Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
Enterprises managing multiple concurrent New Product Development (NPD) projects face significant challenges assigning staff to projects in order to achieve launch schedules that maximize financial returns. The challenge is increased with the class of Short Life Technology Intensive (SLTI) products characterized by technical complexity, short development cycles and short revenue life cycles. Technical complexity drives the need to assign staffing resources of various technical disciplines and skill levels. SLTI products are rapidly developed and launched into stationary market windows where the revenue life cycle is short and decreasing with any time-to-market delay. The SLTI-NPD project management decision is to assign staff of varying technical discipline and skill level to minimize the revenue loss due to product launch delays across multiple projects.

This dissertation considers an NPD organization responsible for multiple concurrent SLTI projects each characterized by a set of tasks having technical discipline requirements, task duration estimates and logical precedence relationships. Each project has a known potential launch date and potential revenue life cycle. The organization has a group of technical professionals characterized by a range of skill levels in a known set of technical disciplines.
The SLTI-NPD resource assignment problem is solved using a multi-step process referred to as the Resource Assignment and Multi-Project Scheduling (RAMPS) decision support tool. Robust scheduling techniques are integrated to develop schedules that consider variation in task and project duration estimates. A valuation function provides a time-value linkage between schedules and the product revenue life cycle for each product. Productivity metrics are developed as the basis for prioritizing projects for resources assignment.

The RAMPS tool implements assignment and scheduling algorithms in two phases; (i) a constructive approach that employs priority rule heuristics to derive feasible assignments and schedules and (ii) an improvement heuristic that considers productivity gains that can be achieved by interchanging resources of differing skill levels and corresponding work rates. An experimental analysis is conducted using the RAMPS tool and simulated project and resource data sets. Results show significant productivity and efficiency gains that can be achieved through effective project and resource prioritization and by including consideration of skill level in the assignment of technical resources.
RESOURCE ASSIGNMENT IN
SHORT LIFE TECHNOLOGY INTENSIVE (SLTI)
NEW PRODUCT DEVELOPMENT (NPD)

by
Randy A. Reagan

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for Degree of
Doctor of Philosophy in Industrial Engineering

Department of Mechanical and Industrial Engineering

January 2010
Copyright© 2010 Randy A. Reagan

ALL RIGHTS RESERVED
RESOURCE ASSIGNMENT IN
SHORT LIFE TECHNOLOGY INTENSIVE (SLTI)
NEW PRODUCT DEVELOPMENT (NPD)

Randy A. Reagan

Dr. Sanchoy Das, Dissertation Advisor
Professor of Mechanical and Industrial Engineering, NJIT

Dr. Athanassios Bladikas, Committee Member
Associate Professor of Mechanical and Industrial Engineering, NJIT

Mr. Robert English, Committee Member
Interim Dean of the School of Management, NJIT

Dr. Paul Ranky, Committee Member
Professor of Mechanical and Industrial Engineering, NJIT

Dr. Carl Wolf, Committee Member
Professor Emeritus of Mechanical and Industrial Engineering, NJIT
BIOGRAPHICAL SKETCH

Author: Randy A. Reagan

Degree: Doctor of Philosophy

Date: January 2010

Department: Mechanical and Industrial Engineering

Education

• Doctor of Philosophy in Industrial Engineering, New Jersey Institute of Technology, Newark, NJ

• Master of Business Administration, Statistics and Operations Research, New York University, New York, NY

• Master of Science in Mechanical Engineering, University of Michigan, Ann Arbor, MI

• Bachelor of Science in Mechanical Engineering, Magna cum Laude, New Jersey Institute of Technology, Newark, NJ

Publications and Presentations:

Patents:

This dissertation is dedicated to my children James and Kara Reagan,
to my parents Harry and Betty Reagan and to Fran Reagan.
ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor, Dr. Sanchoy Das, for his guidance and support throughout the entire research at NJIT. I also thank my other committee members at NJIT including: Dr. Carl Wolf, Dr. Athanassios Bladikas, Dr. Paul Ranky and Robert English, for their support on this project.

I offer my sincere thanks to Mike Noonan for his vision, encouragement, and inspiration and for giving me the opportunity to manage NPD in the most dynamic, challenging, and rewarding environment possible at Fiber Optic Network Solutions. I thank Jack Field for his inspiration and encouragement and for giving me the opportunity to manage NPD with vision and discipline at ADC Telecommunications. I also thank Dr. Richard Pimpinella for his encouragement on this project and for the valuable lessons he taught on how to achieve technical excellence in New Product Development at Bell Laboratories. I thank Elliot Baines for his inspiration, encouragement, and for his patience in teaching me a great deal about engineering and product development at Bell Laboratories. I also want to thank posthumously Dr. Louis Scerbo and John Donegan, my early mentors at Bell Laboratories, for the lessons they taught on how to be an engineer and how to be a new product development manager.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION...</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background...</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Research Scope..</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Problem Statement..</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Decision Model Structure..</td>
<td>13</td>
</tr>
<tr>
<td>1.5 Research Objectives...</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Research Significance...</td>
<td>16</td>
</tr>
<tr>
<td>1.7 Dissertation Overview..</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LITERATURE REVIEW...</td>
<td>20</td>
</tr>
<tr>
<td>2.1 NPD Literature Overview ...</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Technology Intensive Products......................................</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Project Prioritization..</td>
<td>24</td>
</tr>
<tr>
<td>2.4 NPD Project Management...</td>
<td>26</td>
</tr>
<tr>
<td>2.5 Resource Constrained Project Scheduling..........................</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SHORT LIFE TECHNOLOGY INTENSIVE NPD</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Product Life Cycle..</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Short Life Technology Intensive NPD Projects........................</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Case One - Apple iPod..</td>
<td>34</td>
</tr>
<tr>
<td>3.4 Case Two - FONS Fiber Hub..</td>
<td>39</td>
</tr>
<tr>
<td>3.5 Case Summary Analysis..</td>
<td>42</td>
</tr>
<tr>
<td>Chapter</td>
<td>SLTI-NPD RESOURCE ASSIGNMENT PROBLEM</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>The NPD Project Management Problem</td>
</tr>
<tr>
<td>4.1</td>
<td>Projects</td>
</tr>
<tr>
<td>4.2</td>
<td>Requirements</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Tasks</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Required Resource Type</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Task Duration Estimates</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Logical Precedence Relationships</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Potential Value and Market Timing</td>
</tr>
<tr>
<td>4.3</td>
<td>Resources</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Resource Type</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Skill Level</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Work Rate Transformation</td>
</tr>
<tr>
<td>4.4</td>
<td>Assignments Variables</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Task Assignment</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Time Period Assignment</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Skill Level Assignment</td>
</tr>
<tr>
<td>4.5</td>
<td>Cost and Budget Considerations</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PROJECT PRIORITIZATION</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Prioritization Approach</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>Project Portfolio Selection</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>Robust Scheduling Method</td>
<td>70</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Task Estimation and Tolerance</td>
<td>71</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Critical Path Method</td>
<td>72</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Critical Chain Buffer Management</td>
<td>74</td>
</tr>
<tr>
<td>5.4</td>
<td>Project Valuation Method</td>
<td>77</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Triangular Produce Life Cycle</td>
<td>77</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Time-Value Model</td>
<td>79</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Net Present Value</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>Project Prioritization Method</td>
<td>83</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Project Value Metric</td>
<td>84</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Prioritization Weighting Factors</td>
<td>85</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Project Productivity Index</td>
<td>86</td>
</tr>
<tr>
<td>5.6</td>
<td>Multi-Project Prioritization Simulation</td>
<td>87</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Program Example</td>
<td>87</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Sensitivity to Prioritization Parameters</td>
<td>89</td>
</tr>
<tr>
<td>Chapter</td>
<td>RESOURCE ASSIGNMENT METHOD</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>Resource Assignment Approach</td>
<td>93</td>
</tr>
<tr>
<td>6.1</td>
<td>Program Schedule Efficiency</td>
<td>95</td>
</tr>
<tr>
<td>6.3</td>
<td>Resource Prioritization Method</td>
<td>96</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Resource Inventory</td>
<td>96</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Resource Generator</td>
<td>97</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Resource Prioritization</td>
<td>98</td>
</tr>
<tr>
<td>6.4</td>
<td>Constructive Scheduling Heuristics</td>
<td>99</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Sequential Scheduling Method</td>
<td>100</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Critical Scheduling Method</td>
<td>103</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Early Scheduling Method</td>
<td>107</td>
</tr>
<tr>
<td>6.5</td>
<td>Skill Level Improvement Heuristics</td>
<td>110</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Level Constrained Solution</td>
<td>110</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Skill Level Assignment Method</td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>DECISION TOOL AND EXPERIMENTAL RESULTS</td>
<td>114</td>
</tr>
<tr>
<td>7.1</td>
<td>Resource Assignment and Mult-Project Scheduling Program</td>
<td>114</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Program Organization</td>
<td>114</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Project Input Data</td>
<td>116</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.3 Resource Input Data</td>
<td>117</td>
</tr>
<tr>
<td>7.1.4 Program Solution</td>
<td>118</td>
</tr>
<tr>
<td>7.2 Experimental Objectives</td>
<td>126</td>
</tr>
<tr>
<td>7.3 Data Set Generation</td>
<td>127</td>
</tr>
<tr>
<td>7.4 Illustrative Results with J10</td>
<td>129</td>
</tr>
<tr>
<td>7.5 Experimental Results</td>
<td>131</td>
</tr>
<tr>
<td>7.5.1 Prioritization Method Effectiveness</td>
<td>131</td>
</tr>
<tr>
<td>7.5.2 Sensitivity to Priority Parameters α and β</td>
<td>133</td>
</tr>
<tr>
<td>7.5.3 Comparison of Constructive Solution Methods</td>
<td>134</td>
</tr>
<tr>
<td>7.5.4 Comparison Improved Solution Methods</td>
<td>136</td>
</tr>
<tr>
<td>7.5.5 Sensitivity to Work Rate</td>
<td>138</td>
</tr>
<tr>
<td>7.5.6 Sensitivity to Launch Date</td>
<td>139</td>
</tr>
<tr>
<td>7.5.7 Sensitivity to Work Force Mix</td>
<td>140</td>
</tr>
<tr>
<td>8 DISCUSSION AND FUTURE RESEARCH DIRECTION</td>
<td>142</td>
</tr>
<tr>
<td>8.1 Discussion</td>
<td>142</td>
</tr>
<tr>
<td>8.2 Future Research Direction</td>
<td>144</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>APPENDIX A — PROGRAM FLOW CHARTS</td>
<td>146</td>
</tr>
<tr>
<td>APPENDIX B — PROJECT DATA SETS</td>
<td>161</td>
</tr>
<tr>
<td>APPENDIX C — RAMPS PROGRAM CODE</td>
<td>174</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>317</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>NPD Web Site References</td>
</tr>
<tr>
<td>2.2</td>
<td>NPD Text References</td>
</tr>
<tr>
<td>3.1</td>
<td>Apple iPod early NPD project duration and product life duration</td>
</tr>
<tr>
<td>3.2</td>
<td>Apple iPod NPD success factors</td>
</tr>
<tr>
<td>3.3</td>
<td>FONS FDH early NPD project duration and product life duration</td>
</tr>
<tr>
<td>3.4</td>
<td>FONS FDH NPD success factors</td>
</tr>
<tr>
<td>3.5</td>
<td>Analysis of SLTI NPD project characteristics</td>
</tr>
<tr>
<td>5.1</td>
<td>Prioritization Example Robust Scheduling Method (RSM)</td>
</tr>
<tr>
<td>5.2</td>
<td>Prioritization Example Project Valuation Method (PVM)</td>
</tr>
<tr>
<td>5.3</td>
<td>Prioritization Example Project Prioritization Method (PPM)</td>
</tr>
<tr>
<td>7.1</td>
<td>Prioritization effectiveness with J10 data</td>
</tr>
<tr>
<td>7.2</td>
<td>Sensitivity to workforce mix assumptions</td>
</tr>
<tr>
<td>C.1</td>
<td>Array values for project data sets</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Product Development Process (PDP)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Structured New Product Development Process</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Integrated circuit lost revenue due to TTM Delay</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>NPD project value in a stationary market window</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>NPD multi-project management problem structure</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>RAMPS Methodology for SLTI-NPD Resource Assignment</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Product Life Cycle “S” curve</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Time line for Applies iPod classic</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Unit sales trend for iPod.</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of the NPD Resource Assignment problem structure</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Project requirements progressively elaborated</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Requirements breakdown structure</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Project task durations estimates shown as a lognormal distribution</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Example of the precedence matrix Prec for a simple project</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>NPD potential value, potential product life and time to launch</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Process for NPD project prioritization</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Robust project scheduling</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Product Life Cycle trend</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Product Life Cycle (PLC) with approximate Triangular Value</td>
<td>78</td>
</tr>
<tr>
<td>5.6</td>
<td>Triangular Product Life Cycle model</td>
<td>80</td>
</tr>
<tr>
<td>5.7</td>
<td>Time-Value model</td>
<td>81</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.8</td>
<td>NPV computed using the Uniform Gradient Method</td>
<td>83</td>
</tr>
<tr>
<td>5.9</td>
<td>Weighting factor α and β sensitivity</td>
<td>90</td>
</tr>
<tr>
<td>6.1</td>
<td>Overall solution method for Resource Assignment in SLTI NPD</td>
<td>94</td>
</tr>
<tr>
<td>6.2</td>
<td>Sample resource data file generated manually</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>Sample resource data sets</td>
<td>98</td>
</tr>
<tr>
<td>6.4</td>
<td>Sample of the Resource Prioritization Method (RPM)</td>
<td>99</td>
</tr>
<tr>
<td>6.5</td>
<td>Sequential Scheduling Method (SSM)</td>
<td>100</td>
</tr>
<tr>
<td>6.6</td>
<td>Critical Scheduling Method (CSM)</td>
<td>104</td>
</tr>
<tr>
<td>6.7</td>
<td>Early Scheduling Method (ESM)</td>
<td>107</td>
</tr>
<tr>
<td>6.8</td>
<td>Skill Level Assignment Method (SLAM)</td>
<td>112</td>
</tr>
<tr>
<td>7.1</td>
<td>Program structure</td>
<td>115</td>
</tr>
<tr>
<td>7.2</td>
<td>Project network example</td>
<td>116</td>
</tr>
<tr>
<td>7.3</td>
<td>Project input data example</td>
<td>116</td>
</tr>
<tr>
<td>7.4</td>
<td>Resource input data example</td>
<td>118</td>
</tr>
<tr>
<td>7.5</td>
<td>Sample results of the Robust Scheduling Method (RSM)</td>
<td>118</td>
</tr>
<tr>
<td>7.5</td>
<td>Sample results of the Project Valuation Method (PVM)</td>
<td>119</td>
</tr>
<tr>
<td>7.6</td>
<td>Sample results of the Project Prioritization Method (PPM)</td>
<td>120</td>
</tr>
<tr>
<td>7.7</td>
<td>Sample Time Constrained Solution (TCS) assignment matrix</td>
<td>122</td>
</tr>
<tr>
<td>7.8</td>
<td>Sample Resource Constrained Solution (RCS) assignment matrix</td>
<td>123</td>
</tr>
<tr>
<td>7.9</td>
<td>Sample schedule results and program results</td>
<td>124</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>7.10</td>
<td>Sample Gantt chart schedule results</td>
<td>125</td>
</tr>
<tr>
<td>7.11</td>
<td>Program results summary for J10</td>
<td>129</td>
</tr>
<tr>
<td>7.12</td>
<td>Gantt chart of one J10 project</td>
<td>130</td>
</tr>
<tr>
<td>7.13</td>
<td>Utilization summary for one resource on J10 projects</td>
<td>130</td>
</tr>
<tr>
<td>7.14</td>
<td>Comparison of prioritization methods with J10 data</td>
<td>131</td>
</tr>
<tr>
<td>7.15</td>
<td>Comparison of average number of substitutions</td>
<td>132</td>
</tr>
<tr>
<td>7.16</td>
<td>Sensitivity of productivity prioritization weighting factors α and β</td>
<td>133</td>
</tr>
<tr>
<td>7.17</td>
<td>Comparison of the constructive scheduling methods</td>
<td>135</td>
</tr>
<tr>
<td>7.18</td>
<td>Comparison of the constructive methods with differentiation</td>
<td>136</td>
</tr>
<tr>
<td>7.19</td>
<td>Overall solution comparison for the J10 data set</td>
<td>137</td>
</tr>
<tr>
<td>7.20</td>
<td>Overall solution comparisons for J30 data set</td>
<td>137</td>
</tr>
<tr>
<td>7.21</td>
<td>Overall solution comparisons for J60 data set</td>
<td>138</td>
</tr>
<tr>
<td>7.22</td>
<td>Sensitivity to varying work rates</td>
<td>139</td>
</tr>
<tr>
<td>7.23</td>
<td>Sensitivity to variation in launch date by \pm 20%</td>
<td>140</td>
</tr>
<tr>
<td>7.24</td>
<td>Sensitivity to workforce mix</td>
<td>141</td>
</tr>
<tr>
<td>A.1</td>
<td>Flow Chart - Overall program</td>
<td>146</td>
</tr>
<tr>
<td>A.2</td>
<td>Flow Chart - Robust Scheduling Method (RSM)</td>
<td>147</td>
</tr>
<tr>
<td>A.3</td>
<td>Flow Chart - Project Valuation Method (PVM)</td>
<td>148</td>
</tr>
<tr>
<td>A.4</td>
<td>Flow Chart - Project Prioritization Method (PPM)</td>
<td>149</td>
</tr>
<tr>
<td>A.5</td>
<td>Flow Chart - Resource Prioritization Method (RPM)</td>
<td>150</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>A.6</td>
<td>Flow Chart - Sequential Scheduling Method (SSM)</td>
<td>151</td>
</tr>
<tr>
<td>A.7</td>
<td>Flow Chart - Critical Scheduling Method (CSM)</td>
<td>152</td>
</tr>
<tr>
<td>A.8</td>
<td>Flow Chart - Critical Scheduling Method (CSM) —Continued</td>
<td>153</td>
</tr>
<tr>
<td>A.9</td>
<td>Flow Chart - Early Scheduling Method (ESM)</td>
<td>154</td>
</tr>
<tr>
<td>A.10</td>
<td>Flow Chart - Level Scheduling Method (LSM)</td>
<td>155</td>
</tr>
<tr>
<td>A.11</td>
<td>Flow Chart - Level Scheduling Method (LSM) - Continued</td>
<td>156</td>
</tr>
<tr>
<td>A.12</td>
<td>Flow Chart - Skill Level Assignment Method (SLAM) 1:2</td>
<td>157</td>
</tr>
<tr>
<td>A.13</td>
<td>Flow Chart - Skill Level Assignment Method (SLAM) 1:2 - Continued</td>
<td>158</td>
</tr>
<tr>
<td>A.14</td>
<td>Flow Chart - Skill Level Assignment Method (SLAM) 2:3</td>
<td>159</td>
</tr>
<tr>
<td>A.15</td>
<td>Flow Chart - Skill Level Assignment Method (SLAM) 2:3 - Continued</td>
<td>160</td>
</tr>
<tr>
<td>B.1</td>
<td>J10 project networks</td>
<td>161</td>
</tr>
<tr>
<td>B.2</td>
<td>J10 project networks – continued</td>
<td>162</td>
</tr>
<tr>
<td>B.3</td>
<td>J10 data input file</td>
<td>163</td>
</tr>
<tr>
<td>B.4</td>
<td>J10 data input file - continued</td>
<td>164</td>
</tr>
<tr>
<td>B.5</td>
<td>J10 data input file - continued</td>
<td>165</td>
</tr>
<tr>
<td>B.6</td>
<td>J30 project networks</td>
<td>166</td>
</tr>
<tr>
<td>B.7</td>
<td>J30 project networks - continued</td>
<td>167</td>
</tr>
<tr>
<td>B.8</td>
<td>J30 data input file – shown without Prec matrix</td>
<td>168</td>
</tr>
<tr>
<td>B.9</td>
<td>J60 project networks</td>
<td>169</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>B.10</td>
<td>J60 project networks - continued</td>
<td>170</td>
</tr>
<tr>
<td>B.11</td>
<td>J60 project networks - continued</td>
<td>171</td>
</tr>
<tr>
<td>B.12</td>
<td>J60 project networks - continued</td>
<td>172</td>
</tr>
<tr>
<td>B.13</td>
<td>J60 project data file – shown without Prec matrix</td>
<td>173</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

Effective New Product Development (NPD) has emerged as a major strategic initiative and will continue to be the central focus of corporate management in the decades ahead (Cooper 2005). This is especially true in organizations involved with technology intensive NPD that requires highly skilled technical resources and where time to market pressure is a constant reality. Managers responsible for NPD decisions face challenges such as changing market conditions, evolving product definition and increasing competition. At the same time they face constant pressure from within the firm to improve productivity, reduce cost and achieve financial results.

Global spending on R&D is expected to exceed one trillion dollars (R&D Magazine 2008) in 2009 with approximately one half of the R&D spending on NPD. According to the American Productivity and Quality Control benchmarking study (APQC 2003), of the new products launched in the US from 2000 to 2003, just 51 percent were launched on time and only 56 percent achieved desired financial goals. Studies (Cooper 2005) indicate that on average one third of new product developments are considered failures. Observations over the last two decades (More, 1986, Griffin 1996, Cooper 2001) consistently document that technology-based innovations tend to fail in the market because they don’t meet customer needs, they are unreliable, too expensive, provide too little benefit or because they are introduced too late and miss the market window.
Comprehensive analysis of best practices (Cooper 2005) indicates that NPD success rates are improved where NPD planning and product innovation strategy is included as an integral part of the overall strategic planning process. Successful organizations leverage competencies and target attractive markets having sufficient scale and growth to achieve financial success. Focus on the new product selection process, on effective portfolio management and developing capabilities and resources is necessary to achieve growth and return on investment. Success rates on individual projects are increased through improved project planning and execution including striving for unique products and focus on pre-planning activity that validates the scope, opportunity, customer needs, business case analysis and technical feasibility of the project.

Organizations achieving higher NPD success more often have instituted process, structure, tools, metrics and a project management discipline with quality measures and controls to ensure adherence. Success is also correlated with focus on the people aspect of NPD including team structure, having dedicated teams and using cross-functional teams. NPD project management and resource assignment are key success factors and are the focus of this dissertation.

The Product Development Process (PDP) is the general description for the process the firm uses to transform product concepts and opportunities into a stream of products that meet the needs of the customers and the strategic goals of the company (Kennedy 2003). The PDP may be viewed and subdivided in three major steps including; 1) Front End Process (FEP), 2) New Production Development (NPD) process, and 3) commercialization process shown in Figure 1.1 (Koen 2005).
Evaluation and initial screening of the concept is typically performed in the FEP process including assessment regarding technical feasibility and a detailed financial prospectus quantifying value to the corporation. The FEP analysis also considers factors such as fit with the current product portfolio and match to the firm’s strategic capabilities and resources. Following the FEP a decision is made on whether to continue with the development.

Following the FEP many ideas may be put on hold pending availability of resources. Other ideas may be screened or “Killed” prior to moving into a formal NPD development phase. PDMA studies (Griffin 1997) concluded a seven-to-one ratio of concepts to new product launches. Data from the 2003 Comparative Performance Assessment Study (Adams-Bigelow 2005) confirmed that it takes seven product ideas (on average) entering the FEP process to achieve one NPD launch.

Using current best practices, the NPD process is often structured as set of sequence of functional steps or stages where each stage has a unique focus. The decision
points between each stage act as gates that either allow the project pass to the next stage or interject an alternate or revised plan for the project. The Stage Gate process (Cooper 2001) shown in Figure 1.3 allows an organization to guide a project from one stage to the next using simple decision criteria. At each gate the NPD project is reviewed against the criteria and a decision is made on whether to proceed to the next phase of development.

![Diagram of Stage Gate process](image)

Figure 1.2 Structured New Product Development Process.

Time-To-Market (TTM) is measured as the time duration from the inception of the idea to the product launch. NPD processes have evolved over the past several decades and techniques for rapid product development have become increasingly popular throughout the industry (Smith 1998). Significant research to date is aimed at increasing the efficiency and speed of product development. Improvement efforts have often focused on standardized product development processes such as the Stage Gate Process or on design automation tools. In addition project management tools such as project planning via Microsoft Project and application of the Theory of Constraints (TOC) through Critical Chain Project Management (CCPM) have achieved interval reduction.
New Product Development continues to change and evolve and more structure and tools have been introduced over time. Initiatives for further improvements have focused on continuous improvement principles (Deming 1986), Total Quality Management (TQM) (Juran 1999) and more recently Six-Sigma methodologies (Pyzdek 2003). The results have been significant improvement in the quality of the manufactured product. However continuous improvement methods have not necessarily translated into improvement in the effectiveness of the product development process itself as evidenced by continued high rate of new product failures where products are late to market and are not meeting customer expectations.

Recent research (Kennedy 2003) indicates that application of the structured product development processes based on techniques derived from TQM and Six Sigma methodologies may not yield further improvements in NPD performance. New product development tends to be iterative by nature therefore imposing more structure may lead to inefficiencies. Alternative approaches such as Lean Product Development (LPD) or Knowledge Based Development (KBD) are gaining interest as possible approaches for continued improvement.

An ongoing challenge for the firm is to balance the right mix of the various NPD projects to achieve the strategic goals. Success rates depend on the product type or newness of the product. Most firms may simultaneously tackle a mixed portfolio of NPD projects resulting in products that are new to the company or new to a market (Crawford 2003). Achieving the mix of projects typically results in resource assignment and scheduling of small, medium and large projects with multiple projects often scheduled simultaneously or in rapid succession.
1.2 Research Scope

NPD research may be broadly categorized in four key functional areas (Cooper 2005) including; 1) Product Innovation and Technology Strategy, 2) Product Portfolio Management (PPM), 3) Project Management and Techniques and 4) Product Development Process Structure. All of the four areas are major drivers of New Product Development performance and all are interrelated.

This dissertation assumes that the NPD organization is operating in a firm where the product innovation and technology strategy has been well established and where the product/project portfolio has been pre-selected based on strategic criteria. This dissertation is specifically targeted at the more tactical problem associated with NPD Project Management once projects have been selected and chartered. The research focuses on project and resource prioritization, resource assignment and scheduling. The research scope considers the complexity associated with assigning technical professionals that vary in discipline type and skill level. The research supports resource assignment decisions in a multiple project environment where multiple products are developed simultaneously or in rapid succession.

The dissertation deals with decision making in a dynamic environment where each project state is continually changing and where decisions must be made quickly to meet time-to-market constraints. Multi-project decisions take into consideration time constraints and resource constraints that directly translate into market success for the new product and financial success for the project.

The research is particularly applicable in development of technology-intensive products such as telecommunications products, information technology products,
consumer appliance products, consumer electronics products and computer products. The research is specifically focused on the decision problem associated with resource assignment across Short Life Technology Intensive (SLTI) NPD projects having the following characteristics:

- Projects containing high technology content including systems, electronics, mechanical components, mechanical assemblies, firmware, software, packaging, etc. and dependent on availability of a particular technology or maturity of a technology in order to carry through the development to completion.
- Projects having relatively short development cycles in the range of six (6) to eighteen (18) months.
- Projects having relatively shorter life cycle, typically in the range of one (1) to three (3) years, therefore it is critical to launch the product at an opportune time to maximize the commercial success.
- Products launched into stationary market windows where the market opening and expiration dates are well defined and understood and where unrecoverable loss occurs with any delay in the launch date.
- Projects are carried out in a dynamic environment where priorities are often changing and the risks (of failure) are proportionately higher than for other products having less technical complexity due to the uncertainty of customer requirements and risks regarding availability of technical professionals having the skill type and level required to carry out the tasks.

While particularly focused on SLTI-NPD projects, the research applicability may be extrapolated into any class of products where buyer preferences are refined and where products are introduced in wider variety, with greater frequency and under increasing competition. For instance the research may eventually be helpful in new product development of automotive products, medical products and increasingly other products
that in the past have seen less market churn but now are experiencing increased market and competitive pressures.

This research is not focused on the marketing and business management issues associated with sizing the markets, completing the Front End Process and project/product portfolio selection. For the purpose of this research we assume that the Front End Process has been completed and projects have already been selected. All projects have detailed requirements and expectation for achieving revenue and profitability over the product life cycle. Finally the FEP has identified optimal market timing including the optimal product launch date to fully achieve the maximum financial objectives of the NPD project.

1.3 Problem Statement

New product development organizations operating in a multiple project environment face significant challenges in assigning technical staff across multiple projects to ensure the timely completion of projects and product launch corresponding to market windows. The importance of Time-To-Market (TTM) (Griffin 1997, 2002) and launch timing relative to customers and competitors is often cited (Di Benedetto 1999) as a key success factor in NPD. The time-to-market delay consequence for technology intensive products is often characterized by stationary market windows having fixed opening and closing dates. In a stationary market window, the potential value that a product may achieve is determined by the ability to launch the product coincident with the window opening date. Products launched beyond the window opening date result in unrecoverable value lost over the product life-cycle.
The time-to-market value impact is illustrated for integrated circuits in Figure 1.3 (IBM 2006). The chart shows three different types of markets: fast, medium, and slow moving. In a fast moving market, being just three months late can cost over a quarter of a product's potential revenue while being twelve months late can result in loss of over 90% of the revenue. A distinguishing characteristic of the time-value relationship is also apparent in the slower moving market where the cost of delay is less (than the faster moving market) but still significant relative to the maximum potential.

\[\text{Lost revenue} = \text{Revenue reduction due to delay in getting new products to market} + \text{opportunity revenue loss from engineers being unable to work on new products} \]

Figure 1.3 Integrated circuit lost revenue due to TTM Delay.

Projects are ideally planned to take advantage of the known market window and to maximize profits by introducing the product at the earliest date the market opens. The
cost of delay is the projected value lost due to the product being introduced late relative to the value achieved if the product were introduced at the earliest possible launch date.

The business case prepared at the outset establishes the financial goals and objectives for the product over the potential life cycle. The potential project value may be measured as revenues over the potential life of the product. The potential project value is depicted in Figure 1.4 as the area under the potential product life-cycle curve which increases as the market increases and decreases as the market decreases. The NPD product and project value assumes a stationary market window that has opening and closing dates that are known and fixed in time. The opening date is the earliest date a product can be sold into the market and the closing date is the last date a product can be sold.

![Diagram showing potential launch, stationary market window, potential product life, potential value, lost value, actual value, actual development, and actual product life.]

Figure 1.4 NPD project value in a stationary market window.

In such an environment the NPD project management objective is to launch the new products such that the net present value of the product revenues, after factoring in any launch delays is maximized. The corresponding NPD project management decision
then is to assign available technical resources to minimize the sum of the revenue loss due to product launch delays across the multi-project portfolio.

Projects often experience delays and actual schedules are longer than required to satisfy potential launch dates. Because the closing date is fixed in time a delay essentially compresses the actual life of the product after it is launched. The unrecoverable lost value is computed as the difference between the areas of the two curves in Figure 1.4. This lost value is the penalty of the project delay typically quantified as lost revenues (or lost profits).

A typical project team may have multiple resource types such as mechanical engineers, electrical engineers, manufacturing engineers and technicians. Resources of differing discipline are generally not interchangeable regarding project role and task assignments. Managing technical NPD projects requires the ability to assign technical professionals of different disciplines and skills to projects and tasks and achieve project objectives within the specified time frame. Furthermore a range of skill levels typically exists for each resource type in the organization. Along with the range of skill levels the proficiency of completing tasks may differ significantly between a resource with a higher skill level and that of one with a lower skill level. The resource assignment decisions must account for differences in skill level and associated work rates.

Most organizations are typically not only concerned with a single project but have multiple projects that must be planned in parallel. Typically organizations also have a queue of NPD projects awaiting resources and undertake projects in rapid succession. The focus of this research is to provide a framework for resource assignment across multiple product development projects. The dissertation develops a model for
characterizing the impact of resource assignment decisions on individual projects and the overall program of NPD projects.

At any given point in time, the NPD organization must monitor and review the status of each project, to make any necessary adjustments and make sure the entire program is on track to meet objectives. This will typically happen weekly, monthly or at convenient transition points on the project such as at gate reviews or integrating events. NPD project management may often have very few degrees of freedom to increase the budget or alter the staff size of the organization. In fact resources are usually constrained based on annual budgets and very inflexible.

The problem confronting NPD management is to determine the impact of decisions regarding assigning existing available technical resources on the overall program of multiple projects. There are currently limited means for considering the impact of these decisions in a rapidly evolving SLTI-NPD multi-project environment. In order to consider the impact of the decisions managers must account for all of the highly differentiated technical tasks on each project. In addition, management must consider the availability of technical staff with the resource types and skill levels required to complete the project. Furthermore they must quickly assess the impact of resource assignment decisions on delay and on the projected program value.

Current decision tools typically do not consider the technical complexity of the requirements and resources involved or the inherent variation associated with task duration and schedule duration estimates. There is a need for an improved NPD resource assignment model that improves planning and effectiveness in multi-project, resources constrained, and technologically intensive product development environments.
1.4 Decision Model Structure

This dissertation focuses on the NPD multi-project resource assignment problem for technology intensive products launched into stationary markets. Key components of the resource assignment problem structure are depicted in Figure 1.5. The structure includes a program of multiple projects each consisting of technical requirements that are translated into project tasks. The tasks are characterized by skill requirements, durations and logical precedence relationships. A set of resources are available with appropriate discipline (resource type) to complete the project tasks. The resources have varying skill level with the potential for different work rates and task completion times. Each project has an expected value quantified as the revenues, profits or net present value of the product over the product life cycle. The objective is to complete assignments and schedules such that the value lost due to delay is minimized across the program of multiple projects.

Schedules and project launch dates are estimated as resources are assigned to projects. The value lost to the project is the difference between the potential value and the actual value realized. The key SLTI-NPD project management objective is to launch the new products such that the net present value of the product revenues, after factoring in any launch delays is maximized. The corresponding NPD project management decision then is to assign available technical resources so as to minimize the sum of the revenue loss due to product launch delays across the program of multiple projects.
In order to model the problem for this dissertation we assume that certain key data is known and available, including:

- Potential value for each product.
- Potential life for each product once launched.
- Potential launch date or earliest date a product can be sold.
- Number and identification of each task.
- Resource type required for each task.
- Duration estimates for each task.
- Network/logical precedence relationship for each project.
- An inventory of technical resources of known type and skill level.
1.5 Research Objectives

This dissertation focuses on the SLTI-NPD resource assignment problem with the objective to launch new products to maximize the net present value of the product revenues after factoring in any launch delays. The corresponding NPD project management decision is to assign available technical resources so as to minimize the sum of the revenue loss due to product launch delays across the program of multiple projects. Four objectives are considered:

1. Research Objective Number One (see Chapter 3).

 Characterize SLTI-NPD projects and products using case studies to highlight technical complexity, trend towards shorter development cycles, time-sensitive revenue life cycle and time-to-market success factors.

2. Research Objective Number Two (see Chapter 4).

 Formulate the SLTI-NPD project management resource assignment problem including characterization of projects by requirements, tasks, skill requirements, durations, logical relationships and a known potential revenue cycle. The resources are technical professionals characterized by skill levels in a known set of technical disciplines (resource types).

3. Research Objective Number Three (see Chapter 5 and Chapter 6).

 Develop a decision model and solution for multi-project resource assignment and scheduling using a multi-step process which first prioritizes projects for resource assignment and then assigns and schedules resources to specific tasks across multiple projects while minimizing the loss due to schedule delay.

4. Research Objective Number Four (see Chapter 7).

 Develop a decision support tool for resource assignment in a multi-project environment. The Resource Assignment and Multi-Project Scheduling (RAMPS) decision support tool incorporates the decision model and solves the resource assignment problem two phases; (i) a constructive approach that employs priority rule heuristics to derive feasible assignments and schedules and (ii) an improvement heuristic that considers the productivity gains that may be achieved by interchanging resources of differing skill levels and corresponding work rates.
1.6 Research Significance

The success of corporations and organizations usually depends on the success of new products in the marketplace. On average one third (Cooper 2005) of new products are unsuccessful and launch delay is often cited as significant factor contributing to failure. New Product Development (NPD) organizations face significant challenges assigning and scheduling resources of various technical disciplines and skill levels to multiple projects while achieving market driven launch dates that minimize revenue cycle loss across the entire program of projects. This dissertation addresses specific aspects of the resource assignment problem crucial to NPD success, including:

1. A scheduling methodology formulated with critical chain project management techniques that incorporates two-point task estimating to simplify consideration of task and project schedule variation while still providing robust baseline scheduling estimates. Traditional current best practices typically use single point estimates (deterministic) resulting in unrealistic schedules without consideration of estimating variance. Triple-point estimates (PERT) while incorporating variation are infrequently used in practical NPD environments due to the extra effort in developing the full range of data required.

2. A product life-cycle valuation function anchored to a pre-defined launch date provides linkage between robust schedules and time-sensitive revenue life cycle and models the loss of revenue at an accelerated rate which is consistent with the rate of revenue loss commonly seen in technology intensive products. Traditional models tend to model the time-sensitive loss as a linear function resulting in a high risk of underestimating the impact of launch.

3. A project prioritization scheme that uses the product life-cycle valuation function and robust schedule as the basis for deriving productivity metrics. The productivity metric provides management with parameters to adjust based emphasis based on knowledge (optimism/pessimism) of overall resource availability to the program. The productivity metric is used to rank projects for resource scheduling. Traditional best practices base priority decisions strictly on NPV without consideration to the effort needed to complete the project. While NPV remains an excellent metric the research shows that productivity metrics provide improved guidance for resource assignment.
4. A resource prioritization scheme based on pre-sorting resources by skill level prior to assignment. Prioritized skill level assignment results in substantial improvement in the scheduling performance and improved efficiency in scheduling algorithms.

5. A resource assignment and scheduling solution that includes; 1) a constructive approach that employs priority rules for projects, tasks and resources to derive a feasible solution and 2) an improvement heuristic that considers the improved productivity that can be achieved by interchanging resources of differing skill levels and corresponding work rates.

6. A Resource Assignment and Multi-Project Scheduling (RAMPS) decision support tool that executes the entire methodology and provides automated support for resource assignment and scheduling in a multi-project environment. The RAMPS tool first prioritizes projects for resources assignment and then assigns and schedules resources to specific tasks across multiple projects while minimizing the revenue loss across all projects. Current project management tools typically provide little or no automated support for multiple projects, multiple resource types, project prioritization, resource skill level, resource prioritization, assignment and financial modeling.

7. A computational methodology is introduced including multiple non-dominated project data sets that allow simulation of realistic project cases. Results point to significant productivity and efficiency gains that can be achieved through effective planning, prioritization and deployment of technical resources.

The research has the potential to improve NPD resource assignment decisions allowing the NPD organization to more effectively and efficiently deploy resources. One result will be to improve the throughput and cycle time of New Product Development. The research also has the potential to improve success rates which will lead to improved financial performance across the program of multiple projects.
1.7 Dissertation Overview

The dissertation presents the development of the RAMPS methodology for resource assignment in SLTI-NPD projects. The RAMPS steps can be divided into two phases. The first phase focuses on project valuation and prioritization, while the second phase focuses on resource assignment. This dissertation is organized into eight chapters that describe the overall model, specific RAMPS steps, experimental analysis and results.

Chapter 2 reviews the NPD literature in the context of NPD project management, project prioritization and selection and resource constrained project scheduling. Chapter 3 provides a case study review of Short Life Technology Intensive (SLTI) NPD projects and highlights technical complexity, short development cycles, short revenue life-cycles and time-to-market success factors. Chapter 4 develops a formulation for the NPD project management resource assignment problem including task formulation, skill characterization, resource inventory and the resource assignment decision variables. Chapter 5 develops a productivity based project prioritization model with emphasis on minimizing the lost project value as a function of anticipated delay relative to potential launch date. Specifically, the RSM, PVM and PPM modules depicted in Figure 1.6 are presented in Chapter 5. Chapter 6 provides the resource assignment method that employs a combination of traditional project management techniques with iterative search algorithms and rules based heuristics. Specifically, the RPM, CAM and SLAM modules depicted in Figure 1.6 are presented in Chapter 6. Chapter 7 describes the RAMPS Decision Support Tool and also provides a computational analysis using project data sets that simulate actual multi-project programs. Chapter 8 provides discussion, highlights areas for potential future research.
Figure 1.6 RAMPS Methodology for SLTI-NPD Resource Assignment
CHAPTER 2
LITERATURE REVIEW

This chapter provides a review of NPD literature in the following areas 1) NPD overview, 2) technology intensive products, 3) project prioritization, 4) NPD project management and 5) resource constrained project scheduling.

2.1 NPD Literature Overview

Krishnan (2001) provides a comprehensive overview of the NPD literature with a broad coverage of product development research including citations to over two hundred references in the academic fields of marketing, operations management and engineering design. This literature review focuses on product development projects and decisions within a single firm. Krishnan's review provides references in the areas of concept development, supply chain design, product design, performance testing and production ramp-up and launch. A complete set of references is included that discuss NPD speed, price, capacity, reliability, etc. References cited in Krishnan are systematically drawn from the following journals.

- Journal of Product Innovation Management
- Management Science
- Marketing Science
- Journal of Marketing Research
- Research Policy
- Strategic Management Journal
- IEEE Engineering Management
- Research in Engineering and Design
- ASME Journal of Mechanical Design
The field of NPD is rapidly evolving and extensive resources, current research and links are available at the following web sites:

Table 2.1 NPD Web Site References

<table>
<thead>
<tr>
<th>Web Site</th>
<th>Description</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.prod-dev.com</td>
<td>Stage-Gate, Portfolio Management, Working Papers</td>
<td>Institute</td>
</tr>
<tr>
<td>www.ulrich-eppinger.net</td>
<td>Product Design and Development, extensive links</td>
<td>Ulrich</td>
</tr>
<tr>
<td>cipd.mit.edu</td>
<td>Center for Innovation in Product Development, MIT Research</td>
<td>MIT</td>
</tr>
</tbody>
</table>
Excellent textbooks are also available in the field of NPD research:

<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Products Management</td>
<td>1983</td>
<td>Crawford & Di Benedetto</td>
</tr>
<tr>
<td>The Machine that Changed the World</td>
<td>1990</td>
<td>Womack, Jones and Roos</td>
</tr>
<tr>
<td>Product Design and Development</td>
<td>1995</td>
<td>Eppinger & Ulrich</td>
</tr>
<tr>
<td>Design for Excellence</td>
<td>1996</td>
<td>Bralla</td>
</tr>
<tr>
<td>Developing Products in Half the Time</td>
<td>1998</td>
<td>Smith & Reinertsen</td>
</tr>
<tr>
<td>Thinking Beyond Lean: How Multi-Project Management is Transforming Product Development at Toyota and Other Companies</td>
<td>1998</td>
<td>Cusumano & Nobeoka</td>
</tr>
<tr>
<td>Product Strategy for Technology Companies</td>
<td>2001</td>
<td>McGrath</td>
</tr>
<tr>
<td>Winning at New Products</td>
<td>2001</td>
<td>Cooper</td>
</tr>
<tr>
<td>Portfolio Management for New Products</td>
<td>2001</td>
<td>Cooper, Edgett, & Kleinschmidt</td>
</tr>
<tr>
<td>Proactive Risk Management: Controlling Uncertainty in Product Development</td>
<td>2002</td>
<td>Smith & Merritt</td>
</tr>
<tr>
<td>PDMA Tool book for New Product Development</td>
<td>2002</td>
<td>Belliveau, Griffin & Somermeyer</td>
</tr>
<tr>
<td>Product Development for the Lean Enterprise</td>
<td>2003</td>
<td>Kennedy</td>
</tr>
<tr>
<td>Project Management: A Systems Approach to Planning, Scheduling and Controlling</td>
<td>2003</td>
<td>Kerzner</td>
</tr>
<tr>
<td>PDMA Tool book 2 for New Product Development</td>
<td>2004</td>
<td>Belliveau, Griffin & Somermeyer</td>
</tr>
<tr>
<td>PDMA Handbook of New Product Development</td>
<td>2005</td>
<td>Kahn, Castellion, & Griffen</td>
</tr>
<tr>
<td>Product Leadership</td>
<td>2005</td>
<td>Cooper</td>
</tr>
<tr>
<td>The Toyota Product Development System</td>
<td>2006</td>
<td>Morgan & Liker</td>
</tr>
</tbody>
</table>
Technology intensive NPD (Gertler 1995) is quite different from that in most consumer markets. For technology intensive products seller-customer interactions take on the characteristics of a collaborative relationship. In mature industries like consumer goods, NPD is usually a seller-led process where individual customers play a relatively passive role during most phases of the NPD process. In contrast, the development of technology intensive products is characterized by close and frequent interactions between sellers and buyers that extend through multiple phases of the process.

A balance between market and technology focus is needed (Crawford 2003, Gatignon 1997) for successful technology intensive product innovation to occur. The level of interaction between R&D and market orientation will influence the characteristics of technology innovation including type of innovation (e.g. incremental vs. radical), speed of innovation, capacity for innovation and quality of innovation.

The new competitive landscape (Hitt 1998) describes an environment driven by technological intensive product revolution and significant globalization, that is moving towards hyper competition (rapidly escalating competition and strategic maneuvering), extreme emphasis on price, quality and satisfaction of customer needs, and an increasing focus on innovation (both in technology and new products). Furthermore time frames of all strategic actions are being reduced. In this new competitive landscape firms exist in highly turbulent and chaotic environments.

The importance of Time-To-Market (TTM) (Griffin 1997, 2002) and launch timing relative to customers and competitors is often cited (Di Benedetto 1999) as a key success factor in technology-intensive products NPD. Product life cycles (Bettis 1995) in
certain markets have significantly shortened thereby compressing the available time window for recouping the expenses associated with technology based product development. NPD speed is critical in technology intensive products (Alfonso 2008) because product life-cycles are shrinking and obsolescence is occurring quicker than in the past, while competition has also intensified. The time-to-market delay consequence is important for an entire class products characterized by technical complexity. Products such as consumer electronics (MacCormack 1997) that include real time operating systems, hand-held devices, palm devices, cell phones, and mobile communication systems require return on investment within a short time span of about two years.

The life expectancy of computer hardware (Rehemtulla 2006) is changing rapidly based on technology innovation. For example, PC computer technology relatively short life expectancy, since newer technology is being introduced at a rapid pace, and older hardware is dropping out of a vendor's product line. It is common for today's PC vendors to introduce new product or product bundles every two to four months.

2.3 Project Prioritization

The NPD portfolio selection process aligns product development projects with the strategic intent of the organization (Cooper 2001) and provides clear priorities to guide development activity. Planning initiatives result in opportunity statements, business cases, requirements, market driven project plans and high level schedules and targets for a set of NPD projects roughly sized to the capabilities of the organization. This strategic plan provides the potential market value for each new product and identifies the launch date that must be achieved in order to capture the potential life and value for the product.
NPD project selection research generally describes mathematical programming techniques such as Linear Programming or Integer Programming (Loch 2001, Dickinson 2001) for selecting an optimal set of projects. Real Options Theory (Huchzermeir 2001) may be used to make portfolio selections incrementally based on the most recent information available. The Analytical Hierarchical Process (Calantone 1999, Chin 2008) is a simple, intuitive and yet powerful method for project selection through pair wise comparison. Statistical methods (Butler 2001) consider multi-attribute and performance measures to complete ranking and selection of projects. Scoring models (Cooper 2005) account for the many qualitative factors utilized to calibrate a project's desirability, attractiveness, or potential for success.

