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ABSTRACT

OPTIMAL TRAIN CONTROL ON VARIOUS TRACK ALIGNMENTS
CONSIDERING SPEED AND SCHEDULE ADHERENCE CONSTRAINTS

by
Kitae Kim

The methodology discussed in this dissertation contributes to the field of transit

operational control to reduce energy consumption. Due to the recent increase in gasoline

cost, a significant number of travelers are shifting from highway modes to public transit,

which also induces higher transit energy consumption expenses.

This study presents an approach to optimize train motion regimes for various

track alignments, which minimizes total energy consumption subject to allowable travel

time, maximum operating speed, and maximum acceleration/deceleration rates. The

research problem is structured into four cases which consist of the combinations of track

alignments (e.g., single vertical alignment and mixed vertical alignment) and the

variation of maximum operating speeds (e.g., constant and variable). The Simulated

Annealing (SA) approach is employed to search for the optimal train control, called

"golden run".

To accurately estimate energy consumption and travel time, a Train Performance

Simulation (TPS) is developed, which replicates train movements determined by a set of

dynamic variables (e,g., duration of acceleration and cruising, coasting position, braking

position, etc.) as well as operational constraints (e.g., track alignment, speed limit,

minimum travel time, etc.)

The applicability of the developed methodology is demonstrated with geographic

data of two real world rail line segments of The New Haven Line of the Metro North



Railroad: Harrison to Rye Stations and East Norwalk to Westport Stations. The results of

optimal solutions and sensitivity analyses are presented. The sensitivity analyses enable a

transit operator to quantify the impact of the coasting position, travel time constraint,

vertical dip of the track alignment, maximum operating speed, and the load and weight of

the train to energy consumption.

The developed models can assist future rail system with Automatic Train Control

(ATC), Automatic Train Operation (ATO) and Positive Train Control (PTC), or

conventional railroad systems to improve the planning and operation of signal systems.

The optimal train speed profile derived in this study can be considered by the existing

signal system for determining train operating speeds over a route.
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CHAPTER 1

INTRODUCTION

1.1 Background

As a major public transportation mode, rail transit (e.g., light rail and heavy rail systems)

has been widely used in many metropolitan areas in the U.S. Over the years, the total

consumed transit energy increased as the total line haul distance and passengers train

miles of travel increased. It was found that the annual energy usage increased 1.6 percent

for rail freight service and 1.7 percent for rail passenger service from 1995 to 2005. In

2005, 571.4 trillion and 87.6 trillion British Thermal Units (BTU) were respectively

consumed by rail-freight and rail-passenger services. Due to recent increases of gasoline

and other energy costs, many people are expected to shift from highway modes to transit

for their daily travel. This might drastically increase energy expenses to rail transit

suppliers.

According to a report prepared by the US Energy Information Administration

(EIA, 2006), it is expected that transportation energy consumption and energy prices will

continue to increase until 2030. Concerned about rising energy costs, rail transit operators

have implemented energy conservation strategies to maintain sustainability of rail

operations. To improve overall energy efficiency, the San Francisco Bay Area Rapid

Transit District (BART) and the Metropolitan Atlanta Rapid Transit Authority (MARTA)

incorporated regenerative braking energy into their rail system in order to improve

overall energy efficiency. The New York City Transit Authority (NYCTA) has tested

several energy efficient strategies, including coasting, regenerative in-vehicle storage,

and substation battery energy storage (Uher at al,, 1984). Train operations may become

1
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more efficient by using new technology-oriented improvements such as automatic train

control (ATC), automatic train operation (ATO), and positive train control (PTC), which,

however, are expensive. Moreover, it could be a burden for suppliers to adopt up-and-

coming technologies without assurance of success. Thus, train control can be one viable

approach to reduce expensive energy bills for transit operators.

For most transit operations, train control for stations-to-station movement is

affected by five motion regimes: acceleration, cruising, coasting, braking, and standing.

However, the train control (i.e., driving strategy) used most in rail transit is either for a

flat-out run (e.g., shortest time) or for a single coasting run at a fixed point to achieve

train schedule regulation (Mellitt et al., 1987; Wong and Ho, 2003). Therefore, it is

desirable to develop a dynamic passenger train control model that can reduce energy

consumption considering schedule adherence.

1.2 	 Problem Statement

Previous studies (Chang and Sim, 1997; Hwang, 1998; Franke et al., 2000; Albecht,

2004) that minimize train energy consumption have been conducted by using different

approaches such as coast control, automatic train operation (ATO), train speed

trajectories, equi-block track system, etc. However, few of them discussed the impact of

vertical or horizontal track alignment on kinematic train forces (e.g., propulsive force,

resistance, adhesion, and acceleration, etc.) and considered alignment as a constant value.

In particular, considering the effect of track alignment variation in optimizing

train energy consumption is very important because the tractive effort (i.e,, propulsive

force or TE) and train resistances are a function of the geometry of the track alignment.

The vertical track alignment may be composed of a series of curves with different radii,
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which provide a gradual transition from one level to another for smooth riding. There are

two types of parabolic curves used in track alignment design: convex and concave. The

benefits of a convex (vertically dipped) curve that reduces energy consumption and travel

time were discussed by Kim and Schonfeld (1998), while a concave curve favors coasting

operations (Howlett and Pudney, 1995).

A number of previous studies developed optimal train control to reduce energy

consumption, but only a few studies considered the effect of track alignment on train

performance and energy consumption, Furthermore, some approaches for optimizing

energy consumption were developed without considering the effect of track alignment on

TE and resistance, which resulted in the misrepresentation of performance by the models.

It is desirable to develop a sound train control model, which can minimize energy

consumption considering the effect of varying track alignment and train operational

characteristics, such as propulsive force, resistance, and acceleration and deceleration

rates, In addition, the proposed model should be also capable of dealing with a speed

limit, which significantly affects the application of motion regimes (e.g., acceleration,

cruising, coasting, and deceleratiOn). A train speed profile along a route is directly

affected by the speed limit, because of the geometry of track alignment and/or operational

purpose, and by travel time constraints because of scheduled arrival times at downstream

stations, which should be considered while optimizing train control.
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1.3 Objective and Work Scope

The objective of this study is to develop an analytical model that optimizes train control

to reduce train energy consumption by considering the effect of vertical track alignments,

schedule adherence, and maximum operating speed, which directly affect the incurred TE

and resistances of a train.

While developing an optimal train control, a time-based train performance

simulation (TPS) model will also be developed for demonstrating energy consumption

and travel time induced by a new train control. Therefore, the TPS must accurately

replicate train movements determined by dynamic variables (e.g., duration of acceleration

and cruising, coasting position, braking position, etc.) as well as the primary static

constraints (e.g., track alignment, speed limit, minimum travel time, etc.).

The Maximum Operating Speed (MOS) used in this study is largely divided into

two categories: fixed and variable. The fixed MOS represents a single speed regulating

train speed between two stations, while a variable MOS limit consists of multiple

operating speeds due to track alignment and operational strategy. To develop an optimal

train control by considering the joint impact of track alignment and MOS, four cases are

investigated in this study, The optimal train control is investigated for four cases as

shown in Table 1.1.



Table 1.1 Proposed Work Scope

5

• Case I: Model I is developed to optimize train control for minimum energy

consumption for each of three vertical alignments (e.g., level, convex, and

concave) and fixed maximum operating speed.

• Case II: Model II is enhanced frOm Model I by considering the impact of a

variable maximum operating speed on energy consumption, which is commonly

used in most rail lines.

• Case III: Model III is enhanced from Model I by considering the joint impact of a

mixed vertical alignment (i,e., several curves) and a constant maximum operating

speed.

• Case IV: Model IV is developed by integrating Models II and I1I and considering

the impact of mixed vertical alignments and a variable maximum operating speed.
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1.4 Dissertation Organization

This dissertation is organized into seven chapters. Chapter 1 introduced the background

of the energy consumption problem for the railroad industry and presents the research

objective and work scope. Chapter 2 summarizes the efforts of previous studies related to

sustainable rail operations, various TPS models, kinematic models for train movement,

and optimal train control for energy savings. Chapter 3 presents the development of the

proposed TPS model, consisting of three modules for handling dynamic train movement

on a continuously varying track with designated motion regimes. Chapter 4 discusses the

development of analytical models used to optimize train control. Chapter 5 introduces the

Simulated Annealing approach to optimize the research problems defined in Cases I

through IV, Chapter 6 presents a numerical example, which demOnstrates the

applicability of the developed TPS model in estimating station-to-station travel time and

energy consumption under various train controls and track alignments. Finally,

conclusions and suggestions for future studies are presented in Chapter 7,



CHAPTER 2

LITERATURE REVIEW

This chapter summarizes the literature review, including sustainable rail operations, train

performance simulation, and methods to search for optimal train control. This chapter is

organized into six sections: Section 2,1 discusses railway energy consumption as a

sustainability indicator; Section 2,2 discusses the review of previous TPS models; Section

2.3 reviews essential kinematic train equations for developing a simulation model;

Section 2.4 discusses the effect of train control on energy consumption; Section 2.5

discuss previous studies of optimizing train energy consumption; Section 2.6 reviews

optimization algorithms and heuristic search methods; and Section 2.7 summarizes the

literature review and establishes the rationale for the model developed by this research.

2.1	 Sustainable Train Operation

The sustainability of the transportation system has been receiving a great level of

attention worldwide, In 1987, the United Nations' Brundtland Commission defined

sustainability in the following way: "A sustainable condition for this planet is one in

which there is stability for both social and physical systems, achieved through meeting

the needs of the present without compromising the ability of future generations to meet

their own needs" (United Nations, 1987), The early view of transportation sustainability

focused on fuel use and environmental concerns. More recently, people have been

concerned not only with fuel use and the environment, but also congestion, mobility, and

safety as conditions of sustainability (Richardson, 2000). To assess the sustainability of

an urban transportation system, various indicators were identified (Sinha, 2003). The

7
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indicators used in his study of transportation sustainability evaluation were developed

based on decennial data (1960 to 1990) from 46 cities in the U.S., Australia, Canada,

Europe, and Asia, which had been established in the study conducted by Kenworthy and

Laube (1999).

Major initiatives in North America and Europe in characterizing the definition

and measurement of transportation sustainability were discussed (Black et al., 2002; Jeon

and Amekudzi, 2005), in which the impact on the economy, environment, safety,

transportation-related, and social well-being were focused and summarized in Table 2.1.
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Table 2.1 Indicators of Sustainable Transportation Systems

US
DOT

US
EPA

Tram
Canada 

T
LC

2NRTEE ORTEE3 TAC 4 VTPI5 CST OECD Bank E EA
8

Economy
Population
Density
Economic
Efficiency
Employment
GDP per unit of
energy use
Transportation re/ated
Length of
railways and
road
Passenger-km
(by mode)
Freight ton-km
(by mode)
Total Miles
Traveled (TMV)
Public transit
and auto use
Environmenta/
CO 2 emission
Green house gas
emission
Fuel
consumption
Per-capita use of
transportation
energy
Emission of air
pollutants
Safety
Death and injury
Accident

Socia/ well-being
exposure to
airport noise
Ave. access
distance
Accessibility

I : included by agency I 	 : not included
1: Environmental Canada (1991)
2: National Round Table on Environment and Economy (2003)
3: Ontario Round Table on Environment and Economy (1995)
4: Transportation Association of Canada (1999)
5: Victoria Transport Policy Institute (2003)
6: Center for Sustainable Transportation Canada (2003)
7: Organization for Economic Co-operation and Development (1999)
8: European Environmental Agency (2002)
Source: Jeon and Amekudzi (2005)
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As a major indicator of sustainable transportation systems, energy consumption

by the railway industry has been given attention in several previous studies. O'Toole

(2008) investigated energy consumption and emissions by the U,S, railway industry. The

energy consumption and greenhouse gas (CO2) emission rate of 63 urban railway systems

were assessed, A study of the energy intensity (BTU per passenger mile) of four

transportation modes, including passenger cars, light trucks, bus transit, and rail trains

over the last 30 years, as shown in Figure 2,1, found that the energy efficiency of light

trucks (e,g,, all two-axle four-tire truck) has been steadily improved, while the other

modes had no noticeable improvement.

Figure 2.1 Energy intensities of various transportation modes,

Source: Davis et al. (2008), Transportation Energy Data Book (Oak Ridge National Laboratory),
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The United Kingdom (UK) railway industry has focused on developing various

energy saving programs for many years. Peckham (2007) indicated four possible areas

where energy can be saved, which include reducing unnecessary load on trains, running

shorter trains in the off-peak period, improving energy efficiency through optimal train

controls and operational regulation, and reducing engine idling. It was estimated that the

annual potential saving from these opportunities is approximately 740,000 megawatt-

hours (MWh) of electricity (26% of the total electricity consumption by UK railways)

and 70 million liters of diesel (10% of the total diesel consumption by UK railway). In

financial terms, it was worth around 70 million pounds (£, 2005-2006 year value), and if

converted into emission rates, more than 500 million kilograms of CO 2 .

An energy cost reduction study was conducted by using data provided by the

Washington Metropolitan Area Transit Authority (WMATA) (Uher et al., 1984), whose

objective was to classify the usage of primary energy and identify energy conservation

methods for reducing the electric bill. In addition to analyzing energy costs, this study

also developed and evaluated cost-effective energy saving strategies, and recommended

suitable plans for implementation. The suggested energy conservation methods included

coasting operations, passenger load factor improvement (i.e., running shorter train during

the off-peak period), catch-up operation (e.g., results of train delays during the peak

periods), and regenerative braking energy. With these methods, WMATA was able to

save $ 0.63-1,35 million energy bill per year (1982) by modifying the speed regulation of

the transit lines by implementation of coasting operations, reduce 3.82 million annual car-

mile by running shorter trains during the off-peak periods, and save $ 2.5 million from

energy saving by using of the energy regeneration brake system.
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2.2 Train Performance Simulation (TPS) Models

In early 1950, the rail freight market share in the U.S. declined from 56% to 38% because

of increased competition from other transportation modes such as trucks, pipelines, and

inland waterways. Consequently, their profits significantly decreased. Hence, the Class I

railroad companies (defined as the operating revenue greater than $1 million)

commenced to investigate train performance measures, including fuel savings, service

reliability, line capacity increase, and efficient use of locomotives (Railroad Facts, 1986).

A number of technologies [e.g., Advanced Train Controller (ATC), High Productivity

Integral Train, etc.] were proposed to improve railroad productivity, yet a large cost was

also incurred for field testing and applications. Therefore, a computer-based simulation

model which can evaluate the effectiveness of these technologies was desired (Levine,

1985).

The US Federal Railroad Administration (FRA) initiated a study (1978) to

develop TPS technology (e.g., in data collection, resistance modeling, power system

modeling, brake system modeling, output data, model validation, etc.), which triggered

the railroad industry's attention to developing TPS models. The characteristics and

features of the developed TPS models that accommodate various predominant areas (e.g.,

fuel and energy usage, safety, and train operation studies) were evaluated by Howard et al.

(1983), The sources of energy consumption in rail transit were classified into three

categories, including train handling, engineering modification, and train makeup. Train

handling represents the way to control (i.e., drive) a train under various conditions, such

as station spacing, track alignment, and speed limit. Engineering modification handles
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detailed components of the propulsion system. Train makeup that specifies types of train

car by car impacts on aerodynamic and mechanical resistance modeling.

The applications of train simulation models were discussed by Martin (1999),

which were classified into three categories: (1) assessing the mechanical and kinematic

train performance, such as energy consumption, position of the throttle, TE and resistance

as well as travel time and speed over a given infrastructure; (2) assessing rail signal

systems to achieve a service goal; and (3) evaluating timetables and the interaction

between trains meeting at complex junctions or major terminals. The applications of early

category were demonstrated by two types of train simulation model (i.e., single-train and

multi-train), which are determined based on project purpose and train network size.

To simulate train control on a rail line, Uher and Disk (1987) developed an energy

management model consisting of two major components: Train Performance Simulator

and Electric Network Simulator. The Train Performance Simulator was designed to

mimic the operation of a single train, while the Electric Network Simulator calculated

characteristics of electrical energy such as power flows, voltages, currents and losses. A

method, calculating the forward and backward train speed profiles subject to speed limits,

was developed to ensure appropriate train speeds at any location along the line. With this

method, for example, the intersection of two speed profiles (i.e., backward and forward)

was found for starting either the coasting or braking regime according to speed regulation.

