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ABSTRACT

OPERATING CHARACTERISTICS OF PASSENGER SCREENING
PROCESSES AND THE DEVELOPMENT OF A PACED INSPECTION SYSTEM

by
Geraldine Kelly Leone

The airport checkpoint security screening (ACSS) system is an important line of defense

against the introduction of dangerous objects into the U.S. aviation system. Recently,

there has been much interest in modeling these systems and to derive operating

parameters which optimize performance. In general there are two performance measures

of interest (i) the waiting time of the arriving entities, and (ii) the allocated screening

resources and its utilization. Clearly, the traveling public would like a zero waiting time,

while airports are limited both in terms of space and resource capital. The arrival and

exit entity in the ACSS system are passengers. On arrival, passengers split into two sub-

entities (i) bags or other carry-on items and (ii) passenger body and the two must rejoin

prior to exit. There is a 1:M ratio between passengers and carry-on items with M>0. The

existing knowledge base related to the operating characteristics of ACSS processes is

very limited. Almost all screening systems have a human interpretive component, as a

result the screening behavior is highly variant and difficult to predict.

This dissertation studies the operating characteristics of the security screening

process to develop proven relationships between inspection times and clearance rates. A

descriptive model of the screening system, which identifies the design variables,

operational parameters and performance measures, is defined. Screening data was

collected from 18 U.S. airports (10 high volume, 5 medium volume, and 3 low volume).

The data sets captured (i) passenger arrival times, (ii) X-ray inspection times, (iii)



clearance decision, (iv) passenger physical inspection times, and (v) secondary carry-on

item inspection times. An empirical analysis was used to generate a speed of inspection

operating characteristic (SIOC) curve for each of the inspection processes. Mean

inspection times are found to be much larger than what is frequently assumed in the

literature. The findings showed that the inspection rate increases linearly with inspection

time until the 7 second point, after which it describes a negative growth. The behavior of

these relationships under different operating conditions was studied using a set of

hypothesis. These include performance differences between airport types, between

checkpoints within an airport, as well as the effect of increased passenger arrival rates.

Reliable data describing the operating characteristics of security inspection

processes are now available. This data can be used to design and analyze ACSS systems

with much greater accuracy and detail. The results will in effect reduce the dependence

on trial-and-error experiments at the site. A greater understanding of the statistical

behavior of the inspection process is known and validated. The SIOC curves provide a

standard against which new and alternative ACSS designs can be evaluated and

benchmarked. Paced ACSS systems are demonstrated as a viable alternative with

potentially higher performance.
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CHAPTER 1

INTRODUCTION

The airport checkpoint security screening (ACSS) system and screeners who operate

them are the most important line of defense against the introduction of dangerous objects

into the aviation system (National Commission on Terrorist Attacks upon the United

States, 2004 [9/11 Commission]; U.S. General Accountability Office, 2000 [GAO],

2007a). Over 2 million commercial aviation passengers are screened in the United States

each day for weapons and dangerous articles prior to boarding an airplane (Airports

Council International - North America, 2008). During 2006, Transportation Security

Administration (TSA) security officers (TSOs) intercepted 13.7 million prohibited items

at security checkpoints, of which 11.6 million were lighters and 1.6 million were knives

(TSA, 2006a). However, these inspections have resulted in significant operational costs

and passenger delays. TSA also reported that during 2006 the average peak wait time for

passengers was 11.76 minutes, which is more than the established performance goal of

10-minutes (Mineta, 2002).

Trading off security for mobility is clearly problematic. Since the TSA assumed

responsibility for conducting passenger screening at over 400 commercial airports in the

United States, it has spent billions of dollars and implemented wide ranges of initiatives

to enhance its passenger screening operations. Despite the attention to passenger

screening operations, however, concerns about the effectiveness of the screening system

remain. In the post 9/11-era detection rates continued to decline despite federalizing the

screener workforce and deploying new security equipment (GAO, 2004, 2005, 2007d).

1
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1.1 Statement of the Problem

Recently, there has been much interest in modeling security screening systems and to

derive operating parameters which optimize performance. In general there are two

performance measures of interest (i) the waiting time of the arriving entities, and (ii) the

allocated screening resources and its utilization. Clearly, the travelling public would like

a zero waiting time, while airports are limited both in terms of space and resource capital.

The arrival and exit entity in the ACSS system are passengers. On arrival, passengers

split into two sub-entities (i) bags or other carry-on items and (ii) passenger body and the

two must rejoin prior to exit. There is a 1:M ratio between passengers and carry-on items

with M>0. The existing knowledge base related to the operating characteristics of ACSS

processes is very limited. Almost all screening systems have a human interpretive

component, as a result the screening behavior is highly variant and difficult to predict.

1.2 Purpose of the Study

This dissertation studies the operating characteristics of the security screening process to

develop proven relationships between inspection times and clearance rates. A descriptive

model of the screening system, which identifies the design variables, operational

parameters and performance measures, is defined. Screening data was collected from 18

U.S. airports (10 high volume, 5 medium volume, and 3 low volume). The data sets

captured (i) passenger arrival times, (ii) X-Ray inspection times, (iii) clearance decision,

(iv) passenger physical inspection times, and (v) secondary carry-on item inspection

times. An empirical analysis was used to generate a speed of inspection operating

characteristic (SIOC) curve for each of the inspection processes. The purpose of the
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SIOC curves is to identify how much time the X-ray TSO spends on inspecting an image

of a passenger's carry-on item to when a decision is made to either clear the item, that is,

no prohibited items are found, or send it to secondary inspection for further scrutiny.

The current ACSS paradigm is to have unpaced processes, that is, the TSO has

unlimited inspection time. Thus, another research objective is to evaluate the advantages

of paced systems in which the primary inspection time is capped at a maximum,

following which the entity is forwarded to the secondary inspection process. A

simulation model is developed to conduct a range of experiments.

1.3 Significance of the Study

Despite its importance, minimal changes to the passenger screening checkpoints occurred

only incrementally in the past 30 years, often in response to a crisis or loss of an aircraft.

For example, there has never been a time limit placed on the network of screeners

looking for prohibited items. A paced inspection approach would require major

operational changes from existing practices. Limiting the time in primary inspection

would dramatically increase the number of secondary inspections. While secondary

inspections areas frequently appear to operate at small fraction of their physical capacity,

additional stations and staffing is likely to be costly to keep up with the increased

demand. Thus, knowing how much performance, that is, passenger wait times, is

improved if the system was paced without introducing significant operational delays and

costs could lead to how checkpoints are designed in the future.



CHAPTER 2

LITERATURE REVIEW

2.1 Evolution of Airport Security Screening

The security system in place today for screening passengers before boarding hasn't

changed much since the 1970's. The system originated after three series of events in our

nation's aviation history. The first event was the rise in acts of hijacking during the late

1960s and early 1970s, which resulted in the establishment of the Federal Government's

anti-hijacking program ("Anti-hijacking", 1974). The air carriers voluntarily cooperated

with the Federal Aviation Administration (FAA), who was the regulatory body

overseeing civil aviation security, to screen passengers for potential hijack weapons just

prior to boarding the aircraft.

When airplane hijackings continued, President Richard Nixon ordered air carriers

to deploy surveillance equipment and techniques to all appropriate airports in the United

States. The President further instructed the Departments of Defense and Transportation

to work with the U.S. air carrier industry to determine if metal detectors and X-ray

devices used by the military could assist in preventing hijackings. The Air

Transportation Security Act ("Anti-hijacking", 1974) provided the statutory basis for a

rule the FAA issued requiring air carriers to use a screening system, acceptable to the

FAA that would require screening all passengers by one or more of the following

systems: behavioral rule, magnetometer, identification check, or physical search. These

requirements established the baseline for the passenger screening checkpoint of today.

4
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The second major event was the bombing and destruction of Pan Am Flight 103

on December 21, 1988 over Lockerbie, Scotland killing all 259 passengers and crew

aboard. This tragic event significantly elevated the FAA' s response to the threat of

hijacking and of explosives concealed in luggage. For example, when the threat

expanded to include improvised explosive devices (IEDs) designed to destroy the aircraft,

the FAA promulgated a number of security directives setting forth procedures including

the use at passenger checkpoints of explosives trace detection (ETD) devices.

Also, in response to Pan Am 103, the President's Commission on Aviation

Security and Terrorism was created by Executive Order 12686. Its objective was to

conduct a comprehensive study and appraisal of practices and policy options to prevent

terrorist acts against civil aviation with particular reference to the destruction of Pan Am

103. The Commission's report was issued on May 15, 1990, and following its

recommendations, the Federal Government returned to an area not visited since the

height of the hijacking threat in the mid-1970: the capital purchase of security equipment

for use by private sector air carriers to enhance their ability to screen passengers and

items effectively and efficiently prior to boarding.

Under the Aviation Security Improvement Act ("Aviation Security Improvement

Act", 1990), the FAA established the Security Equipment Integrated Product Team to

acquire and deploy advanced security equipment through "non-competitive contracts or

cooperative agreements with air carriers and airport authorities, which provide for the

FAA to purchase and assist in installation of advanced security equipment for the use of

such entities." The Federal Government for the first time subsidizes air carriers' capital

expenses related to security improvements. All major air carriers assumed operations
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costs for installed equipment and other technologies and paid maintenance costs upon

expiration of warranties and initial maintenance periods. According to the National

Research Council Committee on Commercial Aviation Security (1996) this act has been

described to be the most comprehensive, far-reaching legislative initiative designed to

improve all aspects of aviation security. It mandated many regulatory actions affecting

several agencies, required new reports, created new organizations and staffing

requirements, and empowered the FAA to promote and strengthen aviation security

through an expedited, more focused research and development program.

The third major event occurred on the morning of September 11, 2001, when 19

terrorist hijackers commandeered 4 commercial aircraft and succeeded in destroying the

World Trade Center, damaging the Pentagon, and killing almost 3,000 people. The

events on 9/11 significantly altered the nation's views on how to secure and protect the

people, borders, and assets of the United States, and dramatically highlighted the need to

take immediate actions to reduce the likelihood of future attacks of this magnitude taking

place on U.S. soil. In an effort to strengthen the security of commercial aviation,

President G.W. Bush signed the Aviation and Transportation Security Act on November

19, 2001, which created the Transportation Security Administration ("ATSA", 2001).

2.2 Security System Design Studies

In detecting threats—particularly explosives, the challenge is to design a system that has

acceptable detection probability but does not unduly inconvenience travelers. Thus,

choosing a practical architecture to provide the best possible security system design is an

important challenge.
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The Committee on Science and Technology for Countering Terrorism (2000) and

the 9/11 Commission (2004) essentially called for an increased use of operations research

analysis in (aviation) security policy when it recommended that "the U.S. government

should identify and evaluate the transportation assets that need to be protected, set risk-

based priorities for defending them, select the most practical and cost-effective ways of

doing so, and then develop a plan, budget, and funding to implement the effort". Some

work has already been done using operations research, in evaluating the cost-

effectiveness of certain policies (Chow et al., 2005; Jacobson, Virta, Bowman, Kobza,

and Nestor, 2003), in pointing out potential weaknesses in proposed measures (Barnett,

2004; Chakrabarti and Strauss, 2002; Martonosi, 2005; Martonosi and Barnett, 2004) and

policies (Waugh, 2004), in assessing performance of multi-tiered security processes

(Jacobson, Kobza, and Easterling, 2001; Kobza and Jacobson, 1996, 1997; Leone and

Liu, 2003, 2004), and in assessing the equipment speed and detectability (Leone,

Thompson, and Olson, 2004; Transit Cooperative Research Program, 2002, 2004). The

commonest screening equipment used in the U.S. and European airports is conventional

X-ray technology or Computed Tomography X-ray (CTX) (International Air Transport

Association, 2003; Leone and Liu, 2005; Rhykerd, Hannum, Murray, and Parmeter,

1999). The challenge is not the speed of the equipment, but rather in bag handling,

multiple stages of screening, and sample acquisition by the screener. U.S. experts have

found that if the sampling process is not done systematically, detections will be missed.

Singh and Singh (2003) point out that many optimization techniques have been

used to model the security screening process and strategy. McLay et al., (2006)

introduced the multilevel allocation problem for modeling the screening of passengers
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and baggage in a multilevel aviation security system, Olapiriyakul and Das (2007) used a

queuing model to derive the optimal design, Yoo and Choi (2006) considered an analytic

hierarchy process approach for identifying factors to improve passenger security checks

and showed that the most important to raise the performance of screening would be

human resources, and others for optimizing the application of security measures to

different classes of passengers (Jacobson, Bowman, and Kobza, 2001; Jacobson, Virta,

Bowman, Kobza, and Nestor, 2003; Virta, Jacobson, and Kobza, 2002, 2003).