Financial techniques (Cooper 2005) such as expected commercial value, Net Present Value (NPV), bang-for-the-buck and productivity index are widely used techniques primarily due to ease of use. Additional contributions focus on optimizing the financial returns (Loch 2002) of a NPD portfolio using an analysis such marginal return on investment. A case is made (Ross 1995) that Internal Rate of Return (IRR) and profitability index (PI) provide more efficient capital allocation metrics for project selection versus NPV. However NPV continues to be the dominant factor (Haley 1995) in project selection due to ease of use and universal acceptance. Newer models incorporate the dynamic nature of portfolio management such as changing market conditions and evolving risk management. The dynamic models can be applied to the overall portfolio and may be used to roll up the collection of projects into an overall optimized financial metric.
2.4 NPD Project Management

Increased NPD complexity is generally associated with (Griffin 1997) increased cycle times due to the increased number of functions designed into the product. Significant research (Eppinger 1994) is aimed at structuring complex design projects into sub-tasks in order to develop better products more quickly. A matrix representation captures both the sequence of and the technical relationships among the many design tasks to be performed. These approaches offer opportunities to speed development progress by streamlining the inter-task coordination.

Development of technology intensive products typically requires collaboration across multiple organizations to facilitate knowledge growth (Davenport, 2003), knowledge sharing and dissemination. For example, in developing a consumer electronics product, it is common to employ outside expertise in specialized areas such as Digital Signal Processing, protocols or operating systems.

In planning the NPD project (Kerzner 2003) the project manager must structure the work into small elements that are manageable, independent, integratable and quantifiable. This first major step in the planning process (after requirements definition) is the development of the Work Breakdown Structure (WBS) which is subdivision of the requirements in accordance with the way the work will be performed. The WBS acts as the primary vehicle for breaking the work down into smaller elements, thus providing a greater probability that every major and minor activity will be accounted for. In setting up the work breakdown structure tasks have clearly defined start and end dates and estimates for the amount of effort to complete the tasks.
NPD project scheduling has evolved out traditional project scheduling (Hillier 2001) techniques including the Performance Evaluation and Review Technique (PERT) and the Critical Path Method (CPM). These project scheduling algorithms are derived from networks of sequential tasks each having varying start and end dates and with intricate interdependencies between tasks. Software tools have evolved to facilitate utilization of the scheduling approaches including the popular Microsoft project tool. Other simpler tools such as Gantt charts may be effective for smaller products.

The Theory of Constraints (Goldratt 1997) includes a methodology for resource assignment that involves providing statistical estimates for task completion including an estimate of average completion time and low-risk completion time. These estimates are used in computing the need for probabilistic slack time in the projects thereby providing a practical approach in managing projects via critical chain buffer management.

Analogous research on the resource assignment problem is found in the fields of manufacturing and computing. For instance the cellular manufacturing problem (Askin 2001) involves a methodology for the assignment of workers into cells to optimize the cell-based production environment. This research (Norman 2002) has been extended to include consideration for worker skill type and skill level prior to assigning the workers to the cell. The manufacturing resource assignment problem typically has the objective to maximize throughput or minimize cost. Other similar analogous models are found in the computing industry in order to solve the problem (Lewis 2004) of assigning a set of tasks to one of several processors where the associated inter-task communication and processing costs are minimized.
2.5 Resource Constrained Project Scheduling

Resource constrained project scheduling problem (RCPSP) has been discussed in the literature for several decades (Davis 1975) and is still an active area of research for applied mathematical programming. A vast majority of the research (Van de Vonder, 2008) efforts in recent years have concentrated on the development of exact and heuristic procedures for generation of a workable baseline schedules. Exact methods (Herroelen 1998) applied so far include dynamic programming, zero-one integer programming and implicit enumeration with branch and bound. Due to the fact that the RCPSP is one of the most intractable problems in Operations Research it is a popular problem for approximate techniques, including virtually all local search paradigms. Recent contributions focus on Branch and Bound (De Reyck 1998), Genetic Algorithm (Chen 2009) and priority rule heuristics (Xu 2008) to solve the RCPSP. A comprehensive experimental test was recently conducted (Kolish 2006) of more than thirty of the best published algorithms using relatively standard accepted procedures and standard data sets. The results indicate the best algorithms combine several components including forward-backward improvement technique to improve schedules that have been constructed from metaheuristics such as Genetic Algorithms and tabu search. Several excellent texts have been published (Demeulemeester 2002, Klein 2000, Schwindt 2005) that provide broad coverage of mathematical formulations and computational approaches for the single project RCPSP. The

By comparison to the single project RCPSP literature, research on the multi-project scheduling problem is relatively small. The research does date to the 1960s (Fendly 1968) where solutions were developed using priority rule heuristics and Monte
Carlo simulations. Investigation into heuristics (Kurtulus 1982, 1985) discovered that the best rules established for single project scheduling do not necessarily serve as the best priority rules for multiple project scheduling. Furthermore research (Dumond 1988) concluded that no one heuristic will give the best solution under a wide range of simulations conducted. The aspect of differentiated skill levels was introduced (Bock 1990) as component of the multi-project new product development scheduling problem and again focused on priority rules which provided the best results in computational experiments. Extensive computational experiments (Lawrence 1993) tested a wide variety of priority rules related to minimizing project delay.

Recent research continues the path of exploring heuristics (Lova 2000, Kruger 2009) and computational experiments to understand the strength of the various priority rules. In addition search techniques such as Genetic Algorithms (Goncalves 2008) Branch and Bound (Chen 2009) to the multi-project scheduling problem have recently been published demonstrating solutions with excellent results.
CHAPTER 3
SHORT LIFE TECHNOLOGY INTENSIVE (SLTI) PRODUCTS

This chapter satisfies Research Objective Number One (1) by characterizing Short Life Technology Intensive (SLTI) Products using case examples to identify attributes that distinguish SLTI projects from other types of NPD projects. The chapter identifies technical complexity, shorter development cycles and shorter product life cycles as key characteristics of SLTI products. The analysis highlights time-to-market as a key success factor for SLTI products.

3.1 Product Life Cycle

The product life cycle is defined as the time from the introduction of the product until the decline or removal of the product from the market. Products typically progress from one stage to the next during the time period when they are available for sale to the market. The total sales and profits of the product over the life cycle tend to follow a classic “S” shaped curve (Armstrong 2003) as shown in Figure 3.1.

During the product life cycle sales vary from zero in the development stage, to a low rate of change in the introductory stage, a high rate of change during the growth phase, reach a peak during the market phase, and then decrease during the decline phase. In the introduction stage, sales tend to be low because of the new idea or product is just being introduced into the market for the first time. In the growth stage, the sales tend to grow very rapidly and the profits begin to rise. Competitors may see this opportunity and enter the market by copying or improving upon the product. Profits begin to decline because of the increased competition that the new product creates. In the maturity stage the sales may peak or level off. The industry profits continue to decrease during the
maturity phase. During the sales decline phase products are typically replaced by newer products. The competition from the declining products becomes more energetic. Firms with strong positions may make profits until the end of the sales decline because they have successfully differentiated their products from the others. Firms may also keep some sales by appealing to their loyal customers or those who may be slow to try the new ideas.

![Graph showing Sales, Profit, and Sales over time phases: Development, Introduction, Growth, Maturity, Decline]

Figure 3.1 Product Life Cycle “S” curve.

An aggressive strategy adopted by some firms is to increase overall sales volume by rapidly introducing new products in rapid succession (Metcalf 2006) and thereby purposely reducing the life cycle of preceding products. One result is to reduce the time between repeat purchases, (referred to as shortening the replacement cycle) which may generate repeat sales in rapid succession. Some firms pursue this strategy to offset the
additional costs of research and development and opportunity costs of existing product line cannibalization. In a competitive industry, this can be a risky strategy because consumers may decide to buy from your competitors. However speed of introducing newer and better features may also allow the firm to outpace their competitors.

Products containing high technology are often rushed to market and the initial release may not incorporate all of the desired features. Some features may be dependent on technological advances that are still maturing and not proven adequately for a first generation. However technologies may become available for use in a next generation product. Another common scenario is that resources are not available to complete all the desired features to meet a market window that is opening. In this case the development may be divided into a series of feature releases. This path of rapid innovation and planned obsolescence may be a powerful approach in a fast paced competitive industry.

3.2 Short Life Technology Intensive NPD Projects

The research in this dissertation will focus on Short-Life-Technologically-Intensive (SLTI) NPD products. SLTI products and projects have the following characteristics:

- Products containing high technology content including systems, electronics, mechanical components, mechanical assemblies, firmware, software, packaging, etc.

- Products dependent on availability of a particular technology or maturity of a technology in order to carry through the development to completion.

- Risk (of failure) associated with the technical product being proportionately higher than for other products having less technical complexity due to the uncertainty of customer requirements and rapid product obsolescence.

- Products and projects require availability of technical professionals having a variety of disciplines required to carry out project tasks.
• Products are created in an environment where there are usually multiple technical products under development simultaneously leading to resource contention and complexity of scheduling various technical resources involved.

• Market opening and market expiration dates are stationary, well defined and understood.

• Product life cycle tends to be shorter therefore time-to-market is critical to introduce the product at the earliest date possible in order to maximize the revenue cycle.

• Product features may be introduced in rapid succession through a series of next generation designs either building on the previous generation or replacing the previous generation with a new and improved product.

• Products tend to be pulled by specific customer needs as opposed to those driven by fundamental research.

SLTI products differ from non-technology products in the following ways:

• Technological products require highly skilled professionals such as mechanical engineers, electrical engineers, industrial engineers etc.

• Each of these skilled professionals typically has a specialty or area of concentration that must be categorized and understood so that projects can be planned to carry out work in a reasonably efficient manner.

• Since the supply of highly skilled professionals is inherently limited, these technical resources become the primary constraint in product development.

• Since technology is changing and evolving, market windows are opening and closing quickly and therefore product development organizations are under pressure to reduce the intervals for developing and introducing new products.

• The development of technology intensive products is highly competitive in nature and organizations are increasingly using cycle-time reduction as a means to increase likelihood of success.

• The risk of technology complexity or maturity is not always incorporated into the project management process.

• The risk due to the availability or unavailability of technical professional resources of differentiated skill type and skill level is not always accounted for in the resource assignment process.
• The risk associated with variation in task duration estimates and project schedule estimates is often not considered as a factor impacting potential NPD project value.

• Technology intensive products are typically developed in a dynamic multi-project environment where conditions are constantly changing and where scarce technical resources are typically over assigned thus leading to serious contention and delay.

3.3 Case One - Apple iPod

On October 23, 2001 Apple announced the launch of the iPod offering a whole new category of digital music player to the consumer market. The iPod allows a user to carry an entire music collection in their pocket and listen to it wherever they go. The initial iPod NPD cycle was carried out in 6-to-9 months during the year preceding the NPD launch. Apple employed a team of about 30 engineers including mechanical designers, electronic hardware engineers and software programmers (Kahney 2004). After the first prototypes were constructed, the project received 100 percent of Steve Jobs (CEO of Apple) attention. The design was scrutinized heavily by Jobs to get the sound quality and usability where he wanted it to be.

The accelerated NPD project was enabled by using collaborative development that included contract design and manufacturing firms (Sherman 2002). The unique design relied on a technology platform and reference design for the MP3 decoder and controller created by a third party, Portal Player. The MP3 controller design was selected by Apple because it was an existing stable design that provided the highest quality sound while also allowing customization. Apples design team created a compacted nested design that added to the MP3 controller a flash memory chip, miniature hard drive, interface controller, interface dial and screen and a power management and
battery charging controller. Apple specifically avoided combining functions into an ASIC for the first release and instead specified the use of standard off-the-shelf components to reduce the risk and decrease the time-to-market. Apple also employed the services of an outside firm to assist with the operating system and software interface.

The Apple iPod is the prototypical example of a SLTI product. The iPod products were developed and released quickly and in rapid succession (Reynolds 2006). Rather than resting on the success of the initial iPod products, Apple continued to develop and rapidly introduce new generations of products that were considered competitive to Apple's own previous iPod models that were still selling well. This product development strategy enabled Apple to achieve a market leadership position in just a few years – this in a market where they previously did not compete. The various generations of iPod classic products is depicted in Figure 3.2 and listed below (Kahney 2005, Wikipedia 2009):

- 1st Generation - October 2001: The first generation iPod product was introduced with 5GB memory holding up to 1,000 songs and playing up to 10 hours of music. Apple sold 125,000 units in the fourth quarter of 2001.
- 2nd Generation - July 2002: The second generation iPod product line was expanded to include download capabilities from a Windows interface and additional models with touch sensitive controls were introduced with up to 20GB of memory.
- 3rd Generation - April 2003: The third generation iPod was introduced to include a USB 2 interface and the ability to download music to a Mac via a new web service iTunes and to provide additional models in storage capacity to 30GB of memory.
- Fourth Generation - July 2004: The fourth generation iPod is introduced featuring extended battery life and the ability to shuffles songs.
- Fifth Generation – October 2005 – The fifth generation, also known as the iPod Video, featured a larger screen and smaller Click Wheel and plays video such as TV shows, podcasts, music videos, and movies purchased from online stores.
Sixth Generation – September 2007 – A new thinner aluminum sliver body with improved battery life, larger backlit display and a completely overhauled user interface incorporating more graphics.

Figure 3.2 Time line for Applies iPod classic.

After the original launch in 2001, it took over a year and a half for Apple to hit the one million mark for iPods sold. Six months after launching the third generation iPod, the company had sold its second million iPods. By late October 2004, aided by the release of the fourth-generation iPod, Apple was up to almost 6 million total units. The unit sales trend of the iPod classic is depicted in Figure 3.3.
Apple iPod developments are excellent examples of consumer electronics SLTI NPD projects environment. As illustrated in Table 3.1, NPD duration averaged 12 months and product life duration averaged only 18 months.
Table 3.1 Apple iPod classic NPD project duration and product life duration.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Product</th>
<th>Launch</th>
<th>Estimated NPD Project Duration (months)</th>
<th>Estimated Product Life Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First generation</td>
<td>October 2001</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Touch wheel</td>
<td>July 2002</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Dock Connector</td>
<td>April 2003</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Click wheel</td>
<td>July 2004</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Video</td>
<td>October 2005</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>New Profile</td>
<td>September 2007</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>Ave.</td>
<td></td>
<td></td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

Factors contributing to the Apple iPod NPD success are provided in Table 3.2.

Table 3.2 Apple iPod NPD success factors.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Apple iPod Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership</td>
<td>Involvement of top management in the NPD project leadership.</td>
</tr>
<tr>
<td>Team of Skilled Resources</td>
<td>> 30, Mechanical Engineers, Electrical Engineers and Software Engineers dedicated to the project.</td>
</tr>
<tr>
<td>Collaborative Development</td>
<td>Contract development of the OS system.</td>
</tr>
<tr>
<td>Technology Platform</td>
<td>High performance MP3 decoder available and enabled flexible programming.</td>
</tr>
<tr>
<td>Technology Components</td>
<td>All off-the-shelf components reduced risk and time-to-market including; MP3 decoder and control, flash memory chip, miniature hard drive, interface controller/software, interface dial, screen and power management controller.</td>
</tr>
<tr>
<td>Differentiation</td>
<td>Ergonomic control interface provided users with a simple way to organize and manage digital music. First to provide practical music download from the internet.</td>
</tr>
<tr>
<td>NPD Environment</td>
<td>Multiple project, products replaced in rapid succession.</td>
</tr>
<tr>
<td>Time-to-Market</td>
<td>First to market with a product of this type.</td>
</tr>
</tbody>
</table>
3.4 Case Two - FONS Fiber Hub

In July 2002, Verizon issued a Request for Proposal (RFP) to suppliers interested in manufacturing passive optical components for use in constructing a new fiber optic network. The RFP included requirements for a new class of enclosures called the Fiber Distribution Hubs (FDH) that serve as the primary network interface point for connecting fiber optic services to consumers and neighborhoods served by Verizon. The FDH enclosure contains prearranged fiber cables and strands, optical splitters and optical connectors used by Verizon technicians to quickly connect new voice, internet or video services being marketed to residential subscribers.

Fiber Optic Network Solutions (FONS), a small manufacturing firm based in Marlboro, Massachusetts had begun work almost a year earlier on several product platforms aimed at expanding the use of fiber optic components in the outdoor telecommunications environment. One key development included significant technical improvements in the quality, performance and reliability of optical connectors leading to the first industry certification of an optical connector for use in outdoor environments. FONS also developed competencies in packaging optical splitters in re-enterable outdoor enclosures. FONS had a team of six engineers including optical engineers, mechanical engineers and test engineers working on developing the FDH product for Verizon. These advanced technical capabilities allowed FONS to secure a winning proposal and to introduce the FDH product for use in Verizon’s new network.

FONS completed the NPD cycle in less than six months and the first of it’s kind product was shipped in January 2003 (Reagan 2004). The ergonomic features and design for ease of use made the FONS FDH the favorite of field users. During the first year of
deployment FONS FDH had achieved more than 50% market share, shipped nearly 10,000 units. During 2004 FONS quickly began development of a second generation FDH product family to significantly reduce the size over the first generation FDH. The second Generation FDH was developed by the same team and introduced in less than nine months achieving a 50% size reduction along with further ergonomic improvements (Reagan 2005). The second generation FDH products were introduced in phases while achieving more than 70% market share.

The FDH sales continued to increase during the period of 2004 and 2005 establishing FONS as the industry leader. In 2005 FONS once again implemented a rapid NPD cycle that enabled introduction of the third generation FDH product family. The nine month development allowed FONS to introduce the third generation FDH in January 2006 and continue to retain the market leadership position.

FONS FDH Product Developments & Replacements:

- **1st Generation - January 2004:** The first generation FDH product was introduced with a partial set of capabilities allowing FONS to capture over 50% market share resulting in shipment of over 10,000 units during the first year of production.

- **2nd Generation - March 2005:** The second generation FDH product line was introduced to replace the first generation product line with smaller form factor and a more complete line of options while continuing to include the ergonomic features and benefits found to be successful on the first generation product. The second generation product line enabled FONS to capture nearly 70% market share and increase production to nearly 15,000 units per year in 2004 and 2005.

- **3rd Generation - January 2006:** The third generation FDH was introduced to include size reduction and several additional features that make the product even easier to use. FONS continued to demonstrate strong market growth with nearly 80% market share and production increasing to a rate of 20,000 per year in 2006.
The FONS FDH case provides an excellent example of a SLTI NPD project environment. As illustrated in Table 3.3, NPD duration averaged 9 months and product life duration averaged only 15 months. Factors contributing to the FONS NPD success are provided in Table 3.4.

Table 3.3 FONS FDH early NPD project duration and product life duration.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Product</th>
<th>Launch</th>
<th>NPD Project Duration (months)</th>
<th>Product Life Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gen 1</td>
<td>January 2004</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Gen 2</td>
<td>March 2005</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Gen 3</td>
<td>January 2006</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Ave.</td>
<td></td>
<td></td>
<td>9</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 3.4 FONS FDH NPD success factors.

<table>
<thead>
<tr>
<th>Factor</th>
<th>FONS FDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership</td>
<td>Involvement of top management in the NPD project definition and resource assignment.</td>
</tr>
<tr>
<td>Team of Skilled Resources</td>
<td>Mechanical Engineers, Optical Engineers and Reliability Engineers assigned to the project.</td>
</tr>
<tr>
<td>Collaborative Development</td>
<td>Contract development of the optical splitter technology. Contract manufacture of enclosures and cable assemblies to reach scale.</td>
</tr>
<tr>
<td>Technology Platform</td>
<td>Certified Optical connectors available for rugged outdoor environmental applications.</td>
</tr>
<tr>
<td>Technology Components</td>
<td>Many off-the-shelf components reduced risk and time-to-market including; optical fiber, optical connectors, optical fanouts and optical splitters.</td>
</tr>
<tr>
<td>Differentiation</td>
<td>Ergonomic fiber management design provided compact yet craft-friendly organization.</td>
</tr>
<tr>
<td>NPD Environment</td>
<td>Multi-project, products replaced in rapid succession.</td>
</tr>
<tr>
<td>Time-to-Market</td>
<td>First to market with a product of this type.</td>
</tr>
</tbody>
</table>
3.5 Case Summary Analyses

The Apple iPod and FONS FDH are entirely different technology-intensive products developed for entirely different markets and applications. However, the similarities between the iPod and FDH product development initiatives described the characteristics and attributes of SLTI products and projects. A summary analysis of SLTI NPD project characteristics for the iPod and FDH products is provided in Table 3.5. Key attributes of the iPod and FDH SLTI products and projects include;

1. Technical complexity requiring resources of multiple technical disciplines and skill levels.
2. Short development cycles typically in the range of six (6) to eighteen (18) months.
3. Short product life in the range of one (1) to two (2) years.
4. Next generation products developed in rapid succession thereby obsoleting previous generations with new models.
5. Products developed in competitive markets where TTM is critical to capturing sales and market share that translate into return on investment.
6. Products developed in multiple project environments.

The resource assignment methodology developed in this dissertation is primarily focused on the attributes listed above. It is worth noting that technology strategy and use of established platforms and components played an important role in the success of both the iPod and FDH. In addition, the involvement of senior leadership directly in the development details was also found to be a key success factor in both products. Ergonomic design played a major role in allowing both the iPod and FDH to achieve market leadership.
Table 3.5 Analysis of SLTI NPD project characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>iPod</th>
<th>FDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generations Reviewed</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Ave. NPD Duration</td>
<td>12 months</td>
<td>9 months</td>
</tr>
<tr>
<td>Av. Product Life</td>
<td>18 months</td>
<td>15 months</td>
</tr>
<tr>
<td>Leadership</td>
<td>Heavy top management involvement in the NPD Project.</td>
<td>Heavy top management involvement in the NPD Project.</td>
</tr>
<tr>
<td>Resources</td>
<td>Staff with highly differentiated technical skills</td>
<td>Staff with highly differentiated technical skills and levels</td>
</tr>
<tr>
<td>Collaborative Development</td>
<td>Use of collaborative development to speed and scale that allowed Apple to outpace competition</td>
<td>Use of collaborative development to provide scale that allowed FONS to outpace competition</td>
</tr>
<tr>
<td>Technology Platform</td>
<td>MP3 Decoder</td>
<td>Environmentally rugged optical connectors</td>
</tr>
<tr>
<td>Components</td>
<td>Largely off-the-shelf to reduce risk and time-to-market</td>
<td>Largely off-the-shelf to reduce risk and time-to-market</td>
</tr>
<tr>
<td>Differentiation</td>
<td>Ergonomic design provided significant advantage over competition</td>
<td>Ergonomic design provided significant advantage over competition</td>
</tr>
<tr>
<td>NPD Environment</td>
<td>Fast paced NPD projects, multi-project environment, products replaced in rapid succession</td>
<td>Fast paced NPD projects, multi-project environment, products replaced in rapid succession</td>
</tr>
<tr>
<td>Market Type</td>
<td>Consumer Electronics, very competitive (Consumer)</td>
<td>Single customer, business-to-business, very competitive (Industrial)</td>
</tr>
<tr>
<td>Time-to-Market</td>
<td>First to market with a product of this type</td>
<td>First to market with a product of this type</td>
</tr>
</tbody>
</table>
The Apple iPod and FONS FDH case studies highlight the importance of launch timing relative to customers and competitors as a key success factor in NPD. These technology intensive products are characterized by stationary market windows having fixed opening and closing dates relative to the market and competitors. In a stationary market window, the potential value that a product may achieve is determined by the ability to launch the product coincident with the window opening date. Following the Apple iPod launch numerous competitors entered the market attempting to derail the iPod market leadership position. Similarly competitors launched products following the FONS FDH introduction. Products launched by competitors beyond the window opening date result in much lower market share and significantly reduced product life-cycle value.
CHAPTER 4

SLTI-NPD RESOURCE ASSIGNMENT PROBLEM

This chapter satisfies Research Objective Number Two (2) by formulating the SLTI-NPD resource assignment problem. The formulation involves an approach to identify and quantify projects, tasks, task durations, logical precedence relationships, project value potential, resources, resource types, skill levels, work rates and assignment decision variables.

4.1 The NPD Project Management Problem

As discussed in Chapter 2, developing Short-Life-Technology-Intensive (SLTI) products requires highly skilled professionals such as mechanical engineers, electrical engineers and industrial engineers. NPD organizations face significant challenges assigning and scheduling resources of various technical disciplines and skill levels to multiple projects while achieving maximum potential life cycle value for the program. The process usually begins by development detailed requirements using customer needs and technology considerations as inputs. The product requirements are subsequently converted into specific tasks to be completed by individuals or teams on the project. The process of assigning tasks must take into consideration the type of skill required and the level of the skill required to complete the task in a timely manner. The process of assignment involves surveying the available resources and selecting the resource with appropriate skill type and level of expertise. Through this matching process the appropriate resources can be assigned to the tasks on the project.
The NPD project management problem structure is depicted in Figure 4.1. The following definitions are of primary importance to this dissertation:

1. Program – A program is a set of multiple NPD projects managed and coordinated by an enterprise/organization with the objective of achieving efficiencies of resources assignment across all projects.

2. Project – A project is a temporary endeavor consisting of tasks, resource assignments and schedules that is planned and managed to develop a new product or service. The organization has expectations that each project will result in a new product that achieves an objective value over a planned time horizon following completion of the project.

3. Requirement – A requirement is a condition or capability that must be met by the product to satisfy the standard, specification or imposed function desired by the customer. The requirements in total completely describe the new product and guide the objectives for the new product development project.

4. Task/Required Type/Durations/Precedence - Tasks are the primary component of work to be completed during the course of a project and in aggregate satisfy requirements and define the total scope of the project. Tasks have beginning and end dates that are constrained by duration estimates, logical precedence relationships and availability of resources that match the type requirements.

5. Potential Value/Life/Launch – Each project has a pre-specified potential revenue life cycle value that corresponds to a stationary market window with the time to potential launch equal to the time until the market opens and potential product life as ending when the market window closes.

6. Resource - Resources are the assets used to conduct the NPD project in the form of technical staffing or budget. This dissertation primarily deals with technical staffing (renewable human resources) and issues surrounding assignment of staff across multiple projects.

7. Resource Type – Each task has a requirement for a particular resource type or discipline such as mechanical engineering, electrical engineering, industrial engineering, etc. In general resources of different types are not interchangeable where task assignment is concerned.

8. Skill Level – Each resource is categorized by varying degree of competence or skill level which translates into differing levels of proficiency in completing tasks.
9. Work Rate – The work rate specifies the rate of completing a task which may vary based on the skill level (level of proficiency) of the resource assigned to the task.

Figure 4.1 Summary of the NPD Resource Assignment problem structure.

The variables shown in Figure 4.1 will be described in more detail later in this chapter.
The NPD project management problem solution requires the following decisions:

1. Establish the project priority for resource allocation.
2. Determine the resource priority.
3. Assign resources to individual tasks in order to achieve time-to-market financial objectives for the project/program.

Chapter 5 provides a focus on the project prioritization decision and describes the Robust Scheduling Method (RSM), the Project Valuation Method (PVM) and the Project Prioritization Method (PPM). Chapter 6 provides focus on resource assignment including description of the Resource Prioritization Method (RPM), the Constructive Scheduling Method (CSM) and the Skill Level Assignment Method (SLAM). Chapter 7 provides a description of the Resource Assignment for Multiple Project Scheduling (RAMPS) decision support tool. Chapter 7 also presents a series of computational experiments designed to test the model against simulated project and resource data.

4.2 Projects

The NPD resource assignment problem starts by defining a set of projects where the projects are numbered 1, 2, ..., N.

\[\mathcal{P}_i = \{p_1, p_2, \ldots, p_N\} \]

A project is defined (PMBOK 2008) as a temporary endeavor undertaken to create a unique product, service or result. New Product Development (NPD) projects are typically scoped and selected as part of the overall strategic plan for the business. The NPD portfolio selection process aligns product development projects with the strategic intent of the organization (Cooper 2001) and provides clear priorities to guide development activity. Planning initiatives result in opportunity statements, business
cases, requirements, market driven project plans and high level schedules and targets for a set of NPD projects roughly sized to the capabilities of the organization. Once projects are selected at the strategic level the business plan is cascaded to the product development organization chartered with transforming the strategic plan into new products. As detailed project plans are formulated the development organization inherently faces significant challenges in achieving all strategic objectives due to very practical resource limitations and scheduling constraints.

4.2.1 Requirements

Each project consists of functional requirements that fully describe the product. A project requirement is a condition or capability that must be met by the product to satisfy the standard, specification or imposed function desired by the customer. Requirements include quantified and documented needs, wants and expectations of the customer or other stakeholders in the project. A set of O requirements is defined for each project.

$$s_{il} = \{s_1, s_2, ... s_O\} = \text{Requirement } l \text{ of Project } i$$

The process of establishing requirements for the NPD project typically occurs early in planning phase for the product. The process begins with the high-level customer functional requirements established in the Front End Process. High-level requirements are elaborated and parsed into a more detail level including the specification of what is to be developed. Depending on the extent and nature of the product the requirements may be simple or very complex. For simple projects, the project manager or engineering manager may assume responsibility for parsing and establishing more detailed requirements. In more complex projects, a system engineer may be involved with the complex task of breaking down requirements into a finer granularity. As shown in
Figure 4.1, the requirements may be grouped and organized with the intent to work towards more detailed specifications.

![Diagram of project requirements](image)

Figure 4.1 Project requirements progressively elaborated.

Requirements are established to achieve customer functional and performance objectives and to derive more detailed engineering specifications. The process of identifying requirements includes consideration for technical complexity and resolves requirements to the level they can be clearly understood by project management, technical management and the project team. The NPD project management formulation has the aim of resolving the requirements into specific work functions or tasks that can be assigned to the project team.

4.2.2 Tasks

The NPD project formulation uses the process of creating a Work Breakdown Structure (WBS) (Kerzner 2003) to map requirements to tasks in accordance with the way the work will be performed. The WBS is a deliverable-oriented hierarchical decomposition of the
work to be executed and reflects the way in which tasks will eventually be organized and assigned to resources. Tasks are the primary component of work to be completed during the course of a project and aggregate define the total scope of the project. The task definition includes a description of deliverables, scope of work, duration of activities and related activities that may be completed before (predecessors) or after (successors).

The NPD process formulated in this dissertation defines tasks as work activities that correspond directly to each requirement. One task is defined for each requirement; thus a one-to-one correspondence of requirements to tasks. A set of J tasks is defined for each project.

\[w_{ij} = \{w_1, w_2, \ldots, w_J\} = \text{Task } j \text{ of project } i \]

The simplifying one-to-one assumption enables simpler coding and computational efficiency in the assignment algorithms without loss of effectiveness of the solution. The one-to-one assumption can be relaxed in other formulations to have several requirements satisfied by one task or to define several tasks to complete a single requirement. The one-to-one correspondence of requirements to tasks is depicted in Figure 4.2

An additional assumption is that each task is assigned to one (1) resource. This assumption also simplifies the computational nature of the assignment process. This assumption precludes more than one resource from being assigned to a task. The one resource/task assumption may be relaxed in other formulations that assign tasks to several resources. For example it may be desirable to reduce the duration of a task and the project by assigning multiple resources to a single task. The aspect of multiple resources per task is not addressed in this dissertation.
4.2.3 Required Resource Type

The NPD resource assignment formulation requires that the discipline or resource type be identified for each project task. NPD project typically require a variety of disciplines such as mechanical engineers, electrical engineers, software engineers, industrial engineers and test engineers to develop a new product. In addition the same NPD project may also engage manufacturing engineers and technicians. In this dissertation the requirements are parsed at a sufficient level of detail such that each task has one resource type as depicted in Figure 4.2. Thus a one-to-one correspondence exists between requirements, tasks, resource and resource type. Each task is formulated with one of K resource types.
One area of particular interest is process associated with skill assessment including discipline, specialty and skill level. This step is often taken for granted in project planning. On the surface this process seems to be straightforward. Simply identify what needs to get done and find someone competent to do it. Managers approaching the process in this simplistic way risk underestimating the complexity of the project tasks and risk overestimating the skills and capabilities available to complete the tasks.

4.2.4 Task Duration Estimates

Traditional project management techniques including the Performance Evaluation and Review Technique (PERT) and the Critical Path Method (CPM) form the basis for organizing and planning new product development projects. The traditional algorithms are derived from networks of sequential tasks each having varying start and end dates and accounting for interdependencies between tasks. The critical path approach is used to determine the longest network of dependent tasks which defines the overall length of the development from which the launch date can be derived. The PERT technique may be used to include statistical variation (optimistic, mean and pessimistic) for task durations and for the project estimates.

Project management is made even more robust through statistical methods embodied in Critical Chain (CC) Project Management method (Goldratt 1997). The CC method is based on the Theory of Constraints and accounts for both logical network sequencing as well as resource constraints in the project planning process. In CC project
planning two estimates are formulated for task completion including a mean estimate
time \(dm_{ij} \) and a low risk estimate of completion time \(dl_{ij} \).

\[dm_{ij} = \text{Mean duration estimate for task } j \text{ project } i. \]

\[dl_{ij} = \text{Low risk duration estimate for task } j \text{ project } i. \]

The mean estimate corresponds to a 50% confidence that the task will be completed by
\(dm_{ij} \). A low risk estimate corresponds to a 90% confidence that the task will be
completed by \(dl_{ij} \). The use of two estimates simplifies the process of estimation as
compared to traditional PERT methods that require three estimates (e.g. optimistic, mean
and pessimistic).

The right skewed lognormal distribution shown in Figure 4.3 is used (Tukel 2006)
to represent the task duration. The two estimates \(dm_{ij} \) and \(dl_{ij} \) may be used to compute
the uncertainty in the project task duration estimate. The uncertainty for the lognormal
distribution has been shown (Herroelen 2001) to be a multiple in the range of 0.05-to-1.5
times the standard deviation. To facilitate simplicity in computations in this research the
uncertainty is assumed to be a multiple of one times the standard deviation. Thus the
difference between \(dl_{ij} \) and \(dm_{ij} \) represents the estimate for standard deviation for the
distribution.
4.2.5 Logical Precedence Relationships

The NPD resource assignment formulation requires specification of the logical network of tasks to reflect sequence in which activities are to be performed. The logic network specifies when a task can begin based on predecessor tasks that must be completed before the task is started. The precedence relationship allows the use of traditional critical path algorithms to be applied to determine the Critical Path (CP) and critical path tasks (CPT). The precedence logic should be included in the planning as early as possible for construction of schedules used in prioritization. Each task is identified in the definition of the project network along with a set of precedence tasks that must be completed before the task starts.

Prec$_{ij}$ = Tasks that must be completed on project i before task j can start.
The precedence relationship is typically reflected in matrix form to represent both the predecessor tasks and successor tasks for the entire project. The successor task relationship is required to determine slack in the project network. The logical relationship indicator is provided by a zero/one (0/1) entry in the matrix. A simple example of the predecessor (and successor) matrix is illustrated in Figure 4.4.

\[
\begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Figure 4.4 Example of the precedence matrix Prec for a simple project.

In this example the columns in the matrix represent each task numbered one (1) through four (4). In the example column one represents predecessors for task one and since task one has no predecessors all entries are zero. Column two representing predecessors for task two has only one entry in row one indicating that task one is a predecessor two. Column three representing predecessors for task three has two entries, row one and row two indicating that task one and two are predecessors of task three. Column four representing predecessors for task four has three entries, row one, row two and row three indicating that tasks one, two and three are all predecessors of task four.

The same Prec matrix can be used as a successor matrix by allowing the rows to indicate successor tasks. For example row one representing the successors of task one...
has three entries, column two, column three and column four to indicate that tasks two, three and four are successors of task one. Similarly all rows reflect the successor tasks of the task corresponding to the row number.

4.2.6 Potential Value and Market Timing

The NPD resource assignment formulation requires knowledge of the potential project value, time-to-market and product life cycle. These parameters are formulated in the planning stage as part of the financial analysis. The planning initiatives result in a business case with forecasts of sales and profit potential. The business case also highlights the market driven launch date required. The launch date corresponds to the market window opening date or the earliest date the product can be sold. The business case forecast also provides direction on the life cycle for the product and the planned end date. The end date corresponds to the market close date or the last date the product can be sold. This strategic plan provides the potential market value for each new product and identifies the launch date that must be achieved in order to capture the potential life and value for the product. The following parameters are illustrated in Figure 4.5.

\[V_p = \text{Potential product value (revenues) over the product life cycle.} \]

\[T_p = \text{Potential time to launch at earliest date product can be sold.} \]

\[L_p = \text{Potential product life cycle.} \]
4.3 Resources

Resources are the assets used to conduct the NPD project in the form of technical staffing or cash budget. This dissertation primarily deals with technical staffing (renewable resources) and issues surrounding assignment of staff across multiple projects. To a lesser emphasis the project costs (budget or non-renewable resources) is tracked for future reference. NPD resource assessment involves understanding the capabilities of the available technical professionals who will carry out the work on the NPD project. An initiative is often undertaken to characterize the resources and produce an inventory defining the exact disciplines and capabilities available for assignment. The resource inventory identifies the resource quantity, type (e.g. engineering discipline), skill level and work rate. This formulation defines a set of M resources for assignment to NPD projects.

\[r_m = \{r_1, r_2, \ldots, r_M\} = \text{Set of resources available for assignment.} \]
The objective of the skills inventory is to use the data to make efficient and effective project task assignments. The project manager and functional manager can refer to a summary skills inventory report on an ongoing basis to select appropriate staff members for projects. The inventory may be updated periodically to include new staff members and to adjust levels based on new skills that are acquired by existing staff members.

4.3.1 Resource Type

Depending on the extent and nature of the NPD project, the development may require a variety of professions with differentiated technical skills. For example development of a new telecommunications product development may require systems engineers, electrical engineers, mechanical engineers, software engineers, manufacturing engineers and a variety of technicians. Each technical discipline category may involve work of different complexity and different levels. The NPD formulation defines a set of K resource types.

\[g_m = \{g_1, g_2, \ldots, g_K\} = \text{Set of resources types} \]

Resource skill types inventoried at this level are generally not interchangeable in the short term. For instance you can not interchange an electrical engineer who specializes in circuit design with a software engineer who does coding for protocol interfaces. While it is possible that an extraordinary individual could jump back and forth it is generally accepted practice that these resources must specialize to achieve the efficiencies required on NPD projects.
4.3.2 Skill Level

To achieve efficiency the skill level definition typically requires greater resolution beyond the particular discipline. The organization may have technical professions with various levels of training and with some operating at a more senior level than others. Each of the staff resources having a particular discipline mentioned here also have varied experiences and often specialties that make them efficient in some tasks and inefficient in others. Defining the skill level will become important as we follow the process to task assignment.

The primary responsibility of the management is to ensure the organization has access to skilled resources of the types appropriate to develop the scope of products within the organizations charter. All skill types reflect technical professionals with varying degree of skills needed to complete tasks assigned under the project plan. Differences between the levels of skill among technical professions may be significant and could profoundly alter the project productivity and impact the overall schedule. For instance one staff member may have the skill level required to a greater extent than his peers which will ultimately allow that individual to be much more efficient in completing a particular task. Individuals containing only a moderate level of skill necessary may complete the task but the expected duration may be much long than the individual who is more proficient. Finally organizations may include individuals with a lesser skill level for some tasks but not for others. Placing individuals with lesser skills onto more complex tasks or tasks of greater magnitude will likely lead to productivity and schedule impact.
In this formulation we identify the skill levels for each skilled professional as a precursor to the task assignment process. For skill level to be useful in the planning process the characterization must be simplified. The characterization proposed in this dissertation is a simple numeric that defines three levels (or grades) of resource.

Level 1 - Possess required skills to a greater extent and likely to complete assigned tasks faster than average; for example a senior engineer.

Level 2 - Possess required skills to complete assigned task in an average amount of time; for example a full experienced engineer.

Level 3 - Possess required skills to a lesser extent and likely to have difficulty completing tasks in an average amount of allotted time; for example a junior engineer or technician.

A set of three (3) skill levels is defined (L=3).

\[h_m = \{h_1, h_2, \ldots, h_L\} = \text{Set of skill levels, where } L=3 \text{ in this formulation.} \]

It is important to note that this approach is not meant to grade individuals for the purposes of salary leveling or for performance compensation. Enlightened management recognizes that every population has a range of individuals available and that no two individuals have exactly the same skill levels.

Many organizations succeed and thrive without attention to skill level assessment where task assignments are based on a prior knowledge of the capabilities of individuals. These organizations may assign resources of similar skill level from one project to the next subsequent project without considering skills. Another example of where skill assessment may play a lesser role is an organization that has a base of experienced staff and low turnover such that established skill types and skill levels are understood by all.
4.3.3 Work Rate Transformation

In general resources of different skill levels are interchangeable but unplanned substitutions risk an impact to productivity and project schedules. To achieve efficiency the skill level is accompanied by a work rate that defines the relative speed that a resource can complete a task. In this formulation we define a one-to-one correspondence between skill levels and work rate. For example a level one (1) resource has one rate, a level two (2) has a second rate and a level three (3) has a third rate. The work rates are all defined relative to level two (2) which is the average rate work can be achieved. The work rates parameter is defined as follows:

\[q_h = \{q_1, q_2, \ldots, q_L\} = \text{Set of skill levels, where } L=3 \text{ in this formulation.} \]

\[0 \leq q_1 \leq 1 \]

\[q_2 = 1 \]

\[0 \leq q_3 \leq 1 \]

Work rate differences will result in transformation of task durations. This transformation will become important in resource skill level assignment (Chapter 6) where substitution of resources between projects and tasks is considered to improve efficiency. The transformation for task durations is based on a unit value for level two (2), a decreased duration for level one (1) and an increased duration for level three (3).

\[d_{m_{h=1}} = d_{m_{ij}} (1 - q_1) \]

\[d_{l_{h=1}} = d_{m_{ij}} (1 - q_1) \]

\[d_{m_{h=3}} = d_{m_{ij}} / (1 - q_3) \]

\[d_{l_{h=3}} = d_{m_{ij}} / (1 - q_3) \]
4.4 Assignment Variables

This section defines the variables for assigning tasks and schedules. The methods for resource assignment and scheduling tasks are covered in more depth in Chapter 6.

4.4.1 Task Assignment

The task assignment process matches tasks to resources on projects. The assignment variable A takes on a value of m if resource m is assigned to task j and is assigned and a value of zero (0) if unassigned. This resource assignment activity accounts for task duration and ensures that resources are available to complete the entire task from start to finish. In order for a resource to be assigned it will need to match resource type requirements and be available for the duration of the task.

$$A_{mj} = \begin{cases}
0 & \text{if task } j \text{ is not assigned} \\
m & \text{if resource } m \text{ is assigned to task } j
\end{cases}$$

In working environments it is important to carefully make assignments to avoid mistakes of the wrong discipline or the wrong level of proficiency. Problems are likely to occur in fast-paced environments and where managers have an incomplete knowledge of the professional technical disciplines and skill levels. Frequently assignment involves an interactive approach in collaboration with resources actually doing the work to increase the likelihood of proper matching. The process of task assignment can be facilitated by improved methods of resource and skill inventory that make clear the skill types and levels available for assignment and allow the project planning process to be completed on an expedited basis.
4.4.2 Time Period Assignment

In a larger scope matching skilled resources to tasks needs to consider the time factors since every project operates within time constraints. The projects in this formulation occur within T time periods where each time period is defined as one day.

\[t = \{t_1, t_2, \ldots, t_T\} = \text{Set of time periods for implementing the program.} \]

Once duration estimates and precedence relationships are formulated schedules can be developed for assignment. The objective of the scheduling effort is to define the start and end dates for each task and for the project in entirety.

\[\text{ST}_{ij} = \text{Start date for task } j \text{ of project } i \]

\[\text{FN}_{ij} = \text{Finish date for task } j \text{ of project } i. \]

The start and finish dates for tasks may be progressively elaborated as schedules are formulated, refined and evolve during the course of resource assignment. The final schedule will account for each task and the resource assignments by time period over the course of the project. The assignment variable \(A \) takes on a value of \(m \) if resource \(m \) is assigned to task \(j \) during period \(t \) and is assigned and a value of zero (0) if unassigned.

\[A_{njt} = \begin{cases} 0 & \text{if task } j \text{ is not assigned} \\ m & \text{if resource } m \text{ is assigned to task } j \text{ in period } t \end{cases} \]

4.4.3 Skill Level Assignment

The improvement heuristics developed as part of the Skill Level Assignment Method (SLAM) require the assignment of skill levels to tasks in order to take advantage of the work rate differential associated with higher/lower skill level resources assigned to the
task. As alternate trial solutions are produced the task must maintain the assigned skill level resource or alternatively be transformed by a substitution. Only when a substitution is accepted to improve productivity will the task skill level assignment be changed.

The assignment of a skill level to a task is indicated by:

$$A_{hj} = \begin{cases} 0 & \text{if task } j \text{ is not assigned} \\ h & \text{if skill level } h \text{ is assigned to task } j \end{cases}$$

Robust scheduling methods are covered in detail in Chapter 5 and resource assignment methods are covered in Chapter 6.

4.5 Cost and Budget Considerations

NPD cost and budget management is an important topic since each formulation of each resource assignment and scheduling approach may result in a different cost. It may be of interest to understand the cost from the perspective of investment and Return On Investment (ROI) for new products. NPD costs also may be of interest to understand how the performance of the model can be improved through additional allocations to the budget. The cost in this formulation is closely aligned with the resource inventory and incremented as resources are added to the inventory. The cost for resources of different resource types and skill levels are accumulated to tracked to identify the cost of a particular resource set. While NPD cost management and product cost targeting can easily be tracked in this formulation the cost management aspect of NPD project management is de-emphasized in this research.

Alternatively this research assumes a fixed budget as the basis for resource assignment. The fixed budget is representative of actual industrial settings where NPD
budgets are closely aligned to the annual operating budget for the firm. The annual operating budget is typically established six to twelve months in advance of the annual period NPD activities. Thus the annual budget defines within some tolerance the number of staff (head count) and support resources allocated to the NPD activity for ongoing planning. When viewed from the annual budget perspective the NPD resource assignment problem is essentially a net sum zero activity regarding cost. The NPD organization is chartered with completing the projects and spending the budget. The challenge within that charter is to deploy resources to achieve the market windows and launch dates that enable financial returns for the firm.

It may be argued that NPD costs are useful in comparing one project vs. another for potential assignment and allocation of resources. However where one project tends to dominant over another based on cost or returns the priority decisions and resource allocations tend to be obvious. The research in this dissertation considers projects of similar size and scope where the cost will usually be similar.
CHAPTER 5
PROJECT PRIORITIZATION

Chapter 5 and Chapter 6 satisfy Research Objective No. 3 by developing a decision model for SLTI NPD resource assignment in a multi-project environment. This chapter includes a time sensitive project value model that is tightly coupled to the opportune market launch date and progressively penalizes product values with schedules that are delayed. The model includes decision parameters, variables, constraints and an objective function that strives to optimize the value of the project portfolio by minimizing the value lost as a result of NPD schedule delays.

5.1 Prioritization Approach

This research introduces a time-value model for establishing scheduling priorities at the tactical level to assist development organization in assigning resources to SLTI NPD projects. The model considers the unique complexity of each project and uses Critical Chain (CC) project scheduling techniques (Goldratt 1997) to develop task duration estimates and robust baseline project schedules. The model links schedules to a valuation model that simulates the stationary market window over the life-cycle of the product. Inherent in the model is the assumption that any delay in time-to-market results in decreasing value to the project. The time-value linkage forms the basis for establishing scheduling priorities on a current and consistent basis. The prioritization methodology serves as a starting point for resource assignment in multi-project environments where time-to-market is a primary success factor.
The approach to prioritization follows the process outlined in Figure 5.1.