Kikuchi (1991) developed a train simulation model for analyzing the operation of

rail rapid transit, in which the acceleration/deceleration rate, speed limit profile, and

station locations are required inputs. The movement of a train along a rail line operated

by the Southeastern Pennsylvania Transportation Authority (SEPTA) was simulated, and
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the relationship among travel time, travel distance, and travel speed was investigated. A

comparison of travel times between the actual and simulated runs was made. However,

the TE and the resistance affected by track alignment were not considered, and the train

speed profile was determined by pre-specified, constant acceleration and deceleration

rates and the maximum operating speed, The train speed profile was developed on the

basis of a series of short, consecutive segments (every 0.02 miles), while the speed of

each segment was assumed cOnstant.

Minciardi et al. (1994) adopted a discrete, event based simulation approach to

analyze rail transit system performance. Two simulators were used to estimate energy

consumption, which includes a stochastic event-driven simulator for analyzing train

performance under a given schedule, and an integrated system simulator for analyzing

network electricity usage. Since the simulator was purely based on discrete-events, such

as train arrival at the beginning of a track circuit, train arrival at a station, train departure

from a station, and door closing, the kinematics of train movement affected by track

alignment were not considered.

Kim and Schonfeld (1997) developed a deterministic simulation model for

analyzing propulsive and braking energy consumption under simplified track alignments

(level and convex) connecting two stations. It was found that operating trains on a

vertical dipped track alignment can reduce energy consumption and travel time

considerably more than on a flat tangent alignment, which indicated that the effect of

track alignment is essential in developing an optimization model for train control.

Sensitivity analyses were conducted by varying the dip percentage of the studied track
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alignment, station spacing and the power of the locomotive, subject to constant

acceleration and deceleration rates and maximum operating speed,

Chang et al. (1998) developed a simulation program for evaluating automated

train operations, called Inter-station Train Movement Simulation (ITMS). An Automatic

Train Control (ATC) strategy using a fuzzy Automatic Train Operation (ATO) and

Automatic Train Protection (ATP) was embedded in ITMS. While simulating train

movement, an object-oriented approach was used to manage the simulation clock, which

generated time driven objects corresponding to train movement (i,e,, train coasting, train

braking), and event driven objects corresponding to train operation (i.e., train door open,

train door close, train arrival at station, and train departure from station). The system

performance indicators (e.g., speed, headway, and dwell time) of a rapid transit system

under different signal controls for both steady-state and disturbed (i.e., a disturbance

occurred due to station dwell time delay) headway conditions were analyzed. With a

developed fuzzy algorithm, ITMS was able to determine the optimal dwell time of the

trains at stations to ease passenger congestion conditions during the peak period.

Simulation results demonstrated that signal control, dwell time, and speed limit

significantly affect service headway regularity.

Gordon et al. (1998) evaluated a Train Control Simulator (TCS) developed by the

Bay Area Rapid Transit (BART) System in San Francisco. The objective was to test and

improve Advanced Automatic Train Control (AATC) for handling short headway

operations and assisting coordinated train control and energy management. TCS consists

of a train control simulator and a train power simulator. The train control simulator was

designed to handle the motion of a train traveling in both directions on a single-track rail
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system and to predict the state of the power system at any given moment. On the other

hand, the train power simulator was designed to evaluate the severity of voltage sags and

the usage of regenerated traction power for the steady state power consumption, It was

found that TCS can be utilized to enhance AATC as well as compute speeds and

acceleration rates of every train within a control zone.

Zou et al. (1999) developed a train simulation model using a moving block

signaling system as a platform for Automatic Train Control (ATC). The structure of the

simulation model consists of kinematic, geographical, and dynamic control modules

which calculate acceleration/speed/position of a train, determine track layout, and ensure

that the train speed does not exceed the maximum operating speed, respectively. Note

that the dynamic control module could reduce unnecessary speed changes in the train

running profile, which results in considerable energy saving.

Jong and Chang (2005) developed a train simulator, called TrainSim, using

object-oriented programming concepts; where two algorithms were embedded to generate

speed profiles complying with the equation of motion, and physical constraints of train

and track alignment. The speed profiles were developed based on the shortest and normal

(i,e., the one shown on the timetable) travel times. The speed profile of the shortest travel

time simulated by TrainSim was compared to that generated by the trains operated by the

Taiwan Railway Administration (TRA). It was found that the difference between average

travel times estimated by TrainSim and under TRA real-world operations was quite small

(less than 0.12%).
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Unlike previous TPS models, Kim and Chien (2009) developed a dynamic time-

based TPS model consisting of a train traction module (TTM), a track alignment module

(TAM), and a train control module (TCM), for emulating train travel time and energy

consumption considering various control regimes under different vertical track

alignments. The developed TPS can generate various train performance indicators (e.g.,

travel time, train speed, energy consumption, acceleration/deceleration rate, travel

distance, etc.), which can be utilized to assess the performance of train control and the

accuracy of service schedules. The relationship between train control and track alignment

was investigated, and the alignments affecting travel time and energy consumption were

analyzed. Particularly, it was found that the train operation on a convex rail alignment

significantly reduces consumed energy, which offers greater flexibility to justify train

control to meet scheduled service.

After reviewing major features of TPS models, the results of comparative analysis

are summarized in Table 2.2, where six major features were identified, including

movement calculation, traction power system, energy consumption, tract alignment, train

control, and signaling system. However, none of the TPS models was equipped with all

the features. It is desired to develop a TPS model that can emulate various components of

railway systems to calculate accurately the energy consumption and travel time

associated with various track alignments. Thus, the optimal train control alternatives may

be determined and evaluated.
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Table 2.2 Review of TPS Models

Features

Movement
Calculation

Traction
Power
System

Energy
Consumption

Track
Alignment

Train
Control

Train
Signaling
System

Simulation Model

Uher &
Disk
(1987)

Time-based V

Kikuchi
(1991)

Event-based

Minciardi
et al,
(1994)

Event-based V

Kim &
Schonfeld
(1997)

Time-based

Gordon
et al.
(1998)

Time-based V V -V

Chang
et al.
(1998)

Event-based

Zou
et al.
(1999)

Event-based V V

Jong &
Chang
(2005)

Time-based

Kim &
Chien
(2008)

Time-based V V \I

I: identified features
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2.3 Kinematic Models for Train Movement

Moving a train along a route involves many force components, including the TE,

resistance, braking force and train weight, While the TE provides a necessary force to

move a train, resistance, known as drag, and consisting of the forces acting on the wheels

and externally on the train body, opposes the movement and speed of a train. To

accelerate or decelerate a train, the TE must be transferred between wheels and the

running surface of the rail through a friction force, called adhesion (Vuchic, 1982). A

comprehensive review related to TE, adhesion, and resistance was conducted and it is

discussed next.

2.3.1 Tractive Effort (TE) and Adhesion

The tractive effort can be computed by equating the work done at the rim of the driving

wheel with that performed by the torque or turning effort of the engine or motor (Lipetz,

1935). In general, the engine power consumed for the TE is limited not to exceed the

adhesion between wheel and track; otherwise wheel slip will occur and the locomotive

will lose traction. Adhesion is a function of the friction at the point of wheel-rail contact,

The adhesion coefficient is often taken as 0,25, which represents the percentage of

locomotive weight that is available as effective TE (Hay, 1982)

Since the adhesion coefficient, denoted as 1u , of a train has non-linear

characteristics to its corresponding speed, denoted as v , it is difficult to derive

mathematically, but it can be obtained mainly through field tests (Shirai, 1977; Isaev and

Golubenko, 1989). Sjokvist (1988) compared adhesion coefficient curves utilized in

several European countries (e,g., Germany, Austria, Switzerland, and France), and the

result is illustrated in Figure 2,2. Note that Curve A, employed in Germany, Austria, and
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Switzerland, was obtained based on running a German Class 19 electric locomotive up to

160 km/h in 1943.

Figure 2.2 Comparison of adhesion coefficients.

Source: Sjokvist (1988)

Later, Curve A, representing the relationship between p and v in units of

kilometer per hour (kph), was formulated by Curtius and Kniffler (1950) as

which has been widely used in estimating adhesion coefficients at any given speed in

Germany (Filipovic, 1995). Unlike Curve A, Curve B represents p obtained by running

an electric locomotive in France in the 1960s (Nouvion, 1968), which was formulated by

the French National Railways (SNCF) as



21

In addition, Curve C was derived from experiments in Germany by running a train which

was hauled by the first German electric locomotive geared for 200 kph.

The Japan National Railways (JNR) conducted an adhesion test using a

Shinkansen 200 locomotive for estimating the adhesion coefficient, under wet conditions,

on a test bed and in actual service at speeds up to about 250 kph as shown in Figure 2,3,

The adhesion fOr high-speed trains on the Shinkansen network was derived by Maeda et

al, (1984) as

Figure 2.3 Adhesion under wet conditions -Shinkansen 200.

Source: Maeda et al. (1984)



22

Vuchic (2007) investigated the effect of the surface conditions of highway and

rail to determine adhesion coefficients (p). Under dry conditions, it was found that p

was approximately between 0.52 and 0.8 and between 0.15 and 0.35 for vehicle speeds

between 10 kph and 80 kph on highway and rai1, respectively. However, p significantly

decreased when the surface condition became wet. For an extreme case, p of highway

vehicles is as low as 0.05 under snow/ice, while p of rail vehicles is approximately 0,1

under wet conditions. The summary of adhesion coefficients for highway and rail

vehicles is shown in Table 2.3.

Table 2.3 Summary of Adhesion Coefficients for Various Weather Conditions

Surface Conditions
Dry Wet Snow/Ice

Speed
(kph) 10 80 10 80 10 80

Modes Highway
MAX 0.8 0.72 0.6 0.45 0.2 0.05
MIN 0.66 0.52 0.42 0.27 0.36 0.18

Rail
MAX 0.35 0,29 0.25 0.17 - -
MIN 0.27 0.15 0.19 0.1 - -

Source: Vuchic (2007)

2.3.2 Train Resistances

To determine whether the propulsion system of a train is able to operate with speed (V),

the total resistance, denoted as R, must be known. Schmidt (1910) developed a series of

equations for calculating resistances, based on empirical data obtained from the Illinois

Central Railroad. On a level track alignment without wind effect, it was found that the

total resistance can be expressed by a quadratic equation formulated as
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where the coefficients C, , C 2 , and C, are dependent on axle load, number of axles, cross

section of the train, and shape of the train.

An evaluation of the coefficients of train resistance for Swedish conventional

passenger trains, high-speed trains, and freight trains was conducted by Lukaszewicz

(2007). After reviewing the comparison study (Rochard and Schmid, 2000) results of

three train resistance measurement methods such as tractive effort method, coasting

energy method, and dynamometer or drawbar method, the coasting energy method that

calculates the changes in kinematic and potential energy of a train when it is coasting

between two successive measurement positions was selected for its accuracy. The impact

of variables such as speed, number of axles, track type (i.e., surface condition), and train

length on resistance coefficients was also analyzed, It was found that C, varies with the

number of axles, axle load, and track type, and increases linearly with the number of

axles, while C2 and C3 varying with train length and the front or rear area of the train,

respectively.

The train resistance equations developed by Schmidt (1916) vary with the weight

and speed of a train, which led Davis (1926) to formulate an empirical equation for unit

resistance (see Equation 2.5), consisting of rolling, journal, flange, and air resistances,

Equation 2.5, also called the Davis equation, was developed and validated by the data

from the Pennsylvania and Burlington Railroads.
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where r is unit resistance in pounds per ton; w is weight per axle in tons; b is an

experimental coefficient based on flange friction, shock, sway, and concussion. C is the

drag coefficient based on the shape of the front end of the car or locomotive; and A is the

cross-sectional area in square feet of the car or locomotive. Later, the modified Davis

equation (see Equation 2.6) was developed in 1970 by Committee 16 of the American

Railway Engineering Association (AREA). Its intent was to recognize changes in

resistance factors, increased train operating speed, and improved track conditions over

the earlier days (AREA, 1981). The modified Davis equation is thus developed and

formulated as

where K, the air resistance coefficient, is 0.07 for cars, 0.0935 for containers, and 0.16 for

trailers on flatcars. Both the Davis and the modified Davis equations were derived for

calculating unit resistance of a train, which considered weight per axle, number of axles

per car, and the degree of aerodynamic and drag effects.

Hay (1982) discussed the effect of vertical and horizontal track alignments on

estimating train resistances. Grade resistance is proportional to the angle (in degree) of

the inclined track and can be directly derived from the relationship between train weight

and the track grade. It was found that the grade resistance was 20 lb/ton per track grade

(in percentage). On the other hand, the resistance associated with a horizontal track

curvature was determined by field tests and experiments (the Pennsylvania Railroad,

1907). It was found that the resistance due to horizontal curvature was 0.8 lb/ton per track

curvature (in degrees). While evaluating train resistances, Hay (1982) found that the total
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resistance is the sum of all resistive forces acting on the train, which are measured in

pounds per ton. The evaluated resistive forces and their components are summarized in

Table 2.4.

Table 2.4 Characteristics of Train Resistances

Resistive
Forces

Resistance
Components Features

Load weight
related

Rolling
Resistance

• Results from friction between the wheel tread and the
head of the rail

• Function of the coefficient of rolling friction
• Types of metal in wheel and rail
• Condition of wheel and rail surfaces

Track
Resistance

• Results from deflection and reverse bending of the
track due to the loading and stiffness of the track
structure

Journal
Resistance

• Results from the friction between the journals at the
ends of each axle and brasses

Velocity
related

Air
Resistance

• Varies approximately with the square of the speed and
directly as the cross-sectional are

• Air resistance =CAV2

o where C: experimental coefficient
o A: cross-sectional area (ft2)
o V: velocity (mph)

Curvature
related

Curve
Resistance

• Friction between the flanges and treads of the wheels
• The head and gage corner of the rails due to track

curve

Grade
related

Grade
Resistance

• Major impact on the number of trains, locomotive
units, and horse power to move given tonnage

Source: Hay (1982)

Bernsteen et al. (1983) studied the problem of train rolling resistance as an energy

consumption end use. Two types of freight train cars (e.g., 120-ton cars and 40-ton cars)

were tested to measure the rolling resistance and its effect on energy consumption for

various tracks classes [Track Classes 3, 4, 5, and 6 (a system of classification for track

quality has been developed by the FRA and each track class has its own speed limit as

shown in Table 2.5)]. It was found that the accuracy of the modified Davis equation
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decreased when axle load is extremely low, which had an impact on rolling resistance. It

was also found that since the rolling resistance strongly depends on class of track, the

surface of track alignment should be improved to achieve better energy efficiency,

Table 2.5 Track Class and Train Speed Limit

Speed Limit (mph)
Track
Type

Freight Train Passenger
Train

Excepted' < 10 Not allowed
Class 1 10 15
Class 2 25 30
Class 3 40 60
Class 42 60 80
Class 5 3 80 90
Class 6 110
Class 74 125
Class 8 5 160
Class 96 200

1. Only freight trains are allowed to operate on Excepted track and they may only run at speeds up to
10 mph (16 km/h). Passenger trains of any type are prohibited.

2. Mainline track owned by major railroad company
3. Burlington Northern Santa Fe (BNSF) railway & Amtrack's Southwest Chief
4. Most of Amtrack's Northeast Corridor
5. Portion of the Northeast Corridor
6. Currently no Class 9 Track
Source: Federal Railroad Administration Track Safety Standards Compliance Manual (2007)

2.4	 Train Control Regimes

Energy consumption and travel time on fully controlled systems are exclusively affected

by train control and less interfered by external factors such as traffic, signals, and

pedestrians (Vuchic, 1982). Therefore, a number of studies (Hopkins, 1978; Yasukawa,

1987; Howlett and Pudney, 1995; Duarte and Sotomayor, 1999) focused on optimal train

control for minimum energy consumption, In general, train control for most transit

operations represents a cycle of different motion regimes, including acceleration, cruising,

coasting, and braking. For analyzing station-to-station travel time and distance profile, it
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is essential to comprehend the description of the motion regimes and their mathematical

expressions, which will be discussed in Chapter 3.

