





ABSTRACT
OPTIMAL SYNTHESIS OF PLANAR ADJUSTABLE MECHANISMS
by

Chong Peng
Adjustable mechanisms provide degrees of flexibility while retaining desirable features
of one degree of freedom close-loop mechanisms, such as simplicity, stability, and high
speed capabilities. By adjusting linkage parameters, additional phases of motions can be
achieved using the same hardware. However, an adjustment to the mechanism adds only
one or two additional design positions and divides desired positions into “phases”, each
of which contains only a few positions uéually insufficient for industrial applications.

In order to extend the design position limitation of adjustable mechanisms, an
optimal synthesis method based on link lve"n'gtlh structural error is developed and applied to
kinematic synthesis of adjustable planar mechanisms in this research. Designed with this
method, édjustable mechanisms can achieve phases of many design positions with a
minimized error. The conveniently-calculated link length structural error effectively
reflects the overall difference between generated and desired motions without directly
comparing them; and its compact fourth-order polynomial form facilitates the gradient-
based optimization process.

Link length structural error based optimal synthesis methods are developed for
adjustable planar four-bar mechanisms for three typical synthesis tasks. For multi-phase
approximate motion generation, standard optimization model is established based on
adjustable optimal dyads considering all tybes of adjustments. For multi-phase

-continuous path generation, a proper driving dyad is firstly found by an optimization

procedure using the full rotation requirement. The driven dyad is then found using the



optimization technique for motion generation after calculating all coupler angles. For
multi-phase function generation, the coupler length is chosen to carrsl the structural error
and adjustments to the coupler and the side-link lengths are considered.

Numerical synthesis examples have demonstrated that the developed method is
effective and efficient for multi-phase motion, path, and function generation of planar

four-bar linkages with a large number of specified positions in each phase. -
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CHAPTER 1

INTRODUCTION

1.1 Kinematic Synthesis

Kinematic Synthesis is the process of determining the geometry of a mechanism to produce
a desired motion. The areas of kinematic synthesis may be grouped into two categories [1].
Type synthesis determines the type of mechanism, number of links, degrees of freedom,
conﬁguraﬁon of linkage, etc. On the other hand, dimensional synthesis seeks to determine
the significant dimensions and the starting position of a mechanism of preconceived type
for a specified task and prescribed performance. This research deals with dimensional
synthesis of planar mechanisms.

There are three customary tasks for kinematic synthesis: motion, path, and function
generation. Motion generation in mechanism synthesis requires a rigid body to be guided
through a series of prescribed positions; therefore it is also called rigid body guidance. In
path generation problems, a single point on the coupler is to follow a nominated curve.
There are two sub-types of path generation. One is to specify only a small number of
precision points on the path, and the trajectory between any two points is not required
strictly, thus called point-to-point path generation. The other ié to specify the whole path or
many points on the path, while not requires them to be passed through exactly, and i§ called
continuous path generation. Function generation is to coordinate the angles of the two
cranks. The name “function generation’; originated in the days in which mechanical analog

computers were used to perform complex mathematical calculations.



1.2 Adjustable Mechanisms

1.2.1 Introduction

Conventional linkage mechanisms provide high speed capability at a low cost, but fail to
provide the flexibility required in many industrial applications. On the other hand, for most
manufacturing automation applications, expensive multi-axis robots are employed for
simple repetitive operations that require only limited flexibility. In order to provide a
middle ground between conventional mechanism-based automation and overly flexible
robots, adjustable mechanisms were introduced.

Adjustable méchanisms add more functions to the same mechanism hardware by
simply adjusting some of the linkage parameters. They offer more flexibility required in
industrial applications while retaining desirable features of one degree of freedom
close-loop mechanisms, such as simplicity, stability, and high speed, high load, and high
precision capabilities, thus increasingly addressed interests of mechanism designers since
1960’s.

The capability of generéting multi-phase motions is the most desirable feature of
adjustable mechanisms because industrial applications usually prefer the same linkage
hardware to fulfill different tasks. For example, a manipulator may need to switch its
destination between two workbenches, as shown in Figure 1.1. Other than a three
degree-of-freedom “robot”, which needs tremendous efforts on planning paths of its
manipulatof and managing its compiicated actuators and sensors, a simple one
degree-of-freedom adjustable motion generator can fulfill the task. In this case, a simple
adjustmént to the driven side-link length makes the linkage capable of switching it

destination between the two workbenches as desired.






Table 1.1 Maximum Number of Design Positions of a Four-bar Linkage

Task No. of scalar - No. of scalar .- Maximum
variables equations ofn
Motion generation (dyad form) n+3" 2(n-1) 5
Path generation (loop equations) n+7 2(n-1) 9
Function generation (loop equations) n+5 2(n-1) 7'

¥ n is the number of design positions. ' Two of these variables are associated with the scaling and rotation
of the linkage. If the scaled or rotated linkage is considered the same as the original one, the two variables are
not free choices; the maximum of n is then 5.

There are three basic types of adjustments: the adjustment to the fixed pivot,
moving pivot, or the link length. Combinations of these basic adjustments are also feasible.

As a compromise between traditional one-DOF linkages and modern multi-DOF
robots, adjustable mechanisms add limited degrees of flexibility and cost more for the
adjustments compared to the non-adjustable linkages, but cost less and achieve less
flexibility than multi-axis robots. Thus to use or not to use adjustable mechanisms depends
on the nature of the task: if the level of flexibility required by the task can not be provided
by conventional non-adjustable mechanisms, one should first check adjustable
mechanisms; and robots are the last ones to consider. Typical tasks suitable for adjustable
mechanisms are those that need repetitive operation but sometimes also need to switch
between several different predetermined modes. Arbitrary changes of motions can not be

achieved by adjustable mechanisms and multi-DOF systems have to be employed.

1.2.2 Existing Synthesis Methods
a. Multi-phase motion generation
Various synthesis techniques have been developed for adjustable mechanisms

generating multiple motions.



Early effort to synthesize adjustable mechanisms was made by Bonnell [2] §vith a
graphical approach. Though not as accurate and general as numerical methods, graphical
synthesis techniques played an importanf role in mechanism synthesis and are still used
today, usually for a quick check of initial guesses for optimization processes.

As computers greatly enhanced mechanism designers’ capability of solving
complicated nonlinear equation systems, analytical complex number methods prevailed.
These methods use complex numbers to model mechanism links and apply vector
algorithms to linkage movements to form loop equations, which are solved for linkage
parameters. |

For motion generation, loop equations usually take a dyad form; thus synthesis
methods for adjustable motion gen‘eration mechanisms usually utilize a motion generating
dyad model with adjustment(s) and combine two or more adjustable dyads to form a
linkage, and two or more adjuétfnents are génerally required.

Synthesis methods based on adjustable dyads were reported by many researchers.
Chuenchom and Kota [7, 8] solved vector equations of an adjustable dyad for two-phase
five-position problem and found equations for the circle point curves and the center point
curves with respect to varying ratio of side-link length adjustment. Two adjustable dyads
were assembled td form an adjustable linkage. The synthesis procedure also worked with
adjustments of coupler link length and position of fixed pivot.

Wilhelm [6] examined three types of adjustments: the side-link fixed pivot
adjustment, the side-link length adjustment, and the combined adjustment of the two, and
developed techniques for two-phase motion generation problems of four-bar linkages with

two adjustable side-links.






(X, =P +(4,-0)' =R*,i=1,2,3,4,5,6 (1.1)
where R is the length of link SC and

X, =a,+ p,cosf,—q,sinb,Y, =b + psinf +q,cos0,;i=1,2,3

I 1

X, =a +p,cos0,—q,sinf,Y, =b + p,sinb, +q,cos6,;i =4,5,6 (1.2)
(a;, b)) and 6; are the desired ri gid body positions of the coupler defined by the coordinate of
point 4 and the couple angle with respect to the ground frame XOY. The solution was first
found at poles graphically and then extended tc; the whole design space using a numerical
method. Three phase problems were also solved using this method.

Hong and Erdman [11] used a set of quadratic scalar equations similar to Wang and
Sodhi’s and introduced a synthesis method for planar and spherical four-bar linkages with
side-link lengths adjustable. Their model directly generates a third-degree polynomial
circle point curve for two-phase five position motion synthesis. |

Russell and Sodhi [12] developed a synthesis method for planér adjustable geared
five-bar mechanisms for multi-phase motion generation using constant length requirement
of the crank links. The input crank was geared with the driven side-link and both moving
pivots were made adjustable. The synthesis method is similar to the one based on
adjustable dyad.

Russell and Sodhi also reported work on adjustable spatial motion-generation
mechanism synthesis [13, 14]. They adjusted the moving pivot positions to generate

two-phase and three-phase motions. Their method was based on the modified R-R and S-S



constraint equations. Using this method, spatial RRSS mechanisms can be synthesized to
achieve phases of prescribed precise rigid body positions and rigid body positions with
tolerances. They also presented a method for synthesizing adjustable RSSR-SS
mechanisms to achieve phases of prescribed positions, velocities and accelerations [15].
b. Multi-phase Path Generation

Path generation is motion generation without coupler angle requirements. Complex
number synthesis methods for motion generation can also be used for path generation
except coupler angles are not specified but design variables. The details of these methods
are therefore not provided. A brief summary of reported work on multi-phase path
generation is given below.

Limited work was done on adjustable mechanisms for multiple path generation.
Early synthesis methods for adjustable ‘mechanisms were primarily graphical. Tao and
Krishnamoorthy [16, 17] graphically synthesized a planar four-bar linkage to generate
multiple coupler curves with one or two cusps or symmetrical curves with a double point.

McGovern and Sandor [19] developed complex number method to synthesize
mechanisms with ra fixed pivot position adjustable for multiple path generations.
Shimojima et al. [21] also adjusted a fixed pivot position to generate a straight line and an
L-shaped path. These methods are similar to the complex number method for multi-phase
motion generation except there are two loop equations and the coupler angles are
unknowns.

Multiple paths with special features were also synthesized. Huston and Kramer [20]
applied complex number synthesis méthod to the Bobillier Theorem mechanisms and

synthesized adjustable four-bar path generating mechanisms for multiple circular arcs



tangential at a common point. Chang [23] synthesized adjustable four-bar mechanisms
generating multiple arcs with specified tangential velocities.

Russell and Sodhi [22] synthesized a special class of slider-crank linkages based on
a basic adjustable driven side-link length four-bar linkage. The linkage’s slider guide was
two concentric arcs tangentially connected by a transition curve. This slider-crank linkage
was able to generate multi-phase motions, paths, or functions without a physical
adjustment to the linkage.