Figure 5.1 Process for NPD project prioritization.
5.2 Project Portfolio Selection

Classical operations research techniques such as Integer Programming, Real Options Theory, Analytical Hierarchy Process, all offer potential to improve the process for selection and screening NPD projects. In addition scoring models offer significant advantage in addressing qualitative and strategic factors in prioritization. More often in practical settings the more academic approaches are supplanted by traditional financial techniques that are easier to apply. Financial methods tend to provide clear direction on priorities when one project has sufficiently larger value and dominates over other projects by comparison. Where projects are closer in value, more careful financial analysis may be employed such as expected commercial value, net present value, bang-for-the-buck and productivity index (Cooper 2001). The productivity index computed as the ratio of potential value (e.g. NPV) of the project to resources consumed to complete the project is emphasized in this research.

\[
\text{PI} = \text{Productivity Index} = \frac{\text{Value}}{\text{Resources Consumed}}
\]

Using a technique such as the productivity index method all projects are assigned a priority based on a common metric and arranged in priority order from highest to lowest value of the productivity. The output of the strategic plan provides a set of prioritized projects (2) roughly sized to the capacity of the development organization.

\[
P_i = \{p_1, p_2, \cdots, p_N\}
\]
The prioritization method may be augmented to include risk factors such as the probability of technical success or probability of commercial success to reflect the confidence associated with product development and commercialization each project. In addition the productivity index may subtract the development expense and include product cost and the net present value computation to arrive at a consistent economic value for comparison across projects. The result of the productivity index method is the ranking and prioritization of NPD projects consistently across projects.

5.3 Robust Scheduling Method (RSM)

Traditional project management techniques including the Performance Evaluation and Review Technique (PERT) and the Critical Path Method (CPM) form the basis for organizing and planning new product development projects. The traditional algorithms are derived from networks of sequential tasks each having varying start and end dates and with intricate interdependencies between tasks. The critical path approach is used to determine the longest network of dependent tasks which defines the overall length of the development from which the launch date can be derived. The PERT technique may be used to include statistical variation (optimistic, mean and pessimistic) for task durations and for the project estimates. Project management is made even more robust through statistical methods embodied in Critical Chain (CC) Project Management method (Goldratt 1997). The CC method is based on the Theory of Constraints and accounts for both logical network sequencing as well as resource constraints in the project planning process.
5.3.1 Task Estimation and Tolerance

The critical chain project planning method typically draws on the lognormal distribution (Tukel 2006) shown in Figure 4.3 to represent the task duration estimate. The lognormal distribution is a right skewed distribution that reflects some of the characteristics of how work activities are actually carried out. For example Parkinson’s Law states that work tends to expand to fit the available time which is reflected by the long tail to the right of the lognormal distribution. The critical chain project planning technique typically employs two estimates for task duration including a mean estimate d_{mj} and a low risk estimate d_{lj}. The mean estimate corresponds to a 50% confidence that the task will be completed by d_{mj}. A low risk estimate corresponds to a 90% confidence that the task will be completed by d_{lj}. The use of two estimates simplifies the actual process of estimation as compared to traditional PERT methods that require three estimates (e.g. optimistic, mean and pessimistic).

The uncertainty (tolerance between d_{lj} and d_{mj}) is a multiple of m times the standard deviation. The multiple m for the lognormal distribution has been shown (Herroelen 2001) to be in the range of 0.05 to 1.5. This dissertation makes a simplifying assumption that the multiple is equal to one (1) thus the estimate for standard deviation may be computed as the difference between the low risk estimate and mean estimate.

$$sd_{ij} = d_{lj} - d_{mj}$$

The set of logical precedence tasks for each task is identified in the definition of the project network is be represented by $Prec_{ij}$ {set of precedence tasks for task j}. Traditional critical path algorithms are applied including forward pass to determine the
Critical Path (CP) defined as the longest chain of precedence dependent tasks and backward pass to determine the set of critical path tasks (CPT). The portfolio selection process has been completed by assuming that the projects identified are sized to the capacity of the organization and that baseline schedules are resourced and leveled to the set of projects outlined in the strategic plan.

5.3.2 Critical Path Method (CPM)

The robust scheduling method employs a standard critical path method (CPM) algorithm for determining scheduling parameters. The method assumes a formulation (as in Chapter 3) where task durations \(d_{mij}\) and precedence \(\text{Prec}_{ij}\) relationships are known. The method assumes a right directed Activity on Node (AoN) network where tasks are numbered such that predecessors always have a lower number and successors have a higher number. If the network is not constructed with a null node at the beginning and end a start and end node of zero duration is added to facilitate the computations. The path of longest duration through the project network is called the Critical Path (CP) since it determines the minimal project duration.

The CPM algorithm uses a forward pass to determine the Early Start (ES) date and the Early Finish (EF) date for each task. The forward pass starts by assuming ES and EF for the first node are zero and progresses to the right in ascending node order. ES for a successor node \(j\) is the maximum of the EF times of the proceeding nodes. EF for node \(j\) equals the early start of node \(j\) plus the duration of \(j\) \((\text{ES}_j + d_{mj})\).

The backward pass is used to determine the Late Start (LS) date and the Late Finish (LF) date for each task. The backward pass typically starts by assuming that the
LF date for the last node is equal to the EF date for the same node. This assumption is true for networks where minimum slack is equal to zero and where no delays in the final schedule are allowed. The backward pass progresses from the last node through the network backwards in descending node order. LF for a predecessor node j is the minimum of the LS times of the immediate predecessors. LS for node j equals the late finish of node j minus the duration of j (LFj - dmj).

The Total Slack (TS) for each task is then easily given as LFj - EF (or equivalently, as LSj-ESj). This is the amount of time an activity may be delayed beyond its early start time without causing a delay in the time of the expected launch date. The Free Slack (FS) is the amount of time an activity may be delayed from the ES without delaying the start of any of it’s successors. Free slack for activity j is computed as the minimum ES of it’s successors minus EFj. Activities with zero slack are called critical activities, and are always found on one or more critical paths. Critical path(s) determine minimum project duration since all of them must be completed as part of the project, and all non-critical activities can be completed concurrently with the critical activities. The mean estimates from each task are used to derive the mean estimate for the project duration; i.e. the critical path (CP) (mean project duration) is defined as the sum of the means of the tasks on the critical path where critical path tasks have been identified through minimum slack criteria.

\[CP = \sum dm_{ij} \quad j \in \text{Critical Path Tasks} \]
5.3.3 Critical Chain Buffer Management (CCBM)

Recent literature suggests (Lechler 2005) that key aspects of the CC methodology may be applied beneficially without implementing the entire CC approach. For instance it may be practicable for project managers to focus on just the project buffer than to monitor intricate layers of feeder and resource buffers. The approach of focusing primarily on the project buffer has been called Critical Chain Lite (Lechler 2005) of Simplified Critical Chain method (Leach 2003-1 The simplified approach is carried forward in this research and used to establish baseline schedules that incorporate associated variation. The schedule estimate is developed through combination of the critical path mean duration estimates and a CC project buffer. Thus it is recommended (Leach 2003) that the project buffer be sized with a combination of the project Standard Deviation (SD) estimate and an additional Bias Buffer (BB).

\[
\text{Project Buffer (PB)} = \text{SD} + \text{BB}
\]

The project Standard Deviation (SD) is computed using the square root of the sum of the squares (SSQ) of the standard deviations of tasks on the critical path

\[
\text{SD}_i = \sqrt{\sum_j \text{sd}_{ij}^2}, \quad j \in \text{Critical Path Tasks}
\]

Research on project buffer sizing (Geekie 2008) shows that the SD buffer size is dependent on the number of tasks and does not adequately capture the variation associated with longer projects, higher numbers of merge points or the tendency in underestimated task estimates. Thus an additional factor is included in the project buffer to account for estimate bias.
The literature (Leach 2003-2) suggest that the total project buffer should be at least 25% of the mean path duration and that a project buffer sized at 50% of the mean path duration is conservative for most all projects. Thus project managers should strive to achieve overall project buffers between 25% and 50% of the mean path duration. In the absence of control charts a parameter ρ is introduced in to establish a total project buffer that is greater than 25% of the mean path duration.

$$\rho \geq 0.25 - \left(\frac{SD_i}{CP_i} \right)_{\text{min}} \quad 0 \leq \rho \leq 0.5$$

Once ρ that is selected the Bias Buffer (BB_i) is computed as a multiple of the mean path duration.

$$BB_i = \rho \cdot CP_i$$

The expected project duration is computed as the sum of mean critical path duration, project standard deviation and bias buffer.

$$T_{Ei} = CP_i + SD_i + BB_i$$

The project depicted in Figure 5.2 shows an example of five critical tasks where each critical task is started at the mean estimate of the proceeding critical task. Dedicated resources are assigned to complete tasks in “road runner” fashion with planned variation around the mean estimate of each task. The project buffer is a combination of the variation buffer and the bias buffer. The project buffer is included and managed at the end of the project to form the robust project schedule.
Accommodating estimate variation is a critical aspect developing a robust baseline schedule. Ultimately this variation may impact the ability of the organization to deliver the product on time and to achieve financial goals for the NPD project. The scheduling approach described here is vastly simplified and abbreviated for the purpose of establishing a baseline schedule as input for the prioritization process. However if sufficient detail is available a full blown Critical Chain resource leveled schedule may be developed to include resources buffers, feeder buffers and capacity buffers to accommodate multi-project planning environments.
5.4 Project Valuation Method (PVM)

NPD projects have the primary objective to create value and generate revenue/profit for the firm. The business case is used to forecast sales revenues and margin over the planned life cycle of the product.

5.4.1 Triangular Product Life Cycle

The life cycle progression for a typical SLTI product is modeled in Figure 5.4 and includes progression through product introduction, growth, maturity, saturation and decline.

Figure 5.4 Product Life Cycle trend.

In the introduction stage sales tend to be low as new product is just being introduced and in the growth stage sales tend to grow rapidly and the profits rise. In the maturity stage the sales peak or level off and then begin to decline in the saturation phase where multiple competitors have entered the market. As the competition becomes even more energetic life cycle sales decline until the end of the product life. The product life cycle is approximated with a triangular value function as shown in Figure 5.5 (Liu 1996, Sassenburg 2005) which implies a constant linear growth and decline.

Figure 5.5 Product Life Cycle (PLC) with approximate Triangular Value.

5.4.2 Time-Value Model

The triangular geometry is a useful in computing the project value represented as the area under the triangular curve. The potential project value is given by \(V_p \) where the product life is \(L_p \) and the peak revenue is \(R_p \).

\[
V_p = \frac{1}{2} L_p \times R_p
\]

The potential financial objective assumes that the product will be launched at the optimal point in time necessary to achieve desired market share and maximum potential revenue \(V_p \) over the product life cycle. Projects often experience delays relative to potential product launch dates due to resource and scheduling limitations. Since the window of opportunity for selling the product is stationary, if the expected project schedule \(T_E \) exceeds the potential schedule \(T_p \), then a delay is introduced and the expected life is compressed. The triangular life-cycle model (Liu 1995) assumes that the peak of the products value occurs in the middle of the life-cycle and is independent of when the product is actually launched. The delay \(D \) compresses the life cycle of the product and results in the smaller triangle representing the expected value \(V_E \). The triangular models for \(V_p \) and \(V_E \) have the same rate of increase and therefore the model is defined in the region \(\leq L_p/2 \). The lost value \(V_L \) is the difference between the areas of the two triangles as shown in Figure 5.6.
The triangular model provides a simplified decomposition of the potential value as the sum of expected value and lost value.

\[V_p = V_e + V_L \]

In addition the delay is defined as the difference between the expected time to launch and the potential time to launch.

\[D = T_E - T_P \]
The triangular model provides a convenient construct for relating expected value and lost value lost as a function of the potential value V_p, the potential product life L_p and the time t (or delay D).

$$V_E = V_p \left(1 - \frac{3}{L_p} t + \frac{2}{L_p^2} t^2\right) \quad \text{for} \quad t \leq \frac{L_p}{2}$$

$$V_L = V_p \left(\frac{3}{L_p} t - \frac{2}{L_p^2} t^2\right) \quad \text{for} \quad t \leq \frac{L_p}{2}$$

The time-value relationship imposes a financial penalty on projects that exceed potential launch dates with the value decreasing as the square of the time delay. The relationship shown in Figure 5.7 illustrates a loss of 50% of the value at a delay consuming approximately 20% of the potential life.

Figure 5.7 Time-Value model.
5.4.3 Net Present Value

The NPV of revenue calculations are based on the geometry of the triangular life cycle function and using the uniform gradient method. The method is applied as a uniformly increasing gradient (slope) on the left G_L and a uniformly decreasing gradient (slope) on the right G_R as shown in Figure 5.8. The gradient method is used to compute the NPV of the left gradient NPV_{LG} and right gradient NPV_{RG}. The method can be used to compute both the potential net present value NPV_P and the expected net present value NPV_E.

The lost net present value NPV_L is simply the difference between NPV_P and NPV_E.

$$NPV_{LG} = PGL \cdot (P/F, i, T)$$

where $PGL = G_L \cdot (P/G, i, n_L)$

$$NPV_{RG} = P_{GRAD\text{-}RIGHT} \cdot (P/F, i, T+n_L)$$

where $P_{GRAD\text{-}RIGHT} = R_P(P/A, I, n_R) + G_R(P/G, i, n_R)$

The total net present value NPV_T is simply the sum of NPV_{LG} and NPV_{RG}.

$$NPV_T = NPV_{LEFT\text{-}GRAD} + NPV_{RIGHT\text{-}GRAD}$$
5.5 Project Prioritization Method (PPM)

The NPD development organization is chartered with making tactical decisions regarding resource assignment in order to achieve market driven launch dates. The tactical decision facing the organization is to staff projects with resources in order to achieve the maximum time-value linkage for the portfolio. NPD organizations must carefully consider the complexity of the tasks and schedules and resource assignments across
multiple projects contending for the same resources. Almost inevitably the NPD projects are delayed due to insufficient resources and scheduling constraints. The NPD organization must consider the impact delays to projects as well as the opportunity cost the portfolio value as a whole. Given the disparity between the strategic goals and what is practically achievable the NPD organization must use some criteria to decide how to assign resources most efficiently. It is not the intention of the NPD development organization to change the strategic priorities or to alter the portfolio selection. The development organization attempts to adhere closely to the strategic plan priorities even if achieving the priorities. However given the dynamic environment the resource assignment decisions will benefit from updated priorities based on robust scheduling estimates and an updated view of the time-value linkage model.

5.5.1 Project Value Metric

A Project Value Metric (PVM) is introduced to provide a measure for prioritizing projects in the NPD environment. The metric is a variation of the productivity index used to select the portfolio at the strategic level but is modified to account for the more accurate task and schedule estimates. The metric includes the time-value model and allows the practitioner to weight the model based on a more thorough perspective of the entire development program. A Project Value Metric (PVM) is first derived based on the Net Present Value of expected value and value lost using T_E the expected critical path duration as the common basis.

$$PVM = \frac{NPV_E + \alpha NPV_L}{T_E} (1 + \beta \gamma) \quad 0 \leq \alpha \leq 1 \quad 0 \leq \beta \leq 1$$
5.5.2 Prioritization Weighting Factors

The project planning environment may be subject to additional variation that would lead to a faster development time and recovery of the value lost. The recovery parameter α is selected to reflect the likelihood that the value lost (V_L) will be recovered. A weight of $\alpha = 0.20$ would indicate that it is likely that 20% of the value lost will be recovered by schedule improvement and therefore $20\% \times V_L$ would be included in the PVM metric calculation. The parameter α allows the practitioner to include an optimistic adjustment to the overall program to reflect additional knowledge regarding the ability to improve schedules. For instance, the organization may be in the process of securing additional funding or recruiting additional resources that will improve schedules so a higher α will be selected. Additional information regarding the increased technical complexity or difficulty of the project set may result in a lower α. Other constraints such as availability of appropriately skilled technical staff may also influence α positively or negatively.

The factor $(1+\beta \gamma)$ is the rate of further value loss. The γ loss rate factor is the normalized to the max loss rate across projects.

$$\gamma_i = \frac{V'_L}{\max_{L \in i} V'_L}$$

Where the loss rate is the derivative (18) of V_L, the loss function (7) and evaluated at the current schedule view corresponding to $t=D$.
The loss parameter β is multiplied by the normalized loss rate to reflect the likelihood of additional value lost due to incremental delay. For example a value of $\beta = 0.10$ indicates a 10% likelihood additional delay which will result across the portfolio. As a result the project value metric for an individual project is increased by 1.1 times the factor γ. The parameter β provides the practitioner with the ability to adjust the model based on pessimism that may result in further loss to the entire portfolio. Factors such as anticipated force reductions, diversion of resources and technical complexity within the portfolio may cause further delay and can be factored in by increasing the β factor. The factor β is constant across the portfolio however because γ is unique to each project. The weight of β can significantly alter the value of the metric.

5.5.3 Project Productivity Index (PPI)

The normalized Project Productivity Index (PPI) index is computed for each project as the ratio of PVM_i and the maximum $PVM_{i\text{MAX}}$ value across all projects.

$$PPI_i = \frac{PVM_i}{PVM_{i\text{MAX}}}$$
The prioritized set of PPI ordered projects is given by (20):

$$\Pi_\pi = \{p_1, p_2, \cdots, p_N\}$$

5.6 Multi-Project Prioritization Simulation

The NPD project prioritization model consists of straightforward computations. All of the equations in this chapter were programmed in Visual Basic for Applications in Excel. The program allows testing of the entire methodology including the Robust Scheduling Method, the Project Valuation Method and the Project Prioritization Method.

5.6.1 Program Example

A simple illustration is provided for six projects in Table 5.1. The projects were selected for similarity in size, scope and duration to allow the prioritization model to discern priorities across the non-dominated set of projects.

Table 5.1 shows the input for the project and the results of the Robust Scheduling Method. The input includes potential value V_p, time to potential launch T_p and potential life span L_p are provided as given input for each project. The Robust Scheduling Method utilizes the Critical Path Method (CPM) and the Critical Chain Buffer Management (CCBM) to derive values for Critical Path (CP) duration, Standard Deviation (SD), Bias Buffer (BB) and expected project duration (T_E).
Table 5.1 Prioritization Example Robust Scheduling Method (RSM).

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Input</th>
<th>Robust Scheduling Method (RSM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VP $</td>
<td>TP days</td>
</tr>
<tr>
<td>1</td>
<td>20,000,000</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>16,000,000</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>18,000,000</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>16,000,000</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>20,000,000</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>18,000,000</td>
<td>130</td>
</tr>
</tbody>
</table>

BB computation with ρ equal to 0.1

Table 5.2 Prioritization Example Project Valuation Method (PVM).

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Valuation Method (PVM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D days</td>
</tr>
<tr>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
</tr>
</tbody>
</table>

NPV computations with $i = 0.05$

Table 5.3 Prioritization Example Project Prioritization Method (PPM).

<table>
<thead>
<tr>
<th>Project</th>
<th>Project Prioritization Method (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dVL/dt γ</td>
</tr>
<tr>
<td>1</td>
<td>108,000</td>
</tr>
<tr>
<td>2</td>
<td>55,800</td>
</tr>
<tr>
<td>3</td>
<td>39,950</td>
</tr>
<tr>
<td>4</td>
<td>88,400</td>
</tr>
<tr>
<td>5</td>
<td>41,250</td>
</tr>
</tbody>
</table>

PPI metric with α and β equal to 0.
Results for the Project Valuation Method (PVM) are shown in Table 5.2. The PVM starts by computing the Delay \(D \) which is subsequently used to calculate \(V_E \) and the value lost \(V_L \) using. The NPV values are computed using the uniform gradient method. Results for the Project Prioritization Method (PPM) are shown in Table 5.3. The PVM is used to compute the normalized rate factor gamma, the Project Prioritization Metric (PPM) and the Project Prioritization Index (PPI). The project rank is shown in last column of Table 5.3. The rank ordering of projects by arranging project from highest to lowest value of the PPI metric produces the set \(\Pi = \{ p_2, p_3, p_6, p_5, p_4, p_1 \} \).

A comparison of the PPI ranking to other potential prioritization criteria points to considerable differences. For example Project 2 originally had the lowest revenue potential \(V_P \) and the lowest \(NPV_P \) potential of any project yet after running the time-value priority model project 2 is ranked first ahead of all projects. The change for project 2 is attributable to the shorter project duration estimate and shorter delay resulting in preservation of greater expected revenue \(V_E \). In addition project 1 had the highest potential \(NPV_P \) of all projects input to the model but after running the time-value model project 1 is ranked last after all projects because of the high value lost due to schedule delay. Thus the time value model effectively accounts for time-to-market delay and appropriately advances the rank of project based on productivity of scheduling per the PPI index.

5.6.2 Sensitivity to Prioritization Parameters

The PPM provides the project management practitioner with the flexibility to select the \(\alpha \) and \(\beta \) parameters based on most current view of likelihood that the schedules can be improved or that further delays are anticipated across the portfolio. The guidelines for
selecting \(\alpha \) and \(\beta \) presented in this paper should be accompanied with an understanding of the sensitivity of these parameters. Figure 5.9 illustrates the sensitivity of the project ranking for the six projects in the prior simulation when values of \(\alpha \) and \(\beta \) are allowed to vary between 0 and 1.

![Figure 5.9 Weighting factor \(\alpha \) and \(\beta \) sensitivity.]

This example illustrates 16 priority changes that occur as a result of changing the selection of \(\alpha \) and \(\beta \). The area highlighted in the lower left corner of the sensitivity matrix contains prioritized sets A, B, C and D and is worth noting in more detail. Region A is the baseline case where both \(\alpha \) and \(\beta \) are zero such that the portfolio is not likely to be accelerated or to be delayed further. Region A essentially reflects a program at the expected value \(V_E \) and expected launch schedule \(T_E \).
As α increases along the horizontal axis (and where β is zero) we observe changes in priority ranking from region A to B. This change reflects a greater likelihood that the overall program can be improved and a greater weight is placed on recovering lost value V_L. In this scenario where α is increasing we observe projects 3 and 6 advance in rank over project No. 2 and that project No. 5 advances in rank over priority No. 4. In both cases the projects having higher loss values ascend to higher rank because α is higher thus placing greater optimism that lost value can be recovered.

As β increases along the vertical axis (and where α is zero), there is a greater likelihood that program schedules will fall further behind greater emphasis is placed on pessimism regarding the rate of future loss. The increase of the loss factor β results in switching in priority ranking from region A to C where project No. 6 ascends in priority over project No. 3. We note that the rate of loss for project No. 6 ($\gamma = 0.382$) is slightly higher than the rate of loss of project No. 3 ($\gamma = 0.370$) therefore as β increases a higher weight is placed on project 6 as a scheduling priority in an effort to counter further loss.

As values of α and β both increase for example in region D, we observe additional changes in priority where project No. 4 advances in priority over project No. 5. Note that project No. 4 has a higher loss value ($V_L = \$8.2M$) than project No. 5 ($V_L = \$7.0M$) and project No. 4 has a higher rate of loss ($\gamma = 0.819$) than the rate of loss of project No. 5 ($\gamma = 0.575$). This is a combination effect where higher α and higher β place greater weight on recovering lost value in project No. 4 and at the same time countering further loss in project No. 4.
In the extreme regions Figure 5.9 further increases in α and β result in additional rank changes due to the same mechanism of placing more weight on loss recovery or on countering further loss. Extreme regions of the analysis with very high α and β may imply high uncertainty and potential instability in the development environment. Project managers should proceed with caution when considering both a high α and high β. A project manager would more typically select lower values of α and β (e.g. $\alpha+\beta \leq 1$).
CHAPTER 6

RESOURCE ASSIGNMENT METHOD

Chapter 5 and Chapter 6 satisfy Research Objective No. 3 by developing a decision model for SLTI NPD resource assignment in a multi-project environment. Chapter 5 developed a methodology for multi-project prioritization based on productivity metrics. Chapter 6 provides a methodology for resource across multiple NPD projects. The key input for Chapter 6 is the NPD project formulation described in Chapter 4 and the NPD Project Prioritization Model described in Chapter 5. The overall solution provides a multi-step approach as depicted in Figure 6.1 including project prioritization and resource assignment.

6.1 Resource Assignment Approach

The resource assignment and scheduling problem is solved through a series of iterative search algorithms using rules based heuristics. Resource assignment and scheduling is modeled in two phases including; 1) a constructive approach that employs priority rules for projects, tasks and resources to derive a feasible solution and 2) a improvement heuristic that considers the improved productivity that may be achieved by interchanging resources of differing skill levels and corresponding work rates. A computational analysis is carried out using multi-project data sets that simulate NPD project planning environment. Results point to significant productivity and efficiency gains that can be achieved through effective planning, prioritization and deployment of technical resources. In a real world setting product managers and engineering managers are constantly managing at a list of projects and opportunities to correlate and chart a path for these
Figure 6.1 Overall solution method for Resource Assignment in SLTI NPD.
projects enabling introduction of new products. The tools available for managing multiple projects are often scattered including spreadsheets, project management software and text documents. In the case of multiple projects there are typically limited computational tools for comparing and estimating overlapping schedules. This research provides a model for evaluating projects and schedules in a multi-project environment.

6.2 Program Schedule Efficiency (PSE)

Solutions to the Resource Assignment problem are iterative in nature. As the solutions are generated a metric is needed to determine if an improvement has been made over previously generated solutions. A Program Schedule Efficiency (PSE) metric is introduced as a measure of efficiency improvement of one solution versus another. The PSE metric is based on the performance of achieving financial results relative to the maximum potential. The metric is a ratio of expected Net Present Value NPVE of the current solution over the potential Net Present Value achieved NPVP if the potential launch date T_p is achieved.

$$\text{PSE} = \frac{\text{NPVE}}{\text{NPVP}} \quad 0 \leq \text{PSE} \leq 1$$

In theory it is possible to devise a schedule that will launch the product early ahead of the potential launch date T_p. Should that occur it might be possible to generate financial results early such that the expected NPV exceeds the potential. However T_p is defined in this research as the earliest date a product can be sold into the market. This definition imposes the restriction that expected NPV can be no greater than the potential NPV and the ratio will be at most one (1).
6.3 Resource Prioritization Method (RPM)

The resource inventory is used to initialize all of the resource assignment and scheduling methods described in this chapter. The resource inventory can be arranged randomly or alternatively it can be prioritized by skill level. A component of this investigation is to determine the impact of prioritization (vs. non-prioritization) of skill level on the overall performance of the schedule.

6.3.1 Resource Inventory

The resource assignment and scheduling methods outlined in this Chapter may be initialized with a manually developed resource data worksheet in Excel. The resource data file is constructed around the parameters described in Chapter 4 including: M the Number of Resources, K the Number of Resource Types and L Number of Levels. For each of the M resources in a resource set the data file specifies the resource type g_m and the skill level h_m. Thus the resource inventory becomes a list with resource number, type and skill level.

To evaluated resource assignment methods at different levels of staffing the data file has been designed to allow entry of more than one resource set where each set is a different size. The resource sets shown in Figure 6.2 contains eight different resource sets each with the capability to complete the program of projects. The resource sets are intended to schedule a defined program consisting of three required resource types (K=3) therefore each resource set must have at least one of each type in order to achieve a feasible solution. By definition resource sets M1 and M2 would consist of fewer than the minimum required three resource types and therefore are not feasible. The data file allows the creation of larger resource sets within the limited of VBA in Excel. The data
file can be manually initialized to contain any distribution of resource types or skill levels. Furthermore the file structure can easily be scaled to incorporate additional resource types and skill levels of additional defined programs.

<table>
<thead>
<tr>
<th>Resource</th>
<th>M=1</th>
<th>M=2</th>
<th>M=3</th>
<th>M=4</th>
<th>M=5</th>
<th>M=6</th>
<th>M=7</th>
<th>M=8</th>
<th>M=9</th>
<th>M=10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GM</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.2 Sample resource data file generated manually.

6.3.2 Resource Generator

The resource inventory developed manually in the previous section allows specific distributions of types and levels to be created and tested against resource assignment methods. Alternatively for large scale computational analysis a resource generator is introduced that automatically generates the inventory for assignment. The generator uses information from the Robust Scheduling Method (RSM) to size the requirements for each type and then to generates a resource type distribution that matches the demand requirements from the actual tasks in the projects. In addition the resource generator produces a uniform distribution of skill levels across each of the resource sets.

The resource generator initializes a resource set with the minimum number of resources required to achieve a feasible solution which equals K the number of required resources. The generator then analyzes the demand for resources of each type and generates successive resource sets to select an additional resource of greatest need to balance the distribution. The initial set consists of K resources all having resource level
two (2). As a resource is selected to initialize an incrementally larger set the skill level is selected in a progression to establish a uniform distribution of skill levels. The resource generator can essentially automatically generate a consistent resource inventory at any size for computational purposes. An example of a resource inventory produced with the resource generator is shown in Figure 6.3.

<table>
<thead>
<tr>
<th>Resource m</th>
<th>M=1</th>
<th>M=2</th>
<th>M=3</th>
<th>M=4</th>
<th>M=5</th>
<th>M=6</th>
<th>M=7</th>
<th>M=8</th>
<th>M=9</th>
<th>M=10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GM</td>
<td>HM</td>
<td>GM</td>
<td>HM</td>
<td>GM</td>
<td>HM</td>
<td>GM</td>
<td>HM</td>
<td>GM</td>
<td>HM</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.3 Sample resource data sets.

6.3.3 Resource Prioritization

The resource inventory can be arranged randomly or alternatively it can be prioritized by skill level. A component of this investigation is to determine the impact of prioritization (vs. non-prioritization) of skill level on the overall performance of the schedule. The Resource Prioritization Method (RSM) simply arranges resources by type and by skill level. Resources generated in a manual data file or by the resource generator may be sorted in ascending order. An example of resource sets that have been sorted by type and by level is shown in Figure 6.4.
Figure 6.4 Sample of the Resource Prioritization Method (RSM).

6.4 Constructive Scheduling Heuristics

Resource assignment and scheduling is modeled in two phases including: 1) a Constructive Assignment Method (CAM) that employs priority rules for projects, tasks and resources to develop a feasible solution schedule and 2) a improvement heuristic that considers the improved productivity that may be achieved by interchanging resources of differing skill levels and corresponding work rates.

The objective of the CAM method is to build a feasible solution to the Resource Assignment problem. The feasible solution must satisfy time and resource constraints and develop complete schedules for each project. The CAM solution becomes the basis for investigating further improvements. As part of this research three different constructive solutions have been modeled including; 1) Sequential Scheduling Method, 2) Critical Scheduling Method and 3) Early Scheduling Method.
6.4.1 Sequential Scheduling Method (SSM)

The Sequential Scheduling Method (SSM) assigns resources in order of project priority and within project the sequence of task numbering. Figure 6.5 illustrates a simple example for three projects each consisting of five tasks.

![Sequential Scheduling Method (SSM)](image)

Figure 6.5 Sequential Scheduling Method (SSM).
The Sequential Scheduling Method initializes projects in priority order and assigns resources to each project one at a time. The rule Sequential Task First (STF) is used within each project to assign resources to tasks one at a time. In general tasks have been numbered from left to right with the requirement that for any task lower task numbers are predecessors and higher task numbers are successors. No priority beyond the sequential task number is implied by the STF rule. The method consists of two primary passes; 1) first pass to construct a Time Constrained Solution (TCS) and 2) second pass to construct a Resource Constrained Solution (RCS) where all tasks are assigned including tasks requiring delay.

The first pass to construct the TCS follows the sequence exactly as described. All tasks are initialized with a Start (ST) date according to ES dates that result from the Robust Scheduling Method. The algorithm attempts to assign resource \(m \) from the inventory by first checking that the resource type meets the required type (i.e. \(g_m = f_{ij} \)) and that the resource is available in the period (\(A_{ij} \neq m \)). If the resource does not match type or is unavailable then the algorithm attempts to assign the next resource in the inventory. The resources can be assigned in random order or in order of skill level priority. If there is no resource that can satisfy assignment constraints directly then if slack is available it is used. Slack at a particular task is incremented one day and the SSM attempts to assign each resource in turn. The method continues to use slack in the network while attempting to assign resources to tasks without changing the end date of the final task. If slack is used the algorithm updates Start (ST) and Finish (FN) dates accordingly in the task and subsequent tasks. At completion of the first pass a Time Constrained Solution has been formulated that produces a schedule for projects without
changing the end finish date for any project. Projects that may be completely assigned have Start (ST) and Finish (FN) dates assigned for every task. If a project is completely assigned then the ST and FN as well as assignments on that project accommodate all constraints in the Robust Scheduling Method and therefore become part of the feasible solution. At the completion of the first pass some projects may be only partially assigned depending on the quantity of resources available. If a project is not completely assigned then that project is re-initialized by removing any partial assignments and setting an indicator to reassign the entire project in the second pass.

The second pass introduces a time lag and delay as required to force assignments to tasks and projects. Only those projects not assigned completed by the Time Constrained Solution in the first pass participate in the second pass. After re-initializing partially assigned projects the second pass follows the same priority sequence as the first pass. The second pass any task that remains unassigned after consuming any available slack is assigned a lag. The lag is incremented one day at a time and at each increment the algorithm attempts to assign a resource from the available inventory. When a time period is reached where a resource can be assigned the lag is integrated into the schedule by updating start (ST) and finish (FN) dates for the task any subsequent tasks in the network. Thus any task requiring a lag essentially builds in a delay for that tasks, successor tasks and for the entire project. Upon completion of the second pass all tasks and projects have been assigned resources, start (ST) dates and finish (FN) dates. The Resource Constrained Solution (RCS) now becomes the SSM feasible solution although some project may no longer satisfy time constraints. Note that the RCS solution contains
the TCS as a subset. In addition should sufficient resources be available the RCS and TCS are identical.

At completion of the SSM the Project Valuation Method is updated to compute net present value and the Program Schedule Efficiency (PSE). Since the SSM is usually the first feasible solution in the overall method the RCS is automatically used to initialize the Best Constructive Solution (BCS).

6.4.2 Critical Scheduling Method (CSM)

The Critical Scheduling Method (SSM) assigns resources to critical tasks on projects first. Figure 6.6 illustrates a simple example of the CSM for three projects each consisting of five tasks.

The Critical Scheduling Method initializes projects in priority order and uses the Critical Task First (CTF) rule to assign resources to critical tasks across all projects before scheduling non-critical tasks on any project. The CTF order of assignment priority is; 1) Critical Tasks (CT), 2) Sub-Critical (SC) tasks and 3) non-critical tasks. The algorithm is completed in three passes; 1) a first pass to formulate a Time Constrained Solution, 2) a second pass to construct a Critically Constrained Solution (CCS) and 3) a third and final pass to construct a Resource Constrained Solution (RCS).

The first pass is used to assign critical tasks in order of project priority to construct a TCS. The algorithm identifies critical tasks on each project and assigns critical tasks within projects in sequential order. All critical tasks are initialized with a Start (ST) date according to ES dates that result from the Robust Scheduling Method. The algorithm attempts to assign resource m from the inventory by first checking that the
resource type meets the required type (i.e. \(g_m = f_{ij} \)) and that the resource is available in the period (\(A_{ji} \neq m \)). If the resource does not match type or is unavailable then the algorithm attempts to assign the next resource in the inventory. The resources can be assigned in random order or in order of skill level priority. If there is no resource that can satisfy assignment constraints then it moves to the next critical task. Slack is not available on critical tasks so it is not considered. After attempting to assign all critical tasks the algorithm next attempts to assign resources to sub-critical tasks. Sub-critical tasks are defined as those non-critical tasks that have a high potential to become critical when

Figure 6.6 Critical Scheduling Method (CSM)).
changes occur in the network. Sub-critical tasks are tasks having limited slack and are identified as follows:

\[
SC_j = \begin{cases}
0 & \text{if } TS_j > \delta CP_i \\
1 & \text{if } TS_j \leq \delta CP_i
\end{cases}
\]

(6.2)

Sub-critical tasks are assigned in order of project priority and in order of sequential task number within a particular project. Sub-critical tasks while having limited slack are treated as though no slack is available. Thus no slack is used in attempting to assign a resource to a critical task on the first pass. Finally the algorithm assigns resources to non-critical tasks which are all remaining tasks. Assignment of non-critical tasks may include slack if it is available. At completion of the first pass a Time Constrained Solution has been formulated that produces a schedule for projects without changing the end finish date for any project. Projects that may be completely assigned have Start (ST) and Finish (FN) dates assigned for every task. If a project is completely assigned then the ST and FN as well as assignments on that project accommodate all constraints in the Robust Scheduling Method and therefore become part of the feasible solution. At the completion of the first pass some projects may be only partially assigned depending on the quantity of resources available. If a project is not completely assigned then that project is re-initialized for reassignment in a subsequent pass.

The CSM algorithm incorporates a second pass to iteratively reassign resources from partially assigned lower priority projects to critical, sub-critical and non-critical tasks on partially assigned higher priority projects. This approach formulates the Critically Constrained Solution (CCS) with the available resources. Once resources are cleared from partially assigned lower priority projects the algorithm essentially repeats
the first pass in project priority order starting with the highest priority partially assigned project. The second pass essentially extends the Critical Task Rule to a Critical Project Rule that fully satisfies all assignments of the most critical projects first.

After the first and second pass a third pass is completed to assign resources to partially assigned projects. All partially assigned projects are first re-initialized by removing partial assignments. The SSM is then applied to any project without assignments in priority order while adding lags and delay as necessary to the lower priority projects. The lag is incremented one day at a time and at each increment the algorithm attempts to assign a resource from the available inventory. When a time period is reached where a resource can be assigned the lag is integrated into the schedule by updating start (ST) and finish (FN) dates for the task any subsequent tasks in the network. Thus any task requiring a lag essentially builds in a third second pass all tasks and projects have been assigned resources, start (ST) dates and finish (FN) dates. The Resource Constrained Solution (RCS) now becomes the CSM feasible solution although it may no longer satisfy time constraints. Note that the RCS solution contains both the TCS and CCS as subsets. In addition should sufficient resources be available the RCS, TCS and CCS all will be identical.

At completion of the CSM the Project Valuation Method is updated to compute net present value and the Program Schedule Efficiency (PSE). The PSE is tested against prior generated feasible solution (using the SSM) and if the PSE is higher for CSM the solution is saved as the Best Constructive Solution (BCS).
6.4.3 Early Scheduling Method (ESM)

The Early Scheduling Method (SSM) uses the Early Task First (ETF) rule to pre-sort all tasks in all projects according to the Earliest Start (ES) date. Tasks are sorted from lowest to highest ES date. Figure 6.7 illustrates an example for three projects each consisting of five tasks.

![Diagram showing the Early Scheduling Method (ESM)](image)

Figure 6.7 Early Scheduling Method (ESM).
The method consists of two primary passes; 1) first pass to construct a Time Constrained Solution (TCS) and 2) second pass to construct a Resource Constrained Solution (RCS) where all tasks are assigned including tasks requiring delay.

The first pass to construct the TCS follows assigns tasks in ES priority order starting with the lowest duration task. Tasks are initialized with a Start (ST) date according to ES dates that result from the Robust Scheduling Method. The algorithm attempts to assign resource m from the inventory by first checking that the resource type meets the required type (i.e. $g_m = f_{ij}$) and that the resource is available in the period ($A_{ij} = m$). If the resource does not match type or is unavailable then the algorithm attempts to assign the next resource in the inventory. The resources can be assigned in random order or in order of skill level priority. If there is no resource that can satisfy assignment constraints directly then if slack is available it is used. Slack at a particular task are incremented one day and the SSM attempts to assign each resource in turn. The method continues to use slack in the network while attempting to assign resources to tasks without changing the end date of the final task. If slack is used the algorithm updates Start (ST) and Finish (FN) dates accordingly in the task and subsequent tasks. At completion of the first pass a Time Constrained Solution has been formulated that produces a schedule for projects without changing the end finish date for any project. Projects that may be completely assigned have Start (ST) and Finish (FN) dates assigned for every task. If a project is completely assigned then the ST and FN as well as assignments on that project accommodate all constraints in the Robust Scheduling Method and therefore become part of the feasible solution. At the completion of the first pass some projects may be only partially assigned depending on the quantity of resources
available. If a project is not completely assigned then that project is re-initialized by removing any partial assignments and setting an indicator to reassign the entire project in the second pass.

The second pass introduces a time lag and delay as required to force assignments to tasks and projects following the SSM. Only those projects not assigned completed by the Time Constrained Solution in the first pass participate in the second pass. After re-initializing partially assigned projects the second pass follows the same priority sequence as the first pass. The second pass any task that remains unassigned after consuming any available slack is assigned a lag. The lag is incremented one day at a time and at each increment the algorithm attempts to assign a resource from the available inventory. When a time period is reached where a resource can be assigned the lag is integrated into the schedule by updating start (ST) and finish (FN) dates for the task any subsequent tasks in the network. Thus any task requiring a lag essentially builds in a delay for that tasks, successor tasks and for the entire project. Upon completion of the second pass all tasks and projects have been assigned resources, start (ST) dates and finish (FN) dates. The Resource Constrained Solution (RCS) now becomes the feasible ESM solution although it may no longer satisfy time constraints. Note that the RCS solution contains the TCS as a subset. In addition should sufficient resources be available the RCS and TCS are identical.

At completion of the ESM the Project Valuation Method is updated to compute net present value and the Program Schedule Efficiency (PSE). The PSE is tested against prior generated feasible solution (using the SSM) and if the PSE is higher for ESM the solution is saved as the Best Constructive Solution (BCS).
6.5 Skill Level Improvement Heuristics

Resource assignment and scheduling is modeled in two phases including: 1) a constructive approach that employs priority rules for projects, tasks and resources to derive a feasible solution and 2) a improvement heuristic that considers the improved productivity that may be achieved by interchanging resources of differing skill levels and corresponding work rates. In section 6.2 a Best Constructive Solution (BCS) was developed using several heuristic assignment rules such as Sequential Task First, Critical Task First and Earliest Task First. Thus far the constructive approach has assumed that all resources are the same skill level and work at the same average work rate. The assumption that all resources are the same level and work at the same rate is relaxed in this section. An improved heuristic solution is developed that considers productivity gains that may be achieved associated with judicious assignment according to skill level and applying the corresponding work rates. A Level Constrained Solution (LCS) is developed by assigning each task the skill level of the resource already assigned in the Best Constructive Solution. Then the Skill Level Assignment Method (SLAM) is used to consider substitution of resources between tasks and projects in order to achieve productivity gains.

6.5.1 Level Constrained Solution

The BCS contains the solution with the best assignments and schedules as measured by highest PSE performance. The BCS solution assumes that all resources are the same skill level and work at an average work rate. The Level Constrained Assignment Method assigns each task a skill level corresponding to the resource already assigned to that task.
in the BCS. The work rates are then applied according to the work rate transformation in 4.3.3. An entirely new schedule is then developed associated with the task duration transformation. The new schedule is a Level Constrained Solution (LCS) with new project durations and a new level of performance characterized by PSE. It is important to note that the LCS could be higher or lower than the BCS depending on the distribution of tasks and placement of the various skill levels on the tasks.

6.5.2 Skill Level Assignment Method (SLAM)

Then Skill Level Assignment Method (SLAM) starts with the LCS and considers substitution of resources between tasks and projects in order to achieve productivity gains. As depicted in Figure 6.8, resources of the same type but differing skill levels are distributed among several projects. The opportunity arises to consider substituting a resource of one level already assigned to one task for a resource of differing level assigned to another task. The decision analysis is relative specifically where tasks overlap such that a resource contention is created. This research addresses the case of three skill levels \(q_1 = 1, q_2 = 2, q_3 = 3 \) as case in point. However nothing restricts expansion of the methodology to assign or substitute additional levels. The methodology starts by identifying suitable pairs that should be considered for substitution. Suitable resource (task) pairings should; 1) have the same Resource Type or Resource Type requirement, 2) have different skill levels and 3) occur in overlapping time periods.
Figure 6.8 Skill Level Assignment Method (SLAM).

This research limits the number of skill levels to three in order to reduce the combinatorial complexity and the complexity is further reduced by considering only two pairings. The algorithm considers potential substitution of resource level one (1) for level (2) and substitution of resource level two (2) for level three (3). While the algorithm does not directly consider substitution of a resource level one (1) with a level (3), the program and computational analysis that follow executes the 1:2 and 2:3 substitutions sequentially thereby effectively including a 1:3 potential substitution in the methodology.

The SLAM methodology proceeds to select an appropriate pair for trial substitution. A trial exchange of assignment, skill level and durations is completed for
the pair. All other resource assignments are then removed in the process of re-initializing for reassignment. It is important to note that skill level assignments are not reset. Skill level assignments on each task remain in tact effectively fixing the durations for all other tasks. Because the durations have transformed for the substitution pair a complete reschedule is required. A trial RSM using the transformed durations is developed and then SSM reassignment occurs for each projects. The algorithm develops an updated solution with pair substitution and new assignments and schedules. A PSE is computed for the new SLAM solution and if an improvement has been achieved the substitution is implemented in the updated solution and that SLAM solution becomes the new best solution. If no improvement is returned then the trial solution is dropped, original assignments reinstated and the existing LCS solution is carried forward as the best solution.

An exhaustive iterative search and trial substitution is completed for all 1:2 pairs that satisfy potential substitution criteria. The schedule and assignments are updated for each improvement in the PSE criteria. Once all qualified 1:2 substitutions are evaluated the algorithm completes an exhaustive iterative search to evaluate all 2:3 pairs that satisfy potential substitution criteria. Again schedules and assignments are updated should the search result improvement to the PSE criteria. Following the 2:3 pair search the best SLAM solution is obtained and becomes the recommended overall program solution along with complete resource assignments and project schedules.
CHAPTER 7

DECISION SUPPORT TOOL AND EXPERIMENTAL RESULTS

Chapter 7 describes the Resource Assignment and Multi-Project Scheduling (RAMPS) program developed to satisfy Research Objective No. 4 and provide a decision tool to assist with resource assignment in SLTI NPD. The RAMPS program automates the entire methodology presented in this dissertation and solves the NPD multi-project resource assignment problem using a combination of traditional project management and priority rule heuristics. The RAMPS program is designed following the formulation described in Chapter 4 and embodies the algorithms described in Chapter 5 and Chapter 6. A description of RAMPS program is contained in this chapter along with results of the computational experiments designed to evaluate the program.

7.1 Resource Assignment and Multi-Project Scheduling Program

7.1.1 Program Organization

The RAMPS program was developed in Visual Basic for Applications (VBA) in Excel convenient access and universal acceptance for users interested in implementing the code. Input and output files can easily be formatted in worksheets in Excel. Flow charts are provided in Appendix A for each of the ten VBA procedures, including:

100 – Robust Scheduling Method
200 – Project Valuation Method
300 – Project Prioritization Method
400 – Resource Prioritization Method
500 – Sequential Scheduling Method
600 – Critical Scheduling Method
700 – Early Scheduling Method
800 – Level Scheduling Method
900 – Skill Level Assignment Method 1:2
1000 – Skill Level Assignment Method 2:3
The RAMPS program code listed Appendix C is organized into VBA procedures according to the line numbers referenced in Figure 7.1.

Figure 7.1 Program structure.
7.1.2 Project Input Data

The program structure is initialized with project data per the formulation in Chapter 4. The project network example shown in Figure 7.2 consists of ten activities where activities one (1) and ten (10) are artificial and have zero duration. This example is carried forward to illustrate the input sequence. The corresponding input data file for the RAMPS program is shown in Figure 7.3.

![Figure 7.2 Project network example.](image)

<table>
<thead>
<tr>
<th>i</th>
<th>VP $17,000,000</th>
<th>PROJECT 1 - INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>VP</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TP</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>LP</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>j</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DM</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>DL</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>FJ</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRC</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Figure 7.3 Project input data example.](image)
The input data file provides all the necessary data to initialize project data including project number (i), potential value (VP), potential time to launch (TP) and potential life (LP). The task data includes mean duration (DM), low risk duration (DL), required resource type (FJ) and initial lag (LG). Initial lags are shown as zero but could be initialized to reflect a specified start time. The precedence matrix (PRC) is also contained in the input data to provide a complete characterization of the predecessor and successor relationships for each task.

