





ABSTRACT

SEMANTICS AND EFFICIENT EVALUATION OF PARTIAL TREE-PATTERN
QUERIES ON XML,

by
Xiapying W
Current applications export and exchange XML data on the web. Usually, XML data are
queried using keyword queries or using the standard structured query language XQuery
the core of which consists of the navigational query language XPath. In this context,
one major challenge is the querying of the data when the structure of the data sources is
complex or not fully known to the user. Another challenge is the integration of multiple data
sources that export data with structural differences and irregularities. In this dissertation, a
query language for XML called Partial Tree-Pattern Query (PTPQ) language is considered.
PTPQs generalize and strictly contain Tree-Pattern Queries (TPQs) and can express a broad
| structural fragment of XPath. Because of their expressive power and flexibility, they are
useful for querying XML documents the structure of which is complex or not fully known
to the user, and for integrating XML data sources with different structures. Th(ne dissertation
focuses on three issues. The first one is the design of efficient non-main-memory evaluation
methods for PTPQs. The second one is the assignment of semantics to PTPQs so that they
return meaningful answers. The third one is the development of techniques for answering
TPQs using materialized views.
Non-main-memory XML query evaluation can be done in two modes (which also
define two-evaluation models). In the first mode, data is preprocessed and indexes, called
inverted lists, are built for it. In the second mode, data are unindexed and arrives continuously

. in the form of a stream. Existing algorithms cannot be used directly or indirectly to



efficiently compute PTPQs in either mode. Initially, the problem of efﬁcigntly evaluating
partial path queries in the invefted lists model has been addressed. Partial path queries
form a subclass of PTPQs which is not contained in the class of TPQs. Three novel
algorithms for evaluating partial path queries including a holistic one have been designed.
The analytical and experimental results show that the holistic algorithm outperforms the
other two. These results have been extended into holistic and non-holistic approaches for
PTPQs in the inverted lists model. The experiments show again fhe superiority of the
holistic approach. The dissertation has also addressed the problem of evaluating PTPQs in
the streaming model, and two original efficient streaming algorithms for PTPQs have been
designed. Compared to the only known streaming algorithm that supporté an extension of
TPQs, the experimental results show that the proposed algorithms perform better by orders
of magnitude while consuming a much smaller fraction of memory space.

An original approach for assigning semantics to PTPQs has also beeﬁ devised. The
novel semantics seamlessly applies to keyword queries and to quéries with structural
restrigtions. In contrast to previous approaches that operate locally on data, the proposed
approach operates globally on structural summaries of data to extract tree patterns.
Compared to previous approaches, an experimental evaluation shows that our approach
has a perfect recall both for XML documents with complete and with incomplete data. It
also shows better precision compared to approaches with similar recall.

Finally, the dissertation has addressed the problem of answering XML queries using
exclusively materialized views. An original approach for materializing views in the context
of the inverted lists model has been suggested. Necessary and sufficient conditions have
been provided for tree-pattern query answerability in terms of view-to-query

homomorphisms. A time and space efficient algorithm was designed for deciding query



answerability and a technique for computing queries over view materializations using stack-
based holistic algorithms was developed. Further, optimizations were developed which (a)
minimize the storage space and avoid redundancy by materializing views as bitmaps, and
(b) optimize the evaluation of the queries over the views by applying bitwise operations on
view materializations. The experimental results show that the proposed approach obtains
largely higher hit rates than previous approaches, speeds up significantly the evaluation
of queries without using views, and scales very smoothly in terms of storage space and

‘computational overhead.
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CHAPTER 1

INTRODUCTION

Nowadays, massive amounts of data are published on the web on a daily basis from various
sources. Inevitably, web data is becoming increasingly heterogeneous. Extensible Markup
Language (XML) is by now the de facto standard for exporting and exchanging data on
the web due to its semi-structured characteristics: its inherent self-describing capability,
and its flexibility of organizing data [1]. As increasing amounts of information are stored,
exchanged, and presented using XML, it becomes increasingly important to effectively
and efficiently query XML data sources. The lack of precise yet ﬂexible exploration
tools to query XML data sources directly impacté the usability and maintainability of the

information contained in the web data.

1.1 Tree-Pattern Queries for XML
In the XML model, data is represented in a tree structured form.Query langu.ages for XML
are mainly based on the speéiﬁcation of structural patterns to be matched against the data
tree. In practice, these structural patterns are specified using XPath [2], a language that
lies at thé core of the standard XML query language XQpery [3]. Usually, the structural

patterns are in the form of trees (Tree-Pattern Queries — TPQs).

1.1.1 The Problem of Query Dependency from Data Structures
The semi-structured XML data does not have to comply with a schema. Even if the data

comply with some schema, its structure could be complex [4] or might not be fully known



to the user [5, 6, 7, 8]. Formulating a TPQ that will retrieve the desired results becomes
complex. The reason is that, as what will be explained below, the user has to specify an
order for the elements in every path of a tree-pattern query (TPQ) even though (a) the
user might not know thié order, and (b) the user nﬁght not be interested in imposing an
order as a structural .restriction in the query. Further, data sources usually export data on
the web under different structures even if they export the same information or information
from the same knowledge domain. Since elements may be ordered differently in these
structures, querying all these data sources in an integrated way becomes an issue: usualily,
a single TPQ is not able to retrieve the desired information from all of them [9, 5, 6, 7].
Then, the user might have to specify a number of tree patterns, which in some cases can be

exponential on the number of elements in the query [10, 11].

Example 1.1.1 Consider an XML bibliography which contains several datasets on books.
These datasets organize books differently, grouped either by publisher, or by year, or by
author, or by subject. Suppose that the user wants to find the title of a book.on the
subject XML published by O’Reilly in 2008). In addition, the user would like to impose
the following structural restrictions: (1) author is the child of book; (2) year and publisher
are ancestors of book; and subject is either an ancestor or a descendant of book. It is
not difficult to see that the requirements cannot be expressed by one TPQ, but they neéd a
set of TPQs. The >set of eight TPQs for the above requirements are shown in Figure 1.1.
Node labels are abbreviated as shown in the figure. Double arrows indicate descendant
relationship; and single arrows indicate child relationships. Each query pattern in the

figure represents two TPQs. If a node has a label of the form V(U), V is the label of the






techniques to query tree-structured data [12, 9, 13, 14], and one that extends structured

TPQ languages with keyword search capabilities [15, 16, 5, 6].

The structureless keyword-based solution. The first solution modifies keyword-based
techniques used by search engines for HTML to distinguish between text (data) and elements
(metadata). It also modifies these techniques to return fragments of the documents that
contain the keywords, as is appropriate for XML, instead of links to documents [12, 9, 13,
14]. This solution offers a very convenient way for specifying queries, even for a naive
user. Nevertheless, its major limitation is that structural restrictions cannot be specified in
the query. Structural restrictions are necessary when querying tree-streutured data for two
reasons: (a) they can express user requireménts and therefore, refine the query answer, and
(b) they can express structural constraints that are known to hold in order to speed up the

evaluation of the queries.

The structural queries with keyword search extension solution. The second solution is
applied to extend structured query languages for XML to enable keyword search [15, 16,
5, 6]. However, these languages cannot avoid having a syntax which is complex for the

simple user [13, 9, 10, 11].

1.2 Partial Tree-Pattern Query Language
In this dissertation, a query language for XML, called Partial Tree-Pattern Query (PTPQ)
language, was considered. PTPQs were initially introduced in [7]. This language addresses
the broblem of query dependence from the structure by allowing a partial specification of
tree patterns in queries. PTPQs generalize and strictly contain TPQs. They are ﬂexible

enough to allow a large range of queries from keyword-style queries with no structure,






1.3 Focus of the Investigation
This doctoral investigation focuses on three issues. The first one is the efficient evaluation
of PTPQs on XML data. The second one is on assigning semantics to PTPQs so that they
return to the user meaningful answers (that is, the queries are not matched to unrelated
parts of the XML document). The third one isvon answering PTPQs on XML data using
materialized views. The investigation on the third issue started with TPQs which is the

restricted subclass of PTPQs.

1.3.1 Evaluation Issue

Finding all the matches of structural patterns in an XML tree is a key operation in XML
query processing. A recent approach for evaluating queries on XML data assumes that
the data is preprocessed and the position of every node in the XML tree is encoded [17,
18, 19, 20, 21]. Further, the nodes are partitioned, aﬁd an index of inverted lists called
streams is built on this partition. In ordér to evaluate a query, the nodes of the relevant
streams are read in the pre-order of their appearance in the XML tree. Every node in a
stream can be read only once. In the dissertation, this evaluation mé)del is referred to as
indexed streaming model. Algorjthms in this model [18, 19, 20, 22, 23, 21, 24, 25, 26, 27]
are based on stacks that allow encoding an exponential number of pattern matches in a
polynomial space. Another evaluation model is called streaming model. In the streaming
context, data arrive continuously, are unindexed, and can potentially be infinite. Because -
of the limited storage space available, systems that query data streams require algorithms
that process data in only one sequential scan and deliver query results as soon as they
are available. Streaming processing is the only option in a number of applications such

as publish-subscribe systems, data monitoring in sensor networks, and managing network



traffic information [28, 29, 30]). Further, many applications adopt streaming processing
because of the advantages it presents: (a) no preprocessing of the XML data is required,
(b) at every point in time, only the part of the data that is relevant to the evaluation of
the query needs to be stored in memory, and (c) the data is read only once, thus avoiding
multiple traversals of the XML document.

A broad fragment of XPath such as PTPQs can be useful only if it is complemented
with efficient evaluation techniques. This task is complex because, in the general case,
PTPQs are directed acyclic graphs (dags). Existing non—main‘—memory evaluation algorithms
on XML data focus almost exclusively on path-pattern or tree-pattern queries. One motivation
of this doctoral research is to fill the gap in the efficient non-main-memory e;zaluation of

broad fragments of XPath that go beyond TPQs. We have dealt with this issue in stages.

Partial path query evaluation in the indexed streaming model. In the first sfage of the
iﬁvestigation, the problem of efficiently evaluating generalized path-pattern queries called
partial path queries in the indexed streaming model was addressed. Partial path queries are
PTPQs with a single partial path. They cannot be expressed by path or even tree-pattern

queries.

Example 1.3.1 Consider querying the XML bibliography of Example 1.1.1. Suppose that
the user wants to find authors of a book on the subject XML published by O’Reilly in 2008
with the following. structural restrictions: (1) author is the child of book; and (2) year,
publisher and subject are ancestors of book. It is not difficult to see that these requirements
cannot bé expressed by a TPQ. However, they can be easily specified by a partial path
query. Such a query is shown as a directed graph in Figure 1.3. For simplicity, value

predicates were omitted in the query.






process can be expensive [32]. Therefore, existing algorithms cannot be directly used for
partial path queries.

An indirect way of exploiting existing algorithms for dealing with query dags would
be to produce for a given partial path query ¢, a set of path queries that together compute
@. Such an attempt faces two obstacles: (a) as mentioned above the number of path queries
may be exponential on the number of query nodes, and (b) the best known algorithm

_for evaluating path queries under the indexed streaming model (PathStack [20]) does not
account for repeated labels in a path query.

Therefore, existing algérithms cannot be used directly or indirectly to compute partial
path queries. To the best of our knowledge, there are no previous algorithms for evaluating
this generalized class of queries in the indexed streaming model.

. In Chapter 4, three novel approaches were presented for evaluating partial path queries
With repeated labels. The first approach exploits a structural summary of the XML data to
evaluate an equivalent set of path—pattefn queries for a given partial path query dag. The
second approach evaluates a given query dag by generating a spanning tree for the dag.
The third approach is a holistic algorithm that evaluates a given query dag directly against_

the XML tree.

Partial tree-pattern query evaluation in the indexed streaming model. Based on the
work on partial path queries, the problem of developing efficient algorithms fof PTPQs
in the indexed streaming model is addressed. In Chapter 5, an original polynomial time
holistié algorithm for PTPQs is preéented. In order to assess its performance, two other

techniques are designed which evaluate PTPQs by exploiting the state-of-the-art existing
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algorithms for smaller classes of queries. An extensive experimental evaluation shows that

the holistic algorithm outperforms the other ones.

Partial tree-pattern query evaluation in the streaming model. The problem of developing
efﬁciént algorﬁhms for PTPQs on X.ML streams is also addressed. Two streaming algorithms
for PTPQs are designed and implemented. They are presented in Chapter 6. One algorithm;
called PSX, works in a lazy fashion. It uses a stack-based technique to compactly encode
query matches, thus avoiding query match enumeration. It also avoids processing matches
of the query dag that do not contribute to new solutions (reduﬁdant matches). Further,
it produces solutions incrementally instead of waiting> until the whole XML document
streams are processed. Compared to the only kn;)wn streaming algorithm that supports
an extension of TPQs, the experimental results show fhat the proposed algorithm performs
better by orders of magnitude while consuming a mﬁch smaller fraction of memory space.
Algqrithm PSX is the first streaming algorithm that supports such» a broad. fragment of
XPath.

_ Current streaming applications have stringent requirements on query. response time
and memory consumption because of the large (possibly unbounded) size of data they
handle. In order to keep memory usage and CPU consumption low for the PTPQ streaming
evaluation, another streaming algorithm called Eager PS X for PTPQs is designed (Section
6.5). Its key feature is that it applies an eager evaluation strategy to quickly deterrﬁine when
node matches should be returned as solutions to the user vand also to proactively detect
redundant matches. It is theoretically analyzed and experimentally tested on its time and
space performance as well as the scalability; It is compared with PSX. The results show

that Eager PSX not only achieves better space performance without compromising time
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performance, but it also greatly improves query response time for both simple and complex

queries, in many cases, by orders of magnitude.

1.3.2 Semantic Issue
To face the challenge of assigning serﬁantics to XML queries so that they return meaningful
answers, most existing approaches exploit directly or indirectly the notion of Lowest
Common Ancestor (LCA) of a set of nodes in the XML tree. However, in most practical
cases, the information in the XML tree is incomplete (e.g., optional elements/values in
the schema of the document are missing), or irregular (e.g. different structural patterns
coexist in the same document) {33]. For instance, in the DBLP data set {(data collected in
May 2006), almost 10% of the “book” entries and over 1% of “article” entries do not
have an author, while almost all “proceedings” entrigs do not have authors (this latter
one is reasonablevand expected). In such cases, the approaches of the first solution (the
structureless keyword-based solution), even if they succeed in retrieving all the meaningful
answers, they comprise only a tiny percentage of meaningful answers in their answer set.
Most of the answers are meaningless. In other words, these approaches have low precision.
Consider, for insfance, the XML bibliography shown in Figure 1.4. In the XML tree,
“book” does not have an author. Suppose that we want to find the publications on XML
“authored by “Mary.” Most existing approaches return “book” and “article” as answer,
which is meaningless. Our experiments in Chapter 7 with DBLP-based data sets show
that in some cases the precision falls below 1% for some approaches. Clearly, such a low
precision is a serious limitation for those approaches.
A recent approach (MLCAS {5, 6]) of the second sélution (the solution that extends

TPQs with keyword capabilities) shows improved precision. However, the percentage
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of meaningful answers returned (i.e. the recall) is low. In the experiments presented
in Chapter 7, the recall of the MLLCAS approach falls below 60% for several cases of
XML data. Clearly, the poor recall cannot be improved by further imposing structural
restrictions. This performance is not satisfactory for data integration environments for
which this approach is intended. In addition, it empléys different semanti.cs for the keyword
part (MLCAS) and the structured part of a query (XQuery). As a consequence, structural
restrictions in a query cannot be used to recuperate answers that are not returned by the
keyword search.

In Chapter 7, an original approach for assigning semantics to our PTPQ language
is presented. The novel semantics seamlessly applies to keyword queries and to queries
with structural restrictions. The originality of the proposed approach relies on the use
of structural summaries of the XML document for identifying structural patterns (TPQs)
for a given query. Meaningful TPQs that return meaningful aﬁswers were identified by
using a partial order between TPQs. Previous approaches identify meaningful answers by
operating locally on the data (usually computing Lowest Common Ancestors of nodes
in the XML tree). In contrast, the proposed approach operates globally on structural
summaries of data to compute meaningful TPQs. This overview of data gives an advantage

to the proposed approach compared to previous ones.
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1.3.3 Answering XML Queries Using Materialized Views

Answering queries using views is a well-established technique in databases. In this context,
two outstanding problems can be formulated. The first one consists in deciding whether
a query can be answered exclusively using one or multiple materialized views. Given
the many alternative ways to compute the query from the materialized views, the second
problem consists in finding the best way for computing the query from the materialized
views. In the realm of XML, there is a restricted number of contributions in the Vdirection
of these problerhs due to the many limitations associated with the use of materialized views
in traditional XML query evaluation models.

In Chapter 8, the previous two problems are addressed under the indexed streaming
model. Together with holistic algorithms, the indexed streaming evaluation model has been
established as the prominent technique for evaluating queries on large persistent XML data.
This new context revises these problems since it requires new conditions for view usability
and new techniques for computing queries from materialized views. An original approach
for materializing views is suggested, which stores for every view node only the list of
XML nodes necessary for computing the answer of the view. Necessary and sufficient
conditions are specified for answering a TPQ using one or multiple materialized views in
terms of homomorphisms from the views to the query. In order to efficiently answer queries
using materialized views, a stack-based algorithm is designed which compactly encodes in
polynomial time and space all the homomorphisms from a view to a query. Further, space
and time optimizétions are proposed, which use bitmaps to encode view materializations
and employ bitwise operations to minimize the evaluation cost of the queries. Finally, an

extensive experimentation is conducted which demonstrates that the proposed approach
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yields impressive query hit rates in the view pool, achieves significant time and space

savings and shows smooth scalability.

1.4 Organization
This dissertation is organized as follows. In Chapter 2, a review of the sfate—of—the—art 18
provided for query evaluation techniques on XML data, for the semantics of XML keyword
queries, and for answering XML queries using materialized views. In Chapter 3, the partial
tree-pattern query (PTPQ) language is formally defined. The same chapter comprises a
discussion of the expressiveness and the generality of the PTPQ language for specifying
quéries on XML data. Three evaluation algorithms for evaluating partial péth queries in
the indexed streaming model are presented in Chapter 4. Next, in Chapter 5, an original
polynomial time holistic algorithm for PTPQs in the indexed streaming model is designed.
In Chapter 6, two efficient algorithms for PTPQs in the streaming model are developed.
The novel semantics for the PTPQ language is discussed in Chapter 7. In Chapter 8, a
novel approach for answering XML queries using materialized views is presented. Finally,

Chapter 9 summarizes the obtained results, and provides a discussion of future work.



CHAPTER 2

STATE OF THE ART

This chapter provides a review of the state-of-the-art of evaluation techniques for queries
on XML data, on the semantics for XML keyword queries, and answering XML queries

using materialized views.

2.1 XML Query Evaluation

2.1.1 XML Streaming Evaluation
The rhajority of XPath streaming evaluation algorithms focus on tree-pattern queries (TPQs).
These algorithms broadly fall in three categories: the automara-based approach [34, 28],
the tree-based approach [35, 36], and thé stack-based approach [37, 29, 30]. There is also a
particular case of XPath streaming evaluation algorithms called filtering algorithms. These
algorithms do not literally evaluate the input queries, but they task to determine which of
them have a nonempty output on an incoming data stream.

Automata-based algorithms (e.g. XSQ [34]) suffeffrom the problem of exponential
state blow-up. Tree-based algorithms (e.g. TurboXPath {35]) first build ﬁ parse tree for a
given TPQ and then find matches of the parse tree nodes on the data streams. TurboXPath,
in particular, uses smart matching arrays to avoid an exponential memory usage typical for
automata-based algorithms. Nevertheless, both automata-based and tree-based algorithms
have a worst case complexity which is exponential in the size of the query.

Stack-based approaches [37, 29, 30] exploit stack techniques [20] to compactly encode

query pattern matches in stacks, thus avoiding their enumeration and explicit storage during

15
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evaluation. They evaluate TPQs against XML streams in polynomial time and space, which
is a significant improvement over automata-based and tree-based algorithms.

However, the problem of the efficient streaming evaluation of subclasses of XPath
beyond TPQs has not been adequately addressed. Algorithm X, [32] is presently the
only streaming algorithm that supports an XPath expression with child and descendant
axes and their symmetrical reverse axes parent and ancestor. X,,, extends the tree-based
streaming algorithm TurboXPath.

Unfortunately, X, aos has three limitations. First, X, explicitly enumerates and stores
all pattern matchés’ for a given query. When the data is recursive (more than one element
in a path has the same tag), the number of pattern matches can be exponential in the size
of query and data. Second, X,,; may store multiple copies of the samé output, since a
single match of an output query node can participate in multiple matches of the query. As
a result, it needs an additional process to elimiﬁate duplicate solutions at the final stage.
Third, X, does not deliver query answers until the entire stream is processed. In the case
of an infinite stream, the evaluation may be unnecessarily postponed infinitely. Because of
these limitations, this type of processing is inefficient and not viable for applications that
need to process infinite streams or require incremental outputs. In Chapter 6, we present a
streaming algorithm which not only supports a much larger fragment of XPath, but it also
does not have the limitations of X,,s. As we show later, it outperforms X, in terms of

both time performance and memory usage.

2.1.2 XML Indexed Streaming Evaluation
The indexed streaming evaluation model uses indexes built over the input data to avoid:

(1) preloading XML documents in memory, and (2) processing large portions of the XML
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documents that are not relevant to the query evaluation. Because of these desirable properties,
many query evaluation algorithms for XML have been developed in this model. These
algorithms broadly fall in two categories: the structural join approach [19, 38, 22, 23], and
the holistic twig join approach [20, 24, 39, 21, 40, 26, 39]. All these algorithms, however,
focus almost exclusively on TPQs.

The structural join approach first decomposes a TPQ into a set of binary descendant
or child relationships.b Then, it evaluates the relationships using binary merge join. The
soiutions for the binary relationships are “stitched” together to form the answer of the query.
This approach might not be efficient because it generates a large number of intermediate
solutions (that is, solutions for the binary relationships that do not make it to the answef
of the TPQ). Algorithms for structural join order optimization were introduced in [38].
Structural join techniques can be furthér improved using various types of indexes [22, 23].

The holistic twig join approach (e.g. TwigStack [20]) represents the state of the art
for evaluating TPQs. This approach evaluates TPQs by joining multiple input streams at
a time to avoid producing large intermediate solutions. Algorithm TwigStack was shown
optimal for TPQs without child relationships. . |

Several papers focused on éxtending TwigStack. For example, in [24], algorithm
TwigStackList evaluates efficiently TPQs in the presence of child relationships. Algorithm
1T'wigJoin extended TwigStack by utilizing structural indexes built on the input streams
[39]. Chen et al. [26] proposed algorithms that handle queries over graph structured
data. Evaluation methods of TPQs with OR predicates were developed in [40]. In [21];
the XR-tree index [23] is used to skip XML data elements that do not participate in the
query answer. Algorithm Twig?Stack was presentéd in [27] to avoid merge-joining path

solutions needed by TwigStack.
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All the above algorithms are developed for TPQs and cannot be used nor extended
so that they evaluate PTPQs. The reason is that PTPQs are not mere tree patterns but dags
augmented with same-path constraints. V

PTPQVS were initially introduced iﬁ [7]. Their containment problem was studied in
[41] and PTPQ semantic issues were addressed in [8]. Relevant to our work are also the
evaluation algorithms for partial path queries [42, 43]. Partial path queries are not a subclass

of TPQs but they form a subclass of PTPQs.

2.2 Semantics for XML Keyword Queries |
A number of papers deal with the assignmeﬁt of meaningful semantics to keyword-based
query languages for XML [12, 9,13, 5, 10, 6]. All of them are based on some variation
of the concept of Lowest Common Ancestor (LCA). Among them, the query language in
[13] allows also some primitive structural restrictions to be expressed. [5, 6] provide an
extension of XQuery to allow users to query an XML document without full knowledge
of the structure. It uses the concept of Meaningful Lowest Common Ancestor Structure
(MLCAS) of a set of nodes for assigning semantics to keyword queries. In Chapter 7, we
present an approach for assigning semantics to keyword queries with structural restrictions.
We analytically compare our approach with the three approaches in [12, 13, 5 6] in Section
7.4 and experimentélly in Section 7.5. Our approach shows better recall - in all cases,
including cases where the XML data are incomplete. Among approaches with similar
recall, our approach shows better precision. In [10] the concept of Smallest Lowest Common
Ancestor (SLCA) is used to assign semantics to keyword queries. SLCAs are defined to
be LCAs that do not contain other I.CAs. This semantics is similar to that of the MLCA

approach. For this reason, we do not directly compare it to ours.
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In order to cope with the low precision, some approaches extend the database
techniques with information retrieval techniques. In this direction, they rank the answers
of keyword search queries on XML documents according to theif estimated relevance [13,
14]. Information retrieval systems using ranking functions may trade recall for precision.
The PTPQ. language is a database query language. Therefore, it does not employ any
ranking functions. Its goal is to. not miss any meaningful answer and to exclude as many
meaningless answers as possible. '

Some languages employ approximation techniques to searph for answers when the
initial query is too restricted to return any. They either relax th§: structure of the queries
or the matchings of the queries to the data [44, 45]. In contrast to our language, these
languages return approximate (not exact) answers.

Several papers focus on providing efficient algorithms for evaluating LCAs for
keyword queries [12,79, 13, 5, 10, 6, 46].  Our approach is different and does not have
to.explicitly compute LCAs of nodes in the XML tree. In contrast, it cémputes a number
of meanjngful TPQs for PTPQs that involve keywords and/or structural restrictions. Since
TPQs can be evaluated using an XQuery engine, our approach can directly take advantage

of the various optimization techniques developed so far for XQuery [47, 19, 20].

2.3 Answering XML Queries Using Views
Because of the increasing importance of XML, a number of papers have recently addressed
the important problems of XML query rewriting using views and of XML view selection
[48, 49, 50, 51, 52, 53, 54, 55, 56, ?, 57]. A common assumption made by most of these

works is that a view materialization is a set of subtrees rooted at the images of the view
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output nodes, or references to the base XML tree. In order to obtain the answer of the
original query, downward navigation in the subtrees is needed.

Two types of XML query rewriting problems, namely, equivalent rewritings and
contained rewritings have been considered. An equivalent rewriting produces all the answers
to the original query using the given view materialiiation(s), whereas a contained rewriting
may produce a subset of the answer to the query. The majority of the recent research efforts
have been directed on rewriting XPath queries using materialized XPath views. Among
them most works focus on the equivalent rewriting [49, 52, 53, 51, 55]. Balmin et kal.r {49]
presented a framework for answering XPath queries using materialized XPath views. A
view materialization may contain XML fragments, .node references, full paths, and typed
data values. A query rewriting is determined through a homomorphism from a view to
the query and the view usability (or query answerability) depends on the availability of
one or more of the four types of materializations. Mandhani and Suciu [52] presented -
results on equivalent TPQ rewritings when the TPQs are assumed to be minimized. Xu et
al. [53] studied the equivalent rewriting existence problem for three subclasses of TPQs.
Tang and Zhou [51] considered rewritings for TPQs with multiple output nodes. However,
the rewritings are restricted .to those obtained through a homomorphism from the view to
the query which maps the query output nodes to the view output nodes (output preserving
homomorphism). |

The problem of maximally contained TPQ rewritings was studied in [58] both in the
absence and presence of a schema. All contributions in [49, 52, 53, 51, 58, 55] ére re‘strkcted
to query rewritings using a single materialized view. A common constraining requirement

for view usability is the existence of a homomorphism that satisfies two conditions: (a) it

maps the view output node to an ancestor-or-self node of the query output node, and_ (b) it
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is an isomorphism on query nodes that are not descendants of the image of the view output
node.

The problem of equivalently answering XPath queries using multiple views has been
studied in [55, 56, 59, 57]. Arion et al. [55] considered the problem in the presence
of structural summaries and integrity constraints. As in [51], a query can have multiple
output nodes, and a rewriting is obtained by finding output preserving homomorphisms
from views to the query. Answers of views are tuples whose a;tributes include node ids
of the original XML tree, XML subtrees, and/or nested tuple collections. The answer to a
query is computed by combining the answers to the views through a number of algebraic
operations. The materialization scheme of storing node ids together with XML subtrees
is also adopted by [56, 59]. Both papers assumed that output preserving homomorphisms
exist among views and they presented rewriting algorithms which use intersection of view
answers on node ids.

Tang et al. [57] addressed the multiple view rewriting problem based on the
assumptions that structural ids in the form of extended Dewey code‘s [60] are stored with
view materializations. This way, the common ancestors of nodes in different view fragments
can be derived for checking view usability. Also, structural joins on the view fragments can
be performed based on Dewey codes to produce query answers. The paper also studied a
view selection problem defined as finding a minimal view set that can answer a given query.
In [50, 54] the equivalent rewriting problem has been addresses but for queries and views
which"éi‘e XQuery‘ expressions.

Phillips et al. [61] consider materializing intermediate query results. as sets of tuples

in order to allow additional evaluation plans for structural joins. However, their context of
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view usability is very restricted and they do not address query answerability from materialized

views issues.



CHAPTER 3

XML DATA MODEL AND PARTIAL TREE-PATTERN QUERY LANGUAGE

In this chapter, we define the XML data model and the partial tree-pattern query (PTPQ)
language. We also discuss the expressiveness and the generality of the PTPQ language for -

specifying queries on XML data. -

3.1 XML Data Model
XML data is commonly modeled by a tree structﬁre. ‘Tree nodes are labeled and represent
elements, attributes, or values. Lét L be the set of node labels. Tree edges represent
element-subelement, element-attribute, and element-value relationships. Without loss of
generality, we assume that only thé root node of every XML tree is labeled by r € ,Cv. We
denote XML tree labels by lower case letters. To distinguish between nodes with the same
label, every node in the XML tree has an identifier shown as a subscript of the node label.

Figure 3.1 shows an XML tree. The triplets by the nodes will be explained below.

T (1,13,1) i
a;(2,12,2) T
Cg(/3,3,3)\03 (4,11.3) ¢
a4(5,74) as (8,10,4) C|I

ds (6.6,5) €7(9,9.5) d/ \e
(a) (®)

Figure 3.1 (a) An XML tree T, (b) The index tree of T’

23
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For XML trees, we adopt the positional representation widely used for XML query
processing [19, 20, 21]. The positional representation associates with every node a triplet
(start,end,level) of values. The start and end values of a node are integers which can
be determined through a depth-first traversal. of the XML tree, by sequentially assigning
numbers to the first and the last visit of the node. The level value represents the level of the
- node in the XML treé. Interestingly, similar positional representation scheme is used for
processing class hierarchies in the area of Artificial Intelligence [62].

The positional representation allows efficiently checking structural relationships
between two nodes in the XML tree. For instance, given two nodes 7, and ng, ny is an
ancestor of ny iff ny.start < ny.start, and ny.end < ni.end. Node n, is the parent of n,
iff ny.start < ng.start, ng.end < nq.end, and ny.level = TLg.ze’Uel — 1.

In this dissertation, we often need to check whether a number of nodes in an XML
tree lie on the same path. This check can be performed efficiently using the following

proposition.

Proposition 3.1.1 Given a set of nodes nq,...,n; in an XML tree T, let maxStart and
- minEnd denote respectively the maximum start and the minimum end values in the
positional representations of ny, ..., n,. Nodes ny,...,ny lie on the same path in T iff

maxStart < minEnd.

3.2 Partial Tree-Pattern Query Language

Syntax. A partial tree-pattern query (PTPQ) specifies a pattern which partially determines
a tree. PTPQs comprise nodes and child and descendant relationships between nodes. The

nodes are grouped into disjoint sets called partial paths. PTPQs are embedded to XML
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trees. The nodes of a partial path are embedded to nodes on the same XML tree path.
However, unlike paths in TPQs the child and descendant relationships in partial paths do
not necessarily form a total order. This is the reason for qualifying these paths as partial.
PTPQs also comprise node sharing expressions. A node sharing expression indicates that
two nodes from different partial paths are to be embedded to the same XML tree node.
That is, the image of these two nodes is the same — shared — node in the XML tree.

The formal definition of a PTPQ follows.

Definition 3.2.1 (PTPQ) Let N be an infinite set of labeled nodes. Nodes in N are labeled
by alabel in L. Let X andY denote distinct nodes in N'. A partial tree-pattern query is a
pair (S, N) where:
S isalist of n named sets pr, . .., p, called partial paths (PPs). Each PP p; is a finite set of
expressions of the form X /Y (child relationship) or X//Y (descendant relationship).
We write X|pi|/ Y[pz] (resp. Xlpd//Y[pi)) to indicate that X[p;]/Y [ps)
(resp. X [p:)//Y [ps)) is a relationship in PP p,. Child and descendant relationships
are collectively called structural relationships.
N ;'s a set of node shaﬁng expressions X [p;| = Y[p;], where p; and p; are distinct PPs,
and X andY are nodes in PPs p; and p; respectively such that both of tﬁem are labeled

by the same label in L.

Figure 3.2(a) shows a PTPQ @); and Figure 3.2(b) shows the visual representation of
(1. We use this representation later on in Section 5.3 to design a comparison algorithm for
evaluating PTPQs. Unless otherwise indicated, in the following, “query” refers to a PTPQ.

Note that the labels of the query nodes are denoted by capital letters to distinguish them
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Figure 3.2 A PTPQ and its three representations

from the labels of the XML tree nodes. In this sense, label [ in an XML tree and label L in

a query represent the same label.

Semantics. The answer of a PTPQ on an XML tree is a set of tuples of nodes from the
XML tree that satisfy the structural relationships and the same path constraints of the PTPQ.

Formally:

Definition 3.2.2 (Query Embedding) An embedding of a query Q) into an XML tree T
is a mapping M from the nodes of () to nodes of T such that: (a) a node Alp;] in Q is
mapped. by M to a node of T labeled by a; (b) the nodes of () in the same PP are mapped
by M to nodes that lie on the same path in T; (c) ¥V X[pi|/Y [ps] (resp. X[pi)//Y [pi]) in
Q, M(Y[pi]) is a child (resp. descendant) of M(X[p;]) in T (d)V X[pi] = Yp;] in Q,

M(X[p;]) and M (Y [p;]) coincide inT.
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We call image of () under an embedding M a tuple that contains one field per node in
@, and the value of the field is the image of the node under M. Such a tuple is also called
solution of Q on T'. The answer of () on T is the set of solutions of ¢ under all possible

embeddings of ) to T'.