All above methods generate multi-phase point-to-point paths defined by limited
number of precision points. Only Zhou and Ting [39] reported work on multi-phase
continuous path generation. They adjusted the slider guider positions of a slider-crank
linkage and employed an optimization method to find the optimum linkage. The
synthesized linkage can generaté multiple continuous paths tangential at a common point.
¢. Multi-phase Function Generation

Multi-phase function generation problems can also be solved by complex number
method. By eliminating coupler angles in the loop equations, Freudenstein’s equations [1]
are obtained, which is mostly used for function generation. Adjustments for function
generation linkages are preferred to be made to the link lengths since the fixed pivots are
input and output axes that are usually not édjﬁsted and adjusting the moving pivots is
equivalent to adjusting the coupler link length.

In the area of adjustable linkages for function generation, published work is also
limited. Mruthyunjaya and Raghavan [26] developed graphical methods for derivative
synthesis of the adjustable four-bar mechanism for function generation. The methods

permit synthesis of the adjustable four-bar linkage to satisfy up to third-order precision



10

conditions for generation of two specified functions. Ahmad and Waldron [24] presented
synthesis techniques for planar four bar function generators having adjustable link lengths.
The inversion method was used to design the function generators.

Funabashi et al. [5] presented general methodé to design planar, spherical and .
spatial crank-length adjusting mechanisms which can change input—output relationships
and also stop output motions. Structures of the crank-length adjusting mechanisms were
obtained by a number synthesis, after analyzing the relations between the crank length and
the displacement of a moving pair on the crank in the case where the pair moves along a
straight line or an arc fixed on a rotating plane of the crank shaft. Some applications of the
mechanisms to adjustable path and function generators were shown.

McGovern and Sandor [18] developed methods to synthesize adjustable
mechanisms for function generation using complex variables with finitely separated
precision points and higher order synthesis involving prescribed velocities, accelerations,
and higher accelerations. The linkages considered are a four-bar, a geared five-bar, and a
geared six-bar mechanism.

Naik and Amarnath [25] presented synthesis of adjustable four-bar function
generators through five-bar loop closure equations operating in two phases to produce two
specified functions. They adjusted the fixed pivot position of a four-bar mechanism by
rotating one link of the five-bar mechanism about its ground pivot and holding it in a fixed
position. A maximum of three precision points for each function were selected in the

illustrative example.
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All above methods intended to design adjustable mechanisms that generate
prescribed positions exactly. This appro'ach, however, is limited by its maximum number of
specified positions. Mechanisms with one adjustment synthesized by these methods can
achieve bnly one or two additional positions than their non-adjustable counterparts. To
make the situation worse, these positions are divided into phases; each phase contains even
less design positions. As a matter of fact, most of the references cited above solved
problems with only two to three positions in each phase, which is usually not enough for
industrial application.

On the other hand, (positioning error exists almost everywhere in real mechanism
practices. Manufacturing, assembly, joint clearance, normal wear, and deformation under
static and dynamic loads all add error to the mechanism. It is impractical to eliminate the
error and industrial applications can be satisfied when the error is limited in a range.
Therefore, requiring the mechanism to pass through all design positions exactly is artificial

and unnecessary. Without this requirement, the optimal synthesis method emerges.

1.3 Optimal Synthesis
There are generally two kinds of mechanism synthesis approaches. Exact (or precision
point) synthesis requires the designed mechanism to pass through all desired positions
exactly. Since no error is allowed between the desired and generated motions, the
maximum number of design positions is limited. On the other hand, approximate (or
optimal, sometimes also called optimum) synthesis allows some error, called Structural
Error, between the generated and the desired motions — the designed mechanism

approaches the desired motion approximately, thus there is no limitation on the number of
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design positions. Structural Error is conventionally formulated as the sum of the squared
distance between the desired and the generated motions, and then mathematically
minimized to find the mechanism that gives the best approximation of the desired motion.

An increasing number of research works have been published in the area of optimal
synthesis of mechanisms since 1960°s when mathematical optimization tools were applied
to kinematic synthesis. Today, after decades of development, this powerful technique has

become a highly favored tool in mechanism design.

1.3.1 Procedure of Optimal Synthesis
The general process of optimal synthesis consists of three steps:

1. Modeling: Selecting independent design variables, formulating the structural error
(E, the objective function to be minimized), and find all constraints.

2. Translating to standard form of optimization problem:
Minimize: E=F(x),
Subjectto:  g(x)>0; h(x)=0.
where x=(x1, x2, X3, ..., xm)T is the design variable vector, F' (x) is the objective
Function, and g(x) and k(x) are constraints.

3. Optimization: Solve the problem for x and Ey;, using mathematic algorithms for the
“best” mechanism that approximates the desired motion with the minimum error.
The available optimization algorithms include traditional gradient-based methods
such Linear Search, Quasi-Newton Method, Gauss-Newton Method, etc. and
modern probability-based or evolutionary methods such as Simulated Annealing,
Genetic Algorithm, etc.
1.3.2 Structural Error
The conventional structural error evaluates the error between generated and desired
motions directly. For path generation as an example, as shown in Figure 1.3, the distance

between the desired and the generated paths is calculated at selected points and is then

squared and added up:
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n

E=Y[(x=%g) + (g = yg)'] (1.3)

J=

where 7 is the number of design points. For optimal path generation, the desired path are

usually given by a set of path points (xg,yq).

(Xg1,Yg1)
‘ky ( ) (XgZyng) & yg - o
Xe3, S ;
23.)Ve3 \ S (XanYa1)
(Xg4Yg4) o .
e (Xa3.Ya3)
(xg5:yg5) S ',."B(xd‘f:yd‘l)
\\e.'.‘
Oxzs,
Grasved . ; (Xds,Yas)
"9 (X6 YVas)
XgnVg7) G- __
= @ (Xa7Yd7) X

(0]

v

Figure 1.3 The desired and generated paths.

The generated path point (xg,)) is calculated at the corresponding input crank
angle, which are also design variables. Take the four-bar linkage in Figure 1.4 as an
example, the design variables are x=(x0, y0, r1, r2, r3, r4, rex, ¥ey, Oy, 03),j=1, 2, ...n, the

coordinates of the coupler point C in the local frame is given by

Cy, =r,c086,; +r, cosb,, —r, sinb,,

Cy, =nsing,, +r,sinf, —r, cosb,, (1.4)
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where 03 can be found by solving

r,sing, +rsind, =r,sing,

7, €086, +r,c086;, =1 +r,cosl,, (1.5)

Y  |wesmsess Desired Path
Generated Path

Yo

(o) X0 2

Figure 1.4 Optimal path generation of a four-bar linkage.

0,4 is eliminated so that 03 is solved as a function of 5. When mapped back to the global

coordinate system,

Xy |_ Cy; _ cos, —sind, || Cy, | %o (16)
Ve Cy sing, cos@, || Cy, Yo C

Substitute Eq. (1.6) into Eq. (1.3), the resulted structural error is a highly nonlinear
function with high order polynomials and trigonometric functions of a large number (ﬁ+9)

of unknowns. More unknowns result in larger search space; high nonlinearity structural



15

error adds more difficulty to the optimization process because numerical method has to be

used to approximate its gradient vector and Hessian matrix.

1.3.3 Optimal Synthesis Methods
Research on optimal synthesis falls into two aspects: (1) finding new approaches of
modeling the problem to construct different forms of structural error on various design
variables, and (2) applying different and newly-developed optimization methods to solve
the modeled problem,
a. Alternative Structural Errors

Several researchers have made effort to formulate alternative forms of structural
error. One eariy attempt was by Angeles et al. [27] who implemented another optimization
to find the input angle that provides the least distance between the generated coupler curve
and each design point. This method avoided using input crank angles as désign variables
and thus uses fewer variables, in the cost of additional computation of the optimized input
angle. Watanabe [29] used the maximum of absolute values of cur{/ature differences
between the two paths, expressed as an equation of the arc length, as the objective function.
Comparison points were selected on thé two paths with equal arc length interval. |

Vallejo [37] first introduced a new idea of forming indirect structural error based on
deformation of the linkage. In his model, the whole linkage was considered “deformable”
or “flexible”: the linkage was able to deform (links being elongated or shortened) to allow
its coupler point to reach a point that it cannot reach at the linkage’s original dimensions, as
shown in Figure 1.5. Deformation energy was then stored in the “elastic” links. An
optimization process found the optimal linkage parameters that minimize the sum of

deformation energies at all design points, as in Eq. (1.7). This is a novel and reasonable
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Ll + LS = Rmax

L~ L| =Ry, (1.9)
where Ryax and Ryin can be found from the given path and the yet unknown ground joint
A(xa, ya), hence L; and Ls are no longer independent. The independent design variables are

X= (xp, Ya, Lo, L3, Ly, ,B)T. The value of angle 8, and 65 can be then obtained as

6, =tan_l(yM—yMJiCOS—I[L%HxM_xA)2+(yM =ARSE - (1.10)
X =Xy 2L1\/(xM—xA)2+(yM_yA)2
where 6, =tan"‘[yM‘yf"“‘“9‘] (1.11)
Xy — X, L cosf

The *sign in Eq. (1.16) éorresponds to the two rotation direction of the crank 4B.

The angle 6, is then
0,=0,-p - (1.12)
Coordinates of joint C can be then obtained as

X. =x,+1,cos6 +L,cos0,
Yo=Yy, +Lsing +L,sin6, (1.13)
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Ullah and Kota [45] used Fourier Descriptors td evaluate only the shape of the
desired and generated paths to avoid optimizing the shape, size, and orientation of the
linkage at the same time. The synthesized linkage was then scaled and rotated to match the
desired path. Kim and Sodhi [30] made the coupler point pass through five specified points
on the path exactly and optimized the fixed pivot position of the driving crank to minimize
the overall error at other points. The disadvantage of this method is the error of driven side
link length was used in a special form that needs to be solved from a system of equations.
b. Optimization Methods

Most work on optimal mechanism design was based on traditional gradient-based
optimization algorithms. To name a couple, Mariappan [31] and Sancibrian [32] developed
exact-gradient based methods for optimal path synthesis. The former presented a general
form of exact gradient functions of a conventional structural error for optimal path
generation. The later used a specific formulation to obtain the exact elements of the
gradients, and sensitivity parameters for all the design variables were determined giving a
first order relationship between the parameters of interest. However, with this formulation
the explicit expression of the structural error itself was difficult to obtain, thus a first order
Taylor series approximation was used. This information was used in the optimization
algorithm to enhance the convergence rate.

