document the precision 

and recall are perfect for both approaches), Both approaches show the same recall as for 

the corresponding query without structural restrictions, which for the PTPQ approach is 

100%. Both approaches improve their precison achieving a perfect one. 
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restrictions) 

Figure 7.19 shows the precision and recall of query Q s3 for Types 2 and 3 documents 

varying the percentage of incomplete publications in the document. The PTPQ approach 

has perfect recall. The MLCAS approach has the same recall as for the corresponding 

query without structural restrictions. Both approaches improve their precision but the 

improvement is more important for PTPQ. 

In summary, MLCA shows good precision which can be improved with structural 

restrictions. However, its recall is low (it falls below 60% in some cases) . Its recall cannot 

be improved when additional structural restrictrions are imposed since the semantics for 

the keyword part of the query is different than that of the structural part of the query. 

Therefore, answers missed in the evaluation of the keyword search part of the query cannot 

be recovered during the . evaluation of the structural part. PTPQ does does not show this 

drawback. Its recall is perfect with and without structural restrictions, while additional 

structural restrictions improve its recall. 
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7.5.3 Performance 

In order to assess the performance of our approach, we compared it to the MLCAS approach 

which also allows the specification of structural constraints. In addition, the MLCAS 

approach is embedded into Timber [47] an XML database management system. In order 

to guarantee a unique experimental comparison environment, we used Timber also for 

the evaluation of the meaningful TPQs of our approach. In this section we present the 

experiments conducted to evalute the performances ofMTPQ approach and MLCAS approach 

on generating meaningful answers and report results obtained. 



170

Experimental Setting We compare the time cost of evaluating an MLCAS-embedded

XQuery, with that of MTPQ approach which generates a set of meaningful TPQs and then

evaluate their corresponding XQuery.

In the query quality experiments, we have chosen to generate synthetic DBLP datasets

so that we can better control the relationship between the algorithms and the characteristics

of the datasets.

We used original DBLP datasets. We retained only the properties of "year", "author",

"title", "publisher", and "ISBN" for each publication as these are the ones that we used in

queries, and removed other properties such as "volume" and "pages". In the experiments

we used five different sizes of datasets: 95kb, 21mb, 29mb, 95mb and 148mb. We used the

same computer as for the quality experiments.

We used following four queries in the experiments:

1. Query 1 (Q 1 ): Find titles of all the WWW publications (pure 2-keyword query: www

and title).

2. Query 2 (Q2 ): Find the title and year publications that have ISBN (2-keyword query

with structural constraints: ISBN is the child of the publication; this constraint is

specified outside the MLCA function, i.e., it is specified in the body of XQuery)

3. Query 3 (Q 3 ): Find titles of all the articles and their publication year (2-keyword

query with structural constraints: title is under the article; this constraint is specified

within the MLCA function)

4. Query 4 (Q4 ): Find the publications of inproceedings (1-keyword query:inproceedings)
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Due to some bugs in the current version of Timber (we contacted its author who

confirmed this), we were unable to run MLCAS XQuery with more than two keywords

for document size larger than 90kb. Therefore we didn't show the experimental results on

three keywords queries and up.

For each approach, we ran the four queries on the five data sets. The running

time of MTPQ consists of the time of generating meaningful TPQs and of evaluating

TPQ(XQuery). The running time of an XQuery on Timber is measured in terms of its

physical plan execution and does not include the time for query parsing and evaluation.

Each query was run consecutively five times for each data set with hot caches. The average

running time was used in the performance evaluation.

Fig. 7.20, Fig. 7.21, Fig. 7.22 and Fig. 7.23 respectively report the execution time of

MLCAS approach and MTPQ approach for the queries on DBLP data. We can see that the

time of generating meaningful TPQs is very small, only around 1% of the total evaluation

time for the MTPQ approach; for very large data sets, such overhead can even be ignored.

We can also see that the execution time of MLCAS approach is larger than that of MTPQ by

orders of magnitude. For example, for Q1, it took MLCAS 431.743 seconds to generating

5729 results for the 148MB DBLP dataset; while MTPQ only used 3.23 seconds to generate

the same results on the same dataset. Such a big difference is expected, as MLCAS works

solely on data while MTPQ uses an index graph the size of which is much smaller than that

of the underlying data. Moreover, we can see that the scalability of our approach is much

better than that of MLCAS approach.

Our experiment results show that the MTPQ approach is superior to the MLCAS

approach, both in query performance and search quality.
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CHAPTER 8

ANSWERING XML QUERIES USING MATERIALIZED VIEWS

In this chapter, the problem of answering XML queries using materialized views is addressed.

The chapter is organized as follows. Section 8.1 presents the motivation for the studing

problem. In Section 8.2, the data model, the class of queries and views considered, and

the inverted lists evaluation model adopted are presented. The novel concept of view

materialization is also introduced in this section. Necessary and sufficient conditions for

tree-pattern query answerability are provided in Section 8.3. Section 8.4 presents a stack-

based algorithm which compactly encodes in polynomial time and space all the

homomorphisms from a view to a query. Experimental results are presented in Section

8.6.

8.1 Introduction

XML is by now the standard for exchanging, exporting and integrating data on the web.

As increasing amounts of information are stored, exchanged, and exported using XML,

it is becoming increasingly important to efficiently query XML data sources. Answering

queries using views is a well-established technique in data integration, query caching and

warehousing, where queries expressed over data sources are answered using materialized

views defined over these data sources [75]. It is also (along with indexing) one of the best

known techniques used for optimizing the evaluation of queries [76, 77]. The problem

behind this technique can be formulated as follows: given a query and a set of materialized

views along with their definitions, decide whether the query can be answered using the

173
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Figure 8.1 An XML tree with two views and one query on this tree

materialized views. If the answer is positive, usually there are alternative ways to compute

the query from the materialized views inducing different evaluation costs. Consequently,

another related problem consists in finding the best way to compute the query from the

materialized views. These problems have been studied extensively in the realm of relational

databases. However, there is a restricted number of contributions in that direction in the

context of XML. The reason is the many limitations associated with the use of materialized

views when a traditional way for evaluating queries on XML documents is adopted.