Graph representation for PTPQs. For our evaluation algorithm, we represent queries as
node labeled annotated directed graphs: a query () is represented by a graph (). Every-
node X in @) corresponds to a node X in ()¢, and vice versa. Node X is labeled by the
label of X. Two nodes in (2 participating in a node sharingéxpression correspond to the

same node in (). Otherwise, they correspond to distinct nodes in (. For every structural

relationship X//Y (resp. X/Y) in @ there is a single (resp. double) edge in Q. In

addition, each node in Q)¢ is annotated by the set of PPs of the nodes in () it corresponds
to. Note that thesé annotations allow us to express same-path constraints. That is, all the
nodes annotated by the same partial path have to be embedded to nodes in an XML tfee
that lie on the same path.

Figure 3.2(c) shows the query graph of query @), of Figure 3.2(a). Note that a node in
the graph inherits all the annotating PPs of its descendant nodes. Because of this inheritance
pfopérty of partial path annotations we can omit in the figures the annotation of internal
nodes in queries when no ambiguity afises. For example, in the graph of Figure 3.2(c),
node A is annotated by the PPs p,, ps, and ps inherited from its descendant nodes D, E,

~and F'.

Clearly, a query that has a cycle is unsatisfiable (i.e., its answer is empty on any XML

tree). Therefore, in the following, we assume a query is a dag and we identify a Query with

its dag representation.
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3.3 Generality of Partial Tree-Pattern Query Language

Clearly, the class of PTPQs cannot be expressed by TPQs. For instance, PTPQs can
constrain a number of nodes in a query pattern to belong to the samé path even if there
is no precedence relationship between these nodes in the PTPQ. Such a query cannot be
expressed by a TPQ. TPQs correspond to the fragment XP{l////} of XPath that involves
predicates([]), ‘énd child (/) and descendant (/) axes. In fact, it is not difficult to see
that PTPQs cannot be expressed either by the larger fragment XP/// A\ of XPath
that involves, in addition, the reverse axes parent (\) and ancestor (\\\). On the other
hand, PTPQs represent a very broad fragment XP{///\\\=} of XPath that corresponds
to XP{0///\\ augmented with the ¢s operation (=) of XPath2 [1]. The is operator is
a node identity equality operator. The conversion of. an expression in XP/ /AN~ o
an equivalent PTPQ is straightforward. There is no previous indexed streaming evaluation
algorithm that directly supports such a broad fragment of XPath.

Note that as the next proposition shows, a PTPQ is equivalent to a ser of TPQs.

Proposition 3.3.1 Given a PTPQ Q there is a set of TPQs Q1, ..., @y in XPU//1Y gych
that for every XML tree T, the answer of (Q on T is the union of the answers of the (J;s on

T. " | 0

As an example, Figure 3.2(d) shows the two TPQs for query @)1 of Figure 3.2(a),
which together are equivalent to ¢);. Based on the previous proposition, one can consider
evaluating PTPQs using existing algorithms for TPQs. In Section 5.3.1, we present such
an algorithm. Howéver, the number of TPQs that need to be evaluated can grow to be large
(in the worst case, it can be exponential on the number of nodes of the PTPQ). Therefore,

the performance of such an algorithm is not expected to be satisfactory.



CHAPTER 4

EVALUATING PARTIAL PATH QUERIES ON INDEXED XML STREAMS

In this chapter, we present our three evaluation algorithms for evaluating partial path queries
in the indexed streaming model. The chapter is brganized as follows. Section 4.1 defines
the partial path query language and its properties. We describe data structures for the
indexed streaming evaluation in Section 4.2. We present our three evaluation algorithms in
Section 4.3, 4.4, and 4 4 respectively. Section 4.6 presents and analyses our experimental

results.

4.1 Partial Path Query Language
A partial path query specifies a path pattern where the structure (an order among the nodes)

- may not be fully defined.

Syntax. In order to specify these queries, paths or even trees are not sufficient, and we need

to employ directed graphs.

Definition 4.1.1 A partial path query is a directed graph whose nodes are labeled by labels
in L, and evéry node is incident to at least one edge. There is at most one node labeled by
r and this node does not have incoming edges. Edges between nodes can be of two types:

child and descendant. : 0l

In the rest of the paper, unless stated differently, “query” refers to “partial path query.”
Query nodes denote XML tree nodes but we> use capital letters for their labels. Therefore,

a query node labeled by A denotes XML tree nodes labeled by a. In order to distinguish

29
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between distinct query nodes with the same label, we use subscripts. For instance, A3 and
A, denote two distinct nodes labeled by A. If () is a query, and X and Y are nodes in @),
the expressions X /Y and X/ /Y are called structural relationships and denote respectively

a éhild and descendant edge from X to Y in Q).

Figure 4.1 shows four queries. Child (resp. descendant) edges are shown with single

(resp. double) arrows. Query @ is a partial path query which is. also a path query since
the structural relationships in the query induce a total order for the query nodes. Notice
that a query graph can be disconnected, e.g. query ¢4 in Figure 4.1(d). Notice also that no
order may be defined between two nodes in a query, e.g. between nodes A and C'in @3, or

between nodes A; and A, in ().

f b
oAU A

() ) © (d)

Figure 4.1 Queries (a) @1, (b) @, (¢) Qé, (d) Q4

Semantics. The answer of a partial path query on an XML tree is a set of tuples. Each tuple

éonsists of XML tree nodes that lie on the same path and preserve the child and descendant
relationships of the query. More formally: |

An embedding of a partial path query () into an XML tree T is a mapping M from

-the nodes of () to nodes of 7" such that: (a) a node in () labeled by A is mapped by M to a

node of 7" labeled by a; (b) the nodes of () are mapped by M to nodes that lie on the same

path in T; )V X/Y (resp. X//Y)in Q, M(Y") is a child (resp. descendant) of M (X) in

T.
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We call image of () under an embedding M a tuple that contains one field per node in
@, and the value of the field is the image of the node under M. Such a tupie is also called
solution of ) on T" and the value-of each field is called solution of the corresponding node
in @ onT. The answer of Q‘on T is the set of solutions of ¢ under all possible embeddings
of ) to T.

Consider query ()5 of Figure 4.1. Notice that Q2 is syntactically similar to a tree-
pattem query (twig). However, the semantics of partial path queries is different: when
query (), is a partial path query, the images of the query nodes R, A_and C should lie on

the same path on the XML tree.

Vo
7\ \T/ A

4 C E C E 4,

R
<

@ (b) © (@

Figure 4.2 Queries of Figure 4.1 with the root R (a) @1, (b) @, (¢) @3, (d) Q4

Clearly, we can add a descendant edge from node R to every node that does not
have incomirlg edges in a query without altering its meaning. Therefore, without loss of
generality, we assume that a query is a connected directed graph rooted at R. Figure 4.2
shows the queries of Figure 4.1 in that form.

Obviously, if a query has a cycle, it is unsatisfiable (fhat is, it does not have a non-
empty answer on any database). Detecting the existence of cycle in a directed graph can be
done in linear time on the size of the graph. In the following, we assume that a query is a

directed acyclic graph (dag) rooted at node R.
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4.2 Data Structures for Indexed Streaming Evaluation
In the indexed streaming evaluation model, the data is preprocessed and the position of
every node in the XML tree is encoded. Usually, for every label in the XML tree an
inverted list of the nodes with this label is produced. These lists are called streams. In
order to evaluate a query, the nodes of the relevant streams are read in the pre-order of their
appearance in the XML treé. Every node in a stream can be accessed only once. We present
in this section the data structures and operations we use for the evaluation of the queries.

Let () be a query. For simplicity, we assume for now that @ is a tree pattern rooted at
R. We show in Section 4.5 how to handle queries that are dags. Let X be a node and L be
a label in (). Function nodes(Q) returns all nodes of ); label( X ) returns the label of X in
Q; label(Q) returns the set of node labels in Q; occur(L) returns all nodes in @ labeled by
L. Boolean function isLeaf{ X ) returns true iff X is a leaf node in Q). Function parent(X)
returns the parent of X in (); children(X ) returns the set of child nodes of X in Q.

With every distinct node label L in @), we associate a stream T} of the positional
representationr (see Section 3.1) of the nodes labeled by L in the XML tree. The nodes
in the stream are ordered by their begin field. To access sequentially the nodes in T7,, we
maintain a cursor C'p. For simplicity, we may alterhatively use O, to denote the node
pointed by bointer Cyr in T. Operation advance(Cy) moves Cp, to the next node in 77,
Function eos(C},) returns true if C7, has reached the end of T7.

With every query node X in (), we associate a stack Sx. A stack entry in Sy consists
of a pair: (positional representation of node from Tjge(x), pointer to an entry in stack
Sparent(x))- A pointer denotes a position in a stack. The expression Sx .k denotes the entry
at position k of stack Sx. The position of the bottom entry in a stack is 1. We use the

following stack operations: push(Sx,entry) which pushes entry on the stack Sy, pop(Sx)
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which pops out the top entry from stack S, and fop(Sx) which returns the position of the

top entry of stack Sy.
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Figure 4.3 (a) Data path, (b) Query Js, (¢) Initial state of cursors and stacks

Initially, all stacks are empty and every cursor Cp, points to the first node in T7,.
Figure 4.3(c) shows the initial state of cursors and stacks associated with the query Qs of
Figure 4.3(b) on the data path of Figure 4.3(a). Stream nodes are accessed through cursors
and they are possibly.stored in stacks. In Figure 4.3(c), cursor (4 feeds stacks 541 and S 42
and cursor C'g feeds stacks Sp; and Sge. During execution of the algorithm, the entries
that stack Sx can contain correspond to stream nodes in T}qpe(x) before Craper(x)-

The entries. In a stack below an entry e correspond to nodes in the XML tree that are
ancestors of the node corresponding to e. The poin{er of an entry e in a stack Sx points
to the highest among the entries in s'tack Sparent(x) that correspond to ancestors of e in the
XML tree. At any point in time, stack entries represent partial solutions of the query that
can be extended to the solutions as the algorithm goes on. An important feature of such a
stack-based organization is that it encodes a potentially exponential number of solutions in

a linear space. -
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4.3 IndexPaths-R: Leveraging Structural Indexes and Path Query Algorithms
Our first approach, called IndexPaths-R, endeavors to leverage existing algorithms for path
queries [20]. Given a partial path query (), IndexPaths-R exploits a structural summary of
data, called index tree, to generate a set of path queries that together are equivalent to Q.
* In order to evaluate these queries, it extends the algorithm in [20] for path queries so that it

can work on path queries with repeated labels.

4.3.1 Generating Path Queries from Index Trees
Given a partitioning of the nodes of an XML tree 1", an index graph for Tisa graph G such
that! (a) every node in G is associated with a distinct equivalence class of element nodes in
T, and (b) there is an edge in GG from the node associated with the equivalence class A to
the node associated with the equivalence class B, iff there is an edge in T’ from a node in
A to a node in B. The equivalence class of nodes in 7" associated with each node in G is
called extent of this node. Index graphs have been referred to with different names in the
literature and they differ in the equivalence relations they employ to partition the nodes of
the XML tree. An I-index [63, 64] considers as equivalent nodes in 7" that have the same
incoming path from the root of 7. A 1-index is a tree'. We define the index tree of T to be
a 1—index of T" without extents. The index tree can be built by a single depth-first traversal
of T in time pf,oportional to the size of 7. Figure 3.1(b) shows the index tree for the XML
tree of Figure 3.1(a).

1-indexes are usually much smaller than the corresponding XML data. According

to the measurements of [55] on XML documents from different repositories, a 1-index is

!1-indexes are similar to strong DataGuides [65] when the data is a tree.
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three to five orders of magnitude smatller than the corresponding XML data. Since index
trees do not have extents, their size is insignificant compared to the size of the XML data.
Given a query () and an index tree [, we can generate a set P of path queries that
is equivalent to () by finding all the embeddings of () into /. Any of the two algorithms
presented later in this paper can be used to find the embeddings of a query to an index tree.

However, even a naive approach would be satisfactory given the size of an index tree.
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(a) Embedding 1 . (b) Embedding 2

Figure 4.4 Two embeddings of query ()5 of Figure 4.2(c) on the index tree of Figure
3.1(b) and the corresponding path queries

Figure 4.4 shows all the possible embeddings of the query @5 of Figure 4.2(c) on
the index tree of Figure 3.1(b) (there are two of them) and the corresponding path queries.
There is an one-to-one correspondence between the nodes of a path query and the nodes
of (). Two consecutive nodes in a path query are linked through a child relationship if the
corresponding nodes in the index tree are linked through a child relationship. Otherwise,
consecutive nodes in a path query are linked through a descendant relationship.

The next proposition shows that the answer of a partial path query can be correctly

computed by the path queries generated. Its proof is straightforward.

Proposition 4.3.1 Let T be an XML tree and I be its index tree. Let also Q) be a partial
path query and P={P, ..., P,} be the set of path queries generated for Q) on I. Then, the

answer of ¢ on T is the union of the answers of all the Ps on T
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- In practicé, the number of the path queries for the query @ is expected to-be small.
However, in extreme cases, it can be exponential on the number of nodes in (). This is, for '
instance, the case when the query does not specify an order for its non-root nodes and every
ordering of these nodes has an embedding on the index tree. Neverthéless, even in this case,
any one of the path queries generated represents a pattern that occurs in 7'. Therefore, it

will return a non-empty answer when evaluated on 7.

4.3.2 An Algorithm for Path Queries with Repeated Labels

Algorithm PathStack [20] optimally computes answers for path pattern queries under the
indexed streaming model. However, it operates on a restricted class of path queries where a
label cannot appear more than once. In this section, we extend PathStack so that it works on
path queries with repeated labels. PathStack associates every query node with one stack and
-one stream. Attempting to associate multiple streams per query label (one for each query
node with this label) would violate the indexed streaming model requirements since stream
nodes would be accessed multiple times during the evaluation. Therefore, we designed
Algorithm PathStack-R, which extends PathStack by allowing nodes with the same label to
share the same stream. Query nodes with the same labél are associated with distinct stacks
but the same stream node might appear in multiple stacks.

Algorithm PathStack-R is presented in Listing 1. PathStack-R gradually constructs
solutions to a path query ¢ and compactly encodes them in stacks, by iterating through
stream nodes in ascending order of their begin Vz_llues. Thus, the query nodes are matched
from the query root to the query leaf.

In line 2, PathStack-R calls function getNéleueryLabel . Function getNextQueryLabel

identifies the stream node with the minimal begin value among the nodes pointed to by the
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Listing 1 Algorithm PathStack-R

1 while —end() do

2 L = getNextQueryLabel()
3 cleanStacks(C'7,)

4 for every X € occur(L) in leaf-to-root order in Q do

5 moveStreamToStack(L, X)
6 if isLedf(X) then

7 . showSolutions(S x)

8 pop(Sx)

9 advance(Cp Y
Function end()
1 return V X € nodes(Q): isLeaf(X) = Aeos(C,,,,,,GI(X))
Function getNextQueryLabel()
1 return L € labels(QQ) such that C’L‘begin is minimal
Procedure cleanStacks(Cp,)
I for (X in nodes(Q)) do
2 while (- empty(Sx) and Sx .top(Sx).end < Cp.begin) do {pop out all entries in Sx whose nodes are not ancestors of
Cr}
3 pop(Six)
Procedure moveStreamToStack(L, X)
1 P= parent(X)
2 if (P is not the query root and empty(Sp)) then
3 return
4 if (X is the query root) or (P//X €Qor Sp.top(Sp).]ével = CL.leveli.l) then

5 push(Sx, (C,, pointer to Sp.top(Sp)))

cursors. Line 3 calls procedure cleanStacks to remove from all stacks the nodes that are
not ancestors of the node under consideration in the XML tree. This way, partial solutions

encoded 1n stacks that cannot become solutions are excluded from further consideration.
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Figure 4.5 Running PathStack-R on query )5 of Figure 4.3(b) and the path of Figure
4.3(a)

Lines 4 and 5 call Procedure moveStreamToStack on all the occurrences of L in Q).
Procedure moveStreamToStack is central to PathStack-R. It determines if the stream node
C', under consideration qualifies for being pushed on a stack Sx, where label(X) = L.
Node C, can be pushed on stack Sy if (1) X is the root, or (2) the structural relationship
between C7, and the top stack entry of X’s parent P satisfies the structural relationship
between X and P in the query. This ensures that stream nodes that do not contribute to
solutions will not be stored in stacks and processed. If multiple nodes in @ are labeled
by L, we need to check if C}, can be pushed on the stack of each occurrence of L in Q).
The order of pushing C', on stacks is crucial. In order to prevent C, from ‘seeing’ its own
copy in a parent stack, moveStreamToStack is called on the occurrences of L in () in their
leaf-to-root order (line 4). We illustrate this with in Example 4.3.1 be}ow.

Whenever the incoming stream node C', is pushed onto the stack of the leaf node,
we know the stacks contain at least one solution to the query. At that time, Procedure
showSolutions is invoked to output them (lines 6-8). Procedure showSolutions iteratively
outputs encoded solutions sorted on the nodes of the query in a leaf to root order. The

details are omitted here and can be found in [20].
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Example 4.3.i Consider the path query Qs in Figure 4.3(b) on the data path shown in
Figure 4.3(a). When a, is read, it is not pushed on Sy,, since the push condition is not
satisfied: the parent stack Sg, is empty. When by is read, it is pushed first on the stack Sp,
and then on stack Spg,. The state of the stacks at this moment is shown in Figure 4.5(a). For
simplicity,bthe stack for the query root R is omitted. Note that if we do not check whether
by can be pushed onto stacks in this order, then we won’t be able to push by on stack Sg,.
The reason is that by and the top entry of stack Sg, (which would also be bs) would not
satisfy the child relationship beMeén By and By in Q5. This would result in missing one
solution for QJs. Figure 4.5(b) shows the state of the stacks after as is pushed on stack
Sa,. At that time, Procedure showSolutions is invoked to output the answer of Q5 which is

{’)”Cblbl bQ(LQ, 7"&1(7263(1,2}.

4.3.3 Analysis of IndexPath-R

Given a node X in a path query (), we call the path from the root of ¢} to X ancestor path
of X. For example, the ancestor path of B; in the query (5 in Figure 4.3(b)is R//A,//B:.
Given a stream node z of an XML tree 1", we say that x matches X iff x is the image of X

under an embedding of the ancestor path of X to T,

Proposition 4.3.2 Let X be a query node in () and x be a stream node with the same label.

Node z is pushed on stack Sx iff x matches X.

Proof. We prove the proposition by induction on the level of the query node X in Q. If the
level of X is 1, X is the root R of (). The proposition holds trivially because z is the root
node r and it is always pushed onto Sg. Let’s assume now that the level of X is > 1 and Y

is the parent of X in Q.
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Only if part: Procedure moveStreamToStack pushes stream node z on stack Sy only if z
and the top entry y of the parent stack Sy satisfy the relationship between X and Y in
(). By the induction hypothesis y matches Y. Therefore, if x is pushed on stack Sy, it
matches X. Note that this is true even if X and Y have the same label since in this case,
moveStreamToStack attempts to push z first to Sx then to Sy.

If part: Since x matches X, there must exist one stream node that matches the parent Y of
X and that node and z satisfy the structural relationship between Y and X in (). Assume y
is such a stream node with the largest level in T" above x. By tﬁe induction hypothesis, when
x is considered, y is the top entry of Sy. Since x and y satisty the structural relationship
between X and Y, Procedure moveStreamToStack will push x on S x . Note that this is true
even if z and y have the same label since in this case, moveStreamToStack attempts to push

z first to Sy then to Sy. O

As aresult of Proposition 4.3.2, Algorithm ParhStack-R will find and encode in stacks =~ -

all the partial (if X is a non-leaf node in ¢)) or complete (if X Ais a leaf node in Q)) solutions
involving . When at least one complete solution is encoded in the stacks, procedure
showSolutions is invoked to output them. Therefore, Algorithm PathStack-R correcly
finds all the solutions to Q.

We next providé time and space complexity results. Given a path query () and an
XML tree T', let input denote the sum of sizes of the input streams, output denote the size
of the answer of Q) on T, and |@| denote the number of nodes in ). The recursion depth
of a queryvnode X in T is the maximum number of nodes in a path of T' that match X

[36]. We define the recursion depth of () in T’, denoted recur Depth, as the maximum of
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the recursion depths of the query nodes of () in . Clearly, recur Depth is bounded by the

maximum number of occurrences of a query label in a path of 7.

Theorem 4.3.1 Algorithm ParhStack-R correctly evaluates a path query () with repeated
labels on an XML tree 7°. The algorithm uses O(recur Depth x |Q|) space. It has CPU

time complexity O((input + output) x |@| and disk /O complexity O(input + output).

Proof. The space complexity of PathStack-R depends mainly on the number stack entries
at any point during execution. Since the worst-case size of any stack during execution is
bounded by recur Depth, PathStack-R has space complexity O(recur Depth x |Q)|).

We assume that query stacks fit in memory and all stack ope%ations are conducted
in memory. Thus the disk /O complexity of PathStack-R consists of two parts: the [/O
of accessing stream nodes, and the I/O of outputting query solutions. Since we always
advance the cursors (using advance) and never backtrack, it takes O(input) to access thé
stream nodes. As no any interrﬁediate solutions are produced during execution, outputting
query solutions takes O{output). Therefore, the disk /O complexity of PathStack-R is
O(input + output).

The CPU time complexity of PathStack-R depends mainly on the time spent on
getNextQuerylabel, the time spent on cleanStacks, the number of calls to moveStreamToStack,
and the time to produce solutions. Assuming a priority queue is used for getting the cursor
witﬁ the minimum begin value, the total time spent on calls to function getNextQuerylabel
is O(input x log|label(Q)|) = O(input x log|Q|). For each new stream node under
consideration, procedure cleanStacks checks the top stack entry of every query node of ().
Thus, the total time spent on calls to cleanStacks is O(input x |@Q|). For each stream node,

procedure moveStreamToStack is invoked at most maxQOccur times, and each invocation



42

takes constant time. Procedure showSolutions takes |@Q| time on producing each solution.
As Algorithni PathStack-R does not generate any intermediate solutions, the time it spends
on producing all the solutions is O(output x |Q|). Therefore, PathStack-R has time

complexity O((input + output) x |Q]). _ O

Clearly, assuming that the size of the query is insignificant compared to the size of
déta, PathStack-R is asymptotically optimal for path queries with repeated labels.

The correctness of the approach IndexPaths-R follows from Theorem 4.3.1 and
Proposition 4.3.1. One advantage of this approach_is that if a partial path query () does
not have any path queries on the index tree of T, we know that  has embty answer on 7’

without explicitly evaluating ¢ on 7.

4.4 PartialM]J-R: a Partial Path Merge Join Algorithm

Algorithm PartialMJ-R is a stack-based algorithm. Given a partial path query @), it
extracts a spanning tree (), of (). Then, it evaluates each root-to-leaf path of @), concurfently.
Solutions fér each root-to-leaf path of (), are merge-joined by guaranteeing that (a) they
lie on the same path in the XML tree, and (b) they satisfy the structural relationships that
appear in () but not in Q).

Figure 4.6(b) shows the graph of a query (Js and Figure 4.6(c) shows a spanning
tree Qs of Qs. Edge C,//Bg of Qg is missing from (Jgs. Solutions for each of the two
root-to-leaf paths of (Jg, lying on the same path of the XML tree can be merged to produce
a solutidn for (g, if they coincide on R and A; and satisfy the structural constraint Cy// Bg.

PartialMJ-R is shown in Listing 2. Compared to PathStack-R, PartialMJ-R has two

important differences: (1) in line 1, PartialMJ-R produces a spanning tree ), for the given
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Listing 2 Algorithm PartialMJ-R

1 create a spanning tree Q5 of Q. € denotes the set of edges in @ which do not appear in Qs

2 while —end() do
3 L = getNextQueryLabel()
4 clean(Cp)

5 for every X € occur(L) in the post-order of its appearance in Qs do

6 moveStreamToStack(L, X)

7 if isLeaf(JX ) then

8 solns = showSolutionsWithBlocking(Sx, 1)

9 if (VY € nodes(Qs): isLeaf(Y) and Y # X = pathSolns[Y] # @) then
10 joinPathSolutions(solns, X)
11 add solns to pathSolns{X]
12 pop(Sx)

13 advance(C'p)
Procedure joinPathSolutions(solns, X)
1 merge-join the solutions in solns and in each one of the pathSolny of each leaf node Y (Y # X) of Q5 and return only the

results that Satisfy the structural relationships in £. {Because of procedure clean, all the solutions in solns and pathSolny are

guaranteed to lie on the same path of the XML tree}
Procedure clean(C7,)
1 for (X € nodes(Qs)) do
2 while (— ?]l’lpty(SX) and Sx .top(Sx).end < Cy,.begin) do {pop all entries in Sx whose nodes are not ancestors of Cr,}
3 pop(Sx)
4 ifisLeaf(X) then

5 remove solutions in pathSolnx whose leaf nodes are not ancestors of Cp,

partial path query () and records the set of structural relationships that are present in @
but are missing in ()s; (2) in line 10, PartialMJ-R calls procedure joinPathSolutions to
merge-join solutions for a root-to-leaf path in (), with solutions for other root-to-leaf paths

produced earlier. Each leaf node X of (), is associated with a list path.Soln[X] which stores
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Figure 4.6 (a) Data path (b) Query (g (c) (J¢’s spanning tree Qg

solutions of the root-to-leaf path in ), that ends in X . To facilitate the merge-join process,
solutions stored in pathSoln|X| are sorted on the nodes of the query path in root-té-leaf
order. At any point in time, all the solutions in pathSoln|[X] lie on the same path in the
XML tree.

For each stream node C under consideration, PartialMJ-R calls procedure clean
(line 4). Procedure clean not only removes from all the stacks the nodes that are not
ancestors of C7, in the XML tree (lines 2-3), but also removes from each of the pathSoln[X]
thé solutions whose nodes are not ancestors of C}, (lines 4-5). For the lgtter one, it suffices
to Comparé C'p, with the node in each solution which is a match of ‘the leaf node of the query
path.

Similarly to PathStack-R, PartialMJ-R calls procedure moveStreamToStack on each
occurrence of L in the spanning tree () in a bottom-up way, that is, in the post-order of its
appearance in () (Hne 6).

When an occurrence X of L is a leaf node of (g, the stacks for the corresponding
root-to-leaf path in (); contain at least one solution to the path. At that time, PartialMJ-R

calls procedure showSolutionsWithBlocking to produce them and then stores them in solns
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(line 8). Procedure showSolutionsWithBlocking iteratively produces encoded solutions
sorted on the nodes of the path in root-to-leaf order. The details aré omitted here and can be
found in [20]. If at this time for every other leaf node Y of @, pathSoln[Y] is not empty
(line 9), PartialMJ-R calls procedure joinPathSolutions to merge-join the newly produced
solutions in solns and the previously produced solutions stored in each pathSoln[Y] and
return only thé results that sbatisfy the structural relationships in & (line 10). Note that
because of the execution of procedure clean, all the solutions in solns ana pathSoln[Y]
are guaranteed to lie on the same path of the XML tree. Further, since every time solutions
to @ are produced, they involve the newly pushed node C7,, PartialMJ-R is guaranteed not
to generate duplicate solutions.

Compared to the approach IndexPaths-R, Algorithm PartialMJ-R evaluates the query
by populating query stacks in one single pass of input streams. Nevertheless, this approach
may generate many intermediate solutions. A solution of a root-to-leaf path in @, is called
intermediate, if it does not pélrticipate in any final solution of (). There are two reasorlls |
for a path solution to b¢ intermediate: (1) it cannot be merged with other path sqlutions
on a same data path, or (2) it can be merged but the result does not satisfy the structural

constraints in () that are not present in ().

Example 4.4.1 Consider evaluating the query Qg of Figure 4.6(b) on the data of Figure
4.6(a). Figure 4.7 shows the partial solutions of ea.ch query path of Qs and the merge-join
results when the stream nodes by, ¢;, and bg are processed. When c; is read, the result
of merge-joining the partial solutions soln = {rajagcy,rasagcs} and pathSoln|Bg| =
{raibocsby} is {rajagcrbocsby}. This result is not returned as a solution of Qé, since ¢

and by does not satisfy Cy//Bg. When b is read, the result of merge-joining the partial
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solutions soln = {raybycsbg} and pathSoln|Cy] = {raiascr, rasases} is {rajagerbacsbs}.
This result is returned as the final answer of Qg. The partial solutions {rasagc;} and
{ra1bacsby }, which are outputs for the querypath R/ /A, [A2/Cyand R/ A1/ /B3 /Cs//Bg
in Qgs respectively, do not participate in the answer of Qs. Therefore they are intermediate

solutions.

Data node Solutions added Solutions added Join Results

processed | to pathSoln|Cy] | to pathSoln|Bg)

b4 {T’(I,lb203b4}
Cr {’I"a,l agCr, 7‘(15(1,6(,’7} ) {7'(11 a607b2()3b4} discarded
bg - {7’&1 b2C3b8} {7'a1a667b203bg} the answer of Q6

Figure 4.7 Outputs of PartialMJ-R on (g and data in Figure 4.6

Clearly, the intermediate solutions affect negatively the time and space worst case
complexity of PartialMJ—RA. When Qisa path, PartialMJ-R reduces to PathStack-R and
does not produce intermediate solutions. Nevertheless, despite possible intermediate solutions,
PartialMJ-R is soun‘d and complete for evaluating partial path queries as the following

theorem states.

Theorem 4.4.1 Algorithm PartialMJ-R correctly evaluates partial path queries with repeated -

labels on XML trees.

The proof of the theorem follows directly from the description of the algorithm and

Proposition 4.3.2.
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4.5 PartialPathStack-R: a Holistic Algorithm
To overcome the problem of intermediate solutions of Algorithm PartialMJ-R, we developed
a holistic stack-based algorithm called PartialPathStack-R for the evaluation of partial path
queries. In contrast to PartialMJ-R, PartialPathStack-R does not decompose a query into
root-to-leaf paths. Instead, it matches the query graph to an XML tree as a whole. In this
way, it avoids merge—joiﬁing path solutions. Also, unlike PathStack-R, PartialPathStack-R
exploits multiple pointers per stack entry to avoid redundantly storing the same stream

nodes in different stacks.

4.5.1 Preliminaries
As concluded in Section 4.1, a partial path query () can be represented as a dag rooted at _
'R. Let X denote a node and L denote a label in (. We use for queries the -f.ullqctions defined
in Section 5.1 with the following difference: Boolean function isSink(X ) replaces function
isLeaf( X ) and returns true if X is a sink node (i.e., it does not have outgoing edges in ().
Also, function parents(X ) replaces function parent(X ), and returns the parent nodes of X
in @ (X can have multiple parent nodes when ) is a dag).

As before, we associate every distinct node label L with a stream 77, and maintain
a cursor Cy, for that stream. However, we now associate a stack S; with every distinct
node label L (and not with every node in () labeled by ). Initially, all stacks are empty
and every cursor Cp, points to the first node in 77,. During execution of the algorithm,
the entries that stack S, might cohtain correspond to stream nodes in. Ty, before C;.. The
structure of a stack entry is now more complex in order to record additional information.

Before describing the structure of stack entries, we define an important concept,

which is key to understanding PartialPathStack-R.
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Definition 4.5.1 Let Q be a partidl path query, X be a node in Q, and T be an XML tree.
The sub-dag of Q) that comprises X and all its ancestor nodes is called ancestor query of
X and is denoted as @ x. We say that a node x; in T plays the role of X if x; is the imagre

of X under an embedding of Qx to T

A node in T}, can play multiple roles, each of which corresponds to a node in occur(L).

An entry e in stack Sy, corresponds to a node in 77, and has the following three fields:

1. (begin, end, level): the positional representation of the corresponding node in T7..

2. prevPos: an array of sizé |occur(L)| whose fields are indexed by the nodes in
occur(L). Given a node X € occur(L), prevPos[X] is a pointer to the highest
entry in Sy, below e that plays the role of X. Following these pointers, we can access
from e all the entries belov'v e in Sy, that play the role of X in leaf-to-root order in
the XML tree. If X is the only node labeled by L (in which case, all the entries in 5

play a single role), prevPos[X] refers to the entry just below e.

3. ptrs: an array of size k whose fields are indexed by the parent nodes Py, ..., P, of
all nodes labeled by L in Q). ptrs[P;] points to the highest among the entries in stack
Slabet(p;) that (a) play the rblé of P;, _and (b) correspond to ancestors of e in the XML
tree. It is possible that for some P, ptrs[P] is null. However, if e plays the role of a
node X € occur(L), then ptrs[F;] is not null for every P; € parents(X). Further, it
is possible that some or all of P; € parents(X), label(P,) = L. In this case, ptrs|P]

points to an entry below e in the same stack S

The expression Sp.k denotes the entry at position k of stack S;. The expression
Sp.k.ptrs[F;] denotes the position of the entry in stack Sjgpep;) recorded in the field

ptrs[P;] of the entry Sy.k.
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With every stack Sy, we associate an array last Pos;, whose fields are indexed by the
nodes in occur(L). For a node X € occur(L), lastPosr[X] records the position of the
highest entry in stack Sy, that plays the role of node X. Therefore, starting from the position
lastPos L [X], we can accesé all the entries in S, that play the role of X in leaf-to-root order
in the XML tree. Clearly, if X Vis the only node labeled by L, last Pos,[X] refers to the top
entry in stack Sp,.

As with previous two algorithms, during the execution of Algorithm PartialPathStack-
R, the following properties hold: (1) The entries in all the stacks correspond to nodes
located on the same path in the XML tree, and (2) Stack entries represent partial solutions
of the query that can be extended to final solutions as the al gdrithm goes on. In what
follows, we might not distinguish between an entry in a stack and its corresponding stream

node.