Four basic train controls and their motion regimes discussed by Vuchic (1982) are

shown in Figure 2.4:

Figure 2.4 Four cases of inter-station train control regimes.

• Control I: Acceleration, then braking must apply;

• Control II: Acceleration, cruising, then braking must apply;

• Control III: Acceleration, cruising, coasting, then braking must apply; and

• Control IV: Acceleration, coasting, then braking must apply.

Each case contains a set of motion regimes (e,g., acceleration, cruising, coasting, and

braking) affected by station spacing, acceleration/deceleration rates, and maximum

operating speed, denoted as Vm . Controls I and II are used to achieve the least travel time

for station spacing, denoted as S, is less and greater than the critical station spacing,
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denoted as S e , respectively. In addition, Controls II, III, and IV are all used for S> S e . In

Control II, a train accelerates until VM is reached, and then VM is maintained until a brake

must be applied to stop at the next station. It is obvious that Control II operation drives

shorter travel time but consumes more energy, compared to those in Controls III and IV.

Control III operation is commonly used for reducing energy consumption, which consists

of an acceleration interval to reach VM , cruising at that speed, coasting, and then braking.

By using Control IV operation, the consumed energy can be further reduced, albeit the

longest travel time.

Hopkins et al. (1978) measured train energy consumption for various rail services

such as branch line freight, inter-city freight, high speed passenger, and commuter

considering train speed, size (weight and length), power to weight ratio, and track profile.

It was found that a continuously varying speed profile could consume an additional

energy of 5 - 15% than that of a constant speed profile (i.e., cruising), although both

yielded the same average speed, which indicated that a train operated with frequent

acceleration and braking consumes more energy.

Yasukawa et al. (1987) investigated several energy-efficient train controls for the

Tohoku Shinkansen electric motor trains by employing a simulation approach. Four

different train controls were simulated on the rail segment between Ohmiya and Oyama

stations. As illustrated in Figure 2.5, the proposed train controls used the same

acceleration rate until the train speed reaches VM , then the following motion alternatives

will take place:

• Control 1: cruising with VM , decreasing speed with automatic train control (ATC)

brake, cruising again, and then braking ;
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• Control 2: coasting, decreasing speed with ATC brake, cruising, and then braking;

• Control 3: cruising, speed decreasing using ATC brake, coasting, and then

braking; and

• Control 4: coasting, speed decreasing using ATC brake, coasting again, and then

braking,

It was found that Control 4 is the most energy-efficient for which approximately 10%

energy can be saved, compared to other controls.

Figure 2.5 Train controls of the Tohoku Shinkansen.

Duarte and Sotomayor (1999) determined train speed trajectories with an optimal

control of a train in subway systems, The objective function of the study was minimizing

the total energy consumption for a round trip. Several constraints such as speed limit,

maximum slope of track alignment, maximum acceleration/deceleration rate, and

maximum electrical force were considered. The Gradient-Restoration method developed

by Miele et al. (1974) was employed to design an optimal train control used at a subway
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system in Santiago, Brazil. An average of 18 % energy saving per train was achieved

after executing the optimal train speed profile.

Hiraguri et al. (2004) proposed a train control method based on the prediction of

train movement and data communication. The control method intended to avoid

unexpected train movement, such as an abrupt deceleration or stopping due to the delay

of the preceding train. The concept of the control method was to calculate the predicted

time when the preceding train leaves the station and transmit the predicted time to the

approaching train, and then the speed profile of the approaching train was controlled to

avoid an unexpected stopping. The proposed method was verified in computer simulation

and the performance of recovery from traffic disruption was evaluated. The simulation

results showed that the proposed method reduced stopping delay between stations and

related energy consumption.

Dongen and Schuit (1989) investigated several energy efficient driving strategies

of an electric railway system connecting Zandvoort-Maastricht and Heerlen in the

Netherlands. They analyzed energy savings, considering energy efficient acceleration,

optimized constant speed, and coasting. The energy saving test was conducted in co-

operation with the traffic center and train drivers were informed of the optimal control.

The test results of driving strategies consisting of optimized acceleration rate, constant

speed, and coasting revealed that approximately 25% of the energy consumption under

ideal train service circumstances (i.e., undisturbed condition) was saved, while 15% of

the energy under unexpected situations (i,e., temporary speed restriction, signal checking,

etc.) was saved.
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2.5 Minimization of Energy Consumption for Train Operation

A number of studies related to minimizing train energy consumption have been

researched by using classical numerical optimization methods such as dynamic

programming (Franke et al., 2000; Albrecht, 2004) and the maximum principle (Horn,

1971; Golovitcher, 2001) as well as modern heuristic optimization algorithms such as the

Genetic Algorithm (GA) (Chang and Sim, 1997; Wong and Ho, 2003; Bocharnikov et al.,

2007), and fuzzy logic combined with GA (Hwang, 1998).

Previous studies on train energy consumption minimization used to over simplify

train movement (Horn, 1971) and ignored the effect of track alignment, which

considerably influences train resistances and tractive effort (Albrecht, 2004; Hwang,

1998).

Franke et al. (2000) used discrete dynamic programming to minimize train energy

consumption by considering the non-linear aspect of train control. Energy was set as a

dynamic state variable to minimize energy consumption on a level (without grade and

curvature) track alignment. An equation for train motion was formulated in the form of a

piecewise function, which was tested on the Zurich-Luzern line of the Swiss Federal

Railways (SBB) and achieved 10-30% reduction of traction energy.

Albrecht (2004) investigated the possibilities of train running time modification to

reduce power peaks and energy consumption under a given headway. The problem of

adjusting train running was regarded as a multi-level decision problem because it has to

be decided at each station and solved using dynamic programming. A case study has been

conducted for one line of the Berlin S-Bahn network consisting of a track of 18

kilometers (km) with 14 stations, Given that an optimal combination of headway and
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synchronization time are known, it was sufficient to use a controller based on the

minimization of a single train's energy consumption using dynamic programming. The

optimized train running time could lead to energy savings of 4%.

Horn (1971) discussed that a number of studies on energy efficient train control

analytically approached a simplified linear train model by using the Maximum principle

in the late 1960s. Most optimal controls achieved by the Maximum principle were based

on the assumption that an inter-station train movement is composed of four motion

regimes: maximum acceleration, cruising, coasting, and maximum deceleration. The

application of optimal control was possible when this assumption was met.

Golovitcher (2001) developed an analytical method to achieve optimal train

control for minimum energy consumption in rail or other fixed path vehicles. To decrease

on-board computational time, he used a Hamiltonian formulation and the maximum

principle to determine the set of optimal controls, Based on the results obtained by

solving the Hamiltonian, a set of motion regimes (e.g,, full tracking, full braking,

coasting, cruising, partial tracking and partial braking) was established. The results of the

conjugate function of the Hamiltonian, traction effort equation, and braking power

equation set up criteria for using motion regimes, In a case study, the optimal control

could save 3% of the energy consumption.

Hwang (1998) developed a fuzzy control model which determines an economical

(i.e., the most energy efficient) train running profile considering the trade-off between

travel time and energy consumption, A speed triplet set (coasting speed, economical

speed, and maximum speed) was prepared through simulation runs and was optimized by

a proposed GA hybrid method (GA combined with a fuzzy model), but track alignments
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were not considered. The studied GA hybrid method was used to a high-speed rail system

from Seoul to Busan in Korea. It was found that when the increase of travel time is less

than 7%, more than 5% of the energy consumption was saved.

, GA was used to search for the appropriate coasting control in a mass rapid transit

(MRT) system. Chang and Sim (1997) developed a dynamic train coasting regime

controller and a coasting control table by using GA to determine the timing for coasting

and to resume acceleration. Each coasting table was encoded into variable lengths of

chromosomes with each gene representing the relative position between stations where

coasting should be initiated or terminated. It was found that the use of GA to obtain

optimized coast control strategies is successful in improving energy consumption. Later,

a similar but enhanced study was conducted by Wong and Ho (2004). They used GA to

identify the best coasting locations, and the possible improvement on the fitness of genes

was investigated. Single and multiple coasting control with GA were developed and their

corresponding train movement was examined. Further, a Hierarchical Genetic Algorithm

(HGA) was adopted to identify the number of coasting locations required according to

the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK), a fast and

effective mutation scheme for GA, was used to a genetic operator to achieve fitter

solutions.

Bocharnikov et al. (2007) used GA to find an optimal coasting strategy combined

with varying acceleration and deceleration rates. They derived a fitness function

consisting of energy consumption and running time. Fuzzy sets were implemented and

optimal control sought which minimized energy consumption within the defined
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timetable constraints. It was found that on a 8,53 km track, up to 31.27% of traction

energy was saved while travel time increased by 12.5%.

Kim and Chien (2010) developed an optimization model for rail transit to

minimize energy consumption used for an inter-station run. The model optimizes the

duration of train motion regimes used for train control by considering track geometry,

speed limit, and scheduled travel time using the Simulated Annealing algorithm (SA),

The model was used in a real case study of the Metro-North Commuter Railroad. The

most energy efficient train control, or called "golden run", associated with speed limits,

track geometry, and schedule adherence was identified. It was found that the optimal

train control saved 30.4 % of the energy consumption in a commuter rail system

compared with flat-out run, while travel time increased by 7 %.

Energy minimization for rail public transit systems was discussed by Danziger

(1975) from the viewpoint of an integrated systems approach. The approach considered

the interaction of all the major subsystems of a rapid transit system rather than each

subsystem independently. Some of the major subsystems examined included vehicles and

their major propulsion, braking and auxiliary systems, train operations, environmental

control facilities, and civil and structural facilities. The major factors that may

significantly affect an overall energy evaluation were identified, and the ways in which

each of these factors can be controlled to affect overall maximum efficiency of energy

use were discussed. Energy evaluation techniques include a new strain performance

simulation computer program developed by Parsons, Brinckerhoff, Quade and Douglas,

Inc., as part of a 4-year subway environmental research project. It was found that the

procedures for evaluation on a total system-wide basis are applicable for any rail transit
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system and can be used to extend or modify existing rail transit systems and the design of

new ones.

2.6 	 Optimization Algorithms and Heuristic Methods

The studied optimal train control problem is a large combinatorial optimization problem

where the solution space consists of combinations of multiple decision variables,

including motion regimes, locations of motion regime changes, and the acceleration rate.

Thus, a robust searching algorithm, such as Simulated Annealing and other intelligent

optimization techniques, is desired to find a near optimum solution efficiently in the

enormous solution space. Several optimization techniques, such as Simulated Annealing

(SA), Tabu Search (TS), and Genetic Algorithm (GA) are suitable to solve a

combinatorial problem, and are discussed below,

The simulated annealing (SA) algorithm derived from statistical mechanics was

developed by Kirkpatrick et al. (1983) based on the strong analogy between the physical

annealing process of solids and the problem solving of large combinatorial optimization

problems. The states of solid represent the feasible solutions of optimization problems, in

which the energy associated with each state corresponds to the value of the objective

function of each feasible solution. Accordingly, the minimum energy of a crystal state

corresponds to the optimal solution while rapid quenching can be considered as a local

optimization, A standard simulated annealing algorithm includes four portions (i.e.,

solution representation, objective function, generation mechanism of neighbor solutions

and has been cooling schedule). SA has been proven effective for fine-tuning a local

optimal search, and utilized to solve many optimization problems in transportation related

fields, such as transit network optimization (Zhao and Zeng, 2006), robust estimation
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(Baselga, 2007), vehicle routing problem (Ting and Chen, 2007), road network design

(Kim and Schonfeld, 2008). However, a good initial solution and cooling schedule are

very critical in finding the optimal solution.

Busetti (2003) presented an overview of SA by discussing and comparing its

features with other optimization methods. The strengths of SA identified in his paper are

as follows:

• SA can handle highly non-linear models, chaotic and noisy data, and many

constraints.

• SA is flexible and able to find global optimality.

• SA is versatile and does not rely on any restrictive properties of the model.

• SA can be easily tuned, For any reasonably difficult non-linear or stochastic

system, a given optimization algorithm can be tuned to enhance its performance

and since it takes time and effort to become familiar with a given code, the ability

to tune a given algorithm for use in more than one problem should be considered

an important feature of an algorithm.

He also made a direct comparison between Adaptive Simulated Annealing (ASA) and

GA, using a test suite already adapted and adopted for GA. The result showed that in

each case, ASA outperformed the GA problem. He mentioned that GA is a class of

algorithms that are interesting in their own right; GA was not originally developed as an

optimization algorithm, and basic GA does not offer any statistical guarantee of global

convergence to an optimal point.

Zhao and Zeng (2006) presented a stochastic methodology for transit route

network (TRN) optimization. Their study goal was to provide an effective computation
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tool for the optimization of a large-scale transit network to minimize transfers with

reasonable route directness while maximizing service coverage. The methodology

includes the representation of a transit route network solution search spaces,

representation of the transit route and network constraints, and a stochastic search scheme

based on an integrated SA and GA search method. The feasibility of the proposed method

has been tested through previously published results and a practical TRN optimization

problem of a realistic size, Numerical results showed that the methodology was capable

of tackling large-scale transit network design optimization problems.

Baselga (2007) proposed a methodology for robust estimation that has proven to

be a valuable approach to adjust surveying network when there are systematic or gross

errors in the observations or systematic errors in the functional model. He computed

robust estimation with SA and an Iteratively Reweighed Least-Squares (IRLS) process,

and compared the results of two methods. In his study, he mentioned that SA is one of the

most suitable heuristic methods for large-scale optimization problems, especially when

there is a global optimum, which is to be determined among many other local optima.

Ting and Chen (2007) developed a methodology to find the optimal solution of a

vehicle routing problem (VRP) which is an important management problem in the field

of physical distribution and logistics. The study proposed a multiple ant colony system

(MACS) to solve the multi-depot vehicle routing problem with time windows

(MDVRPTW), Moreover, two hybrid algorithms, which combine the strengths of the

MACS and the SA, were developed to improve the solution quality. The numerical

analysis demonstrated that the combination of MACS and SA can improve the solution

quality significantly.
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Kim and Schonfeld (2008) extended the network design problem (NDP) to the

proposed road space allocation problem (RSAP), which finds the optimal lane

configuration on each link in a road network that minimizes total system cost. The RSAP

was formulated as a bi-level programming problem with an upper-level problem that

optimally allocates road space and a lower-level problem that evaluates travelers' mode

and route choices in response to each alternative. The demand model employs a multi-

class, multi-modal network equilibrium model to efficiently evaluate road space

allocation alternatives. A heuristic based on simulated annealing was presented to solve

the combinatorial optimization problem. It was found that when toll lanes are provided in

the network, in most cases, lower-income users have the longer average travel time than

higher-income users. With a lower allowable equity measure, a more equitable solution

was reached.

The literature review revealed that existing algorithms have different strengths in

solving particular optimization problems. For example, GA was found to outperform SA

and TS in solving traveling salesman problems (Pham and Karaboga, 2000). However, in

solving large-scale machine-grouping problems, Zolfaghari and Liang (2002) indicated

that SA outperforms both GA and TS, and GA is slightly better than TS,

2.7 Summary

Energy consumption is deemed to be a very important indicator for sustainable train

operation due to increased energy usage and cost. A number of studies have been

conducted to minimize energy consumption for train operations, but some of them

required the purchase of new equipment (e.g., kinetic energy storage system, variable

voltage variable frequency (VVVF) inverter, gate turn off (GTO) thyristor, etc.) that are
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quite expensive. Therefore, implementing optimal train control subject to existing track

alignment and regulated speed setting may bring a significant benefit in comparison with

alternatives using costly technologies. Most of the previous studies shown in Table 2,6

have been focusing on developing optimal train control models to reduce energy

consumption, but those either disregarded the joint effect of varying vertical alignment

and horizontal curvature on TE and resistance or neglected the restriction of travel time

for schedule adherence. Instead, most of the train control studies were focusing on the

effect of train speed control or coasting regime on energy consumption and travel time.