Limitations of Previous Approaches. The core of XPath consists of tree-pattern queries

with one output node (TPQs). The answer of a TPQ is the set of subtrees rooted at the

matches of the query output node against the XML document tree. The presence of an

output node on queries and views, and the absence of complete structural information

outside the subtrees in the view materializations, greatly reduces the chances of a query

to have a hit of one or more views in the pool of materialized views that together can be

used to answer the query. For this reason, some approaches suggest the materialization

of additional information about the view answers, e.g. ancestor path information [49].

However, keeping this information only partially addesses the issue while increasing the

size of data that needs to be stored. Storing, in addition, data values and references to
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XML data [49] assumes a centralized enviroment and is not appropriate when the queries

need to be answered using only the materialized views (that is, when the base XML data

is not accessible). Further, the size of the answer subtrees can be very large. When

multiple views are materialized (and inevitably ovelapping portions of the XML document

are repeatedly and redundantly stored), view materialization becomes unfeasible due to

space limitations. Even if space limitations are met, usually the view materializations

are unindexed fragments of the XML document making the computation of a query more

expensive compared to computing it against the original XML document. For this reason,

in the performance studies of both [52] and [57] an upper bound has been set on the size

of the XML fragment per view that can be materialized. This restriction limits both (a)

the chances to answer the query using only the materialized views, and (b) the chances to

find an efficient evaluation plan for the query using the materialized views. These obstacles

defy the reason for materializing views in the first place.

Example 8.1.1 Consider the XML tree of Figure 8.1(a) which records bibliographic

information (ignore for the moment the triplets associated with the tree nodes). Let's

assume that the view V1 : / / article/ / in fo / author, which retrieves article authors, and

the view V2 : / / citations I I author, which retrieves citing authors, are materialized in the

client cache. Views V1 and V2 are shown as TPQs in Figures 8.1(b) and 8.1(c) respectively,

where an asterisk denotes an output node. Suppose the user issues the query Q : / / article

[in fo / author =` M aryl / citations / / author against the client cache. The query asks

for the authors who cite articles authored by Mary and is shown as a TPQ in Figure

8.1(d). One can see that query Q cannot be answered using V1 and/or V2 . The reason

is that no structural information is available outside the view answer subtrees in the view

materializations. Query Q cannot be answered using V1 and/or V2 even if ancestor path
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information is stored along with the subtrees in the view materializations because the

absence of node identifiers does not allow a structural join on the materializations of

the two views. Query Q can be answered using V1 if node article is the output node of

VI . However, in this case, the materialization of V1 is the whole base XML tree, and V2

redundantly materializes part of it. Such a large materialization is likely prohibitive in the

client cache, and if it is not, in the absence of an index on the materialization of V 1 , it

would probably be preferable to evaluate Q against the base XML data stored in the server

instead of using the views materialized in the client cache.

The Inverted Lists Evaluation Model. A recent approach for evaluating queries on large

persistent XML data assumes that the data is preprocessed and the position of every node

in the XML tree is encoded [20, 21]. Further, the nodes are partitioned by node label, and

an index of inverted lists is built on this partition. In order to evaluate a query, the nodes

of the relevant inverted lists are read in the pre-order of their appearance in the XML tree.

We refer to this evaluation model as inverted lists model. All the relevant query evaluation

algorithms in this model are based on stacks that allow encoding an exponential number

of pattern matches in a polynomial space. Comparison studies on XML query evaluation

techniques [78, 79] show that holistic algorithms [20, 22, 21, 25, 26, 43] in the inverted

lists model are superior to other algorithms and evaluation models (streaming/navigational

approaches [34] or sequential/string matching approaches [80]). In this paper, we assume

that the inverted lists model and holistic evaluation algorithms are adopted. Note that in

the inverted lists model, the answer of a TPQ is not a subtree of the XML tree but a set

of tuples. The fields of the tuples correspond to the query nodes. Each tuple contains the



177

(positional representation of) XML tree nodes that match the query nodes in an embedding

of the query to the XML tree.

Problem Addressed. Driven by the prominence of the inverted lists evaluation model, we

address the problem of answering TPQs using exclusively one or more materialized views

in the context of this model. We also address the problem of the optimal evaluation of a

TPQ using exclusively materialized views in the same context.

In this new context, query answerability by materialized views is not restricted by the

presence of output nodes in queries and views since all query and view nodes can be seen

as output nodes. As a consequence, queries have more chances to have a hit involving one

or more materialized views in the view pool.

This new framework revises the "answering queries using materialized views"

problem since previous conditions for query answerability are not valid anymore. Further,

traditional approaches [49, 52, 53, 55, 57] evaluate queries by generating compensation

TPQs over materialized views and look at the optimization of this evaluation as a problem

of finding the lowest cost compensation TPQ. Unfortunately, these techniques are not

applicable in the new context and novel stack-based techniques need to be devised for

computing queries over view materializations.

Our Approach. We suggest a novel approach for materializing views where instead of

materializing the view answer, we materialize sublists of the inverted lists for the labels

of the view nodes. A query can be computed very efficiently using materialized views by

running holistic stack-based algorithms over the inverted sublists of the view nodes.

Going back to Example 8.1.1, the triplets by the nodes of the XML tree of Figure

8.1(a) denote the positional representations of these nodes. As we show later, in the
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context of our approach, not only the TPQ Q of Figure 8.1(d) can be answered using the

materializations of views V1 and V2 of Figures 8.1(b) and 8.1(c), but also this computation

can be performed very efficiently. Moreover, view materialization takes minimal space and

any redundancy is avoided.

8.2 Data Model, Query Language, and Evaluation Model

In this section, we briefly present the data model, the class of queries and views we consider,

and the inverted lists evaluation model we adopt. We also introduce our novel concept of

view materialization.

Data Model. An XML database is commonly modeled by a tree structure. Tree nodes

represent and are labeled by elements, attributes, or values. Tree edges represent element-

subelement, element-attribute, and element-value relationships. For simplicity, we do not

distinguish here between element, attribute, and value nodes, and we denote by G the set

•of node labels in the XML tree.

For XML trees, we adopt the region encoding widely used for XML query processing

[20, 21]. This encoding associates every node with a triplet (begin, end, level). This

triplet is called positional representation of the node. The begin and end values of a node

are integers which can be determined through a depth-first traversal of the XML tree, by

sequentially assigning numbers to the first and the last visit of the node. The level value

represents the level of the node in the XML tree. The utility of the region encoding is that

it allows efficiently checking structural relationships between two nodes in the XML tree.
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For instance, given two nodes n 1 and n2, n 1 is an ancestor of n 2 iff n 1 .bcgin < n2 .begin,

and n2 .end < n 1 .end.