4.5.2 The Algorithm
Algorithm PartialPathStack-R is presented in Listing 3. Given a partial path query @),
PartialPathStack-R processes stream nodes in ascending order of their begin values and
constructs partial and ﬁhal solutions to ). It exploits a topological order of the query
nodes (i.e., a linear order of the query nodes which respects the partial order induced by
the structural relationships of the query). Given a topological order, the nodes in () are
identified by their position in the topological order with 1 denoting the root node of ().
Algorithm PartialPathStack-R calls procedure cleanStacks (line 4) introduced in
Algorithm PathStack-R (Listing 1). For an incoming stream node C7,, cleanStacks pops

out from all the stacks the nodes that are not ancestors of C7, in the XML tree.
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Listing 3 Algorithm PartialPathStack-R

1 create a topological order 1, ..., n of the query nodes in @, where n = |Q], and identify each node by its position in the topological
order.
2 while —end() do
3 L = getNextQueryLabel()
4 cleanStacks(Cr,)
5 entry = constructCandEntry(L) { entry has the structure of an entry in stack Sy, }
6 if (R==L or 3X € occur(L) VP € parents(X): entry.ptrs[P] # null) then
7_ push(Sy, entry)
8 sinkNodes =0
9 for (X € ocecur(Z)) do
10 if (isSink(X) and lastPos[X] == top(SL)) { X is a sink node and the newly pushed e%Ltry in Sy, plays
the role of X } then
1 1 sinkNodes = sinkNodes U {X }
{ Next the algorithim tests if the stacks contain solutions of Q and, if so, outputs them }
12 if (sinkNodes # 0 and VX € nodes(Q): isSink(X) = last Posiaper(x)[ X1 # null)  { entry plays the role of a sink
node in the query and every sink node in the query has a stack eniry that plays its role } then
13 if (n € sinkNodes) { entry plays the role of n, the last node in the topological order 1 then
14 ou.tputSolutions(sinkNodes, n, 1ast Posigpet (n) [(n])
15 else
16 i =1astPosigper(n)nl
17 repeat
18 outputSolutions(sink N odes, n, ©)
19 i= Slabel(n).i.prevpos[n]
20 wntil (i==null)
21 advance(Cp)

In line 5, Algorithm PartialPathStack-R calls function constructCandEntry(L) shown .

in Listing 4. For the stream node C, under consideration, constructCandEntry(L) finds all

the roles that C, can play and records the information in a variable cand Entry. Variable
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Listing 4 Function constructCandEntry(L)

1 tet cand Emtry be a variable that has the structure of an entry for stack S, { candEntry represents a candidate entry

for stack Sy, }

2 initialize candEntry so that its (begin, end, level) field is equal to C, and each field in prev Pos and ptrs is equal to null

3if(R==1L) { we are at the root of the query } then

4 lastPosy[1]=1

S5 else

6 for (X € occur(L)) do

10
11
12

13
14
15
16
17
18
19
20
21
22

create an array pptrs indexed by parents(X)
hasRole = true
for ( P & parents(X)) do
if (last Posiaperpy[F1 7 null) then
entry = Syaper(p)-1ast Posiaper Py [F]
if (P/X € Q) and (eniry.level # Cp, level-1) { child relationship between P and X is not satisfied by entry
and Cp, } then
hasRole = false { Cy, does not play the role of X }
else
hasRole = false { Cr. does not play the role of X }
if (hasRole) then
pptrs[P]=lastPos;gher(p)[P]
if (hasRole) then
for ever‘y P € parent(X) do
candEntry.ptrs[P] = pptrs[P]
candEntry.prevPos[ X] = last Posp[X]
lastPosp[X]=top(Sr) + 1 { lastPos[X] is updated to reflect the position of candEntry after cand Entry

has been pushed on Sy, }

23 return candEntry

candEntry has the structure of an entry in stack 57, and represents a candidate entry for

Sp. For a query node X € occur(L), node Cy, plays the role of X iff for each parent
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Listing 5 Procedure outputSolutions(outputSinkNodes, cur Node, stackPos)

1 solution[cur Node] = stackPos

2 m = curNode-1

3 if(curNode=1) { curNode is the root query node } then

4 output(Sygper(1) -solution[t] ..., Stapei(n)-solution[n])

5 elseif (m ¢ outputS';nkNodes) { m is a sink node and the lastly pushed entry plays the role of m } then
6 outputSolutions(outputSinkN odes, m, last Posigpei(m)m])

T else if (isSink(m)) {'m is a sink node and the lastly pushed entry does not play the role of m } then

8 1 =lastPosiaper(m)lm]

9 repeat
10 outputSolutions(output Sink N odes, m, ©)
11 i = Siapel(m)-t-prevPos[m]

12 until (i==null)
13 else {m is not a sink node}

14 i = min{Syapei(c)-solutionlc].ptrsm]l}, ¢ € children(m)

15  repeat
16 outputSolutions(output Sink N odes, m, ©)
17 i = Sabel(m)-t-prevPosm]

18 . until G==null)

P of X, there exists an entry entry in stack Siuuei(py such that the structural relationship

between entry and C}, satisfies the structural relationship between P and X in the query

(lines 9-15 in constructCandEntry). Note that it is not necessary to exhaustively visit

the entries in Sjqpe(p) to find entry. The existence of entry can be determined in constant

time by just using the value of last Pos;apepy[ P] (lines 10-12). If node Cy, plays the role

of X, then for every parent P of X, a pointer to the position lastPosaepy[ ] of stack

Slabel( py is generated and recorded first in a temporary array pptrs (line 17) and then in the

corresponding fields of cdndEntry.ptrs (lines 19-20). The current value of lastPosy,[X]
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is recorded in cand Entry.prevPos| X ] (line 21). Finally, last Posy [ X] is updated to reflect
the position of cand Entry in stack Sy, after it is pushed there (line 22).

PartialPathStack-R uses the information returned by constructCandEntry(L) to
determine if node C7, is qualified for being pushed on stack S;,. Node C, can be pushed on
Sy, iff it plaYs arole of at least one query node in occur(L) (lines 6-7 in PartialPathStack-R).
This way, only stream nodes that could eventually be part of solutions are pushed on stacks.

The timing for producing solutions is important in order to avoid generating duplicate
solutions. Whenever node Cp that plays the role of a sink node in the query (lines 9-11)
* is pushed on a stack, and for every sink node in the query there is an entry in the stacks
that plays this role (line 12), it is guaranteed that the bstacks contain at least one solution
to the quéry. Subsequently, procedure outputSolutions (Listing 5) is invoked to output all
the solutions that involve C, (lines 14 and 18). Note that since every time solutions are
produced, they involve the newly pusﬁed node C',, PartialPathStack-R does not generate
duplicate solutions.

A solution of a query is a tuple of nodes in the XML tree which are images of the
query nodes under an embedding of the query to the XML tree. Procedure outputSolutions
gradually produces the nodes in each solution in an order that corresponds to the reverse
topological order of the query nodes. This way, the image of a query node is produced in a
solution after the images of all its descendant nodes in the query are produced. Procedure
outputSolutions takes three parameters: outputSinkNodes, curNode, and stackPos. Parameter
outputSinkNodes denotes the set of those sink nodes of the query that are roles of the newly
pushed node C. Parameter curNode denotes the query node currently under consideration.
Parameter stackPos denotes the position in stack Sispei(curNode) currently under consideration.

A solution under construction by outputSolutions is recorded in an array solution indexed
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by the query nodes. The image of curNode recorded in solution|curNode] is the position
of an entry in stack Sjapei(cur Node). Procedure outputSolutions calls itself recursively on the
query nodes. When called on query node curNode-1 (denoted as m), the following three

cases are distinguished:

1. If node m is in outputSinkNodes (which implies that m is a sink node), only the
entry in stack Sjgpey(m) pointed to by last Posiaperm)lm] is used as image of m for
constructing solutions (line 6). As mentioned previously, this guarantees no duplicate

solutions will be generated.

2. If node m is a sink node not in outputSinkNedes, the chain of entries that play the
role of m in stack Sjgpei(m), starting with the entry pointed to by last Posapei(m)[7],

are used as images of m for constructing solutions (lines 8-12).

3. If node m is an internal query node, the highest entry e in stack Sjqpe1(m) that can be
used in a solution as an image of m is the lowest ancestor in the XML tree of the
images of the child nodes of m in the query. Since the cﬁild nodes of m have already
been processed, their images are recorded in the array solution. Entry e is identified
Ey the lowest position in stack Sjgpei(m) Pointed to by pointers from stack entries that
are images of the child nodes of m in the solution under construction (line 14). The
chain of entries that play the role of m in stack Sjgpei(m) Starting with e are used as

images of m for constructing solutions (lines 15-18).

Procedure outputSolutions shown in Listing 5 deals with the case where no child
edges are present in (). When child edges are present in (), we need to check the existence

of outgoing child edges from each internal query node m, and modify the recursive calls -
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of outputSolutions on m (lines 15-18): only a single recursive call of outputSolutions

(outputSinkNodes; m, 1) is needed, where ¢ is the position computed by line 14.

Example 4.5.1 Figure 4.8 shows a running example for PartialPathStack-R, where, for
simplicity, the stack for the query root R is omitted. We also do not show the lastPos and
prevPos of query nodes with a single occurrence in the query. We use for Qg the following
topological order: R, Ay, Ay, Bs, Cy, Cs, Bg. The input streams are Tx: a1, a5, a6, Tg:
ba, by, bs, and Te: cg, ¢y, The initial value for the input stream cursors Cy, Cp, and Co
in that order is a1, by, c3. The state of the stacks after cs, by, as, ag, ¢7, and bg are read
is shown respectively in the Figures 4.8(a)-(f). After c3 is read (Figure 4.8(a)), there is
no entry in stack S, that plays the role of As. Therefore lastPosa|Asg] is 0. Similarly,
lastPosg|Bs) for stack Sg and lastPosc|Cy] for stack S¢ are both 0. After as is read
(Figure 4.8(c)), given that as plays the role of Ay in addition to the role of Ay, its entry |
has an outgoing pointer that points to a, (A1 is the parent of As), which is the last entry
in Sy playing the role of Ay. The position of as in S4 is recorded in both last Posa[A,|
and last Posa|As). Before lastPosa[A1] is updated, its value (the position of ay in Sy) is
récorded in prevPos[A,] of as. This indicates that a is the highest entry in S below as
that plays the role of A,. Finally, when bg is read (Figure 4.8(f)), given that bg plays the
role of Bg, the entry for bg. has two outgoing pointers which respectively point to cs and
¢y in stack Sg (Cy and Cs are the parents of Bg). The stack position of bg i;s recorded in
lastPosg|Bs). Since Bg is a sink node of Qg, bg triggers the generation of solutions. Note
that when A, is processed by outputSolutions, a, is choseﬁ as a value for Ay in the solzittion
under construction since a; is below as in stack S 4 (line 14 in outputSolutions). The final

answer for Qg is {raiagcrbacsbg }.
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4.5.3 Analysis of PartialPathStack-R

Proposition 4.5.1 A stream node x is pushed on stack Sy, iff z plays the role of a query

node X labeled by L.

Proof. The> only if part is straightforward given that Algorithm PartialPathStack-R pushes
x to stack Sy, only if there exists a query node X labeled by L such that, for each parent YV’
of X, the highest entry in the stack for ¥ that piays the role of ¥ satisfies the corresponding
relationships between Y and X in the ciuery.

The if part: If x is the node r, then z plays the role of the query node R and will be
pushed on Si. The proposition is trivially true. For a non-root stream node x, we prove the
proposition by contradiction.

Let’s assume z plays the role of a query node X labeled by L but is not in stack Sy.
Then, for at least one parent Y of X, procedure constructCandEntry did not ﬁnd-a stream
node that plays the role of Y. Since z plays the role of X, there must exist one stream node
that plays the role of Y and the structural relationship between that node and  satisfies
the structural relationship between Y and X in the query. Let y be the closet to z stream
node above x in T, and let Y be labeled by M. There can be two reasons for procedure
constructCandEntry not finding a stream node that plays the role of Y: (a) y is in stack’
Sz, but its position is not recorded in last Posy [Y]. However, since y plays the role of Y
and it is the latest node pushed on stack Sy, its position is recorded in lastPosy/[Y] by
Procedure constructCandEntry, a contradiction. (b) y is not in .Sy,. But then, by applying

the same reasoning recursively, we can conclude that the stream node r that plays the role
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- of R but not in stack Sg contradicting our assumption. Therefore, if  plays the role of a

query node X labeled by L, it must be pushed on stack Sy, 0

As a result of Proposition 4.5.1, Algorithm PartialPathStack-R will find and encode
in stacks all the partial or complete (z plays the role of a sink node in Q) solutions involving
z. When at least one complete solution is encoded in the stacks, procedure ouput Solutions
is invoked to output them. Therefore, Algorithm PartialPathStack-R correcly finds all the
solutions to ().

Following.we provide the time and space complexity of Algorithm PartialPathStack- .
R. Given a partial path query dag () and an XML tree T, let height denote the hight of 7T,
indegree denote the maximum number of incoming edges to a query node, and |@| denote

the size of (. Other parameters are the same for the analysis of PathStack-R.

Theorem 4.5.1 Algorithm PartialPathStack-R correctly evaluates a partial path query ¢
on an XML tree T The algorithm uses O(height x |Q|) space. It has the CPU complexity

O((input + output) x |@Q]) and the disk I/O complexity O(input + output).

Proof. The disk I/O complexity of PartialPathStack;R is the same as PathStack-R, whiéh
is O(input + output).

The space complexity depends mainly on how many stack entries are stored at a given
point in time and the number of pointers associated with these entries. Note that for each
stream node, it has at most one physical copy stored in a stack at any time, even that stream
node plays multiple roles. The total number of stack entries at any time is thus O(height).
For each stack entry, the maximum number of outgoing pointers is O(|Q]). Therefore, the

worst case number of pointers in stacks is bounded by height x |Q)|.
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Since PartialPathStack-R does not generate any intermediate solutions, the CPU time
complexity of PartialPathStack-R depends mainly on the time spent on getNextQuerylabel,
the time spent on cleanStacks, the number of calls to constructCandEntry, and the number
of calls to outputSolutions to output solutions. As Algorithm PathStack-R, PartialPathStack-
R spends O(input x log|llabel(Q)]) = Olinput x log|Q]) on calls to function
getNextQuerylabel and O(input x |Q)|) total time on calls to cleanStacks. For each stream
node, Procedure constructCandEntry takes time in O(|Q|). Procedure outputSolutions
spends O(outdegree) on each query node, due to the line 13 that finds the lowest stack
position among pointers ._from its child nodes, thus it takes O(output x |@|) to produce
all the outputs. Therefore, PartialPathmck—R has the CPU time complexity O((input +

output) X |Q1). )

Clearly, if the size of the query is insignificant compared to the size of data,
PartialPathStack-R is asymptotically optimal for partial path queries with repeated.labels.
Note that when a partial path query is a path, PartialPathStack-R uses less space than
Algorithm PathStack-R does. The reason is that, in Algorithm PathStack-R, some stream
nodes might have multiple copies in different stacks. Thus the number of entries of every
stack may reach height at a time. For PartialPathStack-R, the total number of entries of all

the stacks is bound by height at any time.

4.6 Experimental Evaluation
We ran a comprehensive set of experiments to measure the performance of -IndexPaths-
R, PartialMJ-R and PartialPathStack-R. In this section, we report on their experimental

evaluation.
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Setup. We evaluated the performance of the algorithms on both benchmark and synthetic

datasets. For the benchmark dataset, we used the Treebank [66] XML document. This

dataset consists of around 2.5 million nodes having 250 distinct element tags and its

maximum depth is 36. This dataset includes multiple recursive elements. We used two

synthetic datasets (SD; and S Ds). They are random XML trees generated by IBM’s XML

Generator [67], based on the DTD shown in Figure 4.9. The parameter M ax Repeats (that

determines the maximum number a node appears as a child of its parent node) was set to

4. The parameter numLevels (that determines the maximum number of tree levels) was

set to 12 for SD;, and 20 for SD,. The XML trees used in both SD; and SD, consist
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of 1.5 million nodes. By construction, the two synthetic datasets include highly recursive
structures. For each measurement on the synthetic datasets, five different XML trees of
the same number of nodes were used. Each displayed value in the plots is the average over
these five measurements.

On each of the three datasets, we tested the eight queries shown in Figure 4.10.
Queries ), to @, include only descendant relationships, while queries (5 to (Jg include
child relationships as well. Our query set comprises a full spectrum of partial path queriés,
from simple path-pattern queries to complex dags. The queries are appropriately modified
for the jﬂreebank dataset, so that they can all produce results. Thus, node D5 is removed,
and node labels R, A, B, C and D correspondto FILE, S,V P, NP and NN, respectively,
on Treebank. |

We implemented all algorithms in C++, and ran our experiments on a dedicated Linux

PC (AMD Sempron 2600+) with 2G B of RAM.

Execution time on fixed datasets. We compared the execution time of IndexPaths-R,
PartialMJ-R and PartialPathStack-R for evaluating the queries in Figure 5.7 over the three
datasets. For queries 1 and (s, thich are path-pattern queries, we also measured the
execution time of algorithm PathStack-R.

Figure 4.11(a), 4.11(b) and 4.11(c) present the evaluation results. Figure 5.3.2 shows
the number of solutions obtained per query in each dataset.

As we can see, PartialPathStack-R has the best time performance, and in many cases
it outperforms either IndexPaths-R or PartialMJ-R by a factorvalmost 3. Its performance is
stable, and does not degrade on more complex queries and on data with highly recursive

structures.
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As expected, all algorithms perform almost as fast as PathStack-R in thé case of the
path-pattern queries ¢J; and (5. The execution time of IndexPaths-R is hiéh for queries
with a large number of path queries generated from the index tree, that is, for 'quefies @3,
(1, Q7 and Qg.

The performance of PartialMJ R is affected by the existence of intermediate solutions.
For example, when evaluating (), on the synthetic dataset SD,, PartialMJ-R shows the
worst performance (Figure 4.11(c)), due to the large amount of intermediate solutions
generated.

The performance of both PartialMJ-R and PartialPathStack-R in all datasets is affected
by the number of solutions. This confirms our complexity results that show dependency of
the execution timé on the input and output size (number of solutions). In the case of queries
@2 and Q4 on SD2 (Figure 4.11(c)), where the number of solutions is high (Figure 5.3.2),

the execution time of PartialMJ-R strongly increases.

Execution time varying the input size. We compared the execution time of IndexPaths-R,
FartialMJ-R, and PartialPathStack-R as the size of the input dataset increases. Figures
4.12(a), 4.12(c), and 4.12(e) report on the execution time of the algorithms increasing the
size of the synthetic dataset S D, for queries (o, Q)4 and (g, respectively, of Figure 4.10.
FartialPathStack-R c;)nsistenly has the best performance.

Figures 4.12(b), 4.12(d), and 4.12(f) present the number of solutions of 5, ()4 and
Qs, respectively, increasing the size of the dataset. As we can see, an increase in the input
size results in an increase in the output size (number of solutions). When the input and

the output size go up, the execution time of the algorithms increases. This confirms the
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Figure 4.11 Evaluation of queries on the three datasets.

63

complexity results that show dependency of the execution time on the input and output

size.

We also observe that as the input and the output size increase, the execution time of

PartialPathStack-R increases very slowly. In the experimental evaluation of query @4, the

output size (Figure 4.12(d)) increases sharper than in the evaluation of query Qo (Figure

4.12(b)). The execution time of PartialPathStack-R is only slightly higher in the evaluation

of Q4 (Figure 4.12(c)) than in the evaluation of Qé (Figure 4.12(a)). In contrast, the

execution time of PartialMJ-R is strongly affected. The reason is that, for PartialMJ-R,
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Figure 4.12 PartialMJ-R vs PartialPathStack-R, varying the size of the XML tree.

an increase in the output size is accompanied by an increase in the number of intermediate
solutions produced during evaluation. Notice also that IndexPaths-R is extremely slow in
(04 as it includes the evaluation of a large number of equivalent path queries.

Query Qg is more “restrict"’ than ()4 due to the child relationships (Figure 5.6(d)).

It produces only a small number of solutions (Figure 4.12(f)). Given the small number
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of solutions, and consequently a small number of intermediate solutions in PartialMJ-R,

PartialMJ-R and PartialPathStack-R have the similar performance (Figure 4.12(e)).



CHAPTER 5

EVALUATING PARTIAL TREE-PATTERN QUERIES ON XML INVERTED

LISTS

In this chapter, we present an original polynomial time holistic algorithm for PTPQs in the
indexed streaming model. The chapter is organized as follows. Section 5.1 describes data
structures for PTPQ indexed streaming evaluation. We present our evaluation algorithms

in Section 5.2. Section 5.3 presents and analyses our experimental results.

5.1 Data Structures and Functions for PTPQ Evaluation
We present in this section the data structures and operations we use for PTPQ evaluation in

the inverted lists model,

Query functiqns. Let @ be a query, X be a node in (), and p; be a partial path in ). Node
X is called sink node of p;, if p; annotates X but no any descendant nodes of X in (). We
make use of the following functions in the evaluation algorithm. Function sinkNodes(p;)
returns the set of sink nodes of p;. Function partialPaths(X) returns the setbof partial paths
that‘annotate X in @ and PPsSink(X) returns the set of partial paths where'X is a sink
node. Boolean function isSink(X) returns true iff X is a sink node in @ (i.e., it does not
have outgoing edges in ¢J). Function parents(X) returns the set of parent nodes of X in ().

Function children(X) returns the set of child nodes of X in (). -

Operations on inverted lists. With every query node X in (), we associate an inverted list
T of the positional representation of the nodes labeled by x in the XML tree. The nodes

in T'x are ordered by the their start field (see Section 3.1). To access sequentially the nodes

66
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in T'x, we maintain a cursor. We use C'x to denote the node currently pointed by the cursor
in T and call it the current match of X. Operation advance(X) moves the cursor to the

next node in T'y. Function eos(X) returns true if the cursor has reached the end of T.

Stacks. With every query node X in (), we associate a stack Sx. An entry e in stack Sy

corresponds to a ﬁode in Ty and has the following two fields:

1. A field consisting of the triplet (start, end, level) which is the positidnal representation
of the corresponding node in T’y.

2. A field ptrs which is an array of pointers indexed by parents(X). Given P € parents(X),
ptrs[P] points to the highest among the entries in stack Sp that correspond to ancestors

of e in the XML tree.

Stack  operations. We use the following stack  operations:
pu&h(S Xv,entry) which pushes entry on the stack Sx, fop(Sx) which returns the top entry
of stack Sx, and bottom(S ) which returns the bottom entry of stack Sx. Boolean function
empty(Sx) returns true iff Sy is empty.

Initially, all stacks are empty, and for every query 'node X, its cursor points to the first
node in Tx. At any point during the execution of the algorithm, the entries that stack Sx
can contain correspond to nodes in T’x before the current match C'y. The entries in a stack
below an entry e are ancestors of e in the XML tree. Stack entries form partial solutions of

the query that can be extended to become the solutions as the algorithm goes on.

Matching query subdags. Recall that Cx denotes the current match of the query node
X. Below, we define a concept which is important for understanding the query evaluation

algorithm.
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Definition 5.1.1 (Current Binding) Given a query Q, let X be a node in Q) and Qx be
the subdag (subquery) of () rooted at X. The current binding of Q) is the tuple (3 of current
matches of the nodes in (). Node X is said to have a solution in 3, if the matches of the

nodes of Qx in 8 form a solution for Qx.

If node X has a solution in 3, then the following two properties hold: (1) Cx is the
ancestor of all the other current matches of the nodes in Qx, and (2) current matches of the
query nodes in (Jx in the same partiél path lie on the same path in the XML tree.

When all the structural relationships in () are regarded as descendant relationships,

we can show the following proposition.

Proposition 5.1.1 Let X be a node in a query Q where all the structural relationships are
regarded as descendant relationships, {Y1, ..., Y.} be the set of child nodes of X in @, and
{p1....,pn} be the set of partial paths annotating X in (). Let also 3 denote the current
binding of Q). Node X has a solution'in (3 if and only if the following three conditions are
met:

1. All'Y;s have a solution in (3.

2. Cx is a common ancestor of all Cy,s in the XML tree.

3. For each partial path p;, the current matches of all the sink nodes of p; that are descendants

" of X lie on the same path in the XML tree.

The proof follows directly from Definition 5.1.1. Clearly, if X is a sink node, it
satisfies the conditions of Proposition 5.1.1, and therefore, it has a solution in £.

“As an example for Proposition 5.1.1, consider evaluating query (05 of Figure 6.18(b)
on the XML tree of Figure 6.8(a). Suppose the cursors of R, A, B, D, C, E, G, and F are

atr, ai, by, di, ¢, e1, g1, and fy, respectively. By Proposition 5.1.1, node D has a solution
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in the the current binding 3 of @3, since (1) child nodes E and F' both have a solution
in 3; (2) by is a common ancestor of e; and f1; and (3) £ and F are the only descendant
sink nodes of D in partial paths p; and pa, respectively. However, node B does not have
a solution in 3 because the condition 3 of Proposition 5.1.1 is violated: g; and f;, which
respecti\)ely are the current matches df the descendant sink nodes G and F in partial path

g, are not on the same path in the XML tree.

5.2 PTPQ Evaluation Algorithm
The flexibility of the PTPQ language in specifying queries and its increased expressive
power makes the design of an eyaluation algorithm challenging. Two outstanding reasons
of additional difficulty are: (1) a query is a dag (which in the general case is not merely‘
a tree) augmented with cdnstraints, and (2) the same-path constraints éhould be enforced
for all the nodes in a partial path in addition to enforcing structural relationships. In this
section, we present our holistic evaluation algorithm PartiallreeStack, which efficiently
resolves these issues. The presentation of the algorithm is followed by an analysis of its

correctness and complexity.

5.2.1 Algorithm PartialTreeStack

Algorithm PartialTreeStack operates in two phéses. In the first phase, it iteratively calls
a function called getNext to identify the next query node to be processed. Solutions to
individual partial paths of the query are also computed in this phase. In the second phase,

the partial path solutions are merge-joined to compute the answer of the query.
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Function getNext Function getNext is shown in Listing 6. It is called on a query
node and returns a query node (or null). Starting with the root R of the query dag @,
function getNext traverses the dag in left-right and depth-first search mode. For every
node under consideration, get/Next recursively calls itself on each child of that node. This
way, get Next first reaches the left-most sink node of (). Starting from that sink node, it
tries to find a query node X With the following three properties:

1. X has a solution in the current binding 3 of ) but none of X’s parents has a solution in
0.

2. Let P be a parent of X in the invocation path of get Next. The current match of X, i.e.,
C'x, has the smallest start value among the current matches of all the child nodes of P
that have a solution in /3.

3. For each partial path p; annotating X, Cx has the smallest start value among the current
matches of all the nodes annotated by p; that have a solution in /3.

Node X is the node returned by getNext(R) to the main algorithm for processing. The

first property guarantees that: (1) C'x is in a solution of Q) x, and (2) a query node match

in a solution of () is always returned before other query node matches in the same solution
that are descendants of it in the XML tree. The third property guarantees that matches of
query nodes annotated by the same partiél path are returned in the order of their start value

(i-e., according to the pre-order traversal of the XML tree).

During the traversal of the dag, function get Next discards node matches that are
guaranteed not to be part of any solution of the query by advancing the corresponding
cursors. This happens when a structural constraint of the dag or a same-path constraint is

violated.
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Listing 6’ Function getNext(X)

1 if (isSink(X) V knownSoln[X]) then
2 return X

3 for (Y; € children(X)) do

4 invPath[Y;] — invPath[X]+ Yy
5 Y — getNext(Y;)

6 (Y £Y;AY # X )then

7 return Y

8 Yimin < minargy, {Cy; .start}, Yman «— maxargy, {Cy, .start}, where Y; € children(X) A knownSoln[Y;]

9 while (Cx .end < Cy-

max

.start) do
10 advance(X)
11 vif(CX .start < Cy, ,, -start) then

12 updateSPStatus(X)

13 if (Vp; € partiaiPaths(X): SP{p;]) then

14 knownSoln|X) — true
15 return X

16 else

17 return null

18 it (bottom(S x ) is an ancestor of Cy,

min

) then

7 19 if@Pe parents(Ymsn): Cp is an ancestor of Cy, . ) then

20 return the lowest ancestor of P among the nodes in iﬁvPath [X]

21 if (3 sink node Z € Q: partialPaths(Z)C partialPaths(Yy:0)A Cz start < Cy, .

22 - return the lowest ancestor of Z among the nodes in énvPath[X]

23 if (Vp; € partialPaths(Yomin): SPy,

min

X, pi] # null) then -
24 return Y,,;n

25 updateSPStatus(X)

26 if (vp; € partialPaths(X): SP[p;] )) then

27 return Yo,in

28 else

29 return null

.start) then
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Figure 5.1 Traversal of a query dag by getNext

Dealing with the query dag. Since Q) is a dag, some nodes of () along with their subdags
could be visited multiple times by get Next during its traversal of (). This happens when
a node has multiple parents in ). Figure 5.1 shows a scenario of the traversal of a query
dag by get Next, where node X has parents P, ..., P.. Function get Next will be called
on X from each one of the & parents of X. To prevent redundant computations, a Boolean
array, called knownSoln, is used. Array knownSoln is indexed by the nodes of ¢). Given
anode X of @, if knéwnSoln[X | is true, get Next has already processed the subdag ) x
rooted at X, and X has a solution in the current binding (3 of Q). In this‘case, subsequent
calls of get Next on X from other parents of X are not processed on the subdag () x since
they are known to return X itself.

The traversal of the query nodes is not necessarily in accordance with the pre-order
traversal of the query node matches in the XML tree. It is likely that the current match of a
node X already visited by get Next has larger start value than that of a node that has not
been visited yet. If this latter node is an ancestor of X and has a match that participates in a
solution of (), this match should be returned by get Next before the match of X in the same
solution is returned. In order to enforce this returning order, we let get Next “jump” to and

continue its traversal from an ancestor of X before X is returned (lines 19-20 in get Next).
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The target ancestor node of X is chosen as shown in the example below: consider again
the dag of Figure 5.1. The path from the root £ to X in bold denotes the invocation path
of get Next from R to X. The invocation path is recorded in an array tnvPath associated
with each query node (line 4). Assume P is the node under consideration by getNext, and
P, has no solution in 3. Assume also that P, has not yet been returned by get Next but has
a solution in §. Function getNext on P, will return the lowest ancestor of Py among the
nodes of invPath[P;] (which is node W). This enforces get Next to go upwards along the
in\/ocation»path of P, until it reaches W. From there, get Next continues its traversal on
the next child V of W.

The same technique is also used when there is an unvisited node Z annofated by a
partial path that also annotates X, but the current match C'z of Z has a smaller start value
than C'y. The existence of such a node is detected using the sink nodes of ) (lines 21-22).
This technique ensures that the matches of nodes in a same partial path are returned by

getNext in the order of their start value.

Dealing with the same-path constraint. Let X denote the node currently under consideration
by getNext. After get Next finishes its traversal of the subdag () x and comes back to X,
it invokes procedurerupdateSPStatus (lines 12 and 25). Procedure updateSPStatus
(shown in Listing 7) checks the satisfaction of the Asame-path constraints for the subdag
(x, and updates the data structures SP and SPy (described below) accordingly to reflect
the result of the check.

Data structure S P is a boolean array indexed by the set of partial paths annotating X
in the quefy Q. For each partial path p;, SP|[p;] indicates whether the same-path constraint

for p; in Qx is satisfied by the matches of nodes in @x (i.e., whether the matches of the



Listing 7 Procedure updateSPStatus(.X)

1 for (p; € partialPaths(X)) do

2 let nodes denote the set of sink nodes of p; that are descendants of X in Q

3 let node denote the node in nodes whose current match has the smallest end value
4 matchesl — {Cy|Y € nodes}

5 SPlp;] — false

6 if (onSamePath(matchesl)) then

7 SPip;] « true

8 else

9 if AY € nodes : — empty(Sy)) then

10 matches2 — {empty(Sy)?7Cy : top(Sy)|Y € n,odes}
11 if (onSamePath(matches2)) then
12 SP[p;} « true

13 if(=5P[p;]) then

14 advanceUntilSP(nodes)
15 if (noM oreSolns) then
16 return

17 for (every child node ¥ of X annotated by p;) do

18 SPy|X,pi) — SP[pi]? Crode : null

Function onSamePath(matches)
1 minEnd — ming,cmatches{m.end}
2 maxStart «— MaXmematches {LM-start}

3 retarn (mazStart < minEnd)

Procedure advanceUntilSP(nodes)
1 repeat
2 minENode «— minargy epnodes {Cy .end}
3 advance(minE N ode)
4 _if (eos(min ENode)) then
5 noMoreSolns « true
6 . matches — {Cy|Y € nodes}

7 until (noM oreSolns V onSamePath(matches))
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nodes that are below X and are annotated by p; in () lie on the same path in the XML tree).
Let nodes denote the sink nodes of p; in @ x (line 2 in updateS PStatus). In order to check
the same-path constraint for p;, it is sufficient to check whether the matches of sink nodes
in nodes lie on the same path in the XML tree. Note that the match of a sink node can be
its current match or the one that has already been returned by getNext and is now in its
stack.

Procedure updateSPStatus uses function onSamePath to check if the matches R
of a set of query nodes lie on the same path in the XML tree (lines 6 and 11). This
check is based on Proposition 3.1.1. If the same-path constraint is not satisfied, procedure
advanceUntil SP is invoked to advance the cursors of the ﬁodes in nodes until the current -
matches of the nodes lie on the same path in the XML tree or one of the cursors reaches
the end of its list. In the latter case, it is guaranteed that there are no new solutions for ().
Hence, a boolean flag noMoreSolns is set to false in order for PartialTreeStack to end
the evaluation (line 5 in advanceUntilS P). During each iteration in advanceUntil S P, the
node in nodes whose current match has the smallest end value is chosen and its cursor is
advanced (lines 2-3). This way of advancing the cursors guarantees that all the métches of
the nodes in nodes that satisfy the same-path constraint will be eventually detected. Figure
5.2 shows an example of cursor movement during evaluation that results in the current
matches of the sink nodes of a query to lie on the same path.

Every non-root query node Y in () is associated withb a two-dimensional array SPy.
The first dimension of SPy is indexed by the parents of Y in ), while the second one is
indexed by the partial paths annotating Y in (). For every parent X of Y and partial path
p;, if the same-path constraint for p; in Q) x is satisfied, S Py [ X, p;] stores the current match

of node (line 18 in updateS PStatus). node denotes the sink node of p; in the subdag Q) x
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Figure 5.2 A sequence of cursor movements resulting in the current matches of sink nodes
A, B and C of @) to lie on the same path

whose current match has the émallest end value (line 3). Otherwise, SPy[X, p;] is set to
null (line 18). Note that node is not necessarily a node in Qy but can be a node in the
subdag rooted at a sibling of Y under the common parent X. Array SPy is updated by
procedure updateS P Status when the parent X of Y is under consideration by get Nezxt,
and Y has a solution in the current binding of Q. SPy[X, p;] is possibly reset to null when
the cursor of node Y is advanced and the current match CYy is on a different path than the
match stored in SPy[X, p;] (Procedure resetSPFlags shown in Listing 8).

Array SPy records the execution states that are needed to prevent redundant
computations of getNext. For a selected node Y, the non-null values of SPy indicate
that node Y has a solution in the current binding of ) and shéuld be returned by get Next

(lines 23-24 in get Next). In this case, no call to procedure updateS P Status is needed.