Other salient research using modeling and simulation for security screening has

indicated that although many operations research techniques such as linear/integer

programming, stochastic programming, and queuing theory provide valuable insights,

they often fail to represent problems that arise in airport terminal design due to poor

scalability or excessive computational burden (Hafizogullari, Bender, and Tunasar,

2003). Many are choosing discrete event simulation modeling as the major tool in

addressing the requirements. Leone (2001, 2002), Leone and Kukulich (2002), and

Wilson (2005) show that modeling and simulation offers a non-intrusive and cost

effective way to examine the security problem and provide decision-makers with a better

understanding of the impact of their decisions. Also, Saetta and Tiacci (2005) proposed a

new approach to line balancing of security inspection lines with a combination of

simulation of metaheuristics and modeling and simulation. However, Odoni (1991)

noted that an essential pre-requisite for the use of the simulation models is the availability

of a complete, reliable, and consistent set of data needed to calibrate the simulation model

for the specific airport and scenario analyzed.
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Investigating the trade-offs between speed and accuracy of the screeners has also

been an important focus of researchers seeking to improve inspection performance.

According to Schwaninger (2005), average inspection times of X-ray images often are in

the range of 3-5 seconds under conditions of high passenger flow. Thus, recognition of

threat objects is a fast process occurring within the first few seconds of image inspection.

The task of screening passengers' carry-on items was seen and investigated as being

similar to a general inspection task (Chi and Drury, 1998; Ghylin, Drury, and

Schwaninger, 2006). In the view of paced inspections and economics optimal stopping

time models have been presented (Baveja, Drury, Karwan, and Malon, 1996; Drury and

Chi, 1995; Morawski, Drury, and Karwan, 1992).

Operations research (OR) has had a long history of work in aviation security.

Gilliam (1979) employed queuing theory to design a passenger X-ray screening facility at

an airport. Since then, many OR researchers addressed airline security, focusing

primarily on scanning passengers or baggage (Wright, Liberatore, and Nydick, 2006).

Within these studies the information pertaining to the customer (average number of

customers in the system/queue, average time customer spends in the system/queue) and

server information are assumed to be independent.

As human behavior is present in customers and servers, the idea that servers may

also adapt their behavior was as studied by Green and Kolesar (1987) giving an example

of where congestion is severe, servers may cut corners in order to speed up service,

thereby reducing the quality of service rendered. In their study, they raised concepts but

offered no observational evidence explaining the phenomenon using Parkinson's Law
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(Parkinson, 1958), which states that work expands to fill the time available for its

completion.

No papers have been found since Green and Kolesar (1987) that apply

Parkinson's Law to queuing phenomena until recently when Marin, et al., (2007)

performed an observational study to examine airport security queuing system for server

behavior in response to queue length. It was found that X-ray screeners (servers) did

speed up with longer queue lengths for one type of item, laptop computers. In the study

the impact of speed-up in screening was further explored by examining the speed-

accuracy trade-off (SATO). The data revealed that for laptop passengers there is a

significant decrease in the detection probability and in the probability of correct rejection.

Since many studies have addressed the behavior of customers in the queues, but

not the consequences of changes in server behavior, the opportunities for more research,

such as this one where placing a time limit on the X-ray screener, is examined remain

numerous.



CHAPTER 3

ACSS SYSTEM MODEL AND SCREENING OPERATIONS

This chapter addresses the first research objective, that is, to develop a descriptive model

of the ACSS system, and is separated into four sections. The first section presents the

physical layouts of typical checkpoints including the configuration under study, and

describes the screening process. The second section includes the descriptive model of the

ACSS developed where the design variables, parameters and performance measures for

the screening process are defined. The third section provides information on checkpoints

at airports throughout the nation describing their numbers, different types, and

operational characteristics. It also discusses the empirical data required for the major

variables of interest and collected from different type checkpoints at various airports.

The data collected represents behaviors of multiple checkpoints over multiple days at

airports across the nation. The last section provides summary information and

descriptive statistics generated for the major variables, along with an analysis of the

differences between checkpoints across airports.

3.1 Checkpoint Layout and Screening Operations

According to the TSA's Security Checkpoint Layout Design / Reconfiguration Guide

(2006b), there are nine approved physical layouts. Each airport's unique characteristics

determine which layout serves as the "best fit". This study uses the 1-to-1 Single Lane

Design with Wanding Station layout depicted in Figure 3.1. The configuration is a

standard design for a single screening lane. The elements of a single lane consists of one

11
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walk-through metal detector (WTMD), one X-ray unit with roller extensions, one ETD

device, one bag search table, and one hand wanding and holding station. As of October

2006 there were 2,002 single lanes in the U.S. (GAO, 2007b).

Figure 3.1 also shows the associated minimum spacing requirements between

respective equipment and furniture pieces. A wanding station is created by placing glass

partitions parallel to an existing airport wall. An advantage of this design is that

passengers can easily be diverted to the wanding station, in addition to co-location of the

ETD machine and bag search table. One slight disadvantage is the amount of width

needed to accommodate the wanding station.

Source: Transportation Security Administration. (2006).

Figure 3.1 Study checkpoint physical layout.

Figure 3.2 illustrates a different layout, which is the 2-to-1 Design with Holding

Station configuration. This configuration consists of one WTMD centered between two

X-ray units and is a standard design that is prevalent throughout most airports. To match

heavy passenger demand, airports typically add multiple configurations. For example, at

T.F. Green Airport in Providence, Rhode Island there are three of this type side-by-side

for a total of six screening lanes. In the layout the holding station is centered 4 feet from
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the WTMD, and is used as a containment area until a TSO becomes available to conduct

secondary screening. The advantage of this design is the fact that overall width is only

22 feet. This design also allows greater flexibility for TSOs to work among checkpoint

lanes. One slight disadvantage is the slightly increased depth needed for the secondary

screening area.

Source: Transportation Security Administration. (2006).

Figure 3.2 Standard checkpoint physical layout.

Regardless of the design, there are four screening functions at checkpoints:

• X-ray screening of carry-on items

• WTMD screening of individuals

• Hand-wand or pat-down screening of individuals

• Physical search of passenger's carry-on items or inspection with an ETD

According to the GAO (2007c) passengers whose carry-on items are deemed suspicious

by the X-ray TSO as having prohibited items, who alarm the WTMD, or who are

designated as selectees, that is, passengers selected by the Computer-Assisted Passenger

Prescreening System (CAPPS) or other TSA-approved processes to receive additional
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screening, are inspected by hand-wand or by pat-down, or by trace portals that are

installed at a limited number of airports, and have their carry-on items screened for

explosives traces or physically searched.

ETDs work by detecting vapors and residues of explosives. The TSOs collect

samples by rubbing swabs along the interior and exterior of an object that the TSOs

determine to be suspicious, and place the swabs in the ETD machine, which then

chemically analyzes the swab to identify any traces of explosive materials. Additionally,

at some airports TSOs are specially trained to detect suspicious behavior in individuals

approaching the checkpoint. These Behavior Detection Officers may refer the individual

for individual screening or to a law enforcement officer (GAO, 2007b).

3.2 Descriptive Model

Figure 3.3 shows the block diagram of the single lane ACSS with foundational

parameters noted that are salient to the research objectives. The model considers the

screening of carry-on items and the passengers themselves at the WTMD or Hand Wand

stations. In the model the parameters that govern the behavior are λ-arrival demand,

service rate, and ß-rejection rate. Passengers arrive, denoted as A, at the checkpoint

screening lane and proceed to the X-ray unit where an image of the carry-on item is

taken. A service rate RI, that is, (60k) represents the time (t) the TSO spends on

inspecting the image searching for prohibited items to when a decision is made to either

reject (ß) it and send to secondary inspection for further scrutiny or clear (1-ß) it,

meaning that no suspicious items were detected. At secondary inspection the service rate

is represented as g21 and 1122 for ETD and hand search inspections, respectively. After the
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passenger unloads their carry-on items at the X-ray unit, they proceed to the queue for the

WTMD. If a passenger alarms the WTMD, denoted as the Greek letter alpha (a), then

they move to secondary inspection by hand wand. After clearing either the WTMD (1-

a), or the Hand Wand search, the passenger is rejoined with their carry-on items. Once

clearing all primary and secondary inspections, the passenger can board the aircraft.

Otherwise, boarding is not permitted and the passenger is escorted out of the system by a

TSO. A very small percentage of passengers are not allowed to board.

Figure 3.3 Single lane ACSS descriptive model.

Since the above performance measures are components of a queuing system, each

inspection station can be modeled as an M/M/1 system and the average time a passenger

spends at each inspection can be described from standard queuing theory equations.
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For example, let Tp be the time a bag spends in the queue and inspection process,

then:

(3.1)

(3.2)

(3.3)

Where:

T: Total time spent in check point screening
Tp: Time spent in the primary inspection process
Ts : Time spent in the secondary inspection process
Ad: Initial arrival rate

λ2: Secondary arrival rate, which is directly related to the rejection rate ß
1.11: Primary inspection service rate
g2: Secondary inspection service rate

Using the rejection rate as an indicator of accuracy, Olapiriyakul and Das (2007),

applied the speed and accuracy operating characteristic (SAOC) curve for the two stage

inspection process as depicted in Equations 3.4 and 3.5:

and considered a linear curve of the form:

They assumed that ßMin = 0 for different types of inspection methods, that is, X-ray

scanning or chemical trace, since often less intrusive processes used in stage-1

inspections tend to have ßm in > 0.

In the problem they considered, an optimal formula for a two-stage tandem

inspection system was proposed. Following their formula, the notation used here is I is 1

and 2, serial inspection stages, N is the number of entities (e.g., passengers with their

(3.4)

(3.5)
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carry-on items) in the system, Sr is number of parallel servers at stage I, A l is arrival rate

at stage I, pr is service rate of stage I inspection process, fir is rejection (or alarm) rate of

the stage I inspection process, pi is utilization factor at stage I, and WE is average waiting

time for an entity in the system.

Since cost is a factor in any queuing design analysis, the total inspection system

cost was derived as:

where, Cw is unit waiting time cost for an entity ($/h), and Ci is inspection process cost

per server at stage I ($/h). The waiting or queuing cost accounts for all passengers in

the system during the hour, and the congestion penalty involves just the waiting time

because passengers resent the wait, not the time receiving service. In the model the

operating cost for each the primary inspection and the secondary inspection stages consist

of the salary for the TSO plus the equipment and operations and maintenance (O&M)

costs. In fiscal year 2009, the average annual salary for a full performance level TSO is

$36,113 (TSA, 2009) and 1 TSO works 2080 hours per year. The cost of an X-ray unit is

$45,000 with annual O&M costs of $3,000 (U.S. General Services Administration, 2009).

Additionally, the cost of an ETD is $48,864 with O&M at $10,974. It is assumed that

the waiting time cost is $10 per hour. These costs cover the main focus of the study—

inspection of carry-on items. However, nodes where passenger inspections occur must

also be considered when calculating total system costs. As such, a WTMD cost is $3,700

and a hand-held wand is $150. There are 4.25 screeners per screening lane; one each at

primary and secondary inspection nodes, one for the WTMD, and one and a quarter is

assigned to the Hand Wanding node to comply with gender specific screening policies.



The service rate for primary inspection is µ1 and is considered to be a decision

variable. The arrival rate of entities at secondary inspection is given by ß1k1. In this

system WE = WI + W2, where W./ + W2 are the primary inspection and secondary

inspection waiting times, and can be derived as:

(3.7)

Since 2v2 = ß1X1, and ß1= a t,' which was defined in (3.5), then substituting in (3.7):

(3.8;

For secondary inspection the limiting constraint is 112 = µM in. Further it is assumed that

ßMax = 0%, then letting:

(3.9)

The total inspection system operating cost is then derived by substituting Eqs (3.9) in

(3.6). As noted earlier for the two-stage system S1 = S2 = 1. Hence the send part of Eq

(3.6) is a constant and CTOTAL is a convex function of Ili. The optimal primary inspection

service rate (p, 1 *) is therefore prescribed by differentiating WE in terms of Iii. Setting the

derivative .5 WE/δµ1 = 0 and solving gives:
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(3.10)

Applying the model, the characteristic behavior of the ACSS 1-to-1 Single Lane Design

with Wanding Station can be examined in a systematic and general manner. The research

examines these measures in terms of average and variability, that is, maximum and

minimum, experimenting with a simulation model to understand the behavior of the

ACSS system under varying conditions. Specific relationships and performance levels

are derived and evaluated once a particular data set is implemented in the model, which is

demonstrated in the next chapters.