Query and View Language. For simplicity of presentation and in order to highlight the

novel features of our approach, we consider that queries and views are tree-pattern queries

(TPQs). We comment later on how our approach can be applied to broader classes of

queries e.g. queries with reverse axes and wildcards.Contrary to all previous approaches

on answering queries using views [49, 52, 55, 58], we do not impose any restriction on the

output nodes. Queries and views can have any number of output nodes and this does not

affect the usability of the views for the evaluation of the queries. For this reason, in our

definition below we do not explicitly refer to output nodes, and all the nodes of queries and

views are considered to be output nodes. Our approach applies without modification to the

case where arbitrary sets of nodes in queries and views are considered to be output nodes.

A tree -pattern query (TPQ) specifies a pattern in the form of a tree. Every node in a

TPQ Q has a label from L. There are two types of edges in Q. A single (resp. double) edge

between two nodes in Q denotes a child (resp. descendant) structural relationship between

the two nodes.

The answer of a TPQ on an XML tree is a set of tuples. Each tuple consists of XML

tree nodes that preserve the child and descendant relationships of the query.

More formally: an embedding of a TPQ Q into an XML tree T is a mapping M from

the nodes of Q to nodes of T such that: (a) a node in Q labeled by a is mapped by M to a

node of T labeled by a; (b) if there is a single (resp. double) edge between two nodes X

and Y in Q, M(Y) is a child (resp. descendant) of M(X) in T.
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We call image of Q under an embedding M a tuple that contains one field per node in

Q, and the value of the field is the image of the node under M. Such a tuple is also called

solution of Q on T. The answer of Q on T is the set of solutions of Q under all possible

embeddings of Q to T.

A view is a named query. The class of views we consider is not restricted. Any kind

of query can be a view.

Outline of the Inverted Lists Evaluation Model. In the inverted lists evaluation model,

the data is preprocessed and the position of every node in the XML tree is encoded. For

every label in the XML tree, an inverted list of the nodes with this label is produced. Given

an XML tree T, we use L to denote its set of inverted lists and L 0 to denote the inverted

list in L for label a. List La contains the positional representation of the nodes labeled by

a in T ordered by their begin field.

Let Q be a query. With every query node X in Q labeled by a, we associate the

inverted list La in L. To access the nodes in La for X, we maintain a cursor Cs . Cursor

Cx sequentially accesses the nodes in La starting with the first node.

With every query node X in Q, we also associate a stack Sx. At the beginning of

the evaluation of a query, all stacks are empty. When the nodes in the inverted lists are

accessed by the cursors, they are possibly stored in stacks. At any point in time, stack

entries represent partial solutions of the query that can be extended to the solutions as the

algorithm goes on.

In the following we ignore the XML tree T and we assume that the input for the

evaluation of queries and views is the set of inverted lists L. When a query Q is evaluated
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on L, if the cursor of a node X in Q iterates over the inverted list LY we say that node X

is computed on L using the list LY .

View Materialization. We now define our novel concept of view materialization.

Definition 8.2.1 Let V be a view, and L be a set of inverted lists. The materialization V(L)

of V on L is a set of sublists of the inverted lists in Lone for each view node in V. If X is

a node in V labeled by a, Lx denotes its inverted list in V (L) and it contains only those

nodes of La E L that are images of X in a solution of V on L. Sublist Lx is called the

materialization of X in V(L).

In this sense, the inverted lists in the materialization V(L) contain only those nodes

of the inverted lists in L that contribute to a solution of V on L.

Our approach for view materialization departs from all the previous approaches which

consider materializing copies of XML tree fragments, typed values, ancestor paths, or

references to the input XML tree [49, 52, 58, 55, 57]. Note that our approach is space

efficient since the sublists can encode in linear space a number of solutions for the view

which is exponential on the number of view nodes.

8.3 Answering Queries Using Views

Let Q be a query and X be a node in Q labeled by a. Recall that in order to evaluate Q on

L, the cursor Cx of X iterates over the inverted list La in L. If there is a sublist, say Lx ,

of La such that Q can be computed on L by having Cx iterate over Lx instead of La , we

say that node X can be computed using Lx on L. Let V be a view whose materialization

on L is V (L). The idea of our approach for answering Q using V on L is to identify nodes

in Q that can be computed using the materializations of nodes in V for every L and use
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their materializations in V(L) for computing the answer of Q on L instead of using the

corresponding inverted lists in L.

8.3.1 Answering a Query Using a Single View

We start by defining what answering a. query using a view means in our context of view

materialization.

Definition 8.3.1 Let V (L) be the materialization of a view V on a set of inverted lists L.

A query Q can be answered using V if for a node X in Q there is a node Y in V with the

same label as X, such that for every L, X can be computed using LY E V (L). In this case,

we say that view node Y covers query node X, or that Y is a covering node of X.

Let's assume that Q can be answered using V. If every node in Q is covered by a

node in V, we say that Q can be answered completely using V. Otherwise, we say that Q

can be answered partially using V.

When the answer of a query is computed using a view, a node of the query that

is covered by a view node uses only the , materialization of this view node. Since the

materialization of the view node is a sublist of the inverted list for the node label, it is

usually smaller than the inverted list. This reduces the cost for computing the answer of the

query.

Deciding Whether a Query Can be Answered Using One View. In order to specify

conditions for view usability, we need the concept of homomorphism between views and

queries. A homomorphism from a view V to a query Q is a mapping that maps all the nodes

of V to nodes with the same label in Q and preserves child and descendant relationships

(preserving a descendant relationship means that it is mapped to a path of nodes).
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Figure 8.2 shows a query Q and a view V and four homomorphisms hI, h2, h3 and 

h4 from Vto Q. 

The following theorem relates node coverage to homomorphisms. 

Theorem 8.3.1 Let Q be a query and V be a view. A node X in Q is covered by a node Y 

in V iff there is a homomorphism from V to Q that maps Y to X. 

Necessary and sufficient conditions-for view usability based on homomorphisms are 

provided by the next collorary of Theorem 8.3.1. 

Corollary 8.3.1 Let Q be a query and V be a view. Query Q can be answered using V iff 

there is a homomorphism from V to Q. 