This research develops methodologies that optimize train control by considering various

aspects (e.g., track alignment, maximum operating speed, schedule adherence, etc.) of

train operations.
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Table 2.6 Minimum Energy Consumption for Train Operation Studies

Authors
(Year) Methodology Limitation

Horn
(1971)

•

•

Train control model
assumed linear
Optimized using Maximum
Principle

• Over simplified train
movement

Chang and Sim
(1997)

• Developed dynamic
coasting regime controller
by applying GA

• Proposed method was
demonstrated for inter-station
train movement

Hwang
(1998)

• DevelOped most energy
efficient train running
profile using a fuzzy control
model

• Effect of track alignment was
not considered

Franke et al.
(2000)

• Employed discrete dynamic
programming to minimize
train energy consumption

• Studied on only level
alignment

Golovitcher
(2001)

• Developed analytical
method for optimal train
control by using maximum
principle

• Only four sets of train
control are considered

Albrecht
(2004)

• Adjusted train running time
using dynamic
programming

• Effect of track alignment was
not considered

Wong and Ho
(2004)

•

•

Determined best coasting
locations with GA
Identified the number of
coasting using MARK

• Proposed method is not
applicable for a multiple
inter-station run

Bocharnikov et
al, (2007)

• Investigated an optimal
coasting strategy using GA

•  Proposed method is
appropriate only for inter-
station train movement



CHAPTER 3

DEVELOPMENT OF TRAIN PERFORMANCE SIMULATION (TPS) MODEL

A time-driven TPS model which consists of three key modules: Train Traction Module

(TTM), Track Alignment Module (TAM), and Train Control Module (TCM), is

developed to simulate passenger train operations, which can be used to evaluate various

performance indicators, including travel time and energy consumption for any train

control and track alignment. Dynamic information, such as the TE, resistances, the rate of

acceleration/deceleration, and speed, will be generated corresponding to the location of a

train and the geometry of the track alignment. The development of each module is

discussed below.

3.1 Train Traction Module (TTM)

The responsibility of the train traction module (TTM) is to compute the TE needed to

move a train along a rail line, considering the speed, the rate of acceleration (or

deceleration), and the location of the train at any point in time. TTM calculates the TE

based on projected resistances so that the rates of acceleration/deceleration and the target

speed for the next interval operation can be obtained. The input parameters of TTM

include static information (e.g., locomotive power, number of cars per train, number of

axles per car, train weight, cross-section area), dynamic information (e.g., train location,

travel time, speed, rates of acceleration/deceleration), track alignment condition (e,g.,

convex, concave, level), and operational constraints (e.g., speed limit, station spacing,

and train schedule, etc.). An iterative computation process is performed based on a user-

41



42

specified time interval (e.g., 1 second), in which the needed TE to move the train to the

desired location over time can be determined.

The calculated TE with TTM can be used with different types of locomotives (e.g.,

diesel-electric and electric motors) for estimating consumed energy by justifying the ratio

of energy consumption per unit of TE. Note that the function of TE is calculated based on

the effective power to move tonnage up on the track alignment (e.g., level, convex, and

concave). The developed TTM computes TE and resistances of cars and locomotives of

the train by considering the train as a string of masses interconnected by springs and

damping as shown in Figure 3.1,

Figure 3.1 Longitudinal train forces on a cOntinuously varying track.

The net force to move each car of the train is equivalent to the differences

between TE, denoted as F, the sum of resistances (e.g., bearing, rolling, air, and grade

resistance), denoted as R, coupler forces determined by a damper constant (d) and spring

constant (k). Considering that locomotives of a train can be placed in any position, the

equation of motion for the car in a train, at time t , can be determined by Equation 3.1

discussed by Cole (1998).
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where m, is car mass, a it is acceleration of the i th car at time t, d, is damping constant, k,

is spring constant, li t, is speed of the i th car at time t, x: is longitudinal position of the i th

car at time t,

To avoid slippage of the wheel on the track, the maximum TE at time t for the

i th car, denoted as Ftmax(i) , is the minimum value of available propulsive force, denoted as

F t and adhesive force, denoted as Fta(i). Thus,p(1)

As indicated in Eq. 3.2, 4 (1) represents a needed force for the wheel to overcome

the resistance is the product of locomotive's horse power for the i th car, denoted as Pit ,

and energy transmission efficiency, denoted as r1, divided by speed of the i th car, denoted

as Vti , at time t. Thus,

where 375 is a parameter to convert the unit rate of work in foot-pounds/second into

mile-pounds/hour. Note that Equation 3.3 is derived based on a function discussed by

Hay (1982) in which the transmission efficiency (77) is a coefficient of energy loss
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between the engine and the wheels. 77 varies with the type of gears and is usually

between 0.78 and 0.85, depending on train speed and track condition.

On the other hand, F; (  represents a friction force caused by the contact between

the wheel of the i th car and track surface and is dependent on the car weight, denoted

as W, , and adhesive coefficient, denoted as pit . The determination of 	 is based on the

train speed shown in Figure 3.2 (Vuchic, 2007), which ranges between 0.28 and 0,38 for

a speed of 10 kilometers per hour (kph) and between 0.17 and 0.28 for a speed of 80

kilometers per hour (kph) under dry rail and wheel conditions. In the developed TPS,

is assumed linearly decreasing as the train speed increases from 0 to 80 kph. Thus,

Note that g was found non-linearly decreasing with an increasing V,' (Candee, 1940),

which can be adapted by the developed TPS.

Figure 3.2 Adhesion coefficient vs. speed under different rail and wheel conditions.
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The kinematics of the i th car movement at time t inclined at an angle B it to the

horizontal are determined by a couple of force components including TE, resistance and

train weight, denoted as Fit , Rti, and W, , respectively (See Figure 3.1). Therefore, the

adhesive force Fta( ,) for steel wheels on the rail, generated by the car weight component

perpendicular to the surface of the track, can be estimated by Equation 3.5 as

The resistances of a train consists of three principal components, including

bearing resistance, rolling resistance, and aerodynamic resistance, The first two

resistances purely depend upon the speed and weight of the train, while the third one is

affected by the direction and speed of wind as well as the size, shape, and speed of the

train. The unit resistance of the car at time t, denoted as R tu(i) , can be obtained by the

following modified Davis equation as:

where w i represents car weight per axle; G; represents grade percentage; ID; represents

track curvature; and K, and n, are the aerodynamic coefficient and the number of axles

per car, respectively. Note that Vrt represents relative train speed based on the direction of

wind speed ( ) as shown in Figure 3.1. Thus,
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where θtwd(i) is the angle between the directions of wind and car movement.

The resistance of the i th car at time t, denoted as Rt i , is the product of unit

resistance (K ( , ) ), car weight per axle (w i ), number of axles per car (n, ), and number of

cars per train (N). Thus,

The net force to move a car in a train was formulated in Equation 3.1, and is equal

to the TE minus the resistance combined with forces resulting from damping and springs.

Note that the net force of the i th car at time t divided by the train mass represents

acceleration, denoted as at i . Thus,

where W, represents the i th car weight, while p and g are the coefficients of rotating mass

and gravitational acceleration, respectively. The process of calculating train deceleration

is similar to that for calculating acceleration, which is determined by actual braking force,
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denoted as Ftb(i) , the maximum value of comfort-limited braking force, denoted as Fb„

and adhesion-limited braking force, denoted as F ba . Thus,

By considering the comfort of standees, F bc is regulated not to exceed a maximum

deceleration rate, denoted as b.. According to Equation 3.8, Equation 3.11 can be

derived for Fbc , in which the maximum rate of acceleration is replaced by the maximum

rate of deceleration. Thus,

Unlike Fbc(i) Fba(i) is caused by adhesion from the track and the wheel while braking,

which has been discussed in presenting Equation 3.5.

The acceleration rate of a train shall not exceed the maximum acceleration rate,

denoted as a max , for both safety and passenger comfort concerns, In this regard, the

suggested maximum acceleration and deceleration rates are formulated as Equations 3.12

and 3.13, respectively (Hoberock, 1977):
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Since the TE in the proposed TPS model is calculated based on a user specified

time interval, denoted as At , a train car's speed and travel distance can be estimated

based on the rate of acceleration or deceleration determined in every interval, The

increment of train speed, denoted as Δv t  , from t to t+1 is the product of the acceleration

rate and the duration of the time interval ( At in Equation 3.14). The associated travel

distance of the i t" car, denoted as Ax: , is formulated as Equation 3.15:

To move the i t" car in a train at speed Vit , an equation used to calculate the engine power

consumed at t, called Pit , is derived based on a function discussed by Hay (1982), Thus,

The energy consumption rate e ti required to either propel or brake during At can

be derived as
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Note that the unit engine power (hp) is equal to 0.7457 kilowatts (kW), and the time

interval (sec) divided by 3,600 is converted to an hourly base. The total energy

consumption, denoted as E, over the route segment can be obtained by integrating the

power required over time. Thus,

where J is the number of time steps needed for traveling from one station to another.

3.2 Track Alignment Module (TAM)

A vertical track profile is a combination of segments with different grade percentages and

transition sections, which need a sag curve and/or a crest curve for smooth connection,

Transition rates in grade in 100 ft, denoted as y, can be estimated by Equation 3.19, and

the recommended transition rates by AREA are 0,05 and 0,1 for sag and crest curves,

respectively (Hay, 1982),

where G 1 and G2 are two adjacent track grades, and L is the horizontal track length.

TAM converts a given vertical track profile into a series of track grades delivered

to TTM for calculating train resistances and the TE, which exchanges data (e.g., track

grade and train position) in every simulation time step. TAM also provides information

(maximum operating speed, denoted as VM  ) to the Train Control Module (TCM) so that a

proper track alignment can be referred to determine the regime of motion (e,g,,
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acceleration, cruising, coasting, and deceleration, etc.). A step procedure summarized

below discusses the interaction between TAM and other modules (e.g., TTM and TCM).

• Step 1: Identify the number of inflection points of track alignment and divide the

station spacing (S) into a number of segments based on the inflection points.

where q is the total number of segments and j is the segment number in vertical

alignment

• Step 2: Develop equations for representing vertical track alignment for segment I

identified in Step 1, denoted as yj(xt), where x t is the traveled distance at time t

(ft).

• Step 3: Differentiate y j (x t ) over distance to obtain track grade G tj at segment j.

• Step 4: Input Gtij to TTM and y j (x t ) to TCM for calculating train resistance and

TE and determining the regimes of motion.

• Step 5: Input Gtj and	 data to TTM in every time interval and receive travel

distance (Δxt  ) data from TIM. Note that Δx t = xt - xt-1,
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3.3	 Train Control Module (TCM)

The responsibility of the Train Control Module (TCM) is to determine the appropriate

motion regime based on TE and track alignment information computed by TTM and

TAM, TCM will first generate feasible plans formed by different motion regimes, As

shown in Figure 4, a general train control, denoted as TC, consisting of accelerating (M a ),

first coasting ( Mc1  ), cruising ( M, ), second coasting (	 ), and braking ( M b ) is

developed for discussing feasible plans. Note that the relationship between speed and

time is not necessarily linear.

Figure 3.3 Configuration of a speed profile for a general train control on SVA.

While M a and M b are always essential for accelerating and decelerating a train

departing from and arriving at a station, three other motion regimes ( 	 , M, , and M e, )
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are optional and can be integrated with M a and M b . For instance, if the durations for the

1 st and 2nd coasting regimes are equal to zero ( tc1 = tc2 = 0) the resulting train control only

consists of accelerating, cruising, and braking regimes. However, if the durations for the

1 st coasting and cruising are equal to zero (tc1 = tV = 0), the resulting train control consists

of accelerating, coasting, and braking, It is considered that coasting is usually a beneficial

motion regime for rail operators because it may save considerable energy; however a

longer travel time between stations should be expected.

Considering various track alignments (level, convex, and concave) and applicable

motion regimes, the feasible train controls for each alignment are summarized in Table

3.1. It is worth noting that the applied train controls in the developed TPS are not

necessarily limited to the train controls below.

• Train Control 1 (TC1): Considering cruising regime ( M y ) associated with M a

and Mb

• Train Control 2 (TC2): Considering cruising and both coasting regimes (e.g.,

Mc1 and/or Mc2 ) associated with M a and Mb

• Train Control 3 (TC3): Considering coasting regimes (e,g,, M c1 and/or Mc2 )

associated with M a and Mb
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Table 3.1 Feasible Train Controls

Track
Alignment

Train Controls and Motion Regimes

(1) TCL1 =Ma +My ±Mb

Level (2) TCL2 = Ma + My + Mc2 + Mb

(3) TCL3 = Ma + Mc2 + Mb

(1) TCU1 = Ma + My + Mb

Convex (2) TCU2 = Ma + Mc + My + Mc2 + Mb

(3) TCU3 = Ma + Mc1 + Mc2 + Mb

(1) TCD1 = M a + My + Mb

Concave (2) TC 2D = M a + M c1 + M, + Mb

(3) TC 3D = M a +M c  +Mb

While a general train control consists of the five motion regimes

as M a , Mc1, MV, Mc2, and M b , the station-to-station travel time denoted as T (excluding

dwell time at stations) can be formulated as

where t a, tc1, tV, t C, and tbrepresent travel times (sec) for acceleration, the 1stcoasting,

cruising, the 2 nd coasting, and braking, respectively, which can be calculated with

Equations 3.23 to 3.27 formulated as
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where 1.47 is a parameter to convert the speed from mph to feet per second (ft/sec). Note

that a, c, , c, , and b represent the average speed change rate (ft/sec2) of acceleration, the

1 st coasting acceleration, the 2nd coasting deceleration, and deceleration, while V„ and Vb

are the speed where the 1 5t coasting begins and critical speed at which where the

maximum deceleration must be applied, In Eq, 3,25, S, represents the distance consumed

for vehicle cruising. Thus, the station-to-station travel time can be derived as:

As the travel time for each regime is known, the station spacing (S) is set equal to

the sum of the distances traveled under all motion regimes. Thus,
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where Sa, S c1 , Sc2 , and Sb represent the travel distances (ft) for acceleration, the 1 st

coasting, the 2nd coasting, and deceleration, respectively, Thus, the station spacing

denoted as S can be derived as:

To derive the cruising time (t `, ), the difference of station spacing and the

distances traveled during the regimes of acceleration, the 1 st coasting, the 2 nd coasting,

deceleration is divided by VMi .
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The three modules in the proposed TPS model simulate train movement every

second on an iterative basis. A complete cycle of the proposed TPS calculation in each

time interval is shown in Figure 3.4, and the step procedure is discussed below.

• Step 1. Start the simulation and feed input data (e.g., motor power, car weight per

axle, number of car, number off axle) to TTM and TAM.

• Step 2. Calculate TE, train resistances, and speed at time t with TTM.

• Step 3. Determine train control (e.g., TC1 TC 2 , and TC 3 ) and check if the Pt

coasting ( M c  ) can be applied at time t (e.g., V t ≥ Vc1 ) with TCM.

• Step 4. If V	 Vu in TTM, go to Step 6. Otherwise, calculate traveled distance

and consumed energy for acceleration, and update simulation clock (i.e., t = t+1),

then go to Step 2.

• Step 5. Determine motion regime (e.g., M y , M c2 , and M y + Mc2) with TCM.

• Step 6. If the remaining distance (RD) is less than the stopping distance (SD),

decelerate the train, calculate consumed braking energy in TTM, update the

simulation clock, and then go to Step 7, Otherwise, go to Step 2,
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• Step 7. If the train arrives at the station, end simulation clock, report consumed

travel time and energy, and terminate the simulation, Otherwise, go to Step 6.



Figure 3.4 Flow chart of the train performance simulation model.
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CHAPTER 4

METHODOLOGY

The objective function (i,e,, total energy consumption) for the four cases discussed in

Chapter 1 is formulated in this chapter. The objective total energy consumption function

is affected by various factors such as train control between a pair of stations, the topology

of track alignment and schedule adherence. A set of system assumptions is made to

formulate the research problem for each case and the associated constraints, which are

discussed in Sections 4.1 through 4.4 for Cases I through IV, respectively, The developed

models are based on the different vertical track alignments such as single vertical

alignment (SVA) and mixed vertical alignment (MVA) associated with fixed and variable

maximum operating speed (MOS) over the route. The optimal solutions for the cases are

obtained considering the appropriate train control as well as the scheduled travel time.