Main Algorithm Listing 8 shows the main part of PartialTreeStack. The main part
repeatedly calls getNext(R) to identify the next candidate node for processing (line 4).
For a selected node X, PartialTreeStack removes from some stacks entries that are not

ancestors of C'x in the XML tree (line 9). The cleaned stacks are: (1) the stack of X, (2)
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Listing 8 Algorithm Partial TreeStack

1 noMoreSolns — false

2 while (—end() A ~noM oreSolns ) do

3

~N N B

10
11
12
13
14
15
16

Initialize the fields of knownSoln to true for all the sink nodes of @, and to false for all the non-sink nodes.
X getNext(R)
if (X # null) then
nodes «—.parents(X) U {X}
for (p; € PPsSink(X)) do
nodes «- nodes U sinkNodes(p;)
forevery Y € nodes, pop out entries that are not ancestors of Cx from stack Sy
if (X = R) vV (VP € parents(X): top(Sp) and Cx satisty the structural relationship between P and X in Q)) then
push(Sx, (Cx, pointers to the top entry of every parent stack of X))
for (p; € PPsSink(X)) do
if (VY € sinkNodes(p;): ﬂelnpty(.éy )) then
outputPPSolutions(p;, X)
advance(X)

resetSPFlags(X)

17 mergeAllPPSolutions(}

Function end()

1 return V node X € Q: isSink(X) = eos(X)

Procedure resetSPFlags(X)

1 for (v € parents(X)p; € partialPaths(X)) do

2
3

if (monSamePath({Cx, SPx Y, p:}})) then

SPx|Y,p;} « null

the parent stacks of X, and (3) the stacks of sink nodes of every partial path of which X is

a sink node (lines 6-8).

Subsequently, PartialTreeStack checks if for every parent P of X, the top entry

of stack Sp and C satisfy the structural relationship between P and X in the query (line
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10). If this is the case, we say that Cx has ancestor extensions. Then, PartialTreeStack
creates a new entry for C'y and pushes it on Sx (line 11).

If X is a sink node of a f)artial path p; and the stacks of all the sink nodes of p; are
non-empty (lines 12-13), it is guaranteed that the stacks contain at least one solution of p;.
Subsequently, procedure outputPPSolutions is invoked to output all the solutions of p, that
involve Cx (line 14). Procedure outputPPSolutions iteratively generates thé solutions for
p; which are encoded in the stacks. Such a procedure can be found in [43].

Finally, procedure mergeAll P PSolutions is called to merge-join all the partial path
solutions in order to form the answer of the query (line 17). The details are simple and are

omitted here in the interest of space.

5.2.2 An Example

We evaluate query 3 of Figure 6.18(b) on the XML tree of Figure 6.8(a) using Algorithm
Partiall'reeStack. The answer is shown in Figure 5.3(c). In Figure 5.5 and Figure 5.4, |
we show respectively, different snapshots of the query stacks and the contents of arrays
SPy4, SPg, and S_Pb , during the execution of the algorithm. Initially, the cursors of R, A,
B,D,C,E,G,and F are atr, a1, by, dy, ¢1, €1, g1, and f1, respectively. Before the first call
of getNext(R) returns 7, g; is discarded by advanceUntilS P because g; and f; are not
on the same path. Right after the eighth call returns ey, the stacks contain solutions for the
partial path p;, and are produced by output P P Solutions (Figure 5.5(a)). At this time, the
cursors of R, A, B, D, C, E, G, and I are at 00, 00, by, da, Ca, €9, g2, and f5 respectively.
In the next call, get Next first goes up from D to R, then continues on B because b, is the
ancestor of dy. This call finally returns g, since go.start < ds.start. Subseqqently, the

solutions for the partial path p, are produced (Figure 5.5(b)). The eleventh call returns g3
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SP - Calls of getNext(R)

1213141519 ]1011]12

SPa[R,p1] |e1 | e1 | e1 | e

SPs[R,p2) | g2 | 92 | 92 | 92

SPp[R,p1] | e1 | e1 | e

SPp[R,p2] | g2 | 92 | 92

SPplA,p1] | e1 |e1|el|er el |ca|ca|ca|ca

SPplAspal | i | i | Al A | Al fa| fa | fo ] fo

SPp[B,p1] | e1|e1|er | e ]| e ez | ez | e

SPp(B,p2] | 92| 92 | 92 | 92 | 92 fo| fa | fo

Figure 5.4 The contents of SP,, SPp, and SPp for ()3 during execution of
PartialTreeStack

instead of dy because gs.start < ds.start. After fy and ¢y are returned, the solutions for
po and p, are generated respectively in that order (Figure 5.5(c)). Finally, these partial path

solutions are merge-joined to form the answer of Q)3 (Figure 5.3(c)).
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Figure 5.5 Three snapshots of the execution of PartialTreeStack on query Q3 and the
XML tree 7" of Figure 5.3 (the numbers labeling the pointers denote the call to get Next(R)
as a result of which these pointers were created)

5.2.3 Analysis of PartialTreeStack

Correctness. Assuming that all the structural relationships in a PTPQ () are regarded as
descendant, whenever a node X is returned by get Next(R), it is guaranteed that the current
match C'x of X participates in a solution of subdag ) x. These solutions of (Qx constitute
of a superset of its solutions appearing in the answer of (). Moreover, get Nexzt(R) always
returns a match before other descendant matches of it in a solution of ). In the main part
of PartialTreeStack, Cx is pushed on Sy iff C'x has ancestor extensions. Whenever C'y
is popped out of its stack, all the solutions involving C'y have been produced. Based on

these observations, we can show the following proposition.

Proposition 5.2.1 Given a PTPQ @) and an XML tree T, algorithm PartialTreeStack

correctly computes the answer of QQ on T..

Complexity. Given a PTPQ @) and an XML tree 7', let |Q| denote the size of the query
dag, N denote the number of query nodes of @, P denote the number of partial paths of
@, IN denote the total size of the input lists, and OUT" denote the size of the answer of
@ on T'. The ancestor dag of a node X in () is the subdag of ) consisting of X and its

ancestor nodes. In [36], the recursion depth of X of () in T is defined as the maximum
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number of nodes in a path of 7" that are images of X under.an embedding of the ancestor
dag of X to T. We define the recursion depth of @ in T, denoted by D, as the maximum

of the recursion depths of the query nodes of Q) in 7.
Theorem 5.2.1 The space usage of Algorithm PartialTreeStack is O(|Q| x D).

The proof follows from the fact that: (1) the number of entries in each stack at any
time is bounded by D, and (2) for each stack entry, the size of ptrs is bounded by the
out-degree of the corresponding query node.

When () has no child étructural relationships, Algorithm PartialTreeStack ensures
that each solution produced for a partial path is guaranteed to participate in the answer
of (). Therefore, no intermediate solutions are produced.. Consequently, the CPU time
of PartialTreeStack is independent of the size of solutions of any partial path in a
vdescer.xdant—only PTPQ query.

The CPU time of PartialTreeStack consists of two parts: one for processing input
lists, and another for producing the query answer. Since each node in an input list is
accessed only once, the CPU time for processing the input is calculated by bounding the
time interval between two consecutive cursor moverhents. The time interval is dominated
by updating array S Py for every node X and is O(]@Q| x P). The CPU time on generating
partial path solutions and merge-joining them to produce the query answer is O((IN +

OUT) x N).

Theorem 5.2.2 Given a PTPQ Q) without child structural relationships and an XML tree

T, the CPU time of algorithm PartialTreeStack is O(IN x |Q| x P+ OUT x N).

Clearly, if the size of the query is insignificant compared to the size of data,

PartialTreeStack is asymptotically optimal for queries without child structural relationships.
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5.3 Experimental Evaluation
We ran a comprehensive set of experiments to assess the performance of PartialTreeStack.

In this section, we report on its experimental evaluation.

5.3.1 Comparison Algorithms |

As mentioned ealier, no previous algorithms exist in the inverted list model for the class of
PTPQs. In order to assess the performance of PartialTreeStack, we designed, for comparison,
two approaches that exploit existing techniques for more restricted classes of queries.
The first approach, called T'PQGen, is based on Proposition 3.3.1. Given a PTPQ @,
T PQGen: (1) generates a set of TPQs which is equivalent to (), (2) uses the state-of-the-art
algorithm [20] to evaluate them, and (3) unions the results to produce the answer of ().

The second approach, called Partial PathJoin, is based on decomposing the given
PTPQ into a set of queries corresponding to the partial paths of the PTPQ (partial path
queries). For instance, for the PTPQ (), of Figure 3.2(a), the partial path queries corresponding
to the partial paths p;, ps, and ps of Figure 3.2(b) are produced. Given a PTPQ Q,
Partial PathJoin: (1) uses the state-of-the-art algorithm [43] to evaluate the corresponding
partial path queries, and (2) merge-joins the results on the common nodes (nodes participating

in the node sharing expressions) to produce the answer of the PTPQ.

5.3.2 Experimental Results

Setup. We ran our experimenté on both real and synthetic datasets. As a real dataset, we
used the T'reebank [66] XML document. This dataset consists of around 2.5 million nodes
and its maximum depth is 36. It includes deep recursive structures. The synthetic dataset is

a set of random XML trees generated by IBM’s XML Generator [68]. This dataset consists
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of 1.5 millibn nodes and its maximum depth is 16. For each measurement on the synthetic
dataset, 10 different XML trees were used. Each value displayed in the plots is averaged
over these 10 measurements.

On each of the two datasets, we tested the 4 PTPQs shown in Figure 5.6. Our query
set comprises a full spectrum of PTPQs, from a simple TPQ to complex dags. The query
labels are appropriately selected for the Treebank datasef, so that they can all produce
results. Thus, node labels R, A, B, C, D, E, F and G correspond to FILE, EMPTY, S,

VP,SBAR, PP, NP and PRP, respectively, on Treebank.

R R R R

I J | U

A A A : A

, 771\
I\ ZUN A 2N
B D B P G B D D B F
by ey )
¢ E [C _] f ¢ E c
by A
F G F FE G E G
(p,] 1p,) [p,l PRARTN pl (p,)

(@) B (b) EQ2 () EQs (d) EQq

Figure 5.6 Queries used in the experiments.

We implemented all algorithms in C++, and ran our experiments on a dedicated Linux

PC (Core 2 Duo 3G H z) with 2G B of RAM.

Query execution time. We compare the execution time of TPQGen, PartialPathJoin and
PartialTreeStack for evaluating the queries in Figure 5.6 over the two datasets. Figures
5.7(a) and 5.7(b) present the evaluation results. As we can see, PartialTreeStack has the

best time performance, and in most cases it outperforms either TPQGen or PartialPathJoin
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Figure 5.7 Evaluation of PTPQs on the two datasets.

by a factor almost 2. Its performance is stable, and does not degrade on more complex
queries and on data with highly recursive structures.

The execution time of TPQGen is high for queries with a largé number of TPQs,
for example, £'Q),. Query EQ), is equivalent to 10 TPQs. TPQGen shows the worst
performance when evaluating £, on both datasets (Figure 5.7(a) and 5.7(b)).

PartialPathJoin finds solutions for each partial path of the query independently. It
is likely that some of the partial path solutions do not participate in the final query answer
(intermediate solutions). The existence of intermediate solutions affects negatively the
performance of PartialPathJoin. For example, when evaluating £Q4 on the synthetic data,

PartialPathJoin shows the worst performance (Figure 5.7(b)), due to the large amount of

intermediate solutions generated.

Execution time varying the input size. We compare the execution time of the three
algorithms as the size of the input dataset increases. Figure 5.8(a) reports on the execution
time of the alg;)rithms increasing the size of synthetic dataset for query EQs. PartialTreeStack
consistenly has the best performance. Figure 5.8(b) presents the number of solutions of

EQj3 increasing the size of the dataset. As we can see, an increase in the input size results
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Figure 5.9 Evaluation of /()3 on synthetic data with increasing depth.

in an increase in the output size (number of solutions). When the input and the output
size go up, the execution time of the algorithms increases. This confirms the complexity
results thét show dependency of the execution time on the input and output size. However,
the increase in the execution time of TPQGen and PartialPathJoin is sharper than that of
FartialTreeStack. The reason is that PartialPathJoin is also affected by the increase in the
number of the intermediate solutions, while the performance of TPQGen is affected by the

evaluation of 6 TPQs equivalent to FQ)s.

Execution time varying the input depth. We also compare the execution time of the

three algorithms as the depth of the input dataset increases. Figure 5.9(a) reports on the
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execution time of the algorithms increasing the input depth of synthetic dataset (its size is
fixed to 1.5 million nodes) for query EQ)s. In all the cases, PartialTreeStack outperforms
the other two algorithms. Figure 5.9(b) presents the number of solutions of £ ()3 increasing
the input depth. As we can see, with the input depth increasing from 12 to 18, the output
size increases from 0.4M to 46M. When the output size goes up, the execution time of
the algorithms increases. This again confirms our previous theoretical complexity results.
We also ol‘)serve that as the input depth increases, the execution time of PartialTreeStack
increases very slowly. In contrast, the increase of the execution time of PdrtialPatonin
is sharper than-that of the other two algorithms. The reason is that, for PartialPatthin,
an increase in the outpﬁt size is accompanied by an iﬁcrease in the number of intermediate
solutions produced during. evaluation. ‘TPQGen. does not increase sharper than
FartialPathJoin. However, the execution time of TPQGen is strongly affected by the
number of TPQs equivalent to the PTPQ, which in the worst case is exponential in the

size of the PTPQ.



CHAPTER 6

EVALUATING PTPQS ON XML STREAMS

In this chapter, we present an efficient algorithm for PTPQS in the streaming model. The
chapter is organized as follows. In Section 6.1, we extend the PTPQ definition in Section

- 3.2 with Qutpuf nodes and wildcard nodes. Section 6.2 introduces data structures used for
our streaming evaluation algorithms. Algorithm P.5X is shown and analyzed in Section
6.3. Section 6.4 presents and discusses experimental results for P.SX. Section 6.5 introduces
and analyzes Algorithm Fager P5X. Experimental and comparison results for Fager PSX -

are presented in Section 6.6.

6.1 Data Model and Partial Tree Pattern Query Language
XML data is commonly modeled by a tree structure. Tree nodes are labeled by labels
and represent elements, attributes, or values. Tree edges represent element-subelement,
element-attribute, and element-value relationships. Let £ be the set of node labels. Without
loss of generality, we assume that only the root node of every XML tree is labeled by r ¢ L.
We denote XML tree labels by lower case letters. To distinguish between nodes with the
same label, nodes in the XML tree may have a numeric identifier shown as a subscript of

'the node label.

6.1.1 Query Language

Syntax. A partial tree-pattern query (PTPQ) specifies a pattern which partially determines

a tree. PTPQs comprise nodes and child and descendant relationships among them. Their
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Figure 6.1 A PTPQ, its visual representation and its query graph
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(¢) Q1’s query graph

nodes are grouped into disjoint sets called partial paths. PTPQs are embedded to XML

trees. The nodes of a partial path are embedded to nodes on the same XML tree path.

However, unlike paths in TPQs the child and descendant relationships in partial paths do

not necessarily form a total order. This is the reason for qualifying these paths as partial.

PTPQs also comprise node sharing expressions. A node sharing expression indicates that

two nodes from different partial paths are to be embedded to the same XML tree node. That

is, the image of these two nodes is the same (shared) node in the XML tree. The formal

definition of a PTPQ follows.

Definition 6.1.1 (Partial Tree-Pattern Query) We assume an infinite set of labeled nodes.

The nodes in this set can be labeled by a wildcard (*) or by a label in L. Let X and Y

denote distinct nodes. A partial tree-pattern query is a quadruple (P,S, N, 0) where:
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P is alist of n names p1, . . ., p, called partial path names.

S is a list of n sets Sy, ..., S, where set S; is called partial path (PP) and is named by
p;. Since their names are distinct, we identify PPs with their names. Each PP p; is a
finite set of expressions of the form X/Y (child relationship) or X/]Y (descendant
relationship). No node occurs in two different PPs. We write X|[p;)/Y [pi] (resp.
Xpi)/]Y [ps]) to indicate that Xip)/Y pi) (resp.
Xlpi)//Y[pi)) is a relationship in PP p;. Child and descendant relationships are
collectively called structural relationships.

N is a set of expressions X[p;| = Y[p;] where p; and p; are distinct PPs and X and 'Y
are nodes from p; and p; respectively such that: (a) at least one of them is labeled by a
wildcard, or (b) both of them are labeled by the same label in L.

o is a distinguished node in one of the PPs called output node.

Figure 6.1(a) shows a PTPQ ;. Value predicates are omitted for simplicity. Figure
6.1(b) shows the visual representation of (J;. Note that the labels of the query nodes are
denoted by /capital letters to distinguish them from the labels of the XML tree nodes. In
this sense, label [ in vanA XML tree and label L in a query represent the same label. Unless

otherwise indicated, in the following, “query” refers to a PTPQ.

Semantics. The answer of a query on an XML tree is a set of solutions, where each solution
is the image of the output node ina match of the query on the XML tree. A formal definition
follows.

We say that an XML tree node labeled by a matches a query X if X is labeled by a

wildcard (‘*’) or by A.
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Figure 6.3 Fragments of two XML bibliography documents
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Figure 6.4 Embeddings of PTPQ (), of Figure 6.1 on the two XML trees of Figure 6.3

Definition 6.1.2 (Query Embedding) An embedding of a query Q) into an XML tree T' is
a mapping M }’rom the nodes of Q) to nodes of T such that: (a) a node in () is mapped by
M to a matching node of T, (b) the nodes of () in the same PP are mapped by M to nodes
that lie on the same path in T; (c) ¥ X[pil/Y [pi] (resp. X[pil/ /Y [pi]) in Q, M (Y [pi]) is
a child (resp. descendant) of M(Xpi]) in T; (d) ¥ X[p;| = Yp;] in Q, M(X{pi]) and

MY [p;]) coincide in T.

The image of the output node of () under an embeddings of Q) to T is a solution of Q)
on T'. The answer of () on T is the set of all the solutions of ) onT".

We represént queries as node and edge labeled directed graphs: a query () is
represented by a graph Q. Every node X in () corresponds to a node X¢ in Q¢. Node X¢
is labeled by the label of X, if this label belongs to L. Every node X in ()¢ corresponds
to one or more nodes in Q which have. the same label or are labeled by ‘*’. Node X is

labeled by “*’ if all the nodes in () it corresponds to are labeled by ‘*’. Otherwise, it is
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labeled by the label in £ of one of the nodes in @ it corresponds to. In addition, node
Xe invG is annotated by the set of PPs of the nodes in Q it correspoﬁds to. Two nodes
in () correspond to distinct nodes in ()¢, unless they participate in the same node sharing
expression in Q. For every structural relationship X/Y or X//Y in () there is an edge e in
Q¢ from X to Yg. Edge e is labeled by */’ if there is a childb relationship from a node X’
toanode Y’ in @ and X’ and Y’ correspond to X¢ and Y in Qg, respectively. Otherwise,
e is labeled by //°.

Figure 6.1(c) shows the query graph of query @); of Figure 6.1(a). In the figures,
edges labeled by ‘/ (‘//’) are shown as single (double) line edges. For simplicity of
presentation, the annotations of some nodes might be omitted and it is assumed that a node
inherits all the annotating PPs of its descendant nodes. For example, in the graph of Figure
6.1(c), node Y FAR is assumed to be annotated by the PPs p;, ps, and p3 inherited from
its descendant nodes NAM E, ARTICLE, and DESCRIPTION. Figure 6.4 shows the
two embeddings of the query graph of Q; on the two XML trees of Figure 6.3. The answer
of query (), ‘on the two XML trees consists of the two article nodes. Note that as this
figure illustrates, the same query can be used to retrieve results from two XML trees that
have different structures.

Clearly, a query that has a cycle is unsatisfiable (that is, its answer is empty on any
XML tree). Therefore, in the following, we assume a query is a directed acyclic graph

(dag) and we identify a query with its dag representation.

6.1.2 Generality of Partial Tree Pattern Query Language
Clearly, the class of PTPst cannot be expressed by TPQs. For instance, PTPQs can

constraint a number of nodes in a query pattern to belong to the same path (same-path
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constraint) even if there is no precedence relationship between these nodes in the PTPQ.
Such a query cannot be expressed by a TPQ. TPQs correspond to the fragment XPU/»//+}
of XPath that iﬁvolves predicates([]), child (/) and descendant (//) axes, and wildcards (*).
In fact, it is not difficult to see that PTPQs cannot be expressed either by the larger fragment
XPU/ /1A of XPath that involves, in addition, the reverse axes parent (\) and ancestor
(\\). On the other side, PTPQs represent a very broad fragment XP{-/://\\\+~} of XPath
that corresponds to XP{/-// A\t augmented with the 4s — same — node function (=)
of XPath2 [1]. The is — same - node function is a node identity equality operator. The
conversion of an expression in XP{I///\\\*~} 19 an equivalent PTPQ is straightforward.
There is no previous streaming evaluétion algorithm that directly supports such a broad
fragment of XPath.

Note that as the next proposition shows, a PTPQ is equivalent to a set of TPQs. These
TPQs can be obtained by considering all the allowable orderings of the nodes in the partial
paths of the PTPQ.

Prﬁposition 6.1.1 Given a PTPQ (@Q there is a set of TPQs Ql,
e, Qy in XPULIIAY sych that for every XML tree T, the answer of Q on T is the union of
* the answers of the (J;s on T

Proof sketch. The proof is easy if we observe that the TPQs Q1 . .., Q,, are those that can
be produced by adding descendant relationships to ¢ in all possible ways.

As an example, Fbigure 6.2 shows the two TPQs for query ¢J; of Figure 6.1, which
together are equivalent to (1. The TPQ of Figure 6.2(a) is obtained by adding AUT H OR //
SUBJECT to @1, while the TPQ of Figure 6.2(b) is obtained by adding SUBJECT//
AUTHOR to (). Based on the previous proposition, one could consider evaluating PTPQs

using existing streaming algorithms for TPQs. Unfortunately, the number of TPQs that
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need to be evaluated can be exponential on the number of nodes of the PTPQ. Therefore,

previous streaming algorithms cannot be used for efficiently evaluating PTPQs.

6.2 Data Structures for PTPQ Streaming Evaluation
Open and close events. In a streaming evaluation, the XML documeflt tree 1" flows in as
a stream of open and close events. The appearance of events corresponds to the preorder
traversal of the XML document tree. For each element node in the tree, an open event is
produced when the open tag of the node is encountéred and the node is called open from
then on until it closes. After the subtree rooted at that node is processed, a close event is
produced when the close element tag of that node is encountered. At this time the node
closes. Each event carries the name and level of the corresponding element node in the
tree. For example, suppose the incoming XML is a path with three elements: /a, /by /bs.
The sequence of events for this XML path is: {(a1), {(b1), (b2}, (/b2), (/b1), {/a1). The
first three denote open events and the last three denote close events. For simplicity, the
level information is omitted here. An XML node is current if it is open but none of its -
descendant nodes is open. The path in T from the root to the current node is called current

path. Clearly, a current path consists of all the open nodes in T" at that time.

Query functions. Let X be a node in a PTPQ () and R b¢ the root of (). When X is the
output node of (), the ancestor nodes of X are called backbone nodes of ), and the rest of
the nodes of Q) are called predicate nodes. Note that because of the generality of the class
of queries considered, the backbone nodes of @) do not necessarily lie on the same path of

the query dag. The backbone nodes of ¢) form a dag whose single root is R and whose
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single sink node is the output node. Given a partial path p; in ), we call a node in () a sink
node of p;, if p; annotates X but does not annotate any descendant nodes of X in ().

We make use of the following functions in the evaluation algorithm. Function
PPsSink(X) returns the set of partial paths where X is a sink node. Function parents(X)
returns the set of parent nodes of X in (). Function PChildren(X) returns the set of
predicate child nodes of X in (), and function BSiblings(X) returns the set of backbone
sibling nodes of X in (). By removing the descencz;ant edges from the dag of the backbone
nodes of (), we can logically partition it into a ﬂset of paths, each path involving only child
edges. A path can be trivially be a single node. Let X be a node in a path p of the partition.
Function hosi(X ) returns the leaf node of p, if p does not contain the output node of (), and

null otherwise.

.Example 6.2.1 Consider the PTPQ @1 shown in Figure 6.1(c). Its backbone nodes are:
YFEAR, AUTHOR, SUBJECT, ARTICLE. The predicate nodes are: NAME,
DESCRIPTION. Nodes NAME, ARTICLE, and DESCRIPTION are the only

sink nodes of partial paths p1, pa, and pa, respectively. Some instances of functions PPsSink '

and host:
PPsSink(NAME) = {p,}, PPsSink(ARTICLE) = {p2},
PPsSink(AUTHOR) = 0, host(Y EAR) = YEAR,

hostt AUTHOR) = AUTHOR, host(t ARTICLE) = null

‘Query matches. We use the notion of candidate match of a query node which is based
on the notion of ancestor match of a query node. These notions are useful for describing
and understanding the algorithm and for showing its correctness. We define them here and

provide a proposition that relates solutions to candidates matches of nodes.
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Definition 6.2.1 (Ancestor Match) Let X be a node in a PTPQ () and x be a node in an -
XML tree T that matches X. Node z is called an ancestor match of X, if either X is the
root node of Q, or for every parent Y of X in (), Y has an ancestor match y inT' such that:

() IfY/X € Q, yisthe parentof x in'T, and(b) IfY//X € Q, yisanancestor of x inT.

We say that a node = of an XML tree T sustains the partial path p; of a PTPQ @, if
there exists an embedding of the nodes of ¢} to T" that maps all the nodes in () annotated by
p; to the path from the rpdt of T to z. The concept of sustainability relates to the same-path
constraint since if node z sustains a partial path p; there are nodes in the path of « that

satisfy the same-path constraint for p;.

Definition 6.2.2 (Candidate Match) Let x be a node in an XML tree T', and X be a node
in a PTPQ Q. Node x is a candidate match of X, iff the following conditions are satisfied:
(a) = is an ancestor match of X, (b) Vp; € PPsSink(X), x sustains p;, and (c) VY &

PChildren(X), z has a descendant in T which is a candidate match of Y.

A candidate match z of X is a candidate output if X is the output node of (). Let
(5 denote the dag of the backbone nAodes of @, and x be a candidate output of ¢) in 7.
Then, there is an embedding of ()5 to the path from the root of 7" to . The path formed by
the images of the nodes of 5 under such an embedding is called output path for x. The

following proposition provides conditions for a candidate output to be a solution of ).

Proposition 6.2.1 Let x be a candidate output of Q in T. Node x is a solution, iff there
is an output path for x in T such that every node on the path is a candidate maich of the

corresponding backbone node(s). ’

The proof of Proposition 6.2.1 follows from Definitions 6.1.2 and 6.2.2.
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Example 6.2.2 Consider the PTPQ Q1 of Figure 6.1(c) and the left XML tree of Figure 6.3.
It is easy to see that the XML tree nodes year, author, and subject are ancestor maiches
of query nodes Y EAR, AUTHOR, and SUBJECT, respectively. Tree node article is
an ancestor match of query node ARTICLF, since ARTICLE’s parents AUTHOR and
SUBJECT have ancestor matches author and subject, respectively, both of which are
ancestors of article in the XML tree. Further, node article sustains partial path ps, since
there is an embedding of the nodes of ()1 to the XML tree that maps all the nodes annotated
by ps, that is, Y EAR, AUTHOR, SUBJECT, and ARTICLE, to the XML path p :
Jyear [author/ subject/article (see the embedding 1 of Figure 6.4(a)). Therefore, node
article is a candidate match of query node ARTICLE (the condition (c) of Definition
6.2.2 is trivially satisfied). Similarly, the XML tree nodes year, author, and subject are
candidate matches of their correlsponding query nodes. Also, node article is a candidate
output, and the XML path p is the output path for article. Finally, node article is a solution
of Q1 since every node on path p is a candidate match of the corresponding backbone node
(Proposition 6.2.1).
Stacké. With every query node X in @), we associate a stack Sx. Each entry in stack Sy
corresponds to an open node z in 7" and is a 3-tuple (XMLNode, SPFlags, PCFlags). For
an entry e.of Sx, field e XMLNode is the tree node z. Field e.SPFlags is a boolean array
indexed by the partial paths in PPsSink(X). Given p; € PPsSink(X), e.SPFlags[pi]
indicates whether z sustains p;. Field e.PCFlags is a boolean array indexed by the nédes
in PChildren(X ). Given Y € PChildren(X), e.PCFlags[Y] indicates whether x has a
descendant in 7" that is a candidate match of Y. |

If X is abackbone node, we associate with e an additional field candList which stores

a list of candidate outputs (these are closed nodes) that are descendants of  in T'. Let
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M axz BChild denote the maximum number of b_ackbone child nQdes of anode in (). When
MaxBChild > 1 (in which case the backbone nodes of ) form a dag), each candidate
output ¢ in e.candList is a 2-tuple (XMLNode, BFlags). Field c. X M LN ode is a candidate
match of the output node. Field c.BFlags is a boolean array indexed by the backbone
nodes of (). Given a backbone node Y, ¢. BFlags[Y] indicates whether c. X M LN ode has
an ancestor in 7" that is a candidate match of Y. When MaxBChild = 1, each candidate

output ¢ in e.candList is a 1-tuple (XMLNode).

Stack operations. We use the following stack operations: boolean function empty(Sx)
which returns true iff stack Sx is empty, push(Sx, e) which pushes e on stack S, pop(Sx)
which pops the top entry from Sy and returns it, and fop(Sx) which returns the top entry
of stack Sx. In what follows, we might not distinguish between an entry in a stack and its

corresponding node in T'.

6.3 Evaluation Algorithm
The ﬂexibility of the PTPQ language in specifying queries and its increased expressive
power compared to TPQs makes the design of an evaluation algorithm challenging. Two
outstanding reasons of additional difficulty are: (1).a query is a dag (which in the general
case is not merely a tree) augmented with constraints, and (2) the same-path constiaints
should be enforced for all the nodes in a partial path in addition to enforcing structural
relationships. In this section, we present our evaluation algorithm which efficiently resolves
these issues. The presentation of the algorithm is followed by an analysis of its correctness

and complexity.

6.3.1 Overview
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Listing 9 Algorithm PSX

1 while (event stream generates more events e) do

let z denote the tree node corresponding to e
compute the list nodesList of query nodes in @ that match z sorted so that they form a topological ordering of @
if (e is an open event) then
for (every X € nodesList in reverse topological order) do
startEval( X, z)
else if (e is a close event) then

for (every X € nodesList in forward topological order) do

O 0w 3N R W

endEval( X, x)

Let () be the input query to be evaluated on a stream of events for an XML tree 7.
We assume that a topological order (i.e., a linear order of the query nodes which respects
the partial order induced by the structural relationships of the query) for the nodes of Q
is fixed with the root node R of () being the first node. Our algorithm is called Partial
TPQ Streaming evaluation on XML (PSX) and is shown in Listing 9. Algorithm PSX
is event-driven: as events arrive, event handlers (which are the procedures startEval or
endEval), are called on a sequence of query nodes that match the current node.

More specifically, when the algorithm receives an open event for a tree node z, it
calls procedure startEval on all the query nodes in () that match z." For each such node
X, startEval examines whether z can be pushed on stack Sx and whether the current node
sustains the partial paths that annotate X. In order to prevent z from ‘seeing’ a rcopy
of itself on parent stacks of X, the query nodes that match x should be considered in
their reverse topological order. When the algorithm receives the close event 0f z, it calls
procedure endEval on the same query nodes but now it considers them in their forward

topological order. For instance, consider evaluating the query //A//% on the XML path
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/ai/as/as. When {(as) comes, node * is considered before A. When (/as) comes,.node A
is considered before x. For each quéry node X in the list, endEval pops the entry of z from
Sx and checks if z is a candidate match of X. If this is the case and X is a backbone node,
each candidate output stored in the entry for x is propagated to an ancestor of z in a stack,
or is returned to the user if X is the root of Q.

Algorithm PSX has three main features: (1) it retains in memory only elements that
are relevant for query evaluation, (2) it avoids processing redundant matches, and (3) it
keeps only one copy of each candidate output in the stacks during execution. Another
important feature which is especially useful in streaming environments is that the solutions
are incrementally generated rather than being accumulated and delivered after the entire

stream has been processed. We elaborate these features below.

6.3.2 Open Event Handler
Procedure start Eval, shown in Listing 10, is invoked every time an open event for a tree
node z arrives. At this time, all the ancestor nodes of z have arrived and z is the current

node.

Filtering irrelevant data. Let X be a query node that matches z. Procedure startEval
checks if x qualifies for being pushed on stack Sx (lines 1-3). Node = can be pushed on
Sx only if z is an ancestor match of X . This check would require examining whether every
ancestor of X in () has an ancestor match on the path from the root of 1’ td x. Fortunately,
the stack-based organization allows this checking to be done efficiently, with its cost being

bounded by the in-degree of the query dag (). The reason is that only the descendant
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or child relationships between x and the top entries of the parent stacks of X need to be

checked.

Avoiding redundant matches. Because the answer of a query comprises only the
embeddings of the output node of the query, we might not need to identify all the matches
of the query pattern when corﬁputing the answer of the query. In this sense, we take
advantage of the existential semantics of the query during evaluation: whenever a matching
of a predicate node in the query is found, other matches of the same node that do not
contribute to a possible new matching for the output node can be ignored. For instance,
consider evaluating the query (), of Figure 6.5(b) on the XML tree of Figure 6.5(a).
The nodes aj, by, e; and f; which are matches for the predicate nodes A, B, E and
F, respectively, contribute to fhe match d; of the output node D. The nodes as, ..., a,,
ba, ..., by, €2,...,€n, fa,..., fn which are élso matches of the predicate nodes can be
ignored, since they all contribute to the same match d; of the output node. Note that these
nodes correspond to O(n') embeddings of the query with the same match for the output
node. Avoiding these redundant matches of the predicate nodes saves substantial time and
space.

“Our algorithm exploits this observation using the concept of redundant match of a
predicate node. Let X be a predicate node in ¢). An ancestor match z of X is redundant
for the evaluation if a node 2’ that precedes z in 7 is a candidate match of X and all the
ancestor matches of X’s parents in () that are ancestors of z are also ancestors of /. During
the evaluation of the algorithm, an ancestor match z of a predicate node X is identified as
redundant if the boolean field PC Flags[X] associated with the top entry of each parent

stack of X has been set to true. In the previous example, e, is a redundant match of node



101

Listing 10 Procedure startEval(X, x)
1 it (X # R A 3P € parents(X): empty(Sp)) then

2 return
3if(X=R)V(VPe parents(X): top(Sp).X M LNode and z satisfy the structural relationship between P and X in Q)) thén
4 if (isMatchRedundant(X) = true) then
5 . return
push(Sx, newStackEntry(X, z))

6
7 for (every p; € PPsSink(X)) do

8 if (for every sink node Y of p;: —empty(Sy)) then
9 for (every sink node Y of p;) do
10 top(Sy ).SPFlags[pi] < true

Function isMatchRedundant(X)

Tif(Xisa predicate node ) A (VP € parents(X): top(Sp).PCFlags[X] = true)) then

2 return {rue

E, since it is an ancestor match of ' and when (e5) is read, ¢;.PC Flags[ F] has been set to
true by e;. Redundant matches (which can be nested at arbitrary levels) are not stored and
processed by our algorithm (line 4 in startEval). Note that rprevious streaming algorithms
in {32, 35, 37, 29] do not take advantage of this observation and process all the nodes in
the XML tree regardless of their redundancy. For instance, in evaluating the sub-query
R//C[E]]F)/]/D of Q2 over the XML tree of Figure 6.20(a) using Algorithm X, [32]
(X40s cannot support the PTPQ Q3), a number of O(n?) matches of the pattern £//F will
be unnecessarily accumulated in memory. The streaming algorithms in [30] take advantage
of the existential semantics of the query during evaluatjon, but they are restricted to TPQs.