Least square method was developed to solve linear or nonlinear systems
approximately when an exact solution either does not exist or is too difficult to find. When
applied to mechanism synthesis, the residuals of design equations are squared and added
up in a least square sense and then the gradient equations of the residual are solved to find

the minimum of this sum as well as values of design variables that give this minimum. This



21

method, however, is not able to handle constraints. Angeles et al applied unconstrained
nonlinear least square method to planar motion [42] and path [43] generation linkages.
Russell and Sodhi [27] used least square method for motion generation of adjustable five
bar spherical mechanisms. Gradient equations were solved numerically to find the possible
minima.

Applications of new optimization algorithms to mechanism synthesis have also
been carried out. Modern optimization methods such as Ant-gradient Search [34], Fuzzy
Logic [35], Tabu-Gradient Search [41] were recently introduced to optimal kinematic
synthesis problems to find the global minimum. Evolutionary genetic algorithm (GA) [33]-
is used to find the global minimum of the optimization problem without deep
understanding and adjustment of the problem itself. Self-learning Neural Network [36] is
also a powerful tool in optimal mechanism design. Hoeltzel and Chieng [28] developed a
pattern matching method based on the neutral network model of pattern of coupler curves

according to moment variants.

1.4 Research Objectives
All of the reported synthesis methods for adjustable mechanisms are focused on achieving
additional phases of precision positions or special features from the adjustment except in
[39]. For exact synthesis, however, the advantage of adjustments is limited. One
adjustment to the linkage adds only one or two scalar design variables, which in return
provides one or two additional design positions. Furthermore, the adjustment divides those
design positions into two or more phéses, each of which contains even fewer design

positions, making adjustable mechanisms less desirable.
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To extend the capability of adjustable mechanisms, optimization methods need to
be employed. With optimal or approximate synthesis, each phase of adjustable
mechanisms can achieve considerably more design positions with an acceptable error.
Although optimal synthesis is a well-explored field in which many synthesis methods have
been developed, there are few applications of optimal synthesis methods to adjustable
mechanisms. The only work on optimal synthesis of adjustable mechanisms was reported
by Zhou and Ting [39], whose method is only capable of generating a series of tangential
curves.

The objective of this research is to develop a generalized optimal synthesis method
for adjustable planar linkages for multi-phase motion, péth, and function generation for the
first time. Since the existing optimal synthesis methods will result in a complicated
structural error function of too many design variables when applied to adjustable
mechanisms with many design positions in each phase, new optimal synthesis method
suitable to adjustable mechanisms needs to be developed. The deformation energy method
developed by Yellejo et al needs to be simplified to provide a compact and
easy-to-calculate structural error which consists of less design variables and can be applied
to different synthesis tasks. The next chapter will present an optimal synthesis method
based on link length structural error. When applied to multi-phase motion, path, and
function generation, minor modifications need to be made according to the requirement of
the problems. The following chapters examine the application of this method to optimal
mulfi-phase motion, path, and function generation and present formulated synthesis

models and equations case by case.



CHAPTER 2
OPTIMAL SYNTHESIS BASED ON

- LINK LENGTH STRUCTURAL ERROR

2.1 Link Length Structural Error
2.1.1 Formulation
As discussed in Chapter 1, the conventional structural error is not suitable for optimal
adjustable mechanism design for its high nonlinearity and unavailable gradient vector and
Hessian matrix. The several alternative forms of structural error are either too difficult to
construct or lack of generality.

To construct a more simplified and generalized form of structural error, we start
from the motion generation problem. Given desired coupler points P; and coupler angles 0s;,
the objective of motion generation is to find two or more dyads that guides the coupler
fhrough the given rigid body positions.

Motion synthesis is to find a circle point (moving pivot) on the moving plane
(coupler) which keeps a constant distance to a center point (fixed pivot) on the fixed plane
(ground link) at all prescribed rigid body positions of the coupler. For more than five
prescribed positions for a four-bar linkage, such points may not exist. The distance
between any given moving point C and some fixed point D fluctuates around a constant
value while the coupler lihk moves through the prescribed positions. If the link length of
CD is considered flexible, this fluctuation can be called link length structural error. Taking
this moving point as the circle point and the corresponding fixed point as the center point,

the dyad will be able to move its coupler through the given positions with some error. The
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smaller the link length structural error, the smaller is the error between the generated and
desired motions. When this structural error is zero, the resulted dyad would guide the rigid
body through all the desired positions exactly. Therefore this structural error effectively
represents the overall error of the generated motion. We minimize the link length structural
error to find the best circle and center points.

Link length structural error can be considered as a simplified form of Vallejo’s
deformation energy error function [37]. By using only one link length as the flexible
parameter of the whole linkage, optimization is not needed to calculate the deformation
energy and the error function is much easier to construct and has a compact fourth order
" polynomial form, which is easy to minimize since its explicit form of gradient vector and

Hessian matrix are available.

(0] X

Figure 2.1 The link length structural error.
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~ As shown in Figure 2.1, coupler link BPC moves through positions given by the
desired path points P(x;, y;) and coupler angles 5; with respect to the global coordinate
system XOY. The local coordinate system JX;P;Y; is located at tracing point P with its x axis

in the direction of BP and moves with the moving plane.
The global coordinates (in frame XOY) of the moving pivot C at their first design

positions, €, and the coordinates of the fixed pivot D, are taken as design variables,
C =% Ye)' s D=(xp,0)' 2.1)
Coordinates of joint C at other design positions C; can be found by
€= (e Ye) s (s Ve D =T (Xops Yers 1) (2.2)

where /=2, 3, 4, ... n, T\, is the coordinate transformation matrix from frame X,P7Y, to

frame XiP;Y,,

cos(b;;, —0;,) —sin(f;; —6;)) —cos(bs, —05,)x, +sin(b,, —05,)y, +x,
T, =|sin(6;, —6;)) cos(6;, ~65) —sin(d; —by,)x, —cos(dy; - O+, (2.3)
0 0 1

The side-link length structural error can be given as

ER :ini[(ci—D)T(Ci_D)_(Cl_D)T(CI_D)]Z (2.4)



26

where 7, is a weighting coefficient for each design points. For points that require more
accuracy, a large #; is given.

Since two dyads are needed to form a four-bar linkage, there are two approaches
available to synthesis the whole linkage. One is to find several local minimums of the
structural error in Eq. (2.4). An easy way to do this is to repeatedly pick different points
(meshing the space into grids and sequentially picking the nodes could be a simple
approach) within the design space as the initial guess for the unknown C; or D and do the
local minimum search. Most likely these optimization processes with different initial guess
will converge at several optimized dyads. Then twb of these optimal dyads can be picked
as two sides of the synthesized four-bar linkage, according to }the‘ design constraints such as
the Grashof’s condition, link length and space restrictions, transmission angle requirement,
etc. This method, however, is computation demanding.

The other approach is to add the second dyad to the structural error. For the other

dyad ABP, the same structural error can be given as

n

Ey'= ) il(B ~A) (B~ A)~(B - A (B~ A (2.5)

i=2

The overall link length structural error is then

Ey =Y (u[(B,— 4 (B - A)~ (B, - A (B, - A

i=2

+7,[(C, = D) (C, = D)= (C, =~ D) (C, - D)]}} (2.6)
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The structural error Er formulated is a fourth order polynomial of only four scalar
unknowns (x¢1, yél, xp, yp) for single-dyad optimization or eight unknowns (xc1, yci1, Xp, ¥p,
X51, Y81, X4, V4) for both dyads, no matter how many design positions are prescribed,
compared to the conventional structural error that would have n+3 unknowns. Also, no
crank angles are included in the structural error, which makes the calculation of gradient
simpler.

Equation (2.6) is developed for optimal motion generation. For path generation,
simply let the coupler angles in Eq. (2.4) or Eq. (2.6) be unknowns; the expression of the
structural error is the same. The resulted structural error function is still much simpler than

the conventional one.

2.1.2 Validation
In order to prove that when the indirect link length structural error is small, the
conventional structural error formulated by directly comparing the two motions is also
small, one needs to prove that the link length structural error is an infinitesimal of the same
or lower order than the conventional structural error, which means the link length structural
error approaches zero slower than the conventional one so that when it is minimized to a
small value, the convention structural error is also small.

For a four-bar linkage synthesized by minimizing the link length structural error in
Eq. (2.6) as drawn in Figure 2.2, for the driven dyad, suppose BCP is the desired couplef
position and because of the length error ‘AR of the link CD (AR is considered an
infinitesimal compared with the link lengths of the linkage), the coupler is moved to its
actual position BC’P’. Here the joint B is not movable, assuming the driving dyad has no

Crror.
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Therefore, the change of cosine of the coupler angle is

2r,AR + AR’

nF,

cos ZC'BD —cos £LCBD = — =0(AR/r,) (2.9)

As shown in Eq. (2.11), it can be proven that Afs is an infinitesimal of the same order

ascos £ZC'BD —cos ZCBD , so AGs is a same order infinitesimal as AR/7y, so is PP’:

AO, =O(AR/r,), PP'~ BP-Af, = AR (2.10)

. c0sZC'BD~cos ZCBD .. cos(f—Af;)—cosd
lim = lim
A8;—50 AD, Ag-0 Ab;
- lim cosfcosAf; —sinfsin AQ; —cos lim S8 O(cos A —1)—sin Osin Ab,
" 8630 A#, Tao A0,
1
_ . cos 0= (A6,)*] :

— lim cosf(cosAG; —1) li S0 GsinAb; _ lim 2 T A sin 6,

A5 —>0 Ags AB;—0 A95 AG;—>0 A@S Afs—0 AQS
=-sind (2.11)

Here the current coupler angle 4 is a known constant usually constrained within a range
such as [45°, 135°], so -1<—sinf<0, which means A#s is an infinitesimal of the same order
ascos LC'BD - cos: £LCBD.

This indicates that with a transmission angle constraint, or in other words, when
link BC and CD are not collinear, the link length structural error is as effective as the
conventional one. For the driving dyad which has no transmission angle requirement

applied, difficulties appear when the link AB and BC are collinear, as shown in Figure 2.3.
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2.2 Optimization Model

With eight scalar uﬁknowns (xc1» Ycis XD, ¥YDs XB1, YB1, X4, y4) for a four-bar motion
generation problem, The optimal synthesis problem becomes:

Minimize: ER in (2.6)

Subject to the following constraints:
a. Grashofs Criterion

Grashof’s criterion is applied when a Grashof’s linkage is preferred. Suppose link
AB is to be the input crank, then it is preferred to be the shortest link of this linkage because
a crank-rocker is usually desired. The longest link is not determined yet, thus a general

form of Grashof’s condition can be given as AB+r, <r, +r,.
b. Transmission Angle

Given coordinates of pivots B, C and D, the transmission angle x («<BCD) can be

easily calculated. The transmission angle is limited to ., <<y, -

c. Link Lengths

At least one positive length constraint has to be imposed to link 4D or BC,
otherwise the algorithm will converge to a solution whose dyad 4BP and CDP are identical.
Other constraints can be applied by restricting jqint coordinates in suitable ranges.
d. Order Constraint

Order requirement is associated with the input crank angle at all design positions.