7.1.3 Resource Input Data

The RAMPS program can be executed with one set of resources or with multiple resource sets of difference sizes. Processing multiple resource sets allows the program to test how the NPD assignment and scheduling performance changes with resource sets of different sizes, different type distributions and different skill level distributions. As discussed in 6.2 the resource set(s) may be read from a manually generated input file or may be generated automatically using the resource generator feature. Each resource set has a unique characterization of resource types and skill levels. Resources can be applied to the RAMPS program sequentially or alternatively resources can be presorted and prioritized by type and skill level. The Resource Prioritization Method (RPM) implemented in procedure 400 can be used to prioritize resources by skill level for input to the RAMPS program. An example of prioritized resource data sets generated automatically for three (3) resource types ranging in size from three (3) to ten (10) are shown in Figure 7.4
7.1.4 Program Solution

The Robust Scheduling Method (RSM) implemented in procedure 100 incorporates the entire methodology described in 5.3 and computes baseline scheduling results used in project prioritization and throughout all subsequent scheduling procedures. An example of RSM results for one project is shown in Figure 7.5.

Figure 7.4 Resource input data example.

<table>
<thead>
<tr>
<th>Resource m</th>
<th>M=1</th>
<th>M=2</th>
<th>M=3</th>
<th>M=4</th>
<th>M=5</th>
<th>M=6</th>
<th>M=7</th>
<th>M=8</th>
<th>M=9</th>
<th>M=10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GM</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 7.5 Sample Results of the Robust Scheduling Method (RSM).
A forward pass is used to compute Early Start (ES) and Early Finish (EF). A backward pass is used to compute Late Start (LS) and Late Finish (LF). Results include Total Slack (TS), Free Slack (FS) as well as a task indicator of Critical Task (CT) and Non Critical (NC). Finally the RSM computations include Critical Path (CP) duration, Project Buffer (PB) and overall expected project duration (TE). The RSM computations are completed for each project independently.

The Project Valuation Method (PVM) implemented in procedure 200 computes the expected delay (DE) for each project, resulting expected value (VE) and value lost (VL). The expected value (VE) is used to compute expected net present value (NPVE) and net present value lost (NPVL) for each project. The potential net present value (NPVP) is also computed. The sum total potential net present value and expected net present value for all projects is computed along with the Program Schedule Efficiency (PSE) for the program. An example of PVM results for one project is shown in Figure 7.6.

200 - PROJECT VALUATION METHOD (PVM)

<table>
<thead>
<tr>
<th>Project</th>
<th>NPVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>$17,000,000</td>
</tr>
<tr>
<td>TP</td>
<td>90</td>
</tr>
<tr>
<td>LP</td>
<td>400</td>
</tr>
<tr>
<td>TE</td>
<td>139</td>
</tr>
<tr>
<td>DE</td>
<td>49</td>
</tr>
<tr>
<td>VE</td>
<td>$11,262,713</td>
</tr>
<tr>
<td>VL</td>
<td>$5,737,288</td>
</tr>
<tr>
<td>NPVP</td>
<td>$16,336,724</td>
</tr>
<tr>
<td>NPVE</td>
<td>$10,798,944</td>
</tr>
<tr>
<td>NPVL</td>
<td>$5,537,780</td>
</tr>
<tr>
<td>Rate</td>
<td>0.000137</td>
</tr>
</tbody>
</table>

Figure 7.6 Sample results of the Project Valuation Method (PVM).
The Project Prioritization Method (PPM) implemented in procedure 300 computes Project Productivity Metric (PPM) and Productivity Project Index (PPI) based on productivity analysis in 5.5. The PPM also computes a NPV Project Index (NPI) for use in prioritizing projects using NPV criteria. An example of PPM results for six projects is shown in Figure 7.7.

300 - PROJECT PRIORITIZATION METHOD (PPM)

<table>
<thead>
<tr>
<th>SPI - Sequential Project Index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPI - NPV Project Index</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Productivity Index</th>
<th>Alpha</th>
<th>0.10</th>
<th>0.10</th>
<th>0.10</th>
<th>0.10</th>
<th>0.10</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>DVLDT</td>
<td>106,675</td>
<td>71,006</td>
<td>52,067</td>
<td>124,200</td>
<td>64,600</td>
<td>45,167</td>
<td></td>
</tr>
<tr>
<td>MAXDV</td>
<td>124,200</td>
<td>124,200</td>
<td>124,200</td>
<td>124,200</td>
<td>124,200</td>
<td>124,200</td>
<td></td>
</tr>
<tr>
<td>GAMMA</td>
<td>0.86</td>
<td>0.57</td>
<td>0.42</td>
<td>1.00</td>
<td>0.52</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>PPM</td>
<td>88,689</td>
<td>112,689</td>
<td>135,027</td>
<td>140,813</td>
<td>104,726</td>
<td>86,424</td>
<td></td>
</tr>
</tbody>
</table>

| PPI - Productivity Project Index | 5 | 3 | 2 | 1 | 4 | 6 |

Figure 7.7 Sample results of the Project Prioritization Method (PPM).

The Sequential Scheduling Method (SSM) implemented in procedure 500 provides a complete solution with resource assignments and schedules. The solution is generated following the Sequential Task First (STF) rule. The program processes resources in two primary passes as described in 6.3. The first pass assigns resources without changing the end date of the project thus producing a Time Constrained Solutions (TCS). If any project lacks sufficient resources at the end of the first pass it is reinitialized for a second pass. The second pass incrementally applies a lag on tasks until a suitable resource can be assigned thus imposing a delay on the task start and finish dates and to the project.
The Critical Scheduling Method (CSM) implemented in procedure 600 provides a complete solution with resource assignments and schedules. The solution is generated following the Critical Task First (CTF) rule. The program processes resources in three primary passes as described in 6.4. The first pass assigns resources without changing the end date of the project thus producing a Time Constrained Solutions (TCS). If any project lacks sufficient resources at the end of the first pass then resource from a lower priority partially assigned project are redeployed to a higher priority project on a second pass. If some projects are still not completely resource a third pass incrementally applies a lag on tasks until a suitable resource can be assigned thus imposing a delay on the task start and finish dates and to the project.

The Early Scheduling Method (ESM) implemented in procedure 700 provides a complete solution with resource assignments and schedules. The solution is generated following the Earliest Task First (ETF) rule. The program processes resources in two primary passes as described in 6.5. The first pass assigns resources without changing the end date of the project thus producing a Time Constrained Solutions (TCS). If any project lacks sufficient resources at the end of the first pass then those projects are reinitialized and the second pass incrementally applies a lag until a suitable resource can be assigned thus imposing a delay on the task start and finish dates and to the project.

The results for all scheduling procedures (500, 600, 700, 800, 900, 1000) may differ but all are presented in the same format. Key results for each solution include:

- Overall project schedules including buffer (only projects that are completely resourced).
- Start and finish date for each task.
- Resource assigned to each task.
- Skill level assigned to each task.
- Program schedule efficiency.
An example of the format of the assignment matrix \((A_{mj})\) for a Time Constrained Solution (TCS) is shown in Figure 7.8. By inspection of the example shown only two projects, three (3) and five (5), are fully resourced within the time constraints established by the RSM. All other projects cannot be fully resourced within time constraints and therefore are incomplete and not scheduled. The TCS includes complete scheduling information, valuation and program metrics (PSE) for those projects scheduled. The performance of this TCS will improve as additional resource sets with increased resource numbers are applied.

<table>
<thead>
<tr>
<th>Assignment Matrix AMJ - Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Figure 7.8 Sample Time Constrained Solution (TCS) assignment matrix.

An example of the format of the assignment matrix \((A_{mj})\) developed in the second pass for a Resource Constrained Solution (RCS) is shown in Figure 7.9. The second pass resets any project not fully assigned in the first pass and reassigns those projects. Reassignment is executed with the same prioritization criteria, by relaxing time
constraints and by applying lags and delays to tasks and projects. Upon completion of the second pass all projects are fully resourced and scheduled.

500 - SEQUENTIAL SCHEDULING METHOD (SSM)
RESOURCE CONSTRAINED SOLUTION (RCS)

Project Prioritization PP: 1
Resource Prioritization PR: 1
Resource Quantity MR: 20

<table>
<thead>
<tr>
<th>Assignment Matrix AMJ - Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Figure 7.9 Sample Resource Constrained Solution (RCS) assignment matrix.

RAMPS results include comprehensive scheduling data for each project as illustrated in Figure 7.10. The updated data includes start (ST) and finish (FN) dates for each task. In order to achieve assignments the computations now includes slack and lag time in the schedule. Computational updates also include critical path (CP), project buffer (PB), expected project duration (TE) and expected delay (DE). The delay is used to update expected net present value (NPVE) for each project. The program results shows an update (for six projects) including total expected net present value and new value for program schedule efficiency (PSE).
500 - SEQUENTIAL SCHEDULING METHOD (SSM)
RESOURCE CONSTRAINED SOLUTION (RCS)

<table>
<thead>
<tr>
<th>Project</th>
<th>Task</th>
<th>DM</th>
<th>DL</th>
<th>FJ</th>
<th>ES</th>
<th>EF</th>
<th>LS</th>
<th>LF</th>
<th>ST</th>
<th>FN</th>
<th>CT</th>
<th>TS</th>
<th>SC</th>
<th>LG</th>
<th>AMJ</th>
<th>GM</th>
<th>HM</th>
<th>CP</th>
<th>PB</th>
<th>TE</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td>0</td>
<td>14</td>
<td>28</td>
<td>21</td>
<td>14</td>
<td>28</td>
<td>21</td>
<td>35</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td></td>
<td>0</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>28</td>
<td>35</td>
<td>35</td>
<td>49</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FJ</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>56</td>
<td>21</td>
<td>77</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td></td>
<td>0</td>
<td>14</td>
<td>28</td>
<td>21</td>
<td>42</td>
<td>56</td>
<td>77</td>
<td>56</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS</td>
<td></td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>21</td>
<td>42</td>
<td>28</td>
<td>56</td>
<td>42</td>
<td>77</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td></td>
<td>0</td>
<td>42</td>
<td>28</td>
<td>42</td>
<td>56</td>
<td>56</td>
<td>77</td>
<td>77</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td>0</td>
<td>22</td>
<td>22</td>
<td>1</td>
<td>50</td>
<td>50</td>
<td>78</td>
<td>22</td>
<td>99</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td></td>
<td>0</td>
<td>35</td>
<td>49</td>
<td>21</td>
<td>63</td>
<td>77</td>
<td>98</td>
<td>56</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td></td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td></td>
<td>0</td>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG</td>
<td></td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMJ</td>
<td></td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM</td>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>TE</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>NPVE</td>
<td>8732444</td>
<td></td>
</tr>
<tr>
<td>TOTAL PROGRAM</td>
<td></td>
</tr>
<tr>
<td>NPVE</td>
<td>$79,747,719</td>
<td></td>
</tr>
<tr>
<td>NPVP</td>
<td>$109,270,539</td>
<td></td>
</tr>
<tr>
<td>PSE</td>
<td>0.7298</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.10 Sample schedule results and program results.

The RAMPS program also includes a Gantt chart to serve as a quick visual indicator of the time period resource assignments (A_{ij}). While the start (ST), finish (FN) and expected duration (TE) for each project should be sufficient for planning resource allocation it is helpful to view the Gantt chart in order to verify assignments and schedules. A sample Gantt chart is shown in Figure 7.11
GANTT CHART

<table>
<thead>
<tr>
<th>Day</th>
<th>Project</th>
<th>Task</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.11 Sample Gantt chart schedule results.
Scheduling and assignment results are generated for all the scheduling procedures (500, 600, 700, 800, 900 and 1000). The DST provides additional useful data for some of the procedures. The Critical Scheduling Method (CSM) in procedure 600 is a three pass algorithm and a Critically Constrained Solution (CCS) is generated as an interim result. The Early Scheduling Method (ESM) in procedure 700 generates and provides a list of tasks that are presorted and ranked in order of earliest task first. The Skill Level Assignment Method (SLAM) in procedures 900 and 1000 provide results on the number of trial solutions and on the number of successful substitutions.

7.2 Experimental Objectives

The experimental objects consist of testing and evaluating the performance of the resource assignment decision model using practical data sets. The RAMPS decision tool is used throughout to provide all computational results. Parameters used in the computational analysis are initialized as follows; nominal value for work rate \(q_1 \) and \(q_3 \) is assumed to be 0.3, prioritization parameters \(\alpha \) and \(\beta \) assumed to be 0.1 and work force shaping parameters \(\kappa \) and \(\lambda \) assumed to be zero. Objectives include:

1. Evaluate the effectiveness of the project and resource prioritization methods by comparing Productivity ranking and NPV ranking and by comparing performance with and without resource skill level prioritization. (Results in section 7.5.1)

2. Evaluate sensitivity of the model to productivity prioritization weighting factors \(\alpha \) and \(\beta \) reflecting relative confidence (optimistic/pessimistic) of executing the overall program per planned schedules. Productivity prioritization parameters \(\alpha \) and \(\beta \) will be allows to vary between 0 and 1 while holding other parameters constant. (Results in section 7.5.2)

3. Evaluate and compare the Time Constrained Solution (TCS) and the Resource Constrained Solutions using the constructive priority rule heuristics such as STF, CTF and ETF. (Results in section 7.5.3)
4. Compare the overall Skill Level Assignment Method (SLAM) solution with the Level Constrained Solution (LCS) solution. (Results in section 7.5.4)

5. Evaluate the Skill Level Assignment Method (SLAM) sensitivity to work rate to characterize how skill level differences and respective differences in work rates will impact the program. Objective three (3) allows the work rate parameters (q_1 and q_2) to vary from 0.1 to 0.5 while holding other parameters constant. (Results in section 7.5.5)

6. Evaluate sensitivity of the model to variation in potential launch date (T_P) by allowing the launch date T_P to vary ± 20% while holding other parameters constant. (Results in section 7.5.6)

7. Evaluate sensitivity of the model to resource mix by introducing variation to resource type and skill level. Work force shaping parameters (κ and λ) will be fixed at specific distributions representing opposite mix of work force while retaining other parameters constant. (Results in section 7.5.7)

7.3 Data Set Generation

The experimental objects consist of testing and evaluating the performance of the resource assignment decision model using practical data sets. The data sets while practical are designed to provide non-dominated cases where the methodology can discern priorities regarding projects and assignments. The data sets are grouped into small (J10), medium (J30) and large (J60) project representation. As the size of the project increases so does the number of different types of resource required and the duration of tasks and projects. The complexity of test case networks (ratio of arcs to tasks) is approximately 2 throughout all networks.

A “J10” project data set represents a set of six (6) projects each having ten (10) tasks and using three (3) skill types. The J10 data set represents smaller NPD projects with typically shortest durations. Overall duration for the J10 projects is typically three (3) to six (6) months. The J10 projects are fairly simple examples drawn from standard
textbooks (Kerzner 2003, Badiru 1995). J10 data was the primary test case used during the development of the RAMPS program. Complete J10 project data is provided in Appendix B.

The "J30" data set was developed by modeling typical NPD projects across several industries. Case studies (Pu 2009) were drawn from the following industries:

1. Consumer Electronics (LCD TV, iPod)
2. Home Appliance (Refrigerator)
3. Small Appliance (Hair Dryer)
4. Computer Products (Notebook computer)
5. Telecommunications/IT (Routers)

The projects were planned with best estimates of task and durations for versions of these products being introduced rapidly to replace previous generations. Projects were tailored to fit the computation requirements of this dissertation model. Each of the six (6) project networks have exactly thirty (30) tasks and require four (4) resource types including mechanical engineers, electrical engineers, system engineers and manufacturing engineers. The J30 networks represent medium to large NPD projects with overall durations of six (6) to twelve (12) months. The networks diagrams for the J30 data set are provided in Appendix B.

The "J60" data set is comprised of larger networks consisting of four (4) projects each having sixty (60) tasks and requiring five (5) resource types. The J60 projects represent larger projects with duration estimates of twelve (12) to eighteen (18) months. These NPD projects would typically reflect new to the world product development or a fundamental change to a product architecture. The J60 project networks are also found in Appendix B.
7.4 Illustrative Example of Results with J10

The overall solution results contain extensive details on schedules, assignments and metrics. The scheduling information includes start and end date for each project. The Gantt chart in Figure 7.11 summarizes the schedule for six (6) projects in the J10 project data set. Results reflect the project priority and delay (D) beyond the potential launch date (T_p). The potential NPV (NPV_p) and expected NPV (NPV_E) are provided along with the PSE metric for both the SLAM solution and the Best Current Practice (BCP) solution. The nominal case of twenty (20) resources used in the assignments is also shown along with resource type and skill level.

<table>
<thead>
<tr>
<th>Solution</th>
<th>NPV</th>
<th>PSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential</td>
<td>$109,270,000</td>
<td>1.000</td>
</tr>
<tr>
<td>SLAM</td>
<td>$84,508,000</td>
<td>0.774</td>
</tr>
<tr>
<td>BCP</td>
<td>$77,804,790</td>
<td>0.713</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Priority</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5</td>
<td>57</td>
</tr>
<tr>
<td>2 3</td>
<td>36</td>
</tr>
<tr>
<td>3 2</td>
<td>47</td>
</tr>
<tr>
<td>4 1</td>
<td>62</td>
</tr>
<tr>
<td>5 4</td>
<td>24</td>
</tr>
<tr>
<td>6 6</td>
<td>105</td>
</tr>
</tbody>
</table>

Resources

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Type 2 3 1 2 2 3 1 2 3 2 2 3 1 2 2 1 2 2 3 1
Skill Level 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3

Figure 7.11 Program results summary for J10.

The results include detail schedules for each project. An example for one of the J10 projects is shown in Gantt chart format in Figure 7.12. Data available include start
and finish date for each task and resources assigned to each task. In addition the overall schedule includes the Project Buffer (PB) to account for variation in duration estimates.

<table>
<thead>
<tr>
<th>Project: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>PB</td>
</tr>
</tbody>
</table>

Figure 7.12 Gantt chart of one J10 project.

The summary information provides assignment and scheduling information for each resource in the inventory. Figure 7.13 provides an example of the resource scheduling across three (3) different projects and four (4) tasks. Resource type and skill level are also referenced.

<table>
<thead>
<tr>
<th>Resource 8</th>
<th>Type 2</th>
<th>Skill Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Task</td>
<td>Start</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>74</td>
</tr>
</tbody>
</table>

Figure 7.13 Utilization summary for one resource on J10 projects.
7.5 Experimental Results

7.5.1 Prioritization Method Effectiveness

The project and resource prioritization method effectiveness was evaluated by comparing Productivity Project Index (PPI) ranking and NPV project index (NPI) project ranking and by comparing performance with and without resource prioritization by skill level. Results are shown in Figure 7.12 and summarized in Table 7.2.

![Graph showing prioritization methods comparison](image)

Figure 7.14 Comparison of prioritization methods with J10 data.

The data sets in Figure 7.14 are clearly segmented into two sets with the two (2) curves using resource prioritization clearly out performing those with no resource prioritization. Prioritizing resources by skill level can typically improve the performance of the SLAM solution between 3% and 5% depending on the level of resources applied. Furthermore if resources are not prioritized the algorithm has to work harder. Figure 7.15 quantifies the
number of substitutions associated with a SLAM solution using prioritized resources and that of a SLAM solution without prioritized resources. Thus having resources prioritized by skill level allows the algorithm to process more efficiently and results in improved schedule performance over not prioritizing resources.

![Comparison of average number of substitutions.](image)

Figure 7.15 Comparison of average number of substitutions.

Detailed evaluation of the data indicates an advantage to prioritizing projects by productivity and to prioritizing resources by skill level as indicated in Table 7.1 thus productivity and skill level prioritization is carried forward in this research.

Table 7.1 Prioritization effectiveness with J10 data.

<table>
<thead>
<tr>
<th>Project Prioritization</th>
<th>Resource Prioritization</th>
<th>Average Relative PSE Performance</th>
<th>Average Number of Substitutions/Trial Solutions</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity</td>
<td>Skill Level</td>
<td>1.00</td>
<td>10/174</td>
<td>140s</td>
</tr>
<tr>
<td>NPV</td>
<td>Skill Level</td>
<td>0.98</td>
<td>10/210</td>
<td>200s</td>
</tr>
<tr>
<td>Productivity</td>
<td>None</td>
<td>0.96</td>
<td>18/320</td>
<td>260s</td>
</tr>
<tr>
<td>NPV</td>
<td>None</td>
<td>0.94</td>
<td>21/370</td>
<td>300s</td>
</tr>
</tbody>
</table>
7.5.2 Sensitivity to Prioritization Parameters \(\alpha \) and \(\beta \)

The PPM ranks projects for scheduling by incorporating productivity prioritization parameters (\(\alpha \) and \(\beta \)) reflecting relative confidence (optimistic/pessimistic) of executing the overall program per planned schedules. Productivity prioritization parameters (\(\alpha \) and \(\beta \)) will be allowed to vary between 0 and 1 while holding other assumptions the same as Objective one (1). A range of solution performance is achieved and the maximum and minimum are plotted in Figure 7.16.

![Graph showing sensitivity of productivity prioritization weighting factors \(\alpha \) and \(\beta \).](image)

Figure 7.16 Sensitivity of productivity prioritization weighting factors \(\alpha \) and \(\beta \).

The maximum sensitivity tends to occur with higher \(\alpha \) and \(\beta \) combinations or when \(\alpha + \beta > 1 \). The minimum sensitivity tends to occur with lower combinations of \(\alpha \) and \(\beta \) combinations or when \(\alpha + \beta < 1 \).
7.5.3 Comparison of Constructive Solution Methods

The Best Constructive Solution (BCS) is formulated by selecting the solution from constructive solution with the best PSE performance at a particular resource level. The constructive methods considered include the Sequential Scheduling Method (SSM), Critical Scheduling Method (CSM) and Early Scheduling Method (ESM). A comparison of relative performance at various resource levels is shown in Figure 7.16. The performance of Time Constrained Solutions and Resource Constrained Solutions are plotted for a range of resource levels from ten (10) to fifty (5). The resource cost baseline is also shown in the diagram for reference in comparing the rate of change of performance for the incremental cost added.

The Time Constrained Solutions (TCS) shown in Figure 7.17 reflect resource assignments and scheduling that can be achieved if the dates of tasks and projects is inflexible. All of the TCS show a consistent performance that results in projects completed in a stepwise function as resources are increased. All TCS for all the methods result in lower performance than RCS except at the very highest resource levels where the TCS and RCS become equal. Where resources are scarce the SSM logically schedules the most important project first and additional projects are scheduled to completion at a faster rate. Thus the SSM yields the best TCS performance where resources are constrained. Where resources are more plentiful the ESM results in a TCS advantage since completing the earliest tasks first tend to finish projects more quickly.
Figure 7.17 Comparison of the constructive scheduling methods.

All of the constructive methods produce a Resource Constrained Solution (RCS) with similar performance as shown in Figure 7.18. At low resource levels (for example below ten (10) resources all solutions revert to the Sequential Scheduling Method (SSM). At some levels the Early Scheduling Method (ESM) solution exceeds the performance of the others. Over the entire range of resources the Critical Scheduling Method (CSM) achieves an average relative performance that offers a slight advantage. If computing time becomes an issue any one of the constructive methods can provide an adequate feasible solution. Note that the purpose of the constructive methods is to establish the Best Constructive Solution (BCS) at each resource level and the RAMPS program can
easily run the three methods (or any one of the methods) and save the best performing solution as the BCS.

<table>
<thead>
<tr>
<th>Resource Constrained Solution (RCS)</th>
<th>Ave. Relative Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Critical Scheduling Method (CSM)</td>
<td>+ 0.6%</td>
</tr>
<tr>
<td>2 Early Scheduling Method (ESM)</td>
<td>+ 0.4%</td>
</tr>
<tr>
<td>3 Sequential Scheduling Method (SSM)</td>
<td>Nominal</td>
</tr>
</tbody>
</table>

Figure 7.17 Comparison of the constructive methods with differentiation.

7.5.4 Comparison of Improved Solution Methods

The SLAM solution is compared against the LCS solution in this section. The LCS solution is initialized with the Best Constructive Solution and including assignment of skill levels at assigned tasks. The SLAM solution takes advantage of skill level substitution to achieve even higher productivity. The evaluation assumes a nominal work rate \(q_1 \) and \(q_3 \) equal to 0.3 and the prioritization parameters \(\alpha \) and \(\beta \) equal to 0.1. Work force shaping parameters \(\kappa \) and \(\lambda \) are assumed to be zero thus all resource sets are generated automatically. The results shown in Figure 7.19 for the J10 data set shows that the SLAM averages 6% higher than the LCS solution across the range evaluated. The
SLAM/LCS solutions for data set J30 and J60 are shown in Figure 7.20 and Figure 7.21 respectively. Results for both J30 and J60 shows that the SLAM solution averages 5% higher than the LCS solution across the range evaluated.

Figure 7.19 Overall solution comparison for the J10 data set.

Figure 7.20 Overall solution comparisons for J30 data set.
7.5.5 Sensitivity to Work Rate

The Skill Level Assignment Method (SLAM) solution was evaluated to determine how skill level differences and respective differences in work rates will impact the program performance. Work rate parameters (q_1 and q_2) are allowed to vary from 0.1 to 0.5 while applying other parameters the same. Results for the SLAM solution shown in Figure 7.22 indicate that increasing work rate improves the SLAM solution. In all cases the SLAM solution has improved performance over the BCS solution. The SLAM solution benefits from having faster workers on longer tasks and slower workers on shorter tasks.

Figure 7.21 Overall solution comparisons for J60 data set.
<table>
<thead>
<tr>
<th>PSE</th>
<th>Solution</th>
<th>q_1 & q_3</th>
<th>Ave. Relative Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>SLAM</td>
<td>0.5</td>
<td>+ 12%</td>
</tr>
<tr>
<td>Schedule</td>
<td>SLAM</td>
<td>0.3</td>
<td>+ 6%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>SLAM</td>
<td>0.1</td>
<td>+ 1%</td>
</tr>
<tr>
<td></td>
<td>BCS</td>
<td>-</td>
<td>Nominal</td>
</tr>
</tbody>
</table>

Figure 7.22 Sensitivity to varying work rates.

7.5.6 Sensitivity to Launch Date

Project prioritization and resource scheduling are closely linked to delay relative to potential launch date (T_p). During project planning and execution the potential launch date may be changed to reflect changing market conditions. For instance the customer may want to buy the product sooner or alternatively cannot commit to purchase the product until later than originally planned. The objective is allow the potential launch date T_P to vary $\pm 20\%$ while holding other assumptions constant to evaluate the performance. The launch date sensitivity is shown in Figure 7.23.
Figure 7.23 Sensitivity to variation in launch date by ± 20%.

7.5.7 Sensitivity to Workforce Mix

The objective is to evaluate the model sensitivity to resource mix by introducing variation to resource type and skill level. Work force shaping parameters (κ and λ) will be fixed at specific distributions representing a mix of work force while retaining other assumptions constant. The description of the mix determined by the resource generator, a strong mix and a weak mix are provided in Table 7.2 and illustrated in Figure 7.24.

Table 7.2 Sensitivity to workforce mix assumptions.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Strong Mix</th>
<th>Generator Mix</th>
<th>Weak Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>Type</td>
<td>Matches Project</td>
<td>Matches Equal Amount,</td>
</tr>
<tr>
<td>Prioritized by</td>
<td>Demand Profile</td>
<td>Demand Profile</td>
<td>κ1 = 0.2, κ2 = 0.4,</td>
</tr>
<tr>
<td>Productivity</td>
<td></td>
<td></td>
<td>κ3 = 0.4</td>
</tr>
<tr>
<td>Resources</td>
<td>Level</td>
<td>Skewed Higher</td>
<td>Uniform Skewed Lower,</td>
</tr>
<tr>
<td>Prioritized by</td>
<td>λ₁ = 0.4, λ₂ = 0.5</td>
<td>Distribution</td>
<td>λ₁ = 0.1, λ₂ = 0.5,</td>
</tr>
<tr>
<td>Skill Level</td>
<td>λ₃ = 0.1</td>
<td></td>
<td>λ₃ = 0.4</td>
</tr>
</tbody>
</table>
Figure 7.24 Sensitivity to workforce mix.
CHAPTER 8
DISCUSSION AND FUTURE RESEARCH DIRECTION

8.1 Discussion

This dissertation addresses specific aspects of the resource assignment problem crucial to NPD success. Short Life Technology Intensive NPD products and projects are characterized as a class of products having higher technical complexity, require development by a variety of technical disciplines, have relatively short development intervals, in the range of six (6) to eighteen (18) months, and short life spans, in the range of one (1) to three (3) years. Project risk is higher for SLTI projects due to technical complexity and constraints on the availability of technical resources of differentiated discipline and skill level to carry out the development. SLTI projects are launched into stationary market windows where unrecoverable loss occurs with any delay in the launch date. Product development is carried out in multi-project environments where products are developed in parallel and often replaced in rapid succession.

The NPD resource assignment problem formulation matches projects and tasks with available resources in required time periods to achieve product launch objectives. The solution incorporates a Robust Scheduling Method (RSM) including components of the Critical Path (CP) and Critical Chain (CC) method to develop schedules accommodating duration estimate variation in the solutions. A time-sensitive valuation function anchored to product launch date is used in the Project Valuation Method (PVM) to derive a metric that enables comparison of projects. The Project Prioritization Method (PPM) uses the project valuation and develops a productivity index as the basis for prioritizing projects for resource scheduling. The resource assignment and scheduling
method includes a Constructive Solution which is a feasible solution formed through iterative search using priority rule heuristics. The Constructive Solution is developed as a feasible solution and as the basis for further improvements based on skill level assignment. The Skill Level Assignment Method (SLAM) solution uses an improvement heuristic that considers productivity gains that may be achieved by interchanging resources of differing skill levels and corresponding work rates.

The Resource Assignment and Multi-Project Scheduling (RAMPS) program is a decision tool developed to solve the resource assignment problem. The RAMPS program automates the entire methodology presented in this dissertation. An experimental analysis using simulated project and resource data sets has demonstrated consistency in the methodology.

Observations from this research are:

1. A comparison of project prioritization methods shows improved performance of approximately two percent (2%) for programs prioritized by productivity criteria versus NPV criteria. The data indicates that productivity criteria should be considered when planning multi-project NPD programs.

2. A comparison of resource prioritization methods shows improved performance of approximately four percent (4%) for solutions prioritizing resources by skill level versus solutions where no resource prioritization occurs. This data suggest that significant gains can be achieved through inventorying and prioritizing resource skill levels as a precursor to resource assignment.

3. The Skill Level Assignment Method (SLAM) has the potential to improve assignment solutions approximately five percent (5%) versus solution than have not been optimized for skill level. Most NPD programs will benefit from including a SLAM methodology to improve productivity of project schedules, improve program performance and ensure the best utilization of available skilled resources.

 a. The SLAM algorithm will typically have a greater impact on projects that are not prioritized by productivity, where resources are not prioritized by skill level and on projects having longer tasks where the benefit of interchanging resources of differing skill level is greater.
b. The SLAM algorithm impact will typically have less impact where projects are prioritized by productivity, where resources are prioritized by skill level and on projects having tasks with short duration that have limited productivity benefit from interchanging resources of differing skill levels.

4. The RAMPS decision tool incorporates the entire methodology presented in this dissertation. Computational experiments and analysis indicates that the RAMPS program and embedded algorithms provide excellent solutions to the multi-project NPD resource assignment problem.

8.2 Future Research Direction

Opportunities for future research include:

1. The “simplified” critical chain technique used in the Robust Scheduling Method applies only the project buffer while omitting other aspects of the Critical Chain Project Management (CCPM) methodology. The assignment method may be expanded to include a full blown Critical Chain Project Management including resource leveling and the use of feeder, resource and capacity buffers.

2. The triangular life-cycle valuation function provides an approximate profile of a product revenue life-cycle that declines rapidly without claim to precision. Future enhancements to the Project Valuation Method may incorporate actual life cycle functional relationships conforming more precisely to actual life-cycles revenue or profit profiles.

3. The Project Valuation Method presented in this research emphasizes revenue rather than profit. Future research may incorporate target costing and projected development resource expense as an integral component of the valuation model.

4. The Project Prioritization Method established in this dissertation is primarily based on financial measures with modification of performance of the entire program is accounted for through the weighting factors α and β. Future research may expand the prioritization model to include qualitative factors and risk factors for each project and account for interaction among projects.

5. In formulating a constructive solution there are dozens of priority rules to choose from in order to reach a feasible solution. In this research three priority rules have been selected to formulate the feasible solution. It may be beneficial to investigate other priority rules (such as longest duration first, shortest duration first and others) to determine which ones provide an advantage in establishing the constructive solution.
6. The improvement heuristic solution embodied in the Skill Level Assignment Method may be evolved by investigating metaheuristic algorithms now considered state of the art in solving the single project RCPS problem. Best single project solutions add forward-backward multi-pass techniques to improve schedules constructed with metaheuristics such as Branch and Bound, Genetic Algorithms and Tabu search.

7. Assignment algorithms such as the ones presented in this research allow a resource to be assigned to a task on one project one day and to a task on another project the next day while assuming the same rate of productivity on both projects. In future research it may be beneficial to explore the impact a learning curve that may be representative of moving a resource from one project to another.

8. The methodology in this dissertation was evaluated with project data sets generated to emphasize non-dominated programs and making resource assignment decisions that discern the priorities for resource allocation. As research in multi-project scheduling continues it may be desirable to generate and standardize larger data sets that include standard non-dominated multiple project sets for use in computational study.

9. The RAMPS decision tool can be evolved and improved to provide to allow quicker and simpler execution.
APPENDIX A

FLOW CHARTS

The RAMPS program flow charts are contained in this appendix.

Figure A.1 Flow Chart - Overall program.
100 Initialize Project Data

Select Project i

Forward Pass to Compute ES, EF

Backward Pass to Compute LF, LS

Compute Total Slack TS

Compute Free Slack FS

Identify Critical Tasks CT

Compute Critical Path CP

Identify Near Critical Tasks NC

Compute Sum Square Errors SSE

Compute Bias Buffer BB

Compute Critical Chain CC

All Projects Scheduled? Y

Print Robust Schedules

End

Figure A.2 Flow Chart - Robust Scheduling Method (RSM).
200 Initialize Project Data

Select Project i

Compute Potential Net Present Value NPVP

Compute Expected Delay DE

Compute Expected Project Value VE

Compute Expected Net Present Value NPVE

All Projects Valued?

Compute Total Expected SUMNPVE

Compute Unconstrained Program Scheduling Efficiency PSE

Print Project Valuation

End

Figure A.3 Flow Chart - Project Valuation Method (PVM).
Figure A.4 Flow Chart - Project Prioritization Method (PPM).
Figure A.5 Flow Chart - Resource Prioritization Method (RPM).
Figure A.6 Flow Chart - Sequential Scheduling Method (SSM).
Figure A.7 Flow Chart - Critical Scheduling Method (CSM).
Figure A.8 Flow Chart - Critical Scheduling Method (CSM) - Continued.
Figure A.9 Flow Chart - Early Scheduling Method (ESM).
Figure A.10 Flow Chart - Level Scheduling Method (LSM).
Figure A.11 Flow Chart - Level Scheduling Method (LSM) - Continued.
Figure A.12 Flow Chart - Skill Level Assignment Method (SLAM) 1:2.
Figure A.13 Flow Chart - Skill Level Assignment Method (SLAM) 1:2 - Continued.
Figure A.14 Flow Chart - Skill Level Assignment Method (SLAM) 2:3.
Figure A.15 Flow Chart - Skill Level Assignment Method (SLAM) 2:3 - Continued.
APPENDIX B
PROJECT INPUT DATA

Project data sets used in the computational analysis are contained in Appendix B.

Figure B.1 J10 project networks.
Figure B.2 J10 project networks - continued.
<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th></th>
<th>PROJECT 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VP</td>
<td>$17,000,000</td>
<td>90</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>DM</td>
<td>0</td>
<td>14</td>
<td>28</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>DL</td>
<td>0</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>FJ</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th></th>
<th>PROJECT 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VP</td>
<td>$21,000,000</td>
<td>90</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>DM</td>
<td>0</td>
<td>21</td>
<td>35</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>DL</td>
<td>0</td>
<td>28</td>
<td>49</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>FJ</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRC</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure B.3 J10 data input file.
Figure B.4 J10 data input file - continued.
<table>
<thead>
<tr>
<th>i</th>
<th>5</th>
<th>PROJECT 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>$19,000,000</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DM</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>DL</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>FJ</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRC</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>$20,000,000</td>
</tr>
<tr>
<td>TP</td>
<td>90</td>
</tr>
<tr>
<td>LP</td>
<td>1200</td>
</tr>
<tr>
<td>j</td>
<td>1</td>
</tr>
<tr>
<td>DM</td>
<td>0</td>
</tr>
<tr>
<td>DL</td>
<td>0</td>
</tr>
<tr>
<td>FJ</td>
<td>0</td>
</tr>
<tr>
<td>LG</td>
<td>0</td>
</tr>
<tr>
<td>PRC</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure B.5 J10 data input file - continued.
Figure B.6 J30 project networks.
Figure B.7 J30 project networks - continued.
<table>
<thead>
<tr>
<th>i</th>
<th>J30 Project 1</th>
<th>J30 Project 2</th>
<th>J30 Project 3</th>
<th>J30 Project 4</th>
<th>J30 Project 5</th>
<th>J30 Project 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>$300,000,000</td>
<td>$350,000,000</td>
<td>$260,000,000</td>
<td>$320,000,000</td>
<td>$220,000,000</td>
<td>$280,000,000</td>
</tr>
<tr>
<td>TP</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>LP</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Figure B.8 J30 data input file – shown without Prec matrix.
Figure B.9 J60 project networks.
Figure B10 J60 project networks - continued.
Figure B11 J60 project networks - continued.
Figure B12 J60 project networks – continued.
<table>
<thead>
<tr>
<th>Project</th>
<th>VP</th>
<th>TP</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>J60 Project 1</td>
<td>$350,000,000</td>
<td>300</td>
<td>720</td>
</tr>
<tr>
<td>J60 Project 2</td>
<td>$450,000,000</td>
<td>300</td>
<td>720</td>
</tr>
<tr>
<td>J60 Project 3</td>
<td>$400,000,000</td>
<td>300</td>
<td>720</td>
</tr>
<tr>
<td>J60 Project 4</td>
<td>$500,000,000</td>
<td>365</td>
<td>720</td>
</tr>
</tbody>
</table>

Figure B.13 J60 project data file — shown without Prec matrix.
APPENDIX C

CODE LISTING

The source code for the Resourch Assignment and Multi-Project Scheduling (RAMPS) program is found in this appendix. Flow charts for each sub-procedure are found in Appendix A. The scheduling and assignment methods were programmed in Visual Basic for Applications (VBA) contained within Microsoft Excel. The VBA platform allows convenient input and output from Excel worksheets and allows the entire analysis to be contained within a workbook. Sub-procedures are provided with line number references corresponding to the procedure; for example line numbers 100 to 199 contains code for the Robust Scheduling Method. The high level program structure is as follows:

Declarations
Main Procedure
Sub-Procedures:

010 Initialization
100 Robust Scheduling Method
200 Project Valuation Method
300 Project Prioritization Method
400 Resource Prioritization Method
500 Sequential Scheduling Method
600 Critical Scheduling Method
700 Early Scheduling Method
800 Skill Level Scheduling Method
900 Skill Level 1:2 Assignment Method
1000 Skill level 2:3 Assignment Method

Print Results
Print Charts
The program code listed in this appendix provides solutions for the "J10" data set consisting of six projects each having ten tasks. The code arrays are dimensioned for six projects (NP=6), ten tasks (JT=10), three resource types (KT=3), up to sixty resources (MR=60) and up to eight-hundred (TP=800) time periods.

This program was expanded to conduct computation analysis the larger data sets including "J30" and "J60". The expanded code (not shown) was created by modifying arrays in the code to reflect the values shown in Table C.1.

Table C.1 –Array values for project data sets.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>NP Number of Projects</th>
<th>JT Number of Tasks</th>
<th>KT Number of Resource Types</th>
<th>MR Number of Resources</th>
<th>TP Number of Time Periods (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J10</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>60</td>
<td>800</td>
</tr>
<tr>
<td>J30</td>
<td>6</td>
<td>30</td>
<td>4</td>
<td>120</td>
<td>1000</td>
</tr>
<tr>
<td>J50</td>
<td>4</td>
<td>60</td>
<td>5</td>
<td>180</td>
<td>1000</td>
</tr>
</tbody>
</table>
Option Base 1

'Global Declarations

'Resources
Dim MAX As Integer
Dim MR As Integer
Dim MRMAX As Integer
Dim MMR As Integer
Dim KT As Integer
Dim LT As Integer
Dim m As Integer
Dim GM(60, 60) As Integer
Dim HM(60, 60) As Integer
Dim LRI(60, 60) As Integer
Dim RRI(60) As Integer
Dim RRA(60) As Single
Dim RRB(60) As Single
Dim RPRB(60) As Integer
Dim Q1 As Variant
Dim Q3 As Variant

'Maximum number of resources
'Number of resources
'Number of Resources Derived by the RPM
'Set MMR=1 with multiple resource sets
'Number of resource types, e.g. 3
'Number of skill levels, e.g. 3
'Index of resources
'Skill type of resource m, GM = 1, 2 or 3
'Skill level of resource m, HM = 1,2 or 3
'Resource Index prioritized by Skill Level

'Dim RRI(60) As Integer
'Dim RRA(60) As Single
'Dim RRB(60) As Single
'Dim RPRB(60) As Integer
'Dim Q1 As Variant
'Dim Q3 As Variant

'Set MMR=1 with multiple resource sets
'Random Resource Index
'Random Variable for prioritizing resources
'Random Variable for prioritizing resources
'Priority resource random variable B
'Work rate level 1 increased over level 2
'Work rate level 3 reduced from level 2

'Schedule Time Periods
Dim TP As Integer
Dim AJT(6, 10, 800) As Integer
Dim AJTO(6, 10, 800) As Integer
Dim BAJT(6, 10, 800) As Integer

'Number of time periods
'Assignment resource m to task j in period T
'Assignment Printing variable
'Assignment matrix for best solution

'Prioritization Parameters
Dim PP As Integer
Dim PR As Integer
Dim Alpha As Variant
Dim Beta As Variant
Dim IR As Variant
Dim Delta As Variant
Dim Kappal As Variant
Dim Kappa2 As Variant

'PP =0 Sequential order per input file
'PP=1 Productivity Prioritized
'PP=2 NPVP Prioritized, PP=3 Random

'Priority of Resources
'PR=0 Un-prioritized, as generated or input
'PR=1 Prioritized by Skill Level, highest first

'Likelihood of recovering lost value
'Likelihood of additional loss
'Interest Rate per day
'Near critical tasks, percent of CP

'Dim Kappa1 As Variant
Dim Kappa2 As Variant

'Workforce parameter, % Resource Type 1(0 to 1)
'Workforce parameter, % Resource Type 2(0 to 1)
Dim Kappa3 As Variant 'Workforce parameter, % Resource Type 3(0 to 1)
Dim Lambda1 As Variant 'Workforce parameter, % Skill Level 1(0 to 1)
Dim Lambda2 As Variant 'Workforce parameter, % Skill Level 2(0 to 1)
Dim Lambda3 As Variant 'Workforce parameter, % Skill Level 3(0 to 1)

' Declarations
Dim NP As Integer 'Number of projects
Dim NPC As Integer 'Number of critical projects
Dim JT As Integer 'Number of tasks
Dim NJT As Integer 'Total Number of tasks, NP*JT
Dim STEP As Variant 'Incremental value in ES sort

Dim i As Integer 'Index of projects
Dim j As Integer 'Index of tasks
Dim k As Integer 'Index of skill types
Dim l As Integer 'Index of skill levels

Dim n As Integer 'Project counter
Dim p As Integer 'Task counter
Dim t As Integer 'Index of time periods
Dim TT As Integer 'Index of time periods
Dim ii As Integer 'Index of projects
Dim jj As Integer 'Index of revised tasks
Dim iii As Integer 'Index of projects
Dim jjj As Integer 'Index of tasks
Dim x As Integer 'Row reference in Project Input
Dim y As Integer 'Col reference in Project Input
Dim R As Integer 'Row reference in UPS
Dim C As Integer 'Col reference in UPS
Dim jr As Integer 'Row reference for precedence matrix
Dim jc As Integer 'Col reference for precedence matrix
Dim Row As Integer 'Row reference for Assignment Output
Dim Col As Integer 'Col reference for Assignment Output
Dim Excelrow As Integer 'Row reference for output
Dim Excelcol As Integer 'Col reference for output
Dim Resultsrow As Integer 'Row reference for results printing
Dim testrow As Integer 'Row reference for diagnostic output

Dim TRIAL12 As Integer 'No. of Trial Level 1:2 Substitutions
Dim TRIAL23 As Integer 'No. of Trial Level 2:3 Substitutions
Dim SUB12 As Integer 'No of Level 1:2 Substitutions
Dim SUB23 As Integer 'No of Level 2:3 Substitutions

Dim PI(6) As Integer 'Project Number
Dim MAXEFPRC(6) As Integer 'Maximum Early Finish of Predecessors
Dim MINLSSUC(6) As Integer 'Minimum Late Start of Successors
Dim MINNESSUC(6) As Integer 'Minimum Early Start of Successors
Dim MAXTEFPRC(6) As Integer 'Maximum Temp Early Finish of Predecessors

Dim RS(6) As Integer 'Indicator to reschedule project
Dim CP(6) As Integer 'Critical Path Duration for each project
Dim SS(6) As Variant 'Square root of Sum of Square Errors each project
Dim BB(6) As Variant 'Bias Buffer Estimate
Dim BF(6) As Variant 'Total Buffer Estimate Includes SS and BB
Dim CC(6) As Integer 'Critical Chain Duration for each project
Dim SV(6) As Integer 'Sum value

Dim VP(6) As Variant 'Potential Value of the Project
Dim VE(6) As Variant 'Expected Value of the Project based on TE
Dim VL(6) As Variant 'Lost Value to the Project; VP-VE
Dim LP(6) As Integer 'Potential Life - days
Dim TL(6) As Integer 'Potential Time to Launch -days
Dim DE(6) As Integer 'Expected project duration

Dim NPVP(6) As Variant 'Potential Net Present Value
Dim NPVE(6) As Variant 'Expected Net Present Value
Dim NPVL(6) As Variant 'Lost Net Present Value due to delay
Dim GL(6) As Variant 'Left hand gradient for potential and expected
Dim GR(6) As Variant 'Right hand gradient for expected

Dim GAMMA(6) As Variant 'Rate of loss factor
Dim PPM(6) As Variant 'Project Productivity Metric
Dim PRI(6) As Integer 'Productivity Ranking Index
Dim RPRI(6) As Integer 'Random Priority Ranking Index
Dim PRB(6) As Integer 'Temporary Random Priority Index

Dim RA(6) As Single 'Random Number
Dim RB(6) As Single 'Temporary Array Random Number
Dim RTEMP As Variant 'Random Tempory Value

Dim ESA(60) As Variant 'Early Start sorting variable
Dim ESB(60) As Variant 'Early Start sorting variable
Dim ESARO(60) As Variant 'Early Start in rank order

Dim PESA(60) As Integer 'Early Start Priority
Dim PESB(60) As Integer 'Early Start Priority

Dim SSMTCS(60) As Variant 'Sequential Time Constrained Solution
Dim SSMRCS(60) As Variant 'Sequential Resource Constrained Solution

Dim CSMTCS(60) As Variant 'Critical Time Constrained Solution
Dim CSMCCS(60) As Variant 'Critical Critical Constrained Solution
Dim CSMRCS(60) As Variant 'Critical Resource Constrained Solution

Dim ESMTCS(60) As Variant 'Early Time Constrained Solution
Dim ESMRCS(60) As Variant 'Early Resource Constrained Solution
Dim LCS(60) As Variant 'Leveled Solution after applying work rates
Dim SLAM12(60) As Variant 'Skill Level Assignment Method Levels 1 and 2
Dim SLAM23(60) As Variant 'Skill Level Assignment Method Levels 2 and 3
Dim RC(60) As Variant 'Resource Cost, for each set
Dim RC1 As Variant 'Cost/day of Level 1 Resource
Dim RC2 As Variant 'Cost/day of Level 2 Resource
Dim RC3 As Variant 'Cost/day of Level 3 Resource
Dim CF(60) As Variant 'Fractional Cost