For instance, in the example of Figure 8.2, query Q can be answered using view V 

since there is at least one homomorphism from V to Q. Both nodes labeled by d in Q are 

covered by node d in V. 

Notice that our definition of homomorphism is less restrictive than previous ones, 

since we do not have to consider (and impose conditions on) output nodes [52, 53, 58]. 

This increases the chances for a homomorphism from a view to a query to exist. Based 

on Theoreom 8.3.1, it also increases the chances of the view to be useful in answering the 

query. This constitutes an important advantage of our approach compared to previous ones, 

since it allows the exploitation of views when other approaches fail. 
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In order to guarantee that a query can be answered completely using a view, we

need to make sure that every node of the query has a covering node in the view. The next

corollary of Theorem 8.3.1 expresses this requirement in terms of homomorphisms from

the view to the query.

Corollary 8.3.2 Let Q be a query and V be a view. Query Q can be answered completely

using V iff there are homomorphisms from V to Q such that every node of Q is the image

of a node in V under some homomorphism.

Based on Corollary 8.3.2, one can easily see that in the example of Figure 8.2, query

Q can be answered completely using view V.

Computing the Answer of a Query Using One View. In the traditional approach for

answering a query using a view [49, 52, 53, 55, 57], the query is rewritten using the view.

That is, in order to compute the answer of the query, a compensation query is determined

which is applied to the materialized view and computes the answer of the query. This

compensation query does so by navigating in the view materialization which is a set of

subtrees of the original XML tree.

In contrast, in our approach, we use the view materialization and compute the query

answer by running stack-based evaluation algorithms over the materializations of the

covering view nodes.

Therefore, in order to perform the computation of the answer what is needed is an

association of the query nodes with covering view nodes. The set of covering view nodes

of a given query node is determined by the homomorphism of Theorem 8.3.1 as follows:

Let h 1 , . . . , hk be the homomorphisms from a view V to a query Q and 	 Yimk

be the nodes in V whose image under 1-4 is X. Then, the set m(X) of covering nodes for
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If::=lX E Q, m(X) i= 0, Q can be answered using V. If \IX E Q, m(X) i= 0, Q can be 

. answered completely using V. The materialization in V(L) of any node in m(X) can be 

used for computing X. However, we might also use the materializations of multiple (or 

all the) nodes in m(X): let LXI and LX2 be the materializations of two nodes Xl and X 2 

in m(X). The intersection LXI n LX2 is the sublist of LXI and LX2 which comprises the 

nodes that appear in both LXI and L x2 . In order to compute the answer of Q using V any 

subset of m(X) can be used: during the computation of the answer, X will be computed 

using the intersection of the materializations of the view nodes in this subset. 

Note that a view V can have a number of homomorphisms to a query which is 

exponential in the number of view nodes. However, the number of covering nodes in m(X) 

is bounded by the number of nodes in V. 

8.3.2 Answering a Query Using Multiple Views 

The presence of multiple views in the view pool increases the chances of a query to be 

answered using their materializations. We extend below our definition for answering a 

query using a view to multiple views. We first define the union of the materializations of 

two view nodes. Let Xl and X 2 be two view nodes with the same label a, and LXI and LX2 
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be their materializations. The union Lx, U Lx2 of Lx, and Lx2 is the sublist of La which

comprises exactly the nodes of both Lx, and Lx2 .

Definition 8.3.2 Let V1 (L),	 ,Vn(L) be the materializations of views V; , . . . ,Vn on a set

of inverted lists L. A query Q can be answered using V1 , 	 , V, if for a node X in Q,

there are nodes Y1 , 	 , Y in A/1 , ... ) 1/n , such that, for every L, X can be computed using

LY1 U ...0 L Yk .

Let's assume that Q can be answered using V1 ,	 ,Vn . If for every node X in Q,

there are nodes Y1 , ... Yk in VI ,	 such that, for every L, X can be computed using

U ... U LYk for every L, we say that Q can be answered completely using V1 , ... ,V,,.

Otherwise, we say that Q can be answered partially using VI , . . .

Deciding Whether a Query. Can be Answered Using Multiple Views. For the class of

queries we consider here, checking whether a query can be answered using multiple views

can be expressed in terms of checking whether a query can be answered using a single

view.

Theorem 8.3.2 Let Q be a query and {V1 , ,14} be a set of views. Query Q can be

answered using VI , . ) 1/7,, iff for some Vi , i E [1, n], Q can be answered using Vi .

Figure 8.3 shows a query Q and two views V1 and V2 . Each of these views has a

homomorphism to Q which is also shown in the figure. Based on Corollary 8.3.1, Q can be

answered using V1 (or V2 ). Therefore, based on Theorem 8.3.2, Q can be answered using

V1,172.

For the case of answering completely a query using views we can state the following

theorem.
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Theorem 8.3.3 Let Q be a query and {V1 , ... ,Vn } be a set of views. Query Q can be

answered completely using V1 , ,Vn iff it can be answered using VI , . ,Vn and for every

node in Q, there is a covering node in some (not necessarily the same) V,, i E [1,4

Based on Theorem 8.3.3, one can see that query Q of Figure 8.3 can be answered

completely uisng the views V1 and V2 of the same figure.

Computing the Answer of a Query Using Multiple Views. In order to perform the

computation of the answer of the query using a set of materialized views we associate

query nodes with the set of corresponding covering nodes in the views. The set of covering

nodes of a given query node in multiple views is defined in terms of the set of covering

nodes of the query in a single view: let X be a node in query Q, and m1  (X),	 , mn  (X)

be the sets of covering nodes of X in V1, 	 , Vn , respectively. Then, the set m(X) of

covering nodes of X in 1/1 , . , Vn is

As with the case of a single view, if 3X E Q, m(X) 0, Q can be answered using

, Vn . If VX E Q, m(X) 4 0, Q can be completely answered using VI , Vn . The

materialization of any node in m(X) can be used for computing X. However, we might

also use the materializations of some (or all the) nodes in m(X): during the computation

of the answer, X will be computed using the intersection of the materializations of these

view nodes in m(X).

In this paper, we focus on answering completely queries using views.
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8.4 Computing Covering Nodes

As discussed in Section 8.3, given a query Q and a view V, the covering nodes for a node

of Q in V are defined in terms of the homomorphisms from V to Q. However, the number

of these homomorphisms can be exponential on the size of V. In this section, we present

a stack-based algorithm which computes in polynomial time and space the covering nodes

of the nodes in Q without explicitly enumerating all the homomorphisms from V to Q.