The input angle can be obtained by

6, =tan™ (M—Qj , /2<0,<n/2 @11)
Xpi —Xc
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For 8y, out of this range, = should be added. Depending on the crank’s rotating direction,

the order constraints can be applied as

6, —6n, <0 or 6,-6,,,>0,i=1,2,...,n, (2.12)

2.3 Optimization Algorithm
Due to the small number of design variables, simple forms of constraints, and polynomial
form of structural error, conventional gradient-based optimization methods can effectively
solve this optimization problem. However, if the global minimum is required, other
optimization algorithms need to be used.

Though various gradient-based algorithms can- be employed to solve the
standardized optimization problem, Sequential Quadratic Programming (SQP) is chosen
for its robustness and efficiency. All numerical examples in this research are solved with
Matlab R2006a’s Optimization Toolbox, which has SQP implemehted in.

As a generalized Newton's method, Sequential Quadratic Programming attempts to
find the search direction from the current point by minimizing a quadratic sub-problem and
then do a one-dimensional search for the next point. This method, however, finds the local
minimum and its solution depends on the initial guess.

When equality and inequality constraints are both considered, the formulation of a
nonlinear prdgramming problem can be given by:

Minimize: f(x)

Subject to: h(x)=0 and g(x)<0
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The nonlinear programming formulation can be converted into a Lagrangian

augment function form:

L=fx)+ATh(x)+¢ g () @13)

where A and { are the Lagrangian multiplier vectors for the equality constraints & and the
inequality constraints g, respectively. The correspondent Quadratic Programmiing problem

is expressed as:

Minimize:
0()=Vf"s +%ST (V’L)s (2.14)
Subject to:
Vg's+g<0
VA's+h=0 (2.20)

Through solving the above quadratic programming problem, the search direction s
is determined. Then the problem becomes a one-dimensional search problem, which can be

solved using exterior penalty function method, as:
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Minimize
m p
D= f(x)+) 4 max(0, g, (x))+ Y &, |4 ()| (2.15)
Jj=1 k=1
where x*"' = x? + as, s is obtained by QP process above.

The diagram of SQP can be given as in Figure 2.4. During the optimization process,

the Hessian matrix H =V’L needs to be updated at each iteration. The most popular and
useful method to generate an approximate Hessian matrix is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method (as Matlab uses), by which a positive definite

Quasi-Newton approximation of the Hessian of the Lagrangian function, H, is given by

¢ (9" (H) (as") as’H*
@) as? (as’) Has”

H™ =H+ (2.16)

where ¢? = @7 - @7,

Numerical approximation of the Hessian matrix obviously adds computing time
and decrease the convergence rate of SQP. Using the optimization model formulated in
Section 2.3, however, the expression of an explicit form of the Hessian matrix of the goal
function and constraints can be given to avoid numerical approximation, which is one of

the major advantages of the proposed optimal synthesis method.






36

2.4.1 Optimal Motion Generation
21 rfgid body positions along a “half-hearted” curve are to be passed through by the
coupler of a four-bar linkage with minimum error. The desired positions are listed in Table
2.1. The coordinates of linkage joints are restricted within the range [-20, 20].

Equation (2.4) is used for the structural error and points within the design space are
used repeatedly as the initial guess of the joint C and D with an increment of 5.0 in the x
and y coordinates. The totally 9*=6561 optimizations starting from different initial guess
are found to converge at several local minimums, or local optimal dyads, as the first five of
which are listed in Table 2.2. Among these five dyads, the number one and three are chosen
to form a crank-rocker, according to Grashof’s criteria. The synthesis four-bar linkage joint
coordinates are listed in Table 2.3 anci the linkage with the desired and generated positions
was shown in Figure 2.5. The generated rigid body positions are approximately chosen
from the continuous motion generated by the resulted linkage. The computing time for a
local search is less than 1 second on a Pentium 4 PC, and the repeated search lasted about

11 minutes.



Table 2.1 Desired and Generated Positions
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Desired Motion Generated Motion
Couple Point Coupler'Angle Coupler Point  Coupler Angle
0,0 0 0.0,0.0 0.0
0.9356,0.4064 0 - 0.9156,0.3364 -3.1
1.5983,0.8220 0 1.5583,0.7320 4.0
2.1704,1.3002 0 2.1204,1.2102 4.5
2.6621,1.7986 0 2.5821,1.7186 -2.8
2.9957,2.2692 0 2.9457,2.2092 0.1
3.2614,2.7276 4 3.2214,2.6476 4.3
3.4941,3.1408 8 3.4641,3.1108 1.7
3.6635,3.5485 15 3.6335,3.5385 18.4
3.7798,3.9623 25 3.7398,3.9823 27.5
3.7992,4.4734 35 3.7592,4.4734 39.7
3.7170,4.8783 48 3.6847,4.8683 49.1
3.4675,5.3624 60 3.4675,5.3124 62.8
3.1242,5.698 75 3.1242,5.6486 76.5
2.7158,5.8800 90 2.7158,5.8200 87.9
2.2517,5.8780 95 2.2417,5.8080 98.0
1.7997,5.6882 100 1.8197,5.6082 104.1
1.2732,5.1741 105 1.3032,5.0841 107.4
0.8336,4.5628 100 0.8636,4.4628 103.1
0.4003,3.9064 95 0.4103,3.7964 96.7
0,3.3800 90 -0.0258,3.2407 89.8
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Table 2.2 First 5 Local Minimums

Eg
0.5742
0.9018
1.2779

22.9398

Chy
1.0819
1.3524
1.1612
2.6730
1.8624

Cix
1.7238
2.3367

-1.8743
-0.3654
-3.3778

4.3296
4.8018

1.5630

2.0562
-3.8165
-3.0381
-1.3540

6.8238
9.3322
2.1771

46.4159

Table 2.3 Coordinates of the Resulted Four-bar Linkage Joints in Their First Position

Joint

0.0120, -1.8743, -3.8165,
-0.0305

1.7238,

1.5630,

Coordinates

6.8238

1.1612

1.0819

4.3296

Figure 2.5 The four-bar linkage and the desired and generated motions.
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When the other dyad was added to the structural error, as in Eq. (2.5), and the
Grashof’s condition and link length constraints were applied, the resulted linkage was the
same as above, The optimized Egmin was 1.8521. The link length and Grashof’s constraints
were applied and the transmission angle requirement was also imposed but the acceptable
range was expanded to 25° to 155 °; otherwise the resulted minimum of the structural error

was too large.

2.4.2 Continuous Path Generation
The path to be synthesized is specified by 20 points with a cusp at the ofigin, as listed in
Table 2.4. It is an arbitrary spline curve drawn in AutoCAD. Since the path starts at a cusp,
the linkage’s two side links, 4B and CD, must point at the cusp at their first positions. This
condition helps to choose the initial guess for the mechanism.

Given an initial guess of (5, 5), (3,3), (-1,4), and (-2,8) for joint 4, B, C, and D,
respectively, the optimization process finds the optimal linkage, whose joint coordinates at

their first position are listed in Table 2.5.
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Table 2.4 Desired and Generated Path Points

Point No. Desired Path ' Generated Path
x ¥ X ¥
1 0.0000 0.0000 0.0235 0.0417
2 0.4599 0.0000 0.5173 -0.0686
3 1.3311 -0.1259 1.3442 -0.1812
4 2.1263 -0.2173 2.1236 -0.2213
5 3.0007 -0.2669 3.0599 -0.2901 -
6 3.4921 -0.2827 3.5013 -0.2859
7 4.0926 : -0.2632 4.1015 -0.2371
8 49115 -0.1501 4.8979 -0.1735
9 5.4371 -0.0706 5.3527 -0.2098
10 5.7692 -0.1450 5.8116 -0.1752
11 5.9300 -0.3603 5.9922 -0.3782
12 5.8298 -0.7703 5.8024 -0.7393
13 5.4794 -1.0504 5.4035 -1.0017
14 47572 -1.3449 4.6903 -1.2659
15 4.0139 -1.4121 4.0087 -1.3663
16 3.3049 -1.2991 3.3321 -1.1857
17 2.4233 -0.9376 2.4227 -0.9202
18 1.7184 -0.5327 1.8668 -0.5181
19 1.2056 -0.2386 1.3345 -0.1228
20 0.6334 -0.0407 0.7140 0.0739

Table 2.5 Synthesized Four-bar Path Generation Linkage

Joint A B P C D

Coordinates - 45791, . 3.3129, 0.0235, 2.2581, 4.2684,
2.0410 1.4766 0.0417 3.1304 5.9174
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adds difficulties to the order constraint.

Despite of these limitations, this method greatly simplifies the formulation of
structural error and facilitates the optimization because it has a compact polynomial form
of structural error whose explicit expressions of gradient vector and Hessian matrix are
easily accessible. The synthesis examples clearly demonstrate the power of this approach
in generating both optimal motions and paths.

The next chapters will focus on the application of the proposed method to the
synthesis of adjustable mechanisms for multi-phase optimal motion, path, and function

generation.



CHAPTER 3

OPTIMAL MULTI-PHASE MOTION GENERATION

3.1 Introduction

~ As introduced in Chapter 1, multi-phase motion generation methods have been reported by
many researchers. However, all these methods can only design linkages capable of
achieving limited number of desired precision rigid body positions. For example, a planar
four-bar linkage with the side-link length adjustable can guide its coupler through six
prescribed positions. The positions are divided into two phases, each containing about
three of them.

The industrial applications of motionA generation usually need the moving body to
pass through more given positions or impose additional requirements to the motion of the
body between the given posit_ions, while do not require it to pass through the positions
exactly, because position errors of linkages can not be eliminated during manufacturing,
assembly, and normal use. It is usually acceptable if the position error is within a
reasonable range. There comes the concept of optimal motion generation.