Once startEval determines that x is not a redundant match, it creates a new stack
entry for £ and pushes it on Sx (line 6). At this time, the étacks contain the ancestor

matches of query nodes that lie on the current path. If z is a candidate output, the matches
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of the backbone nodes encode the set of output paths for z in 7" that the algorithm could
follow upwards to determine whether 7 is a solution (see Proposition 6.2.1). For instance,
consider again evaluating the query (), of Figure 6.5(b) over the XML tree of Figure 6.5(a).
Figure 6.5(c) shows the snapshots of stacks after (d;) is read and an entry for d; is pushed
on stack Sp. Black boxes in the boolean arrays PC’F:lags and SPFlags associated with
stack entries denote fields which are true. Node d; is a candidate output. The algorithm
could follow upwards the path /r/cy/d; or the path /r/¢; /dy to determine whether d; is a

. solution.

Checking the same path constraint. Procedure startEval proceeds to check whether the
current node z sustains the partial paths annotating X in () (lines 7-8) and updates the
boolean array S P Flags accordingly (lines 9-10). In order to do this, it suffices to check if
the stacks contain an entry for every sink node of these partial paths. For instance, consider
again the example shown in Figure 6.5. After the entry for b; is pushed on stack Sg, the
stacks S4 and Sp respectively contain an ancestor match of the sink query nodes A and
B of the partial path p;. Therefore, the current node b, sustains p; (see Section ??). As
a result, 7.SPFlags[p] is set to true. Note that the checking time is bounded by the
maximum number of sink nodes in a partial path of ). It is of course constant when () is a

TPQ,
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6.3.3 Close Event Handler

Procedure endEval, shown in Listing 11, is invoked every time a close event for a tree node
x comes. At that time all the descendant nodes of x in 7" have arrived and x is the current
node. Let X be a query node that matches  and s be the top entry of stack Sx. If the
node s.X M LNode is the same as z (line 4), entry s is popped out from Sx (line 5), and
procedure mergeFlags is called to copy the truth values ofvthe boolean arrays s.5FPFlags
and s. PC'F'lags to the new top entry of S /\ (lines 6-7). For instance, consider the example
shown in Figure 6.5. After entry ¢, is popped out from stack S, PCFlags|E] is set to
true for the new top entry c¢;. Function isCandMatch is then invoked to determine if s is a
candidate match of X (line 8). In order to do so, function isCandM%zrch essentially applies
Definition 6.2.2.

If X is a backbone node, s possibly stores a list of candidate outputs that are
descendants of z. Recall that the backbone stacks encode all the output paths which the
algorithm could use to determine if candidate outputs are solutions. In each of these paths,
the nodes which are ancestor matches éf the backbone nodes might become candidate
matches. Whether the candidate outputs will eventually become solutions depends on
whether an output path can be found consisting of nodes that are candidate matches of
the backbone nodes. If no such. path exists, the candidate outputs will be discarded. In any
case, the matcﬁing information about x and the candidate outputs stored in s is propagated

up along an output path encoded in the stacks. We detail this process below.

Handling a candidate match. If z is a candidate match of the query node X, procedure
endEval considers four cases depending on the type of X. The last three cases are handled

through a call to procedure upwardPropagate.
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Listing 11 Procedure endEval( X, z)

1ir (empty(Sx )) then 2 for (every P € parents(X)) do
2 return , 3 top(Sp).PCFlags[X ] «— true
3 s —top(Sx) 4 else {/*X is the output node or a backbone node */}
4 it (s.XMLNode = x) then 5 lowAncPar « getLowAncEntry(parents(X))
5 pop(Sx) 6 if (X is the output node) then
6 if (—mempty(Sx)) then 7 append(lowAnchr.candList, newCandidate(x))
7 mergeFlags( X, s) 8 else if (X is a backbone node) then
8  if (isCandMatch(X, 5) then 9 i (MazBChild = 1) then
9 if (X = R) then 10 append(low AncPar.candList, s.candList)
10 output(s.candList) 11 else
11 else 12 for (every ¢ € s.candList) do
12' upwardPropagate(X, s) 13 . c.flags[ X1 — true
13 else 14 nodes «— {Y[|Y € BSiblings(X) A
14 downwardPropagate(X, s) c.BFlags[Y'] # true}
Procedure mergeFlags(X, popped) 15 if (nodes = 0) then
1 for (every p; € PPsSink(X)) do 16 append(low AncPar.candList, ¢)
2 top(Sx).SPFlags[p;] « true, if popped.SPFlags[p;] = 17 dse
true 18 lowAncSib «— getLowAncEntry(nodes)
3 for (every Y € PChildren(X)) do 19 if (low AncSib # null) then
4 if(X//Y € Q) then 20 append(low AncSib.candList, ¢)
5 top(S x).PCFlags[Y'] «— true, if popped.PCFlags{¥Y] FProcedure downwardPropagate(X, s)
= true 1 Y — host(x)
Function isCandMatch(X, s) . 2 lowAnc — getLowAncEntry(BSiblings(Y)U {Y'})

1 if (v p; € PPsSink(X): s.SPFlags(p;] = true) A (v ¥ € 5 i (lowAnc # null) then

PChildren(X): s.PCFlags[Y'] = true) then 4 append(low Anc.candList, s.candList)
2 return t{rue Function getLowAncEntry(nodes)
Procedure upwardPropagate(X, s) 1 Yimax «— maxargy {top(Sy). XM LNodelevel}, VY €.
1 if (X is a predicate) then nodes A —empty(Sy)

2 return ©0p(Sy,mas)
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if X is the root node R of (), the candidate outputs stored in entry s are simply returned
to the user (line 10 of procedure endEval).

if X is a predicate node of (), for each parent P of X,
top(Sp).PCFlag[X] is set to true. This indicates that a candidate match of X has
been found (lines 1-3 of procedure upwardPropagate).

if X is the oufput node of (), by definition, x is a candidate output.. At this time, it
can not be determined, based on the part of 7" seen so far, whether x qualifies to be
a solution. Before such a decision can be made, z must be stored. The entries in the
parent stack(s) of X can be used to store z. Note that it is possible that X has more
than oﬁe parent node in (). The stack for each of the parent nodes contains entries that
are ancestors of z in I'. Each of those entries lies on an output path for z. Clearly,
attaching a copy of z even only to the top entry of each parent stack of X would lead

to duplicate outputs, when there are multiple output paths for z consisting of backbone

~ node candidate matches. To avoid duplicate outputs, procedure upwardPropagate

4)

propagates x only to the top stack entry which is the lowest ancestor of x among the
top entries of the parent stacks of X (lines 5-7).

if X is a backbone node of @), as in case (3), the problem we face is where to propagate
the candidate oﬁtputs in s.candList after entry s is popped out from its stack. Recall
that M az BChild is the maximum number of backbone child nodes of any node in Q).
If MaxBChild = 1, the list of candidate outputs is propagated to the top entry of the
pare,nf stack of X (lines 9-10). This cannot be done when M axBC’hz’ld > 1, since it
could lead to false outputs. The reason is that X may have a sibling backbone node Y’
for which the existence of a candidate match that is an ancestor of the candidate outputs

in s.cand List may have not yet been determined. For instance, consider evaluating the
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query 3 of Figure 6.6(b) (borrowed from [32]) on the XML tree of Figure 6.6(a).
After entry z4 is popped out from stack SZ, and is identified as a candidate match of Z,
zg4.candList (= {wg}) should not be propagated to the top eﬁtry r of the parent stack
Sp, since it is not known at this time if wg has an ancestor which is a candidate match
forY.
We provide a solution to the problem by exploitingrthe data structure designed for
candidate oﬁtputs. Recall that each candidate output ¢ in s.candlList is a 2-tuple
(XMLNode, BFlags) and that for each backbone node Y € Q, c.BFlags[Y] is used
to indicate whether a candidate match of X that is an ancestor of ¢ in 7" has been found
(see Section 6.2). Using this data structure, the propagation of a candidate output ¢
proceeds in two steps. In the first step, ¢. BFlag[X] is set to true (line 10). In the
second step, ¢ is propagated to the lowest ancestor among the top entries of the parent
stacks of X or among the top entries of selecteci sibling stacks of X (lines 11-27). If
none of these choices is applicable, c¢ is discarded. Notice that an iteration over each
candidate output in s.candlist is needed here (line 9), since the values of BFlags
can be different for each candidate output. For instance, consider again the example of
Figure 6.6. Figure 6.6(c) shows a snapshot of stack Sy dur_ing execution, where each
of the candidate outputs in y;.candList has a different BFlags valﬁe. For simplicity,
for each candidate output, only the fields of Y and Z of its BFlags are shown in the
figure.
Note that an invariant of the upward propagation is that whenever a candidate output
¢ is propagated to a stack of a backbone node X, for any backbone node Y which is a

descendant of X in @, c. BFlags[Y] has been set to true.
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Handling a non-candidate match. If x is not a candidate match of X, the candidate
outputs in s.candList should be propagated along ;an output path that does not comprise z.
Those candidate outputs could be propagatéd to an ancestor node of z either in the same
stack Sy, or in the stack of a sibling backbone node of X, or in the stack of a descendant
backbone node of X. This operation is handled by calling prbcedure déwnwardPropagate
(line 14 in procedure endEval). |

Let Y be the node host(X) (line 1 in procedure downwardPropagate). By definition,
node Y is the closest descendant-or-self backbone node of X such that V7 € BChildren(Y'),
Y//Z € Q. The candidate outputs in s.candList are propagated to the entry, among the
top stack entries of ‘Sy and the stacks of the backbone sibiings of Y, which is lowest
ancestor of x (lines 2-4). If no such entry exists, the candidate outputs are discarded. For
instance, consider again the example of Figure 6.6. When (/ys) is read, ys is identified
as a non-candidate match of Y. Therefore, candidate output wsg is downward propagated
to z4 in stack Sz since host(Y) = Y and Z is the sibling backbone of Y. Note that if
instead of propagating wg to the top stack entry (z4) of the sibling backbone node Z of Y,

we propagate it to the new top stack entry y; of Sy, we will lose the information that wg
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has an ancestor z, which is a candidate match of Z. As another example, suppose that we
replace fhe edge ‘//” between Y and W in (3 by ‘/’ to form the query Q% of Figure 6.7(a).
We evaluate @3 on the XML tree of Figure 6.6(a). When (/ys) is read, wg is discarded
since function host returns null on Y. As a ‘third example, consider evaluating the query

4 of Figure 6.7(b) on the XML tree of Figure 6.6(a). When (/ys) is read, wg is downward
propagated to y; in stack Sy since host(Y) =Y, and Y has no sibling backbone nodes.
| The downward propagation does not update the array BI'lags of the candidate outputs
in s.candlist. It handles the candidate outputs in batch rather than individually, no matter
whether M axzBChild > 1 or not.

Note th;xt in both the upward and downward propagations, the candidate outputs
stored in the popped entry of the current node are propagated to at most one stack entry.
“This way, for each candidate output, there is only one copy stored in the stébks during
execution. This technique eliminates the need to explicitly perform duplicate solution

removal which is required in the streaming algorithms for TPQs presented in [34, 32, 29].

6.3.4 An Example and Comparison with Previous Approaches
As an example, we evaluate query ()3 of Figure 6.8(b) on the XML tree of Figure 6.8(a)

using Algorithm PSX. The answer returned is {wr}. In Figure 6.9, we show different
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snapshots of the query stacks during the execution of the algorithm. For simplicity, for
each candidate output, only the fields for ¥ and Z in BFlags are shown in the figure.
Black boxes in the boolean arrays PCFlags and SPFlags (abbfeviated as PC and SP
in the figures) associated with stack entries denote fields WhiCh are true. Similarly, for the
boolean array BF'lags associated with candidate outputs.

When (u3) is read, since us is not a redundant match of node U, a new entry for ug
is created and pushed on stack Sy (lines 4 and 6 of start Eval). As U is the only sink node
in partial path p;, node u3 sustains p;. Therefore, uz.SPFlags|p:] is set to true (line 10 of
start Eval). When (/us3) is read, ug is popped out from Sy (line 5 of endFwval). Since ug
is a candidate match of node U, and U is a predicate child of Y, y,. PC F'lags|U] is set to
trﬂe (lines 1-3 of procedure upwardPropagate in end Eval).

When (ws) is read, it can be determined that ws sustains partial path py. Thus
ws.SPFlags|ps] is set to true. When (/ws) is read, since ws is ;1 candidate match of
the output node W, a new candidate output for ws is created. It is appended to z,.candList
since 24 is the lowest ancestor of wy (lines 6-7 of upwardPropagate).

When (/z,) is read, since z, is not a candidate match of Z (it has no children
matching V') and there are no entries below z4 in stack Sz, z4 along with its candList

(= {ws}) is discarded (line 14 of endEval).
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is an ancestor match of a dag node but pattern matches are constructed based on the parse
tree. X, Uses propagation techniques to construct pattern matches during evaluation.
Spepiﬁcally, after (/ws) is read, it optimistically propagates node z, to ws by assuming 2, is
areal maich of Z (i.e., it matches the sub-query rooted at Z in the parse tree). Subsequently,
node wjy is propagated to nodes y; and ys. At this time, X,,s determines that ys is a real
métch of Y and propagates it to node 7. After (/z4) is read, it can be determined that z,
1s not a real match of Z since it has no child rmatch for V. As a result, node z, is removed
from ws. The undo propagation is then recursively applied to entries wy, y1, yo, and 7.
Clearly, such undo operation affects negatively the time and memory space performance
of X,0s. Xaos produces the query solutions after all the XML document nodes have been
scanned. The query solutions are produced by traversing the matches of the query and by
projecting them on the query outp;ut node. However, X,,; may redundantly store multiple
copies‘ of the same output in different matches of the query. For this reason, an additional
effort is needed to eliminate duplicate solutions at the final stage. In our example, two
matches of the query are constructed: [R : 7[Y : 1o[U : us, W : wr[Z : z6[V : vg]]]]] and
[R:r]Y :1p1[U :ug, W 1 wq[Z : 2]V : wg]]]]]. Projecting each of them on the output node
W returns the solution wy twice.

Notice that to evaluate query (3, SPEX [69] has to first decompose it into three
subqueries: two path queries Y/U and Z/V and one single-join dag {Y, Z}//W. Each
subquery is evaluated separately and the solutions are composed. In a more recent version
of SPEX [11], Q3 has to be transférmed to two TPQs similar to those shown in Figure

6.2, which are again evaluated separately.
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6.3.5 Analysis

Correctness. The following proposition characterizes the population of stacks during

execution.

Proposition 6.3.1 Let x be the current node on an open event of an XML tree I'. Procedure
start Eval correctly pushes x onto the stacks of the query nodes that match x while avoiding

redundant matches.

Proof. Let X be a query node in @) that matches z. Procedure start Fval first determines
if = is an ancestor match of X using Definition 6.2.1. Node z is not pushed on stack Sx
if it is not an ancestor match of X. If X is not a predicate node, = cannot have redundant
matches and is pushed directly on stack Sy. Otherwise, procedure start Eval proceeds to
check if the ancestor match x is a redundant match of X. Subsequéntly, 2 is pushed on Sy

only if it is not redundant. ' 0

The next proposition characterizes the transformation of candidate outputs into solutions

during execution.

Proposition 6.3.2 Let R be the root of (), X be the output node of Q), and x be an entry
in stack Sx. Procedure endEval returns x to the user as a solution only if x is eventually

propagated to an entry in Sg which is a candidate match of R.

Proof. The claim trivially holds if X equals . Note that procedure endFval determines if
a stream node in 7" is a candidate match of its corresponding node in () only when the end
event of that stream node is read (line 8). If « is not a candidate match of X, x is discarded
by endFEval. Let z be a candidate match of X. Procedure ﬁpwardPro‘pagate is invoked

to appropriately propagate z to the top stack entry y of a parent Y of X in () (line 5).
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When the end event of y is read and y is found to be a candidate match of Y, two
~ cases are considered: (1) Y is the root R. In this base, procedure endEval returns x along
with the other candidate outputs in y.candList to the user (line 10). (2) Y is a non-root
backbone node of ). In this case, procedure upwardPropagate is invoked to propagate
z to its lowest ancestor which is the top stack entry of a sibling backbone node of Y or a
parent of ¥, depending on whether ancestors of = have been found to be candidate matches
for th_e sibling backbone nodes of Y (lines 9-20).

If y is not a candidate match of Y, procedure downwardPropagate is invoked (liﬁe
14). Let Z be the query node host(Y). Node z along with other candidate outputs in
y.candList is downward propagated to the top stack entry of Z or of a sibling backbone
node of Z. If Z is null or the stack is‘empty, all the candidate outputs in y.candList
including z are discarded. |

The above propagations of x continue until either z is discarded or is returned to the

user. v O
The correctness of Algorithm PSX follows from the previous two propositions.

Space and time complexity. Given a query () and an XML tree 7', Figure 6.10 shows the
list of parameters used for the complexity analyéié. Among them, the recursion depth is
defined as fbllows. The recursion depth of a query node X in T is defined in [36] as the
maximum number of nodes in a path of 7" that are ancestor matches of X. We define the
recursion depth D of () in T as the maximum recursion depth of the query nodes of () in
T.

The space complexity of Algorithm PSX is composed of two parts. The first part is

the space consumed by the stacks. Since the number of entries in each stack at any given
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Parameter | Description

Q1 Number of nodes and edges in Q

N Number of nodes in

P Max. no. of PPs in @) which share a query node as a sink node
M Maximum number of sink nodes in a partial path of @

B Maximum number of backbone children of any node in Q

S Maximum number of backbone siblings of any node in @

H Height of T

IT| Number of nodes in T

D , Recursion depth of @ on T'

Figure 6.10 Complexity parameters

time is bounded by D, and the size of each stack entry is bounded by the out-degree of
the corresponding query node, the space used by Stacks is O(D x |@]). The second part is
used for storing candidate outputs whose number is bounded by |T'|. When B > 1, each
candidate output is associated with a boolean array BF'lags of size O(N). Therefore, the
total space needed for the candidate outputs when B > 1is O(|T'| x N). When B = 1, the
total space needed for the candidate outputs is O(|T).

The time complexity of Algorithm PSX is determinéd by the time for accessing stack
entries, and the time for processing candidate outputs.

For a current node z, let X be a query ﬁode that matches x. Procedure startEval and
endEval spend respectively O( fanin(X) + fanout(X) + M x P) and O(fanin{X) +
fanout(X) + P) on accessing stack entries, where fanin(X) and fanout(X) denote
respectively the in-degree and out-degree of X in Q). Since the number of query nodes that
match the current node is O(/V), the total time spent on accessing stack entries for each

node in T'is O(|@Q| + N x M x P), which is dominated by O(|Q| x M x P).
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Candidate outputs are processed by procedure endEval. When B = 1, each candidate
output is visited exactly once regardless of whether it is returned to the user or discarded.
Thus, the total time spent on candidate outputs is O(|7T'|). When B > 1, the total time spent
on candidate outputs for the upward propagation is O(|T'| x S x H), since each candidate
output can be propagated { times -and each propagation takés O(S) on ﬁnding the target

stack entry.

Theorem 6.3.1 Algorithm PSX correctly evaluates a query () on a streaming XML document
-~ T. When B = 1, Algorithm PSX uses O(|T'| + D x |Q|) space and O(|T| x |Q)| x M x P)
time. When B > 1, it uses O(|T| x N+D x |Q|) space and O(|T| x (|Q| x M x P+S x H))

time.

If @ is a tree-pattern query (TPQ), the values of parameters P, M, B, and S are 1,
and O(|Q|) equals N. In this case, the time and space complexity of Algorithm PSX are
O(T| x |1Q]) and O(|T| + D x |Q)|), respectively. Therefore, they are equal to the time
and space complexity of the best known streaming algorithms [30] (the space used in [30]
consists of caching space whiéh is O(D x |Q]) and buffering space which is O(|T])). Note
however that the streaming algorithms in [30] support only TPQs while PSX supports a

broad fragment of XPath that strictly contains TPQs.

6.4 Experimental Evaluation
We have implemented Algorithm P.SX in order to experimentally study its execution time,
memory usage, and scalability. Since there are no other streaming algorithms that support
such a broad fragment of XPath, we compare P.S X with Algorithm X,,, [32]. Even though

Xaos cannot support PTPQs, it supports a subclass of XPath broader than TPQs, since it
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can evaluate TPQs extended with reverse axes. As X,,; is not publicly available at this

time, we implemented it based on the algorithm described in [32].

6.4.1 Experimental Setup

We implemented both algorithms (PSX and X,,) in Java. We used the SAX XML
parser [70], a event-based parser that scans XML document trees and produces a stream
of events. All the experiments reported here were performed on an IntelCore 2CPU 2.13
GHz processor with 2GB memory running JVM 1.6.0 in Windows XP Professional 2002.
Each experiment was run five times and each value displayed in the plots is averaged over
these five measurements.

We evaluated the performance of the algorithms on three dataseté whose statistics are
shown in Figure 6.11. The first one is a benchmark dataset using X Mark! with factor
= 1. This dataset does not include recursive elements. The second one is a real data from
the Treebank project®. This dataset includes multiple recursive elements. The third one
is a synthetic dataset generated by IBM’S XML Generator® with Number Levels = 8 and
Moazx Repeats = 4, based on the DTD shown in Fig. 6.12. By construction, this dataset
includes highly recursive structures.

On each one of the three datasets,' we tested 5 PTPQs. The queries on the synthetic
dataset are shown in Figure 6.13. The queries on the other two datasets are analogous
in structure to those for the synthetic dataset and are adapted for their respective dataset.
We use the following naming convention for those queries: the queries are named NQ);,

i = 1,...,5, where N=*X’ denotes the XMark dataset, N="T" denotes the treebank

1 http://monetdb.cwi.nl/xml/
2http://www.cis.upenn.eclu/wtreebank

3 http://www.alphaworks.ibm.com/tech/xmlgenerator
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XMark | Treebank | Synthetic

Size | 113MB 82MB | 20.3MB
#nodes 1627K 2380K 580K
#labels 74 250 6
Max/Avg depth 12/5.6 36/8.4 9/8.8

Figure 6.11 Dataset statistics

<IELEMENT R ((A, B, C)+, D*, E*)> <IELEMENT C (A*, B*, D* E*)>
<!IELEMENT A (B*, C*, D* E*)> <!ELEMENT D (#PCDATA)>
<!ELEMENT B (A*, C¥, D* E*)> <!ELEMENT E (#PCDATA)>

Figure 6.12 DTD for synthetic dataset

R
)
| @
R R g
BoO " O 4 O /U
CQ Ao/lo}c o AJO/ o Cipdl
Ao /\/\ - AR Lk
oD Ip * L “"De OF
Pl [py Tos] [p1] [Pz] [Ps] [pd  [pad  [pd] [zl [pdl

(@) SQ1 () 5Q» © $Qs @ 5Q (©) SQs
Figure 6.13 Queries for Synthetic Dataset

dataset, and N=S’ denotés the synthetic dataset. N(J; and N(@Q), are TPQs, while NQs
to N@Qs are ‘pure’ PTPQs, i.e., they cannot be expressed by a single TPQ. Notice that
even though N@)s, for instance SQs, is syntactically similar to a TPQ, it is in fact a pure
PTPQ because both nodes 5 and C' are annotated by the same partial path p;. This implies
that these two nodes and their ancestor nodes lie on the same path. PSX supports all

‘five queries of each dataset but X, only supports the first three. X, takes as input an
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XPath expression. In general, a given query can be equivalently represented by more than

one XPath expression. For instance, //A/B//C[/E]//D (which involves only forward
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axes) and //B[\A]//C[/E]//D (which involves also reverse axes) are equivalent XPath
expressions for SQ;. In the experiments, for each of the first two queries (TPQs), we used
two XPath expressiéns: one with only forward axes and one with both forward and reverse
axes. We tested X,,, on both types of XPath expressions for the same query in order to
examine the behavior of X, in the presence‘ and absence of reverse axes. Note that the
behavior of PSX is not affected by the syntax of the XPath expressions, since the input of

the algorithm is a dag.

6.4.2 Query Execution Time

We compare the execution time of PSX, X s, and X,,s-F (X0 on XPath expressions
with only forward axes). Figure 6.23 shows the results of the three datasets (notice the
logarithmic scale used for the Y-axis). As we can see, PSX has the best time performance,
and in most cases it outperforms X,,, by at least one order of magnitude. The performance
of PSX is stable, and does not degrade on more complex queries and on data with highly
recursive structures.

Kaos i§ more expensive than both PSX and X,,s-F in all the cases it applies. Its
performance degrades significantly on recursive data and complex queries. For instance,
when evaluating SQ3 on the synthetic dataset (Figure 6.23(a)), X,.s was not able to finish
within 7 hours. This can be explained as follows. First, X,,, exhaustively enumerates
matches of a query pattern which can be exponential in the Size of the query. Second, X,
does not consider the existential semantics of the query during evaluation.

Although X,.-F suffers from the same two drawbacks of Xao;, it performs better
than X, in the cases it applies. The reason is that in the presence of reverse axes in

the input XPath expression, X,,; may accumulate false pattern matches which have to be



120

10000 T -

XAQS —e—

100

o

[WE4 am 125 305 82 [RE3 EEt 125 305 2

Size of Treebank dataset {(in MB) Size of Treebank dataset (in MB)

Execution Time (seconds)
Execution Time (seconds)

@ TQ: | ®) TQs

10000

PSX ——

/

[NH 471 s w3 &2

Size of Treebank dataset {in MB)

160

s E

Execution Time (seconds)

(©) TQq
Figure 6.16 Query execution time on Treebank data with increasing size

cleaned through ‘backtracking’. This additional computation penalizes its performance.
For example, when evaluating XQ, on the X Mark dataset with the XPath expression
//quantity(\\item[//mail]\*|, X,,s accumulates also all the false matches to quantity.

This results in poor performance compared to X ,,,-F (Figure 6.14(a)).

6.4.3 Memory Usage

We compare the maximum memory usage of PSX, X, and X,,s-F. Figure 6.24 shows
the results on the three datasets. The following observations can be made. First, PSX uses
substantiallylless memory than X, and X,,s-F in all the cases (recall that X, can support
only the first three, and X,,s-F only the first two queries). The memory usage of PSX

on both XMark and T'reebank datasets is stable, ranvging from 1M B to 4M B (Figures
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Figure 6.17 Maximum memory usage on Treebank data with increasing size

6.15(a) and 6.15(b)). It increases up to 133M B for query S(), on the systhetic dataset
(Figure | 6.24(a)). This can be explained by the féllowing:
(1) Since the X Mark datasét has no recursive structures, the recursion depth of all the
queries on this dataset is 1. Thus, at any point of time, there is at most one entry stored
in each query stack. (2) Although the T'reebank dataset has deep recursive structures,
the number of solutions returned by the queries is small (up to 265 for T'Q)s). (3) The
- synthetic dataset has highly recursive structures. Further, almost all the nodes in this dataset
are relevant to the queries. Thus, the number of pattern matches that could potentially
contribute to query answers is expected to be large (it can be exponential in the size of data
and queries). Since any streaming algorithm has to store those potentially useful matches,

the memory usage is expected to be high. This expectation is confirmed by the large number
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of solutions returned by the queries on this dataset which ranges from 7K (for qﬁery SQs)
to QOOK (for query S@Q)s). Note that in S()s, the output node is labeled by * (wildcard),
which explains the large number of solutions. The difference on the memory usage for
PSX on S to SQs is due to the different structure of the queries. These results are in
line with the space complexity of PS5 X stated in Theorem 6.3.1. Both X, and X ,-F use
less memory for S5 than for SQ,, while PSX uses more memory for S@5 than for SQ;.
The reason is that the memory usage of X, and Xaos-F depends on the number of pattern
matches of the query (all stored in memory by these algorithms) which are more for S¢)
than for SQ». In contrast, PSX avoids storing redundant query matches. It stores mainly
query matches that contribute to a solution and these increase from 63K for S to 200k
for SQs.

Xaos consumes more memory space than X,,,-F in all the cases they apply. In
particular, when evaluating 7'Q); on the Treebank dataset, X,,, consumes about 40 times
more space than X,.;-F (Figure 6.15(b)). The reason is that, as mentioned earlier, the
presence of reverse axes in an XPath expression may lead to the generation of false pattern

matches, and this increases the memory consumption of X,,,.

6.4.4 Scalability

We also measured the scaiability of PSX, X,.s, and X ,,5-F as the size of the input datasets
increases. Figure 6.25 reports on the execution time of the algorithms increasing the size
of Treebank XML data for three different queries 7'Q)s, T'Q3, and T'Q),. The scale of both
X-axis and Y-axis is logarithmic. The performance of the queries on the other datasets

is similar and is omitted here. The results show that as the input data size increases,
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the execution time of PSX increases very slowly for both simple and complex queries,
whereas the performance of X,,, degrades sharply in all the cases it applies.

Figure 6.26 shows the maximum memory usage increasing the size of Treebank XML
data for the previous three queries. When the data size increases from 1M B to 82M B, the
memory usage of PSX is relatively constant. X,.s-F uses slightly more memory than
PSX for T'Q)y (Figure 6.17(a)). In contrast, the memory consumption of X, increases
much faster than the data size.

In summary, the experimental results show that Algorithm P.SX is practically efficient
with guaranteed polynomial time and space complexity in the size of the data and query. It
is capable of evaluating a broader structural fragment of XPath than any existing streaming
algorithm. Compared to the only known streaming algorithm that supports TPQs exfended
with reverse axes, S X performs better by wide margin and shows much better scalability”

for processing both simple and complex queries on XML data with deep recursive structures.

6.5 The Eager Evaluation Algorithm
Algorithm PSX evaluates query predicates and returns solutions to the user only when
close events are encountered. This evaluation strategy is called lazy in {29, 30]. The lazy
strategy makes the evaluation process natural. The query response time and memory space
usage of Algorithm PSX can be improved at a small expense of the execution time. This
can be achieved by an evaluation strategy which eagerly determines (that is, before the
corresponding close events of query predicates are encountered) whether node matches
should be returned as solutions to the user. It also proactively detects redundant matches.
We call this strategy ‘eager’, and we present below an algorithm, called Fager PSX, that

implements it.
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In fact, stringent requirements on query response time and memory usage are important
or even necessary for a number of streaming applications, including transaction monitoring
systems [71] and sensor network systems [72]. These applications typically deliver data
in streams that are produced continuously and represent real-world events, like financial
tickers and traffic accidents, which need to be responded to.

We present below a motivating example which is used later to illustrate how differently

Fager PSX identifies redundant matches and returns solutions.

Example 6.5.1 Consider evaluating query Q4 of Figure 6.18(b) on the XML tree of Figure
6.18(a) using Algorithm PSX. Figure 6.19 shows different snapshots of the query stacks
during' the execution of the algorithm. Algorithm PSX returns {ws, wy,wo} as answer
when (/r) is read. Candidate outputs ws and wy are propagated along the path z3ys 2y
while candidate output wy is propagated along the path zgi2z17 in order to beco;ﬁe solutions.
However, when (ug) is read, we have enough information to determine that node ws is a
solution of ()4 and could be returned to the user immediately. Similarly, nodes w; and
wy can be returned as solutions as soon as they arrive. Therefor.e; we only need to store
one candidate output ws in memory instead of three as Algorithm PSX does. Also, we
can determine that node z3 is not useful for computing query solutions once (vy) is read.
The reason is that at this point, we can determine that both nodes z, and z3 are candidate
matches of Z. Any candidate output, such as ws, that can become a solution following the
output path Ty 23 can instead follow the output path rz1%s. _This way, ws can be returned
to the user earlier. Further, even though z3 is ra match of the backbone node Z, it can

be identified as redundant and discarded. This allows us to save not only computations
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Figure 6.18 (a) XML tree, (b) Query Q4
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but also memory space. This type of query redundancy is related to redundant matches of

backbone nodes.
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To further show the importance of identifying redundant backbone node matches,
let’s consider evaluting query @) of Figure 6.20(b) on the XML tree of Figure 6.20(a).
Recall that a query match is redundant if it does not contribute to a possible new matching
for the output node. From the discussion of Section 6.3.2, we know that nodes a4, b1, e; and
fl' which are matches for th.e predicate nodes A, B, I and F, respectively, contribute to the
match d; of the output node D, whereas nodes ag, ..., 0n, bay ... by, €2, ooy €ns fo, o0 [
are redundant predicate node matches since they all contribute to the same match d; of
the output node D. These redundant matches occur because of the existential semantics of
query predicates. As we can see from the figure, the backbone node C' has n matches {ci,
..+ Cn ). These matches‘participate in 7¢ output paths (rady, . .., re,dy) for node d;. Note
that before nodes ¢, . . ., ¢, are read, both r and ¢; have already satisfied their predicates.
Therefore, any match of the output node D that is a descendant of ¢; (e.g., di) can be
identified as a solution and thus should be returned to the user right away. The nodes {cs,
..., C y need not be stored in the stack of C. Keeping these nodes in memory unnecessarily
delays the output of query solutions, and wastes computation time and memory space. It is
. important to note that redundant backbone node matches contribute to a number of pattern

matches which in the worst case can be exponential on the size of the query.

6.5.1 Algorithm Eager PSX

Algorithm Eager PSX has the same body as Algorithm PSX shown in Listing 9. The
only difference is that the open and close eveﬁt handlers startFwval and endEval are
replaced by startEvalFager and endFEval Fager which are shown in Listings 12 and

13, respectively.
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Listing 12 Procedure startEvalEager(X, )

1if(x # R A 3P € parents(X): empty(Sp)) then

2 r;eturn

3 (X = R) V(VYP € parents(X): top(Sp) gnd x satisfy the
structural relationship between P and X in Q))) then

4 if (isMatchRedundant(X)) then

5 return
6 e «— newStackEntry(Sx, «)
7 push(Sx, e)

8 updateStackEntry(X, e)
9 if (X is the output node A e.down A e.up) then
10 output(x)

11 for (every p; € PPsSink(X)) do

12 if (VY € sinkNodes(p;): —empty(Sy)) then

13 A for (every Y € sinkNodes(p;)) do

14 top(Sy ).SPFlags[p;] — true

15 i (isCandMatch(Y', top(Sy")) = true) then
16 found — true

17 if (found) then

18 dagTraversal(p;)

Function isMatchRedundant(X)

1if (X is a predicate node) then

2 return (VP € parents(X): top(Sp).PCFlags[X ] = true)

3 else if (X is a backbone node) then
4 Y <« host(X)

5 return (- empty(Sy ) A top{Sy ).down A top(Sy ).up)

Procedure updateStackEntry(X, e)

1 for (every P € parents(X)) do

2 eparPtrs[P] — top(Sp)
3 e « top(Sp)

4 if (X is the output node or a backbone node then

5 if (¢/ .child Ptrs[X] = null) then
6 e’ .childPtrs[X] —e

7 if (¢’ .up A €' .down = true) then -
8 e.parFlags[Pl — true

9 if (X is the output node or a backbone node) then

10 if (VP € parents(X): top(Sp).down A top(Sp).up)

then’
11 ‘ eup «— true
12 if (X is an internal node A PChildren(X )= 0) then
13 e.down — true

Procedure dagTraversal(p;)

1 let Gp, be the query dag whose nodes are annotated by p;.
Dag Gy, is rooted at a node X which is the lowest backbone
ancestor of nodes in sinkNodes(p; ).