Dim PTEMP(6) As Variant 'Used in Project Ranking/Sorting
Dim TEMP As Variant 'Used in Project Ranking/Sorting
Dim VPTEMP(6) As Variant 'Used in Project Ranking
Dim VPTEMPPRI(6) As Variant 'Used in Project Ranking
Dim VPR(6) As Variant 'Potential Value-Revenue Priority Ranking Index
Dim PRITEMP(6) As Integer 'Prioritization Variable
Dim NPVPTEMP(6) As Variant 'Priority based on Potential Net Present Value
Dim NPVPPRI(6) As Variant 'Priority based on Potential Net Present Value
Dim NPVPTEMPPR(6) As Variant 'Temp priority based on Potential Net Present Value
Dim NPVETEMP(6) As Variant 'Expected Net Present Value
Dim TEMPNPVE(6) As Variant 'Expected Net Present Value
Dim NPVEPRI(6) As Variant 'Priority Based on Expected Net Present Value
Dim NPVETEMP(6) As Variant 'Priority Based on Expected Net Present Value
Dim NETEMP As Variant 'Temporary Value
Dim SUMNPVP As Variant 'Sum of Program Potential Net Present Value
Dim SUMNPVE As Variant 'Sum of Program Expected Net Present Value
Dim PSE As Variant 'Program Scheduling Efficiency

Dim GPL(6) As Variant 'Gradient for Potential Triangle Left
Dim GPR(6) As Variant 'Gradient for Potential Triangle Right
Dim GEL(6) As Variant 'Gradient for Expected Triangle Left
Dim GER(6) As Variant 'Gradient for Expected Triangle Right
Dim RPK(6) As Variant 'Peak Value of Potential Triangle
Dim REK(6) As Variant 'Peak Value of Expected Triangle
Dim DFPGLP(6) As Variant 'Discount Factor P/G Gradient left potential
Dim DFPFLP(6) As Variant 'Discount Factor P/F for left potential triangle
Dim DFPARP(6) As Variant 'Discount Factor P/A for RP potential annuity
Dim DFPGPRP(6) As Variant 'Discount Factor P/G Gradient for right potential
Dim DFPFRP(6) As Variant 'Discount Factor P/F for right potential triangle
Dim DFPGLE(6) As Variant 'Discount Factor P/G Gradient left expected
Dim DFPFLE(6) As Variant 'Discount Factor P/F left expected triangle
Dim DFPARE(6) As Variant 'Discount Factor P/A RE expected annuity
Dim DFPGRE(6) As Variant 'Discount Factor P/G Gradient right expected
Dim DFPFRE(6) As Variant 'Discount Factor P/F for right expected triangle
Dim DV(6) As Variant 'Derivative of the value loss function
Dim MAXDV As Variant 'Maximum value of DV
Dim MAXNPVE As Variant 'Maximum value of NPVE set as hurdle for improvement

Dim DM(6, 10) As Integer 'Mean task duration estimate
Dim DL(6, 10) As Integer 'Low risk task duration estimate
Dim TDM(6, 10) As Integer 'Temporary mean task duration estimates
Dim TDL(6, 10) As Integer 'Temporary low risk task duration estimates
Dim FJ(6, 10) As Integer 'Required skill type for task j
Dim ES(6, 10) As Integer 'Earliest Start Time task j
Dim EF(6, 10) As Integer 'Earliest Finish Time task j
Dim LS(6, 10) As Integer 'Late Start Time task j
Dim LF(6, 10) As Integer 'Late Finish Time task j

Dim LG(6, 10) As Integer 'Lag Time for starting task j
Dim LC(6, 10) As Integer 'Lag Counter
Dim TS(6, 10) As Integer 'Total slack in unconstrained model
Dim WS(6, 10) As Integer 'Working slack array
Dim SC(6, 10) As Integer 'Slack counter
Dim FS(6, 10) As Integer 'Free slack task j
Dim DS(6, 10) As Integer 'Decrease in slack
Dim SE(6, 10) As Integer 'Square error each task j
Dim CT(6, 10) As Integer 'Critical Path Task Indicator 1/0
Dim NC(6, 10) As Integer 'Near Critical Path Task Indicator 1/0
Dim AMJ(6, 10) As Integer 'Assignment of resource m to task j
Dim AHJ(6, 10) As Integer 'Assignment of level to a particular task
Dim ST(6, 10) As Integer 'Start Time for task j
Dim FN(6, 10) As Integer 'Finish Time for task j
Dim MA(6, 10) As Integer 'Resource M Availability Indicator 1/0
Dim PRC(6, 10, 10) As Integer 'Precedence Matrix

'Print Variables
Dim CPO(6) As Integer 'Critical Path
Dim BFO(6) As Variant 'Project Buffer
Dim TEO(6) As Integer 'Expected Duration
Dim DEO(6) As Integer 'Expected Delay Output
Dim NPVEO(6) As Variant 'Expected Net Present Value
Dim DMO(6, 10) As Integer 'Mean Duration Estimate
Dim DLO(6, 10) As Integer 'Low Risk Duration Estimate
Dim FJO(6, 10) As Integer 'Task Resource Type Requirement
Dim ESO(6, 10) As Integer 'Early Start Date
Dim EFO(6, 10) As Integer 'Early Finish Date
Dim LSO(6, 10) As Integer 'Late Start Date
Dim LFO(6, 10) As Integer 'Late Finish Date
Dim STO(6, 10) As Integer 'Start Date
Dim FNO(6, 10) As Integer 'Finish Date
Dim CTO(6, 10) As Integer 'Critical Task Indicator
Dim TSO(6, 10) As Integer 'Total Slack
Dim FSO(6, 10) As Integer 'Free Slack
Dim WSO(6, 10) As Integer 'Working Slack
Dim SCO(6, 10) As Integer 'Slack Counter
Dim LG0(6, 10) As Integer 'Lag
Dim AMJO(6, 10) As Integer 'Assignment Matrix, resource m to task j
Dim AHJO(6, 10) As Integer 'Assignment Matrix, level h to task j
Dim PSEO As Variant 'Program Schedule Efficiency
Dim SUMNPVEO As Variant 'Summation Expected Net Present Value
Dim SUMNPVPO As Variant 'Summation Potential Net Present Value

'Best RCS Solution
Dim BEST(60) As Integer 'Best Resource Constrained Solution
Dim BRCS(60) As Variant 'Best Resource Constrained Solution
Dim BCP(6) As Integer 'Critical Path
Dim BBF(6) As Variant 'Project Buffer
Dim BTE(6) As Integer 'Expected Project Duration
Dim BDE(6) As Integer 'Expected Delay
Dim BNPVE(6) As Variant 'Expected Net Present Value
Dim BDM(6, 10) As Integer 'Mean Duration Estimate
Dim BDL(6, 10) As Integer 'Low Risk Duration Estimate
Dim BFJ(6, 10) As Integer 'Task Resource Type Requirement
Dim BES(6, 10) As Integer 'Early Start Date
Dim BEF(6, 10) As Integer 'Early Finish Date
Dim BLS(6, 10) As Integer 'Late Start Date
Dim BLF(6, 10) As Integer 'Late Finish Date
Dim BST(6, 10) As Integer 'Start Date
Dim BFN(6, 10) As Integer 'Finish Date
Dim BCT(6, 10) As Integer 'Critical Task Indicator
Dim BTS(6, 10) As Integer 'Total Slack
Dim BFS(6, 10) As Integer 'Free Slack
Dim BWS(6, 10) As Integer 'Working Slack
Dim BSC(6, 10) As Integer 'Slack Counter
Dim BLG(6, 10) As Integer 'Lag
Dim BAMJ(6, 10) As Integer 'Assignment Matrix Resource m to Task j
Dim BAHJ(6, 10) As Integer 'Assignment Matrix Skill Level h to Task j

'Skill-Level Improved Solution
Dim SPSE As Variant 'Program Scheduling Efficiency
Dim SCP(6) As Integer 'Critical Path
Dim SBF(6) As Variant 'Project Buffer
Dim SBB(6) As Variant 'Bias Buffer
Dim SSS(6) As Variant 'Sum of Square Errors
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim STE(6) As Integer</td>
<td>'Expected Project Duration</td>
</tr>
<tr>
<td>Dim SDE(6) As Integer</td>
<td>'Expected Delay</td>
</tr>
<tr>
<td>Dim SNPVE(6) As Variant</td>
<td>'Expected Net Present Value</td>
</tr>
<tr>
<td>Dim SVE(6) As Variant</td>
<td>'Expected Value</td>
</tr>
<tr>
<td>Dim SDM(6, 10) As Integer</td>
<td>'Mean Duration Estimates</td>
</tr>
<tr>
<td>Dim SDL(6, 10) As Integer</td>
<td>'Low Risk Duration Estimates</td>
</tr>
<tr>
<td>Dim SES(6, 10) As Integer</td>
<td>'Early Start Date</td>
</tr>
<tr>
<td>Dim SEF(6, 10) As Integer</td>
<td>'Early Finish Date</td>
</tr>
<tr>
<td>Dim SLS(6, 10) As Integer</td>
<td>'Late Start Date</td>
</tr>
<tr>
<td>Dim SLF(6, 10) As Integer</td>
<td>'Late Finish Date</td>
</tr>
<tr>
<td>Dim SST(6, 10) As Integer</td>
<td>'Start Date</td>
</tr>
<tr>
<td>Dim SFN(6, 10) As Integer</td>
<td>'Finish Date</td>
</tr>
<tr>
<td>Dim SCT(6, 10) As Integer</td>
<td>'Critical Task Indicator</td>
</tr>
<tr>
<td>Dim STS(6, 10) As Integer</td>
<td>'Total Slack</td>
</tr>
<tr>
<td>Dim SFS(6, 10) As Integer</td>
<td>'Free Slack</td>
</tr>
<tr>
<td>Dim SWS(6, 10) As Integer</td>
<td>'Working Slack</td>
</tr>
<tr>
<td>Dim SSC(6, 10) As Integer</td>
<td>'Slack Counter</td>
</tr>
<tr>
<td>Dim SLG(6, 10) As Integer</td>
<td>'Lag</td>
</tr>
<tr>
<td>Dim SSE(6, 10) As Variant</td>
<td>'Sum Square Error</td>
</tr>
<tr>
<td>Dim SAMJ(6, 10) As Integer</td>
<td>'Assignment Matrix Resource m to Task j</td>
</tr>
<tr>
<td>Dim SAHJ(6, 10) As Integer</td>
<td>'Assignment Matrix Skill Level h to Task j</td>
</tr>
<tr>
<td>Dim SAJT(6, 10, 800) As Integer</td>
<td>'Assignment Resource m to Task j in Period t</td>
</tr>
<tr>
<td>Dim UPSE As Variant</td>
<td>'Program Scheduling Efficiency</td>
</tr>
<tr>
<td>Dim UCP(6) As Integer</td>
<td>'Critical Path</td>
</tr>
<tr>
<td>Dim UBB(6) As Single</td>
<td>'Bias Buffer</td>
</tr>
<tr>
<td>Dim UBF(6) As Single</td>
<td>'Total Buffer</td>
</tr>
<tr>
<td>Dim UCC(6) As Integer</td>
<td>'Critical Chain Duration</td>
</tr>
<tr>
<td>Dim UTE(6) As Integer</td>
<td>'Expected project duration, equivalent to CCD</td>
</tr>
<tr>
<td>Dim UDE(6) As Integer</td>
<td>'Expected Delay potential vs expected duration</td>
</tr>
<tr>
<td>Dim USS(6) As Integer</td>
<td>'Sum of Square Errors</td>
</tr>
<tr>
<td>Dim UVE(6) As Variant</td>
<td>'Expected Value</td>
</tr>
<tr>
<td>Dim UNPVE(6) As Single</td>
<td>'Expected Net Present Value</td>
</tr>
<tr>
<td>Dim USUMNPVE As Single</td>
<td>'Sum of NPVE</td>
</tr>
<tr>
<td>Dim UDM(6, 10) As Integer</td>
<td>'Mean task duration estimates</td>
</tr>
<tr>
<td>Dim UDL(6, 10) As Integer</td>
<td>'Low risk task duration estimates</td>
</tr>
<tr>
<td>Dim UES(6, 10) As Integer</td>
<td>'Earliest Start Time task j</td>
</tr>
<tr>
<td>Dim UEF(6, 10) As Integer</td>
<td>'Earliest Finish Time task j</td>
</tr>
<tr>
<td>Dim ULS(6, 10) As Integer</td>
<td>'Late Start Time task j</td>
</tr>
<tr>
<td>Dim ULF(6, 10) As Integer</td>
<td>'Late Finish Time task j</td>
</tr>
<tr>
<td>Dim UTS(6, 10) As Integer</td>
<td>'Total slack</td>
</tr>
<tr>
<td>Dim UWS(6, 10) As Integer</td>
<td>'Working slack</td>
</tr>
<tr>
<td>Dim UFS(6, 10) As Integer</td>
<td>'Free slack</td>
</tr>
<tr>
<td>Dim USC(6, 10) As Integer</td>
<td>'Slack counter</td>
</tr>
<tr>
<td>Dim ULG(6, 10) As Integer</td>
<td>'Lag</td>
</tr>
</tbody>
</table>
Dim UCT(6, 10) As Integer 'Critical Path Task Indicator 1/0
Dim USE(6, 10) As Integer 'Square error
Dim UST(6, 10) As Integer 'Start Time for task j
Dim UFN(6, 10) As Integer 'Finish Time for task j
Dim UAMJ(6, 10) As Integer 'Resource assignment matrix
Dim UAHJ(6, 10) As Integer 'Skill level assignment matrix
Dim UAJT(6, 10, 800) As Integer 'Assignment resource m to task j in period t

'SLAM 1:2:3 Improved solution
Dim VPSE As Variant
Dim VCP(6) As Integer 'Critical Path
Dim VBB(6) As Integer 'Bias Buffer
Dim VBF(6) As Single 'Total Buffer
Dim VCC(6) As Integer 'Critical Chain Duration
Dim VTE(6) As Integer 'Expected project duration, equivalent to CCD
Dim VDE(6) As Integer 'Expected Delay potential vs expected duration
Dim VSS(6) As Integer 'Sum of Square Errors
Dim VVE(6) As Variant 'Expected Value
Dim VNPVE(6) As Single 'Expected Net Present Value
Dim VSUMNPVE As Single 'Sum of NPVE
Dim VDM(6, 10) As Integer 'Mean task duration estimates
Dim VDL(6, 10) As Integer 'Low risk task duration estimates
Dim VES(6, 10) As Integer 'Earliest Start Time task j
Dim VEF(6, 10) As Integer 'Earliest Finish Time task j
Dim VLS(6, 10) As Integer 'Late Start Time task j
Dim VLF(6, 10) As Integer 'Late Finish Time task j
Dim VTS(6, 10) As Integer 'Total slack
Dim VWS(6, 10) As Integer 'Working slack
Dim VFS(6, 10) As Integer 'Free slack
Dim VSC(6, 10) As Integer 'Slack counter
Dim VLG(6, 10) As Integer 'Lag
Dim VCT(6, 10) As Integer 'Critical Path Task Indicator 1/0
Dim VSE(6, 10) As Integer 'Square error
Dim VST(6, 10) As Integer 'Start Time for task j
Dim VFN(6, 10) As Integer 'Finish Time for task j
Dim VAMJ(6, 10) As Integer 'Assignment matrix Resource m to Task j
Dim VAHJ(6, 10) As Integer 'Assignment Matrix Skill level h to Tak j
Dim VAJT(6, 10, 800) As Integer 'Assignment resource m to task j in period t

"End Declarations
Sub J10_Main() 'Main Programming Sequence for J10 (ten node projects) and K3 (three resource types)

 Call Initialize '010
 Call Robust_Scheduling_Method '100
 Call Project_Valuation_Method '200
 Call Project_Prioritization_Method '300
 Call Resource_Prioritization_Method '400

 For MR = KT To MRMAX
 Call Sequential_Scheduling_Method '500
 Call Critical_Scheduling_Method '600
 Call Early_Scheduling_Method '700
 Call Level_Scheduling_Method '800
 Call Level12_Assignment_Method '900
 Call Level23_Assignment_Method '1000
 Next

 Call Print_Chart

End Sub
Sub Initialize()

10: 'Initialize

JT = 10 'Number of Tasks in each project
NP = 6 'Number of Projects
MAX = 60 'Maximum number of resources
'MR = 24 'Number of Resources for particular run
MMR = 1 'Set to 1 if Multiple resource sets are run, prevents overflow
TP = 800 'Number of Time Periods
KT = 3 'Number of Resource Types
LT = 3 'Number of Resource Levels
Alpha = 0.1 'Confidence of regaining loss across the portfolio
Beta = 0.1 'Likelihood of further loss across the portfolio
Delta = 0.2 'Near critical tasks are tasks with slack < delta*CP

Kappal = 0 'Workforce shaping, fraction of workforce as Type 1
Kappa2 = 0 'Workforce shaping, fraction of workforce as Type 2
Kappa3 = 0 'Workforce shaping, user defined fraction of workforce as Type 3

'NOTE: Kappal + Kappa2+Kappa3 must equal 1
'If Kappa is 0, RGM automatically generates a workforce
'with distribution corresponding to work load demand

Lambda1 = 0 'Workforce shaping, fraction of workforce as Level 1
Lambda2 = 0 'Workforce shaping, fraction of workforce as Level 2
Lambda3 = 0 'Workforce shaping, fraction of workforce as Level 3

'NOTE: Lambda1 + Lambda2+Lambda3 must equal 1
'If Lambda is 0, RGM automatically generates a workforce
'with uniform skill level distribution

IR = 0.05 / 365 'Interest rate per day
Q1 = 0.3 'Level 1 rate, e.g. completes task 30% faster than level 2
Q3 = 0.3 'Level 3 rate, e.g. completes task 30% slower than level 2

PP = 0 'Initialize project prioritization method,
'0)Sequential, 1)PRI index, 2) NPV, et

PR = 0 'Resource Prioritization,
PR=0 Sequential, PR=1 Prioritized

RC1 = 1000 'Resource Level 1 Cost per day
RC2 = 800 'Resource Level 2 Cost per day
RC3 = 500 'Resource Level 3 Cost per day

R = 1 'Row Reference
C = 1
Row = 1
Col = 1
x = 1
y = 1
Excelrow = 1
Excelcol = 1
Resultsrow = 81
testrow = 1

20: 'Projects Data
x = 1
y = 1
For i = 1 To NP
 PI(i) = Worksheets("J10").Cells(x, y + 1)
 VP(i) = Worksheets("J10").Cells(x + 1, y + 1)
 TL(i) = Worksheets("J10").Cells(x + 2, y + 1)
 LP(i) = Worksheets("J10").Cells(x + 3, y + 1)
For j = 1 To JT
 DM(i, j) = Worksheets("J10").Cells(x + 5, j + 1)
 DL(i, j) = Worksheets("J10").Cells(x + 6, j + 1)
 FJ(i, j) = Worksheets("J10").Cells(x + 7, j + 1)
 LG(i, j) = Worksheets("J10").Cells(x + 8, j + 1)
Next
x = x + 20
Next

30: 'Read PRC from Projects into a two dimensional array
x = 1
For i = 1 To NP
 For jr = 1 To JT
 For jc = 1 To JT
 PRC(i, jr, jc) = Worksheets("J10").Cells(x + 9 + jr, jc + 1)
 Next
 Next
 x = x + 20
Next

'Print to make sure it has been initialized correctly
x = 1
y = 1
For i = 1 To NP
 Worksheets("J10OUT").Cells(x, y + 1) = PI(i)
 Worksheets("J10OUT").Cells(x + 1, y + 1) = VP(i)
Worksheets("J10OUT").Cells(x + 2, y + 1) = TL(i)
Worksheets("J10OUT").Cells(x + 3, y + 1) = LP(i)
For j = 1 To JT
 Worksheets("J10OUT").Cells(x + 5, j + 1) = DM(i, j)
 Worksheets("J10OUT").Cells(x + 6, j + 1) = DL(i, j)
 Worksheets("J10OUT").Cells(x + 7, j + 1) = FJ(i, j)
 Worksheets("J10OUT").Cells(x + 8, j + 1) = LG(i, j)
Next
x = x + 20
Next

'Print PRC to make sure it has been input correctly
x = 1
For i = 1 To NP
 For jr = 1 To JT
 For jc = 1 To JT
 Worksheets("J10OUT").Cells(x + 9 + jr, jc + 1) = PRC(i, jr, jc)
 Next
 Next
 x = x + 20
Next

40: 'Initialize Critical Path/Critical Chain Variables
For i = 1 To NP
 MAXEFPRC(i) = 0
 MINLSSUC(i) = 0
 MINESSUC(i) = 0
 NPVP(i) = 0
 RS(i) = 0
 For j = 1 To JT
 ES(i, j) = 0
 EF(i, j) = 0
 LS(i, j) = 0
 LF(i, j) = 0
 ST(i, j) = 0
 FN(i, j) = 0
 TS(i, j) = 0
 WS(i, j) = 0
 SC(i, j) = 0
 NC(i, j) = 0
 Next
Next
The following data input code is commented out, has been superseded by the Resource Generation Method and sub routine. The code commented out here could be reinstated if a specific resource distribution is desired.

For m = 1 To MAX
 index for resource number within group
For s = 1 To MAX
 index for size of group, M4, M8 etc.
 z = (s * 2) + 1
 GM(m, s) = Worksheets("K3").Cells(m + 1, s * 2)
 HM(m, s) = Worksheets("K3").Cells(m + 1, z)
Next
Next
Print out GM and HM to verify input
For m = 1 To MAX
 For s = 1 To MAX
 z = (s * 2) + 1
 Worksheets("K3").Cells(50 + m, 2 * s).Value = GM(m, s)
 Worksheets("K3").Cells(50 + m, z) = HM(m, s)
 Next
Next

Sub Robust_Scheduling_Method()

Robust Scheduling Method (RSM)
Use Critical Path Method (CPM) and Critical Chain Buffer Management (CCBM)
to produce the unconstrained scheduling solution

Begin Critical Path Method

Initialize ES(1) and EF(1) for Forward Pass
For i = 1 To NP
 ES(i, 1) = 0 + LG(i, 1)
 EF(i, 1) = DM(i, 1) + ES(i, 1)
Next

Forward Pass
The earliest start (ES) for any task is equal to the maximum of the earliest finish (EF) of the immediate predecessors
Compute Total Slack

Total Slack of activity j is the difference between 'the latest finish LF(J) and earliest finish EF(J), or the difference between LS(J) and ES(J).

110: For i = 1 To NP
 For j = 2 To JT 'start with task 2, search all rows in PRC for indicator
 ES(i, j) = 0
 For jr = 1 To JT
 If PRC(i, jr, j) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = EF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, j) = 1 And MAXEFPRC(i) >= ES(i, j) Then
 ES(i, j) = EF(i, jr)
 EF(i, j) = ES(i, j) + DM(i, j) + LG(i, j)
 End If
 Next
 Next

'Initialize for Backward Pass

115: For i = 1 To NP
 LF(i, JT) = EF(i, JT)
 LS(i, JT) = LF(i, JT) - DM(i, JT)
 Next

'Backward Pass

'The latest finish (LF) for any task is the smallest
'of the latest start(LS) times of immediate successors

120: For i = 1 To NP
 For j = JT - 1 To 1 Step -1
 LF(i, j) = LS(i, JT) '?????
 For jr = JT To 1 Step -1
 If PRC(i, j, jr) = 1 Then
 MINLSSUC(i) = LS(i, jr)
 End If
 If PRC(i, j, jr) = 1 And MINLSSUC(i) <= LF(i, j) Then
 LF(i, j) = LS(i, jr)
 LS(i, j) = LF(i, j) - DM(i, j)
 End If
 Next
 Next

'Compute Total Slack

'Total Slack of activity j is the difference between 'the latest finish LF(J) and earliest finish EF(J), or the difference between LS(J) and ES(J).

125: For i = 1 To NP
 For j = 1 To JT
 TS(i, j) = LF(i, j) - EF(i, j)
 Next
 Next
'Compute Free Slack (FS)
'Free slack is the amount of time an activity may be 'delayed from the ES without 'delaying the start of any of its successors. Free slack is computed as the 'difference between the min ES of the activity successors and the EF of the activity

130: For i = 1 To NP
 For j = 1 To JT
 MINESUCUC(i) = EF(i, JT)
 For jr = 1 To JT
 If PRC(i, j, jr) = 1 And ES(i, jr) <= MINESUCUC(i) Then
 FS(i, j) = ES(i, jr) - EF(i, j)
 MINESUCUC(i) = ES(i, j)
 End If
 Next
 Next
Next

'Compute Matrix of Critical Path Tasks
'CT(J) = 1 if TS = 0, CT(J) = 0 if TS is not 0

135: For i = 1 To NP
 For j = 1 To JT
 If TS(i, j) = 0 Then
 CT(i, j) = 1
 Else
 CT(i, j) = 0
 End If
 Next
Next

'Compute Critical Path Duration
'CP is the sum of the durations d of CT = 1

140: For i = 1 To NP
 CP(i) = 0
 For j = 1 To JT
 If CT(i, j) = 1 Then
 CP(i) = CP(i) + DM(i, j) + LG(i, j)
 End If
 Next
Next
'Compute Matrix of Near Critical Path Tasks
'Near critical task are tasks having slack < \Delta \times CP
145: For i = 1 To NP
 For j = 1 To JT
 If CT(i, j) = 0 And TS(i, j) < \Delta \times CP(i) Then
 NC(i, j) = 1
 Else
 NC(i, j) = 0
 End If
 Next
 Next

'Compute Square Root of Sum of Squares
150: For i = 1 To NP
 For j = 1 To JT
 SE(i, j) = (DL(i, j) - DM(i, j))^2
 Next
 Next
 For i = 1 To NP
 SV(i) = 0
 Next
 For i = 1 To NP
 For j = 1 To JT
 SV(i) = SV(i) + (SE(i, j))
 SS(i) = Sqr(SV(i))
 Next
 Next

'Compute Bias Buffer
155: For i = 1 To NP
 BB(i) = 0.1 \times CP(i)
 Next

'Compute Critical Chain Duration, Equals expected duration TE
160: For i = 1 To NP
 BF(i) = SS(i) + BB(i)
 CC(i) = CP(i) + BF(i)
 TE(i) = CC(i)
 Next

180: ' Print Results from Unconstrained Scheduling Method
 Excelrow = 1
 Excelcol = 1
Row = Excelrow
Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "100 - ROBUST SCHEDULING METHOD (RSM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "CRITICAL PATH/CRITICAL CHAIN UNCONSTRAINED SCHEDULING"

Row = Excelrow + 3
Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "Project"
Worksheets("Results").Cells(Row + 1, Col).Value = "Task"
Worksheets("Results").Cells(Row + 2, Col).Value = "DM"
Worksheets("Results").Cells(Row + 3, Col).Value = "DL"
Worksheets("Results").Cells(Row + 4, Col).Value = "FJ"
Worksheets("Results").Cells(Row + 5, Col).Value = "LG"
Worksheets("Results").Cells(Row + 6, Col).Value = "ES"
Worksheets("Results").Cells(Row + 7, Col).Value = "EF"
Worksheets("Results").Cells(Row + 8, Col).Value = "LS"
Worksheets("Results").Cells(Row + 9, Col).Value = "LF"
Worksheets("Results").Cells(Row + 10, Col).Value = "TS"
Worksheets("Results").Cells(Row + 11, Col).Value = "FS"
Worksheets("Results").Cells(Row + 12, Col).Value = "CT"
Worksheets("Results").Cells(Row + 13, Col).Value = "NC"
Worksheets("Results").Cells(Row + 14, Col).Value = "CP"
Worksheets("Results").Cells(Row + 15, Col).Value = "BF"
Worksheets("Results").Cells(Row + 16, Col).Value = "CC"

For i = 1 To NP
For j = 1 To JT
 Worksheets("Results").Cells(Row, Col + 1).Value = i
 Worksheets("Results").Cells(Row + 1, Col + 1).Value = j
 Worksheets("Results").Cells(Row + 2, Col + 1).Value = DM(i, j)
 Worksheets("Results").Cells(Row + 3, Col + 1).Value = DL(i, j)
 Worksheets("Results").Cells(Row + 4, Col + 1).Value = FJ(i, j)
 Worksheets("Results").Cells(Row + 5, Col + 1).Value = LG(i, j)
 Worksheets("Results").Cells(Row + 6, Col + 1).Value = ES(i, j)
 Worksheets("Results").Cells(Row + 7, Col + 1).Value = EF(i, j)
 Worksheets("Results").Cells(Row + 8, Col + 1).Value = LS(i, j)
 Worksheets("Results").Cells(Row + 9, Col + 1).Value = LF(i, j)
 Worksheets("Results").Cells(Row + 10, Col + 1).Value = TS(i, j)
 Worksheets("Results").Cells(Row + 11, Col + 1).Value = FS(i, j)
 Worksheets("Results").Cells(Row + 12, Col + 1).Value = CT(i, j)
 Worksheets("Results").Cells(Row + 13, Col + 1).Value = NC(i, j)
Col = Col + 1
Next
Next

Col = Excelcol
For i = 1 To NP
 Worksheets("Results").Cells(Row + 14, Col + 10).Value = CP(i)
 Worksheets("Results").Cells(Row + 15, Col + 10).Value = BF(i)
 Worksheets("Results").Cells(Row + 16, Col + 10).Value = CC(i)
 Col = Col + 10
Next

199: 'End 100-199 Robust Scheduling Method (RSM)

End Sub

Sub Project_Valuation_Method()

200: 'Project Valuation Method (PVM)

205: For i = 1 To NP
 DE(i) = TE(i) - TL(i)
 If DE(i) < 0 Then
 DE(i) = 0
 End If
 VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))
 VL(i) = VP(i) - VE(i)
 'Compute Potential Net Present Value NPVP
 GPL(i) = (4 * VP(i)) / (LP(i) ^ 2)
 GPR(i) = GPL(i)
 RPK(i) = VP(i) / (LP(i) / 2))
 DFPGLP(i) = (((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2)))
 DFPFLP(i) = (1 + IR) ^ -TL(i)
 DFPARP(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / ((IR * ((1 + IR) ^ (LP(i) / 2)))
 DFPGRP(i) = (((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2)))
 DFPFRP(i) = (1 + IR) ^ -(TL(i) + (LP(i) / 2)))
 NPVP(i) = GPL(i) * DFPGLP(i) * DFPFLP(i) + (RPK(i) * DFPARP(i)) - (GPR(i) * DFPGRP(i)) * DFPFRP(i)

 'Compute Expected NPV
 GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)
 REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i)))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR) ^ ((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ ((LP(i) / 2) - DE(i))))
DFPFLE(i) = (1 + IR) ^ -TE(i)
DFPARE(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / (IR * ((1 + IR) ^ (LP(i) / 2)))
DFPGRE(i) = (((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2)))
DFPFRE(i) = ((1 + IR) ^ (-TL(i) + (LP(i) / 2)))
NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + ((REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i))) * DFPFRE(i)

'Compute NPL Lost
220: NPVL(i) = NPVP(i) - NPVE(i)

Next

'Compute Total Net Present Value Expected TNPVE
225: SUMNPVE = 0
SUMNPVP = 1
For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
 SUMNPVP = SUMNPVP + NPVP(ii)
Next

'Compute Program Schedule Efficiency
PSE = SUMNPVE / SUMNPVP

240: 'Print Project Valuation Method Results
 Excelrow = 1
 Excelcol = 1
 Row = Excelrow + 22
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "200 - PROJECT VALUATION METHOD (PVM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "BASED ON UNCONSTRAINED SCHEDULES"
 Worksheets("Results").Cells(Row + 3, Col).Value = "Project"
 Worksheets("Results").Cells(Row + 4, Col).Value = "VP"
 Worksheets("Results").Cells(Row + 5, Col).Value = "TPL"
 Worksheets("Results").Cells(Row + 6, Col).Value = "LP"
 Worksheets("Results").Cells(Row + 7, Col).Value = "TE"
 Worksheets("Results").Cells(Row + 8, Col).Value = "DE"
 Worksheets("Results").Cells(Row + 9, Col).Value = "VE"
 Worksheets("Results").Cells(Row + 10, Col).Value = "VL"
 Worksheets("Results").Cells(Row + 11, Col).Value = "NPVP"
End 200-299 Project Valuation Method (PVM)

End Sub

Sub Project_Prioritization_Method()

300: 'Project Prioritization Method (PPM)

'Rank order projects by NPVP

For i = 1 To NP
 NPVPTEMP(i) = NPVP(i)
Next

312: For i = 1 To NP
 For j = 1 To NP - 1
If NPVPTEMP(j) < NPVPTEMP(j + 1) Then
 NPTEMP = NPVPTEMP(j)
 NPVPTEMP(j) = NPVPTEMP(j + 1)
 NPVPTEMP(j + 1) = NPTEMP
End If
Next
NPVPTEMPPRI(i) = i
Next

314: For i = 1 To NP 'Assign Priority
 For j = 1 To NP
 If NPVP(i) = NPVPTEMP(j) Then
 NPVP(i) = NPVPTEMPPRI(j)
 End If
 Next
Next 'Finished rank ordering NPVP

'Rank order projects by VP Potential Value
320: For i = 1 To NP
 VPTEMP(i) = VP(i)
Next

322: For i = 1 To NP
 For j = 1 To NP - 1
 If VPTEMP(j) < VPTEMP(j + 1) Then
 TEMP = VPTEMP(j)
 VPTEMP(j) = VPTEMP(j + 1)
 VPTEMP(j + 1) = TEMP
 End If
 Next
VPTEMPPRI(i) = i
Next

324: For i = 1 To NP 'Assign Priority
 For j = 1 To NP
 If VP(i) = VPTEMP(j) Then
 VPRI(i) = VPTEMPPRI(j)
 End If
 Next
Next 'Finished rank ordering by Potential Value

'Rank order projects by NPVE
330: For i = 1 To NP
 NPVETEMP(i) = NPVE(i)
Next

332: For i = 1 To NP
 For j = 1 To NP - 1
 If NPVETEMP(j) < NPVETEMP(j + 1) Then
 NETEMP = NPVETEMP(j)
 NPVETEMP(j) = NPVETEMP(j + 1)
 NPVETEMP(j + 1) = NETEMP
 End If
 Next
 NPVETEMPPRI(i) = i
Next

334: For i = 1 To NP 'Assign Priority
 For j = 1 To NP
 If NPVE(i) = NPVETEMP(j) Then
 NPVEPRI(i) = NPVETEMPPRI(j)
 End If
 Next
Next
'Finished rank ordering NPVE

'Productivity Prioritization Method
'Compute DVL/dt - derivative of the value lost - loss rate factor
340: For i = 1 To NP
 DV(i) = (VP(i) / LP(i)) * (3 - ((4 * DE(i)) / LP(i)))
Next

'Find the maximum loss rate
'Compute the Project Productivity Metric (PPM)
344: For i = 1 To NP
 GAMMA(i) = DV(i) / MAXDV
 PPM(i) = ((NPVE(i) + (Alpha * NPVL(i))) / TE(i)) * (1 + Beta * GAMMA(i))
Next

346: For i = 1 To NP 'Rank order projects by PPM
 PTEMP(i) = PPM(i)
Next

348: For i = 1 To NP
 For j = 1 To NP - 1
 If PTEMP(j) < PTEMP(j + 1) Then
 NETEMP = PTEMP(j)
 PTEMP(j) = PTEMP(j + 1)
 PTEMP(j + 1) = NETEMP
 End If
 Next
Next
TEMP = PTEMP(j)
PTEMP(j) = PTEMP(j + 1)
PTEMP(j + 1) = TEMP
End If
Next
PRITEMP(i) = i
Next

350: For i = 1 To NP 'Assign PRI Priority
 For j = 1 To NP
 If PPM(i) = PTEMP(j) Then
 PRI(i) = PRITEMP(j)
 End If
 Next
Next

'Random Rank Ordering for Projects
360: For i = 1 To NP
 Randomize
 RA(i) = Rnd
 RB(i) = RA(i)
Next
362: For i = 1 To NP
 For j = 1 To NP - 1
 If RB(j) < RB(j + 1) Then
 RTEMP = RB(j)
 RB(j) = RB(j + 1)
 RB(j + 1) = RTEMP
 End If
 Next
PRB(i) = i
Next
364: For i = 1 To NP
 For j = 1 To NP
 If RA(i) = RB(j) Then
 RPRI(i) = PRB(j)
 End If
 Next
Next

370: 'Early Start Rank Ordering of Tasks, total tasks = NP*JT
 NJT = NP * JT
k = 0
STEP = 0.001
'Initialize the vector of Early Starts from 1 to NJT
'Add STEP to every value so that no two values are the same
372: For i = 1 To NP
 For j = 1 To JT
 k = k + 1
 ESA(k) = ES(i, j) + STEP
 STEP = STEP + 0.001
 Next
 Next

'Add Step where ever ES=0
'k = 0
'kk = 0
374: 'For i = 1 To NP
 'For j = 1 To JT
 'k = k + 1
 'If ES(i, j) = 0 Then
 'ESA(k) = ES(i, j) + STEP
 'STEP = STEP + 0.001
 'End If
 'Next
 'Next
 'Add Step where ever two values are equal
375: 'For i = 1 To NP
 'For j = 1 To JT
 'kk = 0
 'For ii = 1 To NP
 'For jj = 1 To JT
 'kk = kk + 1
 'If ES(i, j) = ES(ii, jj) Then
 'ESA(kk) = ES(ii, jj) + STEP
 'STEP = STEP + 0.001
 'End If
 'Next
 'Next
 'Next
 'Next

'Initialize sorting array ESB
k = 0
376: For i = 1 To NP
 For j = 1 To JT
\[k = k + 1 \]
\[ESB(k) = ESA(k) \]
Next
Next

377: For \(i = NJT \) To 1 Step -1
 For \(j = 1 \) To \(i - 1 \)
 If \(ESB(j) > ESB(j + 1) \) Then
 \[RTTEMP = ESB(j) \]
 \[ESB(j) = ESB(j + 1) \]
 \[ESB(j + 1) = RTTEMP \]
 End If
 Next
 \(PESB(i) = i \)
Next

378: For \(i = 1 \) To \(NJT \)
 For \(j = 1 \) To \(NJT \)
 If \(ESA(i) = ESB(j) \) Then
 \(PESA(i) = PESB(j) \)
 End If
 Next
Next

For \(k = 1 \) To \(NJT \)
 For \(p = 1 \) To \(NJT \)
 If \(k = PESA(p) \) Then
 \[ESARO(k) = ESA(p) \]
 End If
 Next
Next

390: 'Print Project Ranking Method Results
 Excelrow = 1
 Excelcol = 1
 Row = Excelrow + 44
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "300 - PROJECT PRIORITIZATION METHOD (PPM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "FOR RESOURCE ASSIGNMENT"
 Worksheets("Results").Cells(Row + 3, Col).Value = "SPI - Sequential Project Index (User Defined)"
Worksheets("Results").Cells(7, 1).Value = "Project Productivity Ranking Method"
Worksheets("Results").Cells(8, 1).Value = "Alpha"
Worksheets("Results").Cells(9, 1).Value = "Beta"
Worksheets("Results").Cells(10, 1).Value = "DVLDT"
Worksheets("Results").Cells(11, 1).Value = "MAXDV"
Worksheets("Results").Cells(12, 1).Value = "GAMMA"
Worksheets("Results").Cells(13, 1).Value = "PPM"
Worksheets("Results").Cells(14, 1).Value = "PPI - Productivity Project Index"
Worksheets("Results").Cells(15, 1).Value = "Random Number"
Worksheets("Results").Cells(16, 1).Value = "RPI - Random Project Index"
Worksheets("Results").Cells(17, 1).Value = "ES"
Worksheets("Results").Cells(18, 1).Value = "Index k"
Worksheets("Results").Cells(19, 1).Value = "ESA"
Worksheets("Results").Cells(20, 1).Value = "PESA"
Worksheets("Results").Cells(21, 1).Value = "ESARO"

Col = Excelcol
391: For i = 1 To NP

Worksheets("Results").Cells(3, 10).Value = PI(i)
Worksheets("Results").Cells(5, 10).Value = NPVPRP(i)
Worksheets("Results").Cells(7, 10).Value = VPRP(i)
Worksheets("Results").Cells(9, 10).Value = Alpha
Worksheets("Results").Cells(10, 10).Value = Beta
Worksheets("Results").Cells(11, 10).Value = DV(i)
Worksheets("Results").Cells(12, 10).Value = MAXDV
Worksheets("Results").Cells(13, 10).Value = GAMMA(i)
Worksheets("Results").Cells(14, 10).Value = PPM(i)
Worksheets("Results").Cells(15, 10).Value = PRI(i)

Worksheets("Results").Cells(17, 10).Value = RA(i)
Worksheets("Results").Cells(18, 10).Value = RPRP(i)

Col = Col + 10
Next

Col = 1
For i = 1 To NP
 For j = 1 To JT
 Worksheets("Results").Cells(21, 1).Value = ES(i, j)
 Col = Col + 1
Next
Next
Col = 1

For k = 1 To NJT
 Worksheets("Results").Cells(Row + 22, Col + k).Value = k
 Worksheets("Results").Cells(Row + 23, Col + k).Value = ESA(k)
 Worksheets("Results").Cells(Row + 24, Col + k).Value = PESA(k)
 Worksheets("Results").Cells(Row + 25, Col + k).Value = ESARO(k)
Next
392: ' Print Resource Prioritization Method
 'Col = 1
 'Worksheets("Results").Cells(Row + 27, Col).Value = "400 - RESOURCE
PRIORITYZATION METHOD (RPM)"
 'Worksheets("Results").Cells(Row + 28, Col).Value = "SRI - Sequential Resource
Index (User Defined)"
 'Worksheets("Results").Cells(Row + 29, Col).Value = "GM - Resource Type"
 'Worksheets("Results").Cells(Row + 30, Col).Value = "HM - Skill Level"
 'Worksheets("Results").Cells(Row + 31, Col).Value = "LRI - Level Resource Index"
 'Worksheets("M16OUT").Cells(Row + 33, Col).Value = "RRI - Random Resource
Index"
 'Col = 10
 'For m = 1 To MR
 'Worksheets("Results").Cells(Row + 28, Col + m).Value = m
 'Worksheets("Results").Cells(Row + 29, Col + m).Value = GM(m, MR)
 'Worksheets("Results").Cells(Row + 30, Col + m).Value = HM(m, MR)
 'Worksheets("Results").Cells(Row + 31, Col + m).Value = LRI(m, MR)
 'Worksheets("Results").Cells(Row + 33, Col + m).Value = RRI(m)
 'Next
399: 'End 300-399 Project Prioritization Method (PPM)

End Sub
Sub Resource_Prioritization_Method()

400: 'Resource Prioritization Method (RPM)
'This procedure generates a set of resource sets sized from the
'minimum (KT=No. Types) to a maximum number incremented by one.
'The resource sets are used to test performance of the various
'scheduling and assignment algorithms using a range of work
'force sizes, types and skill levels. Resource sets are developed
'using project demand requirements and parameters that allow the
'user to attain a distribution of resource types and skill levels
'representative of an actual work force.

401: 'Local variable declaration
Dim RK1 As Integer 'Requirements Resource Type 1
Dim RK2 As Integer 'Requirements Resource Type 2
Dim RK3 As Integer 'Requirements Resource Type 3
Dim RKT As Integer 'Total resource requirements

Dim DK1 As Variant 'Demand for Resource Type 1
Dim DK2 As Variant 'Demand for Resource Type 2
Dim DK3 As Variant 'Demand for Resource Type 3

Dim QK1 As Integer 'Available Quant of Resource Type 1
Dim QK2 As Integer 'Available Quant of Resource Type 2
Dim QK3 As Integer 'Available Quant of Resource Type 3
Dim QKT As Integer 'Available Quant of Total Resources

Dim AK1 As Variant 'Available Ratio Resource Type 1
Dim AK2 As Variant 'Available Ratio Resource Type 2
Dim AK3 As Variant 'Available Ratio Resource Type 3

Dim CK1 As Integer 'Coinciding Resources Type 1
Dim CK2 As Integer 'Coinciding Resources Type 2
Dim CK3 As Integer 'Coinciding Resources Type 3
Dim CKT As Integer 'Total Coinciding Resources

Dim LL1 As Integer 'Available Skill Level 1
Dim LL2 As Integer 'Available Skill Level 2
Dim LL3 As Integer 'Available Skill Level 3
Dim LLT As Integer 'Available Skill Level Total

Dim DF(3) As Variant 'Resource Type Deficiency
Dim LD(3) As Variant 'Resource Skill Level Deficiency

Dim TYPEADD As Integer 'Resource Type to be Added
Dim LEVELADD As Integer 'Resource Skill Level to be Added
Dim TGM(60, 60) As Variant 'Temp Resource Type for sorting
Dim THM(60, 60) As Variant 'Temp Skill Level for sorting
Dim TLRI(60, 60) As Integer 'Resource Priority Index for sorting
Dim AM(60, 60) As Variant 'Resource Type Matrix for sorting
Dim BM(60, 60) As Variant 'Resource Type Matrix for sorting
Dim TEMPINT1 As Integer 'Temp Value for sorting
Dim TEMPINT2 As Integer 'Temp Value for sorting
Dim TEMP1 As Variant 'Temp Value for sorting
Dim TEMP2 As Variant 'Temp Value for sorting

402: 'Initialization
RK1 = 0
RK2 = 0
RK3 = 0
RKT = 1
LEVELADD = 0
CK1 = 0
CK2 = 0
CK3 = 0
CKT = 0
CK1MAX = 0
CK2MAX = 0
CK3MAX = 0
MRMAX = 0

For n = 1 To 60
 RC(n) = 0
 CF(n) = 0
Next

'Determine Maximum number of Resources Needed to be Generated
'by determining the number of coincidental resources for each type
'and then summing each type.
405: For i = 1 To NP
406: For j = 1 To JT
 CK1 = 0
 CK2 = 0
 CK3 = 0
407: If FJ(i, j) = 1 Then

408: For ii = 1 To NP

409: For jj = 1 To JT

410: If i = ii And j = jj Then
 CK1 = CK1
Else

412: If FJ(ii, jj) = 1 Then
 If ES(i, j) <= EF(ii, jj) And EF(i, j) >= ES(ii, jj) Then
 CK1 = CK1 + 1
 If CK1 > CK1MAX Then
 CK1MAX = CK1
 End If
End If
End If
End If
End If

414: ElseIf FJ(i, j) = 2 Then

416: For ii = 1 To NP

418: For jj = 1 To JT

420: If i = ii And j = jj Then
 CK2 = CK2
Else

422: If FJ(ii, jj) = 2 Then
 If ES(i, j) <= EF(ii, jj) And EF(i, j) >= ES(ii, jj) Then
 CK2 = CK2 + 1
 If CK2 > CK2MAX Then
 CK2MAX = CK2
 End If
End If
End If
End If
End If
Determine Maximum Resource Required

424: ElseIf FJ(i, j) = 3 Then
 CK3 = CK3 + 1

426: For ii = 1 To NP

428: For jj = 1 To JT

430: If i = ii And j = jj Then
 CK3 = CK3
 Else

432: If FJ(ii, jj) = 3 Then
 If ES(i, j) <= EF(ii, jj) And EF(i, j) >= ES(ii, jj) Then
 CK3 = CK3 + 1
 If CK3 > CK3MAX Then
 CK3MAX = CK3
 End If
 End If
 End If

End If '430

Next '428

Next '426

End If '407

Next '406

Next '405

435: 'Determine Maximum Resource Required
 MRMAX = CK1MAX + CK2MAX + CK3MAX
 If MRMAX < NP * JT Then
 MRMAX = MRMAX + ((NP * JT) - MRMAX) / 2
 End If

 MR = MRMAX

'Determine the total amount of days required by each type of resource.