With optirﬁal motion generation, the mechanism is not designed to guide its coupler
link through several prescribed precision rigid body positions but through a larger number
of positions within an acceptable error. Using this approach, the adjustment to the
mechanism allows the mechanism to achieve another series of many rigid body positions.
Fach phase of the adjustable mechanism confains theoretically unlimited number of
positions, as long as the error is small enough to ibe acceptable. In synthesis practice,

however, too many design positions are neither necessary nor practical — more positions
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usually mean poorer solutions.
Introducing optimal synthesis approaches into design of adjustable mechanisms
adds their versatility: although at the cost of less accuracy, the large number of additional

positions provides more possibilities of controlling the generated motion.

3.2 Adjustable Dyad for Optimal Motion Generation
In Chapter 2, the synthesis model for an optimal motion generation dyad is established. To
make it adjustable, three options are available: adjusting the link length, the moving pivot,

or the fixed pivot.

3.2.1 Three Types of Adjustments
a. Adjustable Link Length

Figure 2.1 is redrawn below as Figure 3.1 with an additional phase shown in dashed
lines. The two phases share every dimension except a different link length of CD. For
motion generation, the coupler points P,-l(x,-], y,-]) and P, 2(x,-z, y,~2) and coupler angles 05,~j

and 495,~2 are given. For phase 1, the link length structural error is

B, = 3 0[(C! = DY (C! = D)~ (C! = DY’ (C! ~ D)P G.1)

i=2

where #; is a weighting coefficient for each design points; the unknowns are

Cllz(xél’yél)Ta D:(‘xD>yD)T9 (32)
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Phase 1
— — — = Phase 2
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Figure 3.1 An optimal dyad with adjustable link length for motion generation.

Coordinates of joint C at design positions C; (i=2,3,...n) can be obtained by

Cil = (xlCi’lei)T , (xlc,"ylcnl)r = Tl:(xlcvylcwl)T (3:3)

where =2, 3, 4, ... n, T}, is the coordinate transformation matrix from frame X; I AR

frame X;'P,'Y},

003(95]1 - 6511 ) - sin(95],. - 6511 ) - 008(0511‘ - 9511 )xll + Sin(esli - 65]1 )yll + xi]
T, =| sin(6;, —65) cos(f;,—6s,) —sin(6; —65)x; —cos(b;, —65,)y, + ! (3.4)
0 0 1
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For phase 2, a similar link length structural error can be obtained as

B2 =3} l(C? = DY (C? = D)~(C} DY (C} - D) (5)

i=1

Here the unknowns are still C,' and D as in Eq. (3.2). Coordinates of joint C in phase 2, C?,

(=1, 2, ..., n, suppose phase 2 also has n prescribed positions) can be obtained by

Ciz = (xéi’yéi)T, (xé:)%inl)r = Tl?(xlcnylcvl)r (3.6)

T ,-2 (i=1, 2, ..., n) is the coordinate transformation matrix from frame X; 11P11Y 11 (the first

position of phase 1) to frame X?P?Y? (the ™ position of phase 2):

cos(0;, —6;,) —sin(05, ~65,)  —cos(65, 65, )x) +sin(0s, ~05,)y; +x;
T =|sin(0; -6),) cos(6Z —6i) —sin(0 ~6;)x —cos(62 65y, +y’ (3.7
0 0 : 1

The overall structural error

E,=E\+E!= Z":n,‘ [(C' - D)’ (C' - D)—(C! = DY (C! = D)

i=2

+3 2(C? - DY (C? = D)~ (C? - DY'(C? - D) (3.8)

i=2 :
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Minimizing Er will give the optimal adjustable dyad that needs the least overall
side-link length change to guide its coupler through desired positions in both phases.
Notice that the adjustable link length of the side-link does not show as a design
variable in the structural error at all. The optimization finds the best circle point C and
center point D, hence determines the link lengths in both phases.
b. Adjustable Moving Pivot

If the moving pivot is made adjustable, the design variables become

C11 = (xépyé‘])T ) C12 = (x(2j1:y§'1)T , D= (xD,yD)T, (3.9

- Phase 1 is the same as in link length adjustment problem. For phase 2, the coordinates of

joint C can be obtained by

Ciz = (x(2:i> ycz“i)T, (e Ve ) =T (5 e, D) (3.10)

C/? here is obtained form C,2, other than from C,° as in link length adjustment. 7 2 (i=2,

3..., n) is the coordinate transformation matrix from frame X; 12P2Y % to frame X2PAY2,

cos(0; —602) —sin(0. —02) —cos(6; —02)x} +sin(6; —02)y? +x’
T? =|sin(02 - 62) cos(0—6L) —sin(@; —02)x? —cos(62 ~6)y? + v} (3.11)
0 0 1
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The link length structural error for both phases can be given by

E,=E,+E, = Z m(C/ - D) (C! —D)—(C} - D) (C! - D)}’

i=2

+§n: 7 [(C7 = D) (C7 = D)= (C; - D) (C/ - D) (3.12)

i=1

Notice that link lengths in both phases are compared with their own first position.
c. Adjustable Fixed Pivot

Similar to adjustable moving pivot, the unknowns now are
Cy =(xe ) D' = (xps¥p) . D* = (x5, ¥p)' (3.13)

C;! and C? are the same as in 3.2.1, and the link length structural error for both phases can

be given by

E,=Ey+E2 =Y 1/[(C! -~ DY (C! - DY)~ (C! - D'Y (C! - D"

i=2

+ 3 RC? = DAY (C2 = DY)~ (CE - D7 (C - DM (3.14)

3.2.2 Combination of Adjustments
Though not often, combination of several types of adjustments are sometimes used to
provide more flexibility and capability of the mechanisms in exact synthesis. In optimal

multi-phase motion generation, multiple adjustments are not needed as much. However, in
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cases when the desired phases of motions are so diversified that linkages with one kind of
adjustment are not able to generate the motions satisfyingly, the combination of
adjustments may be required.

The combination of adjustments can be easily handled using the link length
structural error based optimal synthesis method by simply combining the formulatiéns of
. the three types of adjustments. The resulted structural error can be slightly different with
several édditional design variables. For example, if both the fixed and the moving pivots

are adjustable, the design variables are

Cl =0,y  Co=(x2,y2)", D =(x), 3, D* =(xb,y2)"  (3.19)

And the structural error is the same as in adjustable moving pivot problem except for the

added variable D*:

Ey=Ey+E; =Y n(C/-D")'(C/-=D")—(C/ - D" (C/ - D))

i=2

+Y P2 - DY (C? = D)~ (C} = DY (C} - DY (3.16)
i=]

3.2.3 More Phases
The proposed synthesis method also applies to three or more phase mechanisms. By simply
adding another term to the structural error and some additional constraints for each

additional phase, the synthesis procedure remains the same.
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3.3 Optimal Synthesis of the Four-bar Linkage
Due to the input motion, it is difficult to adjust the driving-side fixed pivot (the shaft where
the input actuator is connected) and the link length (usually fully rotating about both the
" ground frame and the coupler) of a four-bar linkage. The only param‘eter left to adjust for
the driving dyad is its moving pivot, while all parameters of the driven dyad are available
for adjusting.

Even though it is possible that we achieve two phases of rigid body positions by
only adjusting the driven dyad while leaving the driving dyad unchanged, it is not
recommended because when the two phases of motion are apparently distinct, using the
same dyad to generate both of them may result in large error in both phases. Therefore the
adjustment to the moving pivot of the driving dyad is always recommended. Adjustment to
the other dyad can be arbitrary among the three.

As discussed in Chapter 2, the synthesis of the other dyad can be accomplished by
either finding several local minimum of the structural error for a single adjustable dyad or

by combining the two dyads errors into one.

3.3.1 The Two Dyads Combined

As an example, we give the combined link length structural error for adjustable driving and
driven side-links moving pivot problem, as shown in Fig. 3.2. These adjustments can. be
easily realized by actuators mounted onto the moving coupler and controlling and

powering wires connected to the ground frame through the driven side link.
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3.3.2 Constraints
The optimal synthesis problem becomes:
Minimize Ex
Subject to the following constraints:
a. Grashof's criteria
Suppose link AB is to be the input crank, then it is preferred to be the shortest link
of because a crank-rocker is usually desired. The longest link is not determined yet, thus a

general form of Grashof’s condition can be given as 4B+, <r, +r, for both phases.
b. Transmission angle

The transmission angle x4 («BCD)can be easily calculated for both phases. The

transmission angle is limited to g ;, < 4 < 4, -

c. Link lengths

At least one link length constraints has to be imposed to this problem to identify the
twovadjustable dyads. It can be implemented by constrain the link length 4D to be larger
than a small value. Other constraints can be applied by restricting joint coordinates in
acceptable ranges as needed. |
d. Order Constraint

Order requirement is associated with the input crank angle at all design positions.

The input angle can be obtained by

Xp —Xc

6, =tan™ [Mj , 1/2<0;;<i/2 (3.19)
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For 6, out of this range, add « to it. The order constraints can be then applied as

6, =0,y <0 OF 6, =601, >0, i=12,....m, (3.20)

3.4 Continuously Adjustable Mechanisms

Another advantage of this synthesis method is its ability to exactly generate the desired
motion at all chosen positions with the assistance of a continuously adjustable (or in other
words,~ real-timely controllable) side links. Once the optimal synthesis of an adjustable
mechanism is completed using the above technique, the side-link length changes have been
obtained. These changes are minimized at all design points and are supposed to be small. If
an adjusting de\}ice is mounted on this link and is méde to real-timely adjust the length of
the side-link at the-amount of the calculated link length changes, the optimal linkage can
then generate the given rigid body positions precisely at all design positions. This
continuous adjustment can be realized either by an actuator or a cam. Distinct from other
optimal synthesis methods, the proposed technique finds the required link length changes
directly as the result of the optimization process.

To generate the desired rigid body positions precisely, the required continuous

side-link length adjustment for phase 1 at position i is
L, =[(C' = D) (C' - D)]"* =[(C! - DY (C' - D) (3.21)

where i=2,3,...,n. The adjustment amount for phase 2 is similar to Eq. (3.19).
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With continuously adjustable side links, the linkage deéigned under this method
seems to have two “modés”: when the two side-link lengths'are fixed at their optimal
values in each phase, which are their lengths at the first poéition, the linkage guides its
coupler link through the desired positions optimally; when the side-link lengths are
continuously adjusted at the amount given by Eq. (3.19), the adjustable linkage can
generate the desired rigid body positions precisely. This capability provides more

flexibility for the adjustable mechanisms.

3.5 Synthesis Example
Two phase of rigid body positions (23 positions each, as listed in Table 3.1) were to be
synthesized by an adjustable four-bar linkage. These positions are required by a grab which
feeds material to two different conveyers, as demonstrated in Figure 33 Certain paths
need to be followed for the grab to clear other equipments, as well as angular positions

have to be maintained while loading, discharging, and transportation.