3.3 Data Collection

The FAA places commercial service airports into five different categories: Large,

Medium and Small hubs, Non-hubs and Non-primary based on annual enplanements.

For example, in 2006 Large Hub airports accounted for 70% of a total of 738,364,097

million annual passenger enplanements, whereas Medium and Small Hubs account for

only 20% and 8%, respectively (FAA, 2006). As shown in Figure 3.4 these large hub

airports contain checkpoints with high volumes of passenger arrivals during peak hours,

that is, demand is greater than 1000 passengers per hour (pph). In addition to

enplanements data, the TSA collects and maintains airport sizing information, such as,

the number of checkpoints and lanes, in their Performance Management Information

System (PMTS).
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Figure 3.4 Peak hour passenger demand by airport hub.

Figure 3.4 also shows that there are 213, 104, and 345 checkpoints within large,

medium and small hub airports, respectively. As indicated in Table 3.1 the majority of

checkpoints see passenger demand of less than 500 pph (64.50%) with moderate and

large demand volumes at 26.13% and 9.37%, respectively. While the number of

checkpoints that process low volumes of passengers is considerably more, typically these

checkpoints are located in small hub airports, which account for only 8% of total annual

passenger activity. These airports also have average peak hour wait times below the 10-

minute maximum wait time for processing passengers as shown in Table 3.2. Yet, from

2005-2007 average peak wait times at the nation's larger airports (large and medium hub)

generally exceeded the wait time standard, overall (TSA, 2007). In FY 2008, the times

are at 15 minutes (Hawley, 2008). Thus, the focus of the study was on high-volume and

medium-volume checkpoints at large and medium hub airports.

A total of 18 checkpoints were chosen for the study where 10 of them are located

in airports the FAA categorizes as "large hubs". Table 3.3 shows the number of

checkpoints within airport hubs indicating the study sample size across each type. Non-
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hubs and Non-primary airports were excluded from the study because passenger

hoardings are much more limited and sporadic at these locations. Data from five of the

remaining eight checkpoints came from medium hub airports where demand is between

500-1000 pph, and the rest from small hubs that typically see less than 500 pph.

Table 3.1 Distribution of Checkpoints by Peak Hour Demand (pph)

Table 3.2 Average Peak Wait Times in Minutes by Airport Hub for 2005-
2007

Table 3.3 Distribution of Checkpoints by Airport Hub with Sample Size
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The empirical data for this research were obtained from archival sources collected

by TSA for only two of the four screening functions—that is, X-ray screening of carry-on

items and physical search of carry-on items and trace detection for explosives. As shown

in Figure 3.5 performance data was collected in five separate areas from multiple days

across airport types, typically during peak hours (e.g., weekdays between 5:00-8:00 A.M.

and 3:00-7:00 P.M.)

1. Passenger arrival times to the checkpoint

2. X-ray TSO image inspection times

3. Decision type (cleared or not-cleared)

4. Physical search of carry-on items service times

5. Trace detection for explosives service times

Figure 3.5 Checkpoint data collection areas.

For items 1, 2, and 3, data was obtained from each of the 18 ACSSs. For the

secondary inspection service times, TSA provided 500 samples from each airport type,

which could have come from the 18 ACSSs or other sites. Because of the nature and
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method of data collection, as well as restrictions imposed by TSA, data were not

collected to indicate the specific outcome of any carry-on items that were flagged

suspicious and sent to secondary inspection, that is, if any prohibited items were actually

discovered or not. Additionally, TSA agreed to provide the data after the researcher

made necessary provisions to ensure protection of sensitive security information, such as,

masking airport names with a coded system. All data were referenced by a unique

identification number randomly created to maintain integrity across multiple airports and

checkpoints and collection periods while ensuring the confidentiality of all information.

The empirical data is collected by TSOs located at airports and maintained by the

Office of Security Operations within TSA headquarters. Throughout any given calendar

year TSA collects data on checkpoint performance through observation techniques,

various surveys, and automation. Since all data are recorded electronically and submitted

directly by individual airport TSOs, such electronic data collection reduced potential

errors of second-party data entry and recording, and enhanced the integrity and

interpretability of submitted data. Upon completion of data collection, all data were

analyzed and cleaned to remove invalid or erroneous data. In accordance with TSA

policies, all archival data obtained were devoid of all identifiable information, thus

ensuring the maximum level of confidentiality for airports and screeners on whom data

were collected. All data collected and maintained were stored in accordance with

applicable policies.
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Measures of Performance

TSA uses passenger processing wait times as a primary measurement for checkpoint

performance, and their goal is 10 minutes or less (Hawley, 2008). Yet, the average peak

wait times at the nation's larger airports generally exceeded the wait time standard

(Airports Council International - North America, 2003).

Passenger processing wait time is defined as the amount of time passengers have

to wait to undergo screening at the security checkpoint (GAO, 2007b). TSA collects wait

time data every 30 minutes during peak hours and every hour during non-peak periods of

time. During each data collection period, a TSO stamps wait time cards with the current

time, provide the cards to the last three passengers in line during off-peak periods and the

last four passengers during peak periods. The TSO records the time on the card and at

the end of the day enters the wait time data into the PMIS. Other performance measures

include staffing per lane, which is 4.25 TSOs per lane, and checkpoint throughput.

According the same GAO report, checkpoint throughput (passengers per lane, per hour

(pplph)) is considered to be 200 pplph since this is what TSA uses in its simulation

studies.

In addition to wait time, staffing levels, and throughput, queue length and

resource utilization are also used to measure performance in queuing systems. The study

examines these measures, both the average and variability, that is, maximum and

minimum, experimenting with a model to understand the behaviour of the ACSS system

under varying conditions.
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3.4 Descriptive Data and Summary Statistics

Figures 3.6 and 3.7 show the combined number of carry-on items inspected from across

all airport types along with the time TSOs took to decide for items to be "cleared" and

"not-cleared", respectively. TSOs made a decision whether to clear the item or not most

(80%) of the time within 10 seconds or less. Overall, small hub airports had lower

(faster) X-ray TSO image inspection times (M=5.81) than medium hubs (M=7.00) and

large hubs (M=7.04) as shown in Tables 3.4 through 3.6. These tables show the means

and standard deviations for X-ray inspection times separately for the three airport types

and two decision types combining the different data collection periods. The average

percentage of items requiring secondary inspection ranges from 3-9% with checkpoints

at large hub airports having the greatest rates.

0

Figure 3.6 No. items cleared combining ACSSs by airport hub.
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Figure 3.7 No. items not-cleared combining ACSSs by airport hub.

The mean secondary inspection service times (in seconds) for both physical

search and ETD search are shown in Table 3.7. It was determined that physical search

takes 2-5 minutes per carry-on items and these times do not vary across airport types. It

was also determined that ETD search times are similar across airports and it takes 2-2.5

minutes per carry-on items.
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Table 3.7 Physical Search and ETD Service Times (in seconds) across
Airport Hubs
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As shown in Figure 3.8, a large variation in primary inspection times was

observed ranging from 1-120 seconds. The lengthy "right tail" of the lognormal

distribution indicates that a small number of complicated, time-consuming cases are

contributing disproportionately to overall inspection times. If these cases were diverted

earlier to secondary inspections, then this would improve the throughput of the primary

inspection process, although naturally this would require that more resources be devoted

to secondary inspections.

Figure 3.8 Lognormal distribution for benchmark data.
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The next two tables describe the characteristic behavior of the ACSS 1-to-1

Single Lane Design with Wanding Station. More specifically, the passenger arrival

demand at the checkpoint (λc), in addition to the screening lane (AL) per hour values are

shown in Table 3.8 for each checkpoint across the airport hubs. This table also lists the

primary inspection times (RI) in seconds and the percentages of carry-on items not-

cleared. Table 3.9 summarizes the information combining ACSSs into the three hubs but

also includes the service rates at secondary inspection for both ETD inspection (R21) and

physical hand search ([122).
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CHAPTER 4

PRIMARY INSPECTION OPERATING CHARACTERISTICS

The efficiency of an inspection process is commonly described by the speed and accuracy

operating characteristic curve, where very fast responses can be performed with chance

accuracy and accuracy will increase as responding slows down. Due to security concerns

and the inherent difficulties in quantifying prohibited items not detected by the X-ray

TSO, there is little information publicly available on how effective inspections are as a

function of time. The next sections in this chapter address the second research objective,

where more detail information is provided on the primary inspection process as a

function of time followed by the speed of inspection characteristic curves that were

generated. In addition to the curves, regression analysis results are presented.

4.1 Primary Inspection Service Time Statistics

Combining the data collection periods and collapsing individual checkpoints into the

three different airport hubs, Figures 4.1 through 4.3 show the percentage of the carry-on

items cleared and not-cleared as a function of the maximum inspection time for large,

medium and small hubs, respectively. Additionally, the total (both cleared and not-

cleared combined) carry-on items inspected (cumulative percentage) is plotted on the

second Y-axis for the different time intervals.

Two key pieces of information can be drawn from Figures 4.1 through 4.3. First,

is the operating characteristic curve, which is defined as the relationship between a

system decision for a given system input. It is commonly used in quality control to

33
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project the acceptance rate for a specific actual defect rate. These curves can be an

effective method for representing the behavior of security inspection systems. Secondly,

there is the SIOC curve, which specifies the cumulative percent of entities (ψt) that will

complete inspection (both cleared and non-cleared) within the maximum allowable

inspection time of t seconds. For example, t when Nit is 80% = 9.12 seconds for large hub

airports.

A large variation in primary inspection times was observed ranging from 1 to 120

seconds. The lengthy "right tail" of the distribution indicates that a small number of

complicated, time-consuming cases are contributing disproportionately to overall

inspection times. If these cases were diverted earlier to secondary inspections, then this

would improve the throughput of the primary inspection process, although naturally this

would require that more resources be devoted to secondary inspections. The data also

suggests that inspection times beyond 13 seconds for both large and medium hubs should

result in carry-on items being automatically diverted to secondary inspection, and 10

seconds for small hubs. Additionally, at both large and medium hub airports, 70% of all

carry-on items are inspected in 7 seconds or less taking up almost half (48%) of the total

time for inspecting all carry-on items. Inspection times at small hub airports are faster,

where 70% of the carry-on items are inspection in 6 seconds or less. Additionally, the

data reveals that at all airport types the last 10% of carry-on items is taking up

approximately 20% of the total inspection time.



Last 10% of all items is taking up
19% of total time.

80% of all items had inspection times
of 9 secondsor less taking up almost
65% of total time for all items.

70% of all items are inspected in 7
seconds or less taking up almost half
(48%) of total time for all items.

Figure 4.1 Primary inspection as a function of time at large hub airports
combined.

Last 10% of all items is taking
up 21% of total time.

'80% of all items had inspectiontimes of
9 seconds or less taking up 60% of total
time for all items.

70% of all items are inspected in 7
secondsor less taking up almost half
(48%) of total time for all items.

Figure 4.2 Primary inspection as a function of time at medium hub airports
combined.
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Last 10% of all items is taking up 22% of total

85% of all items had inspection times of 8
seconds or less taking up 70% of total time foi
all items.

70% of all items are inspected in 6
seconds or less taking up half (51%;
of total time for all items.

Maximum Inspection Tune (seconds)

"--"Not-Cleared	 Cleared

Figure 4.3 Primary inspection as a function of time at small hub airports
combined.

4.2 Speed of Inspection Operating Characteristic Curves

In evaluating different technology options for the security inspection process there are

three strategic improvement options:

TYPE A - Improve the decision capability so that t6 is reduced in the shorter
inspections

TYPE B - Improve the decision capability so that ft is reduced in the longer
inspections

TYPE C - Improve the decision capability at all inspection rates

As shown in Figure 4.4, a strategy is characterized by the type and improvement at the

base rate. For example: Type-A 20% implies a 20% reduction at the base rate of 7 carry-

on item (bags) per minute or µ=8 seconds. Denoting speed or service rate by 1.1 and the

rate at which carry-on items move to secondary inspection by ß, µM AX  is introduced as the

36
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maximum inspection rate; !PIN is the slowest inspection rate. At the slowest rate there

could possibly be no carry-on items being sent to secondary inspection; ßM AX,, at the rate

sent to secondary inspection corresponding to uMAX, and ßMIN, the rate sent to secondary

inspection corresponding to !PIN, is in many cases this will be 0%. When a maximum

inspection time µMAX  is allowed then entities flowing to the secondary inspection include

(i) those not-cleared, and (ii) those for which the inspection was incomplete. The sum of

these two is the Effective P.

Figure 4.4 Conceptual SIOC threshold points with improvement strategies .