440: For i = 1 To NP

441: For j = 2 To JT - 1

If FJ(i, j) = 1 Then
 RK1 = RK1 + DM(i, j)
ElseIf FJ(i, j) = 2 Then
 RK2 = RK2 + DM(i, j)
ElseIf FJ(i, j) = 3 Then
 RK3 = RK3 + DM(i, j)
End If

Next '441 End
Next '440 End

'Compute Total Resource Days Required for the Program
442: RKT = RK1 + RK2 + RK3

444: 'Compute demand percent for each type
 DK1 = RK1 / RKT
 DK2 = RK2 / RKT
 DK3 = RK3 / RKT

'Initialize Resource Type matrix and Skill Level Matrix to zero
448: For n = KT To MRMAX
 For m = 1 To n 'index for size of group, M4, M8 etc.
 GM(m, n) = 0
 HM(m, n) = 0
 Next
 Next

'Initialize Resource Group, one of each TYPE 1,2,3, all LEVEL 2
450: n = KT
 For m = 1 To n
 GM(m, n) = m
 HM(m, n) = 2
 Next

'Generate Addition Resource Sets
452: z = 4
 For n = 3 To MRMAX - 1

'Populate next set with same type and level to m
454: For m = 1 To n
 GM(m, n + 1) = GM(m, n)
 HM(m, n + 1) = HM(m, n)
 Next
'Compute resource TYPE quantity currently available for each set
' QK1 type 1 avail, QK2 type 2 avail, QK3 type 3 avail
QK1 = 0
QK2 = 0
QK3 = 0

'Quantity of each Resource Type Available
456: For m = 1 To n
 If GM(m, n) = 1 Then
 QK1 = QK1 + 1
 ElseIf GM(m, n) = 2 Then
 QK2 = QK2 + 1
 ElseIf GM(m, n) = 3 Then
 QK3 = QK3 + 1
 End If
Next

'Total resources available
458: QKT = QK1 + QK2 + QK3

460: 'Compute available Type ratio
AK1 = QK1 / QKT
AK2 = QK2 / QKT
AK3 = QK3 / QKT

'Compute resource type deficiency for each type, (Resource Type Demand RKx - Available Resource ARx)
462: For i = 1 To KT

464: If i = 1 Then
 If Kappa1 > 0 Then
 DF(i) = Kappa1 - AK1
 Else
 DF(i) = DK1 - AK1
 End If
End If

466: If i = 2 Then
 If Kappa2 > 0 Then
 DF(i) = Kappa2 - AK2
 Else
 DF(i) = DK2 - AK2
 End If
End If
468: If $i = 3$ Then
 If $\kappa_3 > 0$ Then
 $DF(i) = \kappa_3 - AK_3$
 Else
 $DF(i) = DK_3 - AK_3$
 End If
End If
Next '462 End

'Test and assign resource type with the maximum difference to be added
470: If $DF(1) > DF(2)$ And $DF(1) > DF(3)$ Then 'Case with $DF(1)$ max
 TYPEADD = 1
ElseIf $DF(2) > DF(1)$ And $DF(2) > DF(3)$ Then 'Case with $DF(2)$ max
 TYPEADD = 2
ElseIf $DF(3) > DF(1)$ And $DF(3) > DF(2)$ Then 'Case with $DF(3)$ max
 TYPEADD = 3
ElseIf $DF(1) = DF(2)$ Or $DF(1) = DF(3)$ Or $DF(2) = DF(3)$ Then 'Tie breaker
 TYPEADD = 2
End If

'Shape SKILL LEVEL distribution
'If no Lamdas are assigned, the generator will develop a uniform distribution
472: If $\lambda_1 > 0$ Or $\lambda_2 > 0$ Or $\lambda_3 > 0$ Then

474: 'Compute SKILL LEVEL quantity available for each set
 $LL_1 = 0$
 $LL_2 = 0$
 $LL_3 = 0$

476: For $m = 1$ To n
 If $HM(m, n) = 1$ Then
 $LL_1 = LL_1 + 1$
 ElseIf $HM(m, n) = 2$ Then
 $LL_2 = LL_2 + 1$
 ElseIf $HM(m, n) = 3$ Then
 $LL_3 = LL_3 + 1$
 End If
Next

478: 'Total Skill Levels
 $LLT = LL_1 + LL_2 + LL_3$
480: 'Compute ratios of Available SKILL LEVELS
AL1 = LL1 / LLT
AL2 = LL2 / LLT
AL3 = LL3 / LLT

481: 'Compute Level deficiency
LD(1) = Lambda1 - AL1
LD(2) = Lambda2 - AL2
LD(3) = Lambda3 - AL3

'If Lambdas positive, test and assign skill level with the maximum difference to be added
482: If LD(1) > LD(2) And LD(1) > LD(3) Then 'Case with LD(1) max
LEVELADD = 1
ElseIf LD(2) > LD(1) And LD(2) > LD(3) Then 'Case with LD(2) max
LEVELADD = 2
ElseIf LD(3) > LD(1) And LD(3) > LD(2) Then 'Case with LD(3) max
LEVELADD = 3
ElseIf LD(1) = LD(2) Or LD(1) = LD(3) Or LD(2) = LD(3) Then 'Tie breaker
 LEVELADD = 2
End If
Else '472 Else

484: 'Level Increment
LEVELADD = LEVELADD + 1

End If '472 End

485: 'Add a resource
GM(n + 1, n + 1) = TYPEADD
HM(n + 1, n + 1) = LEVELADD
If LEVELADD = 3 Then
 LEVELADD = 0
End If

Next '452 End Iterate from n = 3 to MR-1 - All Resource Sets

'SORT all Resources in Ascending order of Skill Level, Highest priority to lowest
'Introduce non-integer variable AM corresponding to GM and HM
'Each value of AM will be unique by adding a STEP = 0.001
'BH will be initiated for sorting.
STEP = 0.001
486: For n = 3 To MRMAX
 For m = 1 To n
 AM(m, n) = HM(m, n) + STEP
 BM(m, n) = AM(m, n)
 STEP = STEP + 0.001
 TGM(m, n) = GM(m, n) 'Initialize temporary sorting matrices for prioritizing
 THM(m, n) = HM(m, n)
 Next
 Next

'This sort for ascending order
487: For n = 3 To MRMAX
488: For i = n To 1 Step -1
489: For j = 1 To i - 1
 If BM(j, n) > BM(j + 1, n) Then
 TEMP1 = BM(j, n)
 TEMPINT1 = TGM(j, n)
 TEMPINT2 = THM(j, n)
 BM(j, n) = BM(j + 1, n)
 THM(j, n) = THM(j + 1, n)
 TGM(j, n) = TGM(j + 1, n)
 BM(j + 1, n) = TEMP1
 THM(j + 1, n) = TEMPINT1
 TGM(j + 1, n) = TEMPINT2
 End If
 Next
 TLRI(i, n) = i
 Next
 Next

'Assign Priorities
490: For n = 3 To MRMAX
 For i = 1 To n
 For j = 1 To n
 If AM(i, n) = BM(j, n) Then
 LRI(i, n) = TLRI(j, n)
 End If
 Next
 Next
 Next
491: 'Print Prioritizes GM and HM
 Excelrow = 1
 Excelcol = 1

 'Print row heading, 1 to MR max
 Row = Excelrow
 Col = Excelcol
 For m = 1 To MRMAX
 Worksheets("K3O").Cells(Row + 2, Col).Value = m
 Row = Row + 1
 Next

 Row = Excelrow
 Col = Excelcol
 'Print Col Headings
 For S = 1 To MRMAX
 z = (S * 2) + 1
 Worksheets("K3O").Cells(Row + 2, S).Value = S
 Worksheets("K3O").Cells(Row + 1, 2 * S).Value = "GM"
 Worksheets("K3O").Cells(Row + 1, z) = "HM"
 Next

492: 'Print GM and HM if PP=0
 Row = Excelrow + 1
 For n = 3 To MRMAX
 For m = 1 To n
 z = (n * 2) + 1
 Worksheets("K3O").Cells(Row + m, 2 * n).Value = GM(m, n)
 Worksheets("K3O").Cells(Row + m, z) = HM(m, n)
 Next
 Next

 Row = 60
 'Print out priority Index
 For n = 3 To MRMAX
 For m = 1 To n
 Worksheets("K3O").Cells(Row + m, 2 * n).Value = LRI(m, n)
 Next
 Next

 'If PP = 1, Prioritize GM and HM
493: If PR = 1 Then 'If PP=1, arrange GM and HM according to priority order

 'Populate temporary sorting matrices
For n = 3 To MRMAX
 For m = 1 To n
 THM(m, n) = HM(m, n)
 TGM(m, n) = GM(m, n)
 Next
Next

'Sort by LRI

For n = 3 To MRMAX
 For i = 1 To n
 For m = 1 To n
 j = LRI(m, n)
 If i = m Then
 HM(j, n) = THM(i, n)
 GM(j, n) = TGM(i, n)
 End If
 Next
 Next
Next
End If '493 End

494: 'Print Prioritized GM and HM

Excelrow = 120
Excelcol = 1

'Print row heading, 1 to MR max
Row = Excelrow
Col = Excelcol
For m = 1 To MRMAX
 Worksheets("K30").Cells(Row + 2, Col).Value = m
 Row = Row + 1
Next

Row = Excelrow
Col = Excelcol
'Print Col Headings
For S = 1 To MRMAX
 z = (S * 2) + 1
 Worksheets("K30").Cells(Row, 2 * S).Value = S
 Worksheets("K30").Cells(Row + 1, 2 * S).Value = "GM"
 Worksheets("K30").Cells(Row + 1, z) = "HM"
Next
Worksheets("Results").Cells(Row, Col).Value = "400 - RESOURCE PRIORITIZATION METHOD (RPM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "SRI - Sequential Resource Index"
Worksheets("Results").Cells(Row + 2, Col).Value = "GM - Resource Type"
Worksheets("Results").Cells(Row + 3, Col).Value = "HM - Skill Level"
Worksheets("Results").Cells(Row + 4, Col).Value = "LRI - Level Resource Index"
Worksheets("Results").Cells(Row + 5, Col).Value = "RRI - Random Resource Index"

'Print GM and HM if PP=0
Row = Excelrow + 1
For n = 3 To MRMAX
 For m = 1 To n
 z = (n * 2) + 1
 Worksheets("K3O").Cells(Row + m, 2 * n).Value = GM(m, n)
 Worksheets("K3O").Cells(Row + m, z) = HM(m, n)
 Next
Next

'Determine Resource Cost of each resource set
495: For n = KT To MRMAX
 For m = 1 To n
 If HM(m, n) = 1 Then
 RC(n) = RC(n) + RC1
 ElseIf HM(m, n) = 2 Then
 RC(n) = RC(n) + RC2
 ElseIf HM(m, n) = 3 Then
 RC(n) = RC(n) + RC3
 End If
 Next
 CF(n) = 2 * (200 * RC(n)) / SUMNPVE 'Determine Fractional Cost, RC/NPVP
Next

498: ' Print Resource Prioritization Method
 Row = 72
 Col = 1
 Worksheets("Results").Cells(Row, Col).Value = "400 - RESOURCE PRIORITIZATION METHOD (RPM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "SRI - Sequential Resource Index"
 Worksheets("Results").Cells(Row + 2, Col).Value = "GM - Resource Type"
 Worksheets("Results").Cells(Row + 3, Col).Value = "HM - Skill Level"
 Worksheets("Results").Cells(Row + 4, Col).Value = "LRI - Level Resource Index"
 Worksheets("Results").Cells(Row + 5, Col).Value = "RRI - Random Resource Index"

 Col = 10
 For m = 1 To MR
 Worksheets("Results").Cells(Row + 1, Col + m).Value = m
 Worksheets("Results").Cells(Row + 2, Col + m).Value = GM(m, MR)
 Worksheets("Results").Cells(Row + 3, Col + m).Value = HM(m, MR)
 Worksheets("Results").Cells(Row + 4, Col + m).Value = LRI(m, MR)
Worksheets("Results").Cells(Row + 5, Col + m).Value = RRI(m)
Next

499: 'End 400-499 Resource Prioritization Method (RPM)
End Sub

Sub Sequential_Scheduling_Method()

500: 'Sequential Scheduling Method(SSM) is a multi-pass assignment algorithm.
The algorithms assigns tasks in order of project priority and sequential 'task number using two forward passes.

'1) The first pass develops a TIME CONSTRAINED SOLUTION (TCS).
'A TCS is developed within time constraints for tasks and projects.
'If a TCS project contains some tasks unassigned then that project 'is assumed to have insufficient resources to meet time 'constraints and therefore not valued in the TCS.

'2) The second pass develops a RESOURCE CONSTRAINED SOLUTION (RCS).
'Starting with the TCS, projects not fully resourced are identified 'and assignments on those projects are reset to zero. These projects 'not fully resourced are then scheduled by incrementally relaxing 'date constraints and by forcing an assignment to each task by adding 'delay to the tasks and to the projects.

501: 'Local Variable Declarations
Dim TES(6, 10) As Integer 'Temporary Early Start
Dim TEF(6, 10) As Integer 'Temporary Early Finish
Dim TLS(6, 10) As Integer 'Temporary Early Start
Dim TLF(6, 10) As Integer 'Temporary Early Finish
Dim TTS(6, 10) As Integer 'Temporary Slack

502: 'Local Variable Initialization
For i = 1 To NP
 For j = 1 To JT
 TES(i, j) = ES(i, j)
 TEF(i, j) = EF(i, j)
 TLS(i, j) = LS(i, j)
 TLF(i, j) = LF(i, j)
 TTS(i, j) = TS(i, j)
 Next
Next

505: 'Initialize Variable and Assignments
For i = 1 To NP
 RS(i) = 0
For j = 1 To JT
 AMJ(i, j) = 0
 ST(i, j) = 0
 FN(i, j) = 0
 WS(i, j) = TS(i, j)
 SC(i, j) = 0
 LG(i, j) = 0
For t = 1 To TP
 AJT(i, j, t) = 0
Next
Next
Next

510: 'Time Constrained Solution (TCS)

'Select Priority Order for Projects
511: For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPRI(n)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPR(n)
 End If

'Assign Tasks one at a time
512: For j = 2 To JT - 1
 ST(i, j) = TES(i, j) + 1 'Start at period ES +1

'Assign Resources on at a time
513: For m = 1 To MR 'Try to assign resources sequentially

'Check for Resource Type match
514: If FJ(i, j) = GM(m, MR) Then

'Check if resource is available during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next

'Assign if available
If MA(i, j) = 0 Then
 AMJ(i, j) = m
 FN(i, j) = ST(i, j) + DM(i, j) - 1
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next
GoTo NEXTTASK 'Redirect to next task
End If
End If '514 FJ=GM
Next '513 Try all resources directly

'If no direct assignment, delay using slack if available
515: Do While SC(i, j) < TS(i, j)

 SC(i, j) = SC(i, j) + 1
 WS(i, j) = TS(i, j) - SC(i, j)
 ST(i, j) = TES(i, j) + SC(i, j)

'Assign Resources one at a time
516: For m = 1 To MR

'Check for Resource Type Match
517: If FJ(i, j) = GM(m, MR) Then

 'Check if resource is avail during period
 MA(i, j) = 0
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT

If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
End If

Next
Next
Next

'If m is available in required interval, assign to j

518:
 If MA(i, j) = 0 Then

 AMJ(i, j) = m 'Assign resource m to proj i task j
 FN(i, j) = ST(i, j) + DM(i, j) - 1

 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next

 End If

'Forward Pass to Update TES, TEF
MAXEFPRC(i) = 0

519:
 For jj = j To JT 'start with task 2
 TES(i, jj) = ST(i, jj)
 For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
 End If
 Next
 Next

GoTo NEXTTASK 'Redirect to next task

End If '518
End If '517 FJ=GM
Next '516 Try next resource m
Loop '515 Loop while slack is available

NEXTTASK:
 Next '512 Iterate for JT tasks

 Next '511 Iterate for NP projects
Complete Sequential Scheduling Method - Time Constrained Solution

520: For i = 1 To NP
MAXTEFPRC(i) = 0
For jr = 1 To JT
If PRC(i, jr, JT) = 1 And TEF(i, jr) >= MAXTEFPRC(i) Then
MAXTEFPRC(i) = TEF(i, jr) 'set it to the max constant
End If
Next
Next

Complete Sequential Scheduling Method - Time Constrained Solution

522: For i = 1 To NP
ST(i, JT) = MAXTEFPRC(i) 'Last node start equals SES (updated)
FN(i, JT) = MAXTEFPRC(i) 'Last node finish equals SEF (updated)

If not resourced, set schedule/value to null
For j = 2 To JT - 1
If AMJ(i, j) = 0 Then
ST(i, JT) = 0
FN(i, JT) = 0
BF(i) = 0
DE(i) = 0
End If

Otherwise complete the schedule
Next
CP(i) = FN(i, JT)
TE(i) = CP(i) + BF(i)
DE(i) = TE(i) - TL(i)
If DE(i) < 0 Then
DE(i) = 0
End If
Next

Compute VE and NPVE for the projects that are scheduled

525: For i = 1 To NP
VE(i) = 0
NPVE(i) = 0
If TE(i) > 0 Then
VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))

Compute Expected NPV
GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)
REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR)^((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i)))) - 1)
/ ((IR^2) * ((1 + IR)^(LP(i) / 2) - DE(i))))
DFPFLE(i) = (1 + IR) - TE(i)
DFPAR(i) = (((1 + IR)^((LP(i) / 2) - 1) / (IR * ((1 + IR)^(LP(i) / 2))))
DFPGRE(i) = (((1 + IR)^((LP(i) / 2) - (IR * (LP(i) / 2) - 1)) / ((IR^2) * ((1 +
IR)^((LP(i) / 2))))
DFPFRE(i) = ((1 + IR)^(-TL(i) + (LP(i) / 2)))
NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + ((REK(i) * DFPARE(i)) -
(GER(i) * DFPGRE(i))) * DFPFRE(i)

End If
Next

'Compute Total Net Present Value Expected TNPVE
526: SUMNPVE = 1
For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
527: PSE = SUMNPVE / SUMNPVP
SSMTCS(MR) = PSE

'Format TCS Variables for printing, this preserves the original solution
530: If MMR = 0 Then 'Print only if a single resource set is run
 PSEO = PSE
 SUMNPVEO = SUMNPVE
 SUMNPVPO = SUMNPVP
 For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
 TEO(i) = TE(i)
 DEO(i) = DE(i)
 NPVEO(i) = NPVE(i)
 Next
 For j = 1 To JT
 DMO(i, j) = DM(i, j)
 DLO(i, j) = DL(i, j)
 FIJO(i, j) = FJ(i, j)
 ESO(i, j) = ES(i, j)
 EFO(i, j) = EF(i, j)
 LSO(i, j) = LS(i, j)
 LFO(i, j) = LF(i, j)
 Next
\[\text{STO}(i, j) = \text{ST}(i, j) \]
\[\text{FNO}(i, j) = \text{FN}(i, j) \]
\[\text{CTO}(i, j) = \text{CT}(i, j) \]
\[\text{TSO}(i, j) = \text{TS}(i, j) \]
\[\text{FSO}(i, j) = \text{FS}(i, j) \]
\[\text{WSO}(i, j) = \text{WS}(i, j) \]
\[\text{SCO}(i, j) = \text{SC}(i, j) \]
\[\text{LGO}(i, j) = \text{LG}(i, j) \]
\[\text{AMJO}(i, j) = \text{AMJ}(i, j) \]
\[\text{AHJO}(i, j) = \text{AHJ}(i, j) \]

For \(t = 1 \) To TP
 \[\text{AJTO}(i, j, t) = \text{AJT}(i, j, t) \]
Next
Next

535: 'Print Results; Time; CONSTRAINED; SOLUTION(TCS)
Row = Resultsrow
Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "500 - SEQUENTIAL SCHEDULING METHOD(SSM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "TIME CONSTRAINED SOLUTION (TCS)"
Row = Row + 2

Call Print_Results

End If '530

540: 'Resource Constrained Solution(RCS)
'Relaxes End Date Constraints and Incorporates Delays in the Schedules with Lags

541: 'Re-Initialize Temporary Variables
For \(i = 1 \) To NP
 For \(j = 1 \) To JT
 \[\text{TES}(i, j) = \text{ES}(i, j) \]
 \[\text{TEF}(i, j) = \text{EF}(i, j) \]
 \[\text{TLS}(i, j) = \text{LS}(i, j) \]
 \[\text{TLF}(i, j) = \text{LF}(i, j) \]
 \[\text{TTS}(i, j) = \text{TS}(i, j) \]
 Next
Next
'Select Project Priority Order, First Time Clears Assignment across all projects
542: For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPV Potential NPV prioritized projects
 i = NPVPPRI(n)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
 End If

'Check to see if all tasks are assigned
543: For j = 2 To JT - 1 'Check all tasks to see if they are assigned

'If any unassigned tasks A(i,j)=0 reinitialize project
544: If AMJ(i, j) = 0 Then

'Identifies projects that are not completely scheduled
RS(i) = 1

'Re-Initialize AMJ
546: For jj = 1 To JT - 1
 AMJ(i, jj) = 0 'reset AMJ on subsequent tasks current project
Next

'Re-Initialize AJT
548: For jj = 1 To JT - 1
 For TT = 1 To TP
 AJT(i, jj, TT) = 0 'reset AJT on subsequent tasks current project
 Next
Next

'Re-Initialize ST and WS
550: For jj = 1 To JT
 TES(i, jj) = ES(i, jj)
 TEF(i, jj) = EF(i, jj)
 ST(i, jj) = 0
 FN(i, jj) = 0
 WS(i, jj) = TS(i, jj)
 SC(i, jj) = 0
LG(i, jj) = 0
Next
End If
Next
'543 Check all tasks on a project to see if they are assigned
Next
'542 Check All projects

'Select Priority Order for Projects, Completes reassignment one project at a time
562: For n = 1 To NP
 If PP = 0 Then
 i = n
 End If
 If PP = 1 Then
 i = PRI(n)
 End If
 If PP = 2 Then
 i = NPVPRI(n)
 End If
 If PP = 3 Then
 i = RPRI(n)
 End If
564: If RS(i) = 1 Then 'Reschedule an entire project

'Assign tasks one at a time
566: For j = 2 To JT - 1

'Initialize ST
ST(i, j) = TES(i, j) + 1

'Assign Resources one at a time
568: For m = 1 To MR 'Assign resource sequentially one at a time

'Checks for Resource Type match
570: If FJ(i, j) = GM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next
Next

'If M equals 0 then m is available, assign to task j during required interval

572:
If MA(i, j) = 0 Then

AMJ(i, j) = m 'Assign resource m to proj i task j
FN(i, j) = ST(i, j) + DM(i, j) - 1 'Update Finish Date

For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
Next
Goto Delayedtask 'Redirect to next task
End If
End If 'FJ=GM
Next 'Try to assign all resources directly until all have been tested

'If not assigned, use slack if available to delay task

574:
Do While MA(i, j) = 1 And SC(i, j) < TS(i, j) 'Use slack if it exists

'Initialize
SC(i, j) = SC(i, j) + 1
WS(i, j) = TS(i, j) - SC(i, j)
ST(i, j) = TES(i, j) + SC(i, j)

576:
For m = 1 To MR

578:
If FJ(i, j) = GM(m, MR) Then 'this checks for skill level match

MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1 'Checks if resource is avail
during period
 For iii = 1 To NP
 For jjj = 1 To JT
 If AJT(iii, jjj, t) = m Then 'if not avail assign MA = 1
 MA(i, j) = 1 'set to 1 if resource is not avail in required period
 End If
 Next
 Next
Next
Next

579:
If MA(i, j) = 0 Then 'If m is available in required interval, assign to j

AMJ(i, j) = m 'Assign resource m to proj i task j
FN(i, j) = ST(i, j) + DM(i, j) - 1

For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update ES and EF
MAXEFPRC(i) = 0
For jj = j To JT 'start with task 2, search all rows in PRC for indicator
 TES(i, jj) = ST(i, jj) - 1 ""-1?
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
 End If
Next
Next
GoTo Delayedtask 'Redirect to next task
End If
End If 'FJ=DM
Next 'try resources at each level of slack
Loop 'End do while loop to utilize slack

'If still not assigned increment lag until a resource is free
580: Do While AMJ(i, j) = 0

'Initialize
LG(i, j) = LG(i, j) + 1
ST(i, j) = TES(i, j) + SC(i, j) + LG(i, j)

'Assign resource sequentially one at a time
582: For m = 1 To MR

'Check for Resource Type match
584: If FJ(i, j) = GM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
Next
Next
Next

'If M still 0 then m is available assign resource m to task j
585: If MA(i, j) = 0 Then

 AMJ(i, j) = m 'Assign resource m to proj i task j
 'ES(i, j) = ST(i, j) 'Increment Current Task
 FN(i, j) = ST(i, j) + DM(i, j) - 1
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
586: For jj = j To JT

 TES(i, jj) = ST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
 End If
Next
Next

GoTo Delayedtask 'Redirect to next task

End If '585
End If '584 FJ(i,j)not equal GM(i,j) go to next resource
Next '582 Iterate next resource
Loop '580 End lag loop

Delayedtask:
Next '566 Iterate next task
End If '564 RSi = 1
Next '562 Iterate next project
'Last node has TES/TEF equal to largest of TEF of predecessors
588: For i = 1 To NP
 MAXTEFPRC(i) = 0
 For jr = 1 To JT
 If PRC(i, jr, JT) = 1 And TEF(i, jr) >= MAXTEFPRC(i) Then
 MAXTEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 End For
Next

'Complete Sequential Scheduling Method - Resource Constrained Solution
590: For i = 1 To NP
 ST(i, JT) = MAXTEFPRC(i) 'Last node start equals SES (updated)
 FN(i, JT) = MAXTEFPRC(i) 'Last node finish equals SEF (updated)

'If not resourced, set schedule and value to null
Next
 For j = 2 To JT - 1
 If AMJ(i, j) = 0 Then
 ST(i, JT) = 0
 FN(i, JT) = 0
 BF(i) = 0
 DE(i) = 0
 End If
 End For
Next

'Otherwise complete the schedule
Next
 CP(i) = FN(i, JT)
 BF(i) = SS(i) + BB(i)
 TE(i) = CP(i) + BF(i)
 DE(i) = TE(i) - TL(i)
 If DE(i) < 0 Then
 DE(i) = 0
 End If
Next

'Compute VE and NPVE for the projects that are scheduled
591: For i = 1 To NP
 VE(i) = 0
 NPVE(i) = 0
 If TE(i) > 0 Then
 VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))
'Compute Expected NPV
GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)

REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR) ^ ((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ ((LP(i) / 2) - DE(i))))
DFPFLE(i) = (1 + IR) ^ -TE(i)
DFPARE(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / (IR * ((1 + IR) ^ (LP(i) / 2)))
DFPGRE(i) = ((((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2))))
DFPFRE(i) = ((1 + IR) ^ -(TL(i) + (LP(i) / 2)))

NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + ((REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i))) * DFPFRE(i)

End If
Next

'Compute Total Net Present Value Expected TNPVE
SUMNPVE = 1
For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
PSE = SUMNPVE / SUMNPVP
SSMRCS(MR) = PSE

'Format Variables for printing, this preserves the original solution
592: If MMR = 0 Then 'Print only if a single resource set is run
 PSEO = PSE
 SUMNPVEO = SUMNPVE
 SUMNPVP0 = SUMNPVP

 For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
 TEO(i) = TE(i)
 DEO(i) = DE(i)
 NPVEO(i) = NPVE(i)

 Next

 For j = 1 To JT
 DMO(i, j) = DM(i, j)
DLO(i, j) = DL(i, j)
FJO(i, j) = FJ(i, j)
ESO(i, j) = ES(i, j)
EFO(i, j) = EF(i, j)
LSO(i, j) = LS(i, j)
LFO(i, j) = LF(i, j)
STO(i, j) = ST(i, j)
FNO(i, j) = FN(i, j)
CTO(i, j) = CT(i, j)
TSO(i, j) = TS(i, j)
FSO(i, j) = FS(i, j)
WSO(i, j) = WS(i, j)
SCO(i, j) = SC(i, j)
LOGO(i, j) = LG(i, j)
AMJO(i, j) = AMJ(i, j)
AHJO(i, j) = AHJ(i, j)

For t = 1 To TP
 AJTO(i, j, t) = AJT(i, j, t)
Next
Next

593: ' Print Results of the Resource Constrained Solution(RCS)
 Row = Resultsrow
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "500 - SEQUENTIAL SCHEDULING METHOD (SSM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "RESOURCE CONSTRAINED SOLUTION (RCS)"
 Row = Row + 2

 Call Print_Results

End If '592

' If this solution is best, save it
 BRCS(MR) = 0 ' Since the SSMRCS is first, set to zero as initial best solution

595: If SSMRCS(MR) > BRCS(MR) Then
 BEST(MR) = 1
 BRCS(MR) = SSMRCS(MR) ' Becomes new best solution
Sub Critical_Scheduling_Method()

Critical Scheduling Method is a multi-pass assignment algorithm. The first sequence develops CRITICAL TASK SOLUTION (CTS) without changing EF. The CTS assigns tasks in criticality order 1) critical, 2) near critical and 3) non-critical. Critical and near critical tasks are assigned assuming no slack. Near critical tasks are assigned using slack if available.
'After 1-3, if a project is not fully resourced then the resources are removed from the 'lower priority projects in reverse priority order and assigned to higher priority projects.
The last sequence resets projects not fully scheduled, relaxes end dates 'and sequentially forces an assignment to each task.

601: 'Local Variable Declarations

Dim CTASK As Integer
Dim TES(6, 10) As Integer 'Temporary
Dim TEF(6, 10) As Integer 'Temporary
Dim TLS(6, 10) As Integer 'Temporary
Dim TLF(6, 10) As Integer 'Temporary

'Initialize Local Variables
For i = 1 To NP
 For j = 1 To JT
 TES(i, j) = ES(i, j)
 TEF(i, j) = EF(i, j)
 TLS(i, j) = LS(i, j)
 TLF(i, j) = LF(i, j)
 Next
Next

602: 'Initialize Variables
For i = 1 To NP
 RS(i) = 0
For j = 1 To JT
 AMJ(i, j) = 0
 ST(i, j) = 0
 FN(i, j) = 0
 WS(i, j) = TS(i, j)
 SC(i, j) = 0
For t = 1 To TP
 AJT(i, j, t) = 0
Next
Next
Next

' First assign CT=1 (critical), then CT=2 (near critical), then CT=3 (non critical)
603: For CTASK = 1 To 3

604: If CTASK = 1 Then
'Select Priority Order for Projects

605:
For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPRI(n)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
 End If
End For

'Assign Critical Tasks sequentially one at a time

606:
For j = 2 To JT - 1

'Initialize
ST(i, j) = TES(i, j) + 1

'Check if task is critical
607:
If CT(i, j) = 1 Then

'Assign resources to critical tasks one at a time
608:
For m = 1 To MR

'Check for Resource Type match
609:
If FJ(i, j) = GM(m, MR) Then

'Resource m must be available during period
610:
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if resource is not avail
 End If
 Next
 Next
Next

'If m is available in required interval, assign to j
611:
If MA(i, j) = 0 Then
 AMJ(i, j) = m
FN(i, j) = ST(i, j) + DM(i, j) - 1
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m assign m to task k in period t
Next
GoTo CT1NEXTTASK 'Redirect to next task
End If

End If '609 type match FJ=GM
Next '608 Iterate all m resources
End If '607 If CT=1

CT1NEXTTASK:
 Next '610 Try directly assigning all critical tasks
 Next '606 All projects
End If '605 Only Critical CT=1 Set

'Near Critical Task Assignment
612:
 If CTASK = 2 Then

 'Select Priority Order for Projects
614:
 For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPRI(n)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
 End If
 Next

 'Assign Near Critical Tasks
615:
 For j = 2 To JT - 1
 ST(i, j) = TES(i, j) + 1
 Next

 'Check that task is NEAR critical
616:
 If NC(i, j) = 1 Then

 'Assign resources one at a time
617:
 For m = 1 To MR

 'Check for Resource Type match
618:
 If FJ(i, j) = GM(m, MR) Then
'Resource m must be available during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next

'If m is available in required interval, assign to j
If MA(i, j) = 0 Then
 AMJ(i, j) = m
 FN(i, j) = ST(i, j) + DM(i, j) - 1
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next
 GoTo CT2NEXTTASK 'Redirect to next task
End If

End If '618 type match FJ=GM
Next '617 Try all m resources
End If '616 If NC=1
CT2NEXTTASK:
 Next '615 All near critical tasks
 Next '614 All projects
End If '612 End CT=2 Only Near Critical

'Non Critical Task Assignment
619: If CTASK = 3 Then 'Now Assign Non-Critical Task Set

'Select Priority Order for Projects
620: For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
i = NPVPRRI(n)
End If
If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
End If

'Start Assignment of Non-Critical Tasks

621: For j = 2 To JT - 1

'Initialize
ST(i, j) = TES(i, j) + 1 'Start at period ES +1

'Check that only non-critical and non-near critical
622: If CT(i, j) = 0 And NC(i, j) = 0 Then

'Direct assignment of resources
623: For m = 1 To MR

'Check Resource Type match
624: If FJ(i, j) = GM(m, MR) Then

'Resource m must be available
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next

'If m is available in required interval, assign to j
If MA(i, j) = 0 Then

AMJ(i, j) = m
FN(i, j) = ST(i, j) + DM(i, j) - 1

For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
Next
GoTo CT3NEXTTASK 'Redirect to next task
End If
End If '624 FJ=GM

Next '623 All m
'For Non-Critical Tasks, delay and use slack if available

630:
Do While SC(i, j) < TS(i, j)

SC(i, j) = SC(i, j) + 1
WS(i, j) = TS(i, j) - SC(i, j)
ST(i, j) = TES(i, j) + SC(i, j)

631:
For m = 1 To MR

632:
If FJ(i, j) = GM(m, MR) Then

'Checks if resource is avail during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next

'If m is available in required interval, assign to j
If MA(i, j) = 0 Then

AMJ(i, j) = m 'Assign resource m to proj i task j
FN(i, j) = ST(i, j) + DM(i, j) - 1

For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For jj = 1 To JT
 TES(i, jj) = ST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
Next
End If
If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
End If
Next
Next

GoTo CT3NEXTTASK 'Redirect to next task

End If
End If '632 FJ=GM
Next '631 Try all m resource
Loop '630 Try until slack is used up
End If '622

CT3NEXTTASK:
Next '621 All tasks
Next '620 All projects
End If '619 CT=3
Next '603 Iterate for CT=1,2,3

'Complete Schedule

634: For i = 1 To NP
 ST(i, JT) = TES(i, JT)
 FN(i, JT) = TEF(i, JT)
 For j = 2 To JT - 1
 If AMJ(i, j) = 0 Then
 ST(i, JT) = 0
 FN(i, JT) = 0
 BF(i) = 0
 DE(i) = 0
 End If
 Next
Next

635: For i = 1 To NP
 CP(i) = FN(i, JT)
 TE(i) = CP(i) + BF(i)
 DE(i) = TE(i) - TL(i)
 If DE(i) < 0 Then
 DE(i) = 0
 End If
Next

'Compute VE and NPVE for the projects that are scheduled
636: For i = 1 To NP
 VE(i) = 0
 NPVE(i) = 0
 If TE(i) > 0 Then
 VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))
 'Compute Expected NPV
 GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)
 REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
 GER(i) = REK(i) / (LP(i) / 2)
 DFPGLE(i) = (((1 + IR) ^ ((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ ((LP(i) / 2) - DE(i))))
 DFPFLE(i) = (1 + IR) ^ -TE(i)
 DFPARE(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / (IR * ((1 + IR) ^ (LP(i) / 2)))
 DFPGRE(i) = (((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2)))
 DFPFRE(i) = ((1 + IR) ^ -(TL(i) + (LP(i) / 2)))
 NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + ((REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i))) * DFPFRE(i)
 End If
Next '636

'Compute Total Net Present Value Expected TNPVE
637: SUMNPVE = 1
For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
638: PSE = SUMNPVE / SUMNPVP
CSMTCS(MR) = PSE

'Print Results Critical Scheduling Method (CSM) Method
'Time Constrained Solution (TCS)
'Format Variables for printing, this preserves the original solution
639: If MMR = 0 Then 'Print only if a single resource set is run
 PSEO = PSE
 SUMNPVEO = SUMNPVE
 SUMNPVPO = SUMNPVP
For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
 TEO(i) = TE(i)
DEO(i) = DE(i)
NPVEO(i) = NPVE(i)

For j = 1 To JT
 DMO(i, j) = DM(i, j)
 DLO(i, j) = DL(i, j)
 FJO(i, j) = FJ(i, j)
 ESO(i, j) = TES(i, j)
 EFO(i, j) = TEF(i, j)
 LSO(i, j) = LS(i, j)
 LFO(i, j) = LF(i, j)
 STO(i, j) = ST(i, j)
 FNO(i, j) = FN(i, j)
 CTO(i, j) = CT(i, j)
 TSO(i, j) = TS(i, j)
 FSO(i, j) = FS(i, j)
 WSO(i, j) = WS(i, j)
 SCO(i, j) = SC(i, j)
 LGO(i, j) = LG(i, j)
 AMJO(i, j) = AMJ(i, j)
 AHJO(i, j) = AHJ(i, j)

For t = 1 To TP
 AJTO(i, j, t) = AJT(i, j, t)
Next
Next

640: 'Print Results of the Critical Task Assignment Method (CTA-TCS)
Row = Resultsrow
Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "CRITICAL SCHEDULING METHOD (CSM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "TIME CONSTRAINED SOLUTION (TCS)"
Row = Row + 2

Call Print_Results

End If '639

'Begiin Critical REASSIGNMENT If Projects are not scheduled begin removing resources
'from lower priority projects and allocate them to higher priority
'projects based on project priorities and critical task status
641: 'Initialize Project Counter, will be decremented as projects become non-critical
NPC = NP

'Initialize RS(i)
For i = 1 To NP
RS(i) = 0
Next

'Select Priority Order for Projects, Identify Projects with vacent assignments
642: For n = 1 To NPC
If PP = 0 Then "PP=0 for Sequentially ordered projects
 i = n
 inpc = n
 ic = n
End If
If PP = 1 Then "PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 inpc = n
 ic = n
End If
If PP = 2 Then "PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPRI(n)
 inpc = n
 ic = n
End If
If PP = 3 Then "PP=3 for Random Project Order
 i = RPRI(n)
 inpc = n
 ic = n
End If

RSI = 0 'RSI=0 means higher level projects have sufficient resources

'Test to identify Projects with incomplete assignments
644: For ic = 1 To NPC
 For j = 2 To JT - 1 'Check all tasks to see if they are assigned
 If AMJ(i, j) = 0 Then 'If unassigned tasks A(i,j)=0 reinitialize
 RS(i) = 1 'l=Yes reschedule project with insufficient resources
 RSI = 1 'l=Yes higher level projects have insufficient resources
 End If
 Next
Next 'End Test

'CT Reassignment only if a higher level project has insufficient resources
645: If RSI = 1 Then

'Remove resource assignments from lowest priority project, reset variables
646: inpc = NPC

'Re-Initialize AMJ
For jj = 1 To JT - 1 'Remove Assignment on lower priority project
 AMJ(inpc, jj) = 0 'reset AMJ on tasks in lower priority projects
Next

'Re-Initialize AJT
For jj = 1 To JT - 1 'Remove Assignment on lower priority project
 For tnpc = 1 To TP
 AJT(inpc, jj, tnpc) = 0 'reset AJT on tasks in lower priority
 Next
Next

'Re-Initialize Variables
For jj = 1 To JT
 TES(inpc, jj) = ES(inpc, jj)
 TEF(inpc, jj) = EF(inpc, jj)
 ST(inpc, jj) = 0
 FN(inpc, jj) = 0
 WS(inpc, jj) = TS(inpc, jj)
 SC(inpc, jj) = 0
 LG(inpc, jj) = 0
Next

'Decrement lowest priority project
NPC = NPC - 1

'Assign resources from lowest priority project to higher priority projects
647: For i = 1 To NPC 'fill assignments on higher priority projects

'Check if higher priority project is resourced
648: If RS(i) = 1 Then

'Check all tasks
649: For j = 2 To JT - 1
 ST(i, j) = TES(i, j) + 1

'Try to directly reassign unresourced tasks with no slack
650: If AMJ(i, j) = 0 And (CT(i, j) = 1 Or NC(i, j) = 1) Then
'Try to directly assign a resource if available
 For m = 1 To MR 'Assign resource sequentially one at a time

 'Check for skill level match FJ=GM, check if CT=1 or NC=1
 If FJ(i, j) = GM(m, MR) Then

 'Checks if resource m is available during period
 MA(i, j) = 0
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not available
 End If
 Next
 Next
 Next

 'If available, assign to task j during required interval
 If MA(i, j) = 0 Then
 AMJ(i, j) = m
 FN(i, j) = ST(i, j) + DM(i, j) - 1 'Update Finish Date
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next
 GoTo CT4NEXTTASK 'Redirect to next task
 End If
 End If '652 End FJ=GM
Next '651 End all m resources directly
End If '650 AMJ=0

'Try to reassign non-critical tasks with no assignment
 If AMJ(i, j) = 0 And (CT(i, j) = 0 Or NC(i, j) = 0) Then

 'For Non-Critical Tasks, delay and use slack if available
 Do While SC(i, j) < TS(i, j) 'Use slack if it exists
 SC(i, j) = SC(i, j) + 1
 WS(i, j) = TS(i, j) - SC(i, j)
 ST(i, j) = TES(i, j) + SC(i, j)
 Loop
For $m = 1$ To MR

If $FJ(i, j) = GM(m, MR)$ Then

'Checks if resource is avail during period
MA(i, j) = 0
For $t = ST(i, j)$ To $ST(i, j) + DM(i, j) - 1$
 For $ii = 1$ To NP
 For $jj = 1$ To JT
 If $AJT(ii, jj, t) = m$ Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next
Next

'If m is available in required interval, assign to j
If MA(i, j) = 0 Then

 $AMJ(i, j) = m$ 'Assign resource m to proj i task j
 $FN(i, j) = ST(i, j) + DM(i, j) - 1$

For $t = ST(i, j)$ To $ST(i, j) + DM(i, j) - 1$
 $AJT(i, j, t) = m$ 'assign m to task k in period t
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For $jj = j$ To JT
 TES(i, jj) = ST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
For $jr = 1$ To JT
 If $PRC(i, jr, jj) = 1$ Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max
 End If
Then
 If $PRC(i, jr, jj) = 1$ And MAXEFPRC(i) $<=$ TES(i, jj)
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
 End If
Next
Next
GoTo CT4NEXTTASK 'Redirect to next task

End If
End If '657 End FJ=GM
Next '656 End try next m resource
Loop '655 End Try until slack on task is used up
End If '654 End Only if AMJ=0

CT4NEXTTASK:

Next '649 End Assign all tasks
End If '648 End Only if RS(i) = 1
Next '647 End Continue assigning on higher priority projects
End If '645 End Only if RS=1
Next '642 End Iteration through projects

'Complete Schedule
660: For i = 1 To NP
ST(i, JT) = TES(i, JT)
FN(i, JT) = TEF(i, JT)
For j = 2 To JT - 1
If AMJ(i, j) = 0 Then
ST(i, JT) = 0
FN(i, JT) = 0
CP(i) = 0
BF(i) = 0
DE(i) = 0
End If
Next
Next

For i = 1 To NP
TE(i) = CP(i) + BF(i)
DE(i) = TE(i) - TL(i)
If DE(i) < 0 Then
DE(i) = 0
End If
Next

'Compute VE and NPVE for the projects that are scheduled
661: For i = 1 To NP
VE(i) = 0
NPVE(i) = 0
If TE(i) > 0 Then

VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))
'Compute Expected NPV
GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)

REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR) ^ (LP(i) / 2) - DE(i)) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2) - DE(i))))

DFPFLE(i) = (1 + IR) ^ -TE(i)
DFPAES(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / (IR * ((1 + IR) ^ (LP(i) / 2)))
DFPGRE(i) = (((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2)))

DFPFRE(i) = ((1 + IR) ^ -(TL(i) + (LP(i) / 2)))

NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + (REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i)) * DFPFRE(i)

End If
Next '688

'Compute Total Net Present Value Expected TNPVE
SUMNPVE = 1
For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
PSE = SUMNPVE / SUMNPVP

CSMCCS(MR) = PSE

'Print Results Critical Scheduling Method (CSM) Method
'Critical Constrained Solution (CCS)
'Format Variables for printing, this preserves the original solution
662: If MMR = 0 Then 'Print only if a single resource set is run
 PSEO = PSE
 SUMNPVEO = SUMNPVE
 SUMNPVPO = SUMNPVP

For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
 TEO(i) = TE(i)
 DEO(i) = DE(i)
 NPVEO(i) = NPVE(i)
For j = 1 To JT
 DMO(i, j) = DM(i, j)
 DLO(i, j) = DL(i, j)
 FJO(i, j) = FJ(i, j)
 ESO(i, j) = TES(i, j)
 EFO(i, j) = TEF(i, j)
 LSO(i, j) = LS(i, j)
 LFO(i, j) = LF(i, j)
 STO(i, j) = ST(i, j)
 FNO(i, j) = FN(i, j)
 CTO(i, j) = CT(i, j)
 TSO(i, j) = TS(i, j)
 FSO(i, j) = FS(i, j)
 WSO(i, j) = WS(i, j)
 SCO(i, j) = SC(i, j)
 LG(i, j) = LG(i, j)
 AMJO(i, j) = AMJ(i, j)
 AHJO(i, j) = AHJ(i, j)

For t = 1 To TP
 AJTO(i, j, t) = AJT(i, j, t)
Next
Next
Next

663: 'Print Results of the Critical Task Assignment Method (CSM-CCS)
 Row = Resultsrow
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "600 - CRITICAL SCHEDULING METHOD (CSM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "CRITICAL CONSTRAINED SOLUTION (CCS)"
 Row = Row + 2

 Call Print_Results

End If '662

'BEGIN SEQUENTIAL REASSIGNMENT
'IF CANNOT SCHEDULE PROJECT USING CRITICAL ASSIGNMENT RULES
'RESET UNSCHEDULED PROJECTS AND RESCHEDULE USING
SEQUENTIAL
'TASK ASSIGNMENT RELAX END DATE CONSTRAINTS, INCORPORATES
'DELAYED SCHEDULE WITH LAGS
'Select Priority Order for Projects

664: For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPIR(n)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
 End If

665: For j = 2 To JT - 1 'Check all tasks to see if they are assigned
 'If unassigned tasks A(i,j)=0 reinitialize project
 If AMJ(i, j) = 0 Then
 RS(i) = 1 'Identifies projects with insufficient resources

 'Re-Initialize AMJ
 For jj = 1 To JT - 1
 AMJ(i, jj) = 0
 Next

 'Re-Initialize AJT
 For jj = 1 To JT - 1
 For TT = 1 To TP
 AJT(i, jj, TT) = 0
 Next
 Next

 'Re-Initialize Variables
 For jj = 1 To JT
 TES(i, jj) = ES(i, jj)
 TEF(i, jj) = EF(i, jj)
 ST(i, jj) = 0
 FN(i, jj) = 0
 WS(i, jj) = TS(i, jj)
 SC(i, jj) = 0
 LG(i, jj) = 0
 Next
End If '704
Next '702
Next '700

'Search projects and reschedule those not having task assignments
'Select Priority Order for Projects
667: For n = 1 To NP
If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
End If
If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
End If
If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPRI(n)
End If
If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
End If

668: If RS(i) = 1 Then 'Reschedule entire project

'Schedule tasks one at a time
669: For j = 2 To JT - 1

'Initialize ST
ST(i, j) = TES(i, j) + 1

'Directly assign a resource if available in required periods
670: For m = 1 To MR 'Assign resource sequentially one at a time

'Check for skill type match
671: If FJ(i, j) = GM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next
Next
'If M equals 0 then assign to task j during required interval
If MA(i, j) = 0 Then