~
" YRS 3 P
it /\‘( ,/ \ e =,
Conveyer 1 s , % ‘.._/Er S
¥ - -
1 -
haaat N
~
PRy
. - -
-
Conveyer 2 -==
~
S

—————— Phase 1
Phase 2

Figure 3.3 A grab feeding material to two conveyers.



Table 3.1 Desired Two Phases of Rigid Body Positions
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Position Desired Motion 1 Desired Motion 2
No. X y 0 X y 0
1 -0.04914  -0.02085 0.37 0.1243311  0.012769 0.55
2 0.319725 -0.04012 2.36 0.4824177  0.111173 0.78
3 0.70659 -0.00113 3.94 0.8286765  0.246208 0.63
4 1.097916  0.095576 5.09 1.1554199  0.412565 0.06
5 1.480917 0.246568 5.78 1.4562103  0.603565 0.97
6 1.844081  0.445294 5.95 1.72607  0.811745 2.51
7 2177677 0.682262 5.47 1.9615554  1.029659 4,58
8 2.474235 0.945843 4.25 2.1606404  1.250656 7.18
9 2.728781 1.223945 2.17 2.3224113 - 1.469393 10.29
10 2.938567 1.506237 0.81 2.4466711 1.681886 13.84
11 3.102275 1.785631 4.63 2.5335871 1.885143 17.77
12 3.219157  2.057949 9.15 2.5834736  2.076634  21.97
13 3.288606  2.320278 14.21 2.5967127  2.253822 26.36
14 3.310211 2.569388 19.61 2.57376  2.413875 30.83
15 3.284034  2.800978 25.19 2.5151719  2.553567 35.31
16 3.210836 3.009615 30.82 2.4216081  2.669305 39.68
17 3.092189 3.189017 36.34 2.293786 2.75723 43.86
18 2.930424 3.332415 41.65 2.1323744  2.813375 47.74
19 2.728467 3.432902 46.59 1.9378303  2.833868 51.21
20 2.489544 3.483768 51.00 1.7101956  2.815219 54.11
21 2.216783 3.478855 54.70 1.448912  2.754754 56.31
22 1.912765 3.41309 57.46 1.1527879  2.651291 57.61
23 1.579175 3.283389 59.03 0.8203974  2.506147 57.84

Table 3.2 Optimized Adjustable Linkage

Joint 4 B C’ D P B C’
X 2.5813 1.7251 -2.4784  -3.1165 0.0132 2.9523  -2.0363
y 32926  1.0808  1.0135 59238  0.0254 09501  1.0915
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Both moving pivots were adjustable. The Grashof’s, transmission angle, and link

length constraints were applied. The optimal adjustable linkage found is listed in Table 3.2.

Table 3.3 shows the generated motions. Figure 3.4 plots the generated mechanism together

with the desired and the generated motions. The two motions appear close to each other.

Table 3.3 Generated Motions

Position Generated Motion 1 Generated Motion 2
No. X y 0 X y 0
1 7.86E-05  9.92E-06 1.68E-05 -2.70E-06 1.40E-05 0.000452
2 0.351665  -0.03879 2.499542 0.3602485 0.09197 0.098035
3 0.727247  -0.01793 4.588842 0.7086674 0.220176 0.177891
4 1.112881  0.063292 6.274666 1.0376233 0.379567 0.860379
5 1.495275  0.202667 7.533538 1.3407095 0.563772 1.985567
v6 1.862236 0.3947  8.302738 1.61293 0.765673 3.586329
7 2.203205 0.630417  8.47167 1.8507661 0.978122 5.683073
8 2.509884  0.897596 7.881504 2.0520707 1.19462 8.275044
9 2.776721  1.182143 6.353163 2.2158003  1.40977 11.33537
10 3.000833  1.471123  3.75968 2.3416596 1.619355 14.81192
11 3.181015  1.756017 0.10817 2.4297743 1.820065 18.63308
12 3.316426  2.033258 4.447804 2.4804683 2.009068 22.71551
13 3.405939  2.301685 9.676544 24941604 2.183614 26.97072
14 3.448341  2.559707 15.34478 24713397 2340761 31.30878
15 3.442867  2.803986 21.25396 2412568 2.477266 35.63928
16 3.389601  3.029423 27.24203 2.3184655 2.589594 39.86984
17 3.289646  3.229643 33.17132 2.1896548 2.674002 43.90319
18 3.145124  3.397535 38.91431 2.0266499 2.726684 47.63323
19 2.959028  3.525694 44.34058 1.8296936 2.743982 50.94055
20 2.734971  3.606781 49.30492 1.5985633 2.722689 53.68826
21 2.476814  3.633828 53.63606 1.3324134  2.66051  55.7192
22 2.188202  3.600623 57.12656 1.0298034 2.556777 56.85758
23 1.872071  3.502317 59.52708 0.6892129- 2.41347 56.91969







CHAPTER 4

OPTIMAL MULTI-PHASE PATH GENERATION

4.1 introduction
There are two types of path generation tasks: point-to-point path generation and continuous
path generation. Point-to-point path generation specifies only a few precision points on the
desired path and requires the designed mechanism to guide its coupler point through these
precision points exactly. For a four-bar linkage, since there are only nine independent
design variables, the maximum number of precision points is nine.

On the other hand, continuous path generation specify the whole path or many
points on the path. Since it is impractical to generate an absolutely precise whole path as
we desire, optimal synthesis methods are used to synthesize linkages for continuous path
generation. The objective function, called structural error, is conventionally formulated as
the sum of the square distance between the desired and the generated paths over a number
of comparison points,

Many effective synthesis methods have been developed for adjustable
point-to-point path generation [18-22]. As for adjustable continuous path generation, the
only work reported is done by Zhou and Ting [39]. In this work, they adjusted the position
of a slider-crank linkage’s slider guider (the slider offset value) to generate a set of
elliptical paths which have the same short axis. They also introduced the position structural
error of the slider guider, which can effectively reflect the overall error between the
generated and desired paths while avoiding the selection of comparison points. The

synthesis model is optimized using a genetic algorithm. However, this method is not

S8
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effective for generating a set of arbitrary paths other than some co-short-axis ellipses. The
evaluation of the structural error'requires calculation of driving dyad link lengths using the
longest and shortest distances from the fixed pivot to desired paths. For arbitrarily given
paths, any position of driving crank fixed pivot will result in different driving dyad link
lengths for different phases, making the procedure not applicable.

In this chapter, an optimal synthesis method for adjustable four-bar mechanisms
generating multiple arbitrary continuous paths is presented. The designed linkage with one
adjustment is able to approximately guide its coupler point through two arbitrarily given

paths specified by a number of points. A numerical example is given to verify the method.

4.2 Multiple Continuous Path Generation Problem

An adjustable planar four-bar linkage is to be designed to guide a coupler point through
path 1 in phase 1 and through path 2 in phase 2, as shown in Fig. 4.1. Link 4B is chosen to
be the input crank, which needs to achieve a full rotation. The adjustment can be made to
the fixed pivot, moving pivot, or the link length of the driven dyad or the moving pivot of
the driving dyad. The fixed pivot and the link length of the driving dyad are not
recommended for adjustment because they are associated with the input motion — the fixed
pivot is where the input axis lies, and the crank has to fully rotate about both the ground
frame and the coupler.

The two paths to be synthesized are arbitrarily-chosen continuous closed curves
given by specifying » target points on each of them (a typical » lies between 10 and 30).
The linkage is required to guide its coupler point through these points as close as possible.

Considering the great number of specified points on each path, trajectories between these
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consuming. Also, no reported optimal synthesis technique can treat the adjustment well.
There is a need to develop a new synthesis procedure.

A close look at this adjustable linkage reveals that the driving dyad remains the
same for both phases. Since the driving crank is to be fully rotatable in both phases, these
are the additional requirements which can be used to determine the driving dyad. The

driven dyad can be found later.

4.3.1 Synthesis of the Driving Dyad
As in Figure 4.2, for point P of the dyad ABP to trace a given path, the following conditions

must be satisfied:

R, +R; =R, | 4.1)

R, - Rs|=R,, » 4.2)

Rz,and Rs are the lengths of the driving link 4B and coupler link BP. Ryx and R, are the
longest and shortest distances from the center point 4 to the desired path. Rpax or Ry €xists
at the extreme configuration of the dyad, which can be called “stretched” or “folded”, as
shown in Figure 4.2.

To achieve full rotation of the input link 4B about the ground link 4D, Grashof’s
criterion requires the mechanism to be a crank-rocker or a double-crank, and a
crank-rocker is usually preferred, thus 4B is the shortest link. The sign of R,-R5 depends on
the joint A lying inside or outside of the path loop: if inside, R,>Rs, and outside, Ry<Rs;

otherwise the link 4B is unable to finish a full turn.






63

In order to measure distancés from the possible center point 4 to the paths more
precisely, the curves are refined by spline interpolation, which gives more imaginary points
between the specified ones. Suitable number of refined points depends on accuracy
. required and acceptable compﬁting time. Typically 100 to 200 points can béreasily handled
by an average PC in the following obtimization process. Rmax and Ry, can be then chosen
from distances calculated from the center point to all the refined points. The best center
point is found by an optimization process that minimizes the errors of Eq. (4.3) and Eq. (4.4)
at these refined points.

To find the best center point A(x4, y4), the following error function is to be

minimized;

where Pl,»(xl,», ylg) and P2,~(x2,~, y2}) desired path points in phase one and phase two,
respectively, and » is the number of points on each path. All coordinates are given with
respect to thé global coordinate system XOY which is fixed on the ground. Once A(x4, y,),
Rmax and Ry are found by the optimization, link lengths R, and Rs can be determined from
Eq. (4.1) and (4.2).

One of the constraints needed is to restrict (x4, ¥4) in a suitable range so that the
resulted 1ength§ of R, and Rs are acceptable. As mentioned above, joint 4 has to stay either
inside or outside of both path loops, otherwise the resulted link AB is not able to achieve a

full turn. This can be accomplished by kicking the troublesome regions out of the design
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space. Those regions are the area that is enclosed by one path but excluded by the other
one.