In following their concept, SIOC curves were generated with the empirical data

collected and presented in the previous section's charts, which showed primary

inspection as a function of time. These SIOC curves characterize the effect of inspection
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speed on the rejection rate, that is, whether the TSO determines that a carry-on item does

not contain any prohibited item and is cleared or rejects it for further scrutiny at

secondary inspection.

Figure 4.5 illustrates the SIOC curve for large hub airports. Instead of the

inspection time (x), the service rate OA where µ=60/τ,, is plotted on the x-axis to show the

rejection rate as a function of time, that is, the number of carry-on items inspected per

minute by the TSO.

Inspection Rate (carry-on items per minute)

Figure 4.5 Large hub SIOC curve.

In Figure 4.5 the full range of rates from 3 to 60 carry-on items per minute is

plotted. From the data, rates above 12 per minute are unreasonable since too few bags

are cleared and the Effective ß, labeled as the Rejection Rate is too high. Therefore,

setting the thresholds to !P IN to 3 per minute and µMAX  to 12 per minute; and ßM IN at 2.9%

and ßMAX at 47.8%, the resulting plot is shown in Figure 4.6. The data shows that the
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relationship between the Effective /1 and the maximum inspection rate (60/µMAX )

describes an approximate linear relationship in the 3 to 12 bags per minute range.

Simple regression was conducted to investigate how well the frequency of X-ray

TSO inspection times can be predicted for all carry-on items screened. Interestingly, just

as Olapiriyakul and Das (2007) assumed, the graph is linear. The equation derived is also

shown in the figure and the regression result was significant, where F(1,14) = 11211.18,

p < .001. The adjusted R squared value was .99, which indicates that 99% of the

frequency was explained by the inspection times. According to Cohen (1988) this is a

large effect.

Figure 4.6 Large hub SIOC curve with threshold points.

Figure 4.7 plots the SIOC curve data for the full range of rates for all three airport

hubs and the results of the regression analysis are shown in Figure 4.8. The specific

rejection rate values are provided in Table 4.1. The data shows that for medium airport
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hubs the thresholds are similar to large airports, while for small airport hubs rates above

15 carry-on items per minute result in too few being cleared along with high rejection

rates

Inspection Rate (carry-on items per minute)

Figure 4.7 Large, medium and small airport hubs' SIOC curves.

Figure 4.8 SIOC curve regression for all airport types with threshold points.



41

As with large airports, the results were significant for medium and small airport

types, where F(1,15) = 13630.9, p < .001, and F(1,16) = 1616.67, p < .001, respectively.

The adjusted R squared value for both medium and small hubs was 0.99. This indicates

that over 90% of the frequency was explained by the inspection times. Again, this is a

large effect. Additional analysis of the curve data incorporating the possible

improvement strategies presented by Olapiriyakul and Das is part of the experimentation

conducted in this study and presented in Chapter 6.

Table 4.1 SIOC Curve Parameter Values for All Airport Types



CHAPTER 5

INVESTIGATION OF CHECKPOINT DIFFERENCES

Chapter 5 reports on the results pertaining to the third research objective where an

analytical investigation of the differences between checkpoints within airport types was

conducted. Additionally it includes a description of the simulation model developed and

presents the results of the simulation investigation of the performance sensitivity to

passenger arrival rates and inspection times.

5.1 Hypothesis Testing

The following questions guided the statistical analyses and interpretation of collected

data.

• Does inspection time affect the outcome of the inspection?

• Are there differences in mean X-ray TSO image inspection times at different
airport types?

• Is the passenger waiting time affected by the TSO performance at the primary
inspection stage?

To answer the questions posed above, a series of hypotheses test to accept or reject each

null hypothesis was conducted. For example, the null hypothesis is that TSO's rate of

inspecting X-ray images is not associated with passenger wait times. Hence, the

alternative hypothesis is that average wait times can be improved upon by limiting the

TSO's time to inspect the image.

42
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Hypothesis Test I

In order to determine the effect of X-ray TSO inspection times on decision type the

question was posed: Does speed influence decision type? (Do cleared items have

different mean X-ray TSO image inspection times than not-cleared items?) The

hypothesis here is that cleared items have lower (faster) X-ray TSO image inspection

times than items that are not-cleared.

To investigate interactions between factors as well as the effects of individual

factors, a two-way analysis of variance (ANOVA) (univariate General Linear Model

procedure) was used. The research experiment involves mixed designs with unbalanced

groupings. The mixed design has one within-subject variable X-ray TSO image

inspection times (speed) with two levels (peak hour period 1 vs. peak hour period 2) and

two between-subject variables, the first (airport type) with three levels (small, medium

and large), and the second (decision type) with two levels (cleared vs. not-cleared). The

outcome variable (dependent variable) for this study was the X-ray TSO image

inspection times. The timing of when an X-ray image is displayed in addition to the

response (cleared or not-cleared) of the TSO is recorded by the X-ray systems. In

addition there were two key independent variables within this study; the first (airport

type) with three levels (large, medium and small), and the second (decision type) or

response of the screener with two levels (cleared vs. not-cleared).

Statistical analyses were conducted using the Statistical Package for the Social

Sciences (SPSS 15.0) and other appropriate software. For all statistical analyses

presented and discussed in this chapter, a two-tailed probability level of p<.05 was used

as the criterion for statistical significance.
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Table 5.1 presents the results obtained from a two-way ANOVA test using the

General Linear Model (GLM) procedure for X-ray TSO image inspection times as a

function of decision type, in addition to airport type and peak hour period to test whether

there are differences between inspection times across airports and at different data

collection time periods.

Table 5.1 Analysis of Variance for Operator X-ray Image Inspection Times
as a Function of Airport Hub, Decision Type and Data Collection Period

The results show there was a significant main effect obtain for decision type F(1,

18718)=6.71, p.010. However, this was a small difference (Partial Eta Squared = .000),

thus not supporting the conclusion that cleared items have different mean X-ray TSO

image inspection times rates than items that are not cleared.
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Does the mean X-ray TSO image inspection time change across the different data

collection periods? The null hypothesis here is that there is no difference between X-ray

TSO image inspection times as the time of day changes. The results obtained, also

shown in Table 5.1, indicated that there was not a significant main effect of time of day

on X-ray TSO image inspection times (F(1,18718)=.84, p=.358), thus supporting the

conclusion that the mean X-ray TSO image inspection times do not change across

different time periods.

Hypothesis Test H

Since TSA uses passenger processing wait times as a primary measurement for

checkpoint performance, an investigation of the effects of passenger volumes on

inspection performance was performed. More specifically, are there differences in mean

X-ray TSO image inspection times between high, medium and low volume passenger

arrivals? It is proposed that the TSO speeds up their inspection of the X-ray image as the

number of passengers arriving and waiting increases.

An investigation of passenger interarrival times was first conducted to determine

any differences between passenger interarrival times across data collection periods within

the different airport types. For the investigation a two-tailed Independent Samples t Test

was used. A probability level of p<.05 was used as the criterion of statistical

significance.

It was determined that passenger interarrival times did not differ significantly

across data collection periods for 7 of the 10 checkpoints at large hub airports. However,

the t Test revealed a significant difference between the data collection periods for

checkpoints 8 (p=0.012), 10 (p=0.024) and 11 (p=0.000). Because the t was statistically
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significant, the effect size and the 95% Confidence Interval of the Mean Difference were

calculated. The effect size "d" (Cohen, 1988) was computed from the value of the t Test

of the differences between the two groups (Rosenthal and Rosnow, 1991). The results

show in each case the effect size is smaller than typical, where for checkpoints 8, 10 and

11, d=0.103, d=-0.090 and d=-0.177, respectively. Additionally, the analysis shows that

the difference between the means in all cases is approximately 2 seconds at a 95%

confidence interval.

Within medium hub airports, passenger interarrival times did not differ

significantly across data collection periods for any of the five checkpoints, where

p=0.621, p=0.403, p=0.935, p=0.872, and p=0.123 for checkpoints 5, 6, 14, 15, and 16,

respectively. Also, times did not differ significantly for the three checkpoints within

small hub airports, where p=0.629, p=0.410, and p=9.12 for checkpoints 13, 17 and 18,

respectively.

The two way ANOVA results obtained, also shown in Table 5.1, indicate a

significant main effect of airport type on X-ray TSO image inspection times

F(2,18718)=3.78, p=.023, revealing that checkpoints at small hubs had significantly

lower (faster) X-ray TSO image inspection times (M=5.81) than at medium hub

(M=7.00) and at large hub (M=7.04) checkpoints, and it is statistically significant.

However, this was a small difference (Partial Eta Squared = .000). Thus, the hypothesis

proposed that as passenger volumes increase, the X-ray TSO inspection times get lower

(faster) was not supported. Although the hypothesis was not supported, the result could

be of practical importance because X-ray inspection times increase moving from low-

volume to high-volume checkpoints, (M=5.81s, 7.00s, and 7.04s, respectively).
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As shown in Figure 5.1 X-ray TSO image inspection times for cleared items are

lower (faster) regardless of whether there was low, medium or high-volumes of passenger

arrivals. The lines are nearly parallel, and supported by post hoc test using Games-

Howell adjustments for multiple comparisons, there was no significant difference in

estimated marginal means of X-ray TSO image inspection times between the two

decision types (cleared vs. not-cleared) across the different airports.

Figure 5.1 X-ray TSO image inspection times and decision across ACSSs
within airport hubs.

5.1.1 Distribution Fitting

Tests were performed on passenger arrivals and primary inspection service times to

determine whether the empirical data could have come from among the five alternative

theoretical probability distributions checked (exponential, Erlang, Gamma, lognormal,

and Weibull). Exponential gave the best fit for the passenger interarrival times, and

lognormal distributions for the service times. Distribution fitting was conducted with the
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chi-square and Kolmogorov-Smirnov goodness-of-fitness tests. Goodness-of-fit tests

were run for checking the hypothesis in the form:

Ho: 	 Passenger arrivals are exponentially distributed.

Hi : 	 Passenger arrivals are not exponentially distributed.

Ho: 	 Service times are lognormal distributed.

Hi: 	 Service times are not lognormal distributed.

In all cases, an alpha value of 0.05 was used for the hypothesis test.

Table 5.2 presents the descriptive data for the interarrival times of passengers to

the checkpoints across the two data collection periods by airport type. The exponential

distribution for the passenger interarrival times proved to be a very good fit as seen in

Table 5.3. The chi-square goodness-of-fit test and the nonparametric Kolmogorov-

Smirnov test did not reject the null hypothesis that the passenger interarrival times take

on an exponential distribution. Likewise, the lognormal distribution for the primary

inspection service times proved to be a very good fit as seen in Table 5.4. The high p-

values for the chi-square goodness-of-fit test and very low Kolmogorov-Smirnov test

statistic, which measures the maximum distance from the actual data to the expected

exponential distribution, demonstrate excellent fit.

Table 5.2 Inter-arrival Rates (in seconds) by Airport Hub
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Table 5.3 Chi-square Goodness-of-Fit Test p-values and the K-S Test
Statistics for an Exponential Distribution of Interarrival Times by Airport Hub

Table 5.4 Chi-square Goodness-of-Fit Test p-values and the K-S Test
Statistics for a Lognormal Distribution of Primary Inspection Service Times by
Airport Hub

5.2 Simulation Model

An investigation of the performance sensitivity to passenger arrival rates and inspection

times was conducted with a simulation model. Using the Extend™ simulation software

tool package the ACSS was constructed. Extend™ is a general-purpose simulation tool

available from Imagine That, Inc. (Krahl, 2008). It has been applied to a wide range of

areas including high-speed manufacturing, supply chain, chemical processing and

transportation. In the most basic terms, the simulation first generates the numbers of

arriving passengers based on actual observations collected at airports nation-wide.

Secondly, the model simulates the transit of passengers and their carry-on items through

the screening process and lastly provides values for specific criteria or performance

measures, such as, the average wait times for passengers at primary inspection.
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Figure 5.2 illustrates the overall structure of the Extend™ ACSS model. In the 

Extend™ modeling environment blocks are pulled from libraries into the model. Each 

block describes a calculation or a step in the process. In the ACSS model, as detail was 

added, the number of blocks increased. As a result, using hierarchy, the model is 

represented by the system's most basic elements: (1) the arrival of passengers, (2) the 

queue of passengers waiting to drop off their carry-on items at the X-ray machine, (3) the 

X-ray inspection of carry-on items, and (4) secondary inspection of carry-on items 

deemed suspicious by the X-ray TSO using either ETD or physical hand search. 

Primary 
Inspection 

Figure 5.2 Block diagram ofExtend™ ACSS model. 