2 construct a topological order of the nodes in Gp, with the
property that for any two nodes Aand Bin G, if A/B € Q,
then B is the next node of A in the topological order. Let Z

- be the node with the largest topological order

3 let mEntry be an array indexed by the nodes of Gp;

4 bottomUpTraversal(Z, top(Sz), ;)

5 if (mEntry|X].up is true) then

6 let G be the query dag rooted at Z and whose nodes

consist of backbone nodes of Q.

7 topDownTraversal(X, mEntry[X], Gg)
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The Structure of Stack Entries For the purpose of the eager evaluation, we extend the

structure of the stack entries introduced in Section 6.2. Every extended stack entry stores

sufficient information for efficiently checking redundant (backbone and predicate) matches

and determining candidate matcheé as well. More specifically, let () be a query, X be a node

in (), and Sx be the stack for X. Each entry e in stack Sx is a 8-tuple (XMLNode, SPFlags,

PCFlags, CandlList, down, up, parPtrs, childPtrs). The first four fields are described in

Section 6.2. We describe below the last four ﬁelds..

e.down is a boolean variable which is true iff e. X M LN ode (i.e., x) has been found to be

- a .candidate match of X.

e.up is a boolean variable which is true iff every P € parents(X) has a candidate match
on the path from the root of T to z. To facilitéte the computation of its value, we
associate with e an auxiliary field pérFlags (not listed among the eight fields above).
Field e.parFlags is a boolean array indexed by the nodes in parents(X). Given P €
parents(X), e.parFlags[P] indicates whether / has a candidate match on the path
from the root of T to x.

e.parPtrs is an array of pointers indexed by the parent nodes of X in (). Given P &
parents(X), e.par Ptrs[P] points to the highest among the entries in Stéck Sp that
correspond to ancestors of e in 7'.

e.childPtrs is an array of pointers indexed by the backbone child nodes of X in (). Given
Y € BChildren(X), Pointer e.child Ptrs[Y'] points to the highest entry ¢’ among the
entries in stack Sy that correspond to descendants of e in T  such that e’.par Ptrs[ X |=e.
It is null if no such ¢’ exist. |

We illustrate in Figure 6.21 these stack entry fields when (z3) is read during the eager

evaluation of query @4 of Figure 6.18(b) on the XML tree of Figure 6.18(a). For ease of
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Figure 6.21 An illustration of stack entries during the evaluation of ()4 on the XML tree
of Figure 6.18 using Fager PSX

illustration, fields SPFlags, PCFlags, and CandList are omitted in the ﬁgﬁre. For every
stack entry, we show the up and the down fields as boxes which are black if the field is true
and white otherwise. Field down keeps track of whether the corresponding XML node has
been found to be a candidate match of a query node. For example, consider entries 7
and z; in stacks Sk and Sy, respectively. r.down = true because node R has no predicate
children and thus r trivally satisfies the candidate match requirements for R, while z;.down
= false because at this point of computation, it is not possible to determine whether z; has
a descendant node that matches node V' (node v4 has not been read yet). Field up keeps
track of whether the corresponding XML node has ancestor nodes which have been found
to be candidate matches of all the parent nodes of the query node in consideration. For
instance, 7.up = true because 7 trivally satisfies the above requirement while z;.up = true
because 7 is a candidate match of R. A parent pointer in parPtrs array of a stack entry of
a'query node is shown in the figure by a solid arrow pointing to the top entry of the stack
of the parent node. For example, z; has a parent pointer in par Ptrs[R] pointing to r. A
child pointer in childPtrs array of a stack entry of a query node is shown in the figure
by a dashed arrow pointing to the closest descendant of the entry in 7" that matches the
corresponding child query node. For example, 7 has a child pointer childPtr's[Z] pointing

to 2.
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Open Event Handler The open event handler Procedure startEvalEager is shown in
Listing 12. As the case of PSX, it starts by checking whether the current node x is an

ancestor match of query node X (lines 1-3).

Checking redundant matches. Procedure startEvalEager proceeds to check whether z is
a redundant match of X via a call to Function isMatchRedundant. The main difference of
this function compared to the one in Procedure startEval (Listing 10) is that it also detects
redundant matches for backbone nodes (lines 3-5). For instance, in the example of Figure
6.20. When (c,) is read, 7 and ¢ (the top entry in stack S¢) satisfy their predicates. Then,

¢y is identified as redundant for C' and is not pushed onto S¢.

Setting up a new stack .entry. Once startEvalEager determines that z is not a redundant
match, it creates a new stack entry for x and pushes it on Sx (lines 6-7). Subsequently,
procedure updateStack Entry is invoked to set up the fields for e (line 8). Procedure
updateStack Entry first updates the pointers par Ptrs and childPtrs for e (lines 1-6).
Then, it updates fields par Flags and up (lines 7-11). Finally, if X is an internal node (i.e.,
. it is not a sink node of any partial path of () and X has no predicate children, then z is a
- candidate match of X and therefore e.down is set to true (lines 12-13).

If X is the output node of ¢) and e.down and e.up are set to true by procedure
updateStack Entry, then z can be identified as a solution and is returned to the user (lines
9-10 in start Fval Fager). |

| Figure 6.21 described earlier shows the structures of stack entries after (z3) is read.
This snapshot is constructed as follows: First, (r) is read and since 7 is an ancestor match
of the query root R, a new stack entry for r is created and is pushed onto Sr. Then, as a

result of a call to updateStackEntry, e.up and e.down are set to true. When (y,) is read,
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two pointers are constructed: one is par Ptrs[R] pointing from s, to r in stack Sg, and the
other is child Ptrs[Y’] pointing from 7 to yo. Also, yo.up is set to true. Finally, when (z3)
is read, no child pointer child Ptrs|Z] from r to z3 is created since there is such a pointer

from 7 to 2.

Traversing the query dags. Besides determining whether the current node z sustains
the partial paths annotating X in @ (lines 11-14), procedure startEvalEager also checks
whether the top entry of any sink node of a partial path p; is a candidate match (line 15).
If it is the case, procedure dagTraversal is invoked to traverse two dags G, and Gp in
that sequence (line 18). The purpose of the dag traversal is to examine whether there are
matches that are solutions. Dags G, and Gp are sub-dags of () rooted at an ancestor
ﬁode of X and consist of predicate nodes and backbone nodes, respectively. Procedure
dagTraversal first calls procedure bottomUpT'raversal to traverse dag Gy, recursively
in a bottom-up way. During the traversal, bottomUpTraversal evaluates the prédicates
of the matches encoded in the query stacks and updates stack entries and ancestor stack
entries by following the parent pointers. Then, depending on the results returned from
bottomUpT'raversal, procedure  dagTraversal  possibly  calls  procedure
topDownTraversal to traverse the nodes of dag G'p recursively in a top-down manner. For
each node under consideratioh, topDownTraversal eXamines its ’stack entries to determine
whether there are candidate outputs (associated with the stack entries) that can be returned
as solutions to the user, and updates these stack entries and their descendant stack entries
by following child pointers. During each traversal,- redundant matches are detected and

pruned. A traversal is terminated when either there are no more matches to examine, or a
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match that has already been examined is encountered. Because of lack of space, we omit

here more details on the two procedures *.

Example 6.5.2 Consider evaluating query Q)4 of Figure 6.18(b) on the XML tree of Figure
6.18(a). Figure 6.22 shows the snapshot of the query stacks. When (v4) is read, vy is
identified as a candidate match of V, and therefore procedure bottomUpTraversal is
invoked to traverse the sub-dag (path in this case) Z/ [V starting with V.‘After setting
va.down to true, bottomUplIraversal goes up to Z. Then, it evaluates the prediéates for
entries z3 and z, in stack Sz in that order. Since z3 and 21 are both candidate matches of
Z, it sets z3.down and z,.down to true. Procedure botiomU pTT'qversal ends its traversal
at z1 and returns 2, to Vthe calling procedure dagTraversal. Given that z;.down and zy.up
are true, procedure topDownTraversal is invoked to traverse the sub-dag (path in this
case) Z | /W starting with Z. Since z;.candList is empty, no solutions are returned at this
time. Procedure topDownTraversal proceeds to remove the entries above zy in stack Sy
(only z3 in this case) since they constitute redundant matches. It terminates its traversal on
_W since stack Sy is empty.

When (ws) is read, a new stack entry for ws is constructed and pushed onto stack Sy .
Also, parent pointers and child pointers to and from stack entry z; and y, are constructed
for the new entry ws. When (ug) is read, procedures bottomUpTraversal and
topDownTraversal are invoked to traverse the sub-dags Y/ /U and Y/ |W, respectively.
As a result, both ys.down and ws.up are set to true. At this time, node ws can be identified
as a solution and is returned to the user. When (wr) and (wy) are read, both wy and wq
are returned as solutions right away before other nodes are read. Notice that when (zg) is

read, it is identified as a redundant match and thus it is ignored.

4The full version of the algorithm and its description can be found in http://web.njit.edu/~xw43/paper/eagerAlgo.pdf
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Figure 6.22 Snapshots of stacks during the evaluation of EagerPSX on (), and the XML
tree of Figure 6.18

Close Event Handler Procedure endEvalEager is shown in Listing 13. It differs from
Procedure endEval in Listing 11 in that: (i) since child pointers are now used, they have to
be updated whenever the entries they point to are popped out from their stacks (lines 6-10),
and (2) the work performed before by procedures mergeFlags and isCandM atch is now

performed by procedure bottomUpTraversal called by startEvalEager.

6.5.2 Analysis

LetQbea quéry and T be an XML tree. For the complexity analysis of EagerPSX,
we refer to the parameters listed in Figpre 6.10.

As with Algorithm PSX, the space complexity of EagerPSX is‘ composed of tv@/o”
parts. One part of the space is consumed by the stacks. Since the number of entries in each
stack at any given time is bounded by D), and the size of each stack. .entry is bounded by
the out-degree and the in-degree of the corresponding query node, the space used by the
stacks is O(D x |Q)]). The other part is used for storing candidate outputs whose number
is bounded by |T'|. When B > 1, each candidate output is assoéiated with a boolean array
BFlags of size O(N). Therefore, the total space needed for Vthe candidate outputs when
B > 1is O(|T| x N). When B = 1, the total space needed for the candidate outputs is

o(T))
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Listing 13 Procedure endEvalEager(X, z)
1if empty(Sx ) then

2 return
35 top(Sx)

4 if (s. X M LNode = z) then

5 pop(Sx)
6 if (X is the output or a backbone node) then
7 for (@ve1‘y P € parents( X)) do
8 e — s.parPus[P)
9 if (e.childPus[X] = s) then
.10 e.childPus[X] «— null
11 if (;.down =irue) then
12 if (X ='R) then
13 ) output(s.candList)
14 else
15 upwardPropagate( X, s)
16 ‘ else
17 downwardPropagate(X, s)

As we can see, EagerPSX has the same worst case space complexity as PSX . However,
EagerPSX achieves better space performance bepause it applies evaluation strategies to
eagerly determine whether node matches should be returned as solutions to the user and to
proactively detect and prune redundant matches.

The time complexity of EagerPSX is determined by the time for accessing stack
entries, and the time for processing candidate outputs. For a current node z, let X be
a query node matching z. Procedure endEval spends O(fanin(X)) on accessing stack
entries. Leaving apart the calls to Procedure dagTraversal, Procedure startEval spénds

O(fanin(X) + fanout(X) + M x P) on accessing stack entries.
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Let e denote a stack entry for a query node Y. During its lifetime, the total time
spent on e by procedures bottomUpTraversal and topDownT'raversal is O( fanin(Y')+
fanout (Y) + P) and O(fanin(Y) + fanout(Y)), respectively. Therefore, Procedure
dagTraversal spends O( fanin(Y )+ fanout(Y)-P) time on each stack entry. In summary,
for each node in 7', EagerPSX spends O(|Q| x M x P) on accessing sfack entries.

The time on processing candidate outputs is dominated by procedure endEval, and is

the same as that of PSX in the worst case.

Theorem 6.5.1 Algorithm EagerPSX correctly evaluates a query () on a streaming XML
document T. When B = 1, Algorithm EagerPSX uses O(|T|+ D x |Q|) space and O(|T} x
Q| x M x P) time. When B > 1, it uses O{|T'| x N 4+ D x |Q|) space and O(|T| x (|Q| x

M x P+ S x H)) time.

Eager streaming algorithms have been presented in [34, 30] but they are restricted to
TPQs. Besides supporting a class of queries that are more expressive than TPQs, our eager
algorithm FagerPSX is, to the best of our knowledge, the first one that detects and avoids

processing different types of redundant query matches during streaming evaluation.

6.6 Experimental Evaluation

We have implemented Algorithm Fager P.SX in order to study its execution time, memory
usage, and scalability. In this section, we experimentally compare Fager PSX with
Algorithms PSX and X, [32]. As mentioned before, X,,; is chosen for comparison
because even though it does not support a broad fragment of XPath as PSX and Fager PSX
do, it nevertheless supports a restricted type of dag queries.

All the experiments were carried out on the same machine used for the expefiments

described in Section 6.4 with the same experimental settings, datasets and queries. Each
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the results on the synthetic dataset. As we can see, FSX has the best time performance,
and in most cases it outperforms X s By at least one order of magnitude. Fager PSX uses
slightly more time than PSX, due to the overhead incurred by the traversals of the query
dags for finding solutions. The performance of both Eager PSX and PSX is stable, and
does not degrade on more complex queries and on data with highly recursive structures.
Xg0s 1S More expensive thém both Fager PSX and PSX in all the cases it applies.
Its performance degrades sigﬁiﬁcantly on recursive data and complex queries. For instance,
when evaluating S@Q)3 on the synthetic dataset (Figure 6.23(a)), X,,s was not able to finish

within 7 hours.

6.6.2 Query Response Time
We compare the query response time of Fager PSX, PSX and X,,s. The query response

time represents the time elapsed from the moment the query is issued to the moment the first
solution is received. Figure 6.23(b) shows the query response time results on the synthetic
dataset. As we can see, Eager PSX gives the best query response time for both simple and
complex queries. Compared to PSX and X,,s, Fager PSX reduces the response time by
orders of magnitude. FagerPSX starts delivering query solutions almost immediately
after a query is posed.
PS5 X returns solutions to the user when the end event of a node matching the root of
a given query arrives. The worst case occurs when the only node matching the query root is
thé document root. For this reason, even though P.SX performs best in terms of execution
time, its query response time cannot compete with that of Fager PSX.
X, w0s delivers query solutions only after the entire XML document is processed.
Given that it also has the longést execution time, its query response time is the worst among

the three.
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6.6.3 Memory Usage

We compare' the memory usage of Fager PSX, PSX and X,,;. We measure the memory
usage in terms of maximal runtime memory consumption. We also measure the memory
usage in terms of maximal number of candidate outputs stored at any point of time during

execution.

Runtime memory consurﬁption. Figure 6.24 shows the maximal memory consumption of
the three algorithms on the synthetic dataset. As we can see, Frager P.SX uses substantially
less memory than X,,s in all the vcases (recall that X, can support only the first three
queries). The memory usage of Fager PSX is stable for both simple and complex queries.

PSX consumes more run time memory than Fager PSX in all the test cases (up to
1.3 times on query S(@,). The reason is three fold: (1) PSX cannot avoid storing redundant
matches of backbone nodes during execution, (2) PSX has to store solutions in memory
until the end event of the query root matches arrives, and (3) as we show below, PSX

stores in memory more candidate outputs than Fager PSX.

Number of stored candidate outputs. Figure 6.24(b) shows the maximal number of
stored candidate outputs for the three algorithms on the sypthetic dataset. Among the three
algorithms, Fager PSX stores the lowest number of candidate outputs. This is expected,
since EagerPS X employs the eager evaluation strategy which allows it to identify whether
a candidate output is a solution as early as possible.

Compared to PSX, X,,s enumerates and stores all the matches of the query. Therefore,
X,0s has to store multiple copies of the same candidate output. This is the case With

query SQ; in Figure 6.24(b). PSX and X,,, identify the same 63864 candidate outputs.



1000

10

Execution Time (seconds)

0.1

00 4

EagerPSX ——

.20 043 104 946 203

Size of Synthetic dataset (in MB)

(@) SQ2

Execution Time (seconds)

[[5]

10

01

EagerPSX ——
PSX SRR S

020 043 104 946 203

Size of Synthetic dataset (in MB)

(b) SQ4

Figure 6.25 Query execution time on synthetic data with increasing size

150

100

30

Memory Usage (MB)

EagerPSX ——

020 043 L 946 203

Size of Synthetic dataset (in MB)

(a) SQ2

Memary Usage (MB)

0

150

100

50

PN

EagerPSX ——
PSX -

0.20 043 104 946 203

Size of Synthetic dataset (in MB)

(b) 5Q4

Figure 6.26 Memory consumption on synthetic data with increasing size

139

However, PSX stores each éandidate output only once, while X, ends up storing 94696

copies of candidate outputs.

Note that in the best case, Fager PSX avoids storing any candidate outputs and

returns as solution to the user every candidate ouput as soon as it is identified as such.

This is the case with S}, in Figure 6.24(b), where Fager PSX does not need to store

any candidate output at all, while PSX and X,,; have to store approximately 200K nodes. A

Note also that in all the cases of Figure 6.24(b), PSX stores more candidate outputs than

FEager PSX, and this is in accordance with the higher runtime memory consumption of

PSX compared to Eager PSX displayed in Figure 6.24.
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6.6.4 Scalability
We also measured the scalability of Fager PSX, PSX and X, as the size of the input

datasets increases. Figure 6.25 reports on the execution time of the algorithms increasing
the size of synthetic XML data for two different queries: S (a TPQ) and S@Q, (a dag
query). The scale of both X and Y axes is logarithmic. For the case of S()y4, only results for
Fager PSX and PSX are reported, since X,,; cannot support this query. The results show
that PSX always has the best time performance and Fager PSX closely follows PSX.
As the input data size increases, the execution time of Fager PSX and PSX increases
very slowly for both queries, whereas the execution time of X, increases sharply in the
case it applies. |

Figure 6.26 shows the runtime memory consumption increasing the size of synthetic
XML data for the previous two queries. The memory consumption of X, increéses
fasvter than that of both FagerP5X and PSX. PSX uses slightly more memory than
FagerPSX.

In summary, the experimental results show that Algbrithm Eager PSX is efficient
on a broad fragment of XPath. Compared to X,,;, the only knownbstreaming algorithm that
supports TPQYS extended with reverse axes, Fager PSX performs better by a wide margin
in terms of time and space performance and scalability. It is runtime competitive with our
lazy algorithm PSX for PTPQs, while achieving better space performance and greatly
reducing the query response time for both simple and complex queries on XML data with
deep recursive structures. Therefore, Fager PSX can be very useful for current streaming
applications that have stringent requirements on query response time and memory

consumption.



CHAPTER 7

ASSIGNING SEMANTICS TO PARTIAL TREE-PATTERN QUERIES

In this chapter, we .deﬁne our novel semantics for the PTPQ language. The chapter is
organized as follows. Section 7.1 presents the data model and the query language. Index
graphs and complete TPQs for a PTPQ are introduced in Section 7.2. In Section 7..3,
we present our novel semantics for the PTPQ language. Our approach is compared with

previous one in Section 7.4 and experimentally evaluated in Section 7.5.

7.1 Data Model and Query Language
For the purpose of defining semantics to partial tree-pattern queries, we make some

modifications to the data model and the PTPQ language presented in Chapter 3.

Data Model. Let £ be an infinite set of elements that includes a distinguished element 7,
X be an infinit set of variables, and V be an infinit set of values. Variables range over
elements, and play the role of wildcards in tree-pattern queries. Here, ;)ve use variables to
distinguish between different Wildéard nodes. Symbols e, z, and v (possibly with indices)
refer systematically to an element, a variable, and a value respectively. The term construct
(dénoted ¢) refers either to an element or a variable.

Asis ﬁsual, we model XML documents as trees. Nodes in an XML tree are labeled by
elements or values. In particular, the root node of an XML tree is the only node labeled by
element 7. Values can label only leaf nodes. Attributes of elements in an XML document

are modeled as (sub)elements. For simplicity we assume that the same element does not'
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label two nodes on the same path (that is, the XML trees are not recursive). We discuss in
the next section how this restriction can be relaxed.

Figure 7.1 shows three XML trees T}, T3, and 73 from different data sources that
record bibliographic information in different formats (a slight extension of an example
introduced in [5, 6]). 13 and T; categorize the data based on the publication year, while 75
categorizes the data based on the type of publication (article or book). Still, in 7} the year
of the publications is specified as a child element of a “bib” node, while in 73 there is no
“bib” node, and the “book” and “article” nodes are children of a “‘year” node that indicates

their year of publication. We are interested in retrieving information by issuing the same
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Figure 7.1 An XML Tree T

query against all these data sources, even though information is structured differently in

each one of them. Therefore, we view all these XML trees as one tree T’ rooted at 7.

Query Language. We make following extensions to the PTPQ defined in Definition 6.1.1:
(1) each node is possibly annotated with a set of value predicates; and (2) at least one partial

path is defined to the output path. Below is the full definition of the query language:
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Definition 7.1.1 (PTPQ) A Partial Tree-Pattern Query (PTPQ) is a triple @ = (P, S, 0),

where:

(a)

(b)

(c)

P is a nonempty set of triples (p, A, R) called Partial Paths (PPs).

p is the name of the PP. The names of the PPs in Q) are distinct. Therefore, we identify
PPs in () with their names.

A is a set of predicates of the form ¢ = V, where V, the annotation of ¢, is a set of
values {vy, ..., v}, k > 1. The meaning of predicate ¢ =V is that ¢ = vy or ... or
¢ = V.

R is a set of expressions of the form c7 — ¢; (child precedence relationship), ¢; = ¢;
(descendant precedence relationship), and ¢; == c¢; (descendant-or-self precedence
relationship), where constructs ¢; and c; are distinct. In particular, R comprises a
descendant-or-self precedence relationship r ==> ¢, for every predicate ¢ =V in A.
The expression c|p] denotes the construct ¢ in PP p:

S is a set of expressions of the form ¢;[p;] = c;lp;], where p; and p; are PPs in P.
These expressions are called node sharing expressions. Roughly speaking, they state
that the node labeled by construct c; in PP p; and the node labeled by construct c; in
PP p; coincide (the two PPs share this node). Set S can be empty.

O is a set of PPs in'P. These PPs are called output PPs of (). O

We gfaphically represent PTPQs using graph notation. Each PP of a PTPQ @ is

represented as a (not necessarily connected) graph of nodes identified with, and labeled by,

the constructs of the PP. If a node n in the graph has an annotation V in Q), it is labeled

by the predicate ¢ = V instead of the construct ¢. The name of each PP is shown by

the corresponding PP graph. The names of the output PPs of () are shown boxed. Child,
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descendant and descendant-or-self precedence relationships in a PP are depicted using the
arrows —, =, and ==, respectively, between the corresponding nodes in thé PP graph. In
particular, descendant precedence relationships of the form » = c and r == c in a PP are
shown only with the presence of node c in the PP graph. Variable names are prepended by
a * sign, while values are shown between quotes. A node sharing expression ¢;[p;] = ¢;[p;]
is represented by an edge between node ¢; of the PP graph p; and node c; of the PP graph
p; labeled by the = symbol.

Suppose that we want to find the title and year of publications authored by “Mary” [5,
6]. We are not interested to restrict the type of publication we are looking for, and actually
we do not know what type of pﬁblications are recorded in the XML data. Further, assume
that we know that title and author are not categorization features in our XML document(s),
and therefore they should appear below any categorization element. We formulate this
PTPQ as shown in Figure 7.2. Symbols « and y denote variables, while p; and p; are
the output PPs of the PTPQ. As another example, consider the query that finds additional
authors of publications of which “Mary” is an author and also the title and year of those
publications. In this case, assume that we expect author “Mary” and the other author to be
sibling nodes and descendants of a publication node which .has a descendant node “title”.
We do not have any idea about the placement of node “year” besides the fact that it should
relate in some way to the publication. This PTPQ is shown in Figure 7.3.

The answer of a PTPQ is based on the concept of PTPQ embedding.

Definition 7.1.2 An embedding of a PTPQ () to an XML tree T is a mapping M of the

constructs of the PPs of Q to nodes in T such that:
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(a) An element e of Q) is mapped by M to a node in T labeled by e; a variable v of Q) is
mapped by M to a node in'l" labeled by any element.

(b) The constructs of a PP in () are mapped by M to nodes in T that are on the same path.

(c) If a construct ¢ has an annotation V' in a PP p (that is, a predicate ¢ =V is specified
in p), then the image of c|p| under M has a child node labeled by a value in V.

(d) ¥ ¢i[p] — ¢;lp] in Q. M(c;[p)) is a child of M(c;[p]) in T; V ¢i[p] = ¢;[p), in Q,
M(cjlp]) is a descendént of M(c;[p]) in T; and ¥ ¢;[p] == ¢;[p| in Q, M(c;[p]) is a
descendant of M (c;[p]), or M (¢;[p]) and M (c;[p]) coincide in T.

(e) Y i[pi| = l[p;] in Q, M(l[pi]) and M (l[p;]) coincide. O

We call image of a PP p in @) under M, denoted M (p), the path from the root of
T’ that comprises all the images of the constructs of p under M and ends in one of them.
. Notice that more than one PP of () may have their image on the same root-to-leaf path of
T (M does not have to be a bijection). The concept of image of a PP is extended to apply
to PTPQs in a straightforward way.

We initially define the answers of a PTPQ on an XML tree as follows.

Definition 7.1.3 The answer set A of a PTPQ @ on an XML tree T is the set of subtrees

of T formed by the images of the output PPs of () under all possible embeddings of @ to
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T'. The subtrees comprise also the child value nodes of the elements. The subtrees in A are

called answers of QonT.

Figure 7.4 shows the images of PTPQ (); of Figure 7.2 under three of the possible
embedding of (); to the XML tree 7" of Figure 7.1. The values of the elements are
additionally included in the images for clarity. The images of the output PPs of @ in the
figures are shown with thicker arrow edges. More specifically, Figures 7.4(a), (b) and (c)
correspond to embeddings of (), to the XML trees 77, 15 and T3 respectively that constitute

tree T’ of Figure 7.1.

Y r Y

bib ‘ bvibA year
year book b!ok “1999"  book
“1999"  title authbr year title author title  author

“XML"  “Mary™ “1999" “XML"  “Mary” “XML® ~Mary”

(@) (b) [

Figure 7.4 The images of (), under three of the embeddings of (); on 7. The answer of
()1 in every image is shown with thicker arrows. :

Observe that the language is able to retrievé with one query the title and year of the
publications ofMary from different parts of the XML tree, even though these parts structure
the data in different ways.

The previous definition of the answer set of a PTPQ accepts any possible embedding
of Q) to T'. This generality allows embeddings that do not relate elements and values in the
way the user was expecting when formulating the query. We call the answers corresponding
to these embeddings meaningless answers. For instance, each of the images of (); shown
in Figure 7.4 correctly corresponds to a publication (a book in this case) authored by

“Mary”. However, this is not the case with the images of Q; in Figure 7.5 under three other
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embeddings of (), into 7". In each one of them, year and/or title values do not correspond

bib bib bib ib

year  book article - year article article yiar bgok article
“1999"  author title «000° title author ©1999" author title
“Mary” “CH “Ce4” “Mary” “Mary”  “XQuery”

@ (b) ‘ ©

Figure 7.5 The images of (); under three of the embeddings of ¢); on T". The answer of
()1 in every image is shown with thicker arrows.

to a publication authored by “Mary” even though these values appear in an answer with
“Mary”. In Section 7.3, we will present a technique that excludes these subtrees and returns

answers to the user that are meaningful.

7.2 Evaluating PTPQs Using Complete TPQs
We show now how PTPQs can be evaluated using TPQs. We first discuss index graphs
for XML trees. Then, we use index graphs to construct a set of complete TPQs whose
answers, taken together, form the answer of a given PTPQ. Besides allowing us to evaluate
PTPQs, the complete TPQs of a PTPQ provide the basis for defining meaningful semantics ...

for PTPQs in the next section.

7.2.1 Index Graphs

Given a partitioning of the nodes of an XML tree 7', an index graph for T’ is‘a graph GG such
that: (a) every node in G is associated with a distinct equivaience class of element nodes
in T, and (b) there is an edge in G from the node associated with the equivalence class a

to the node associated with the equivalence class b, iff there is an edge in T" from a node in
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@ to a node in b. Index graphs have been referred to with different names in the literature
including “path summaries”, “path indexes” and “structural summaries”. They differ in the
équivalence relations they emp‘loy to partition the nodes of the XML tree which includes
simulation and bismulation [63, 64] or even semantic equivalence relations [7]. Index
graphs have been extensively studied in recent years in both the “exact” [65, 63, 73] and
the “approximate” flavor [74, 64]. A common characteristic of those approaches is that
the index graph is used as a back end for evaluati'ng a class of path expressions without
accessing the XML tree. To this end, the equivalence classes of the XML tree nodes are
attached to the corresponding index graph nodes.

For the needs of PIPQs we define index graphs where the équivalence classes are

formed by all the nodes labeled by the same element in the XML tree. Figure 7.6 shows

the index graph G of the XML tree T of Figure 7.1.

r
bib
year

book article
title O O author

Figure 7.6 Index graph G

In contrast to other approaches, the eqﬁivalence classes of the XML tree nodes are
not kept with the index graph. Therefore, PTPQs are ultimately evaluated on the XML tree.
Even though the index graph for an XML tree is not a schema in the form of a DTD or an
XML Schema, we take advantage of it in the same way schema information is exploited in‘
vrelational databases. We use index graphs to support the evaluation of a PTPQ through the

generation of a set of complete TPQs.
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7.2.2 Complete TPQs for a PTPQ

If G is the index graph of an XML tree I', we say that T underlies G. Given a PTPQ @
and an index graph G, () can be evaluated by computing a set of complete TPQs whose
answers, taken together, are equal to the answer of ¢} on any XML tree underlying G. By
complete TPQ we mean a TPQ that involves only child relationships and no variables (and
therefore, corﬁplete]y specifies a tree pattern). Intuitively, a complete TPQ satisfies both:
the structural and value cénstraints of the PTPQ, and the structural constrainst of the index

graph.

Definition 7.2.1 Let Q be a PTPQ and G be an index graph. A complete TPQ (CTPQ) for

Q on G is a TPQ U without variables (wildcards) and descendant precedence relationships

which is rooted at a node labeled by r and satisfies the following conditions:

(a) There is a ﬁmpping M from the nodes of Q to the nodes of U that respects paths,
labeling elements, precedence relationships, and node sharing expressions. If Vi, ...,V
are the annotations of all the nodes in @) that are mapped to the same node n in U, n
is annotated by V1 N ... N V. Two nodes in a path in U are not labeled by the same
element, and every leaf node of U is the image of a node of () under M. The output
nodes of U are the images under M of the nodes of the output PPs of (). Notice that
it is possible that all the nodes of two distinct PPs of () are mapped by M to nodes on
the same path in U .

(b) Thére is a mapping M’ from the nodes of U to the nodes of G that respects labeling

elements and child precedence relatibnships. O
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Figure 7.7 shows two of the CTPQs of the PTPQ (), of Figure 7.2 on the index graph
G of Figure 7.6. The output nodes have their labels boxed. For simplicity of presentation,

the paths are not named.

r v *
bibI bibI
./T book | .ﬂ\ article

author= @ author=
{Mary} {Mary}

(a) (b)

Figure 7.7 Two CTPQs for @), on G: (a) U, and (b) Us

Clearly, a CTPQ can be seen as a PTPQ (without variables and descendant or
descendant-or-self precedence relationships) where the node sharing expressions are defined
by the common nodes of different root-to-leaf paths. The output PPs of the corresponding
PTPQ are defined by the paths of the CTPQ that comprise output nodes. Then, we can
define the answer of a CTPQ to be to the answer of the corresponding PTPQ. We can now

show the following proposition.

Proposition 7.2.1 Let () be a PTPQ, G be an index graph, and U, ..., Uy,
k > 1, be all the CTPQs of @ on G. Let also A, Ay, ..., Ay be the answer sets of
Q, Uy, ..., Uy respectively, on an XML tree underlying G. Then
A = Uiep n s : O

Therefore, the answers of a PTPQ () on an XML tree 7" can be computed by determining
the set U of all the CTPQs of () on the index graph that underlies 7" and by computing the

answers of each CTPQ in{ on T..
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Consider the the XML tree T (Figure 7.1) and its index graph G (Figure 7.6). Consider
also the PTPQ () (Figure 4), and its CTPQs, U; and Us, on G (Figure 7.7). Qne can see
that the answer of (); on 7" shown in Figure 7.4(a) is also an answer of CTPQ U;. Similarly,
the answer of (J; on 7" shown in Figure 7.5(c) is also an answer of CTPQ Us.

Note that the approach presented in this paper can be easily extended to handle
recursive XML trees. In this case, CTPQs for a PTPQ are generated using an index tree
instead of an index graph. An index tree is a tree structure similar to an -index' [63] with
the exception that no pointers to the data are stored in the index. The absence of cycles
in the index allows one to deal with the presence of multiple nodes labeled by the same

element in the same PSP of a PTPQ.

7.3 Using Complete TPQs to Exclude Meaningless Answers

In this se;c;[ion, we assign semantics to our PTPQ language that returns meaningful answers.
In contrast to previous approaches which exclude embeddings of the query to the data tree
[12, 13, 5, 6], our approach excludes CTPQs of a PTPQ. In this sense, our approach relies
both on data and on structural patterns of data, instead of relying exclusively on data.