Match Sets. In the algorithm we use a data structure, called match set, which is similar to

those employed in [81, 82, 32] for encoding query pattern matches.

Let q be a node in query Q and v be a node in view V. We say that v matches q if v

has the same label as q. Let T., and Tq denote the subtrees rooted at v and q, respectively.

Let also vi be a child node of v in V and q3 be a node in the subtree Tq . We say that the pair

(v, q) is consistent with (vi , q3 ), if v and vi match q and qj , respectively, and if v/vi E V,

then q/qj c Q.

The match set M S(V, Q) is a directed acyclic graph (dag) that compactly stores the

set of homomorphisms from V to Q. The nodes of this dag correspond to node pairs (v, q)

such that v matches q. Each node (v, q) is associated with an array ptrsArr indexed by

the children of v in V. Given a child v i of v in V, ptrsArr[vi ] is a set of pointers. Each of

the pointers points to a node (vi , qj ), where qj is a node in Tq and (v, q) is consistent with

(vi , qj ). There is an edge in the dag from node (v, q) to node (vi , qj ) iff there is a pointer

from ptrsArr of (v, q) to (vi , qj ) . We call match set of a node (v, q), denoted M S(v , q), the

node (v, q) along with the array ptrsArr of (v, q). Note that node (vi , qj ) can be a child of

multiple nodes (v, q1 ), , (v, gm ), where q1 , , qn are ancestor nodes of qj in Q. Let ry

and r(2 denote virtual roots of V and Q, respectively. Then, the match set dag MS(V, Q) is
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Figure 8.4 (a) The match set dag for the view and the query of Figure 8.2, (b) The 
snapshots of stacks after the query leaf node d has been visited during the execution of 
Algorithm computeCovering 

rooted at the node (TV, rQ). As we show later, the size of the dag is polynomial in the size 

of V and Q. 

Figure 8.4(a) shows the dag of the match set for the view V and query Q of Figure 

8.2. In order to uniquely identify a node of the view or the query, every node of V and Q 

in Figure 8.2 is associated with a node id. 

Given a match set dag M S(V, Q), we can compute the set of homomorphisms from 

V to Q. Clearly, the time required for enumerating all the homomorphisms is exponential 

on the size of the view in the worst case. However, we do not need to enumerate all the 

homomorphisms in order to compute covering nodes of the query nodes. Instead, as we 

show below, we can compute covering nodes from the match set dag. 

Computing Match Sets. The match set M S ( v, q) can be computed inductively by computing 

the match set of each child of v in V. If v is a leaf node of V, then M S ( v, q) consists of only 

node (v, q). Otherwise, suppose that we have computed all the match sets for each child 

Vi of v. Then, ptrsArr[vi] of MS(v, q) is populated by adding pointers to each child node 

( Vi, qj) such that (v, q) is consistent with (Vi, qj). If every ptrsArr[ Vi] is non-empty after the 

population, we call the newly computed M S( v, q) a valid match set. 
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Based on the above idea, we provide below an algorithm that efficiently computes

match sets and covering nodes.

The Algorithm. Algorithm computeCovering, shown in Listing 14, takes a query Q and

a view V as inputs and computes the covering nodes in V for each query node of Q. It is

a stack-based algorithm which associates each view node of V with a stack. It proceeds

in two steps. In the first step, it calls Procedure constructMS (shown in Listing 15) to

compute the match set dag MS(V, Q) (line 2). In the second step, the dag is traversed

top-down to determine the covering view nodes (lines 3-5).

Procedure constructMS traverses the tree pattern Q in preorder, constructing the

match sets as it visits nodes and traverses edges. When constructMS visits a query node

for the first time, it creates a match set for each matching view node. The created match

set are pushed onto stacks. When constructMS returns to a query node after traversing

the entire subtree of this node, it determines whether the match sets created for the query

node are valid and inserts into the arrays ptrsArr of their parent nodes pointers that point

to the corresponding nodes. When constructMS finishes the traversal of Q, MS(rv ,rQ )

encodes all the homomorphisms from V to Q. We describe the process below in more

detail.

Initially, a match set MS(rv , rQ ) is pushed onto stack ST,, the stack of the virtual

view root. For each query node q visited for the first time, constructMS iterates in

postorder over each view node v matching the query node (line 1). Let (u, p) be the node of

the match set corresponding to the top entry of stack Su . Procedure constructMS checks

whether (u, p) is consistent with (v, q). If this is the case, a match set MS(v, q) is created

and then pushed onto stack Sv (lines 2-7). Next, constructMS recursively calls itself on
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each child node of q (lines 8-9). After the traversal of the subtree of q, for each v matching

q considered in preorder, it pops out the top entry MS(v, q) from stack S, (lines 10-11).

If M S (v , q) is valid, for each entry in stack Su , where u is the parent of v, a pointer that

points to (v, q) is created and added to the entry's ptrsArr[vi] (lines 12-15).

Figure 8.4(b) shows a snapshot of the view stacks during the execution of Algorithm

computeCovering. After the query leaf node d (node id 4) has been visited, the corresponding

match set is popped out from the stack Sd of view node d. Since it is valid, it is attached to

the only match set in stack Su, of view node a.

Complexity. Let v be a node in V. We define the prefix query of v, denoted prc f fix(V, v),

as the path from the root of V to v. Given a query Q, we define the recursion depth of node

v in Q as the maximum number of nodes in a path of Q that are images of v under all the

possible embeddings to pre f ix(V,v) in that path of Q. We define the recursion depth D of

V in Q as the maximum recursion depth of the view nodes of V in Q.

The number of query nodes matched by a view node is bounded by the number |Q |

of the nodes of Q. The total number of match sets constructed during execution is bounded

by 'V| x |Q!. The number of incoming pointers to each constructed match set is bounded

by D. Therefore, the space complexity of Algorithm computeCovering is bounded by

O(|V| x 1Q| x D).

The time complexity of Algorithm computeCovering is determined by the time for

processing stack entries (that is, match sets). The number of entries in each stack at any

given time is bounded by D. Let v be a view node that matches a query node q under

consideration. Procedure constructM S spends O(f anout(v) + D) on checking whether

M S(v,q) is valid and on visiting entries in the parent stack of v, where f anout(X) denotes
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Listing 14 Algorithm computeCovering
1 create a stack for each node of V and initialize the covering node set m(q) to be empty for each node q of Q.