4.1 Model I - SVA and Constant MOS (Case I)

The model formulated in Case I is designed to optimize train control over a SVA

combined with a constant MOS. To formulate the model, system assumptions on the

geometry of track (i,e., vertical track alignment), train control (i.e., applied motion

regime), and train characteristics (e.g., tractive effort (TE), resistance, acceleration/

deceleration rate, train movement calculation, etc,) are made,
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4.1.1 Assumptions

To formulate the research problem discussed in Case I, a list of assumptions is made and

discussed below:

1. A generalized vertical rail alignment, which may be symmetric and parabolic,
connecting stations A and B as shown in Figure 4.1 can be classified into three
types (level, convex, and concave) of track alignments. It is worth noting that the
"level" alignment indicates a tangent curve with zero grade. Note that the terms
"convex" and "concave" alignments used in this study consist of "crest" and
"sag" curves, respectively, with both ascending and descending grades, To obtain
a continuous vertical track profile and associated track gradient, a general track
alignment which is a function of station spacing (S), inflection points (I n), and
vertical depth/ height (ö) at halfway between two stations is assumed as:

where y1(xt), y 2 (x t ), and y3 (x t ) represent elevations with respect to x t in feet

on different segments, while G: is the gradient at xt in percent, and Δ 1 , A 2 , and

Δ 3 are 1/6, 2/3, and 1/6 of S, respectively, as shown in Figure 4.1.

Figure 4.1 Single vertical alignment between stations A and B.
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2. The train will use the maximum TE from stand still until it reaches the maximum
operating speed ( VM ) and the maximum deceleration rate will be used when the

remaining distance (RD) is equal to or less than the stopping distance (SD),

3. Four motion regimes are considered, including accelerating, cruising, coasting,
and braking. Note that cruising is applied when there is a need.

4. The train movement and its related forces are treated as a string mass on a route.
Accordingly, the forces related to train movement, such as TE and resistance, are
computed individually for all cars and locomotives.

4.1.2 Model Formulation

The motion of a train can be determined by the difference between the total TE (E)) and

resistance (R Tt ), which are directly affected by the train speed and vertical track grade.

Thus, F'.. and RTt at time t are functions of speed and vertical track grade represented by

f, and f2 respectively , which can be re-formulated as:

where J is the total number of time steps needed for traveling between two stations.

With Equations 4.4 and 4.5, the acceleration rate at time t, denoted as at, can be

determined by

where p is the coefficient of rotating mass and m is the train mass.
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The consumed engine power Pt (also in Equation 3.16) for speed V' at time step

t can be formulated as:

The energy consumption e t is equal to the product of power used from t to t+ Δt

and the duration of the simulation time step, and can be expressed as:

Note that the unit engine power is equal to 0.7457 kilowatts, and the time interval divided

by 3,600 is converted to an hourly base. Accordingly, the total consumed energy, denoted

as E, for a train movement between stations A and B is the sum of energy used in all time

steps:

As shown in Equations 4,4 through 4.9, the total energy consumption is directly

affected by train speed and vertical track grade, While the track grade is known, the

desired train speed can be reached by determining an acceleration rate,

4.1.3 Constraints

The constraints considered in this study include the maximum operating speed, allowable

travel time and maximum acceleration/deceleration rates while optimizing train control,

The first constraint ensures that the train speed at time t does not exceed the MOS based
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on track alignment and operations. Considering a constant maximum operating speed

(e.g,, fixed MOS) assumed in Case I, Equation 4.10 must hold.

The second constraint establishes that the range of travel time under optimal train

control must be less than or equal to the maximum allowable travel time (e.g,, travel time

for a train from the upstream station to the downstream station before the scheduled

arrival time). The travel time between stations, denoted as T , is ruled by the maximum

allowable travel time, denoted as TM .

Note that when a train is already behind schedule, it will use the maximum TE to

overtake the scheduled travel time. Three motion regimes including accelerating, cruising,

and braking will be used.

The third constraint certifies that the acceleration rate at any time t does not

exceed the passenger comfort limit. The maximum acceleration rate, denoted as amax,

used in the previous studies (Hoberock, 1977; Martinez et al., 2004; Koo et al., 2006) is

0.15. g (i,e., 4.8 ft/sec 2). Thus,



4.1.4 Optimization Model

Based on the discussion in Sections 4.1.1 through 4,1.3, the model developed for the

research problem in Case I of minimizing total energy consumption considering the effect

of train power, track alignment, speed regulation, and schedule adherence is formulated

below:

4.2 Model II - SVA and Variable MOS (Case II)

Model II is enhanced from Model I, and minimizes energy consumption considering

single vertical alignment (SVA) with a variable MOS. The model assumptions,

constraints, and optimization problem for Case II are discussed next.

4.2.1 Assumptions

The assumptions made for formulating the model are the following;

1. The general condition of a single vertical track alignment discussed in Section
4.1.1 is also considered in Case II.

2. The assumption discussed in Section 4.1.1 is also used here. The train uses
maximum TE for the initial acceleration until it reaches VM and maximum
deceleration for the final braking to stop at the downstream station,
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3. Four motion regimes are considered, including accelerating, cruising, coasting,
and braking. Note that the cruising regime is used when there is a need.

4. The movement of the train and its related forces are treated as a string mass on a
route. Thus, the forces related to train movement, such as TE and resistance, are
computed separately for all cars and locomotives.

The functions for computing train movement and estimating total energy

consumption (E) are the same as those used in Case I. The total travel time and

acceleration rate constraints considered in Case I can be used in Case II. However,

multiple maximum operating speed constraints (i.e,, variable MOS) are used in Case II as

shown in Figure 4.2, and train speed never exceeds the variable MOS. Thus,

where u is the index of maximum operating speed used.

Figure 4.2 Feasible variable MOS profile on SVA in Case II.
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4.2.2 Optimization Model

Based on the previous discussion, the studied train control optimization model that

minimizes total energy consumption under SVA subject to the variable MOS, the

maximum total travel time, and the maximum acceleration rate is the same as discussed

in Case I and formulated as follows:

4.3 Model III - MVA and Constant MOS (Case III)

The model developed in Case III is enhanced from Model I developed in Case I, and

minimizes energy consumption for a train running on a mixed vertical alignment (MVA)

with a constant MOS. Other than track alignment, all assumptions made for Case I are

used in Case III.
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4.3.1 Assumptions

Model III is developed to optimize train control over a mixed vertical curve with constant

MOS. The following assumptions are made:

1, A mixed vertical alignment that connects stations A and B is considered in Case
III, The alignment may be asymmetric, and may consist of seven types of track
curves, including ascending crest, descending crest, ascending sag, descending
sag, ascending tangent, descending tangent, and flat tangent as shown in Figure
4.3. A continuous vertical track profile and associated track gradient may be
achieved by formulating a general track alignment which is a function of
horizontal track segment distance and vertical depth/height at two consecutive
inflection points (In):



68

where y 1 (x t ) through y 7 (x t ) represent elevations with respect to x t in feet on

different segments, while Gtj is the gradient at x t in percent for Δ 1through Δ7.

Note that the MVA used for Case III is not necessarily the same as that in Figure
4,3.

Figure 4.3 Feasible mixed vertical alignment between stations A and B,

2. As discussed in Section 4.1.1, a train uses the maximum TE for the initial
acceleration until it reaches VM and then maximum deceleration is used for the
final braking to stop at the downstream station.

3. Four motion regimes are considered, including accelerating, cruising, coasting,
and braking. Note that cruising is used when there is a need.

4. The train movement and its related forces are treated as a string mass on a route.
Thus, the forces related to train movement, such as TE and resistance, are
computed separately for all cars and locomotives.

The functions for estimating train movement and energy consumption (E) are the

same as those developed for Cases I and II. The train speed, total travel time, and

acceleration rate constraints considered in Case III are the same as those used in Case I.
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4.3.2 Optimization Model

Based on the discussion in Section 4.3.1, the studied train control optimization problem

that minimized total energy consumption under MVA combined with the constant MOS

is formulated as follows:

4.4 MVA and Variable MOS (Case IV)

The model in Case IV considers mixed vertical alignment, which is used in Case III,

combined with variable MOS to optimize train control for minimum train energy

consumption. The assumptions, constraints, and optimization problem for Case IV are

discussed next.

4.4.1 Assumptions

The Case IV model considers mixed vertical alignments with a variable maximum

operating speed. The assumptions made for formulating the model are as follows:

1. The track alignment considered in Case IV is the same as discussed in Section
4.3.1.
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2. The train acceleration for the initial acceleration and the final braking is the same
as discussed in Section 4.1.1,

3. The motion regimes are the same as discussed in Section 4,1.1, including
accelerating, cruising, coasting, and braking. Note that cruising is used when there
is a need.

4. The train movement and its related forces are treated as a string mass on a route.

The functions for train motion and total energy consumption (E) are the same as

those used in Cases I, II, and III. The constraints for the maximum operating speed, total

travel time, and the maximum acceleration rate in Case IV are same as those in Case II,

Thus, multiple MOS constraints (e.g., variable MOS) as shown in Figure 4.4 are used in

Case IV. Note that the used MOS and MVA for Case IV are not necessarily the same as

those shown in Figure 4.4.

Figure 4.4 Feasible variable MOS profile under MVA in Case IV.
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4.4.2 Optimization Model

Based on the discussion from Section 4.4.1, the studied train control optimization model

that minimizes total energy consumption under MVA subject to the variable maximum

operating speed, the maximum total travel time, and the maximum acceleration rate is

formulated as follows:

4.5 Summary

In this chapter, the objective total energy consumption functions and sets of constraints

for Case I through IV were formulated. The developed optimization models are based on

the assumptions and constraints, which are determined based on the type of track

alignments and the number of maximum operating speed. The decision variables used in

each model are motion regimes (e.g., acceleration, cruising, coasting, and braking). While

considering the given track alignment and speed constraint in Cases I through IV, the

optimization model can be solved by using the SA algorithm to minimize total energy

consumption.



CHAPTER 5

SOLUTION METHODS

As discussed previously in Chapter 4, the objective of this study is to develop models to

optimize train control that minimizes energy consumption under Cases I through IV. The

decision variables to be optimized include the timings, durations, and locations of the

motion regimes and the rates of acceleration and deceleration.

The train control problem discussed in this study is a combinatorial optimization

problem. The timings and locations of motion regimes and acceleration (or deceleration)

increase as the complexity of track alignment, the number of feasible motion regimes and

speed constraints increase. A meta-heuristic algorithm, called Simulated Annealing

Algorithm (SA), is developed and used to search for the optimal solution. Furthermore, a

number of train controls are developed and discussed by considering train speed and

schedule adherence constraints in Cases I through IV.

5.1 SVA with Constant MOS (Case I)

5.1.1 Train Control

A set of train control profiles consisting of combinations of motion regimes must be

established and used to regulate train movement. As discussed in Section 4.1, a single

vertical alignment (SVA) associated with a constant maximum operating speed (MOS) is

considered in Case I. With these conditions, a general 4-regime train control illustrated in

Figure 5,1 is used to minimize energy consumption with SA, The used train control
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profile consists of four motion regimes, including acceleration, cruising, coasting, and

braking.

Figure 5.1 Train control with four motion regimes.
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The energy consumed in Case I is essentially affected by the timings and durations of

individual motion regimes, which will be optimized through the minimization of energy

consumption

In general, if the schedule allows and/or a sufficient momentum exists, a coasting

regime may be triggered before a train reaches the MOS (see Figure 5.1). As the speed

for coasting (or cruising), denoted as Vo is found, the timing and position to hit V'O is a

reference to change the motion regime from acceleration to coasting (or cruising). Unless

the coasting regime is commenced with speed of K, a cruising regime is used to

maintain the speed K. In case a cruising speed K is used, the timing and location for

the coasting must be identified. As shown in Figure 5.1(b), an optimal V'O  is found

between VM, and Vmin. Note that the Vmin can be determined with the given maximum

allowable travel time. In addition, a feasible location for coasting, denoted as Cp , may be

found between the times when the regime of acceleration ends and deceleration starts.

The feasible ranges for K and C, are affected by various factors, including station

spacing, track alignment, scheduled travel time, acceleration (or deceleration) rate, etc.

Note that, if a coasting regime is triggered too early, re-acceleration is needed and more

energy will be consumed.

5.1.2 SA for Case I

The energy consumption minimization problem of Case I is a large combinatorial

optimization problem where the solution space consists of combinations of multiple

decision variables, including the timings, locations, and durations of motion regimes, and

the rates of acceleration and deceleration.
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As discussed in the literature review, a stochastic computational technique

derived from statistical mechanics such as SA can be used to search for near optimum

solutions for large optimization problems. It was originally developed by Metropolis et al.

(1953) to simulate on a computer the annealing process of crystals. Kirkpatrick et al.

(1983) adapted this methodology into an algorithm exploiting the analogy between

annealing solids and solving combinatorial optimization problems. The simulated

annealing search process attempts to avoid becoming trapped at a local optimum by using

a stochastic computational technique, and thus globally or near globally optimal solutions

may be found.

The procedure of the proposed SA algorithm can be presented in pseudo-code as

shown in Table 5,1. Kirkpatrick et al. (1983) generalized an approach by introducing a

multi-temperature approach in which the temperature is lowered slowly in stages. The

outer loop (i.e., While' End') in Table 5.1 indicates that the temperature ( ) is

lowered by updating re"' in each outer loop until Ttemp is less than or equal to zero, The

inner loop (i,e., While 2 ... End2) indicates that at each temperature the system repeats

searching for a lower energy state until the system reaches equilibrium. A system in

thermal equilibrium at temperature ( Ttemp ) has a probabilistically distributed energy,

according to the Boltzmann probability distribution as shown in Equation 5.1.



Table 5.1 Simulated Annealing Algorithm
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where kB is Boltzmann's constant (Metropolis, 1953), At each temperature a neighboring

solution ( S' ) is chosen at random and the energy change (total energy consumption), ΔE ,

is computed, where ΔE = E(S'ω+1) - E(S'ω) . Note that (I) is an iteration index in the

optimization procedure. Thus, E(S'ω+1) is the energy consumption of the new neighboring

solution, and E(S'ω ) is the energy consumption of the previous solution. If ΔE _0, the

new solution is accepted. However, if ΔE > 0 , the decision to accept the solution is based

on the probability obtained from Equation 5.1. A random number evenly distributed

between 0 and 1 is chosen. If the number is smaller than P ΔE  , then the new solution is

accepted; otherwise, it is discarded, and the old solution is used to generate the next
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solution. Note that the simulated annealing procedure allows occasional "uphill moves"

that have higher energy (i.e., energy consumption) than the current solution in order to

avoid getting trapped at a locally optimal solution. These uphill moves are controlled

probabilistically by the temperature (T temp) and become decreasingly likely toward the

end of the process as Ttemp decreases (Press et al., 1988).

Five major components discussed below are necessary to use SA for the energy

consumption optimization problem in Case I:

• State Space: a suitable domain of decision variables (e.g., feasible boundaries of

V'O and Cp) where the optimum can be sought. In general, state space in SA is

often expressed in the form of a constraint equation.

• Fitness Function (or Objective Function): a scalar equation that weighs all of

decision variables to provide a measure of the solution goodness at each state. For

the minimization problem researched in this study, the solution achieving less

energy consumption is identified as a better solution.

• Perturbation: a generation rule for new state, which is usually obtained by

defining the neighborhood of each state and choosing the next state randomly

from the neighborhood of the current one.

• Acceptance Criteria: when the new solution provides a better fitness function

value, then it is accepted, otherwise it is accepted with a probability in Equation

5.1, or otherwise rejected.

• Cooling Schedule: the cooling process in SA starts with an initial control

parameter (T0temp), called temperature, The temperature in SA is cooled with the

schedule shown in Equation 5.2.
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where co is the iteration number index in the optimization. Note that if the

annealing process is not terminated, the temperature will be decreased to zero.

The cooling schedule of the developed SA is discussed in Section 5.1.4.

The implementation of the basic SA algorithm is straightforward as shown in

Figure 5.2. The following steps describe the SA algorithm procedure developed for the

optimal train control problem.