'Basgd on the results of the previous section, we consider that, given an XML tree T'
(and its index graph (), the answer of é PTPQ is the union of the answers of its CTPQs
on G. However, some of these CTPQs may return meaningless answers. Consider, for
instance, again, the PTPQ @)1 (Figure 7.2) and the XML tree of Figure 7.1 along with its
index graph G in Figure 7.6. The CTPQ Us (Figure 7.7(b)) of @; on G returns (among
others) the answer of Figure 7.5(c) which is meaningless. Therefore, this CTPQ of ¢,

should not be used for computing the answers of ;. Analogously to query answers, we

!1-indexes coincide with strong DataGuides when the data is a tree.
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characterize a CTPQ of PTPQ @ on G as meaningful with respect to 1" if it returns a
meaningful answer on T'. Otherwise, it is characterized as meaningless with respect to 7.

In order to formally define meaningful CTPQs we need to introduce a transformation for

CTPQs.

7.3.1 A Transformation for Complete TPQs
Let @ be a PTPQ, T" be an XML tree and G be its index graph. Figure 7.8 shows two

CTPQs, U and U’, of a PTPQ @ on an index graph &. CTPQ U comprises three subtrees

CTPQU !

Figure 7.8 Transformation T'R transforms the CTPQ U to the CTPQ U’

T,, Ty, and T.. T, is the subtree of U rooted at the node labeled by «a, T, is a subtree of
U rooted at the node labeled by ¢, and T is the subtree of I rooted at a node labeled by
b. Subtrees T, and T} can be empty (that is, they can trivially contain only their root node
a and b respectively). The node labeled by ¢ can coincide with the root of UU. However,
the node labeled by a cannot coincide with the node labeled by ¢, and the node labeled by
b cannot coincide with the node labeled by ¢ (thaf is, the node labeled by ¢ is an ancestor
of the nodes labeled by a and b). Labels a and b can be equal. Subtree T} in U’ is a tree
identical to T}, except that its root is labeled by a instead of b. CTPQ U’ can be obtaihed

from U by removing the subtree 7, below the node labeled by c, and by making 7, a subtree
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of the node labeled by a. We define the transformation T'R on CTPQs as a transformation
that transforms a CTPQ of the form of U into a CTPQ of the form of U’. Notice that CTPQ
U’ has at least one node less than CTPQ U.

We formally define meaningful CTPQs in the next subsection but we provide some
intuition now on the transformation T'R. Consider a CTPQ U’ resulting by applying TR
to a CTPQ U . Our ihtention is to characterize U as meaningless with respect to 7', and to
exclude it from consideration in computing the answers of @, if U’ returns an answer on 7.
To understand this idea, observe that there is a 1-1 mapping f from the nodes of U’ to the
nodes of U that respects node labels and child precedence relationships (with the exception
of the child precedence relationshipé from the node labeled by @ in T7). Then, the following

proposition holds:

Proposition 7.3.1 Assume that CTPQ U’ results by applying transformation T R to a CTPQ
U. If 0 is the lowest common ancestor (LCA) of the nodes n',...n; in U', and n is the

LCA of the nodes f(n}),..., f(n) in U then n is not a descendant of f(n') in U. O

Since, there is an image of () under an emdedding to 71" (and therefore an answer
of @ on T') that closely relates the nodes as determined by U’, any image of ¢ under an
emdedding to T' (and the corresponding énswer) that relates the nodes in the looser way
determined by U is not meaningful, and should be excluded from generating an answer.

To clarify the use of transformation T'R, we show next some'applications of it on
the CTPQs of our running example. We consider PTPQ (), (Figure 7.2) on index graph G
(Figure 7.6) that underlies the XML tree T’ (Figure 7.1). Figure 7.9 shows three CTPQs U7,

Uy and U; of ()1 on GG. Dotted lines denote the subtrees T, T}, and 7T, of transformation
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TR as they are graphically shown in Figure 7.8. The CTPQ U, will be excluded from

consideration in the evaluation of (); on 1" because TPQ U; returns an answer on 7.

T

r T
Us I I Us
bib TR bib

year. bobk'"--.___

articlé - .

book. . ok, .
author= . ;'0'9 tle _."'Tc o fogtle _.-‘.Tc
{Mary} . g

Figure 7.9 CTPQs for ¢)1: Uy and U are meaningless

Similarly to Uz, CTPQ Us will be excluded from consideration. Notice that in the
case of CTPQ Us, the roots of T, and T, are labeled by the same element “book”, while in
the case of CTPQ Uj they are labeled by different elements “book™ and “article”.

Figure 7.10 show applications of transformation TR in sequence. The CTPQ Uj is
excluded from con.sideration because of the CTPQ Us. Then, the CTPQ Us is alsé excluded
because of the CTPQ U,.

Finally, Figure 7.11 shows some other applicgtions of transformation T'R in sequence.
Notice that T}, in Figure 7.11(c) (and consequently 7, in Figure 7.11(d)) are empty. Observe

that the CTPQ Ug has an extra branch from the root with respect to CTPQ U;.

7.3.2 Determining the Meaningful Complete TPQs
Next, we formally define the concept of meaningful CTPQ of a PTPQ on an index graph.
Consider a PTPQ (), an XML tree T, and its index graph G. Let U be the set of CTPQs of

@ on G. We define a binary relation < on U as follows: forevery U, U’ ¢ U, U’ < U if and
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Figure 7.11 CTPQs for ¢),: Uy and Uy are meaningless

only if U’ can be obtained by applying a sequence of transformations T'R to U. Clearly, <

is a strict partial order.

Definition 7.3.1 A CTPQ U & U is called meaningless with respect to T if there is another
CTPQ U’ € U such that (a) U’ < U, and (b) U’ has an answer on T'. Otherwise, it is called

meaningful with respect to T |

We can now update the definition of the answer set of a PTPQ given in Section 7.1.
We provide a new definition for the answer set of a PTPQ so that it comprises only answers
of meaningful CTPQs. The new definition is based on Proposition 7.2.1 and Definition

7.3.1.

Definition 7.3.2 Let () be a PTPQ, T be an XML tree and G be an index graph. Let

also Uy, ..., Uy, k > 1, be the meaningful CTPQs of ) on G with respect to T. If
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A, Ay, ..., Ay are the answer sets of Q, Uy, ..., Uy, respectively, on T, then A =

Usel1,k)As. O

Consider the CTPQ Us shown in Figure 7.7(b). As mentioned in Section 7.3.1, Us,
evaluated on the XML tree T" of Figure 7.1, returns the meaninglesé answer of Figure
7.5(c). CTPQ Us is also shown in Figure 7.9 and it is characterized by Definition 7.3.1 as
meaningless. Therefore, it will not be used to generate answers for the PTPQ @); (Figure
7.2) on T. In contrast, CTPQ U; of Figure 7.7(a) returns only the meaninful answer of
Figure 7.4(a). CTPQ Uy, is also shown in Figure 7.9. One can se that Transformation
T'R cannot be appiied to U;. Therefore, it is correctly characterized by Definition 7.3.1 as
meaninful, and will be used to generate answers for the PTPQ (), on T'. One can check that
when it comes to evaluate (), on T, Transformation TR excludes all CTPQs for ¢); on G
(Figure 7.6) except the CTPQs U;, Uy and Uy of Figures 7.9, 7.10, 7.11, respectively, and
the variations of those CTPQs where label “book” is replaced by “article”.

Since the meaningful CTPQs are TPQs, their evaluation can be implemented on top
of an XQuery engine and benefit from the extensive optimizafion techniques that have been

developed up to now for XQuery [47, 19, 20].

7.4 Comparison with Previous Approaches
In this section, we compare the semantics of our query language with the semantics of three
other well known query languages for XML that aim at excluding meaningless answers
[12, 13, 5, 6). In most practical cases, the information in the XML tree is incomplete (e.g.

optional elements/values in the schema of the document are missing), or irregular (e.g.
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different structural patterns coexist in the same document). Therefore, we also take this
parameter into account in our comparison.

Schmidt et al. [12] suggest the meet operator to let the users query an XML document
without knowledge of the elements and the structure. Queries are sets of keywords to be
matched against the values of the XML document. This approach exploits the structure of
the XML tree and is based on merely computing the Lowest Common Ancestor (LCA) of
the nodes in the XML tree that match the keywords. The computation of the LCAs is done
bottom up. When the LCA of a set of nodes that match the keywords is computed, these
nodes are excluded from further consideration. The meet operator might fail to return a
meaningful answer when a node is a descendant of another node of similar type (lpgical
hierarchy) and the information in the XML tree 1s not complete.

Consider, for instance, th¢ XML tree of Figure 7.12 and a keyword query consisting
of the keywords “Mary”; “title” and “year”. This approach considers only keywords that
are values but we allow also keywords that are elements in this example as this does not
affect the computation of LCAs. The meet operator will fail to return the subtree rooted
at the node labeled by bib which is the meaningful answer. The reason is that another
LCA node is identified first (the node labeled by “book”) and the subtree rooted at this
node is excluded from further consideration. The meet operation will also fail to exclude
meaningless answers in case of incomplete information even for a flat XML tree (that is,
a tree that does not contain logical hierarchies). Consider, for instance, the same keyword
‘query and the XML tree T3 of Figure 7.1. The meet operator will return the meaningless
answer shown in Figure 7.5(b).

XSEarch [13] is a semantic search engine for XML. It uses a simple query language

that allows keyword specifications (values and/or elements) and a primitive structural
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Figure 7.12 XML Tree Figure 7.13 XML Tree

restriction (a node labeled by an element keyword has a descendant node labeled by a value
keyword). The answers are subtrees that contain the keyword labeled nodes. XSEarch uses
the concept of Inr:erconnection. Relationship to capture the_meaningful XML subtree fér a
set of nodes that match the keywords. Two nodes 7; and ny are interconnected if the subtree
rooted at their LCA does not contain two nodes labeled by the same element. Nodes 7,
and ny can have the same label though. The interconnection relationship is extended to
multiple nodes through an all-pair or a star n-ary relationship. XSEarch allows only query
answers where the nodes matched by the keywords are all-pair or star related. Intuitively,
nodes in the XML tree represent entities and element labels represent their type. Nodes
with the same label represent entities of the same type. Déscendant nodes of a node n
are assumed to belong to the entity n represents. Two nodes that are meaningfully related
should not belong to different entities of the same type. XSEarch difficultly fails to return
a meaningful answer.
However, XSEarch usually fails to exclude meaningless answers even if the XML
“tree is flat, and does not have incomplete information. Consiaer the keyword query 4

specifying the elements “title” and “year” and fhe value “Mary” on the XML tree of Figure
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7.1. XSEarch fails to exclude the meaningless answer of Figure 7.5(c). The reason is that
any two of the nodes that match the keywords are interconnected (in coﬁtrast, XSEarch
succeeds in excluding the meaningless answer of 7.5(a) because this one contains two nodes
which are both elabeled by “bib”). Similariy, query (J; issued against the XML tree of
Figure 7.12 which has a logical hierarchy fails to exclude the several meaningless subtrees-
answers rooted at the node labeled by the “book”.

Li et al. [5, 6] extend XQuery to enable users to query XML documents without
full knowledge of the structure. This work is closer to ours compared to the prévious two.
because it allows the user to specify extensive structural restrictions in a query besides
keywords. To compute a query, this approach finds the LCA nodevof the set of nodes that
match the keywords, and treats the subtree rooted at this node as the context for query
evaluation. It employs a particular version of LCA, called Meaningful Lowest Common
Ancestor Structure (MLCAS). The MLCAS of two nodes n; and 1, (and therefore that of
any superset of those two nodes) does not exist if two other nodes of the same type (that
is, nodes labeled by the same element) have an LCA which is a descendant of the LCA of
4 and ny. The MLLCAS approach fails to return meaningful answers when the XML data .
contains logical hierarchies even ifvthere is no incomplete data in itv. Consider, for instance,
query (2, specifying the elements “title” and “year” and the value “Mary” on the XML tree
of Figure 7.13. Under the MLCAS semantics, the answer set of the query does not contain
the subtree-answer rooted at the node labeled by element “bib” (shown with bold arrows in
Figure 7.13), which, intuitively, is the answer the “most related” to query ¢J;. The answer
set will contain only the subtree-answer rooted at the node labeled by “reference”. When

the XML data is incomplete, the MLLCAS approach fails to exclude meaningless answers.
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For instance, the keyword query ¢J; specifying the elements “title” and “year” and
the value “Mary” on the XML tree of Figure 7.1 will return the meaningless answer of
Figure 7.5(b) because there are articles in the XML tree 7' that have only a title (and no
author) and articles that have an author (and no title). Another drawback of this approach
is that the semantics for the keyword queries (MLCAS) is different than the semantics for
the structural queries (XQuery). Therefore, the structural reétrictions cannot be taken into
account in determining the meaningful answers of a query in the first place. If a meaningful
. answer of a query is not contained in the subtrees returned by the keyword search part of the
query, it cannot by recovered by further evaluating the structural part of the query. Notice
that, in contrast, in our approach both the structural restrictions and the keywords in a query
determine the meaningful TPQs that, in turn, compute the answers of a query.

Our appréach successfully returns all the meaningful and eliminates all the meaningless
answers of the examples discussed in this section. Its success is due to the original way it
uses to evaluate the meaningful answers of a query. Previous approaches identify meaningful
answers by operating locally on the data by computing LCAs of nodes in the XML tree.
In contrast, our approach operateé globally on structural summaries of data (index graphs)
to compute meaningful TPQs. This overview of data gives an advantage to our approach

compared to previous ones.

7.5 Experimental Evaluation
We implemented our approach (abbreviated as PTPQ), and we experimentally compared it
to previous approaches on two aspects: the quality of the returned results, and the efficiency

of their computation.






162

of schemas Type 2 or Type 3 may have references. We consider also references to be

publications. Therefore, schemas Type 2 and 3 contain logical hierarchies. One difference

between schema Type 2 and Type 3 is that publications of schema Type 3 are categorized
| by year.

Besides the structure of the document, the “incompletness” of the data also affects
the effectiveness of the keyword based searches. We define a publication in the data
set as complete if it has all the subelements “title”, “year”, and “author”, otherwise it is
incomplete. For the experiments, we considered data sets that have different percentages of
incomplete publications.

The data sets for the three schema types are generated as follows. A program loads a.
set of sampled “book”, “article”, and “inproceedings” elements each with three subelements
“author”, “title”, and “year” from the original DBLP data. Another program randomly
chooses a set f)f publicaﬁons among them for removal of some of their subelements. One
or at most two subelements can be removed from each publication. The percentage of
incomplete publications for different publication types can be specified through input
parameters. Finally, an XML creator reassembles the publications to an XML document;
The structure of the generated XML file, determined also by an input parameter, can be any
one of the three types shown in Figure 7.14.

As the distinction between keywords that are values and keywords that are elements is
insignificant fof the semantics of the queries in all approaches, in our experiments, we query
only for elements. We used keyword queries that comprise at least two of the elemenst
“title”, “'year”, and “author”. We also ran experiments on queries with more than three
keywords and the results were similar. We also considered two of the previous keyword

queries with structural restrictions. We used these queries to experimentally compare only
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our approach (PTPQ) and tﬁe MLCAS approach since these are the only two that allow the
speciﬁcatiqn of non-primitive structural restrictions.

For all three LCA-based approaches, we consider that the answer of a query is the
subtree whose leaves are the nodes that match the keywords and whose robt is their LCA
(the way it is defined in each approach). Thus two distinct matchings of the keyords with
the same LCA determine two different answers. For each query and each type of data set,
we wrote a fully specified query in XQuery that expresses what the user is seeking. We
used the answers of these queries as a reference for computing precision and recall.

For each query and each type of data set, we have run the four approaches on six
XML documents with increasing percentage of incomplete publications in the range from
0 (all the publications are complete) to 50% (half the publications are incbmplete).

We ran the experiments on a Pentium 2.40GHz computér with 512MB of RAM
running Windows XP Professional. We implemented all keyword search techniques in Java
and used the SAX API of the Xerces Java Parser for the parsing of XML files. Berkeley

DB XML 2.2.13 was used to store XML files and run XQuery.

7.5.2 Experimental Results for Keyword queries with or without structural restrictions
Keyword queries without structural restrictions We first consider keyword queries
without structural restrictions. Figure 7.15 shows precision and recall of the two keyword
query {author, year} for the three types of documents varying the percentage of incomplete
publications in the documents.

Both XSEarch and PTPQ have perfect recall on all types of documents both for
complete and incomplete data. Meet has also perfect recall on Type 1 and 2 documents

but performs slightly worse on Type 3 documents when the data is not complete. MLCAS
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Figure 7.15 Recall and Precision for the two-keyword query {author, year}

has also perfect recall on Type 1 documents. In contrast, its recall is degraded on Type 2
documents and it drops below 60% on Type 3 documents both for complete and incomplete

data. This is due to the fact MLCAS cannot handle the logical hierarchies appearing in Type

2 and 3 documents.
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PTPQ shows perfect precision on Type 1 document (no légical hierarchies). Its
precision starts above 60% for complete data and goes slightly up as the percentage of
incomplete publications increases on Type 2 and 3 documents. The opposite trend is
followed by Meet and MLCAS on all types of documents. They start at 100% with
complete data and drop as the percentage of incomplete publications increases. The precision
of XSEarch is, in general, low and is not affected significanyly significantly by the increase
of the percentage of incomplete information.

Figure 7.16 shows the precision and recall of the two-keyword query {title, author}
for the three types of documents varying the percentage of incomplete publications in the
documents. We‘ omit the plots of the query {title, year} as they are analogous to those of
the query {title, author}.

All four approaches show in Figure 7.16 similar trénds to those shown in Figure
7.15. Meet and XSErch show on the average even lower precision. Their recall is perfect
for all types of documents both for complete and incomplete data. Interestingly, the récall
of MLCAS improves when the percentage of incomplete publications increases, reaching
100% for a percentagev of 50% of incomplete publications. The reason is that when the
number of incomplete publications increases, a number of “book”, “article”, and
“inproceedings” elements (which are missed anyway by the MLCAS approach) are not
anymore correct answers.

Figure 7.17 shows the precision and recall of the three-keyword query {title, author,
year} for the three types of documents varying the percentage of incomplete publications
iﬁ the documents. The trends are similar to those of two-keyword queries with a slight
degradation of the recall of Meet, and an average degradation of the precision of XSEarch

- and Meet.
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Figure 7.16 Recall and Precision for the two-keyword query {title, author}

Experimental Results for Keyword Queriés with Structural Restrictions We now
consider queries that involve also structural restrictions. We use two of the previous keyword
queries where the “author” and “title” keyword elements are both child nodes of some
(the same) element. This structural restriction can be fofmulated on the keyword queries

{author, title}, and {title, author, year}. We call the first one (4, and the second one Q3.
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Figure 7.17 Recall and Precision for the three-keyword query {title, author, year}
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Figure 7.18 shows the precision and recall of query Q,» for Type 3 documents varying

the percentage of incomplete publications in the document (for Type 1 document the precision

and recall are perfect for both approaches). Both approaches show the same recall as for

the corresponding query without structural restrictions, which for the PTPQ approach is

100%. Both approaches improve their precison achieving a perfect one.
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restrictions)

Figure 7.19 shows the precision and recall of query ()43 for Types 2 and 3 documents
varying the percentage of incomplete publications in the document. The PTPQ approach
has perfect recall. The MLCAS approach has the same recall as for the corresponding
query without structural restrictions. Both approaches improve their precision but the
improvement is more important for PTPQ.

In summary, MLCA shows good precision which can be improved with structural
restrictions. Howevgr, its recall is low (it falls below 60% in some cases). Its recall cannot
be improved when additional structural restrictrions are imposed since the semantics for
the keyword part of the query is different than that of the structural part of the query.
Therefore, answers missed in the evaluation of the keyword search part of the query cannot
be recovered during the evaluation of the structural part. PTPQ does does not show this
drawback. Its recall is perfect with and without structural restrictions, while additional

structural restrictions improve its recall.
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Figure 7.19 Recall and Precision for the query () 3 (three keywords and structural
restrictions)

7.5.3 Performance

In order to assess the performance of our approach, we compared it to the MLCAS approach
which also allows the specification of structural constraints. In addition, the MLCAS
approach is embedded into Timber [47] an XML database management system. In order
to guarantee a unique experimental comparison environment, we used Timber also for
the evaluation of the meaningful TPQs of our approach. In this section we present the
experiments conducted to evalute the performances of MTPQ approach and MLCAS approach

on generating meaningful answers and report results obtained.
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Experimental Setting We compare the time cost of evaluating an MLCAS-embedded
XQuery, with that of MTPQ approach which generates a set of meaningful TPQs and then
evaluate their corresponding XQuery.

In the query quality experiments, we have chosen to generate synthetic DBLP dataséts
so that we can better control the rela'tionship between the algorithms and the characteristics
of the datasets.

We used original DBLP datasets. We retained only the properties of “year”, “author”,
“title”, “publisher”, and “ISBN” for each publication as these are the onés that we used in
queries, and removed other properties such as “volume” and “pages”. In the experiments
we used five different sizes of datasets: 95kb, 21mb, 29mb, 95mb and 148mb. We used the

same computer as for the quality experiments.

We used following four queries in the experiments:

1. Query 1 (Q1): Find titles of all the WWW publications (pure 2-keyword query: www

and title).

2. Query 2 (Q2): Find the title and year publications that have ISBN (2-keyword query
with structural constraints:” ISBN is the child of the publication; this constraint is

specified outside the MLCA function, i.e., it is specified in the body of XQuery)

3. Query 3 (Q3): Find titles of all the articles and their publication year (2-keyword
query with structural constraints: title is under the article; this constraint is specified

within the MLCA function)

4. Query 4 (()4): Find the publications of inproceedings (1-keyword query:inproceedings)
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Due to some bugs in the current vefsion of Timber (we contacted its author who
confirmed this), we were unable’ to run MLCAS XQuery with more than two keywords
for document size larger than 90kb. Therefore we didn’t show the experimeﬁtal results on
three keywords queries and up.

For each approach, we ran the four queries on the five data sets. The running
time of MTPQ consists of the time of generating meaningful TPQs and of evaluating
TPQ(XQuery). The running time of an XQuery on Timber is measured in terms of its
physical plan execution and does not include the time for query parsing and evaluation.
Each query was run consecutively five times for each data set with hot caches. The average
running time was used in the performance evaluation.

Fig. 7.20, Fig. 7.21, Fig. 7.22 and Fig. 7.23 respectively report the execution time of
MLCAS approach and MTPQ approach for the queries on DBLP data. We can see that the
time of generating meaningful TPQs is very small, only around 1% of the total evaluation
time for the MTPQ approach; for very large data sets, such overhead can even be ignored.
We can also see that the execution time of MLCAS approach is larger than that of MTPQ by
orders of magnitude. For example, for Q1, it took MLCAS 431.743 seconds to generating
5729 results for the 148MB DBLP dataset; while MTPQ only used 3.23 seconds to genefate
the same results on the same dataset. Such a big difference is expected, as MLCAS works
solely on -data while MTPQ uses an index graph the size of which is much smaller than that
of the underlying data. Moreover, we can see that the scalability of our approach is much
better than that of MLCAS approach.

Our experiment results show that the MTPQ approach is superior to the MLCAS

approach, both in query performance and search quality.



172

Two keywords (www and title) Two keywords with contraints(title and year with isbn as sibling)
500 1050
200 S j
50 100
!
20
5 n
2
1
0s 0s
0.1 0.1
nos nns
om
95kh 2tmh 29mb 95mb 148mb 95kh 2imb 29mb 95mh
DBLP doc DBLP doc
[ MLCAs 8 PTPQ XQuery evaluation [ MLCAS B rTPQ XQuery evaluation
B TPQ generation Bl PTPQ total | B TPQ gencration W PTPQ ot

Figure 7.20 Performance Comparison for  Figure 7.21 Performance Comparison for

@ Q2

Two keywords with contraints(title and year with title under article) One keyword(inproceedings)
3500 8000
= Z 200
8 %0 2 00
< I g
i ¥ g W
£ s o
E PR
£ 0s 0s B
= &
& ol 0005 &
%%
95kb 21mb 29mb 95mb 14Rmb 9Skb 2Imb 29mb 95mb 148mb
DBLP doc DBLP doc
[C] MLCAS 8 PTPQ XQuery evaluation ] MLCAS 8 PTPQ XQuery evaluation
B TPQ generation 2 Il PTPQ tonal B TPQ gencration B PTPQ total

Figure 7.22 Performance Comparison for Figure 7.23 Performance Comparison for

Qs Q4



CHAPTER 8

ANSWERING XML QUERIES USING MATERIALIZED VIEWS

In this chapter, the problem of answering XML queries using materialized views is addressed.
The chapter is organized as follows. Seétion 8.1 presents the motivation for the studing
problem. In Section 8.2, the data model, the class of queries and views considered, and
the inverted lists evaluation model adopted are presented. The novel concept of view
materialization is also introduced in this section. Necessary and sufficient conditions for
tree-pattern query answerability are provided in Section 8.3. Section 8.4 presents a stack-
based algorithm which compactly encodes in polynomial time and space all the

homomorphisms from a view to a query. Experimental results are presented in Section

8.6.

8.1 Introduction
XML is by now the standard vfor exchanging, exporting and integrating data on the web.
As increasing amounts of information are stored, exchanged, and exported using XML,
it is becoming increasingly important to efficiently query XML data sources. Answering
queries using views is a well-established technique in data integration, query caching and
warehousing, where queries expressed over data sources are answered using materialized
views defined over these data sources [75]. It is also (along with indexing) one of the best
known techniques used for optimizing the evaluation of queries [76, 77]. The problem
behind this technique can be formulated as follows: given a query and a set of materialized

views along with their definitions, decide whether the query can be answered using the
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XML dat_a [49] assumes a centralized enviroment and is not appropriate when the queries
need to be answered using only the materialized views (that is, when the base XML data
1s not accessible). Further, the size of the answer subtrees can be very large. When
multiple views are materialized (and inevitably ovelapping portions of the XML document
-are repeatedly and redundantly stored), view materialization becomes unfeasible due to
space limitations. Even if space limitations are met, usually the view- materializations
are unindexed fragments of the XML document making the computation of a query more
expensive compared to computing it against the original XML document. For this reason,
in the performance studies of both [52] and [57] an upper bound has been set on the size
of the XML fragment per view that can be materialized. This restriction limits both (a)
the chances to answer the query using only the materialized views, and (b) the chances to
find an efficient evaluation plan for the query using the materialized views. These obstacles

defy the reason for materializing views in the first place.

Exarﬁple 8.1.1 Consider the_ XML tree of Figure 8.1(a) which records bibliographic
information (ignore for the moment the triplets associated with the tree nodes). Let’s
assume that the view Vy : [/article/[info/author, which retrieves article authors, and
the view V; : [ /citations/ /author, which retrieves citing authors, are materialized in the
client cache. Views V1 and V, are shown as TPQs in Figures 8.1(b) and 8.1(c) respectively,
where an asterisk denotes an output node. Suppose the user issues the query Q : / /article
[info/author =‘Mary’]/citations//author against the client cache. The query asks
for the authors who cite articles aﬁthored by Mary and is shown as a TPQ in Figur¢
8.1(d). One can see that query () cannot be answered using Vi and/or V3. The reason
is that no structural information is available outsidé the view answer subtrees in the view

materializations. Query @) cannot be answered using Vy and/or Vy even if ancestor path
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information is stored along with the subtrees in the view materializations because the
absgnce of node identifiers does not allow a structural join on the materializations of
the two views. Query () can be answered using/Vl if node article is the output node of
V1. However, in this case, the materialization of V, is the whole base XML tree, and Vs
redundantly materialize$ part of it. Such a large materialization is likely prohibitive in the
client cache, and if it is not, in the absence of an index on the materialization of V,, it
would probab.ly be preferable to evaluate () against the base XML data stored in the server

instead of using the views materialized in the client cache.

The Inverted Lists Evaluation Model. A recent approach for evaluating queries on large
persistent XML data assumés that the data is preprocessed and the position of every node
in the XML tree is encoded [20, 21]. Further, the nodes are partitioned by node label, and
an jndex of inverted lists is built on this partition. In order to evaluate a query, the nodes
of the relevant inverted lists are read in the pre-order of their appearance in the XML tree.
We refer to this evaluation model as inverted lists model. All the relevant query evaluation
algorithms in this model are based on stacks that allow encoding an exponential number
of pattern matches in a polynomial space. Comparison studies on XML query evaluation
techniques {78, 79] show that holistic algorithms {20, 22, 21, 25, 26, 43] in the inverted
lists model are superior to other algorithms and evaluation models (streaming/navigational
approaches [34] or sequential/string matching approaches [80]). In this paper, we assume
that the inverted lists model and holistic evaluation algorithms are adopted. Note that in
the inverted lists model, the answer of a TPQ is not a subtree of the XML tree but a set

of tuples. The fields of the tuples correspond to the query nodes. Each tuple contains the
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(positional representation of) XML tree nodes that match the query nodes in an embedding

of the query to the XML tree.

Problem Addressed. Driven by the prominence of the inverted lists evaluation model, we
address the problem of answering TPQs using exclusivély one or more materialized views
in the context of this model. We also address the problem of the optimal evaluation of a
“ TPQ using exclusively materialized views in the same context.

In this new context, query ansWerability by materialized views is not restricted by the
presence of output nodes in queries and views since all query and view nodes can be seen
as output nodes. As a consequence, queries have more chances to have a hit involving one
or more materialized views in the view pool.

This new framework revises the “answering queries using materialized views”
problem since previous conditions for query answerability are not valid anymore. Further,
traditional approaches [49, 52, 53, 55, 57] evaluate queries by generating compensation
TPQs over materialized views and look at the optimization of this evaluation as a problem
of finding the lowest cost compensation TPQ. Unfortunately, thesé techniques are not
applicable in the new context and novel stack-based techniques need to be devised for

computing queries over view materializations.

Our Approach. We suggest a novel approach for materializing views where instead of
materializing the view answer, we materialize sublists of the invertéd lists for the labels
of the view nodes. A query can be computed very efficiently using materialized views by
running holistic stack-based algorithms over the inverted sublists of the view nodes.
Going back to Example 8.1.1, the triplets by the nodes of the XML tree of Figure

8.1(a) denote the positional representations of these nodes. As we show later, in the
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context of our approach, not only the TPQ () of Figure 8.1(d) can be answered using the
materializations of views V; and V5 of Figures 8.1(b) and 8.1(c), but also this computation
can be performed very efficiently. Moreover, view materialization takes minimal space and

any redundancy is avoided.

8.2 Data Model, Query Language, and Evaluation Model
In this section, we briefly present the data model, the class of queries and views we consider,
and the inverted lists evaluation model we adopt. We also introduce our novel concept of

view materialization.

Data Model. An XML database is commonly modeled by a tree structure. Tree nodes
represent and are labeled by elements, attributes, or values. Tree edges represent element-
subelement, element—attributé, and element-value relationships. For simplicity, we do not
distinguish here between element, attribute, and value nodes, and we denote by £ the set
of node labels in the XML tree;

For XML trees, we adopt the region encoding widely used for XML query processing
[20, 21]. This encoding associates every node with a triplet (begin, end, level). This
triplet is called positional representation of the node. The begin and end values of a node
are integers which can be determined through a depth-first traversal of the XML tree, by
sequentially assigning numbers to the first and the last visit of the node. The level value
represents the level of the node in the XML tree. The utility of the region encoding is that

it allows efficiently checking structural relationships between two nodes in the XML tree.
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For instance, given two nodes n; and nq, n is an ancestor of ny iff ny.begin < nq.begin,

and nq.end < nj.end.

Quefy and View Language. For simplicity of presentation and in order to highlight the
novel features of our approach, we consider that queries and views are tree-pattern queries
(TPQs). We comment later on ﬁow our approach can be applied to broader classes of
queries e.g. .queries with reverse axes and wildcards.Contrary to all previous approaches
on answering queries using viéws [49, 52, 55, 58], we do not impose any restriction on the
output nodes. Queries and views can have any number of output nodes and this does not
affect the usability of the views for the evaluation of the queries. For this reason, in our
definition below we do not explicitly refer to output nodes, and all the nodes of queries and
views are considered to be output nodes. Our approach applies without modification to the
case where arbitrary sets of nodes in queries and views are considered to be output nodes.

A tree-pattern query (TPQ) specifies a pattern in the form of a tree. Every node ina
TPQ ¢ has a label from L. There are two types of edges in (). A single (resp. double) edge
between two nodes in () denotes a child (resp. descendant) structural relationship between
the two nodes.

The answer of a TPQ on an XML tree is a set of tuples. Each tuple consists of XML
tree nodes that preserve the child and deécendant relationships of the query.

More formally: an embedding of a TPQ () into an XML tree 7" is a mapping M from
the nodes of () to nodes of 7" such that: (a) a node in @ labeled by a is mapped by M toa
node of 7" labeled by a; (b) if there is a single (resp. double) edge between‘two nodes X

and Y in @, M(Y) is a child (resp. descendant) of M(X)inT.
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We call image of ) under an embedding M a tuple that contains one field per node in
(), and the value of the field is the image of the node under M. Such a tuple is also called
solution of ¢) on T'. The answer of @ on T is the set of solutions of ) under all possible
embeddings of Q to T,

A view is a named query. The class of views we consider is not restricted. Any kind

of query can be a view.

Outline of the Inverted Lists Evaluation Model. In the inverted lists evaluation model,
the data is preprocessed and the position of every node in the XML tree is encoded. For
every label in the XML tree, an inverted list of the nodes with this label is produced. Given
an XML tree T, we use L to denote its set of inverted lists and L, to denote the inverted
list iﬁ L for label a. List L, contains the positional representation of the nodes labeled by
a in T ordered by their begin field.

Let @ be a query. With every query node X in () labeled by a, we associate the
inverted list L, in L. To access the nodes in L, for X, we maintain a cursor Cy. Cursor
Cx sequentially accesses the nodes in L, starting with the first node. |

With every query node X in @, we also associate a stack Sx. At the beginning of
the evaluation of a query, all stacks are empty. When the nodes in the inverted lists are
accessed by the cursors, they are possibly stored in stacks. At any point in time, stack
entries represent partial solutions of the query that can be extended to the solutions as the
algorithm goes on.

In the following we ignore the XML tree 1" and we assume that the input for the

evaluation of queries and views is the set of inverted lists L. When a query @ is evaluated
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on L, if the cursor of a node X in () iterates over the inverted list Ly we say that node X
is computed on L using the list Ly .

View Materialization. We now define our novel concept of view materialization.

Definition 8.2.17 Let V be a view, and L be a set of inverted lists. The materialization V(L)
of V on L is a set of sublists of the inverted lists in L—one for each view node in V. If X is
a node in 'V labeled by a, Lx denotes its inverted list in V (L) and it contains only those
nodes of L, € L that are ;mages of X in a solution of V on L. Sublist Ly is called the

materialization of X in V(L).

In this sense, the inverted lists in the materialization V(L) contain only those nodes
of the inverted lists in L that contribute to a solution of V on L.