2 constructMS(root(Q))

3 let visited be a boolean matrix where the rows are indexed by the nodes of V and the columns are indexed by the nodes of Q.

Initialize each field of visited to be false

4 for (every node AI S (v , q) encountered in the top down traversal of the match set dag of V and Q) do

5 	 if visited[v, q] is false,  then add v to m(q), set visited[v, q] to true, and continue the traversal on the children of MS(v, q).

the out-degree of v in V. Since the number of view nodes that match node q is O(V),

the total time spent on processing stack entries for each node in Q is OM x

D), which is dominated by O (|V| x D). Therefore, the time complexity of Algorithm

computeCovering is bounded by O(|17| x x D).

8.5 Optimization Issues

Computation Time Issues. As discussed in Section 8.3, if a query Q can be answered

completely using some views, and m(X) is the set of all the covering nodes of a node X

in Q with respect to these views, then X can be computed using the intersection of the

materializations of the nodes in m(X). If additional views that have a homomorphism to Q

are discovered in the view pool, the set m(X) of covering nodes for X with respect to all the

views will potentially get new view nodes and the intersection of their materializations will

potentially decrease in size making, of course, the computation of X cheaper. However,

there is a cost associated with discovering additional views that have a homomorphism to

Q. Therefore, if a set of views that answers a query Q has been discovered in the view

pool, a question that arises is whether it is worth spending additional time to find other

views that have a homomorphism to Q in an effort to reduce the overall computation cost

of Q using the view materializations. Our experimental results in Section 8.6, show that



Listing 15 Procedure constructMS(q)

193

the answer to this question is positive: the implementation of our algorithm of Section 8.4

takes minimal time to compute all the covering nodes of a query even with a large view

pool. This is largely compensated by the benefit in computation time we obtain by finding

additional views with homomorphisms to Q.

Using Bitmaps. Consider two view nodes X 1 and X2 both labeled by the same label

a. The materializations Lx, and LX2 of X1 and X2 are sublists of the inverted list La .

Lx, and LX2 might overlap. Instead of storing directly Lx1 and LX2 , one can store the

union Lx, U LX2 of Lx1 and LX2 along with two bitmaps Bx1 and B X2 on Lx, U LX2

for Lx, and LX2 respectively. Bitmap Bxi, i 1,2, has a '1' bit at position x iff Lx ,

comprises the XML tree node at position x of Lx, U LX2 . This idea can be applied to
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Figure 8.5 Hit rate and cache size with with increasing number of materialized views 

multiple view node matedalizations resulting in important space savings. Note that because 

the view node materializations Lxl , . . . , LXk of the view nodes Xl , ' .. , X " having the 

same label are sorted on the begin value of the positional representation of their XML tree 

nodes, the intersection LXl n . .. n LXk can be computed by merge-joining Lxl , .. . , Lxk . 

Using bitmaps, the intersection of Lxl , ... , L Xk can be computed by bitwise AND-ing 

E Xl , . . . , E Xk which produces a bitmap of the intersection LXl n ... n LXk on LXl U 

.. . U L x k. That is, the order is preserved. Besides the important space savings, the use 

of bitmaps also offers time saving for two reasons: (a) fetching into memory bitmaps of 

view nodes and the inverted list nodes corresponding to their bitwise AND has less I/O cost 

than fetching the materializations ofthese nodes, and (b) bitwise AND-ing bitmaps has less 

CPU cost than merge-joining the corresponding view node materializations. 

8.6 Experimental Evaluation 

We implemented our approach and ran experiments to study its time and space performance · 

and scalability. We also ran experiments to compare our approach with traditional approaches. 
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As traditional approaches assume a different evaluation model and answer sets, this

comparison makes sense when it concerns the view cache hit rate.

8.6.1 Experimental Setup

Our implementation was coded in Java. All the experiments reported here were performed

on an Intel Core 2 CPU 2.13 GHz processor with 2GB memory running JVM 1.6.0 in

Windows XP Professional. The Java virtual machine memory size was set to 512MB. Both

XML inverted lists and TPQ view definitions as well as the view materializations were

stored in a commercial DBMS. Each displayed time value in the plots is averaged over 5

runs with a cold DBMS buffer cache.

We ran experiments both on an XML benchmark data set generated using X Mark

[83] and on a synthetic dataset using IBM's XML Generator [67]. We used a 56.2MB

XML benchmark data set generated using XMark [83]. This XML document does not

include recursive elements. It contains 74 distinct element labels. The total number of

parsed element nodes (excluding attributes and text values) is 832911 and the size of their

positional representations (i.e., the inverted lists) is 15.1MB. We also ran experiments on a

highly recursive synthetic dataset, whose results are similar to those reported here and are

omitted in the interest of space.

We used the XPath generator YFilter [84] to produce queries. YFiltcr generates

XPath queries according to specified parameters, such as the maximum query depth, the

probability of descendant edges (//), and the probability of branches. In order to create

more general workloads, we modified YFilter in the following two ways: (a) we removed

the limitation on supporting only one level of nesting of path expressions, so that it can
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generate complex XPath queries with arbitrary nesting, and (b) we relaxed the restriction

on the axis of a predicate path expression which allows only child axes (/).

8.6.2 Hit Rate

We first compare the view cache hit rate of our approach with that of previous approaches.

The hit rate expresses the percentage of randomly generated queries that can be answered

using one or multiple views materialized in the view cache. In order to compare with

previous approaches where queries have output nodes we use the criterion for query

answerability using a set of views of [57] which requires that: (a) the output node of a view

in the view set is mapped to an ancestor-or-self node of the query output node through a

homomorphism (in which case we say that this query node is covered by the view), and (b)

each query node which is not covered by this view is covered by some other view in the

set.

We generated a workload with 8000 views. We used the following setting for the

workload: maximum view depth = 4, probability of descendant edges = 0.8, and probability

of branches =1. We also generated 100 random queries with the following setting: maximum

query depth = 9, probability of descendant edges = 0.8, and probability of branches = 1.

In the experiments, we scaled the number of views in the view pool from 1000 to 8000.

To better illustrate the capacities of the different approaches under comparison, we also

measured and compared the hit rate of these approaches when only one view can be used

for answering the given query.