• Step 0: Set initial parameters: the number of trials at one temperature, initial

temperature (Ttemp0), temperature change interval, and other parameters. Note that

Ttemp is a control parameter in SA, which should be decreased slowly to ensure

that the optimal solution is achieved.

• Step 1: Determine the initial configuration, Set w =0, Select the starting decision

variables [i.e., maximum operating speed (K ) and coasting position (Cp)] as the

initial solution.

• Step 2: Evaluate the energy consumption of the initial solution.

• Step 3: Perturb the initial solution to obtain a new (e.g., neighborhood) solution,

Set co = 6)+1. Update the alternatives of the initial solution.

• Step 4: Evaluate the new solution. Calculate the total energy consumption of the

alternatives,

• Step 5: Determine whether to accept the new solution

Step 5.1: calculate ΔE
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Step5.2: if ΔE :5- 0, then accept the new solution, otherwise if

exp(-ΔE/kBTtemp) > random [0,1), then accept the new solution, if not, go to

Step 3

• Step 6: Reduce the system temperature according to the cooling schedule,

T tempω =Ttemp0 *αω(ω=1,2,3....). Note that α is cooling factor between 0.8 and

0.99.

• Step 7: If T tempω<Ttemp min,then terminate the SA process and output the optimized

solutions, Otherwise, repeat Step 3 through Step 6 until the stopping criterion is

met, or a pre-specified maximum number of iterations is performed.



Figure 5.2 Flow chart of the developed Simulated Annealing algorithm.
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5.1.3 Fitness Function

As discussed in Chapter 4, three constraints, including the maximum operating speed,

maximum allowable travel time, and maximum acceleration (or deceleration) rate, are

considered in minimizing the energy consumption problem. The maximum operating

speed and acceleration rate are considered to ensure that a train never exceeds the speed

limit and always satisfies a passenger comfort level, The train speed and acceleration

resulted from the developed SA algorithm is examined and constrained by the developed

TPS at any time t.

To deal with the total travel time constraint, a penalty function method is adopted

to handle the objective function value when the travel time limit is violated. In general, a

constrained optimization problem can be converted into an unconstrained problem with a

penalty. A penalty term is added to the objective function of minimizing energy

consumption for any violation of the travel time constraint. The penalized objective

function, denoted as 4 , of minimizing total energy consumption can be formulated as:

where f = max —
T 

—1,0 l is a penalty function, and A, is a penalty factor, The penalty
TM 	 J

factor used here is a static factor with a sufficiently large value, which prescribes a large

amount of energy consumption to rule out infeasible solutions.



82

5.1.4 Cooling Schedule

An efficient cooling schedule is critical to the performance of SA during search, In

general, SA is used to search for the global optimum (i,e., minimum energy consumption)

of a broad state space at high temperature. As the temperature decreases, the SA

algorithm reduces the searching space to refine the solution found at high temperatures.

This search process makes SA superior when the study problem has multiple local optima.

It is worth noting that the temperature must go down slowly, which enables SA to search

thoroughly at each temperature.

Two typical cooling schedules are considered: linear and exponential. A typical

exponential cooling schedule spends little time at high temperatures, and as the

temperature decreases more and more time is spent at each temperature to refine the

solutions found at high temperatures. On the other hand, linear cooling decreases the

temperature linearly as the process time increases, thus, the algorithm spends the same

amount of time at each temperature. It is important to note that the temperature must go

down slowly to search for feasible solution at each temperature. Thus, an exponential

cooling schedule (ECS) is used in the developed SA, which starts with an initial

temperature (Ttemp0).

where a is the cooling parameter that has to be tuned between 0 and 1 (e.g., a =0.95).

In addition to determining the cooling schedule, the initial temperature and stopping

criterion or final temperature must be specified before implementing SA, as discussed

below:
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Initial Temperature: Given a suitable initial temperature (T temp0), there is probability that

change in the fitness function ( ΔE ) will be positive and the new solution will be accepted,

which can be derived from Equation 5.1 as:

Final Temperature (or Stopping Criterion): the final temperature can be determined by

fixing the number of temperature values to be used, or the total number of solutions to be

generated. Alternatively, the search process can be stopped when the acceptance ratio

[i,e., PΔ, ] falls below a very small number, or no improved solutions are found at one

temperature.

5.2 SVA with Variable MOS (Case II)

The model developed for Case II, which minimize energy consumption, is enhanced from

Model I by considering a variable MOS.

5.2.1 Train Control

The train control developed in Section 5.1.1 is enhanced by considering a variable MOS

for Case II. As shown in Figures 5.3 and 5,4, the train control is adjusted for two different

variable MOS scenarios. Scenario 1 is for the situation shown in Figure 5.3 where the

MOS increases (i.e., VM1 < VM2 ) as the train moves toward to the next station, which

affects train acceleration. When the coasting speed ( ) is greater than V M1 , the train

accelerates until it reaches VM1 and then a cruising regime starts immediately. When a
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train reaches the beginning of the track segment under 
VMS

 , it continues to accelerate

until it reaches K .

Figure 5.3 Train control under variable MOS Scenario 1 (VM1  < VM2 ).

Scenario 2, illustrated in Figure 5.4, indicates that the maximum operating speed

rapidly decreases (i.e. VM1 > VM2 ) as train moves to the next station. In this situation,

braking must be used effectively enforced to reduce the train speed whenever there is a

need.

The SA for Case II is the same as that developed for Case I, and its major

parameters, including the fitness function, state space, perturbation, acceptance criteria,

and cooling schedule are the same as those used for Case I.
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Figure 5.4 Train control under variable MOS Scenario 2 ( VM1 > VM2 ).

5.3 MVA and Constant MOS (Case III)

The objective function of the energy consumption minimization problem formulated in

Case III is enhanced from the model developed for Case I, but considers a mixed vertical

alignment (MVA) with a constant MOS. The train control profiles, SA, fitness function,

and cooling schedule for Case III are the same as those discussed for Case I.

5.4 MVA with Variable MOS (Case IV)

The objective energy consumption function formulated in Case IV is enhanced from the

models developed for Cases I, II, and 1II, By considering a MVA with a variable MOS,

Model IV optimizes train control that yields minimum energy consumption. The train
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control profiles, the fitness function, and the cooling schedule of SA for Case IV are the

same as those discussed in Case II.

5.5 Summary

In this chapter, an SA-based solution method was developed to search for the optimal

solution for the research problems discussed in Chapter 4. With SA, Models I through IV

were used to explore optimal solutions that minimize energy consumption discussed in

Cases I through IV, respectively. While searching for the optimal solution subject to a

given travel time constraint, a train control plan (i.e., speed vs. time diagram) may be

established to satisfy the maximum operating speed constraint. To demonstrate the

applicability of the developed methods, two real-world examples of the New Haven Line

of the Metro-North Railroad are analyzed and discussed in Chapter 6.



CHAPTER 6

CASE STUDY

This chapter demonstrates the applicability of the models for Cases I through IV

discussed in Chapter 4 and the solution SA algorithm developed in Chapter 5. The

optimal results for Cases I and II are discussed in Section 6.1, and two real-world track

alignments and operating data of the New Haven Line of the Metro-North Railroad used

for Cases III and IV are presented in Section 6.2. The findings and the results comparison

are summarized in Section 6.3. Finally, a sensitivity analyses that evaluate the impact of

various train operation conditions, such as travel time constraint, speed constraint,

coasting position, and vertical dip of convex alignment, is conducted and discussed in

Section 6.4.

6.1 Optimal Results for Cases I and II

In this section, the models and the solution SA algorithm developed in Chapters 4 and 5

are used to minimize energy consumption for three single vertical alignments (SVA),

including level, convex, and concave alignments, associated with constant and variable

maximum operating speed (MOS), The optimal train controls for minimum energy

consumption discussed in Cases I and II are presented in Sections 6.1.1 and 6.1.2,

respectively.

A 10-car passenger train is considered whose maximum motor power is 10,600 hp

(8,000 kW). A constant maximum operating speed ( VM  ) of 65 mph is used in Case I, and

the variable maximum operating speed used in Case II is composed of 40 and 70 mph.

The maximum acceleration rate is determined by the tractive effort (TE), which will not
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exceed 0,15g (i.e., 4.83 ft/sec 2) for passenger comfort, while the maximum deceleration

rate of -0,15g (i.e., -4.83 ft/sec 2) is used to stop the train before reaching the downstream

station. The baseline inputs used for Cases I and II, including train characteristics,

vertical track alignment, operational constraints, and the options for the SA algorithm, are

summarized in Table 6.1.

Table 6.1 Inputs for Cases I and II

Parameters Values

Train
Characteristics

Motor Power 8,000 kW
Number of Cars per Train 10 cars/train
Car Mass 140,672 lb
Car Length 85 ft
Max. Acceleration (Deceleration) Rate ± 4.83 ft/sec2

Spring Constant 68,536.6 lb/ft
Damping Constant 342.7 lb•sec/ft

Track Alignment

Station Spacing (S) 12,000 ft

Vertical Dip/Height (8 ) 90 ft

Dip/Height Percentage ( 8 /S x 100) 0.75 %

Ruling Grade 3 %

Operational
Constraints

Maximum Speed Limit ( V M  ) for Case I 65 mph

Maximum Speed Limit ( VM ) for Case II 40 mph, 70 mph

Feasible Boundary for C p 2,500 -11,000 ft

Feasible Boundary for V'0 in Case I 55 -65 mph
Feasible Boundary for V'0 in Case II 40-70 mph

Maximum Allowable Travel Time ( TM ) 170 sec

Simulated
Annealing Options

Initial Temperature 100

Annealing Function Boltzmann

Temperature Update Metropolis Rule

Re-annealing Interval 100

Cooling Schedule Exponential
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6.1.1 SVA with Constant MOS (Case I)

To evaluate the impact of track alignment and the maximum operating speed on the

optimal train control that minimizes energy consumption, a number of figures are

produced to illustrate the relationship of speed versus distance and time under different

track alignments,

Operating the train on a level track alignment, a minimum energy of 77.7 kWh

was consumed at a coasting speed (V.') of 58.8 mph starting at a coasting position (C p ),

3,097 ft from the upstream station as shown in Figure 6.1. To achieve minimum energy

operation, the train must accelerate with full motor power from stand still at the upstream

station until the speed (Vi) of 58.8 mph is reached at a location of 2,087 ft from the

upstream station, The train then maintains this speed with a motor power of 565,7 kW

until a coasting regime is commenced at 3,097 ft, and then the brakes must be applied at

11,386 ft so the train can safely arrive at the downstream station. The relationship of

speed versus travel time for this situation is illustrated in Figure 6,2,



Figure 6.1 Tractive effort and speed vs. distance (Level-Case I).
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Figure 6.2 Tractive effort and speed vs. time (Level-Case I)



91

Running the train on a convex alignment, it was found that a minimum energy of

45.7 kWh was consumed at a coasting speed (K) of 64.1 mph starting at position (C V )

5,862 ft from the upstream station, As shown in Figure 6.3, a train accelerates with full

TE (i.e., 7,904 kW) from standstill at the upstream station to speed ( V,'3 ) of 64.1 mph

(2,034 ft from the upstream station). Then, the train maintains this speed with a negative

motor power of 684,8 kW (i,e., the shaded area in Figure 6.3) due to the steep down-hill

track slope until coasting is triggered at a distance of 5,862 ft, and then the brakes must

be used at 11,737 ft from the upstream station. The relationship of speed versus travel

time under optimal train control is illustrated in Figure 6.4.

Figure 6.3 Tractive effort and speed vs. distance (Convex-Case I),
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Figure 6.4 Tractive effort and speed vs. time (Convex-Case l).

For a concave alignment in Case I, a minimum energy consumption of 121,9 kWh

was yielded when a coasting speed (V'O ) of 55.5 mph is used at the position (Cp ) of 4,846

ft from the upstream station. To achieve the optimized train control as illustrated in

Figure 6.5, the train accelerates with maximum TE to reach V'O at 2,769 ft from the

upstream station. After that, the train cruises with a speed of 55.5 mph until the coasting

regime is initiated at 4,846 ft. The train takes the advantage of a down-hill slope to reach

the maximum operating speed ( VM ) of 65 mph, and then light braking is used for not

exceeding VM until maximum braking must be used at 10,107 ft from the upstream

station, as shown in Figure 6.6.



Figure 6.5 Tractive effort and speed vs. distance (Concave-Case I).
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Figure 6.6 Tractive effort and speed vs. time (Concave-Case I).
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6.1.2 SVA with Variable MOS (Case II)

The impact of track alignments and a MOS varying between 40 and 70 mph to optimal

train control was estimated, and the relationship of speed versus distance and time of the

optimized train control are discussed below.

For a level track alignment, a minimum energy consumption of 89,3 kWh was

achieved with a coasting speed ( ) of 63.1 mph associated with a coasting position

(C p ) at 3,880 ft from the upstream station. To obtain the minimum energy operation as

illustrated in Figure 6,7, the train must accelerate with full TE from stand still at the

upstream station until the first maximum operating speed ( V M1  ) of 40 mph is achieved at

709 ft. The train, then, maintains this speed with a motor power of 332.9 kW until the

train accelerates again at 2,004 ft. The coasting regime is commenced at 3,880 ft, and

then the brakes must be applied at 11,273 ft. The relationship of speed and travel time is

shown in Figure 6.8,

Figure 6.7 Tractive effort and speed vs, distance (Level-Case II).
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Figure 6.8 Tractive effort and speed vs, time (Level-Case II).

For a convex alignment, it was found that a minimum energy consumption of 82.8

kWh was accomplished at a coasting speed (V 0') of 64.9 mph at the coasting position

(C p ) of 3,399 ft from the upstream station, As shown in Figure 6,9, a train accelerates

with full TE from stand still at the upstream station until the speed (V,, , ) of 40.0 mph is

attained at 667 ft from the upstream station. Then the train maintains this speed with

negative motor power due to the down-hill track slope until the train accelerates again at

a distance of 2,001 ft, Once coasting is triggered at 3,399ft, the speed increases up to 68.4

mph because of the down-hill track slope. Then, braking must be applied at 11,615 ft

from the upstream station. The relationship of speed versus travel time is illustrated in

Figure 6,10.



Figure 6.9 Tractive effort and speed vs. distance (Convex-Case II).
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Figure 6.10 Tractive effort and speed vs. time (Convex-Case II).
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For a concave alignment in Case II, the minimum energy consumption of 133.5

kWh was yielded when the coasting speed (V'O) of 60.0 mph is applied at position (C r)

5,007 ft from the upstream station, To achieve the optimized train control shown in

Figure 6.11, the train accelerates with full TE to reach V M1  at 761 ft from the upstream

station. Then, the train accelerates again at 2,001 ft to reach V.' at 4,576 ft from the

upstream station, After that, the train cruises with a speed of 60,0 mph until the coasting

regime is initiated at 5,007 ft. Due to the advantage of a down-hill slope, the train reaches

the second maximum operating speed ( V M2  ) of 70.0 mph, and then a light braking is

applied not to exceed VM2 until the braking regime must be used at 10,904 ft from the

upstream station. The relationship of speed and travel time generated by optimal train

control is shown in Figure 6,12,

Figure 6.11 Tractive effort and speed vs. distance (Concave-Case II),
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Figure 6.12 Tractive effort and speed vs. time (Concave-Case II).

6.2 	 Optimal Results for Cases III and IV

In this sectiOn, Models H1 and IV are used to two real-world commuter rail segments with

constant and variable maximum operating speed for Cases III and IV, respectively.

According to the segment configuration and operational data discussed in Section 6,2.1,

the impact of the optimized train control to the consumed energy is estimated in Sections

6,2,2 and 6,2,3. The baseline values of input parameters employed for Cases III and IV

are summarized in Table 6,2. The information of the track profile (i.e,, track length and

vertical grade) and the associated maximum operating speed is shown in Table 6.3.