Secondary 
Inspection 

ETD 
or 

Hand 

While the study's pnmary focus is on investigating only the performance of 

inspecting carry-on items, the simulation model was enhanced beyond the conceptual 

model to simulate the movement of passengers through the system after they drop off 

their carry-on items at the X-ray machine. Thus, two other elements were added 

including the movement of passengers through the WTMD after dropping off their carry-

on items, and then, if necessary, on to the Hand-Wanding station for secondary 

inspection, in addition to, matching passengers back up with their carry-on items at the 

pickup station before moving on to secondary inspection or exiting the system. 
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Double clicking on anyone of the hierarchical blocks opens a new window 

displaying the sub-model. Figure 5.3 shows the sub-model for the block labeled "Pax 

Arrive". The sub-model includes the Generator block that generates passengers with a 

specified arrival rate. The model is set to use an exponential distribution to simulate the 

time between passenger arrivals to the inspection area. For example, according to the 

empirical data collected at large hub airports the passenger arrival rate to the screening 

lane is 205 passengers per hour. Therefore, the mean interarrival time is set to 0.293 

minutes in the Generator block. 

LoadBags 

Figure 5.3 PaxArrive sub-model. 

Since not all individuals who enter the checkpoint have carry-on items, attributes 

were used to differentiate between the two types. The Set Attribute Block adds an 

attribute called "type" to each individual. It randomly sets the value of this attribute to 0 

(no bags) or 1 (with bags) using the Input Random Number Block. The block generates 

random numbers according to an empirical table distribution with values set to 10% of 

individuals having no bags (carry-on items) and 90% with bags (carry-on items). 
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While specific data on the number of carry-on items was not collected at part of

this study, TSA typically states that the average number of carry-on items per passenger

is two and one-half. Also, in a review of airport websites passengers are advised carry-on

baggage is limited to one bag plus a personal item per passenger. Yet, more than two

items per passenger pass through the X-ray machine when you consider that shoes are put

into bins separately, as well as plastic bags containing liquids. Leone and Kukulich

(2002) reported the number of carry-on items per passenger to be two and one-half, as

well.

Another Generator block is placed in the sub-model to provide units that represent

carry-on items. The Batch (Variable) block is used to determine the load size of one to

four carry-on items per passenger and to keep track of the number of carry-on items

within a load. The load size is generated using the Input Random Number Block. The

block generates random numbers according to an empirical table distribution with

probability values set to: 1:0.03; 2:0.55; 3:0.40; 4:0.02. To keep track of the number of

carry-on items a load is composed of, an attribute is assigned to each load and the

attribute value is set to be the number in the load. Subsequently, the value is used as the

"n" input in the Unbatch (Variable) block to unbatch that same number of carry-on items

in the BagDrop sub-model.

A load of carry-on items is then joined to a passenger using the Batch block.

Constructing the sub-model this way facilitates wanting to batch carry-on items with

passengers only temporarily; this is called binding. Then, rejoining passengers with their

carry-on items before they exit the system or have to move onto secondary inspection of

their carry-on items. Passengers, who do not have carry-on items, exit the sub-model by



53

going directly to the WTMD sub-model; those passengers with carry-on items proceed to

the BagDrop sub-model, which is illustrated in Figure 5.4.

Upon entering the BagDrop sub-model, passengers join a First-In, First-Out

(FIFO) queue. This queue, in front of the X-ray unit, is where passengers wait to send

their carry-on items and personal belongings into the X-ray.

Figure 5.4 BagDrop sub-model.

The "BagDropQ" Queue block holds the passengers, and releases them FIFO.

Upon release, the passengers and carry-on items are separated using an Unbatch block

simulating passengers sending their carry-on items through the X-ray and moving to the

WTMD. An important feature in this sub-model is the use of the Unbatch (Variable)

block to unbatch or unload the same number of carry-on items originally associated with

a passenger. Each passenger may have carried anywhere from one to four items. The

value of the load is used as the "n" input in the block.

There are two Activity Delay blocks in the X-ray sub-model shown in Figure 5.5.

The first generates a delay time representing the divestiture of carry-on items into bins

and the transit of bins on the conveyor belt into the aperture of the X-ray unit. A uniform

distribution was used to output a real (decimal) number greater than or equal to the value

of 5 seconds and less than or equal to the value of 10 seconds. In this distribution, all the

values between the minimum and maximum are equally likely to occur. For instance,
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this distribution is used to indicate "best case/worst case" scenarios, or that the least a

carry-on item would take to move into the X-ray machine is 5 seconds and the most it

would take would be 10 seconds.

The second Activity Delay block processes the carry-on items for a specified time

or delay that is the amount of time it takes an X-ray TSO to inspect an X-ray image and

make a decision to either clear the carry-on item or to send it to secondary inspection for

further scrutiny.

Figure 5.5 X-ray sub-model.

A random processing or delay time is set by connecting an Input Random Number

block to the "D" connector of the Activity block. In the dialog of the Input Random

Number block, the required distribution is selected, and the value of the parameters

specified. For eXample, based on the empirical data, a LogNormal distribution is used

with a mean of 7.04 seconds and standard deviation of 6.37 seconds as the baseline for

large hub airports. The Equation block outputs the results of an equation entered in the

dialog. The equation limits the inspection time to a minimum time specified to simulate a

paced condition.

The checkpoint model is a simple example of serial processing, where carry-on

items move from primary inspection to, if necessary, secondary inspection. However, the

X-ray sub-model is constructed to allow for parallel processing varying the number of
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primary inspection stations from one up to three for experimentation. In the figure only

one station is illustrated. Each station works in parallel, representing the same task being

performed.

To specify whether or not a carry-on item requires secondary inspection, the item

is assigned an attribute with a yes-or-no value using the Input Random Number block

connected to a Set Attribute block, as shown in the sub-model. For example, Beta (ß) or

the percentage of carry-on items that are routed to secondary inspection during a

simulation run for the baseline of large hub airports would be defined by the Empirical

distribution in the Input Random Number block as 92% of the carry-on items do not

require checking (0 for attribute value) and 8% do (1 for attribute value). The attribute

value is read in the Bag Pickup sub-model and the carry-on item is routed to secondary

inspection or not.

The Bag Pickup sub-model shown in Figure 5.6 uses a Matching Queue block to

reassemble carry-on items with passengers and to ensure that the items and passengers

are correctly matched with each other. Items are released only if the specified attribute

match. The attributes compared for matching (the Match attributes) are identified by

name and checked in the dialog. Specifically, the block searches passengers and carry-on

items entering the queue to find the attributes "# of Items" and "PaxwBags". The

quantity of carry-on items required for each matched batch is the value of the attribute

identified as the Demand attribute, that is, "# of Items" attribute. When the required

demand is met, a batched item representing the matched set of passenger and carry-on

items is released.
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The Bag Pickup sub-model also checks for the attribute assigned in the X-ray sub-

model which defined whether or not a carry-on item requires secondary inspection, and

then routes it appropriately. Before reaching their assigned destination, exit or secondary

inspection, a passenger encounters an Activity (Multiple) Delay block, which holds many

items and passes them out based on the delay and arrival time for each item. The item

with the smallest delay and earliest arrival time is passed out first. This block is used to

represent varying walking speeds of passengers traversing from the Bag Pickup area to

their neXt destination. A delay of 10 seconds is used.

Figure 5.6 Bag Pickup sub-model.

Those carry-on items that were flagged by the TSO to be sent to secondary

inspection are processed in the Secondary Inspection sub-model shown in Figure 5.7. In

the sub-model passengers with their carry-on items enter a queue waiting for the TSO to

pick up their bags and carry them over to either the ETD or physical hand search table.

Since there is only one TSO performing secondary inspections the number of passengers

allowed into the section of the model is restricted. The Gate block allows only one

passenger with their carry-on items at a time to be in the restricted section.

Additionally, in the sub-model the Select block is used to determine which type of

secondary inspection is conducted. The dialog sets a random probability of 80% for

carry-on items to undergo ETD processing leaving a 20% probability that carry-on items
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will undergo physical hand search. These percentages reflect TSA standard operating

procedures indicating more emphasis on using ETD to find explosives in carry-on items.

The Secondary Inspection sub-model is constructed to allow for parallel

processing varying the number of stations from one up to two for experimentation. In the

figure only one station is illustrated. Each station works in parallel, representing the

same task being performed.

Figure 5.7 Secondary Inspection sub-model.

In the WTMD sub-model shown in Figure 5.8, an Activity Delay block is used to

simulate the movement of passengers through the WTMD. A uniform distribution was

used to output a real (decimal) number greater than or equal to the value of 1 second and

less than or equal to the value of 3 seconds. In this distribution, all the values between

the minimum and maximum are equally likely to occur. For instance, this distribution is

used to indicate "best case/worst case" scenarios, or that the least a passenger would take

to move through the WTMD is 1 second and the most it would take would be 3 seconds.

An Input Random Number is used to set the alarm rate to 16% (Merrill, 2006)

requiring passengers to undergo hand wanding or pat down search. A Select block is

used in the sub-model to direct passengers with carry-on items to the Bag Pickup sub-
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model or to exit the system if they did not have any carry-on items. Additionally, a

Multiple Activity Delay block is used to represent the transgression of passengers from

the WTMD area to either one of three options, that is, to exit, to pick up their carry-on

items, or to proceed to the hand wanding station. This block holds many passengers and

passes them out based on the delay and arrival time for each. The passenger with the

smallest delay and earliest arrival time is passed out first. The delay time of 10 seconds

is specified in the dialog box. For example, this block represents the situation where

passengers arrive at different times and take a varying amount of time to proceed to their

next stop. Passengers who arrive earlier or only take a little while will leave first;

passengers who arrive later or take a long time will leave last.

Those passengers who alarm the WTMD proceed to the Hand Wanding station

and are processed in the HandWand sub-model shown in Figure 5.9. Similar to the

WTMD sub-model, there is an Activity Delay block to represent the time to inspect a

passenger with the hand wand. A uniform distribution was used to output a real

(decimal) number greater than or equal to the value of 10 seconds and less than or equal

to the value of 20 seconds. In this distribution, all the values between the minimum and

maximum are equally likely to occur. For instance, this distribution is used to indicate

"best case/worst case" scenarios, or that the least a TSO would take to inspect a passenger

is 10 seconds and the most it would take would be 20 seconds.



Figure 5.8 WTMD sub-model.
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Figure 5.9 HandWand Station sub-model.

Additionally, a Multiple Activity Delay block is used to represent the

transgression of passengers from the hand wand station area to either one of two options,

that is, to eXit, or to pick up their carry-on items. This block holds many passengers and

passes them out based on the delay and arrival time for each. The passenger with the

smallest delay and earliest arrival time is passed out first. The delay time of 10 seconds

is specified in the dialog box. For eXample, this block represents the situation where

passengers arrive at different times and take a varying amount of time to proceed to their

neXt stop. Passengers who arrive earlier or only take a little while will leave first;

passengers who arrive later or take a long time will leave last.
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5.2.1 Model Verification and Validation

After the model was built, verification that the operational model was performing

properly took place as a continuing process. There are numerous validation techniques

(Banks, 1998; Hu, San, and Wang, 2001) available to consider in assuring that the

computer programming and implementation of the conceptual model—the

mathematical/logical representation (mimic) of the system is correct in addition to the

degree to which a model is an accurate representation of the real world from the

perspective of the intended uses of the model. Given the lack of publicly available

information in this area, and the sparse nature of detailed data for passenger security

inspections, full validation was not possible. However, at least partial validation was

possible using the empirical data collected.

A single measure of performance was selected for this analysis. This measure is

the primary inspection service time. The definitive test of model validity is determining

whether the simulation times in the system closely resemble that from the actual system.

For this purpose, empirical service times from checkpoints at large hub airports were

compared with simulation system times. The Mann-Whitney test showed that the

difference in means between the two samples was not statistically significant (U=8100,

P=0.687).

5.2.2 Sensitivity Analysis

Sensitivity analysis was performed to determine how sensitive the inspection system is to

changes in the interarrival time of passengers. For this the arrival times from checkpoints

at large hub airports was used as a benchmark with only the interarrival times changing.

As expected when passengers appear more frequently (lower interarrival time) utilization
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increases and average waiting time increases. As the interarrival time decreases the

maximum waiting time dramatically increased.

Table 5.5 Effects of Interarrival Times on Primary Inspection Queue Waiting
Times

Interarrival Time	 Average System	 Average	 Max Waiting
Changes	 Utilization	 Waiting Time	 Time

%	 (minutes)	 %	 (minutes)	 (minutes) 

Using the simulation model, the average time a passenger spends waiting for and

being inspected at each screening node was also generated and summed. The results

shown in Figure 5.10 illustrate the mean waiting time cost as a function of the primary

inspection times.