Our approach for view materialization departs from all the previous approaches which
consider materializing copies of XML tree fragments, typed values, ancestor paths, or
references to the input XML tree [49, 52, 58, 55, 57). Note that our approach is space
efficient since the sublists can encode in linear space a number of solutions for the view

which is exponential on the number of view nodes.

8.3 Answering Queries Using Views
Let () be a query and X be a node in @ labeled by a. Recall that in order to evaluate () 'on
L, the cursor Cx of X iterates over the inverted list L, in L. If there is a sublist, say Lx,
of L, such that ) can be computed on L by having C'x iterate over Lx instead of L,, we
say thaf node X can be computed using Lx on L. Let V be a view whose materialization
on L is V(L). The idea of our approach for answering @) using V on L is to identify nodes

in () that can be computed using the materializations of nodes in V for every L and use
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their materializations in V(L) for computing the answer of () on L instead of using the

corresponding inverted lists in L.

8.3.1 Answering a Query Using a Single View
We start by defining what answering a query using a view means in our context of view

materialization.

Definition 8.3.1 Let V(L) be the materialization of a>w’ew V on a set of inverted lists L.
A query () can be answered using V if for a node X in Q) there is a node Y m V with the
same label as X, such that for every L, X can be computed using Ly € V(L). Inthis case,
we say that view node Y’ covers query node X, or that Y is a covering node of X.

Let’s assume that () can be answered using V. If every node in Q) is covered by a
node in 'V, we say that () can be answered completely using V. Otherwise, we say that ()

can be answered partially using V.

When the answer of a query is computed using a view, a node of the query that
is covered by a view nod¢ uées only the materialization of this view node. Since the
materialization of the view node is a sublist of the inverted list for the node label, it is
usually smaller than the inverted list. This reduces the cost for computing the answer of the
query.

Deciding Whether a Query Can be Aﬁswered Using One View. In order to specify
conditions for view usability, we need the concept of homomorphism between views and
queries. A homomorphism from a view V' to a query () is a mapping;y that maps all the nodes
of V to nodes with the same label in ¢ and preserves child and descendant relationships

(preserving a descendant relationship means that it is mapped to a path of nodes).
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Homomorphisms:
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Yd4 c6
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Figure 8.2 Four homomorphisms from view V to query ()

Figure 8.2 shows a query () and a view V' and four homomorphisms h;, he, hs and
hy from V 'to Q).

The following theorem relates node coverage to homomorphisms.

Theorem 8.3.1 Let () be a query and V' be a view. A node X in () is covered by a node Y

in'V iff there is a homomorphism from V to Q) that maps Y to X.

Necessary and sufficient conditions-for view usability based on homomorphisms are

provided by the next collorary of Theorem 8.3.1.

Corollary 8.3.1 Let Q) be a query and V' be a view. Query () can be answered using V' iff

there is a homomorphism from V to Q).

For instance, in the example of Figure 8.2, query () can be answered using view V
since there is at least one homomorphism from V' to (). Both nodes labeled by d in () are
covered by node din V.

Notice;, that our definition of homomorphism is less restrictive than previous ones,
since we do not have to consider (énd impose conditions on) output nodes [52, 53, 58].
This increases the chances for a homomorphism from a view to a query to exist. Based
on Theoreom 8.3.1, it also increases the chances of the view to be useful in answering the
query. This constitutes an important advantage of our approach compared to previous ones,

since it allows the exploitation of views when other approaches fail.
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In order to guarantee that a query can be answered completely using a view, we
need to make sure that every node of the query has a covering node in the view. The next
corollary of Theorem 8.3.1 expresses this requirement in terms of homomorphisms from

the view to the query.

Corollary 8.3.2 Let () be a query and V' be a view. Query () can be answered completely
using V' iff there are homomorphisms from V' to () such that every node of () is the image

of a node in'V under some homomorphism.

Based on Corollary 8.3.2, one can easily see that in the example of Figure 8.2, query

() can be answered completely using view V.

Computing the Answer of a Query Using One View.‘ In the traditional approach for
answering a query using a view [49, 52, 53, 55, 57], the quéry 1S rewritten us.ing the view.
That is, in order to compute the answer of the query, a compensation query is determined |
which is applied to the materialized view and computes the answer of the query. This
compensation query does so by navigating in the view materialization which is a set of
subtrees. of the original XML tree.

-+ In contrast, in our approach, we use the view materialization and compute the query
answer by running stack-based evaluation algorithms over- the materializations of the
covering view nodes.

Therefore, in order to perform the computation of the answer what is needed is an
association of the query nodes with covering view nodes. The set of covering view nodes
of a given query node is determined by the homomorphism of Theorem 8.3.1 as follows:

Let hy, . .., hy be the homomorphisms from a view V' to a query ) and YA, Y

K3

be the nodes in V whose image under h; is X. Then, the set m(X) of covering nodes for
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If 3X € @Q, m(X) # 0, Q can be answered using V. If VX € @, m(X) # 0, Q can be
. answered completely using V. The materialization in V(L) of any node in m(X) can be
Vused for computing X. However, we might also use the materializations of multiple (or
all the) nodes in m(X): let Lx, and Ly, be the materializations of two nodes X; and X5
in m(X). The intersection Lx, N Lx, is the sublist of Ly, and Ly, which comprises the
nodes that appeér in both Ly, and Ly, . In order to compute the answer of ) using V' any
subset of m(X) can be used: during the computation of the answer, X will be computed
 using the intersection of the materializations of the view nodes in this subset.
Note that a view V' can have a number of homomorphisms to a query which is
- exponential in the number of view nodes. However, fhe number of covering nodes in m(X)

is bounded by the number of nodes in V.

8.3.2 Answering a Query Using Multiple Views

The presence of multiple views in the view pool increases the chances of a query to be-
answered using their materializations. We extend below our definition for answering a
query using a view to multiple views. We first define the union of the materializations of

two view nodes. Let X, and X be two view nodes with the same label @, and Ly, and Ly,
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be their materializations. The union Lx, U Lx, of Lx, and Ly, is the sublist of L, which

comprises exactly the nodes of both Ly, and Ly, .

Definition 8.3.2 Let Vi(L), ..., V,(L) be the materializations of views Vi, ..., V,, on a set

of inverted lists L. A query (Q can be answered using V1,...,V, if for a node X in Q,

there are nodes Y1,..., Y, in Vy, ...V, such that, for every L, X can be computed using
Ly, U...ULy,.

Let’s assume that Q can be answered using Vy, ..., V,. If for every node X in Q),
there are nodes Y1, ..., Y, in Vi, ..., V,, such that, for every L, X can be computed using

Ly, U ... U Ly, for every L, we say that () can be answered completely using V1, ..., V..

Otherwise, we say that () can be answered partially using Vi,..., V.

Deciding Whether a Query. Can be Answered Using Multiple Views. For the class of
queries we consider here, checking whether a query can be answered using multiple views
can be expressed in terms of checking whether a query can be answered using a single

view.

Theorem 8.3.2 Let Q) be a query and {V1,...,V,} be a set of views. Query Q) can be

answered using Vi, ..., V,, iff for some V,, i € [1,n], Q can be answered using V.

Figure 8.3 shows a query () and two views Vi and V5. Each of these views has a
homomorphism to Q which is also shown in the figure. Based on Corollary 8.3.1, () can be
answered using V; (or V3). Therefore, based on Theorem 8.3.2, @ can be answered using
Vi, Va.

For the case of answering completely a query using views we can state the following

theorem.
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Theorem 8.3.3 Let Q) be a query and {V1,...,V,} be a set of views. Query Q) can be
answered completely using V1, ...,V iff it can be answered using V1, . . ., V,, and for every

node in @, there is a covering node in some (not necessarily the same) V;, i € [1,n].

Based on Theorem 8.3.3, one can see that query @ of Figure 8.3 can be answered

completely uisng the views V) and V; of the same figure.

Computing the Answer of a Query Using Multiple Views. In order to perform the
computation of the answer of the query using a set of materialized views we associate
query nodes with the set of corresponding covering nodes in the views. The set of covering

nodes of a given query node in multiple views is defined in terms of the set of covering

nodes of the query in a single view: let X be a node in query @, and m,(X), ..., m,(X)
be the sets of covering nodes of X in Vj,...,V,, respectively. Then, the set m(X) of
covering nodes of X in V,...,V,, is

m(X) = | m(X)

1€{l,n}

As with the case of a single view, if 3X € @, m(X) # 0, @ can be answered using
Viyo. o, Vi . IEVX € @, m(X) # 0, Q can be completely answered using Vi, ..., V,. The
materialization of any node in m(X) can be used for computing X. However, we might
also use the materializations of some (or all the) nodes in m(X): during the computation
of the answer, X will be computed using the intersection of the materializations of these

view nodes in m(X).

In this paper, we focus on answering completely queries using views.
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8.4 Computing Covering Nodes
As discussed in Section 8.3, given a query () and a view V/, the covering nodes for a node
of @ in V' are defined in terms of the homomorphisms from V to ). However, the number
of these homomorphisms can be exponéntial on the size of V. In this section, we presént
a stack—based algorithm which computes in polynomial time and space the covering nodes

of the nodes in ) without explicitly enumerating all the homomorphisms from V to Q).

Match Sets. In the algorithm we use a data structure, called match set, which is similar to
those employed inv [81, 82, 32] for encoding query pattern matches.

Let ¢ be a node in query ) and v be a node in view V. Wé say that v matches ¢ if v
has the same label as ¢. Let T, and 7} denote the subtrees rooted at v and g, respectively.
Lét also v; be a child node of v in V and 9 be a node in the subtree T;,. We say that the pair
(v,q) is consistent with (v;, q;), if v and v; match ¢ and g;, respectively, and if v/v; € V,
then ¢/q; € Q.

The match set M S(V, Q) is a directed acyclic graph (dag) that compactly stores the
set of homomorphisms from V' to (). The nodes of this dag corres‘pond to node pairs (v, q)
such that v matches ¢. Each node (v, q) is associated with an array ptrsArr indexed by
the children of v in V. Given a child v; of v in V, ptrsArr[v;] is a set of pointers. Each of
the pointers points to a node (v;, ¢;), where ¢; is a node in Ty and (v, ¢) is consistent with
(vi, ¢;). There is an edge in the dag ffom node (v, q) to node (v;, g;) iff there isa pointer
from ptrsArr of (v, q) to (v, ¢;). We call match set of a node (v, ¢), denoted M S(v, q), the
node (v, ) along with the array ptrsArr of (v, q). Note that node (v;, ¢;) can be a child of
multiple nodes (v, q1), - ., (v,¢s), Where ¢y, . .., g, are ancestor nodes of g; in Q. Let ry

and r¢ denote virtual roots of V and @, respectively. Then, the match set dag M S(V, Q) is
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Figure 8.4 (a) The match set dag for the view and the query of Figure 8.2, (b) The
snapshots of stacks after the query leaf node d has been visited during the execution of
Algorithm computeCovering

rooted at the node (ry,7g). As we show later, the size of the dag is polynomial in the size
of V and .

Figure 8.4(a) shows the dag of the match set for the view V and query @ of Figure
8.2. In order to uniquely identify a node of the view or the query, every node of V and @
in Figure 8.2 is associated with a node id.

Given a match set dag M .S(V, @), we can compute the set of homomorphisms from
V to Q. Clearly, the time required for enumerating all the homomorphisms is exponential
on the size of the view in the worst case. However, we do not need to enumerate all the
homomorphisms in order to compute covering nodes of the query nodes. Instead, as we

show below, we can compute covering nodes from the match set dag.

Compu’ting Match Sets. The match set M S(v, ¢) can be computed inductively by gomputing
the'ﬁlatch set of each child of v in V. If v is a leaf node of V, then M S(v, q) consists of only
node (v, ). Otherwise, suppose that we have computed all the match sets for each child
v; of v. Then, ptrsArr[v;] of M.S(v, q) is populated by adding pointers to each child node
(v;, q;) such that (v, g) is consistent with (v;, g;). If every ptrsArr[v;] is non-empty after the

population, we call the newly computed M S(v, ¢) a valid match set.
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Based on the above idea, we provide below an algorithm that efficiently cbmputes

match sets and covering nodes.

The Algorithm. Algorithm computeCovering, shown in Listing 14, takes a query ) and
a view V as inputs and computes the covering nodes in V for each query node of ). It is
a stack-based algorithm which associates each view node of V' with a stack. It proceeds
in two steps. In the first step, it calls Procedure constructM S (shown in Listing 15) to
compute the match set dag MS(V, Q) (line 2). In the second step, the dag is traversed
top-down to determine the covering view nodes (lines 3-5).

Procedure constructM S traverses the tree pattern () in preorder, constructing the
match sets as it visits nodes and traverses edges. When constructM S visits a query node
for the first time, it creates a match set for each matching view node. The created match
set arev pushed onto stacks. When constructM .S returns to a query node after traversing
the entire subtree of this node, it determines whether the match sets created for the query
node are valid and inserts into the arrays ptrsArr of their parent nodes pointers that point
to the corresponding nodes. When constructM S finishes the traversal of Q, M S(rv,rg)
encodes all the homomorphisms from V to Q. We describe the process below in more
detail.

Initially, a match set M S ('I"V, rg) is pushed onto stack S,,,, the stack of the virtual
view root. For each query node ¢ visited for the first time, constructM S iterates in
postorder over each view node v matching the query node (line 1). Let (u, p) be the node of
the match set corresponding to the top entry of stack S,,. Procedure constructM.S checks
whether (u, p) is consistent with (v, ¢). If this is the case, a match set M.S(v, q) is created

and then pushed onto stack S, (lines 2-7). Next, constructM S recursively calls itself on
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each child node of ¢ (lines 8-9). After the traversal of the subtree of ¢, for each U matching
q considered in preorder, it pops out the top entry M .S(v, q) from stack S, (lines 10-11).
If MS(v,q) is valid, for each entry in stack S,, where u is the parent of v, a pointer that
points to (v, q) is created and added to the entry’s ptrsArr[v;] (lines 12-15).

Figure 8.4(b) shows a snapshot of the view stacks during the execution of Algorithm
computeCovering. After the query leaf node d (node id 4) has been visited, the corresponding
match set is popped out from the stack .S; of view node d. Since it is valid, it is attached to

the only match set in stack S, of view node a.

Complexity. Let v be a node in V. We define the prefix query of v, denoted pre fiz(V, ’Uj,
as the path from the root of V to v. Given a Query @, we define the recursion depth of node
vin Q) as fhe maximum number of nodes in a path of () that are images of v under all the
possible embeddings to pre fiz(V, v) in that path of (). We define the recursion depth D of
V in @ as the maximum recursion depth of the view nodes of V in Q.

The number of query nodes matched by a view node is bounded by the number |Q)|
of the nodes of (). The total number of match sets constructed during execution is bounded
by |V x |@]. The number of incoming pointers to each constructed match set is bounded
by D. Therefore, the space complexity of Algorithm computeCovering is bounded by -
(V| x Q| x D).

The time complexity of Algorithm computerveMng 1s determined by the timé for
processing stack entries (that is, match sets). The number of entriés in each stack at any
given time is bounded by D. Let v be a view node that matches a query node ¢ under
consideration. Procedure constructM S spends O(fanout(v) + D) on checking whether

M S(vy q) is valid and on visiting entries in the parent stack of v, where fanout(X) denotes
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Listing 14 Algorithm computeCovering

1 create a stack for each node of V and initialize the covering node set m(q) to be empty for each node g of Q.

2 constructMS(root(Q))

3 let visited be a boolean matrix where the rows are indexed by the nodes of V' and the columns are indexed by the nodes of Q.
Initialize each field of visited to be false

4 for (every node M S(v, g) encountered in the top down traversal of the match set dag of V and Q) do

5 if visited[v, g} is false, then add v to m(q), set visited[v, g| to true, and continue the traversal on the children of M S(v, ¢).

the out-degree of v in V. Since the number of view nodes that match node ¢ is O(V),
the total time spent on processing stack entries for each node in @ is O(|V| + |V] x
D), which is dominated by O(|V| x D). Therefore, the time complexity of Algorithm

computeCovering is bounded by O(JV| x |Q| x D).

8.5 Optimization Issues

Computation Time Issues. As discussed in Section 8.3, if a query () can be answered
completely using some views, and m(X) is the set of all the covering nodes of a node X
in () with respect to these views, then X can be computed using the intersection of the
materializations of the nodes in m/(.X). If additional views that have a homomorphism to ¢
_are discovered in the view pool, the set m (X ) of covering nodes for X with respect to all the
views will potentially get new view nodes and the intersection of their materializations will
potentially decrease in size making, of course, the computation of X cheaper. However,
there is a cost associated with discovering additional views that have a homomorphism to
Q. Therefore, if a set of views that answers a query @ has been discovered in the view
pool, a question that arises is whether it is worth spending additional time to find other
views that have a homomorphism to () in an effort to reduce the overall computation cost

of () using the view materializations. Our experimental results in Section 8.6, show that



193

Listing 1S5 Procedure constructMS(q)

1 for (every v € nodes(V ) that matches g considered in post-order) do

2
3

6
7

let w be the parent of v in V'
if (stack S., is not empty) then
let (u,p) be in the top entry of Sy,
if ((u, p) is consistent with (v, ¢)) then
create M. S(v, q) and initialize ptrs Arr|v;] to be empty for every child v; of v

push M S (v, q) to-stack S,

8 for (every child ¢’ of g in Q) do

9

constructMS(g”)

10 for (every v € nodes(V) that matches g considered in pre-order) do

11
12
13
14
15

pop out the top entry e from stack S,
if (¢ is a valid match set) then

let u be the parent of v in V

for (every stack entry e’ € S,) do

add to ptrsArr{v] a pointer that points to the node of e

the answer to this question is positive: the implementation of our algorithm of Section 8.4

takes minimal time to compute all the covering nodes of a query even with a large view

pool. This is largely compensated by the benefit in computation time we obtain by finding

additional views with homomorphisms to ().

Using Bitmaps. Consider two view nodes X; and X, both labeled by the same label

a. The materializations Ly, and Ly, of X; and X, are sublists of the inverted list L,.

Lx, and Lx, might overlap. Instead of storing directly Lx, and Lx,, one can store the

union Lx, U Lx, of Lx, and Ly, along with two bitmaps By, and Bx, on Lx, U Ly,

for Lx, and Ly, respectively. Bitmap Bx,, i = 1,2, has a 1’ bit at position x iff Ly,

comprises the XML tree node at position z of Ly, U Lx,. This idea can be applied to
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Figure 8.5 Hit rate and cache size with with increasing number of materialized views

multiple view node materializations resulting in important space savings. Note that because
the view node materializations Lx,,..., Lx, of the view nodes X1,..., X} having the
same label are sorted oﬁ the begin value of the positional representation of their XML tree
nodes, the intersection Ly, M ... N Lx, can be computed by merge-joining Lx,,..., Lx,.
Using bitmaps, the intersection of Lx,,...,Lx, can be computed by bitwise AND-ing
Bx,,...,Bx, which produces a bitmap of the intersection Lx, N ... N Ly, on Lx, U
... U Lx,. That is, the order is preserved. Besides the important space savings, the use
of bitmaps also offers time saving for two reasons: (a) fetching into memory bitmaps of
view nodes and the inverted list nodes corresponding to their bitwise AND has less I/O cost

than fetching the materializations of these nodes, and (b) bitwise AND-ing bitmaps has less

CPU cost than merge-joining the corresponding view node materializations.

8.6 Experimental Evaluation
We implemented our approach and ran experiments to study its time and space performance

and scalability. We also ran experiments to compare our approach with traditional approaches.
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As traditional approaches assume a different evaluation model and answer sets, this

comparison makes sense when it concerns the view cache hit rate.

- 8.6.1 Experimental Setup

Our implementation was coded in Java. All the experiments reported here were performed
on an Intel Core 2 CPU 2.13 GHz processor with 2GB memory running JVM 1.6.0 in
Windows XP Professional. The Java virtual machine memory size was set to 512MB. Both
XML inverted lists and. TPQ view definitions as well as the view materializations were
stored in a commercial DBMS. Each displayed time value in the plots is averaged over 5
runs with a cold DBMS buffer cache. .

We ran experiments both on an XML benchmark data set generated using X Mark
[83] and on a synthetié dataset using IBM’s XML Generator [67]. We used a 56.2MB
XML benchmark data set generated using X Mark [83]. This XML document does not
include recursive elements. It contains 74 distinct element labels. The total number of
parsed element nodes (excluding attributes and text values) is 832911 and the size of their ‘
positional represeﬁtations (i.e., the inverted lists) is 15.1MB. We also ran experiments on a
highly recursive syntheti(.: dataset, whose results are similar to those reported here and are
omitted in the interest of space.

We used the XPath generator Y F'ilter [84] to produce queries. Y Filter generates
XPath queries according to specified parameters, such as the maximum query depth, the
probability of descendant edges (//), and the probability of branches. In order to create
more general workloads, we modified Y Filter in the following two ways: (a) we removed

the limitation on supporting only one level of nesting of path expressions, so that it can
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generate complex XPath queries with arbitrary nesting, and (b) we relaxed the restriction

on the axis of a predicate path expression which allows only child axes (/).

8.6.2 Hit Rate
We first compare the view cache hit rate of our approach with that of previous approaches.
The hit rate expresses the percentage of randomly generated queries that can be answered
using one or multiple views materialized in the view cache. In ordér to compare with
previous approaphes where queries have output nodes we use the criterion for query
answerability using a set of views of [57] which requires that: (a) the output node of a view
in the view set is mapped to an ancestor-or-self node of the query output node through a
homomorphism (in which case we say that this query node is covered by the view), and (b)
each query node which is not covered by this view is covered by some other view in the
set.

We generated a workload with 8000 views. We used the following setting forvthve
- workload: maiimum view depth = 4, probability of descendant edges = 0.8, and probability
of branches = 1. We also generated 100 random queries with the following setting: maximum
query depth = 9, probability of descendant edges = 0.8, and probability of branches = 1.
In the experiments, we scaled the number of views in the view pool from 1000 to 8000.
To better iliustrate the capacities of the different approaches under comparison, we also
measured and compared the hit rate of these approaches when only one view can be used
for answering the given query.

Figure 8.5(a) shows the hit rate of different approaches increasing the number of
views in the view pool. We refer to our approach as MVIL (Materialized Views as Inverted

Lists) and to the approach in [57] as MV ST (Materialized Views as Subtrees). Our approach
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largely outperforms MVST both when one or multiple materialized views are used to

answer the query. For the case of multiple views it outperforms MVST by at least 40%

and achieves a hit rate of 97% for 7000 or more views in the view pool.

8.6.3 Space Performance

We also measured the space efficiency of our approach. We used the workload on the

XMark dataset described above. Recall that the materialization of a view is stored as

bitmaps, one per each view node. In addition, a set of inverted lists is stored, one inverted

list per each distinct node label in the views of the view pool. Each such inverted list is the

union of the materializations of all the view nodes with the same label in the view pool. We
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refer to this materialization scheme as bitmap matefialization scheme. As a comparison,
we also stored directly the materializations of the nodes of all the views and measured the
total space used. We refer to the later scheme as inverted lists materialization schemé.
Figure 8.5(b) reports on the view cache size under the two materialization schemes
as the number of materialized views increases from 1000 to 8000. The scale of the Y-axis is
logarithmic. The total size of the view cache under the bitmap scheme rises from 26.45MB
to 128.3MB as the number of views in the view pool increases from 1000 to 8000. In
comparison, the size of the cache under the inverted lists scheme increases faster than the
bitmap scheme from 305.8MB to 2563.63MB. Further, the invérted lists scheme consumes~
much more space, up to 20 times more than the bitmap scheme for most of the test cases.
Notice that the size of the bitmap materializations can be further reduced using state
of the art bitmap compression techniques [85] without compromising the efficiency of

bitwise logical operations. Such an implementation is beyond the scope of the dissertation.

8.6.4 Query Processing Time

We next show the speedup obtained in query evaluation time with our approach. We assume
that the views are materialized in the client side while the base XML data is stored‘ remotely
in the server side. Queries are evaluated at the server side without usiﬁg materialized views,
while they are evaluated at the client side using exclusively the view materializétidns. In
both cases the inverted lists evaluation model is adopted and the state of the art holistic
algorithm TwigStack [20] is employed. The communicationsr costs are ignored. If these
costs are taken into account the savings achieved by our approach are even larger. For
the comparison, we used the workload of the 8000 Ipaterializ'ed views described above.

Among the 8000 views, 6605 have non-empty answers. We also used four test queries on
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the XMark dataset, which are shown in Figure 8.8. These queries are randomly generated
and they can all be answered using exclusively the materialized views. Figure 8.6(a)
reports on the query processing time per query for two different configurations: NoViews
refers to evaluating queries on the ser{/er XML database without using materialized views.
WithViews refers to answering queries using exclusively materialized views stored in the
client view cache. Overhead denotes the computational overhead for using materialized
views. It consists of the time needed for finding the covering view nodes of the query
nodes and the time needed for loading in memory and bitwise ANDing the bitmaps of the

node materializations.

Q1 | /isite/people/person[.//interest]/name
Q2 {fsite/regions/namerica/item[.//quantity]
~|[/fmail/fto]mame
Q3 /lopen_auction[.//description[text//keyword]]
[initial][quantity}/bidder/date
o4 Isite[.//person[./lcreditcard/addressfcountry]
/zipcodel//africal/incategory

Figure 8.8 Queries on the XMark dataset

As we can see from Figure 8.6(a), WithViews achieves significant speedup compared
to NoViews: from 77% for Q)3 up to a facfor of 2.3 for ()4 (our experiments on a highly
recursive dataset show a speedup by a factor of 13 for some queries). For each query, the
fraction of Overhead in the total processing time using WithViews is very small, ranging
from 0.34% for Q3 to 1.73% for Q5.

Figure 8.6(b) shows the evaluation statistics of the four quéries of Figure 8.8 over the
XMark dataset. We observe that the query evaluation performance is largely detérmined by
the number of inverted list nodes read from disk durihg execution, since each disk access
triggers I/O whose cost dominates the computation costs of the query. As we can see in

Figure 8.6(b), a query can be computed using substantially smaller inverted lists with our
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approach (column #SUB) than with the NoView approach (column #INV). For instance,
the number of nodes accessed using materialized views is reduced by 78% for query @4 of
Figure 8.8. This reduction in size, reduces the 1/O cost, but it also reduces the CPU cost

- resulting in a substantial speedup.

8.6.5 Scalability

Finally, we measured the scalability of our approach as the number of the materialized
views in the view pool increases. The scalability is examined in terms of the computation
overhead whieh, as explained in Section 8.6.4, consists of two parts: (a) the time spent on
finding all the query covering nodes in the view pool—this operation is done by the algorithm
described in Section 5.2, and (b) the time spent on loading selected bitmaps from disk to
memory and on bitwise ANDin.g bitmaps.

Figure 8.7 reports on both components of the computation overhead, as well as the
number of homomorphisms from the view to the query when the number of materialized
views increases from 1000 to 8000 for two queries ()2 and (). Notjce that the bitmap
processing component is 0 for query @, when the view pool coniains 1000 views, since ()
has no hit on the view cache in this case. As expected, the number of homomorphisms for

“each query grows as the number of views increases. Both components of the overhead grow
very smoothly. For instance, for qﬁery ()4, the covering node compﬁtation component and
the bitmap processing component for 1000 views are 6ms and-103ms, respectively. They
grow to 32ms and 128ms for 8000 views (a ratio of 5.3 and 1.2 respectively). Note that
using a bitmap compression technique [85] can further reduce the size of bitmaps and

thereby the I/O cost for loading them in memory.



CHAPTER 9

CONCLUSION AND FUTURE WORK DIRECTIONS

In this chapter, the dissertation is concluded by summarizing the contributions and providing

a discussion of the future work.

9.1 Summary of Contributions

Current applications export and exchange XML data on the web. In this context, a major
challenge is the querying of the data when the structure is complex or is not fully known,
and the integrated querying of multiple data sources that export data with structural
differences and irregularities. The dissertation focuses on three aspects. One is the design
of efﬁcient non—main-fnemory evaluation methods for PTPQs. Another is the assignment ,
of semantics to PTPQs so that they return meaningful answers. The third aspect is on
answering PTPQs using materialized views.

A query language with wildcards that allows partial specification of a tree pattern
has been introduced. PTPQs can express a broad fragment of XPath. Because of their
expressive power and flexibility, they are useful for querying XML documente whose
structure is complex or not fully known to the user, and for integrating XML data sources
with different structures.

The problem of evaluating partial pafh queries with repeated labels under the indexed
streaming model has been addressed. Partial path queries are not a subclass of tree-pattefn
queries but they form a subclass of PTPQs. Partial path queries are represented as dags. We

have designed three algorithms for evaluating partial path queries on XML data. The first

201
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algorithm IndexPaths-R exploits a structural summary of data to generate an equivalent set
of path patterns of a partial path query and then uses a stack-based algorithm PathStack-R
for evaluating path queries with repeated labels. The second algorithm PartialMJ-R extracts
a spanning tree from the query ‘dag and uses the PathStack-R to find the matches of the
root-to-leaf paths in the tree. These matches are progressively merge-joined to compute the
answer. Finally, the third algorithm PartialPathStack-R exploits multiple pointers of stack
entries énd a topological ordering of the nodes to apply a stack-based holistic technique.
To the best of the author’s knowledge, PartialPathStack-R is the first holistic algorithm
that evaluates partial path queries with repeated labels. An analysis was provided to those
three algorithms and extensive experimental evaluations were conducted to compare their
performance. The results show that PartialPathStack-R has the best theorectic value and
has considerable practical performance advantages over the other two algorithms.

Based on the work on the partial path queries, an efficient holistic algorithm, called
PartialTreeStack, was designed for evaluating PTPQs in the indexed streaming model.
Algorithm PartialTreeStack takes into account the dag form of PTPQs and avoids
redundant processing of subdags having multiple “parents” It avoids checking whether
node matches satisfy the dag structural constraints when it can derive that they violate a
same-path constraint. PartialTreeStack finds solutions for the partial paths of the query
and merge-joins them to produce the query answer. When no parent-child relationships
are present in the query dag, it is guaranteed that every partial path solution produced will
participate iﬁ the final answer. Therefore, PartialTreeStack does not producerintermediate
results. A theoretical analysis of PartiallreeStack was provided to show its polynomial

time and space complexity. It was further shown that under the reasonable assumption that
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the size of queries is not significant compared to the size of data, PartiallreeStack is
asymptotically optimal for PTPQs without parent-child structural relationships.

In order to assess the pérformance of PartialTreeStack, two approaches were
designed for comparison that exploit existing state-of-the-art techniques for more restricted
classes of queries. The first one is algorithm T PQGen, which generates a set of TPQs
equivalent to the given PTPQ, and computes the answer of the PTPQ by faking the union
of their solutions. The second one is algorithm Partial PathJoin, which decomposes the
PTPQ into partial-path queries and computes the answer of the PTPQ by merge-joining
their solutions. All three algorithms were implemented and detailed experiments were
conducted to compare their performance. The experimental results show that
PartialTreeStack outperforms the other two algorithms. To the best of the author’s
knowledge, PartialTreeStack is the first algorithm in the indexed streaming model that
supports such a broad fragment of XPath,

An efficient streaming algorithm called PSX was developed for evaluating PTPQs in
the streaming model. To the best of the author’s knowledge, no previous algorithms exist
that can efficiently support the streaming evaluation of such a broad fragment of XPath.
PSX exploits a dag representation of PTPQs enhanced with same-path constraints and
wisely avoids processing redundant query matches. It has guaranteed polynomial time and
space complexity in the size of the data and query and matches the complexity of the best
known streaming algorithm on TPQs. The experimental results show that PSX can be
used in practice on a wide range of queries and on large datasets with deep recursion. They
also show that PSX largély outperforms, in terms of time and memory usage, the only

known streaming algorithm that can support TPQs with reverse axes.
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Another efficient streaming algorithm for PTPQs called Fager PS X was also designed.
FEager PSX applies an eager evaluatidn strategy to quickly determine when node matches
should be returned as solutions to the user. It proactively detects redundant query matches
to save both computational time and memory space. It has guaranteed polynomial time and
space complexity in the size of the data and query and is runtime competitive with the only
known streaming algorithm for PTPQs which is a lazy algorithm. The experimental results
show that Fager PSX can be used in practice on a wide range of queries and on large
datasets with deep recursion. They also show that, compared to the lazy algorithm PSX,
Eager PSX largely improves the query response time and has better space performance.

An original approach for assigning semantics to PTPQs has been suggested. In
contrast to previous approaches that operate locally on data, the proposed approach operates
globally on structural summaries of daté to extract tree patterns. An experimental evaluation
of the proposed approach‘and the previous approachs shows that the proposed approach has
a perfect recall both for XML documents with complete and incomplete data. It also shows
better precision compared to approaches with similar recall. The proposed approaéh can
be directly implemented on top of aﬁ XQuery engine.

The problem of answering XML queries using exclusively materialized views have
been addressed. Previous approaches to this problem are limited by the way query dnswers
(and view materializations thereof) are defined. To overcome these limitations, the problem
has been revised by placiﬁg it under the setting of the indexed streaming model which is
currently the prominent model for evaluating queries on large persistent XML data. In this
context, an original approach for materializing views has been suggested which stores the
inverted lists of only those XML tree nodes that occur in the answer to the view. To the best

of the author’s knowledge this is the first time the problem is addressed in this context and
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such a materialization scheme is adopted. Necessary and sufficient conditions have been -
provided for tree-pattern query answerability in terms of view to query homomorphisms. A
time and space efficient algorithm was designed for deciding query answerability and it was
shown how queries can be computed over view materializations using stack-based holistic
. algorithms. Optimization techniques were further developed which minimize the storage
space and avoid redundancy by materializing views as bitmaps, and that optimize the
evaluation of the queries over the views by applying bitwise operations on view
materializations. The experimental results showed that the proposed approach has largely
higher hit rates than previous approaches, significantly speeds up the evaluation of queries
without using views, and scales very smoothl)-/ in terms of storage space and computational

overhead.

9.2 Directions of Future Work

Future work includes exploiting materialized views for optimizing queries in centralized
environments. In this setting, the focus is on answering possibly partially a quéry using
views. An interesting problem is the devise of techniques for selecting views for
materialization in order to satisfy a number of optimization goals. It would also be interesting
to work on algotithms for the efficient updating of the view materializations when the XML
data is modified.

It is also worth further investigating the efficient computation of meaningful answers
of PTPQs. Based on the results of Chapter 7, the semantics of PTPQS is defined as a
set of TPQs to be evaluated on an XML tree. One research difection involves further

elaborating on methods for the efficient computation of these TPQs. Another research
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direction involves ranking these TPQs based on the meaningfulness of their answers and

designing techniques for the efficient computation of the k-most meaningful among them.
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