99

Table 6.2 Inputs for Cases III and IV

Parameters Values

Train
Characteristics

Motor Power 8,000 kW
Number of Cars per Train 10 cars/train
Car Mass 140,672 lb
Car Length 85 ft
Max. Acceleration (Deceleration) Rate 2.93 (-4.83) ft/sec 2

Spring Constant 68,536,6 lb/ft

Damping Constant 342.7 lb.sec/ft

Track Alignment

Station Spacing (S) for Case III 11,087 ft

Station Spacing (S) for Case IV 11,616 ft

Ruling Grade for Case III -0.322%

Ruling Grade for Case IV 0.708%

Operational
Constraints

Maximum Speed Limit (VM ) for Case III 70 mph

Maximum Speed Limit (VM ) for Case IV 75 mph, 40 mph

Feasible Boundary for Cp 2,500 -10,000 ft

Feasible Boundary for V'O in Case III 60 -70 mph
Feasible Boundary for V'O in Case IV 65-75 mph

Maximum Allowable Travel Time (Amax) 150 sec

Simulated
Annealing Options

Initial Temperature 100

Annealing Function Boltzmann

Temperature Update Metropolis Rule

Re-annealing Interval 100

Cooling Schedule Exponential

Table 6.3 Track Alignment Geometry and Speed Limit

Case III
Length (ft)* 0-982 982-2,512 2,512-5,405 5,405-6,988 6,988-9,333 9,333-11,087

Grade (%) 0.00 -0.243 -0,322 -0.098 0.122 0.023
VM (mph) 70 70 70 70 70 70

Case IV
Length (ft)** 0-1,011 1,011-2,324 2,324-6,016 6,016-8,194 8,194-11,616 -

Grade (%) 0.033 0.567 0.708 -0.256 -0,057 -
VM (mph) 75 75 75 75 40 -

*: from Harrison to Rye Station
**: from East Norwalk to Westport Station



100

6.2.1 Metro-North Railroad (New Haven Line)

The Metro-North Railroad's New Haven line is a 74-mile long rail line serving 30

stations combined in 3 branch lines, which run from Woodlawn, New York to New

Haven, Connecticut. The service interval of the studied rail line varies over time and

station due to the pattern of local and express services. The headway range is between 13

and 33 minutes, The rolling stock servicing in the studied line consists of Electric

Multiple Units (EMU), and the characteristics of M8 (i.e., EMU car model manufactured

by Kawasaki Rail Car, Inc.) was used in the developed TPS model, As shown in Figure

6,13, the segment between Harrison and Rye was selected and studied for Case III, and

the segment between East Norwalk and Westport was used for Case IV,

Figure 6.13 Configuration of Metro North - The New Haven Line,

Source: http://'www.mta.info/mnr/html/mnrmap.htm
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6.2.2 MVA with Constant MOS (Case III)

Similar to the analysis discussed in Cases I and II, the impact of the optimized train

control to the consumed motor power and speed is developed and shown in Figure 6,14.

The minimum energy consumption of 82.4 kWh was yielded when the optimal

coasting speed (V'O) of 64,0 mph begins at the position (Cp) of 4,414 ft away from the

Harrison Station. It was found that the train accelerates with full motor power (i.e., 7,904

kW) from standstill to speed ( K) of 64.0 mph (2,528 ft from Harrison Station). Then, the

train keeps this speed with negative motor power until the coasting regime is triggered at

4,414 ft. After that, braking at 10,348 ft must be used to arrive at the Rye Station.

If a train is equipped with a Regenerative Braking System (RBS), the applied light

braking (i.e., the shaded area in Figure 6.14) can be stored as energy in a battery or

condenser bank for later use. The relationship of speed versus travel time under optimal

train control is illustrated in Figure 6,15.



Figure 6.14 Tractive effort, speed, and vertical track profile vs. distance (Case III).
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Figure 6.15 Tractive effort and speed vs. time (Case III).
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6.2.3 MVA with Variable MOS

To evaluate the impact of track alignments and variable maximum operating speed to the

optimal train control that minimizes energy consumption, figures demonstrating the

relationship of speed versus distance and time of the optimized train control are

developed and discussed next.

The minimum energy consumption of 96.7 kWh was obtained when the coasting

speed ( ) of 72,0 mph starts at position (Cp ), 4,607 ft from the East Norwalk Station. To

accomplish the minimum energy operation as shown in Figure 6.16, a train must

accelerate with the maximum TE to reach V'O at 3,909 ft from the East Norwalk Station.

After that, the train cruises with the speed of 72.0 mph until the coasting regime is

commenced at 4,607. Then, brakes must be applied at 7,537 ft to reduce the speed to the

second maximum operating speed (VM2 ) of 40 mph, and the coasting regime repeats at

8,194 ft until final braking must be applied at 10,199 ft. The resulting relationship

between speed and travel time due to the application of optimal train control is illustrated

in Figure 6.17.



Figure 6.16 Tractive effort, speed, and vertical track profile vs. distance (Case IV).
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Figure 6.17 Tractive effort and speed vs. time (Case IV),
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6.3 Results Comparison

The energy consumption under various travel times for various settings defined in Cases I

through IV were evaluated and discussed in previous sections. As summarized in Table

6,4, the studied three track alignments (i.e., level, convex, and concave) in Cases I and II

are symmetric and parabolic with vertical dips of 0 ft, -90 ft, and 90 ft, respectively and

the station spacing is 12,000 ft. While a constant MOS (V 1,4 ) of 65 mph is used for Case I,

a variable MOS of 40 mph and 70 mph is considered for Case II,

The results of optimal train control under Cases I and II are summarized in Table

6,4. It was found that the energy consumption is notably sensitive to the track alignment

in Cases I and II. Particularly in Case I, the minimized energy consumption for a 10-car

train on a convex alignment is about 62.5% less than that when operating on a concave

alignment. However, considering the MOS varying between 40 and 70 mph in Case II,

the energy consumption difference by a train running between a level and a convex

alignment seems small. Since the first MOS of 40 mph increases the duration of the

acceleration regime, the timing and position to begin the coasting regime are affected. As

a result, the benefits of a dipped track alignment that reduces energy consumption are

diminished.

The resulting energy consumption for running a train on the studied alignments in

Cases I and II ranges between 45,7 and 121.9 kilowatt-hour and 82,8 and 133.5 kilowatt-

hour, respectively. It was found that the convex alignment is the most energy efficient

one among the three alignments discussed in Cases I and II.
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Table 6.4 Results under Optimal Control in Cases I and II

Cases
Operation
Conditions &
Optimal Results

Case I Case II
Constant MOS (65 mph) Variable MOS (40, 70 mph)

Level Convex Concave Level Convex Concave
Station Spacing (ft) 12,000 12,000 12,000 12,000 12,000 12,000
Vertical Dip/Height (ft) 0 -90 90 0 -90 90
Dip/Station Spacing (%) 0% 0,75% 0.75% 0% 0.75% 0,75%
Ruling Grade (%) 3 3 3 3 3 3
VM (mph) 65 65 65 40,70 40,70 40,70
Tmax (sec) 170 170 170 170 170 170
Energy Consumption (kWh) 77.7 45.7 121.9 89.3 82.8 133,5
Coasting Speed (mph) 58.8 64.1 55.5 63.1 64.9 60.0
Maximum Speed (mph) 58.8 64.1 65.0 63.1 68.4 70.0
Coasting Position (ft) 3,097 5,862 4,846 3,880 3,399 5,007

Cruising
* Timing (sec) - - - 22.3 21.5 44.4

Position (ft) - - - 709 667 761

Cruising **
(sec) 41,0 39,3 51.0 - - 79.2

Position (ft) 2,087 2,034 2,769 - - 4,576

Coasting
Timing (sec) 52,7 80.0 76,5 68.6 61.9 84,2
Position (ft) 3,097 5,862 4,846 3,880 3,399 5,007

Braking
Timing (sec) 154.0 159.2 150.2 152,2 156.3 148.8
Position (ft) 11,386 11,737 11,077 11,273 11,615 10,904

*: Cruising under VM1 (40 mph) in Case II

**: Cruising under VM (65 mph) and VM2 (70 mph) in Case II

Considering different track alignments and related operational conditions, the

minimum energy consumption, coasting speed, and positions and timings of motion

regimes of Cases III and IV are summarized in Tables 6,5 and 6.6, respectively.

Table 6.5 Results of Optimal Control in Case III

Case III

Track Alignment & Operational Condition Optimal Results
Station Spacing (ft) 11,087 Energy Consumption (kWh) 82,4
Track Characteristics VM (mph) Grade (%) Coasting Speed (mph) 64,0

Segment
Length
(ft)

0-982 70 0,0 Maximum Speed (mph) 64.0
982-2,512 70 -0.243 Coasting Position (ft) 4,414
2512-5,405 70 -0.322 Cruising

Timing (sec) 45.4
5,405-6,988 70 -0.098 Position (ft) 2,528
6,988-9,333 70 0.122

Coasting
Timing (sec) 74,1

9,333-11,087 70 0.023 Position (ft) 4,414
Ruling Grade (%) -0,322%

Braking
Timing (sec)  132.3

Tmax (sec) 150 Position (ft) 10,348
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Table 6.6 Results of Optimal Control in Case IV

Case IV

Track Alignment & Operational Condition Optimal Results
Station Spacing (ft) 11,616 Energy Consumption (kWh) 96,7
Track Characteristics VM (mph) Grade (%) Coasting Speed (mph) 72.0

Segment
Length
(ft)

0-1,011 75 0.033 Maximum Speed (mph) 72,0
1,011-2,324 75 0.567 Coasting Position (ft) 4,607
2,324-6,016 75 0.708 Cruising Timing (sec) 59,9
6,016-8,194 75 -0.256 Position (ft) 3,909
8,194-11,616 40 -0,057 Coasting Timing (sec) 66,5

- - - Position (ft) 4,607
Ruling Grade (%) 0,708% Braking

Timing (sec) 138.1
Tmax (sec) 150 Position (ft) 10,199

The energy consumption and travel time under the optimal run and the flat-out

run (shortest travel time) are compared. For Case I, the optimal train control decreases

energy consumption by 32.8 kWh (29.6%), 42.0 kWh (47.9%), and 67,7 kWh (35.7%),

while increases travel time by 12,7 seconds (9.3%), 14.5 seconds (8.5%), and 10,1

seconds (6.3%) for a level, cOnvex, and concave alignment, respectively (See Figure

6.18), Note that the number in the parentheses represents the percentage increase (or

decrease) in either energy consumption or travel time.

The travel time difference between optimal and flat-out runs on convex alignment

is greater than that on the level and concave alignments. Meanwhile, the greatest energy

consumption difference between the optimal and flat-out runs is found under the concave

alignment. Thus, the consumed energy can be easily reduced with a train control found

from a wider range of feasible coasting speeds and positions under the condition that the

resulting travel time is less than 170 seconds.



108

Figure6.18 Energy consumption and travel time vs. track alignment and control (Case I),

For Case II, the amount of saved energy is 46.4 kWh (36%), 35.7 kWh (28,6%),

and 67.4 kWh (33.6%), while travel time increases by 13.3 seconds (8.5%), 9.3 seconds

(5.8%), and 5.9 seconds (3.6%) for level, convex, and concave alignments, respectively

(See Figure 6.19), In Case II, the greatest travel time difference between the optimal and

flat-out runs is observed on level alignment, while the biggest energy consumption saved

was found by running a train on the concave alignment.
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Figure 6.19 Energy consumption and travel time vs, track alignment and control (Case
II).

Alternatively for Case III, the reduced energy consumption by using optimal train

control is 26.1 kWh (24.1%) with a 9.6 second (5.9%) travel time increase. For Case IV,

the saved energy is 17.1 kWh (15,0%), while travel time increases by 7.3 seconds (4.7%).

The observed time and energy consumption difference between the optimal and flat-out

runs in Cases III and IV are comparatively less than those in Cases I and II, which may

result from the track alignment, MOS, and applied motion regimes.
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Figure 6.20 Energy consumption and travel time vs, track alignment and control (Case
III and IV).

In summary, it was found that the optimal runs achieved in Cases I through IV

can save considerable energy in comparison with the flat-out runs by considering any

track alignment associated with constant or variable MOS.

6.4 	 Sensitivity Analysis

Previous sections of this chapter discussed optimized train control under various track

alignments considering constant and variable MOS. To investigate the impact of model

parameters (i,e., coasting position, travel time constraint, maximum operating speed,

vertical depth, and train weight) on train control and energy consumption, a sensitivity

analysis is conducted and discussed in this section,

The impact of coasting position and travel time constraint to energy consumption

is evaluated by varying the coasting position by 1,000 ft with the coasting speed (K )
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kept constant. The resulting energy consumption and travel time at various coasting

positions on level, convex, and concave alignments in Case I are illustrated in Figures

6.21 through 6.23, respectively. It was found that the earlier the coasting started, less

energy was consumed and the travel time increased.

For a level track alignment, the impact of the coasting position on energy

consumption and travel time are illustrated in Figure 6.21. The energy consumption and

travel time vary with the coasting position commencing at 2,097 ft. Considering the

travel time constraint (170 seconds), coasting must be triggered at 3,097 ft or farther from

the upstream station; otherwise, the train will be late at the next station. Note that if the

coasting is triggered too early (i.e., any location before 3,097 ft), a lower coasting speed

( ) is prescribed, which results in a considerably increased travel time and will not be a

feasible solution.

Figure 6.21 Energy consumption and travel time vs, coasting position (Level-Case I).
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For a convex alignment, the impact of the coasting position on energy

consumption and travel time is shown in Figure 6.22. The energy consumption and travel

time nonlinearly vary with the coasting position, which is a result of the track alignment

slope. To ensure that the travel time is less than 170 seconds, coasting must be

commenced at 5,862 ft or later to satisfy the travel time constraint.

Figure 6.22 Energy consumption and travel time vs. coasting position (Convex-Case I).

Considering a concave alignment, the impact of varying the coasting position on

energy consumption and travel time can be observed from Figure 6.23. The energy

consumption and travel time vary significantly with the coasting position especially

between 1,846 ft and 4,846 ft from the upstream station. If the allowable travel time is

170 seconds, coasting must be triggered at 4,846 ft or later from the upstream station.

Energy consumption and travel time are more sensitive on convex and concave

alignments than they are on a level alignment, which is result of the grade. Note that the

least attainable energy and travel time are associated with the convex alignment,
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Figure 6.23 Energy consumption and travel time vs. coasting position (Concave-Case I).

The impact of the coasting position and travel time constraint to energy

consumption is assessed for Case II, and the resulting energy consumption and travel

time at various coasting positions on level, convex, and concave alignments are shown in

Figures 6.24 through 6.26, respectively.

For a level track alignment, the impact of coasting on energy consumption and

travel time is analyzed by varying the coasting position from 2,880 to 8,880 ft as shown

in Figure 6.24, Considering the travel time constraint (170 seconds), coasting must

commence at 3,880 ft from the upstream station or later. It was found that the resulting

energy consumption with different coasting positions ranged between 63.7 and 120,3

kWh as the coasting position increase, while the corresponding travel times ranged

between 188.6 and 159.8 seconds.
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Figure 6.24 Energy consumption and travel time vs. coasting position (Level-Case II),

For a convex alignment, the impact of the coasting position on energy

consumption and travel time can be observed in Figure 6.25. To reach the downstream

station within the travel time constraint, coasting should be initiated at 3,399 ft or later

from the upstream station, It was found that the consumed energy varies from 56.9 kWh

to 111.3 kWh, while the corresponding travel time changes from 178,9 seconds to 158.1,
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Figure 6.25 Energy consumption and travel time vs. coasting position (Convex-Case II).

For a concave alignment, the impact of coasting on energy consumption and

travel time is evaluated and shown in Figure 6.26. The energy consumption and travel

time are considerably changed when compared with those on level and convex

alignments. To reach the downstream station before the travel time constraint (170

seconds), the train must trigger coasting at 5,007 ft. Note that the train cannot reach the

coasting speed (i.e., 60.0 mph) when the coasting regime is triggered at 3,007 ft, which

results in a significantly increased travel time.

On the whole, the sensitivity of various coasting positions to energy consumption

and travel time in Case II is similar to that observed in Case I. However, the amount of

consumed energy and travel time is considerably larger than that observed in Case I

because variable MOS ( VM1  ) makes the train reach V'O later, which results in an increase

of energy consumption and travel time,
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Figure6.26 Energy consumption and travel time vs. coasting position (Concave-Case II).