Since, another key performance issue in security inspections is how the system

will perform during periods of peak arrivals or even low arrivals, Figure 5.11 plots the

passenger waiting time behavior as the arrival rate changes. While the data collected

reflects passenger arrivals during peak demand periods, there are fluctuations that

coincide with clusters of departures throughout the day.



Figure 5.10 Waiting time cost as a function of Il i .
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Figure 5.11 Waiting time cost as a function of λ 1



CHAPTER 6

SIMULATION EXPERIMENTATION AND RESULTS

This chapter addresses the fourth and final research objective describing and reporting on

the experiments conducted of different design strategies using a paced inspection system

approach to improve performance of the ACSS system. The simulation is operated in the

self-paced mode (Koenig, Nickles, Kimbler, Melloy, and Gramopadhye, 2006), where if

the TSO completes the inspection before the maximum time has expired he/she can

advance to the next carry-on item. Using the ACSS simulation model constructed, three

primary sets of simulation experiments were conducted. The first set includes three

experiments with multiple scenarios.

Experiment 1A:

An evaluation of a paced ACSS system with a single inspector each at primary

and secondary inspection stations. A series of eight scenarios were run for all

three airport types where the primary inspection services times and percentages of

carry-on items sent to secondary inspection are varied according to the SIOC

curve data. All other experiments' performance results are compared to those

found in this set.

Experiment 1B:

An evaluation of the relative benefits of a Type-A SIOC curve improvement

strategy where there is a 20% reduction in beta or the percentage of carry-on

items sent to secondary inspection.

63
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Experiment 1C:

An evaluation of the relative benefits of a Type-B SIOC curve improvement

strategy where there is a 20% reduction in beta or the percentage of carry-on

items sent to secondary inspection.

In experiments 1B and 1C the reduction is not in beta-max but in beta-base, which

is set to τ=-8 seconds for both large and medium airport types since the global inspection

mean is a little more than 7 seconds. For small airports the base is set to 6 seconds. The

argument is that a vendor will promise a reduction in the average inspection time.

The second set of experiments repeats experiment 1A, but varies the number of

TSOs and stations at both primary and secondary inspection. The performance results are

compared to those found in experiment 1A. The second set also includes three

experiments with multiple scenarios each.

Experiment 2A:

An evaluation of a paced ACSS system with two primary inspection stations and

a single secondary inspection station. In this experiment the arrival rate (λ) is set

to twice the base rate used in experiment 1A.

Experiment 2B:

An evaluation of a paced ACSS system with two primary inspection stations and

two secondary inspection stations.

Experiment 2C:

An evaluation of a paced ACSS system with three primary inspection stations and

two secondary inspection stations. In this experiment the arrival rate (X) is set to

three times the base rate used in experiment 1A.
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The third experiment is a full scale evaluation of a paced ACSS system. This

experiment also repeats the same set of scenarios run in experiment 1A, but adds realistic

passenger screening service times and alarm rates at the WTMD and Hand Wanding

stations. In all previous experiments, the WTMD and Hand Wand service rates were set

very high in addition to a zero alarm rate so as to not be a hindrance to the flow of carry-

on item inspections.

The ACSS simulation model is a terminating system, where the system is studied

only for a period of peak demand. In airports, there is typically a three-hour morning

and evening peak period on weekdays between 5:00-8:00 A.M. and 3:00-7:00 P.M.

Therefore, each simulation is set up to last for 3 hours or 180 minutes, and a simulation

runs the 180 minute model for 100 repetitions using different random seeds for each run.

The number of replications required for each alternative simulation was based on

the sequential stopping procedure specified by Law and Kelton (1991) to achieve a 95%

confidence level. This procedure utilizes the equation:

(6.1)

where, X = grand mean of individual replication means; n = number of replications; s =

standard deviation of individual replication means; a = alpha = 0.05; and t = t-value for

n — 1 degrees of freedom. Replications were conducted until the desired relative precision

of 0.10 was obtained. A 95% confidence interval (CI) of the expected average passenger

time in the system was then calculated based on the following:

(6.2)
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The model's global time unit is in minutes. The results are fed to an Excel spreadsheet

that keeps track of the performance measures of interest over repeated trials.

There were five performance measures of interest including the passenger wait

times, the average and maximum queue length at both primary and secondary inspection

stations, and the utilization of resources at both primary and secondary inspection. These

performance measures were then used in determining system costs. The next sections

provide greater detail on the input parameters used for each of the experiments in

addition to reporting the performance results.

6.1 Evaluating a Paced ACSS System Design

Referring to the SIOC curve data plotted (see Figure 4.7) a small number of complicated,

time-consuming cases are contributing disproportionately to overall inspection times. If

these cases were diverted earlier to secondary inspections, then this would improve the

throughput of the primary inspection process, although naturally this would require that

more resources be devoted to secondary inspections.

To evaluate the approach quantitatively, three experiments, that is, 1A, 18 and 1C

were set-up representing the different paced system design strategies mentioned above.

Within each experiment are eight scenarios. Each scenario places a different maximum

time limit for primary inspections of carry-on items in addition to varying the number of

those diverted to secondary inspection. Additionally, each of the three experiments is run

for all three airport hub types resulting in a total of seventy-two experimental runs (3

experiments x 8 scenarios x 3 airport hub).
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The rest of this section is divided into three sub-sections. The first discusses the

input parameter values and provides the results from experiment 1A. The second sub-

section reports on the same for experiments 1B and 1C. The final sub-section reports on

the comparison of experiment 1A with 1B and 1C, and describes any difference in the

performance results between them.

6.1.1 Experiment 1A

Table 6.1 provides the input parameters values for the primary inspection paced

inspection service time (t) and for the rejection rate (ß) that was derived from the

empirical SIOC curve data (refer to Table 4.1) for each scenario across all three airport

hubs. For all other parameter values used in the simulation model see Appendix—

Simulation Model Parameters.

The performance results for passenger wait times at both the primary and

secondary inspection queues are shown in Table 6.2. The primary inspection average and

maximum wait time data (in minutes) is generated by the simulation model. In the

simulation, passengers join a FIFO queue upon entering the BagDrop sub-model (refer to

Figure 5.4). This queue, in front of the X-ray unit, is where passengers wait to send their

carry-on items and personal belongings into the X-ray. Each simulation is run 100 times,

and at the end of each run the wait time data is captured and fed into an Excel

spreadsheet. The results reported in the table are the average value calculated from all

100 runs.

The secondary inspection average and maximum wait time data (in minutes) is

also generated by the simulation and calculated in the same manner as the primary

inspection wait times. In the Secondary Inspection sub-model (refer to Figure 5.7)
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passengers with their carry-on items enter a queue waiting for the TSO to pick up their

bags and carry them over to either the ETD or physical hand search table. Since there is

only one TSO performing secondary inspections the number of passengers allowed into

the section of the model is restricted.

Table 6.1 Experiment 1 A Input Parameter Values
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Table 6.2 also shows the mean average wait time (WE) and the mean waiting cost

(Cw), where the unit waiting time cost for a passenger is assumed to be $0.17 per minute

($/min) or $10 per hour. In this system the mean average wait time is derived as WE = W1

+ W2, where W1 + W2 are the primary inspection and secondary inspection average

waiting times. The mean waiting cost reported in the table does not include the cost of

service. It is derived by multiplying together the assumed waiting cost ($10/Hour), the

arrival rate (X), and the mean average wait time (WE).

As shown in Figures 6.1 through 6.3 the results were plotted for each of the

airport hubs. From the figures it can be seen that at lower (faster) paced inspection times

the average primary inspection wait times are less than the 10 minute goal. However,

because more carry-on items are diverted to secondary inspection, the overall

performance of the system results in higher waiting costs. Limiting the primary

inspection maximum time to 5 seconds results in a 39% cost increase over a maximum

inspection time of 13 seconds, and 80% at 20 seconds at for both large and medium hub

airports. In the case of small airports, none of the paced inspection times resulted in

average primary inspection wait times above 10 minutes. However, because more carry-

on items are diverted to secondary inspection at faster inspection times as in both large

and medium hub airports, the system costs are also much higher at lower (faster) paced

inspection times. Limiting the primary inspection maximum time to 3 seconds results in

a 51% cost increases over a maximum inspection time of 10 seconds, and a 96% increase

at 20 seconds.
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Figure 6.1 EXperiment 1A passenger wait times for large hub airport.

71

Figure 6.2 EXperiment 1 A passenger wait times for medium hub airport.



Figure 6.3 Experiment 1A passenger wait times for small hub airport.

The data also suggests as was noted earlier (refer to Figure 4.1 and 4.2) that

inspection times beyond 13 seconds for both large and medium hubs should result in

carry-on items being automatically diverted to secondary inspection, and 10 seconds for

small hubs primarily because the last 10% of carry-on items is taking up approXimately

20% of the total inspection time.

The performance results for average and maximum queue lengths are shown in

Table 6.3. As with the wait times, the primary and secondary inspection average and

maximum queue length data is also generated by the simulation model using the same

FIFO queue block in both the BagDrop sub-model (refer to Figure 5.4) and in the

Secondary Inspection sub-model (refer to Figure 5.7). All results shown were calculated

in the same manner by averaging the numbers from all 100 simulation runs.
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Table 6.3 Experiment 1 A Average and Maximum Queue Lengths at Primary
and Secondary Inspection
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The results were plotted as shown in Figure 6.4 for each of the airport hub types.

The figure shows secondary inspection average queue length as a function of primary

inspection average queue length. Not surprisingly, at lower (faster) paced inspection

times, the average secondary inspection queue length is large compared to those at higher

(slower) inspection times because more carry-on items are diverted to secondary

inspection.
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Figure 6.4 Experiment 1 A queue length results for all airport types.

Table 6.4 shows the overall resource utilization, the percentage of time the TSO at

the X-ray machine in the simulation was in use over the course of the simulation run.

The primary inspection average utilization data is collected in the X-ray sub-model (refer

to Figure 5.5) in the Activity Delay block, which processes the carry-on items for a

specified time or delay that is the amount of time it takes an X-ray TSO to inspect an X-

ray image and make a decision to either clear the carry-on item or to send it to secondary

inspection for further scrutiny.

The percentage of time the TSO is busy at secondary inspection represents the

average for both ETD and Hand Search processing combined since only one passenger

with their carry-on items at a time are restricted in this section. The information is

captured in the Secondary Inspection sub-model (refer to Figure 5.7). In the sub-model

the Select block is used to determine which type of secondary inspection is conducted.

The dialog sets a random probability of 80% for carry-on items to undergo ETD
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processing leaving a 20% probability that carry-on items will undergo physical hand

search. These percentages reflect TSA standard operating procedures indicating more

emphasis on using ETD to find explosives in carry-on items.

Table 6.4 Experiment 1A Resource Utilization Results

The data reveals that as the primary inspection times increase from lower (faster)

to higher (slower), the TSO's utilization gradually increased from 50% to 70% never

moving beyond 72% for both large and medium airports. For small airports the average

utilization rate is between 27% and 58%. Additionally, for all airport types, the TSO at
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secondary inspection is busy almost (98%) all the time except at the highest (slowest)

paced primary inspection time, that is, 20 seconds. Utilization rates are an important

factor in checkpoint design. While not a part of this study, it is believed that TSO

performance improvement can be achieved because there is opportunity for the TSOs to

move between primary and secondary inspection stations. Thus, shorter periods of time

at one station could increase vigilance in addition to preventing fatigue problems noted in

the literature to be an issue as a result of viewing X-ray images for long periods of time.

In analyzing the different design alternatives, system throughput was also

considered as an important performance measure. System throughput is defined as the

number of passengers the system completes per unit time. For example, during the

observation period of length T, in this case equal to 1 hour, the system completes C

passengers, throughput X is measured as C/T. The simulation model captures the

number of passengers completing the process in the Exit sub-model after each simulation

run, which is then fed to the Excel spreadsheet.

Table 6.5 reports the average system throughput number from all 100 simulation

runs, in addition to showing the percentage of improvement in cost ($/Hour) over beta-

base for each of the three different airport types. The system throughput numbers are

plotted in Figure 6.5 as a function of costs for the different airport types.

The data reveals a significant increase (73-76%) in throughput moving from the

lower (faster) base scenario of t=8 seconds to higher (slower) primary inspection times

and a gradual increase in cost savings (10-77%). Interestingly, for all three airport types,

the best overall throughput was not achieved at the highest (slowest) paced inspection

time, but at the next level up. For example, at T--=17 and r=20 seconds, the throughput at
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large hub airports was 173 and 172 pphpl, respectively. TSA's goal is to increase the

average throughput to 200 pphpl (Boggus and Frankel, 2007).

Table 6.5 Experiment 1A System Throughput and Total Cost Results for All
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Figure 6.5 EXperiment 1A total system costs as a function of system
throughput for all airport types.