Figure 8.5(a) shows the hit rate of different approaches increasing the number of

views in the view pool. We refer to our approach as MVIL (Materialized Views as Inverted

Lists) and to the approach in [57] as MVST (Materialized Views as Subtrees). Our approach
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Figure 8.7 Computation overhead with increasing number of materialized views 

largely outperforms MVST both when one or multiple materialized views are used to 

answer the query. For the case of multiple views it outperforms MVST by at least 40% 

and achieves a hit rate of 97% for 7000 or more views in the view pool. 

8.6.3 Space Performance 

We also measured the space efficiency of our approach. We used the workload on the 

XMark dataset described above. Recall that the materialization of a view is stored as 

bitmaps, one per each view node. In addition, a set of inverted lists is stored, one invelted 

list per each distinct node label in the views of the view pool. Each such inverted list is the 

union of the materializations of all the view nodes with the same label in the view pool. We 



198

refer to this materialization scheme as bitmap materialization scheme. As a comparison,

we also stored directly the materializations of the nodes of all the views and measured the

total space used. We refer to the later scheme as inverted lists materialization scheme.

Figure 8.5(b) reports on the view cache size under the two materialization schemes

as the number of materialized views increases from 1000 to 8000. The scale of the Y-axis is

logarithmic. The total size of the view cache under the bitmap scheme rises from 26.45MB

to 128.3MB as the number of views in the view pool increases from 1000 to 8000. In

comparison, the size of the cache under the inverted lists scheme increases faster than the

bitmap scheme from 305.8MB to 2563.63MB. Further, the inverted lists scheme consumes

much more space, up to 20 times more than the bitmap scheme for most of the test cases.

Notice that the size of the bitmap materializations can be further reduced using state

of the art bitmap compression techniques [85] without compromising the efficiency of

bitwise logical operations. Such an implementation is beyond the scope of the dissertation.

8.6.4 Query Processing Time

We next show the speedup obtained in query evaluation time with our approach. We assume

that the views are materialized in the client side while the base XML data is stored remotely

in the server side. Queries are evaluated at the server side without using materialized views,

while they are evaluated at the client side using exclusively the view materializations. In

both cases the inverted lists evaluation model is adopted and the state of the art holistic

algorithm TwigStack [20] is employed. The communications costs are ignored. If these

costs are taken into account the savings achieved by our approach are even larger. For

the comparison, we used the workload of the 8000 materialized views described above.

Among the 8000 views, 6605 have non-empty answers. We also used four test queries on
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the XMark dataset, which are shown in Figure 8.8. These queries are randomly generated

and they can all be answered using exclusively the materialized views. Figure 8.6(a)

reports on the query processing time per query for two different configurations: No Views

refers to evaluating queries on the server XML database without using materialized views.

With Views refers to answering queries using exclusively materialized views stored in the

client view cache. Overhead denotes the computational overhead for using materialized

views. It consists of the time needed for finding the covering view nodes of the query

nodes and the time needed for loading in memory and bitwise ANDing the bitmaps of the

node materializations.

Figure 8.8 Queries on the XMark dataset

As we can see from Figure 8.6(a), With Views achieves significant speedup compared

to No Views: from 77% for Q3 up to a factor of 2.3 for Q4 (our experiments on a highly

recursive dataset show a speedup by a factor of 13 for some queries). For each query, the

fraction of Overhead in the total processing time using With Views is very small, ranging

from 0.34% for Q3 to 1.73% for Q2.

Figure 8.6(b) shows the evaluation statistics of the four queries of Figure 8.8 over the

XMark dataset. We observe that the query evaluation performance is largely determined by

the number of inverted list nodes read from disk during execution, since each disk access

triggers I/O whose cost dominates the computation costs of the query. As we can see in

Figure 8.6(b), a query can be computed using substantially smaller inverted lists with our
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approach (column #SUB) than with the No View approach (column #INV). For instance,

the number of nodes accessed using materialized views is reduced by 78% for query Q4 of

Figure 8.8. This reduction in size, reduces the 1/0 cost, but it also reduces the CPU cost

resulting in a substantial speedup.

8.6.5 Scalability

Finally, we measured the scalability of our approach as the number of the materialized

views in the view pool increases. The scalability is examined in terms of the computation

overhead which, as explained in Section 8.6.4, consists of two parts: (a) the time spent on

finding all the query covering nodes in the view pool—this operation is done by the algorithm

described in Section 5.2, and (b) the time spent on loading selected bitmaps from disk to

memory and on bitwise ANDing bitmaps.

Figure 8.7 reports on both components of the computation overhead, as well as the

number of homomorphisms from the view to the query when the number of materialized

views increases from 1000 to 8000 for two queries Q2 and Q4. Notice that the bitmap

processing component is 0 for query Q2 when the view pool contains 1000 views, since Q2

has no hit on the view cache in this case. As expected, the number of homomorphisms for

each query grows as the number of views increases. Both components of the overhead grow

very smoothly. For instance, for query Q4, the covering node computation component and

the bitmap processing component for 1000 views are 6ms and 103ms, respectively. They

grow to 32ms and 128ms for 8000 views (a ratio of 5.3 and 1.2 respectively). Note that

using a bitmap compression technique [85] can further reduce the size of bitmaps and

thereby the 1/0 cost for loading them in memory.



CHAPTER 9

CONCLUSION AND FUTURE WORK DIRECTIONS

In this chapter, the dissertation is concluded by summarizing the contributions and providing

a discussion of the future work.

9.1 Summary of Contributions

Current applications export and exchange XML data on the web. In this context, a major

challenge is the querying of the data when the structure is complex or is not fully known,

and the integrated querying of multiple data sources that export data with structural

differences and irregularities. The dissertation focuses on three aspects. One is the design

of efficient non-main-memory evaluation methods for PTPQs. Another is the assignment

of semantics to PTPQs so that they return meaningful answers. The third aspect is on

answering PTPQs using materialized views.

A query language with wildcards that allows partial specification of a tree pattern

has been introduced. PTPQs can express a broad fragment of XPath. Because of their

expressive power and flexibility, they are useful for querying XML documents whose

structure is complex or not fully known to the user, and for integrating XML data sources

with different structures.