The order constraints may also be imposed by restricting ,; as following:
0,.,-0,,>0,i=12,..,n (4.6)
where as in Figure 4.3,

R+ R}~ R (4.7)

l 2R, Ry,

0, =azty = arg(;l—ﬁi) +cos™ ( ) , 0<y<m, i=1,2,...,n

4.3.2 Determining the Coupler Angles

Once the input dyad is obtained, coupler angles at all design points of each phase can be
calculated. For convenience, coupler angles 0s; are measured from X axis of the fixed
coordinate system XOY to the direction of link BP (not to the link BC because joint C is not
known yet). At the point that gives Rmax OF Rmin, there is only one configuration of the dyad,
either stretched or folded. For all other design points, there exist two configurations of link
AB and BP, as shown in Figure 4.3, in which the dyad lies on different side of the line AP,

giving two different coupler angles. The couple angle are found by

R+ R -R?

s 0< '57[: i:1a2:"-9n 4'8
2R5RPI j —ﬁl ( )

O, =a,F B, = arg(ﬁi) Fcos™ [
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4.3.3 Optimal Synthesis of the Adjustéble Driven Dyad

Adjustment to the position of the driven side-link fixed pivot D is the most desired because
it is the easiest to adjust — it is placed on the fixed ground link and is not associated with
input motion. The moving pivot and the link length are also adjustable.

Given desired path points P! and calculated coupler angles Os;' (and P2 and 857 in
phase 2), the synthesis of the other dyad PCD'" and PCD? becomes a multi-phase optimal
fnotion generation problem. The objective now is to find an optimal dyad that guides the
coupler through the given two phases of rigid body positions approximately, exactly as haé
been discussed in Section 3.2. Under the method developed in Chapter 3, the formulated
structural error function for each kind of adjustment to the driven dyad is the same as in
Section 3.2, thus not repeated here.

The constraints applied to the optimal synthesis of the driven dyad include:

1. Grashof's criteria

Link AB is always the shortest link of this crank-rocker. With the driven fixed pivot
adjustable, the length of ground link changes. A general form can be given as
Btn<r,tr,.

2. Transmission angle

Given coordinates of pivots B, C and D, the transmission angle u («BCD as in Fig.

4.1) can be easily calculated. The transmission angle is limited to g, < ¢ <y, for both

phases.
3. Link lengths
Link length constraints can be applied by restricting joint coordinates in acceptable

ranges. If needed, they can also be directly constrained.
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Order constraints have been imposed to the synthesis of the driving dyad. The
driven dyad does not affect the input crank order.
| The structural error Ex formulated in the proposed synthesis method is a fourth
order polynomial of only six scalar unknowns for the adjustable driven moving or fixed
pivot problem (xc1, Yeu, ¥p, ¥, ¥p', and yp') or five for adjustable link length, much simpler
than conventional structural error that would have (2n+6) unknowns in this case. Due to the
small number of design variables, simple constraints, and less complicated structural error
fuﬁction, conventional gradient-based optimization methods in commercial software like
Matlab® or Mathematica® can solve this problem well.
This method is also capable of three or more phase path generation, WhiQh simply
adds some terms to the error function. With minor modification it can also handle other
types of adjustment to the driven dyad such as the adjustment of the link length or the

moving pivot.

4.3.4 Continuous Adjustment

Similar to Section 3.4, the optimal path generation mechanisms design with this method
can also be made continuously adjustable to generate the desired paths points exactly.
Simply calculating the length change terms in the structural error function, the adjustment
amount for each path point is determined. A real-time controllable adjusting device is
needed for the side link that accumulates structural error in the synthesis model. When the
adjustable side-link is fixed at its length at first position for each phase, the mechanism can

go back to the optimal multi-phase path generation mode.
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4.4 Optimal Multiple Path Generation: Adjustable Driving Dyad
Although the driving side fixed pivot and link length are not suitable for adjustment, its
moving pivot remains adjustable. Adjusting the moving pivot B is equivalent to adjusting
the length R; and Rs at the same time.

With a few changes, the synthesis method in Section 4.3 is found to be capable to
treat the driving dyad adjustment. For the driving dyad, Rs in Eq. (4.1) and (4.2) are

adjustable. Suppose R, < Rs, and R3 and Rs has an increment of AR in phase 2, then

R, +R,+AR=R? (4.9)
R,—R, +AR =erlin (4.10)
Therefore,
ernax +AR = Rx121ax (41 1)
Rxlm'n +AR = Rriin

4.12)
The objective function to be minimized to find the circle point 4 is then

By = {1 =) + 0= )1 =1 =) + 04 = 21T+
[(x, __x;)z +(y, _J’: )Z]I/me —[(x, —‘xiz)z +(y, _yi2)2]1/2min }2 (4.13)

If R, > Rs, inverse the sign of AR in Eq. (4.12), a similar £4 with different arrahgement of
terms can be obtained. Minimize E4 will find the best center point 4. R, and Rs are then

obtained. The same constraints are to be imposed as in Section 4.3.1.






Table 4.1 Desired Path Points
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Point No. Path 1 Path 2
X y X y
1 2756 2.361 -5.365 2.170
2 -1.655 1.141 -5.994 0.258
3 -0.293 -0.060 -6.289 -0.833
4 1.279 -1.052 -6.484 1711
5 2.944 -1.804 -6.596 -2.309
6 3.747 -2.082 -6.633 -2.818
7 4.483 -2.264 -6:171 -2.790
8 5.073 -2.276 -5.545 2611
9 5.527 -2.072 -4.672 -2.325
10 5.607 -1.546 -3.732 -1.955
11 5.284 -0.765 -1.898 -0.976
12 4.430 0.372 -0.588 0.202
13 3.119 1.655 -0.202 0.956
14 1.447 2.848 -0.213 1.788
15 0272 3.703 -0.718 2.577
16 -2.706 4.245 -2.168 3.812
17 -3.349 4.062 -2.998 4.142
18 -3.355 3.555 -3.803 4.132
19 -3.154 3.003 -4.502 3.649
20 -2.756 2.361 -5.365 2.170

The proposed procedure is programmed on in Matlab® R2006a. Spline

interpolation refines the paths to 100 points each. Given an initial guess (-2,-8), the first

optimization finds the best center point 4 (0.225,-18.225), and Rmax = 22.583, Ruyin =

16.579. Joint A lies outside of both path loops, thus R,<Rs. R, and Rs are then calculated: R,

=3.002, R5s =19.581.
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With an initial guess Ci(-5, -5), D'(-10,-10), and D*(-15,-15), the second
optimization finds the other dyad at ifs first position of both phases: C;'(-0.275,-6.922),
D'(-8.679,-13.206), C\* (-1.823, -6.820), D*(-12.19,-8.362).

The optimized four-bar linkage is: R,=3.002, R3=9.904, R4=10.500, Rs=19.581,
R6=9.679, A(0.225,-18.225), D'(-8.679,-13.206), and D*(-12.19,-8.362).

Coordinates of all joints in their first position of each phase are constrained in the
range [-20, 20] and the transmission angle is restricted between 45° and 135°. The joint
coordinates of synthesized adjustable linkage in i’;s first position of each phase are listed in
Table 4.2. Fig. 4.5 shows the designed mechahism with the desired and generated paths.
The desired paths are outlined by crosses or circles which present the specified points and
the generated paths are plotted in solid or dashed line. The generated paths match the
desired ones unexpectedly well, indicating that the example problem happens to have a
high quality solution. The total work time is about 14 seconds on a Pentium 4 PC. This

numerical example demonstrates the effectiveness of the proposed method.

Table 4.2 Joint Positions of the Synthesized Adjustable Linkage

Joint : Phase 1 Phase 2

X y X ¥
A 0.225 -18.225 0.225 -18.225
B 2.600 -16.389 2.138 15.907
C -0.275 -6.911 -1.823 -6.820
D -8.679 -13.206 -12.19 -8.362
P -2.756 2.361 -5.365 2.170
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The link length structural error is a powerful alternative of conventional structural
error which greatly simplifies the error function and facilitates the optimization process. A
numerical example verifies the effectiveness of the proposed method. This synthesis
method is very efficient in designing adjuétable linkages capable of tracing a number of
target points in each phase with an acceptable error. The adjustable path generation
mechanism synthesized with this method can also be made continuously adjustable to

achieve precision path points in both phases.



CHAPTER 5

OPTIMAL MULTI-PHASE FUNCTION GENERATION

5.1 Optimal Function Generation
The classical function generation method uses Chebyshev spacing to Vpick precision points
in the variable range of the function to be synthesized and then solves loop equations for
the linkage parameters. A four-bar lihkage synthesized with this method can precisely
generate a given function at up to five points.

To match the function at more points, some error, also called structural error, has to
be allowed between the generated and the desired functions, which leads to the optimal
synthesis of function generation mechanisms. The optimal synthesis technique is designed
to synthesize mechanisms that approximate given functibns at more points with less
overall structural error (notice that for precision point function synthesis, error still exists
between the selected design points).

The conventional way of constructing the structural error for function generation
directly compares the generated output angles with the desired ones at all prescribed input
positions.

In Figure 5.1, the origin of the coordinate system XOY is located at joint A and its x
axis at the direction of AD and the link length 4D is set to Rj=1. These settings eliminate
the scaling and rotating of the linkage, which will result in linkages that are considered the
same as the original one. For the design of a four-bar function generation linkage, the
function to be generated, y=Ax), is mapped to the input and output link angles 64; and G4g;.

According to its definition, the structural error can be given as
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5.2 Optimal Function Generation Based on
Coupler Link Length Structural Error

The idea of link length structural error has worked well for optimal motion and path

generation. This section explores its capability in approximate function generation.

5.2.1 Linear Spacing

Chebyshev s spacing is usually used to minimize the structural error of the linkage at points
other. than the chosen precision points in function generation. This technique, based on
Chebyshev Polynomials, is often used as a first guess. Although it works for a few
precision points, it is not applicable for optimal function generation in which a number of
approximate points are needed, because the resulted Chebyshev polynomials are of too
high order.

Since there are many points chosen in the range of the function’s independent
variable for optimal function generation, the spacing becomes less important. To simplify}
the synthesis, linear spacing is used instead. With linear spacing, the check points are
evenly chosen between the boundaries of the range.

Suppose the function to be generated is
y=f(x)xe(x,x%,)y €V Y) (5.4)

Totally n points are evenly chosen from the range (x,, xp). The resulted x; and

corresponding y; are
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Xy —

(x,y)=(x, +

’f“ @i =12, m (5.5)
(i, y1) 1s to be mapped to (fha;, Gaq:), the desired input and output angles for a four-bar
linkage. The relationship between the changes of x and 6,4 is again linear. Suppose the

input angle is to be in the range (6»,, 62), and the output in the range (f4q, Oap), then

o, -0 6, -0
(szi’94di) = (eza +%('xi —xa)’ 040 +'4b—y41(yi —ya)] (5-6)

b a Yo — a

(622, O2p) and (044, O4p) can be either prescribed or design variables.
The linear spacing greatly simplifies the chosen of check points while does not

obviously affect the accuracy of the resultant mechanism.