6.1.2 Experiments 1B and 1C - Relative Benefits of Improving Service Rates with
SIOC Curve Data

The visualization of the interrelationship between the inspection speed and rejection rate

was facilitated by the use of the SIOC curve (refer to Figure 4.7). Accordingly, the

regression functions fitted (refer to Figure 4.8) are considered here for possible

improvement strategies of the SIOC curve data.

In experiments 1B and 1C, an evaluation of the relative benefits of Type-A and

Type-B improvement strategies (refer to Figure 4.4) is performed. However, a 20%

reduction in the percentage of carry-on items sent to secondary inspection is considered

in beta-base rather than in beta-max reflecting a more probable situation where one looks

at reducing the average inspection time. Since the global inspection mean is a little more
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than 7 seconds for both large and medium airport types, beta-base is set to τ=8 seconds.

For small airports the base is set to 6 seconds. Strategy A should be better at higher

inspection rates or smaller τ, while Strategy B should be better at slower rates or higher τ.

Using the fitted regression function, the model rejection rate (ß,) was derived as:

(6.3)

Where:

Or= regression model rejection rate
A = the regression model intercept
B = the regression coefficient or slope

The Rate is the inspection rate (IA which is defined at 60/τ. The Type-A and Type-B

rejection rates (13b and OA respectively, shown in Table 6.6 were then derived as:

and,

Where:

µi = rate at inspection time interval i
pm = rate at beta-base
L = linear slope

The linear slope was derived as:

Where:

Rm = regression model rejection rate

For Type-A the rejection rate (Rm) is set at τ=20 seconds, and at T=3 seconds for

the Type-B strategy. Using the generated linear model of the SIOC curve data

improvement cured for the two strategies—Type A and B—were also generated. For

(6.4)

(6.5)

(6.6)
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example, for large hub airports the linear model would be Q = 0.051(60/g) — 0.128.

Figures 6.6 through 6.8 plot the SIOC curves for the actual, regression model, and Type-

A and B improvement strategies that were generated from the calculations showing the

rejection rates as a function of inspection rates.

Table 6.6 Experiment 1B and 1C Input Parameter Values
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The performance results for experiments 1B and 1C for passenger wait times at

both the primary and secondary inspection queues are shown in Tables 6.7 and 6.8,

respectively. These tables report WE and Cw, where the unit waiting time cost for a

passenger is assumed (imputed cost of waiting) to be $0.17 per minute ($/min) or $10 per

hour as it was in experiment 1A. Additionally, in these experiments, the mean average

wait time is derived the same as was in experiment 1A, that is, WE = WI + W2, where WI

+ W2 are the primary inspection and secondary inspection average waiting times.

The results were plotted as shown in Figures 6.9 through 6.11 for each of the

airport hub types. From the figures it can be seen that at lower (faster) paced inspection

times the average primary inspection wait times are less than the 10 minute goal.

However, as in experiment 1A, the overall performance of the system results in higher

costs because more carry-on items are diverted to secondary inspection. Limiting the

primary inspection maximum time to 5 seconds, results in a 47% and 43% cost increases

over a maximum inspection time of 13 seconds for both large and medium hub airports,

respectively, and 78% and 80% at 20 seconds in experiment 1B. In the case of

experiment 1C, there is an 18% cost reduction moving from faster inspection speeds to

slower inspection speeds. Thus, suggesting that a Type-A strategy performed better at

higher inspection rates, while better performance is shown at slower rates for Type-B.

For small airports, none of the paced inspection times resulted in average primary

inspection wait times above 10 minutes. However, because more carry-on items are

diverted to secondary inspection at faster inspection times as in both large and medium

hub airports, the overall performance of the system results in higher costs at faster

inspection times.
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Figure 6.9 Passenger wait times at large hub airports for experiments 1B and
1C.
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Figure 6.10 Passenger wait times at medium hub airports for experiments 1B
and 1C.

Figure 6.11 Passenger wait times at small hub airports for experiments 1B and
1C.
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The data also suggests as was noted earlier that paced inspection times beyond 13

seconds for both large and medium hubs should result in carry-on items being

automatically diverted to secondary inspection because the primary inspection average

wait times increase above the 10-minute wait goal, and 10 seconds for small hubs.

The performance results for the average and maximum queue lengths for

experiments 1B and 1C are shown in Table 6.9 and 6.10, respectively, and plotted in

Figures 6.12 and 6.13 for each of the airport hub types. As with experiment 1A, all

results shown were calculated in the same manner by averaging the numbers from all 100

simulation runs.

Figures 6.12 and 6.13 also show secondary inspection average queue length as a

function of primary inspection average queue length. Not surprisingly, at lower (faster)

paced inspection times, the average secondary inspection queue length is large compared

to those at higher (slower) inspection times because more carry-on items are diverted to

secondary inspection.



Table 6.9 Experiment 1B Average and Maximum Queue Lengths at Primary
and Secondary Inspection for All Airport Types
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Table 6.10 Experiment 1C Average and Maximum Queue Lengths at Primary
and Secondary Inspection for All Airport Types
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Figure 6.12 Experiment lB queue length results for all airport types. 
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Figure 6.13 Experiment 1 C queue length results for all airport types. 
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89 

Table 6.11 shows the overall resource utilization results for both experiments lB 

and lC. The utilization data is collected and calculated in the same manner as in 

experiment lA. Similar to experiment lA, the data reveals that as the primary inspection 

times increase from lower (faster) to higher (slower), the TSO's utilization gradually 

increased from 50% to 70% never moving beyond 72% for both large and medium 
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airports. For small airports the average utilization rate is between 27% and 58%. The

TSO at secondary inspection is also busy almost (99%) in the case for all three airport

types except at the highest (slowest) paced primary inspection time, that is, 20 seconds.

In the case of experiment 1C, since none of the carry-on items are rejected, the utilization

rate is zero.

Table 6.11 Resource Utilization Results for Experiments 1B and 1C at All
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Table 6.12 reports the system throughput number for both experiments 1B and 1C

for each of the different airport types. The results were calculated as was in experiment

1A by taking the average from all 100 simulation runs. This table also shows the

percentage of improvement in cost ($/Hour) over beta-base. The system throughput

numbers are plotted in Figures 6.14 and 6.15 as a function of costs for the different

airport types. For experiment 1B, the data reveals a 17% increase in throughput moving

from the lower (faster) base scenario of τ=8 seconds to higher (slower) speed at τ ---20

seconds with a gradual increase in cost savings (12-72%). For experiment 1C, there is an

earlier cost savings from 27-75% moving from the base scenario to slower speeds with

about the same percentage increase in throughput as in experiment 1B.
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Figure 6.14 Experiment IB total system costs as a function of system 
throughput for all airport types. 
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6.1.3 Comparison of Results

This sub-section reports on the examination of performance results between experiment

1A and experiments 1B and 1C, where different strategies using SIOC curve data are

simulated to determine improvements in the ACSS system design. The experiments

completed using the simulation model constructed evaluated a paced ACSS system

design. The base experiment, that is, 1A included a series of eight scenarios where the

primary inspection times and percentages of carry-on items sent to secondary inspection

were varied with a single inspector each at the primary and secondary inspection stations.

The performance results are used to compare all other experiments results.

Table 6.13 shows the performance results in terms of total system costs ($/Hour)

across experiments 1A, 1B and 1C. It also shows the cost reduction and % change from

that in experiment 1A for the different pace inspection times across all airports.

The results are plotted in Figures 6.16 and 6.17 for only large and small airports,

respectively. Since they so closely match those of large hub airports, the results for

medium hub airports are not shown. The figures plot the primary inspection queue

average wait time (in minutes) as a function of the maximum allowable paced inspection

time. The data reveals that the secondary inspection queue waiting time is most sensitive

to an increasing inspection rate. There is also a sharp drop in the primary inspection

queue waiting tie as the pace increases (µ µMAX) from 14 to 7 seconds. The overall waiting

time is relatively flat in the 10 to 13 second range, so potentially a solution in this range

is attractive.
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The most significant difference in costs is shown at the paced primary inspection

time of τ=13 seconds for both large and medium airports. For example, at τ ----13 seconds

a passenger's average wait time at primary inspection is 10.21 minutes for both

experiments 1A and 1B, and 10.97 minutes under experiment 1C, while the total system

costs is $521.20, $481.90 and $448.30 for experiments 1A, 1B and 1C, respectively.

There is an 8% cost improvement between experiment 1A and 1B, and 14% cost

improvement between 1A and 1C. Thus, overall improvements to the ACSS system can

be achieved by limiting the inspection time, especially at τ=13 seconds. Limiting the

inspection time to r---13 seconds not only resulted in a cost savings while still meeting

TSA's wait time goal at primary inspection of 10 minutes or less. A 70% cost savings

could be achieved if the percentage of carry-on items sent to secondary inspection can be

reduced from 8.4% to 2.6% at both large and medium type airports. Additionally,

passenger wait times at small airports did not exceed the 10-minute threshold, but a 34%

cost savings results in limiting the inspection time to τ=10 seconds. An 84% savings

could be achieved if the percentage of carry-on items sent to secondary inspection can be

reduced from 8% to 4%.

As shown in Figure 6.17 both improvement strategies had a significant effect on

reducing the overall waiting time. Convexities also appear revealing an optimal pace.
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Figure 6.18 Summary of eXperiment 1A results for small hub airports.
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Figure 6.19 Comparison of eXperiments 1A, 1B and 1C results for small hub
airports.
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6.2 Evaluating a Paced ACSS System Design with Multiple Inspection Stations

In second set of experiments, the number of stations at both primary and secondary

inspection is varied. There are three sub-experiments that explore different multiple

station configurations, and the performance results of each were then compared to those

found in experiment 1A. For example, in experiment 2A there are two primary

inspection stations and a single secondary inspection station. In this experiment the

arrival rate (X) is set to twice the base rate used in experiment 1A. That is, instead of an

arrival rate of 205, 202 and 173 pph for large, medium and small airports, respectively,

the arrival rate was set to 410, 404 and 346 pph. Also, by adding a second primary

inspection station the number of TSOs required in this experiment increases from four to

five.

Figure 6.20 shows how the multiple primary inspection station design was

implemented in the simulation model. In the simulation X-ray sub-model, a second and

third X-ray inspection process was constructed to allow for parallel processing varying

the number of primary inspection stations from one up to three for experimentation.

Multiple primary inspection stations are activated by simply adding a connection line to

the Activity Delay block at the beginning of each X-ray process. Each station works in

parallel, representing the same task being performed with identical processing

parameters.

Each primary inspection station feeds into the Input Random Number block to

specify whether or not a carry-on item requires secondary inspection, the item is assigned

an attribute with a yes-or-no value using the connected to a Set Attribute block, as shown

in the sub-model. The primary inspection paced times and the beta (3) values used or the
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percentage of carry-on items that are routed to secondary inspection during a simulation 

run are the same as those in run in Experiment 1A (refer to Table 6.1). 

rBagOr"oplN 

Figure 6.20 Experiment 2 multiple primary inspection station sub-model 
configuration. 

oe.gPlckUpOUT 

In experiment 2B, the system design is modified by adding another secondary 

inspection station while keeping the two primary inspection stations. Figure 6.21 shows 

how the additional secondary inspection station was constructed in the simulation model. 

As with the multiple primary inspection stations, each secondary inspection station works 

in parallel, representing the same task being performed with identical processmg 

parameters. In this configuration the number of TSOs required is six. 

Experiment 2C is an evaluation of a paced ACSS system with three primary 

inspection stations and two secondary inspection stations. In this experiment the arrival 

rate (A) is set to three times the base rate used in experiment lA, that is, 615, 606 and 519 

for large, medium and small airports, respectively. In this configuration the number of 

TSOs required is seven. 



cr~"''' .... 
HNlD 

Figure 6.21 Experiment 2 multiple secondary inspection station sub-model 
configuration. 

6.2.1 Experiments 2A, 2B and 2C Performance Results 
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The performance results for passenger wait times at both the primary and secondary 

inspection queues are shown in Tables 6.14, 6.15 and 6.16 for experiments 2A, 2B and 

2C, respectively. The primary inspection average and maximum wait time data (in 

minutes) is generated by the simulation model exactly the same . as in all previous 

experiments, specifically 1A, at the queue in the BagDrop sub-model (refer to Figure 

5.4). This queue, conceptually, in front of the X-ray stations, is where passengers wait to 

send their carry-on items and personal belongings into the X-ray. Similarly, each 

simulation is run 100 times, and at the end of each run the wait time data is captured and 

fed into an Excel spreadsheet. The results reported in the table are the average value 

calculated from all 100 runs. 
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Furthermore, the secondary inspection average and maximum wait time data (in

minutes) is also generated by the simulation and calculated in the same manner. The data

is generated in the Secondary Inspection sub-model (refer to Figure 5.7) at the queue

shown in Figure 6.21 where passengers wait for the TSO from either of the two

inspection stations to pick up their bags and carry them over to either the ETD or physical

hand search table associated with each station. Since there is only one TSO performing

secondary inspections at each station the number of passengers allowed into a station is

restricted.