The problem of evaluating partial path queries with repeated labels under the indexed

streaming model has been addressed. Partial path queries are not a subclass of tree-pattern

queries but they form a subclass of PTPQs. Partial path queries are represented as dags. We

have designed three algorithms for evaluating partial path queries on XML data. The first

201
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algorithm IndexPaths-R exploits a structural summary of data to generate an equivalent set

of path patterns of a partial path query and then uses a stack-based algorithm PathStack-R

for evaluating path queries with repeated labels. The second algorithm PartialMJ-R extracts

a spanning tree from the query dag and uses the PathStack-R to find the matches of the

root-to-leaf paths in the tree. These matches are progressively merge-joined to compute the

answer. Finally, the third algorithm PartialPathStack-R exploits multiple pointers of stack

entries and a topological ordering of the nodes to apply a stack-based holistic technique.

To the best of the author's knowledge, PartialPathStack-R is the first holistic algorithm

that evaluates partial path queries with repeated labels. An analysis was provided to those

three algorithms and extensive experimental evaluations were conducted to compare their

performance. The results show that PartialPathStack-R has the best theorectic value and

has considerable practical performance advantages over the other two algorithms.

Based on the work on the partial path queries, an efficient holistic algorithm, called

PartialTrecStack, was designed for evaluating PTPQs in the indexed streaming model.

Algorithm PartialTreeStack takes into account the dag form of PTPQs and avoids

redundant processing of subdags having multiple "parents." It avoids checking whether

node matches satisfy the dag structural constraints when it can derive that they violate a

same-path constraint. PartialTreeStack finds solutions for the partial paths of the query

and merge-joins them to produce the query answer. When no parent-child relationships

are present in the query dag, it is guaranteed that every partial path solution produced will

participate in the final answer. Therefore, PartialTreeStack does not produce intermediate

results. A theoretical analysis of PartialTrceStack was provided to show its polynomial

time and space complexity. It was further shown that under the reasonable assumption that
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the size of queries is not significant compared to the size of data, PartialTreeStack is

asymptotically optimal for PTPQs without parent-child structural relationships.

In order to assess the performance of PartialTreeStack, two approaches were

designed for comparison that exploit existing state-of-the-art techniques for more restricted

classes of queries. The first one is algorithm TPQGen, which generates a set of TPQs

equivalent to the given PTPQ, and computes the answer of the PTPQ by taking the union

of their solutions. The second one is algorithm PartialPathJoin, which decomposes the

PTPQ into partial-path queries and computes the answer of the PTPQ by merge-joining

their solutions. All three algorithms were implemented and detailed experiments were

conducted to compare their performance. The experimental results show that

PartialTrecStack outperforms the other two algorithms. To the best of the author's

knowledge, PartialTreeStack is the first algorithm in the indexed streaming model that

supports such a broad fragment of XPath.

An efficient streaming algorithm called PSX was developed for evaluating PTPQs in

the streaming model. To the best of the author's knowledge, no previous algorithms exist

that can efficiently support the streaming evaluation of such a broad fragment of XPath.

PSX exploits a dag representation of PTPQs enhanced with same-path constraints and

wisely avoids processing redundant query matches. It has guaranteed polynomial time and

space complexity in the size of the data and query and matches the complexity of the best

known streaming algorithm on TPQs. The experimental results show that PSX can be

used in practice on a wide range of queries and on large datasets with deep recursion. They

also show that PSX largely outperforms, in terms of time and memory usage, the only

known streaming algorithm that can support TPQs with reverse axes.
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Another efficient streaming algorithm for PTPQs called EagcrPSX was also designed.

EagerPSX applies an eager evaluation strategy to quickly determine when node matches

should be returned as solutions to the user. It proactively detects redundant query matches

to save both computational time and memory space. It has guaranteed polynomial time and

space complexity in the size of the data and query and is runtime competitive with the only

known streaming algorithm for PTPQs which is a lazy algorithm. The experimental results

show that EagerPSX can be used in practice on a wide range of queries and on large

datasets with deep recursion. They also show that, compared to the lazy algorithm PSX,

EagerPSX largely improves the query response time and has better space performance.

An original approach for assigning semantics to PTPQs has been suggested. In

contrast to previous approaches that operate locally on data, the proposed approach operates

globally on structural summaries of data to extract tree patterns. An experimental evaluation

of the proposed approach and the previous approachs shows that the proposed approach has

a perfect recall both for XML documents with complete and incomplete data. It also shows

better precision compared to approaches with similar recall. The proposed approach can

be directly implemented on top of an XQuery engine.

The problem of answering XML queries using exclusively materialized views have

been addressed. Previous approaches to this problem are limited by the way query answers

(and view materializations thereof) are defined. To overcome these limitations, the problem

has been revised by placing it under the setting of the indexed streaming model which is

currently the prominent model for evaluating queries on large persistent XML data. In this

context, an original approach for materializing views has been suggested which stores the

inverted lists of only those XML tree nodes that occur in the answer to the view. To the best

of the author's knowledge this is the first time the problem is addressed in this context and
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such a materialization scheme is adopted. Necessary and sufficient conditions have been

provided for tree-pattern query answerability in terms of view to query homomorphisms. A

time and space efficient algorithm was designed for deciding query answerability and it was

shown how queries can be computed over view materializations using stack-based holistic

_ algorithms. Optimization techniques were further developed which minimize the storage

space and avoid redundancy by materializing views as bitmaps, and that optimize the

evaluation of the queries over the views by applying bitwise operations on view

materializations. The experimental results showed that the proposed approach has largely

higher hit rates than previous approaches, significantly speeds up the evaluation of queries

without using views, and scales very smoothly in terms of storage space and computational

overhead.

9.2 Directions of Future Work

Future work includes exploiting materialized views for optimizing queries in centralized

environments. In this setting, the focus is on answering possibly partially a query using

views. An interesting problem is the devise of techniques for selecting views for

materialization in order to satisfy a number of optimization goals. It would also be interesting

to work on algorithms for the efficient updating of the view materializations when the XML

data is modified.

It is also worth further investigating the efficient computation of meaningful answers

of PTPQs. Based on the results of Chapter 7, the semantics of PTPQs is defined as a

set of TPQs to be evaluated on an XML tree. One research direction involves further

elaborating on methods for the efficient computation of these TPQs. Another research
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direction involves ranking these TPQs based on the meaningfulness of their answers and

designing techniques for the efficient computation of the k-most meaningful among them.
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