§5.2.2 Coupler Link Length Structural Error

The length of the coupler link is chosen to be flexible, as in Fig. 5.2. When the input link
AB and output link CD is forced to pass through their desired positions demanded by the
given function, the link BC changes its length if the linkage can not generate the function
precisely. The change of link length R; reflects the error of the generated linkage. This

length change can be measured as

ER = " ER’ = " [(Bi —Ci)(Bi "Cf)T - (Bl _CI)(B] _CI)T]2 (5.7)

i=1 i=2
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As has been proven previously,

A8, = O(cos ZBDC'—cos ZBDC) = O(Ar, /r,) | (5.12)

Ab4 is a same order infinitesimal as Ars/ry. Therefore when the coupler link length
structural error is small, the conventional structural error for function generation is

believed to be small.

5.2.4 Constraints
a. Link Lengths
The link length R, and R4 may need to be constrained in a suitable range that is not

too long or too short:

ra<Ro<ry, ra<R4<ry (5.1 3)

No Grashof’s constraint is needed for the link lengths for the input link is not
required to fully rotate.

b. Transmission Angle

Given coordinates of pivots B, C and D, the transmission angle u («<BCD) can be

easily calculated. The transmission angle is limited to

lumin </'l <:leax (514)
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No additional constraint has to be imposed to this optimization problem. The
minimization can be implemented using Matlab. This optimal synthesis method provides
an easy way to find the optimum linkage that approximate a given function at many points.
Another advantage of this form of structural error is that it greatly facilitates the optimal
synthesis of adjustable function generation mechanisms. The next section explores its

potential in this field.

5.3 Multiple Approximate Function Generation

Adjustable function generation mechanisms can generate multiple functions in different
phases, thus have attracted attention of researchers. Reported synthesis methods for
multiple function generation have focused on the synthesis of mechanisms that generates
several precision function points. The designed adjustable mechanism can achieve even
less precision points for each of desired functions than a nonadjustable mechanism can do
for a single function. To achieve more design points for each phase, optimal synthesis
method developed in Seption 5.2 is introduced into the synthesis of adjustable function
generator.

For a four-bar function generator, the two fixed pivot as the input and output axes
are not recommended to be adjuéted. The adjﬁstrnent to the moving pivot is equivalent to

the adjustment to the coupler link length. The side-link lengths are also adjustable,
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E,=E,+E.= Z {[(B ~CYB -C)) (B -C})(B/ -C' T +
i=2

(B =CP)(B - C}) = (B! -CP)(B -C)' T} (5.16)

B =(xp,y5) = (Ryc080,,, R, sin0,,) ,C! = (x4, v0,) = (R +R, €08, R, sin6,,,)"
Bi2 = (xz‘n ylzsi )T =(R, cos ezzdn R, sin 922di )T’ Ci2 = (x(zfi’ y(zli)T =(R +R, COSid,., R,sin eztzdi)r (5.17)

The unknowns are again (R,, Rs) (plus the input and output angle range (82, 6a'), (02’

szz), (04a1, O ) and ((94a2, (94b2) if they are not prescribed).

5.3.2 Adjustable Side Link Length
Suppose the length of the side link CD is adjustable, R4 now has two values for the two
phases, R4 and R4, respectively. Similar to adjustable coupler link length problem, the

overall structural error is

E,=E,+E} = Z[(B} -CYB -CY —(B -C))(B/ -CY' T +

i=2

g[(B,-z _CiZ )(BiZ . C,-2 )T _ (B]] _ Cll )(Bll _ CII)T]Z (5'18)

Bil = (xjii’ y}?i)r = (R, cos Hzldi’ R, sin gzldi)T’ Ci1 = (x(l.‘i’yé‘i)T =(R + Rr]t COSLd,-, Rzlt sin ez;di)T
sz = (xlzii’ygi)r = (R, cos ezza’i’ R, sin 922di)T’ Ciz = (xén yéi)T =(R + Rf cosjdi’ R42 sin ‘942df)T (5.19)

The adjusting device can be made real-timely controllable so that the coupler link
can follow the correct length required by the desired functions. The linkage then can

generate the functions precisely at all selected design points.
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5.4 Numerical Example
A numerical example is solved to verify the effectiveness of the proposed method. In this
example, the coupler link length is adjustable. The two functions to be generated are:
1. Phase 1: y;=sinx, 0<x<90° and 90°<6<210°, 60°<p< 120°;
2. Phase2: y,=x'’, 0=x<l and 25°<6<95°, 70°<p< 105°
20 checking points are evenly chosen over each independent variable range. The
desired input and output angles are listed in Table 5.1. The ground link length R is set to 1

and other link lengths are limited between 0.1 and 10. The transmission angle is set as

45°5<135°.

Given an initial guess of R,=R4=0.5, the optimization finds the solution for R, and
R4. Rz and Ry’ are obtained from the distance between joints B and C at their first position
of each phase. The optimized adjustable four-bar linkage is given in Table 5.2. Figure 5.5
shows the two phases of the adjustable linkage. The two phases share the same geometry
except a different coupler link length. Also notice that the starting input angles are different
according to the different desired functions. The desired and generated functions are

plotted in Figure 5.6.
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Table 5.1 Desired Input and Output Angles

Point No. Phase 1 . Phase 2
6 ¢ g ¢
1 90.0000 60.0000 25.0000 70.0000
2 96.3158 64.9548 28.6842 70.4226
3 102.6316 69.8757 32.3684 71.1953
4 108.9474 74.7291 36.0526 72.1959
5 115.2632 79.4820 39.7368 73.3809
6 121.5789 84.1017 43.4211 74.7249
7 127.8947 88.5568 47.1053 76.2110
8 134.2105 92.8169 50.7895 77.8268
9 140.5263 96.8528 54.4737 79.5625
10 146.8421 100.6369 58.1579 81.4104
11 153.1579 104.1434 61.8421 83.3640
12 159.4737 107.3484 65.5263 85.4180
13 165.7895 110.2300 69.2105 87.5675
14 172.1053 112.7684 72.8947 89.8085
15 178.4211 114.9464 76.5789 92.1376
16 184.7368 116.7490 80.2632 94,5513
17 191.0526 118.1640 83.9474 97.0469
18 197.3684 119.1817 87.6316 99.6218
19 203.6842 119.7951 91.3158 102.2735
20 210.0000 120.0000 95.0000 105.0000

Table 5.2 Optimized Adjustable Function Generating Linkage

Ry Ry R3 Ry Ry
1 0.4390 1.3043 0.6032 0.8942




R

Ry
(a) Phase 1: R;=1, R;=0.4390, R3=1.3043, R4=0.6032

(b) Phase 2: R;=1, Ry=0.4390, R3= 0.8942, R4=0.6032

Figure 5.5 The optimized adjustable function generator: (a) phase 1; (b) phase 2.
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5.5 Conclusion
The idea of link length structural error was applied to the optimal synthesis of adjustable
function generation mechanisms successfully. The coupler link length fluctuation was
chosen to be the structural error because it matches the function generation problem
perfectly. This arrangement led to a structural efror that was not only concise but also
effective. The method considerably simplified the modeling of optimal function generation
problem and facilitates the optimization process and handled the adjustment to the coupler
link or side link length easily. It was also capable of generate many precise points with the
assistance of a continuously adjustable link length. Numerical synthesis examples have not

been solved to demonstrate the effectiveness of this method.



CHAPTER 6

CONCLUSION

Adjustable mechanisms provide degrees of flexibility while retaining desirable features of
one degree of freedom close-loop mechanisms, such as simplicity, stability, and high speed,
load, and precision capabilities. However, previous studies on adjustable mechanisms have
focused on synthesis of mechanisms generating multi-set of exact positions. By exact
synthesis, an adjustment to the mechanism can add only one or two additional design
positions to the mechanism, and the positions are divided into several phases. Therefore
each phase contains only a few positions, which is insufficient and not cost-effective.

| Various optimal synthesis techniques have been developed to achieve more design
positions. However, no work is reported to apply optimal synthesis methods to adjustable
mechanisms except a method developed by Zhou ahd Ting [39], which is limited to
generate multiple tangential continuous curves.

This research is believed to be the first to develop a general optimal synthesis
method for adjustable planar mechanisms generating multi-phase approximate motions,
continuous paths, and functions. In this dissertation, the optimal synthesis method based on
link length structural error is developed, validated, and extended to the optimal synthesis of
adjustable mechanisms for three typical synthesis tasks.

For motion generation, the synthesis model of an adjustable optimal dyad is
established for three types of adjustments (the adjustment to the moving pivot, fixed pivot,
and the link length) and their combinations. An adjustable four-bar linkage is optimized

based on the dyad model under proper constraints including the link length requirements,
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the Grashof’s condition, ahd the transmission angle requirement.

For multiple continuous path generation, the driving dyad is synthesized first by an
optimization using the full rotation requirement. The coupler angles are then obtained and
the synthesis of the driven adjustable dyad becomes an optimal multi-phase motion
generation problem, which had been solved.

For optimal mﬁlti-phase function generation, the coupler length structural error fits
the nature of the problem, making a very simpl¢ form of structural error. The suitable
adjustments to the function generation four-bar linkage are made to the lengths of the
coupler link or the side links.

The use of link length structural error significantly simplified the optimal synthesis
of adjustable mechanisms and enhances the efficiency of the optimization. The presented
optimal synthesis method is found to have a remarkable advantage: with continuously
adjustable link lengths, the linkage synthesized under this method can generate the desired
motion exactly. The link length structural error aims directly at the required link length
changes so that the required link length changes are already available once the linkage is
optimized. The synthesized mechanism can work in two different “modes”: “precision
mode” in which the relevant link lengths are édjusted real-timely at the calculated amount,
or “optimum mode” in which the link lengths are fixed at their optimal length for each
phase while the linkage generates the desired multi-phase mdtions approximately.

Suggested future studies include: (1) to extend the link length structural error based
optimal synthesis method to planar five-bar and multi-loop mechanisms, and then spatial
mechanisms; (2) to clearly identify what types of motions, paths, or functions are in nature

suitable to be generated by the proposed method and what are not; (3) to build a software



91

package or data base, from which engineers can find linkage solutions from desired motion;
(4) to examine the influence of unexpected linkage dimension changes (from sources such
as component dimension error, dynamic loads and responses, thermal deformation, and

link flexibility) on the accuracy of generated motions.
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