Not surprisingly, the data plotted in Figures 6.22 through 6.24 for large, medium

and small airports, respectively, shows that at faster inspection speeds across all

experiments the passenger wait times do not exceed the 10 minue wait goal. However,

there are large wait times at secondary inspection. Overall, experiment 2C with three

primary inspection stations and two secondary inspection stations had the highest waiting

costs. While the slowest inspection speeds resulted in much lower costs, the average

passenger wait time at primary inspection exceeded the 10 minute goal.

The data also suggests as was noted earlier (refer to Figure 4.1 and 4.2) that

inspection times beyond 13 seconds for both large and medium hubs should result in

carry-on items being automatically diverted to secondary inspection, and 10 seconds for

small hubs.
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The performance results for the average and maximum queue lengths for

experiments 2A, 2B and 2C are shown in Tables 6.17 through 6.19, respectively. As with

experiment 1A, all results shown were calculated in the same manner by averaging the

numbers from all 100 simulation runs.

Table 6.17 Experiment 2A Average and Maximum Queue Lengths at Primary
and Secondary Inspection for All Airport Types



Table 6.18 Experiment 2B Average and Maximum Queue Lengths at Primary
and Secondary Inspection for All Airport Types
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Table 6.19 Experiment 2C Average and Maximum Queue Lengths at Primary
and Secondary Inspection for All Airport Types

109

The results were plotted as shown in Figure 6.25 and 6.27 for each of the airport

hub types. The figures show secondary inspection average queue length as a function of

primary inspection average queue length. Not surprisingly, at lower (faster) paced

inspection times, the average secondary inspection queue length is large compared to

those at higher (slower) inspection times because more carry-on items are diverted to

secondary inspection.
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Figure 6.25 Experiment 2A PI and SI average queue lengths across all airport 
types. 
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Figure 6.26 Experiment 2B PI and SI average queue lengths across all airport 
types. 
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Figure 6.27 Experiment 2C PI and SI average queue lengths across all airport 
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Table 6.20 shows the overall resource utilization results for experiments 2A, 2B

and 2C. The utilization data is collected and calculated in the same manner as in

experiment 1A. Similar to experiment 1A, the data reveals that as the primary inspection

times increase from lower (faster) to higher (slower), the TSO's utilization gradually

increased from 50% to 70% never moving beyond 72% for both large and medium

airports. For small airports the average utilization rate is between 27% and 58%. The

TSO at secondary inspection is also busy almost (98%) in the case for all three airport

types except at the highest (slowest) paced primary inspection time, that is, 20 seconds.

Table 6.21 reports the system throughput number for experiments 2A, 2B and 2C

for each of the different airport types. The results were calculated as was in experiment

1A by taking the average from all 100 simulation runs. Additionally, Table 6.22 shows

the percentage of improvement in cost ($/Hour) over beta-base. The system throughput

numbers are plotted in Figures 6.28 through 6.30 as a function of costs for the different

airport types. The data reveals a significant increase (42-48%) in throughput moving

from the lower (faster) base scenario of z=8 seconds to higher (slower) primary

inspection times across all three experiments and airport types. There is also a gradual

increase in cost savings (2-98%) moving from the base rate to slower speeds at primary

inspection, while decreasing as primary inspection times get faster but more carry-on

items are sent to secondary inspection.



Table 6.20 Resource Utilization Results for Experiments 2A, 2B and 2C at All
Airport Types
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Table 6.21 System Throughput Results for Experiments 2A, 2B and 2C at All
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Figure 6.29 Experiment 2B total system costs as a function of system 
throughput for all airport types. 
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Figure 6.30 Experiment 2C total system costs as a function of system 
throughput for all airport types. 

115 



116

6.2.2 Comparison of Results for ACSS with Multiple Stations

In this set of experiments, the ACSS system was modified by adding resources at both the

primary and secondary inspection stations. Table 6.23 shows the cost performance

results for experiment 2A, 2B and 2C as compared to experiment 1A. The data is plotted

in Figures 6.31 and 6.32 for again only large and small airports, respectively.

For large hub airports, the results show an improvement but about the same in

passenger wait times at primary inspection across experiments as compared to 1A.

However, adding additional resources at primary and secondary inspection stations

resulted in overall higher costs as compared with experiment 1A for large and small

airports. In the case of small airports, the results show significant benefit after 10

seconds. However, there is 40 to 70% increase in costs between the baseline and

scenarios 2A, 2B, and 2C. Also of note is that passenger wait times' (13.36 minutes)

exceeded the 10 minute goal.
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Figure 6.31 Comparison of experiment IA with 2A, 2B, and 2C for large hub 
airports. 
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6.3 Full Scale Paced ACSS System Design

The third experiment is a full scale evaluation of a paced ACSS system that adds realistic

passenger screening service times and alarm rates at the WTMD and Hand Wanding

stations. In all previous experiments, the WTMD and the Hand Wand service rates were

set very high in addition to having a zero alarm rate. This was so that passengers would

not be delayed at these stations which could possibly result in a hindrance to the flow of

carry-on item inspections. In this experiment the same set of scenarios run in experiment

1A were repeated and their performance results compared to each other.

6.3.1 Full Scale Model Performance Results

The performance results for passenger wait times at both the primary and secondary

inspection queues are shown in Table 6.24, and plotted in Figures 6.33 through 6.35.

Again, the primary inspection average and maximum wait time data (in minutes) is

generated by the simulation model exactly the same as in all previous experiments. Each

set of scenarios is also run 100 times, and at the end of each run the wait time data is

captured and fed into an Excel spreadsheet. The results reported in the table are the

average value calculated from all 100 runs.

The performance results for the average and maximum queue lengths are shown

in Table 6.25. As with experiment 1A, all results shown were calculated in the same

manner by averaging the numbers from all 100 simulation runs.

The data also suggests as was noted earlier (refer to Figure 4.1 and 4.2) that

inspection times beyond 13 seconds for both large and medium hubs should result in

carry-on items being automatically diverted to secondary inspection, and 10 seconds for

small hubs.
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Figure 6.33 Full scale model passenger wait times at large hub airports.
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Figure 6.34 Full scale model passenger wait times at medium hub airports.

Figure 6.35 Full scale model passenger wait times at small hub airports.



Table 6.25 Full Scale Model Average and Maximum Queue Lengths at
Primary and Secondary Inspection for All Airport Types
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Figure 6.36 Full scale model queue length results for all airport types.

Table 6.26 shows the overall resource utilization. The data reveals much the

same as in previous eXperiment results that as the primary inspection times increase from

lower (faster) to higher (slower), the TSO's utilization gradually increased from 50% to

70% never moving beyond 72% for both large and medium airports. For small airports

the average utilization rate is between 27% and 58%. Additionally, for all airport types,

the TSO at secondary inspection is busy almost (98%) all the time except at the highest

(slowest) paced primary inspection time, that is, 20 seconds.

Table 6.27 reports the average system throughput number from all 100 simulation

runs, which are then plotted in Figure 6.37 as a function of costs for the different airport

types. The data reveals a significant increase (73%-76%) in throughput moving from the

lower (faster) base scenario of τ=8 seconds to higher (slower) primary inspection times

and a gradual increase in cost savings (4-10%).



Table 6.26 Full Scale Model Resource Utilization Results
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Table 6.27 Full Scale Model System Throughput and Total Cost Results for
All Airport Types
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Figure 6.37 Full scale model total system costs as a function of system 
throughput for all airport types. 

6.3.2 Comparison of Results 

In this set of experiments, the ACSS system was modified by adding realistic service 

times and alarm rates at the WTMD and Hand Wanding stations. Table 6.28 shows the 

cost performance results for the full scale experiment as compared to experiment lA. 

The data is plotted in Figures 6.38 through 6.40 for large, medium and small airports, 

respectively. The results show little discernable differences in passenger wait times and 

costs across scenarios as compared to 1 A. 



Table 6.28 Full Scale Model Cost Performance Results Compared with
Experiment 1A across All Airport Hubs
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Figure 6.38 Comparison of full scale model results with experiment lA for 
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CHAPTER 7

DISCUSSION

7.1 Synopsis of Findings

Important findings emerged from the analysis. The results showed the interaction of

factors as seen in Table 5.1 as not significant, meaning that the effect of airport hub,

decision type and data collection time period on X-ray TSO image inspection times is not

different, but about the same for security checkpoints across the three different hubs.

However, as demonstrated by the simulation analysis even seconds count in screening of

passengers' carry-on items to reduce longer than necessary wait times at airport

checkpoints.

Reliable data describing the operating characteristics of security inspection

processes are now available. This data can be used to design and analyze ACSS systems

with much greater accuracy and detail. The results will in effect reduce the dependence

on trial-and-error experiments at the site.

Most importantly, the findings revealed that a paced X-ray TSO was an

improvement over the performance of the current un-paced process as shown in Figures

7.1 and 7.2. The SIOC curves provide a standard against which new and alternative

ACSS designs can be evaluated and benchmarked. These also make it easier to

determine the value of Type-A, B or C improvements of potential vendor technologies.

The observed data revealed mean X-ray TSO inspection times of M=5.81, M=7.00, and

M=7.04 seconds at current un-paced ACSSs within small, medium and large airport hubs,

respectively, with average wait times at primary inspection across large and medium
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airports more than the established IO-minute or less goal. Under paced conditions for 

large and medium hubs, a maximum paced inspection time of 13 seconds reduces mean 

waiting times from 14-minutes to the IO-minute waiting goal while increasing costs by 

about 58% because more passengers' carry-on items are sent to secondary inspection. 

Yet, referring more carry-on items to secondary inspection where screening is more 

intrusive and accurate has the added benefit of improving the probability of detecting a 

prohibited item. 
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Figure 7.1 Comparison of all experiments for large hub airports. 
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Figure 7.2 Comparison of all experiments for small hub airports. 

7.2 Limitations and Future Research 

While the evidence and analyses in this study reveal that X-ray TSO inspection times are 

not influenced by different volumes of passenger or during different peak hour periods, 

limitations of any research must be considered when interpreting the data and resultant 

findings, and are particularly useful in designing future studies to help bolster previous 

findings. Towards this end, the study's limitations and potential solutions of the 

limitations are as follows: 

(a) Data were collected from only 5% of the nations' larger checkpoints (high and 

medium hub categories). Data collection from additional sites would add to the research 

findings even further. 
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(b) X-ray inspection times may not be entirely a product of the TSO's decision

time. The TSO may have had to wait to move onto the next X-ray image until the TSO

who would perform secondary inspection was available. Additional observations on

primary and secondary screener interactions taken from checkpoint sites may be more

useful in future studies.

(c) The study focused on two of the four checkpoint screening functions. Future

studies would benefit by including observations of WTMD screening of individuals in

addition to hand-wand or pat-down screening of individuals rates and service times to

examine impacts on overall waittimes.

(d) The study focused on only a small number of variables of interest. As with

any research, additional variables are always possible and would add tremendous

information to the interpretation of findings. For instance, variables such as ticket

checker processing times or varying levels of clutter within X-ray images as it relates to

inspection times and decisions could certainly mediate or moderate the findings, and

could have important impacts on the waittimes at checkpoints.

(e) To further understand why average inspection times are lower at some

faxcilities than other, future investigation could consider other faxtors such as layout,

work schedules, noise, etc.

(f) Development of new ACSS designs using existing technology, to improve

system performance.

Regardless of the limitations presented above, findings from the present study are

important in providing useful information relative to checkpoint security screening

operations and TSO performance improvements.



APPENDIX SIMULATION MODEL PARAMETERS

Table A.1	 Simulation Model Parameters

Passenger per checkpoint arrival rate (ppc)

Passenger per screening lane arrival rate
01:10

Primary inspection service time (in
seconds)

Secondary inspection service time for ETD
Equipment (in seconds)
Secondary inspection service time for
Hand Search (in seconds)
Inspection service time for Walk through
Metal Detector (in seconds)
Inspection service time for Hand Wand (in
seconds)
Delay time for divestiture of carry-on
items into bins and movement into X-ray
opening
Alarm rate for Walk through Metal
Detector
Primary inspection service rate (bags per
hour)
Secondary inspection ETD service rate
(bags per hour)
Secondary inspection Hand Search service
rate (bags per hour)
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