 AMJ(i, j) = m 'Assign resource m to proj i task j
 FN(i, j) = ST(i, j) + DM(i, j) - 1 'Update Finish Date

 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next
 GoTo CT5NEXTTASK 'Redirect to next task
 End If
End If '671 FJ=GM
Next '670 Try to assign all resources directly

'If not assigned, use slack if available to delay task
672: Do While MA(i, j) = 1 And SC(i, j) < TS(i, j)

'Initialize
 SC(i, j) = SC(i, j) + 1
 WS(i, j) = TS(i, j) - SC(i, j)
 ST(i, j) = TES(i, j) + SC(i, j)

673: For m = 1 To MR

674: If FJ(i, j) = GM(m, MR) Then 'this checks for skill level match

 'Checks if resource is avail during period
 MA(i, j) = 0
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For iii = 1 To NP
 For jjj = 1 To JT
 If AJT(iii, jjj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
 Next

 'If m is available in required interval, assign to j
 If MA(i, j) = 0 Then

 AMJ(i, j) = m 'Assign resource m to proj i task j
 FN(i, j) = ST(i, j) + DM(i, j) - 1
For \(t = ST(i, j) \) To \(ST(i, j) + DM(i, j) - 1 \)
\[
AJT(i, j, t) = m \text{ 'assign m to task } k \text{ in period } t \]
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For \(jj = j \) To \(JT \)
\[
TES(i, jj) = ST(i, jj) - 1
TEF(i, jj) = TES(i, jj) + DM(i, jj)
\]
For \(jr = 1 \) To \(JT \)
If \(PRC(i, jr, jj) = 1 \) Then 'it is a predecessor
\[
MAXEFPRC(i) = TEF(i, jr) \text{ 'set it to the max constant}
\]
End If
If \(PRC(i, jr, jj) = 1 \) And \(MAXEFPRC(i) \geq TES(i, jj) \) Then
\[
TES(i, jj) = TEF(i, jr)
\]
\[
TEF(i, jj) = TES(i, jj) + DM(i, jj)
\]
End If
Next
Next

GoTo CT5NEXTTASK 'Redirect to next task
End If

End If '674 FJ=DM

Next '673 Try resources at each level of slack
Loop '672 End do while loop to utilize slack

'Increment task lag \(LG \) by 1 until a resource is free
676: Do While \(AMJ(i, j) = 0 \)

'Initialize
\[
LG(i, j) = LG(i, j) + 1
\]
\[
ST(i, j) = TES(i, j) + SC(i, j) + LG(i, j)
\]
678: For \(m = 1 \) To \(MR \) 'Assign resource sequentially one at a time

'Checks for skill type match
680: If \(FJ(i, j) = GM(m, MR) \) Then

'Checks if resource \(m \) is avail during period
\[
MA(i, j) = 0
\]
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then 'if not avail assign MA = 1
 MA(i, j) = 1 'set to 1 if resource is not avail in required period
 End If
 Next
Next
Next

'If M still 0 then m is available assign resource m to task j

If MA(i, j) = 0 Then

 AMJ(i, j) = m

 FN(i, j) = ST(i, j) + DM(i, j) - 1
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For jj = j To JT
 TES(i, jj) = ST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
 For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
 End If
 Next
Next

GoTo CT5NEXTTASK 'Redirect to next task

End If '682
End If '680 if FJ(i,j)not equal GM(i,j) go to next resource
Next '678 Iterate to next resource
Loop '676 End Lag loop
CT5NEXTTASK:
Next '669 Loop to next task
End If
Next

'Assign Start and End Dates to Last (Artificial) Task
686: For i = 1 To NP
 ST(i, JT) = TES(i, JT)
 FN(i, JT) = TEF(i, JT)
 CP(i) = FN(i, JT)
Next

'Complete schedule
688: For i = 1 To NP
 BF(i) = SS(i) + BB(i)
 TE(i) = CP(i) + BF(i)
 DE(i) = TE(i) - TL(i)
 If DE(i) < 0 Then
 DE(i) = 0
 End If
Next

'Compute VE and NPVE for the projects that are scheduled
689: For i = 1 To NP
 VE(i) = 0
 NPVE(i) = 0
 If TE(i) > 0 Then
 VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))

'Compute Expected NPV
GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)
REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR) ^ ((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ ((LP(i) / 2) - DE(i))))

DFPFLE(i) = (1 + IR) ^ -TE(i)
DFPARE(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / (IR * ((1 + IR) ^ (LP(i) / 2)))
DFPGRE(i) = (((((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2))) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2))))
 DFPFRE(i) = ((1 + IR) ^ (-TL(i) + (LP(i) / 2)))
 NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + (REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i)) * DFPFRE(i)
End If
Next
'Compute Total Net Present Value Expected TNPVE
SUMNPVE = 1

690: For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
PSE = SUMNPVE / SUMNPVP
CSMRCS(MR) = PSE

'Print Results Critical_Task Scheduling Method (CSM)
'Time Constrained Solution (RCS)
'Format Variables for printing, this preserves the original solution

691: If MMR = 0 Then 'Print only if a single resource set is run
 PSEO = PSE
 SUMNPVEO = SUMNPVE
 SUMNPVPO = SUMNPVP

For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
 TEO(i) = TE(i)
 DEO(i) = DE(i)
 NPVEO(i) = NPVE(i)

For j = 1 To JT
 DMO(i, j) = DM(i, j)
 DLO(i, j) = DL(i, j)
 FJO(i, j) = FJ(i, j)
 ESO(i, j) = TES(i, j)
 EFO(i, j) = TEF(i, j)
 LSO(i, j) = TLS(i, j)
 LFO(i, j) = TLF(i, j)
 STO(i, j) = ST(i, j)
 FNO(i, j) = FN(i, j)
 CTO(i, j) = CT(i, j)
 TSO(i, j) = TS(i, j)
 FSO(i, j) = FS(i, j)
 WSO(i, j) = WS(i, j)
 SCO(i, j) = SC(i, j)
 LGO(i, j) = LG(i, j)
 AMJO(i, j) = AMJ(i, j)
 AHJO(i, j) = AHJ(i, j)

For t = 1 To TP
\begin{verbatim}
AJTO(i, j, t) = AJT(i, j, t)
Next
Next
Next

692: 'Print Results
 Row = Resultrowse
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "600 - CRITICAL SCHEDULING
METHOD"
 Worksheets("Results").Cells(Row + 1, Col).Value = "RESOURCE
CONSTRANDED SOLUTION (RCS)"
 Row = Row + 2

 Call Print_Results

End If '691

'Determine if this solution is best and save it
695: If CSMRCS(MR) > BRCS(MR) Then

 BEST(MR) = 3

 BRCS(MR) = CSMRCS(MR) 'Becomes new best solution

For i = 1 To NP
 BCP(i) = CP(i)
 BBF(i) = BF(i)
 BTE(i) = TE(i)
 BDE(i) = DE(i)
 BNPVE(i) = NPVE(i)

For j = 1 To JT
 BDM(i, j) = DM(i, j)
 BDL(i, j) = DL(i, j)
 BFJ(i, j) = FJ(i, j)
 BES(i, j) = TES(i, j)
 BEF(i, j) = TEF(i, j)
 BLS(i, j) = TLS(i, j)
 BLF(i, j) = TLF(i, j)
 BST(i, j) = ST(i, j)
 BFN(i, j) = FN(i, j)
 BCT(i, j) = CT(i, j)
 BTS(i, j) = TS(i, j)
\end{verbatim}
Begin 600-699 Critical Scheduling Method

Sub Early_Scheduling_Method()

700: 'Early Task Assignment is a multi-pass algorithm that assigns and schedules multiple projects according to a prioritized list of Early Start (ES) dates. After the first pass any project not fully scheduled is rescheduled sequentially.

701: 'Local Variable Declarations
Dim TES(6, 10) As Integer 'Temp Early Start
Dim TEF(6, 10) As Integer 'Temp Early Finish
Dim TLS(6, 10) As Integer 'Temp Late Start
Dim TLF(6, 10) As Integer 'Temp Late Finish
Dim TTS(6, 10) As Integer 'Temp Total Slack

'Initialize Local Variables
For i = 1 To NP
 For j = 1 To JT
 TES(i, j) = ES(i, j)
 TEF(i, j) = EF(i, j)
 TLS(i, j) = LS(i, j)
 TLF(i, j) = LF(i, j)
 TTS(i, j) = TS(i, j)
 Next
Next

'Initialize Variable and Assignments

For t = 1 To TP
 BAJT(i, j, t) = AJT(i, j, t)
Next
Next

End If '695

699: 'End 600-699 Critical Scheduling Method

End Sub
Sub Early_Scheduling_Method()
For i = 1 To NP
 RS(i) = 0
For j = 1 To JT
 AMJ(i, j) = 0
 ST(i, j) = 0
 FN(i, j) = 0
 WS(i, j) = TTS(i, j)
 SC(i, j) = 0
 For t = 1 To TP
 AJT(i, j, t) = 0
 Next
 Next
 l = 0
 'Tasks are selected in order of Earliest Start Date
 710: For k = 1 To NJT
 For i = 1 To NP
 For j = 1 To JT
 l = l + 1
 If ESARO(k) = ESA(l) Then
 ST(i, j) = ES(i, j) + 1
 l = 0
 GoTo STARTES
 End If
 Next
 Next
 STARTES:
 'Try to assign resources sequentially one at a time
 712: For m = 1 To MR
 'Skill level must match in order to consider assignment
 713: If FJ(i, j) = GM(m, MR) Then
 'Resource m must be available during period
 MA(i, j) = 0
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
Next
Next
Next

'If m is available in required interval, assign to j
If MA(i, j) = 0 Then

AMJ(i, j) = m 'Assign resource m to proj i task j
FN(i, j) = ST(i, j) + DM(i, j) - 1

For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
Next
GoTo ES1NEXTTASK 'Redirect to next task
End If
End If

'713 FJ=GM
Next

'712 Iterate all resources directly
'No slack if used in the first pass

ES1NEXTTASK:
Next

'710 Iterate NJT tasks

' Complete schedule
714: For i = 1 To NP
 ST(i, JT) = TES(i, JT)
 FN(i, JT) = TEF(i, JT)
 BF(i) = SS(i) + BB(i)
 For j = 2 To JT - 1
 If AMJ(i, j) = 0 Then
 ST(i, JT) = 0
 FN(i, JT) = 0
 BF(i) = 0
 DE(i) = 0
 End If
 Next
Next

For i = 1 To NP

CP(i) = FN(i, JT)
TE(i) = CP(i) + BF(i)
DE(i) = TE(i) - TL(i)
If DE(i) < 0 Then
 DE(i) = 0
End If
Next
'Compute VE and NPVE for the projects that are scheduled

715: For i = 1 To NP
 VE(i) = 0
 NPVE(i) = 0
 If TE(i) > 0 Then
 VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i)^2)) / (LP(i)^2)))

'Compute Expected NPV
GEL(i) = (4 * VP(i)) / (LP(i)^2)
REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR)^((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR^2) * ((LP(i) / 2) - DE(i)))
DFPFLE(i) = (1 + IR)^(-TE(i))
DFPAR(i) = (((1 + IR)^((LP(i) / 2)) - 1) / (IR * ((1 + IR) * (LP(i) / 2)))
DFPGRE(i) = (((1 + IR)^((LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / (IR^2) * ((1 + IR) * (LP(i) / 2)))
 DFPFRE(i) = ((1 + IR)^(-(TL(i) + (LP(i) / 2))))
 NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + ((REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i))) * DFPFRE(i)
 End If
Next

'Compute Total Net Present Value Expected TNPVE
SUMNPVE = 1
716: For ii = 1 To NP
 SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
717: PSE = SUMNPVE / SUMNPVP

ESMTCS(MR) = PSE

'Print results of Early Start Scheduling Method Initial Pass
'Time Constrained Solution (TCS)
'Format Variables for printing, this preserves the original solution
718: If MMR = 0 Then 'Print only if a single resource set is run
 PSEO = PSE
 For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
TEO(i) = TE(i)
DEO(i) = DE(i)
NPVEO(i) = NPVE(i)

For j = 1 To JT
 DMO(i, j) = DM(i, j)
 DLO(i, j) = DL(i, j)
 FJ(i, j) = FJ(i, j)
 ESO(i, j) = TES(i, j)
 EFO(i, j) = TEF(i, j)
 LSO(i, j) = LS(i, j)
 LFO(i, j) = LF(i, j)
 STO(i, j) = ST(i, j)
 FNO(i, j) = FN(i, j)
 CTO(i, j) = CT(i, j)
 TSO(i, j) = TS(i, j)
 FSO(i, j) = FS(i, j)
 WSO(i, j) = WS(i, j)
 SCO(i, j) = SC(i, j)
 LGO(i, j) = LG(i, j)
 AMJO(i, j) = AMJ(i, j)
 AHJO(i, j) = AHJ(i, j)

 For t = 1 To TP
 AJTO(i, j, t) = AJT(i, j, t)
 Next
Next
Next
Next

719: 'Print Results of the Early_Start Scheduling Method (ESM-TCS)
Row = Resultsrow
Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "700 - EARLY SCHEDULING
METHOD (ESM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "TIME CONSTRAINED
SOLUTION (TCS)"
Row = Row + 2

Call Print_Results

End If '718

'Second Pass, Sequential Project Scheduling
'Identify any projects with incomplete assignments
PP=0 for Sequentially ordered projects
PP=1 for PRI Productivity prioritized projects
PP=2 for NPV Potential NPV prioritized projects
PP=3 for Random Project Order

RSI = 0 'Initialize RSI=0 means projects have sufficient resources

Identify Projects with vacant assignments, reset variables
For j = 2 To JT - 1 'Check all tasks to see if they are assigned
If unassigned tasks A(i,j)=0 reinitialize project

RS(i) = 1 '1=Yes reschedule project with insufficient resources
For jj = 1 To JT - 1
AMJ(i, jj) = 0
WS(i, jj) = TTS(i, jj)
SC(i, jj) = 0
ST(i, jj) = 0
FN(i, jj) = 0
LG(i, jj) = 0
For TT = 1 To TP
AJT(i, jj, TT) = 0
Next
Next
End If '742
Next '741
Next '740

'Execute Sequential Assignment on Projects RS(i)=1
For n = 1 To NP
If PP = 0 Then 'PP=0 for Sequentially ordered projects
i = n
End If
If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
i = PRI(n)
End If
If PP = 2 Then 'PP=2 for NPV Potential NPV prioritized projects
i = NPVPPRI(n)
End If
If PP = 3 Then 'PP=3 for Random Project Order
i = RPRI(n)
End If
If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
End If
If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPRI(n)
End If
If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
End If

'Reschedule entire project
746: If RS(i) = 1 Then

'Reschedule one task at a time
748: For j = 2 To JT - 1

'Initialize ST
 ST(i, j) = TES(i, j) + 1

'Directly assign a resource if available in required periods
750: For m = 1 To MR 'Assign resource sequentially one at a time

'Check for skill type match
752: If FJ(i, j) = GM(m, MR) Then

'Checks if resource m is avail during period
 MA(i, j) = 0
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next
Next

'If M equals 0 then m is available, assign to task j
If MA(i, j) = 0 Then
 AMJ(i, j) = m
 FN(i, j) = ST(i, j) + DM(i, j) - 1 'Update Finish Date
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next
 GoTo ES5NEXTTASK 'Redirect to next task
End If
End If '752 FJ=GM
Next '750 Try to assign all resources directly

'If not assigned, use slack if available to delay task

754:
Do While MA(i, j) = 1 And SC(i, j) < TTS(i, j)

'Initialize
SC(i, j) = SC(i, j) + 1
WS(i, j) = TTS(i, j) - SC(i, j)
ST(i, j) = TES(i, j) + SC(i, j)

756:
For m = 1 To MR

'Check for skill type match

758:
If FJ(i, j) = GM(m, MR) Then

'Checks if resource is avail during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For i = 1 To NP
 For j = 1 To JT
 If AJT(i, j, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next

'If m is available in required interval, assign to j
If MA(i, j) = 0 Then
 AMJ(i, j) = m 'Assign resource m to proj i task j
 FN(i, j) = ST(i, j) + DM(i, j) - 1

 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 AJT(i, j, t) = m 'assign m to task k in period t
 Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For j = 1 To JT
 TES(i, j) = ST(i, j) - 1
 TEF(i, j) = TES(i, j) + DM(i, j)
For j = 1 To JT
 If PRC(i, j, j) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, j) 'set it to the max constant
End If
If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + DM(i, jj)
End If
Next
Next
GoTo ES5NEXTTASK 'Redirect to next task
End If

760: Do While AMJ(i, j) = 0

'Initialize
LG(i, j) = LG(i, j) + 1
ST(i, j) = TES(i, j) + SC(i, j) + LG(i, j)

762: 'Assign resource sequentially one at a time
For m = 1 To MR

764: 'Check for resource type match
If FJ(i, j) = GM(m, MR) Then

766: 'If M still 0 then m is available assign resource m to task j
If MA(i, j) = 0 Then
 AMJ(i, j) = m 'Assign resource m to proj i task j
 FN(i, j) = ST(i, j) + DM(i, j) - 1
 For t = ST(i, j) To ST(i, j) + DM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If AJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
 Next
End If
'Assign Start and End Dates to Last (Artificial) Task

768: For i = 1 To NP
 ST(i, JT) = TES(i, JT)
 FN(i, JT) = TEF(i, JT)
Next

'Complete schedule

770: For i = 1 To NP
 BF(i) = SS(i) + BB(i)
 CP(i) = FN(i, JT)
 TE(i) = CP(i) + BF(i)
 DE(i) = TE(i) - TL(i)
 If DE(i) < 0 Then
 DE(i) = 0
 End If
Next

'Compute VE and NPVE for the projects that are scheduled

772: For i = 1 To NP
VE(i) = 0
NPVE(i) = 0
If TE(i) > 0 Then
VE(i) = VP(i) * (1 - ((3 * DE(i)) / LP(i)) + ((2 * (DE(i) ^ 2)) / (LP(i) ^ 2)))

'Compute Expected NPV
GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)
REK(i) = RPK(i) * (1 - (2 * (DE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR) ^ ((LP(i) / 2) - DE(i))) - (IR * ((LP(i) / 2) - DE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ ((LP(i) / 2) - DE(i))))
DFPFLE(i) = (1 + IR) ^ -TE(i)
DFPARE(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / (IR * ((1 + IR) ^ (LP(i) / 2)))
DFPGRE(i) = ((((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2))))
DFPFRE(i) = ((1 + IR) ^ -(TL(i) + (LP(i) / 2)))
NPVE(i) = GEL(i) * DFPGLE(i) * DFPFLE(i) + (REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i)) * DFPFRE(i)
End If
Next

'Compute Total Net Present Value Expected TNPVE
SUMNPVE = 1
774: For ii = 1 To NP
SUMNPVE = SUMNPVE + NPVE(ii)
Next

'Compute Program Schedule Efficiency
776: PSE = SUMNPVE / SUMNPVP
ESMRCS(MR) = PSE

'Print results of Early_Start Scheduling Method
'Resource Constrained Solution (RCS)
'Format Variables for printing, this preserves the original solution
790: If MMR = 0 Then 'Print only if a single resource set is run
PSEO = PSE
SUMNPVEO = SUMNPVE
SUMNPVPO = SUMNPVP
For i = 1 To NP
 CPO(i) = CP(i)
 BFO(i) = BF(i)
 TEO(i) = TE(i)
 DEO(i) = DE(i)
 NPVEO(i) = NPVE(i)

For j = 1 To JT
 DMO(i, j) = DM(i, j)
 LDO(i, j) = DL(i, j)
 FJO(i, j) = FJ(i, j)
 ESO(i, j) = TES(i, j)
 EFO(i, j) = TEF(i, j)
 LSO(i, j) = TLS(i, j)
 LFO(i, j) = TLF(i, j)
 STO(i, j) = ST(i, j)
 FNO(i, j) = FN(i, j)
 CTO(i, j) = CT(i, j)
 TSO(i, j) = TS(i, j)
 FSO(i, j) = FS(i, j)
 WSO(i, j) = WS(i, j)
 SCO(i, j) = SC(i, j)
 LGO(i, j) = LG(i, j)
 AMJO(i, j) = AMJ(i, j)
 AHJO(i, j) = AHJ(i, j)

For t = 1 To TP
 AJTO(i, j, t) = AJT(i, j, t)
 Next
Next
Next
Next

791: ' Print Results of the Early Scheduling Method (ESM-RCS)
 Row = Resultsrow
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "700 - EARLY SCHEDULING METHOD (ESM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "RESOURCE CONSTRAINED SOLUTION (RCS)"
 Row = Row + 2

Call Print_Results

End If '790
'Determine if this solution is best and save it
If ESMRCS(MR) > BRCS(MR) Then

BEST(MR) = 3

BRCS(MR) = ESMRCS(MR) 'Becomes new best solution

For i = 1 To NP
 BCP(i) = CP(i)
 BBF(i) = BF(i)
 BTE(i) = TE(i)
 BDE(i) = DE(i)
 BNPVE(i) = NPVE(i)

For j = 1 To JT
 BDM(i, j) = DM(i, j)
 BDL(i, j) = DL(i, j)
 BFJ(i, j) = FJ(i, j)
 BES(i, j) = TES(i, j)
 BEF(i, j) = TEF(i, j)
 BLS(i, j) = TLS(i, j)
 BLF(i, j) = TLF(i, j)
 BST(i, j) = ST(i, j)
 BFN(i, j) = FN(i, j)
 BCT(i, j) = CT(i, j)
 BTS(i, j) = TS(i, j)
 BFS(i, j) = FS(i, j)
 BWS(i, j) = WS(i, j)
 BSC(i, j) = SC(i, j)
 BLG(i, j) = LG(i, j)
 BAMJ(i, j) = AMJ(i, j)
 BAHJ(i, j) = AHJ(i, j)

For t = 1 To TP
 BAJT(i, j, t) = AJT(i, j, t)
Next
Next
'

End If '795

799: 'End 700-799 Early Scheduling Method

End Sub

Sub Level_Scheduling_Method()
LEVEL SCHEDULING METHOD (LSM)

All Constructive Schedules developed to this point assume that all resources are Level 2 thus using mean duration to develop the robust schedule.

The Level Scheduling Method applies actual Skill Levels already assigned to each task and thus the duration of tasks are modified to reflect different work rate parameters of Q1 and Q3.

An updated Critical Path/Critical Chain pass robust schedule is derived using the adjusted duration estimates.

Once the durations are modified on a task that task essentially requires two modes for assignment; 1) Resource Type and 2) Skill level.

Updated assignments/schedules result in a Level Constrained Solution (LCS).

Declare Local Variables

Dim TES(6, 10) As Integer 'Temp Early Start
Dim TEF(6, 10) As Integer 'Temp Early Finish
Dim TLS(6, 10) As Integer 'Temp Late Start
Dim TLF(6, 10) As Integer 'Temp Late Finish
Dim TTS(6, 10) As Integer 'Temp Total Slack

Initialize Variables

SPSE = 0

For i = 1 To NP
 SCP(i) = 0
 SBF(i) = 0
 SBB(i) = 0
 SSS(i) = 0
 STE(i) = 0
 SDE(i) = 0
 SNPVE(i) = 0
 SVE(i) = 0

For j = 1 To JT
 TES(i, j) = 0
 TEF(i, j) = 0
 TLS(i, j) = 0
 TLF(i, j) = 0
 TTS(i, j) = 0

 SDM(i, j) = DM(i, j)
For each task compute a new SDM and SDL if resource is a 1 or 3

805: For i = 1 To NP

For j = 2 To JT - 1

m = BAMJ(i, j)
h = HM(m, MR) 'skill level for task i,j

If h = 1 Then
 SDM(i, j) = (1 - Q1) * SDM(i, j)
 SDL(i, j) = (1 - Q1) * SDL(i, j)
 SAHJ(i, j) = h
End If

If h = 2 Then
 SAHJ(i, j) = h
End If

If h = 3 Then
 SDM(i, j) = (1 + Q3) * SDM(i, j)
 SDL(i, j) = (1 + Q3) * SDL(i, j)
 SAHJ(i, j) = h
End If

Next

Next
'Critical Path Method
'Forward Pass to Determine SES, SEF
'Initialize SES(1) and SEF(1)

810: For i = 1 To NP
 SES(i, 1) = 0 + SLG(i, 1)
 SEF(i, 1) = SES(i, 1) + SDM(i, 1)
 Next

'The earliest start (SES) for any task is equal to the maximum of the
'earliest finish (SEF) of the immediate predecessors

811: For i = 1 To NP
 For j = 2 To JT 'start with task 2, search all rows in PRC for indicator
 SES(i, j) = 0
 For jr = 1 To JT
 If PRC(i, jr, j) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = SEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, j) = 1 And MAXEFPRC(i) >= SES(i, j) Then
 SES(i, j) = SEF(i, jr) ' + SLG(i, j)
 SEF(i, j) = SES(i, j) + SDM(i, j) + SLG(i, j)
 End If
 Next
 Next

'Backward Pass to Determine SLF, SLS
'Initialize

812: For i = 1 To NP
 SLF(i, JT) = SEF(i, JT)
 SLS(i, JT) = SLF(i, JT) - SDM(i, JT)
 Next

'The latest finish (SLF) for any task is the smallest
'of the latest start (SLS) times of immediate successors

813: For i = 1 To NP
 For j = JT - 1 To 1 Step -1
 SLF(i, j) = SLS(i, JT)
 Next
 For jr = JT To 1 Step -1
 If PRC(i, j, jr) = 1 Then
 MINLSSUC(i) = SLS(i, jr)
 End If
 If PRC(i, j, jr) = 1 And MINLSSUC(i) <= SLF(i, j) Then
 SLF(i, j) = SLS(i, jr) ' - LG(i, jr)
 SLS(i, j) = SLF(i, j) - SDM(i, j)
Compute New Total Slack
'Total Slack of activity j is the difference between 'the latest finish SLF(J) and earliest finish SEF(J), or the difference between SLS(J) and SES(J)

814: For i = 1 To NP
 For j = 1 To JT
 STS(i, j) = SLF(i, j) - SEF(i, j)
 SWS(i, j) = STS(i, j)
 Next
Next

'Initialize temporary ES, EF, LS, LF for updates
815: For i = 1 To NP
 For j = 1 To JT
 TES(i, j) = SES(i, j)
 TEF(i, j) = SEF(i, j)
 TLS(i, j) = SLS(i, j)
 TLF(i, j) = SLF(i, j)
 TTS(i, j) = STS(i, j)
 Next
Next

'Reschedule all projects using new SES, SEF, STS, and SDM
'Select Priority Order for Projects
824: For n = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = n
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(n)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVPPRI(n)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(n)
 End If
'Assign tasks one at a time
825: For j = 2 To JT - 1

'Initialize ST
SST(i, j) = TES(i, j) + 1

'Assign resource sequentially one at a time
826: For m = 1 To MR

'Checks for both Resource Type and Skill Level match
827: If FJ(i, j) = GM(m, MR) And SAHJ(i, j) = HM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = SST(i, j) To SST(i, j) + SDM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If SAJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
 Next

'If M equals 0 then assign to task j during required interval
If MA(i, j) = 0 Then

SAMJ(i, j) = m 'Assign resource m to proj i task j
SFN(i, j) = SST(i, j) + SDM(i, j) - 1 'Update Finish Date

For t = SST(i, j) To SST(i, j) + SDM(i, j) - 1
 SAJT(i, j, t) = m 'assign m to task i,j in period t
 Next

GoTo LSNEXTTASK 'Redirect to next task
End If
End If '827 FJ=GM
Next '826 All resources directly

'If not assigned, use slack if available to delay task
828: Do While MA(i, j) = 1 And SSC(i, j) < STS(i, j)

SSC(i, j) = SSC(i, j) + 1
SWS(i, j) = TTS(i, j) - SSC(i, j)
\[SST(i, j) = TES(i, j) + SSC(i, j) \]

'Assign resources one at a time
829: For \(m = 1 \) To MR

'Check for both Resource Type and Skill Level match
830: If \(FJ(i, j) = GM(m, MR) \) And \(SAHJ(i, j) = HM(m, MR) \) Then

'Check if resource is avail during period
831: MA(i, j) = 0
For \(t = SST(i, j) \) To \(SST(i, j) + SDM(i, j) - 1 \)
For \(iii = 1 \) To \(NP \)
For \(jjj = 1 \) To \(JT \)
 If \(SAJT(iii, jjj, t) = m \) Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
Next
Next
Next

'If m is available in required interval, assign to j
831: If MA(i, j) = 0 Then

SAMJ(i, j) = m 'Assign resource m to proj i task j
SFM(i, j) = SST(i, j) + SDM(i, j)

For \(t = SST(i, j) \) To \(SST(i, j) + SDM(i, j) - 1 \)
 SAJT(i, j, t) = m 'assign m to task k in period t
Next

Forward Pass to Update TES and TEF
MAXEFPSC(i) = 0
832: For \(jj = 1 \) To \(JT \)
 TES(i, jj) = SST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + SDM(i, jj)
For \(jr = 1 \) To \(JT \)
 If \(PRC(i, jr, jj) = 1 \) Then 'it is a predecessor
 MAXEFPSC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If \(PRC(i, jr, jj) = 1 \) And \(MAXEFPSC(i) >= TES(i, jj) \) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + SDM(i, jj)
 End If
GoTo LSNEXTTASK 'Redirect to next task

End If '831
End If '830 FJ=DM

Next '829 All resources at each level of slack

Loop '828 While slack is available

'If still not assigned increment lag until a resource is free

835: Do While SAMJ(i, j) = 0'

'Initialize
SLG(i, j) = SLG(i, j) + 1
SST(i, j) = TES(i, j) + SSC(i, j) + SLG(i, j)

'Assign resource sequentially one at a time
836: For m = 1 To MR

'Check for both Resource Type and Skill Level match
837: If FJ(i, j) = GM(m, MR) And SAHJ(i, j) = HM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = SST(i, j) To SST(i, j) + SDM(i, j) - 1
For ii = 1 To NP
For jj = 1 To JT
If SAJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
End If
Next
Next
Next

'If M still 0 then m is available assign resource m to task j
838: If MA(i, j) = 0 Then

SAMJ(i, j) = m 'Assign resource m to proj i task j
SFM(i, j) = SST(i, j) + SDM(i, j)
For t = SST(i, j) To SST(i, j) + SDM(i, j) - 1
 SAJT(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0

839: For jj = j To JT
 TES(i, jj) = SST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + SDM(i, jj)
 For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj) Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + SDM(i, jj)
 End If
 Next
Next

GoTo LSNEXTTASK 'Redirect to next task

End If '838
End If '837 FJ = GM(i,j)
Next '836 Iterate next resource
Loop '835 While lag increases
LSNEXTTASK:
Next '825 Next task
Next '824 Next project

'Compute Square Root of Sum of Squares
840: For i = 1 To NP
 For j = 1 To JT
 SSE(i, j) = (SDL(i, j) - SDM(i, j))^2
 Next
Next

For i = 1 To NP
 SV(i) = 0
Next

For i = 1 To NP
 For j = 1 To JT
 SV(i) = SV(i) + (SSE(i, j))
 SSS(i) = Sqr(SV(i))
 Next
Next

'Last node has TES/TEF equal to largest of TEF of predecessors
For i = 1 To NP
MAXTEFPRC(i) = 0
For jr = 1 To JT
 If PRC(i, jr, JT) = 1 And TEF(i, jr) >= MAXTEFPRC(i) Then 'it is a predecessor
 MAXTEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
Next

'Complete Start and Finish of last node
842: For i = 1 To NP
 SST(i, JT) = MAXTEFPRC(i) 'Last node start equals SES (updated)
 SFN(i, JT) = MAXTEFPRC(i) 'Last node finish equals SEF (updated)
Next

'For j = 2 To JT - 1
'If SAMJ(i, j) = 0 Then 'If not completely resourced, set schedule to null
 'SST(i, JT) = 0 'so that no value is attributed to that project
 'SFN(i, JT) = 0
 'SBF(i) = 0
 'SDE(i) = 0
'End If
'Next
SCP(i) = SFN(i, JT) 'Otherwise complete the schedule

Next

'Compute Buffer
844: For i = 1 To NP
 SBB(i) = 0.1 * SCP(i)
 SBF(i) = SSS(i) + SBB(i)
Next

'Compute Critical Chain Duration, equals expected duration
846: For i = 1 To NP
 STE(i) = SCP(i) + SBF(i)
 SDE(i) = STE(i) - TL(i)
 If SDE(i) < 0 Then
 SDE(i) = 0
 End If
Next

'Compute VE and NPVE for the projects that are scheduled
848: For i = 1 To NP
 SVE(i) = 0
SNPVE(i) = 0
If STE(i) > 0 Then

SVE(i) = VP(i) \times (1 - ((3 \times SDE(i)) / LP(i)) + ((2 \times (SDE(i) \times 2)) / (LP(i) \times 2)))

'Compute Expected NPV
GEL(i) = (4 \times VP(i)) / (LP(i)^2)
REK(i) = RPK(i) \times (1 - (2 \times (SDE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR)^2 \times (LP(i) / 2) - SDE(i)) - (IR \times ((LP(i) / 2) - SDE(i))) - 1) / ((IR^2 \times ((LP(i) / 2) - SDE(i))))
DFPFLE(i) = (1 + IR)^{-STE(i)}
DFPARE(i) = (((1 + IR)^2 \times (LP(i) / 2)) - 1) / (IR \times ((1 + IR)^2 / LP(i)))))
DFPGRE(i) = (((1 + IR)^2 \times (LP(i) / 2)) - (IR \times ((LP(i) / 2)) - 1) / ((IR^2 \times ((1 + IR)^2 / LP(i)))))))
DFFRE(i) = (((1 + IR)^2 \times (TL(i) + (LP(i) / 2))))
SNPVE(i) = GEL(i) \times DFPGLE(i) \times DFPFLE(i) + ((REK(i) \times DFPARE(i) - (GER(i) \times DFPGRE(i))) \times DFFRE(i))

End If
Next

'Compute Total Net Present Value Expected TNPVE
850: SUMNPVE = 1
For ii = 1 To NP
 SUMNPVE = SUMNPVE + SNPVE(ii)
Next

'Compute Program Schedule Efficiency
SPSE = SUMNPVE / SUMNPVP

LCS(MR) = SPSE

'PRINT SKILL-LEVEL CONSTRAINED SOLUTION (SCS)
'Format Variables for printing, this preserves the original solution
890: If MMR = 0 Then 'Print only if a single resource set is run

PSEO = SPSE
SUMNPVEO = SUMNPVE
SUMNPVP0 = SUMNPVP

For i = 1 To NP
 CPO(i) = SCP(i)
 BFO(i) = SBF(i)
 TEO(i) = STE(i)
DEO(i) = SDE(i)
NPVEO(i) = SNPVE(i)

For j = 1 To JT
 DMO(i, j) = SDM(i, j)
 DLO(i, j) = SDL(i, j)
 FJO(i, j) = FJ(i, j)
 ESO(i, j) = SES(i, j)
 EFO(i, j) = SEF(i, j)
 LSO(i, j) = SLS(i, j)
 LFO(i, j) = SLF(i, j)
 STO(i, j) = SST(i, j)
 FNO(i, j) = SFN(i, j)
 CTO(i, j) = CT(i, j)
 TSO(i, j) = STS(i, j)
 FSO(i, j) = SFS(i, j)
 WSO(i, j) = SWS(i, j)
 SCO(i, j) = SSC(i, j)
 LGO(i, j) = SLG(i, j)
 AMJO(i, j) = SAMJ(i, j)
 AHJO(i, j) = SAHJ(i, j)

Next

For t = 1 To TP
 AJTO(i, t) = SAJT(i, t)
Next
Next
Next

891: 'Print Results of the Level Scheduling Method
Row = Resultsrow
Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "800 - LEVEL SCHEDULING METHOD (LSM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "LEVEL CONSTRAINED SOLUTION (LCS) RESULTS"
Row = Row + 2

Call Print_Results

End If '890

899: 'End 800-899 Early Scheduling Method

End Sub
Sub Level12_Assignment_Method()

900: 'SKILL-LEVEL ASSIGNMENT METHOD (SLAM)
 'This procedure iteratively completes trial solutions of schedules
 'where resources of same type but differing levels are interchanged.
 'This procedure specifically interchanges Level 1 and Level 2.
 'The procedure identifies pairings, exchanges resources including work
 'rates and then reassigns all other resources holding the pairing fixed.
 'Trial solution Total NPV is compared with the best SLAM solution and
 'updated if the results are improved.
 'This procedure is initialized with the results of the solutions
 'from procedure(800) Level Constrained Solution.

901 'Declare Local Variables

 Dim ix As Integer 'Index of projects
 Dim jx As Integer 'Index of tasks
 Dim iy As Integer 'Index of projects
 Dim jy As Integer 'Index of tasks
 Dim nz As Integer 'Index of projects
 Dim hx As Integer 'Skill level of x
 Dim hy As Integer 'Skill level of y
 Dim my As Integer 'Resource number of x
 Dim mx As Integer 'Resource number of y
 Dim gy As Integer 'Resource type of x
 Dim gx As Integer 'Resource type of y

 Dim TPSE As Single 'Program Schedule Efficiency
 Dim TSUMNPVE As Single 'Total Sum of Program Expected Net Present Value
 Dim TCP(6) As Integer 'Critical Path
 Dim TBB(6) As Single 'Bias Buffer
 Dim TBF(6) As Single 'Total Buffer
 Dim TCC(6) As Integer 'Critical Chain Duration
 Dim TTE(6) As Integer 'Expected project duration, equivalent to CCD
 Dim TDE(6) As Integer 'Expected Delay between potential launch and expected
duration
 Dim TSS(6) As Integer 'Sum of Square Errors
 Dim TVE(6) As Variant 'Expected Value
 Dim TNPVE(6) As Single 'Expected Net Present Value
 Dim TDM(6, 10) As Integer 'Mean task duration estimates
 Dim TDL(6, 10) As Integer 'Low risk task duration estimates
 Dim TES(6, 10) As Integer 'Earliest Start Time task j
 Dim TEF(6, 10) As Integer 'Earliest Finish Time task j
 Dim TLS(6, 10) As Integer 'Late Start Time task j
Dim TLF(6, 10) As Integer 'Late Finish Time task j
Dim TTS(6, 10) As Integer 'Total slack
Dim TWS(6, 10) As Integer 'Working slack
Dim TSC(6, 10) As Integer 'Slack counter
Dim TLG(6, 10) As Integer 'Temporary lag
Dim TCT(6, 10) As Integer 'Critical Path Task Indicator 1/0
Dim TSE(6, 10) As Integer 'Square error
Dim TST(6, 10) As Integer 'Start Time for task j
Dim TFN(6, 10) As Integer 'Finish Time for task j
Dim TAMJ(6, 10) As Integer 'Resource assignment matrix
Dim TAHJ(6, 10) As Integer 'Skill level assignment matrix
Dim TAJT(6, 10, 800) As Integer 'Assignment schedule matrix

Dim TEMPX As Integer 'Resource x Substitution
Dim TEMPY As Integer 'Resource y Substitution
Dim TEMPMX As Integer 'Resource x id substitution
Dim TEMPMY As Integer 'Resource y id substitution
Dim TEMPHX As Integer 'Resource x Skill Level substitution
Dim TEMPHY As Integer 'Resource y Skill Level Substitution

902: 'Initialize Solution Variables - Equal to Level Constrained Solution
UPSE = SPSE
SLAM12(MR) = LCS(MR)

For i = 1 To NP
 UCP(i) = SCP(i)
 UBF(i) = SBF(i)
 UBB(i) = SBB(i)
 USS(i) = SSS(i)
 UTE(i) = STE(i)
 UDE(i) = SDE(i)
 UNPVE(i) = SNPVE(i)
 UVE(i) = SVE(i)
Next i

For j = 1 To JT
 UDM(i, j) = SDM(i, j) 'From Skill Level Constrained Solution
 UDL(i, j) = SDL(i, j) 'From Skill Level Constrained Solution
 UES(i, j) = SES(i, j)
 UEF(i, j) = SEF(i, j)
 ULS(i, j) = SLS(i, j)
 ULF(i, j) = SLF(i, j)
 UST(i, j) = SST(i, j)
 UFN(i, j) = SFN(i, j)
 UTS(i, j) = STS(i, j)
Next j
UWS(i, j) = SWS(i, j)
USC(i, j) = SSC(i, j)
ULG(i, j) = SLG(i, j)

UAMJ(i, j) = SAMJ(i, j)
UAHJ(i, j) = SAHJ(i, j)

For t = 1 To TP
 UAJT(i, j, t) = SAJT(i, j, t)
Next

Next

903: "Initialize Temporary Variables for Substitution Procedure"

For i = 1 To NP
 TCP(i) = 0
 TBF(i) = 0
 TBB(i) = 0
 TSS(i) = 0
 TTE(i) = 0
 TDE(i) = 0
 TNPVE(i) = 0
 TVE(i) = 0

For j = 1 To JT
 TDM(i, j) = UDM(i, j) 'From Skill Level Constrained Solution
 TDL(i, j) = UDL(i, j) 'From Skill Level Constrained Solution
 TES(i, j) = 0
 TEF(i, j) = 0
 TLS(i, j) = 0
 TLF(i, j) = 0
 TST(i, j) = UST(i, j)
 TFN(i, j) = UFN(i, j)
 TTS(i, j) = 0
 TWS(i, j) = 0
 TSC(i, j) = 0
 TLG(i, j) = 0

 TAMJ(i, j) = UAMJ(i, j)
 TAHJ(i, j) = UAHJ(i, j)

For t = 1 To TP
 TAJT(i, j, t) = UAJT(i, j, t)
STARTOVER12:

'Counters for substitution
TRIAL12 = 0
SUB12 = 0

For n = 1 To NP

If PP = 0 Then 'PP=0 for Sequentially ordered projects
ix = n
iy = n
End If
If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
ix = PRI(n)
iy = PRI(n)
End If
If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
ix = NPVPRI(n)
iy = NPVPRI(n)
End If
If PP = 3 Then 'PP=3 for Random Project Order
ix = RPRI(n)
iy = RPRI(n)
End If

'Check resource from task jx
For jx = 2 To JT - 1
mx = UAMJ(ix, jx)
gx = GM(mx, MR)
hx = HM(mx, MR)
End For

'Check if resource mx has Skill Level hx
If hx = 1 Then 'if task ix,jx requires a level 1, then continue search
End If

'Check resources on projects iy
For iy = 1 To NP 'Search all projects for a Level 2

'Check resources on task jy
For jy = 2 To JT - 1
my = UAMJ(iy, jy) 'identify the resource for the task
gy = GM(my, MR)
hy = HM(my, MR)

'Consider reassignment of x for y if:
'1) Resource Type of x matches Resource Type of y
'2) Skill Level of x is 1 and Skill level of y is 2
'3) Task x and y occur in overlapping periods
' A fourth criteria may be considered later; TDM(x) < TDM(y)

910: If gx = gy And hy = 2 And (TST(ix, jx) <= TFN(iy, jy) And TFN(ix, jx) >= TST(iy, jy)) Then

TRIAL12 = TRIAL12 + 1 'Count number of trials

'Trial solution alters durations and substitutes level of x and y tasks
TDM(ix, jx) = UDM(ix, jx) / (1 - Q1)
TDL(ix, jx) = UDL(ix, jx) / (1 - Q1)

TDM(iy, jy) = (1 - Q1) * UDM(iy, jy)
TDL(iy, jy) = (1 - Q1) * UDL(iy, jy)

912: 'Forward Pass to Determine ES, EF
'Initialize ES(1) and EF(1)
For i = 1 To NP
TES(i, 1) = 0 + TLG(i, 1)
TEF(i, 1) = TDM(i, 1) + TES(i, 1)
Next

'The earliest start (TES) for any task is equal to the maximum of the
'earliest finish (TEF) of the immediate predecessors

913: For i = 1 To NP
For j = 2 To JT
TES(i, j) = 0
For jr = 1 To JT
If PRC(i, jr, j) = 1 Then 'it is a predecessor
MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
End If
If PRC(i, jr, j) = 1 And MAXEFPRC(i) >= TES(i, j) Then
TES(i, j) = TEF(i, jr)
TEF(i, j) = TES(i, j) + TDM(i, j)
End If
'Backward Pass to Determine TLF, TLS
'Initialize
For i = 1 To NP
 TLF(i, JT) = TEF(i, JT)
 TLS(i, JT) = TLF(i, JT) - TDM(i, JT)
Next

'The latest finish (TLF) for any task is the smallest
'of the latest start(TLS) times of immediate successors
For i = 1 To NP
 For j = JT - 1 To 1 Step -1
 TLF(i, j) = TLS(i, JT)
 For jr = JT To 1 Step -1
 If PRC(i, j, jr) = 1 Then
 MINLSSUC(i) = TLS(i, jr)
 End If
 If PRC(i, j, jr) = 1 And MINLSSUC(i) <= TLF(i, j) Then
 TLF(i, j) = TLS(i, jr)
 TLS(i, j) = TLF(i, j) - TDM(i, j)
 End If
 Next
Next
Next

'Compute New Total Slack
'Total Slack of activity j is the difference between 'the latest finish TLF(J)
'and earliest finish EF(J),or the difference between TLS(J) and TES(J)
For i = 1 To NP
 For j = 1 To JT
 TTS(i, j) = TLF(i, j) - TEF(i, j)
 Next
Next

'Preassignment Process, Substitute and assign to specific tasks

'Initialize TAMJ, clear matrix except resource substituton in x and y
TEMPMX = UAMJ(ix, jx)
TEMPMY = UAMJ(iy, jy)
For i = 1 To NP
 For j = 1 To JT
 TAMJ(i, j) = 0
Next
Next
TAMJ(ix, jx) = TEMPMY
TAMJ(iy, jy) = TEMPMX

'Assign TAHJ, retain skill levels for subtitution x and y
TEMPHX = UAHJ(ix, jx)
TEMPHY = UAHJ(iy, jy)

TAHJ(ix, jx) = TEMPHY
TAHJ(iy, jy) = TEMPHX

'Pre-assign TAJT for x and y
921:
 For i = 1 To NP
 For j = 1 To JT
 For t = 1 To TP
 TAJT(i, j, t) = 0 'reset TAJT on all tasks
 Next
 If i = ix And j = jx Then
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJT(i, j, t) = TAMJ(ix, jx)
 Next
 ElseIf i = iy And j = jy Then
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJT(i, j, t) = TAMJ(iy, jy)
 Next
 End If
 Next
 Next
Next

'Select Priority Order for Projects
922:
 For nz = 1 To NP
 If PP = 0 Then 'PP=0 for Sequentially ordered projects
 i = nz
 End If
 If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 i = PRI(nz)
 End If
 If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 i = NPVP(nz)
 End If
 If PP = 3 Then 'PP=3 for Random Project Order
 i = RPRI(nz)
End If

924:
For j = 2 To JT - 1

925:
If i = ix And j = jx Then 'Already assigned resource from y
GoTo DelayedTask3
ElseIf i = iy And j = jy Then 'Already assigned resource from x
GoTo DelayedTask3
Else ' All other tasks to be assigned

'Initialize ST
TST(i, j) = TES(i, j) + 1

'Try to directly assign a resource if available in required periods
926:
For m = 1 To MR 'Assign resource sequentially one at a time

'Check for both Resource Type and Skill Level match
928:
If FJ(i, j) = GM(m, MR) And TAHJ(i, j) = HM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
For ii = 1 To NP
For jj = 1 To JT
If TAJT(ii, jj, t) = m Then
MA(i, j) = 1 'set to 1 if not avail
End If
Next
Next
Next

'If M equals 0 then assign to task j during required interval
If MA(i, j) = 0 Then
TAMJ(i, j) = m 'Assign resource m to proj i task j
TFN(i, j) = TST(i, j) + TDM(i, j) - 1 'Update Finish Date
For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
TAJT(i, j, t) = m 'assign m to task k in period t
Next
GoTo DelayedTask3 'Redirect to next task
End If
End If

'928
End If

926 Try to assign all resources directly

'If not assigned, use slack if available to delay task
930:
Do While MA(i, j) = 1 And TSC(i, j) < TTS(i, j) 'Use slack if it exists
'Initialize
TSC(i, j) = TSC(i, j) + 1
TWS(i, j) = TTS(i, j) - TSC(i, j)
TST(i, j) = TES(i, j) + TSC(i, j)

'Assign resources one at a time
931:
For m = 1 To MR

'Check for both Resource Type and Skill Level match
932:
If FJ(i, j) = GM(m, MR) And AHJ(i, j) = HM(m, MR) Then
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + TDM(i, j) - 1
For iij = 1 To NP
For jjj = 1 To JT
If TAJT(iii, jjj, t) = m Then
MA(i, j) = 1 'set to 1 if not avail
End If
Next
Next
Next

'If m is available in required interval, assign to j
933:
If MA(i, j) = 0 Then

TAMJ(i, j) = m 'Assign resource m to proj i task j
TFN(i, j) = TST(i, j) + TDM(i, j)

For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
TAJT(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For jj = j To JT
TES(i, jj) = TST(i, jj) - 1
TEF(i, jj) = TES(i, jj) + TDM(i, jj)
For jrr = 1 To JT
If PRC(i, jrr, jj) = 1 Then 'it is a predecessor
MAXEFPRC(i) = TEF(i, jrr) 'set it to the max constant
End If
If PRC(i, jrr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj)
Then
TES(i, jj) = TEF(i, jrr)
TEF(i, jj) = TES(i, jj) + TDM(i, jj)
End If
GoTo Delayed task3 'Redirect to next task

End If '933

End If '932 FJ=DM

Next '931 try all resources at each level of slack

Loop '930 End loop to utilize slack

'If still not assigned increment lag until a resource is free
935:
 Do While TAMJ(i, j) = 0

'Initialize
TLG(i, j) = TLG(i, j) + 1
TST(i, j) = TES(i, j) + TSC(i, j) + TLG(i, j)

'Assign resource sequentially one at a time
936:
 For m = 1 To MR

'Check for both Resource Type and Skill Level match
937:
 If FJ(i, j) = GM(m, MR) And TAHI(i, j) = HM(m, MR) Then

 'Checks if resource m is avail during period
 MA(i, j) = 0
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If TAIJ(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next jj
 Next ii
 Next t

 Next
 Next
 Next

'If M still 0 then m is available assign resource m to task j
938:
 If MA(i, j) = 0 Then

 TAMJ(i, j) = m 'Assign resource m to proj i task j
 TFNI(i, j) = TST(i, j) + TDM(i, j)
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
TAJT(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For jj = j To JT
 TES(i, jj) = TST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + TDM(i, jj)
For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj)
Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + TDM(i, jj)
End If
Next
Next

GoTo Delayedtask3 'Redirect to next task

End If

End If

'This if FJ(i,j) not equal GM(i,j) go to next resource
Next

Loop

End If

Delayedtask3:
Next

'922 Iterate next project

'Compute Square Root of Sum of Squares
940: For i = 1 To NP
 For j = 1 To JT
 TSE(i, j) = (TDL(i, j) - TDM(i, j))^2
 Next
Next

For i = 1 To NP
 SV(i) = 0
Next

For i = 1 To NP
 For j = 1 To JT
 SV(i) = SV(i) + (TSE(i, j))
 TSS(i) = Sqr(SV(i))
 Next
Next

941: For i = 1 To NP
 MAXTEFRPC(i) = 0
 For jr = 1 To JT
 If PRC(i, jr, JT) = 1 And TEF(i, jr) >= MAXTEFRPC(i) Then 'it is a predecessor
 MAXTEFRPC(i) = TEF(i, jr) 'set it to the max constant
 End If
 Next
Next

'Complete Sequential Scheduling Method - Resource Constrained Solution
942: For i = 1 To NP
 TST(i, JT) = MAXTEFRPC(i) 'Last node start equals SES (updated)
 TFN(i, JT) = MAXTEFRPC(i) 'Last node finish equals SEF (updated)
 For j = 2 To JT - 1
 If TAMJ(i, j) = 0 Then 'If not completely resourced, set schedule to null
 TST(i, JT) = 0 'so that no value is attributed to that project
 TFN(i, JT) = 0
 TBF(i) = 0
 TDE(i) = 0
 End If
 Next
 TCP(i) = TFN(i, JT) 'Otherwise complete the schedule
 TBB(i) = 0.1 * TCP(i)
 TBF(i) = TSS(i) + TBB(i)
 TTE(i) = TCP(i) + TBF(i)
 TDE(i) = TTE(i) - TL(i)
 If DE(i) < 0 Then
 TDE(i) = 0
 End If
Next
'Compute Total Net Present Value Expected TNPVE
943: For i = 1 To NP
 TVE(i) = 0
 TNPVE(i) = 0
 If TTE(i) > 0 Then

'Compute TVE
 TVE(i) = VP(i) * (1 - ((3 * TDE(i)) / LP(i)) + ((2 * (TDE(i) ^ 2)) / (LP(i) ^ 2)))

'Compute Expected NPV
 GEL(i) = (4 * VP(i)) / (LP(i) ^ 2)
 REK(i) = RPK(i) * (1 - (2 * (TDE(i) / LP(i)))))
 GER(i) = REK(i) / (LP(i) / 2)
 DFPGLE(i) = (((1 + IR) ^ ((LP(i) / 2) - TDE(i))) - (IR * ((LP(i) / 2) - TDE(i))) - 1) / ((IR ^ 2) * ((1 + IR) ^ ((LP(i) / 2) - TDE(i))))
 DFPFL(i) = (1 + IR) ^ -TTE(i)
 DFPARE(i) = (((1 + IR) ^ (LP(i) / 2)) - 1) / ((1 + IR) ^ (LP(i) / 2))
 DFPGRE(i) = (((1 + IR) ^ (LP(i) / 2)) - (IR * (LP(i) / 2)) - 1) / ((IR ^ 2) * ((1 + IR) ^ (LP(i) / 2)))
 DFPRE(i) = (1 + IR) ^ -(TL(i) + (LP(i) / 2))
 TNPVE(i) = GEL(i) * DFPGLE(i) * DFPFL(i) + (REK(i) * DFPARE(i)) - (GER(i) * DFPGRE(i)) + DFPRE(i)
 End If
 Next '775

'Compute Total Net Present Value Expected TNPVE
 TSUMNPVE = 0
 For ii = 1 To NP
 TSUMNPVE = TSUMNPVE + TNPVE(ii)
 Next

'Compute Temporary Program Schedule Efficiency
 TPSE = TSUMNPVE / SUMNPVP

' If TPSE > PSE then make the switch, else keep the original assignments
980: If TPSE > UPSE Then
 UPSE = TPSE
 USUMNPVE = TSUMNPVE
 SLAM12(MR) = UPSE
 SUB12 = SUB12 + 1

'make substitution of temporary assignments in solution
 For i = 1 To NP
UCP(i) = TCP(i)
UBF(i) = TBF(i)
UTE(i) = TTE(i)
UDE(i) = TDE(i)
UNPVE(i) = TNPVE(i)

For j = 1 To JT
 UDM(i, j) = TDM(i, j)
 UDL(i, j) = TDL(i, j)
 UAMJ(i, j) = TAMJ(i, j)
 UAHJ(i, j) = TAHJ(i, j)
 UES(i, j) = TES(i, j)
 UEF(i, j) = TEF(i, j)
 ULS(i, j) = TLS(i, j)
 ULF(i, j) = TLF(i, j)
 UST(i, j) = TST(i, j)
 UFN(i, j) = TFN(i, j)
 UTS(i, j) = TTS(i, j)
 UWS(i, j) = TWS(i, j)
 USC(i, j) = TSC(i, j)
 ULG(i, j) = TLG(i, j)
Next j

For t = 1 To TP
 UAJT(i, j, t) = TAJT(i, j, t)
Next t
Next i

GoTo STARTOVER12 'Start the search over

Else ' If no substitution, Set Trial solution back for both x and y tasks

 TDM(ix, jx) = UDM(ix, jx)
 TDL(ix, jx) = UDL(ix, jx)
 TAHJ(ix, jx) = 1

 TDM(iy, jy) = UDM(iy, jy)
 TDL(iy, jy) = UDL(iy, jy)
 TAHJ(iy, jy) = 2
Next i
Next j

For i = 1 To NP
 For j = 1 To JT
 TES(i, j) = UES(i, j)
 TEF(i, j) = UEF(i, j)
 Next j
Next i
TLS(i, j) = ULS(i, j)
TLF(i, j) = ULF(i, j)
TST(i, j) = UST(i, j)
TFN(i, j) = UFN(i, j)
TCT(i, j) = UCT(i, j)
TTS(i, j) = UTS(i, j)

TWS(i, j) = UWS(i, j)
TSC(i, j) = USC(i, j)
TLG(i, j) = ULG(i, j)

TAMJ(i, j) = UAMJ(i, j)
TAHJ(i, j) = UAHJ(i, j)

For t = 1 To TP
 TAJT(i, j, t) = UAJT(i, j, t)
 Next
Next
Next
End If

"980 End Trial Condition"

End If

"910 End Trial Solution"

Next

"909 Try Next task jy"

Next

"908 Try Next project iy"

End If

"907 End if hx"

Next

"906 Try Next task jx"

Next

"905 Try Next project ix"

'PRINT SKILL-LEVEL ASSIGNMENT METHOD (SLAM) - Level 1 : 2
Substitution
'Format Variables for printing, this preserves the original solution
990: If MMR = 0 Then 'Print only if a single resource set is run

PSEO = UPSE
SUMNPVEO = USUMNPVE
SUMNPVPO = SUMNPVP
For $i = 1$ To NP
 $CPO(i) = UCP(i)$
 $BFO(i) = UBF(i)$
 $TEO(i) = UTE(i)$
 $DEO(i) = UDE(i)$
 $NPVEO(i) = UNPVE(i)$
Next

For $j = 1$ To JT
 $DMO(i, j) = UDM(i, j)$
 $DLO(i, j) = UDL(i, j)$
 $FIO(i, j) = FJ(i, j)$
 $ESO(i, j) = UES(i, j)$
 $EFO(i, j) = UEF(i, j)$
 $LSO(i, j) = ULS(i, j)$
 $LFO(i, j) = ULF(i, j)$
 $STO(i, j) = UST(i, j)$
 $FNO(i, j) = UFN(i, j)$
 $CTO(i, j) = CT(i, j)$
 $TSO(i, j) = UTS(i, j)$
 $FSO(i, j) = UFS(i, j)$
 $WSO(i, j) = UWS(i, j)$
 $SCO(i, j) = USC(i, j)$
 $LGO(i, j) = ULG(i, j)$
 $AMJO(i, j) = UAMJ(i, j)$
 $AHJO(i, j) = UAHJ(i, j)$
Next

For $t = 1$ To TP
 $AJTO(i, j, t) = UAJT(i, j, t)$
 Next
End

991: 'Print Results of the Level Scheduling Method
Row = ResultsRow
Col = ExcelCol
Worksheets("Results").Cells(Row, Col).Value = "900 - SKILL LEVEL ASSIGNMENT METHOD (SLAM)"
Worksheets("Results").Cells(Row + 1, Col).Value = "LEVEL 1:2 SUBSTITUTION RESULTS"
Worksheets("Results").Cells(Row + 2, Col).Value = "1:2 Substitution Trials:"
Worksheets("Results").Cells(Row + 2, Col + 5).Value = TRIAL12
Worksheets("Results").Cells(Row + 3, Col).Value = "1:2 Substitutions:"
Worksheets("Results").Cells(Row + 3, Col + 5).Value = SUB12
Row = Row + 4
Call Print_Results

End If '990

999: 'End 900-999 Level12 Assignment Method

End Sub

Sub Level23_Assignment_Method()

1000: 'SKILL LEVEL ASSIGNMENT METHOD (SLAM)
'This procedure iteratively completes trial solutions of schedules
'where resources of same type but differing levels are interchanged.
'This procedure specifically interchanges Level 2 and Level 3.
'The procedure identifies pairings, exchanges resources including work
'rates and then reassigns all other resources holding the pairing fixed.
'Trial solution Total NPV is compared with the best SLAM solution and
'updated if the results are improved.
'This procedure is initialized with the results of the solutions
'from procedure(900) Level12 Assignment Method.

1001 'Declare Local Variables

Dim ix As Integer 'Index of projects
Dim jx As Integer 'Index of tasks
Dim iy As Integer 'Index of projects
Dim jy As Integer 'Index of tasks
Dim nz As Integer 'Index of projects
Dim hx As Integer 'Skill level of x
Dim hy As Integer 'Skill level of y
Dim my As Integer 'Resource id of x
Dim mx As Integer 'Resource id of y
Dim gy As Integer 'Resource type of x
Dim gx As Integer 'Resource type of y

Dim TPSE As Single 'Program Schedule Efficiency
Dim TSUMNPVE As Single 'Total Sum of Program Expected Net Present Value
Dim TCP(6) As Integer 'Critical Path
Dim TBB(6) As Single 'Bias Buffer
Dim TBF(6) As Single 'Total Buffer
Dim TCC(6) As Integer 'Critical Chain Duration
Dim TTE(6) As Integer 'Expected project duration, equivalent to CCD
Dim TDE(6) As Integer 'Expected Delay between potential launch and expected
duration
Dim TSS(6) As Integer 'Sum of Square Errors
Dim TVE(6) As Variant 'Expected Value
Dim TNPVE(6) As Single 'Expected Net Present Value
Dim TDM(6, 10) As Integer 'Mean task duration estimates
Dim TDL(6, 10) As Integer 'Low risk task duration estimates
Dim TES(6, 10) As Integer 'Earliest Start Time task j
Dim TEF(6, 10) As Integer 'Earliest Finish Time task j
Dim TLS(6, 10) As Integer 'Late Start Time task j
Dim TLF(6, 10) As Integer 'Late Finish Time task j
Dim TTS(6, 10) As Integer 'Total slack
Dim TWS(6, 10) As Integer 'Working slack
Dim TSC(6, 10) As Integer 'Slack counter
Dim TLG(6, 10) As Integer 'Lag
Dim TCT(6, 10) As Integer 'Critical Path Task Indicator 1/0
Dim TSE(6, 10) As Integer 'Square error
Dim TST(6, 10) As Integer 'Start Time for task j
Dim TFN(6, 10) As Integer 'Finish Time for task j
Dim TAMJ(6, 10) As Integer 'Resource assignment matrix
Dim TAHIJ(6, 10) As Integer 'Skill level assignment matrix
Dim TAHT(6, 10, 800) As Integer 'Assignment schedule matrix

Dim TEMPX As Integer 'Temp Value of X for sorting
Dim TEMPY As Integer 'Temp Value of Y for sorting
Dim TEMPMX As Integer 'Resource x id substitution
Dim TEMPMY As Integer 'Resource y id for substitution
Dim TEMPHX As Integer 'Temporary Skill Level substitution
Dim TEMPHY As Integer 'Temporary Skill Level substitution

1002: 'Initialize Solution Variables V - Equal to Level 1:2 SLAM Solution U
 VPSE = UPSE
 SLAM23(MR) = SLAM12(MR)

For i = 1 To NP
 VCP(i) = UCP(i)
 VBF(i) = UBF(i)
 VBB(i) = UBB(i)
 VSS(i) = USS(i)
 VTE(i) = UTE(i)
 VDE(i) = UDE(i)
 VNPVE(i) = UNPVE(i)
 VVE(i) = UVE(i)
For j = 1 To JT
 VDM(i, j) = UDM(i, j)
 VDL(i, j) = UDL(i, j)
 VES(i, j) = UES(i, j)
VEF(i, j) = UEF(i, j)
VLS(i, j) = ULS(i, j)
ULF(i, j) = ULF(i, j)
VST(i, j) = UST(i, j)
VFN(i, j) = UFN(i, j)
VTS(i, j) = UTS(i, j)
VWS(i, j) = UWS(i, j)
VSC(i, j) = USC(i, j)
VLG(i, j) = ULG(i, j)
VAMJ(i, j) = UAMJ(i, j)
VAHJ(i, j) = UAHJ(i, j)

For t = 1 To TP
 VAJT(i, j, t) = UAJT(i, j, t)
Next
Next
Next

1003: 'Initialize Temporary Variables for Substitution Trials

For i = 1 To NP
 TCP(i) = 0
 TBF(i) = 0
 TBB(i) = 0
 TSS(i) = 0
 TTE(i) = 0
 TDE(i) = 0
 TNPVE(i) = 0
 TVE(i) = 0

For j = 1 To JT
 TDM(i, j) = VDM(i, j)
 TDL(i, j) = VDL(i, j)
 TES(i, j) = 0
 TEF(i, j) = 0
 TLS(i, j) = 0
 TLF(i, j) = 0
 TST(i, j) = VST(i, j)
 TFN(i, j) = VFN(i, j)
 TTS(i, j) = 0
 TWS(i, j) = 0
 TSC(i, j) = 0
 TLG(i, j) = 0

 TAMJ(i, j) = VAMJ(i, j)
TAHJ(i, j) = VAHJ(i, j)

For t = 1 To TP
 TAJT(i, j, t) = VAJT(i, j, t)
Next
Next
Next

'Initialize Counters for substitution
TRIAL23 = 0
SUB23 = 0

STARTOVER23:

'Starting at highest priority project and working to the lower priority projects
'search through tasks sequentially for a level 1 resource assigned to that task
1005: For n = 1 To NP

If PP = 0 Then 'PP=0 for Sequentially ordered projects
 ix = n
 iy = n
End If
If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
 ix = PRI(n)
 iy = PRI(n)
End If
If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
 ix = NPVPRI(n)
 iy = NPVPRI(n)
End If
If PP = 3 Then 'PP=3 for Random Project Order
 ix = RPRI(n)
 iy = RPRI(n)
End If

'Check resource at task jx
1006: For jx = 2 To JT - 1
 mx = UAMJ(ix, jx)
 gx = GM(mx, MR)
 hx = HM(mx, MR)

'Check if resource mx has Skill level hx
1007: If hx = 2 Then 'if task ix,jx requires a level 1, then continue search

'Check resources on projects iy
For iy = 1 To NP 'Search all projects for a Level 2

'Check resources on tasks jy

For jy = 2 To JT - 1

my = VAMJ(iy, jy) 'identify the resource for the task
gy = GM(my, MR)
hy = HM(my, MR)

'Consider reassignment of x for y if:
'1) Resource Type of x matches Resource Type of y
'2) Skill Level of x is 1 and Skill level of y is 2
'3) Task x and y occur in overlapping periods
'A fourth criteria may be considered later; TDM(x) < TDM(y)

'Check if Resource Type and Skill Level match, and assigned in overlapping time period

If gx = gy And hy = 3 And (TST(ix, jx) <= TFN(iy, jy) And TFN(ix, jx) >= TST(iy, jy)) Then

TRIAL23 = TRIAL23 + 1 'Count number of trials

'Trial solution alters durations and substitutes level of x and y tasks
TDM(ix, jx) = VDM(ix, jx) / (1 - Q3)
TDL(ix, jx) = VDL(ix, jx) / (1 - Q3)

TDM(iy, jy) = VDM(iy, jy) * (1 - Q3)
TDL(iy, jy) = VDL(iy, jy) * (1 - Q3)

'Forward Pass to Determine TES, TEF
'Initialize TES(1) and TEF
For i = 1 To NP
 TES(i, 1) = 0 + TLG(i, 1)
 TEF(i, 1) = TDM(i, 1) + TES(i, 1)
Next

'The earliest start (TES) for any task is equal to the maximum of the earliest finish (TEF) of the immediate predecessors

For i = 1 To NP
 For j = 2 To JT 'start with task 2, search all rows in PRC for indicator
 TES(i, j) = 0
 For jr = 1 To JT
 TES(i, j) = Max(TES(i, j) = 0, TES(i, j) + TES(i, jr))
 Next
 Next

If PRC(i, jr, j) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
End If
If PRC(i, jr, j) = 1 And MAXEFPRC(i) >= TES(i, j) Then
 TES(i, j) = TEF(i, jr) ' + LG(i, j)
 TEF(i, j) = TES(i, j) + TDM(i, j)
End If
Next
Next
Next

1015:
'Backward Pass to Determine TLF, TLS
'Initialize
For i = 1 To NP
 TLF(i, JT) = TEF(i, JT)
 TLS(i, JT) = TLF(i, JT) - TDM(i, JT)
Next

'The latest finish (TLF) for any task is the smallest
'of the latest start(TLS) times of immediate successors
For i = 1 To NP
 For j = JT - 1 To 1 Step -1
 TLF(i, j) = TLS(i, JT)
 Next
 For jr = JT To 1 Step -1
 If PRC(i, j, jr) = 1 Then
 MINLSSUC(i) = TLS(i, jr)
 End If
 If PRC(i, j, jr) = 1 And MINLSSUC(i) <= TLF(i, j) Then
 TLF(i, j) = TLS(i, jr) ' - LG(i, jr) 'debug trial add LG at jr
 TLS(i, j) = TLF(i, j) - TDM(i, j)
 End If
 Next
Next
Next

1016:
'Compute New Total Slack
'Total Slack of activity j is the difference between 'the latest finish TLF(J)
'and earliest finish EF(J),or the difference between TLS(J) and TES(J)
For i = 1 To NP
 For j = 1 To JT
 TTS(i, j) = TLF(i, j) - TEF(i, j)
 Next
Next
Preassignment Process, Substitute and assign to specific tasks

'Initialize TAMJ, clear matrix except resource substitution in x and y
TEMPMX = VAMJ(ix, jx)
TEMPMY = VAMJ(iy, jy)
For i = 1 To NP
 For j = 1 To JT
 TAMJ(i, j) = 0
 Next
Next
TAMJ(ix, jx) = TEMPMY
TAMJ(iy, jy) = TEMPMX

'Assign TAHJ, retain skill levels for substitution x and y
TEMPHX = VAHJ(ix, jx)
TEMPHY = VAHJ(iy, jy)
TAHJ(ix, jx) = TEMPHY
TAHJ(iy, jy) = TEMPHX

'Pre-assign TAJT for x and y
1021:
 For i = 1 To NP
 For j = 1 To JT
 For t = 1 To TP
 TAJT(i, j, t) = 0 'reset TAJT on all tasks
 Next
 If i = ix And j = jx Then
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJT(i, j, t) = TAMJ(ix, jx)
 Next
 ElseIf i = iy And j = jy Then
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJT(i, j, t) = TAMJ(iy, jy)
 Next
 End If
 Next
 Next

'Select Priority Order for Projects
1022:
 For nz = 1 To NP
 If PP = 0 Then 'PP=0 for sequentially ordered projects
 i = nz
 End If
If PP = 1 Then 'PP=1 for PRI Productivity prioritized projects
i = PRI(nz)
End If
If PP = 2 Then 'PP=2 for NPVP Potential NPV prioritized projects
i = NPVPPRI(nz)
End If
If PP = 3 Then 'PP=3 for Random Project Order
i = RPRI(nz)
End If

1024: For j = 2 To JT - 1

1025: If i = ix And j = jx Then 'Already assigned resource from y
 GoTo Delayedtask4
ElseIf i = iy And j = jy Then 'Already assigned resource from x
 GoTo Delayedtask4
Else 'All other tasks to be assigned

 'Initialize ST
 TST(i, j) = TES(i, j) + 1

 'Try to directly assign a resource if available in required periods
 1026: For m = 1 To MR 'Assign resource sequentially one at a time

 'Check for both Resource Type and Skill Level match
 1028: If FJ(i, j) = GM(m, MR) And TAHI(i, j) = HM(m, MR) Then

 'Checks if resource m is avail during period
 MA(i, j) = 0
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If TAJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
 Next

 'If M equals 0 then m is available, assign to task j
 If MA(i, j) = 0 Then
 TAMJ(i, j) = m 'Assign resource m to proj j task j
 TFN(i, j) = TST(i, j) + TDM(i, j) - 1 'Update Finish Date
 For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJT(i, j, t) = m 'assign m to task k in period t
Next
GoTo Delayedtask4 'Redirect to next task
End If
End If
'1028
Next
'1026 Try to assign all resources directly

'If not assigned, use slack if available to delay task
1030: Do While MA(i, j) = 1 And TSC(i, j) < TTS(i, j)

'Initialize
TSC(i, j) = TSC(i, j) + 1
TWS(i, j) = TTS(i, j) - TSC(i, j)
TST(i, j) = TES(i, j) + TSC(i, j)

'Assign resources one at a time
1031: For m = 1 To MR

'Check for both Resource Type and Skill Level match
1032: If FJ(i, j) = GM(m, MR) And TAHJ(i, j) = HM(m, MR) Then

'Checks if resource is avail during period
MA(i, j) = 0
For t = ST(i, j) To ST(i, j) + TDM(i, j) - 1
 For iii = 1 To NP
 For jjj = 1 To JT
 If TAJT(iii, jjj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next
Next
Next

'If m is available in required interval, assign to j
1033: If MA(i, j) = 0 Then

TAMJ(i, j) = m 'Assign resource m to proj i task j
TFN(i, j) = TST(i, j) + TDM(i, j)
For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJT(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update TES and TEF
MAXEFPRC(i) = 0
For jj = j To JT
 TES(i, jj) = TST(i, jj) - 1
TEF(i, jj) = TES(i, jj) + TDM(i, jj)
For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj)
Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + TDM(i, jj)
End If
Next
Next
GoTo Delayed task4 'Redirect to next task
End If
'1033
End If
'1032
Next
'1031 Try all resources at each level of slack
Loop
'1030 End do while loop to utilize slack

'If still not assigned increment lag until a resource is free
1035:
 Do While TAMJ(i, j) = 0

'Initialize
TLG(i, j) = TLG(i, j) + 1
TST(i, j) = TES(i, j) + TSC(i, j) + TLG(i, j)

'Assign resource sequentially one at a time
1036:
 For m = 1 To MR

'Check for both Resource Type and Skill Level match
1037:
 If FJ(i, j) = GM(m, MR) And TAHIJ(i, j) = HM(m, MR) Then

'Checks if resource m is avail during period
MA(i, j) = 0
For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 For ii = 1 To NP
 For jj = 1 To JT
 If TAJT(ii, jj, t) = m Then
 MA(i, j) = 1 'set to 1 if not avail
 End If
 Next
 Next
Next
Next

'If M still 0 then m is available assign resource m to task j
1038:
 If MA(i, j) = 0 Then
TAMJ(i, j) = m 'Assign resource m to proj i task j
TFN(i, j) = TST(i, j) + TDM(i, j)
For t = TST(i, j) To TST(i, j) + TDM(i, j) - 1
 TAJJ(i, j, t) = m 'assign m to task k in period t
Next

'Forward Pass to Update TES and ETF
MAXEFPRC(i) = 0
For jj = j To JT
 TES(i, jj) = TST(i, jj) - 1
 TEF(i, jj) = TES(i, jj) + TDM(i, jj)
For jr = 1 To JT
 If PRC(i, jr, jj) = 1 Then 'it is a predecessor
 MAXEFPRC(i) = TEF(i, jr) 'set it to the max constant
 End If
 If PRC(i, jr, jj) = 1 And MAXEFPRC(i) >= TES(i, jj)
 Then
 TES(i, jj) = TEF(i, jr)
 TEF(i, jj) = TES(i, jj) + TDM(i, jj)
 End If
 Next
Next
GoTo Delayedtask4 'Redirect to next task
End If '1038
End If '1037 if FJ(i,j)not equal GM(i,j) go to next resource
Next '1036 Try Next resource
Loop '1035 End lag loop
End If '1025

Delayedtask4:
 Next '1024 Iterate next task
Next '1022 Iterate next project

'Compute Square Root of Sum of Squares
1040: For i = 1 To NP
 For j = 1 To JT
 TSE(i, j) = (TDL(i, j) - TDM(i, j))^2
 Next
Next

For i = 1 To NP
 SV(i) = 0
Next

For i = 1 To NP
For \(j = 1 \text{ To } JT \)
\[
SV(i) = SV(i) + (TSE(i, j))
\]
\[
TSS(i) = \text{Sqr}(SV(i))
\]
Next

'Complete Sequential Scheduling Method - Resource Constrained Solution

1041: For \(i = 1 \text{ To } NP \)
\[
\text{MAXTEFPRC}(i) = 0
\]
For \(jr = 1 \text{ To } JT \)
If \(\text{PRC}(i, jr, JT) = 1 \text{ And } \text{TEF}(i, jr) \geq \text{MAXTEFPRC}(i) \) Then 'it is a predecessor
\[
\text{MAXTEFPRC}(i) = \text{TEF}(i, jr) \text{ 'set it to the max constant}
\]
End If
Next

'Complete Sequential Scheduling Method - Resource Constrained Solution

1042: For \(i = 1 \text{ To } NP \)
\[
\text{TST}(i, JT) = \text{MAXTEFPRC}(i) \text{ 'Last node start equals SES (updated)}
\]
\[
\text{TFN}(i, JT) = \text{MAXTEFPRC}(i) \text{ 'Last node finish equals SEF (updated)}
\]
For \(j = 2 \text{ To } JT - 1 \)
If \(\text{TAMJ}(i, j) = 0 \) Then 'If not completely resourced, set schedule to null
\[
\text{TST}(i, JT) = 0 \text{ 'so that no value is attributed to that project}
\]
\[
\text{TFN}(i, JT) = 0
\]
\[
\text{TBF}(i) = 0
\]
\[
\text{TDE}(i) = 0
\]
End If

Next
\[
\text{TCP}(i) = \text{TFN}(i, JT) \text{ 'Otherwise complete the schedule}
\]
\[
\text{TBB}(i) = 0.1 \times \text{TCP}(i)
\]
\[
\text{TBF}(i) = \text{TSS}(i) + \text{TBB}(i)
\]
\[
\text{TTE}(i) = \text{TCP}(i) + \text{TBF}(i)
\]
\[
\text{TDE}(i) = \text{TTE}(i) - \text{TL}(i)
\]
If \(\text{DE}(i) < 0 \) Then
\[
\text{TDE}(i) = 0
\]
End If
Next

'Compute VE and NPVE for the projects that are scheduled

1043: For \(i = 1 \text{ To } NP \)
\[
\text{TVE}(i) = 0
\]
\[
\text{TNPVE}(i) = 0
\]
If TTE(i) > 0 Then

\[TVE(i) = VP(i) \times (1 - ((3 \times TDE(i)) / LP(i)) + ((2 \times (TDE(i)^2)) / (LP(i)^2))) \]

'Compute Expected NPV

GEL(i) = (4 \times VP(i)) / (LP(i)^2)
REK(i) = RPK(i) \times (1 - (2 \times (TDE(i) / LP(i))))
GER(i) = REK(i) / (LP(i) / 2)
DFPGLE(i) = (((1 + IR) \times ((LP(i) / 2) - TDE(i))) - (IR \times ((LP(i) / 2) - TDE(i))))) - 1) / ((IR^2) \times ((1 + IR) \times ((LP(i) / 2) - TDE(i))))
DFPFLE(i) = (1 + IR) - TTE(i)

Next '775

'Through Total Net Present Value Expected TNPVE

TSUMNPVE = 0
For ii = 1 To NP
TSUMNPVE = TSUMNPVE + TNPVE(ii)
Next

'Through Total Program Schedule Efficiency

TPSE = TSUMNPVE / SUMNPVP

'If TPSE > PSE then make the switch, else keep the original assignments

1080: IF TPSE > VPSE Then
VPSE = TPSE
VSUMNPVE = TSUMNPVE
SLAM23(MR) = VPSE

SUB23 = SUB23 + 1

'make substitution of temporary assignments in solution
For i = 1 To NP
VCP(i) = TCP(i)
VBF(i) = TBF(i)
VTE(i) = TTE(i)
VDE(i) = TDE(i)
VNPV(i) = TNPVE(i)
For j = 1 To JT
 VDM(i, j) = TDM(i, j)
 VDL(i, j) = TDL(i, j)
 VAMJ(i, j) = TAMJ(i, j)
 VAHJ(i, j) = TAHJ(i, j)
 VES(i, j) = TES(i, j)
 VEF(i, j) = TEF(i, j)
 VLS(i, j) = TLS(i, j)
 VLF(i, j) = TLF(i, j)
 VST(i, j) = TST(i, j)
 VFN(i, j) = TFN(i, j)
 VTS(i, j) = TTS(i, j)
 VWS(i, j) = TWS(i, j)
 VSC(i, j) = TSC(i, j)
 VLG(i, j) = TLG(i, j)

For t = 1 To TP
 VAJT(i, j, t) = TAJT(i, j, t)
Next
Next
Next

GoTo STARTOVER23 'Start the search over

Else ' If no substitution, Set Trial solution back for both x and y tasks

 TDM(ix, jx) = VDM(ix, jx)
 TDL(ix, jx) = VDL(ix, jx)
 TAHJ(ix, jx) = 2

 TDM(iy, jy) = VDM(iy, jy)
 TDL(iy, jy) = VDL(iy, jy)
 TAHJ(iy, jy) = 3

For i = 1 To NP
 For j = 1 To JT

 TES(i, j) = VES(i, j)
 TEF(i, j) = VEF(i, j)
 TLS(i, j) = VLS(i, j)
 TLF(i, j) = VLF(i, j)
 TST(i, j) = VST(i, j)
 TFN(i, j) = VFN(i, j)
 TCT(i, j) = VCT(i, j)
 TTS(i, j) = VTS(i, j)
TWS(i, j) = VWS(i, j)
TSC(i, j) = VSC(i, j)
TLG(i, j) = VLG(i, j)
TAMJ(i, j) = VAMJ(i, j)
TAHJ(i, j) = VAHJ(i, j)

For t = 1 To TP
 TAJT(i, j, t) = VAJT(i, j, t)
Next
Next
End If

PRINT SKILL-LEVEL ASSIGNMENT METHOD (SLAM) - Level 1 : 2
Substitution

Format Variables for printing, this preserves the original solution
1090: If MMR = 0 Then 'Print only if a single resource set is run

PSEO = VPSE
SUMNPVEO = USUMNPVE
SUMNPVPO = SUMNPVP

For i = 1 To NP
 CPO(i) = VCP(i)
 BFO(i) = VBF(i)
 TEO(i) = VTE(i)
 DEO(i) = VDE(i)
 NPVEO(i) = VNPVE(i)
Next

For j = 1 To JT
 DMO(i, j) = VDM(i, j)
 DLO(i, j) = VDL(i, j)
 FJO(i, j) = FJ(i, j)
 ESO(i, j) = VES(i, j)
 EFO(i, j) = VEF(i, j)
 LSO(i, j) = VLS(i, j)
 LFO(i, j) = VLF(i, j)
 STO(i, j) = VST(i, j)
 FNO(i, j) = VFN(i, j)
Sub Print_Results()

Dim TT As Integer 'Schedule will only be printed to last task TT

Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "CTO(i, j) = CT(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "TSO(i, j) = VTS(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "FSO(i, j) = VFS(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "WSO(i, j) = VWS(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "SCO(i, j) = VSC(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "LGO(i, j) = VLG(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "AMJO(i, j) = VAMJ(i, j)"
Worksheets("Results").Cells(Row, Col).Value = "AHJO(i, j) = VAHJ(i, j)"

For t = 1 To TP
 Worksheets("Results").Cells(Row, Col).Value = "AJTO(i, j, t) = VAJT(i, j, t)"
Next
Next

1091: 'Print Results of the Level Scheduling Method
 Row = Resultsrow
 Col = Excelcol
 Worksheets("Results").Cells(Row, Col).Value = "1000 - SKILL LEVEL ASSIGNMENT METHOD (SLAM)"
 Worksheets("Results").Cells(Row + 1, Col).Value = "LEVEL 2:3 SUBSTITUTION RESULTS"
 Worksheets("Results").Cells(Row + 2, Col).Value = "2:3 Substitution Trials:"
 Worksheets("Results").Cells(Row + 2, Col + 5).Value = TRIAL23
 Worksheets("Results").Cells(Row + 3, Col).Value = "2:3 Substitutions:"
 Worksheets("Results").Cells(Row + 3, Col + 5).Value = SUB23
 Row = Row + 4
 Call Print_Results
End If '1090

1099 'End 1000-1099 Level 23 Assignment Method
End Sub

Sub Print_Results()

Dim TT As Integer 'Schedule will only be printed to last task TT

Col = Excelcol
Worksheets("Results").Cells(Row, Col).Value = "Project Prioritization PP:")
Worksheets("Results").Cells(Row, 6).Value = PP
Worksheets("Results").Cells(Row + 1, Col).Value = "Resource Prioritization PR:"
Worksheets("Results").Cells(Row + 1, 6).Value = PR
Worksheets("Results").Cells(Row + 2, Col).Value = "Resource Quantity MR:"
Worksheets("Results").Cells(Row + 2, 6).Value = MR

'Print AMJ the matrix of assignments
Row = Row + 4
Col = 1
For i = 1 To NP
 For j = 1 To JT
 If i = 1 And j = 2 Then
 Worksheets("Results").Cells(Row, Col + 4 + j).Value = "Assignment Matrix AMJ - Task"
 End If
 If i = 2 And j = 1 Then
 Worksheets("Results").Cells(Row + 1, Col).Value = "Project"
 End If
 If i = 1 Then
 Worksheets("Results").Cells(Row + i, Col + j).Value = j
 End If
 Worksheets("Results").Cells(Row + 1 + i, Col).Value = i
 Worksheets("Results").Cells(Row + 1 + i, Col + j).Value = AMJO(i, j)
 Next
Next

'Print Updated Results
Row = Row + 10
Col = 1
Worksheets("Results").Cells(Row, Col).Value = "Project"
Worksheets("Results").Cells(Row + 1, Col).Value = "Task"
Worksheets("Results").Cells(Row + 2, Col).Value = "DM"
Worksheets("Results").Cells(Row + 3, Col).Value = "DL"
Worksheets("Results").Cells(Row + 4, Col).Value = "FJ"
Worksheets("Results").Cells(Row + 6, Col).Value = "ES"
Worksheets("Results").Cells(Row + 7, Col).Value = "EF"
Worksheets("Results").Cells(Row + 8, Col).Value = "LS"
Worksheets("Results").Cells(Row + 9, Col).Value = "LF"
Worksheets("Results").Cells(Row + 10, Col).Value = "ST"
Worksheets("Results").Cells(Row + 11, Col).Value = "FN"
Worksheets("Results").Cells(Row + 13, Col).Value = "CT"
Worksheets("Results").Cells(Row + 14, Col).Value = "TS"
Worksheets("Results").Cells(Row + 15, Col).Value = "FS"
Worksheets("Results").Cells(Row + 16, Col).Value = "WS"
Worksheets("Results").Cells(Row + 17, Col).Value = "SC"
Worksheets("Results").Cells(Row + 18, Col).Value = "LG"

Worksheets("Results").Cells(Row + 20, Col).Value = "AMJ"
Worksheets("Results").Cells(Row + 21, Col).Value = "Type"
Worksheets("Results").Cells(Row + 22, Col).Value = "Level"

Worksheets("Results").Cells(Row + 24, Col).Value = "CP"
Worksheets("Results").Cells(Row + 25, Col).Value = "BF"
Worksheets("Results").Cells(Row + 26, Col).Value = "TE"
Worksheets("Results").Cells(Row + 27, Col).Value = "DE"
Worksheets("Results").Cells(Row + 28, Col).Value = "NPVE"

Worksheets("Results").Cells(Row + 29, Col).Value = "TOTAL"
Worksheets("Results").Cells(Row + 30, Col).Value = "NPVE"
Worksheets("Results").Cells(Row + 31, Col).Value = "NPVP"
Worksheets("Results").Cells(Row + 32, Col).Value = "PSE"

For i = 1 To NP
 For j = 1 To JT
 Worksheets("Results").Cells(Row, Col + 1).Value = i
 Worksheets("Results").Cells(Row + 1, Col + 1).Value = j
 Worksheets("Results").Cells(Row + 2, Col + 1).Value = DMO(i, j)
 Worksheets("Results").Cells(Row + 3, Col + 1).Value = DLO(i, j)
 Worksheets("Results").Cells(Row + 4, Col + 1).Value = ESO(i, j)
 Worksheets("Results").Cells(Row + 5, Col + 1).Value = EFO(i, j)
 Worksheets("Results").Cells(Row + 6, Col + 1).Value = LSO(i, j)
 Worksheets("Results").Cells(Row + 7, Col + 1).Value = LFO(i, j)
 Worksheets("Results").Cells(Row + 8, Col + 1).Value = STO(i, j)
 Worksheets("Results").Cells(Row + 9, Col + 1).Value = FNO(i, j)
 Worksheets("Results").Cells(Row + 10, Col + 1).Value = CTO(i, j)
 Worksheets("Results").Cells(Row + 11, Col + 1).Value = TSO(i, j)
 Worksheets("Results").Cells(Row + 12, Col + 1).Value = FSO(i, j)
 Worksheets("Results").Cells(Row + 13, Col + 1).Value = WSO(i, j)
 Worksheets("Results").Cells(Row + 14, Col + 1).Value = SCO(i, j)
 Worksheets("Results").Cells(Row + 15, Col + 1).Value = LGO(i, j)
 Worksheets("Results").Cells(Row + 16, Col + 1).Value = AMJO(i, j)
 Worksheets("Results").Cells(Row + 17, Col + 1).Value = FJO(i, j)
 Next j
Next i
If AMJO(i, j) > 0 Then
 m = AMJO(i, j)
 Worksheets("Results").Cells(Row + 22, Col + 1).Value = HM(m, MR)
Else
 Worksheets("Results").Cells(Row + 22, Col + 1).Value = 0
End If

Col = Col + 1
Next
Next

Col = Excelcol
For i = 1 To NP
 Worksheets("Results").Cells(Row + 24, Col + 10).Value = CPO(i)
 Worksheets("Results").Cells(Row + 25, Col + 10).Value = BFO(i)
 Worksheets("Results").Cells(Row + 26, Col + 10).Value = TEO(i)
 Worksheets("Results").Cells(Row + 27, Col + 10).Value = DEO(i)
 Worksheets("Results").Cells(Row + 28, Col + 10).Value = NPVEO(i)

Col = Col + 10
Next
Col = Excelcol
Worksheets("Results").Cells(Row + 30, Col + 1).Value = SUMNPVEO
Worksheets("Results").Cells(Row + 31, Col + 1).Value = SUMNPVPO
Worksheets("Results").Cells(Row + 32, Col + 1).Value = PSEO

" Print Resource Information Each Program
Col = 1
Worksheets("Results").Cells(Row + 35, Col).Value = "RESOURCE SET"
Worksheets("Results").Cells(Row + 36, Col).Value = "SRI - Sequential Resource Index"
Worksheets("Results").Cells(Row + 37, Col).Value = "GM - Resource Type"
Worksheets("Results").Cells(Row + 38, Col).Value = "HM - Skill Level"
Worksheets("Results").Cells(Row + 39, Col).Value = "LRI - Level Resource Index"

Worksheets("Results").Cells(Row + 40, Col).Value = "RRI - Random Resource Index"

Col = 10
For m = 1 To MR
 Worksheets("Results").Cells(Row + 36, Col + m).Value = m
 Worksheets("Results").Cells(Row + 37, Col + m).Value = GM(m, MR)
 Worksheets("Results").Cells(Row + 38, Col + m).Value = HM(m, MR)
 Worksheets("Results").Cells(Row + 39, Col + m).Value = LRI(m, MR)
'Worksheets("Results").Cells(Row + 40, Col + m).Value = RRI(m)

Next
Col = 1
Worksheets("Results").Cells(Row + 41, Col).Value = "GANTT CHART"
Worksheets("Results").Cells(Row + 42, Col).Value = "Project"
Worksheets("Results").Cells(Row + 43, Col).Value = "Task"
Worksheets("Results").Cells(Row + 44, Col).Value = "Day"

Col = 1
For i = 1 To NP
 For j = 1 To JT
 Worksheets("Results").Cells(Row + 42, Col + 1).Value = i
 Worksheets("Results").Cells(Row + 43, Col + 1).Value = j
 Col = Col + 1
 Next
Next

'Determine the maximum length project in the program TT
TT = 0
For i = 1 To NP
 If CPO(i) > TT Then
 TT = CPO(i)
 End If
Next

Col = 1
For i = 1 To NP
 For j = 1 To JT
 For t = 1 To TT
 Worksheets("Results").Cells(Row + 44 + t, 1).Value = t
 Worksheets("Results").Cells(Row + 44 + t, Col + j).Value = AJTO(i, j, t)
 Next
 Next
 Col = Col + 10
Next

"" RESET Variables for printing, this preserves the original solution

PSEO = 0
SUMNPVEO = 0
SUMNPVPO = 0
For i = 1 To NP
 CPO(i) = 0
 BFO(i) = 0
 TEO(i) = 0
 DEO(i) = 0
 NPVEO(i) = 0

 For j = 1 To JT
 DMO(i, j) = 0
 DLO(i, j) = 0
 FJO(i, j) = 0
 ESO(i, j) = 0
 EFO(i, j) = 0
 LSO(i, j) = 0
 LFO(i, j) = 0
 STO(i, j) = 0
 FNO(i, j) = 0
 CTO(i, j) = 0
 TSO(i, j) = 0
 FSO(i, j) = 0
 WSO(i, j) = 0
 SCO(i, j) = 0
 LGO(i, j) = 0
 AMJO(i, j) = 0
 AHJO(i, j) = 0

 Next

 For t = 1 To TP
 AJTO(i, j, t) = 0
 Next
 Next
 Next

 ResultRow = ResultRow + 64 + TT

 """ End Print Results Procedure

End Sub

Sub Print_Chart()
 Row = 1
 Col = 1

 Worksheets("Charts").Cells(Row, Col).Value = "MR"
 Worksheets("Charts").Cells(Row, Col + 1).Value = "CF"
 Worksheets("Charts").Cells(Row, Col + 2).Value = "SSM TCS"
Worksheets("Charts").Cells(Row, Col + 3).Value = "SSM RCS"

Worksheets("Charts").Cells(Row, Col + 4).Value = "CSM TCS"
Worksheets("Charts").Cells(Row, Col + 5).Value = "CSM RCS"

Worksheets("Charts").Cells(Row, Col + 6).Value = "ESM TCS"
Worksheets("Charts").Cells(Row, Col + 7).Value = "ESM RCS"

Worksheets("Charts").Cells(Row, Col + 8).Value = "BEST RCS"

Worksheets("Charts").Cells(Row, Col + 9).Value = "LSM LCS"
Worksheets("Charts").Cells(Row, Col + 10).Value = "SLAM 1:2"
Worksheets("Charts").Cells(Row, Col + 11).Value = "SLAM 123"

For m = KT To MRMAX
 Worksheets("Charts").Cells(Row + 1, Col).Value = m
 Worksheets("Charts").Cells(Row + 1, Col + 1).Value = CF(m)

 Worksheets("Charts").Cells(Row + 1, Col + 2).Value = SSMTCS(m)
 Worksheets("Charts").Cells(Row + 1, Col + 3).Value = SSMRCS(m)

 Worksheets("Charts").Cells(Row + 1, Col + 4).Value = CSMTCS(m)
 Worksheets("Charts").Cells(Row + 1, Col + 5).Value = CSMRCS(m)

 Worksheets("Charts").Cells(Row + 1, Col + 6).Value = ESMTCS(m)
 Worksheets("Charts").Cells(Row + 1, Col + 7).Value = ESMRCS(m)
 Worksheets("Charts").Cells(Row + 1, Col + 8).Value = BRCS(m)

 Worksheets("Charts").Cells(Row + 1, Col + 9).Value = LCS(m)
 Worksheets("Charts").Cells(Row + 1, Col + 10).Value = SLAM12(m)
 Worksheets("Charts").Cells(Row + 1, Col + 11).Value = SLAM23(m)

 Row = Row + 1
 Next

End Sub
REFERENCES

IBM, (2006), ibm.com, “Revenue lost by being late to market.”