Figure 6.27 shows the impact of the coasting position on energy consumption and

travel time in Case III by varying the coasting position. It was found that the variations of

energy consumption and travel time observed in Figure 6.27 are less sensitive than those

observed in Cases I and II, which might result from the track alignment, MOS used, and

coasting speed. Note that the dashed line indicates the maximum allowable travel time,

Figure 6.28 indicates the resulting energy consumption and travel time at various

coasting positions in Case IV. It was found that the energy consumption and travel time

are very sensitive to the coasting position, which results from the vertical alignment,

similar to an asymmetric shallow concave alignment, and the variable MOS.



Figure 6.27 Energy consumption and travel time vs. coasting position (Case III).
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Figure 6.28 Energy consumption and travel time vs. coasting position (Case IV).
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Considering the various travel time constraints, the optimal coasting positions

which affect energy consumption for level, convex, and concave alignments in Cases I

and II are found and illustrated in Figures 6.29 and 6.30, respectively.

In Figures 6.29 and 6.30, the impact of the travel time constraint on coasting

position and energy consumption is assessed and illustrated. When the travel time

constraint increases (e.g., due to an early arrival of a train at the upstream station), the

optimized coasting position is moving towards to the downstream station to further

reduce energy consumption. However, if the scheduled travel time is fairly long (e.g.,

greater than 180 seconds), coasting may be triggered before reaching K. On the other

hand, if the travel time constraint is short (e.g., shorter than 160 seconds), the coasting

regime should not be used and maximum energy will be consumed, yet the train arrival

delay can be reduced. It was found that the optimized coasting positions for the scheduled

travel times (e.g., from 160 to 180 seconds) are sensitive to the track alignment and MOS.

For example, the energy consumption and coasting position on level alignment are

linearly changing by the travel time constraint, while those on convex and concave

alignments are changing irregularly, Note that the dashed lines in Figure 6.30 indicate

that the coasting speed is out of the feasible speed region.



Figure 6.29 Coasting position and energy consumption vs. travel time (Case I).
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Figure 6.30 Coasting position and energy consumption vs, travel time (Case II).
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By varying the allowable travel time, the optimal coasting positions that yield

minimum energy consumption for Cases III and IV are shown in Figures 6.31 and 6.32,

respectively. It was found that the amount of saved energy is 52.8 kWh, when the travel

time constraint increases from that of the flat-out run (i.e., 140.4 seconds) to 160 seconds,

Note that the results shown in Figure 6.31 can be utilized to determine an appropriate

travel time schedule that can reduce energy consumption by considering the rail transit

customers' tolerance.

Figure 6.31 Coasting position and energy consumption vs. travel time (Case III).

In Case IV, the amount of saved energy is 85.3 kWh, when the travel time

constraint increases from that of the flat-out run (142.7 seconds) to 160 seconds, Note

that the dashed line in Case IV indicates that the used coasting speed is greater than V IM

(i,e,, 75 mph).
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Figure 6.32 Coasting position and energy consumption vs. travel time (Case IV).

In Figure 6.33, the optimal train speed profiles associated with coasting speed

(V 'O) and position (C p ) for the various maximum allowable travel times (between 140

and 180 seconds) are illustrated for Case III. It was found that while the maximum travel

time increases, Vo l increases non-linearly and Cp changes irregularly, which is the direct

impact of the vertical track alignment. Note that the results shown in Figure 6.33 can be

utilized to determine the optimal coasting speed and position for the various allowable

travel times, which are significantly impacted by the downstream traffic condition.
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Figure 6.33 Optimal speed profiles vs. maximum allowable travel time,

A sensitivity analysis of the maximum operating speed (i,e,, speed limit) with

respect to energy consumption and travel time was also conducted. The impact of a

maximum operating speed constraint on energy consumption and travel time is evaluated

by varying the maximum operating speed by 5 mph. The results of energy consumption

and travel time associated with various speed limits on level, convex, and concave

alignments in Cases I and II are shown in Figures 6,34 and 6.35, respectively.

It was found that energy consumption on level and concave alignments is more

sensitive to the speed limits than that on the concave alignment. In addition, if the speed

limit is 83 mph or greater under a given track alignment, energy consumption on the

convex alignment is less than that of the level alignment, This result can be utilized to

determine the maximum operating speed between level and convex alignments.
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Figure 6.34 Travel time and energy consumption vs. MOS (Case I).

Similarly, the impact of MOS on energy consumption and travel time on level,

convex, and concave alignments in Case II is assessed and the results are shown in Figure

6,35. While in Case I with a convex alignment, the energy and travel time are less than

those with a level alignment as VM increases, this result is not valid for Case II, which

results from the first MOS (VM1 ) that delayed the timing of reaching VM2 (i.e., 70 mph).
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Figure 6.35 Travel time and energy consumption vs. MOS (Case II).

The impact of the vertical dip associated with various maximum operating speeds

to energy consumption is investigated by varying the convex alignment depth from 0 ft to

150 ft given a fixed station spacing. The resulting energy consumption distributions with

MOS between 55mph and 95 mph are illustrated in Figures 6.36 and 6.37.

Considering the same station spacing and operational conditions as discussed in

the previous section, the energy consumption with a convex alignment could be less than

that of a level alignment depending on the maximum operating speed, In Figure 6.35, the

vertical dip impact of a 12,000-ft convex alignment on energy consumption in Case I is

illustrated. It was found that, for example, as the vertical dip increases, the energy

consumption decreases with a MOS of 85 mph, However, as the dip exceeds 60 ft, the

energy consumption increases. Note that the dip with 0 ft represents a level alignment.

If the used MOS is 55 or 65 mph, the minimum energy consumption is achieved

by a level alignment, and the energy consumption increases as the dip increases. It is
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recommended that an MOS appropriate for the track alignments should be used to reduce

energy consumption, Note that the energy consumption with various maximum operating

speeds converges as the vertical dip reaches 150 ft indicating ruling grade of 4.99 %.

Figure 6.36 Energy consumption vs. vertical dip with various MOS (Case I).

In Figure 6.37, the vertical dip impact with a 12,000-ft convex alignment on

energy consumption in Case II is illustrated, It was found that as the vertical dip increases,

the energy consumption increases with VM 2 varying between 55 and 95 mph. As the first

MOS (VM1 ) of 40 mph is used from the upstream station to 2,000 ft, the timing of

reaching the second MOS ( VM2 ) is delayed due to the increased acceleration interval for

reaching V'O , As a result, energy consumption increases as the dip increases in Case II.
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Figure 6.37 Energy consumption vs. vertical dip with various MOS (Case II)

Considering the result of the vertical dip impact on energy consumption for Case I,

the most energy efficient MOS for the vertical dip between 0 and 150 ft is identified, and

the threshold MOS that energy consumption decreases as the vertical dip increase is

found in Figure 6.38. The least energy is consumed with a MOS of 55 mph when the

vertical dip is less than 130 ft. As the vertical dip exceeds 130 ft, the track alignment with

a MOS of 85 mph should be designed for an energy saving operation. Note that the thick

line in Figure 6.38 represents the least energy consumption, In addition, the threshold

designed MOS is found to be 71.7 mph, below which the designed vertical dip is

recommend to be less than 150 ft subject to a station spacing of 12,000 ft. The results

shown in Figure 6.38 can be a reference to determine the energy efficient MOS and dip

on a convex alignment.
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Figure 6.38 Energy consumption vs, vertical dip with threshold MOS (Case I)

The effect of train weight on energy consumption is investigated. As the number

of cars per train increases with a fixed motor power, the energy consumption also

increases, It was found that a less heavy train equipped with the same power motor must

be more energy efficient in the studied example of Cases III and IV. The effect of energy

savings by using optimal control is presented in Table 6.7 and increases as the number of

cars per train decreases, Note that the train weight does not include passenger load.
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Table 6.7 Effect of Train Weight on Energy Consumption (Cases III and IV)

Number of
Cars

(cars/train)

Train
Weight

(lb)

Coasting
Speed
(mph)

Coasting
Position

(ft)

Energy
Consumption

(kWh)

Case III

8 1,004,800 62.4 5,023 63,9
9 1,130,400 62.9 4,100 72.8
10* 1,256,000 64.0 4,414 82,4
11 1,381,600 64,2 4,330 92.4
12 1,507,200 64,1 4,806 92,5

Case IV

8 1,004,800 69,8 4,987 76.3
9 1,130,400 70.8 5,003 85.7
10* 1,256,000 72,0 4,607 96,7
11 1,381,600 72.6 4,344 104,5
12 1,507,200 73.4 4,097 113.2

* :baseline values

The results of the optimization model in Cases III and IV are generated based on

the train weight without considering the effect of passenger load. Therefore, the impact of

passenger load and occupancy rates to energy consumption is evaluated. By assuming

that the average passenger weight is 190 pounds (FAA, 2005) and the occupancy rate

varies from 0,4 to 1.6 with standees, the energy consumption for Cases III and IV is

calculated and illustrated in Table 6.8. It was found that the effect of passenger load on

optimal energy consumption is small, but it is increases as the occupancy rate increases.

Note that the empty train weight is 1,256,000 pounds.
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Table 6.8 The Impact of Passenger Load on Energy Consumption (Cases III and IV)

Occupancy
Rate

Passenger
Load
(lb)

Coasting
Speed
(mph)

Coasting
Position

(ft)

Energy
Consumption

(kWh)

Case III

0.4 102,600 63.3 4,765 95,1
0,6 123,120 63.2 4,968 97.2
0.8 164,160 63.4 4,479 99,4
1.0* 205,200 63.4 4,967 102.5
1,2 246,240 63,4 4,692 104.4
1.4 287,280 63.1 5,198 106.5
1.6 307,800 63,2 5,261 108.9

Case IV

0.4 102,600 68.6 5,047 107.9
0.6 123,120 69.8 5,003 109,2
0.8 164,160 69.8 5,097 110.9
1.0* 205,200 70.1 5,134 112.3
1,2 246,240 70.1 5,145 114.2
1.4 287,280 69.9 5,067 116.5
1.6 307,800 70.0 5,102 118.3

*:baseline values

The effects of coasting speed and position on energy consumption and travel time

for Case III are illustrated in Figure 6,39, It was found that among feasible train controls,

more energy is consumed as the coasting regime is triggered later. In particular, if

coasting begins at 6,250 ft with a speed between 40 and 52 mph, energy may be saved if

the operable travel time is less than the scheduled allowable travel time (T max)• The

resulting travel times for different coasting speeds and positions are illustrated in Figure

6,40. It was found that, for example, if coasting is triggered after 6,000 ft from the

Harrison Station, travel time is less than 150 seconds regardless of the used coasting

speed.



Figure 6.39 Energy consumption vs. coasting speed and position (Case 1II).
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Figure 6.40 Travel time vs, coasting speed and position (Case III).
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Similar to Figure 6.39 the impact of coasting speed and position on energy

consumption and travel time are investigated and illustrated for Case IV in Figures 6.41

and 6.42, respectively. It was found that more energy is consumed as the coasting regime

is triggered later at a higher coasting speed. Especially, the variation of energy

consumption is mainly affected by coasting position rather than coasting speed before

6,000 ft when the coasting speed between 40 and 80 mph, However, if the coasting

regime is commenced after 6,000 ft, the consumed energy is influenced by both coasting

position and speed when the coasting speed is between 40 and 50 mph, For example, the

coasting triggered at 7,000 ft with V'O at 45 mph consumed less energy (approximately

20 kWh) than the coasting triggered at 7,000 ft with Vo at 80 mph. The resulting travel

times for different coasting speeds and positions are illustrated in Figure 6.42.

Note that if the allowable travel time is known, the results of energy consumption

and travel time shown in Figures 6.39 through 6.42 can be utilized to determine the

appropriate coasting speed and position for the run with minimum energy consumption.



Figure 6.41 Energy consumption vs. coasting speed and position (Case IV).
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Figure 6.42 Travel time vs, coasting speed and position (Case IV).



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

An optimal train control for minimizing energy consumption of passenger train

operations subject to a travel time constraint was developed by exploring combinations of

motion regimes as well as the timing and duration of the applied motion regimes, The

objective total energy consumption function and sets of model constraints were

developed for Cases I through IV, while a Train Performance Simulation (TPS) model

that simulates train movement, calculates energy consumption, and estimates travel time

was developed, and a meta-heuristic, Simulated Annealing algorithm (SA) was used to

search for the optimal solution.

A real world example of the Metro-North Railroad's New Haven Line was

introduced to demonstrate the applicability of the developed models and solution

algorithm to optimize the studied problem. The scheduled maximum allowable travel

time, maximum operating speed, and maximum acceleration/deceleration rate were of

concern in the models developed to optimize total energy consumption. Sensitivity

analyses were conducted for investigating the relationship among important decision

variables and model parameters.

7.1 Conclusions

Subject to a maximum operating speed which varies by track alignments and operating

condition as well as the maximum allowable travel time and maximum acceleration (or

deceleration) rate, the optimal train control that minimizes energy consumption can be
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found through the SA algorithm. The major findings and conclusions are the as

following:

(1) Developed model and solution algorithm

• The developed time-driven TPS model can be used to effectively simulate train
movement, calculate energy consumption, and estimate travel time, considering
various vertical track alignments and control regimes. In addition, the
intermediate results of acceleration (or deceleration) rate, speed, energy
consumption rate, and travel distance can be generated according to the user
specified time interval.

• Given specific train characteristics, track alignment, and travel time schedule, the
developed models found the optimal coasting (or cruising) speed and position that
yield minimum energy consumption.

• The developed SA algorithm is a suitable searching approach for the optimal
solution of the studied energy minimization problem. The parameters of SA,
including perturbation, acceptance schedule, cooling schedule, and fitness
function, were calibrated using the benchmark solution solved by Simulated
Annealing (Chen, 2003). In this study, the exponential cooling schedule was used
for the developed SA, and it achieved more satisfactorily optimized solutions after
multiple iterations than the linear cooling schedule.

• The developed models can be utilized to optimize the energy consumption of a
passenger rail transit, if the track vertical alignment, allowable travel time,
maximum operating speed, and train characteristics are available. In particular,
the developed model and results of this study could be considered by modern train
control systems (e.g., ATC, ATO, PTC, etc) for energy efficient train scheduling
and operation subject to travel time and speed constraints.

• A dipped track alignments provides considerable savings of energy and time
although it may cost more to construct, However, construction cost can be
redeemed by the reduced energy and travel time.

(2) Optimal result and sensitivity analysis

• The results (See Figure 6.18) of energy consumption on the single vertical
alignments (level, convex, and concave) in Case I indicated that a convex track
alignment [e.g., 90 ft dip and 0.75 % dip ( 100 δ  / S brought considerable
benefits including a 42 kWh (47,9%) reduction of energy consumption and a
travel time increase of 14.5 seconds (8.5%), which satisfies the maximum
operating speed constraint and allows sufficient momentum to perform coasting.
However, the results of energy consumption in Case II shows that the benefit of
track alignment (e.g., same as the Case I) on energy consumption might be
considerably reduced if the maximum operating speed is low,
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• The impact of the coasting position and travel time constraint to energy
consumption is evaluated by varying the coasting position with a fixed coasting
speed, The resulting energy consumption and travel time at various coasting
positions on level, convex, and concave alignments as well as real world track
alignments in Cases I through IV are illustrated (See Figure 6.19 through 26).
Given a set of energy consumption and travel time results based on various
coasting positions, it is viable to save energy under any operational event (e.g,,
earlier arrival or delay) that causes deviations from the scheduled travel time

• When the allowable travel time increases (e.g,, due to an early arrived train at the
upstream station), the optimal coasting position is shifting towards the
downstream station. However, if the allowable travel time is long enough,
coasting may be triggered before reaching the maximum operating speed (See
Figures 6.29 through 6.32). On the other hand, if the allowable travel time is
shorter than the minimum travel time, the coasting regime will not be used,

• The impact of the maximum operating speed on energy consumption and travel
time in Case I (See Figure 6.33) indicated that the energy consumption incurred
with the level and concave alignments is more sensitive than that incurred with
the convex alignment. In addition, if the maximum operating speed is 83 mph or
greater, the consumed energy incurred on the convex alignment is less than that
on the level alignment,

• The impact of vertical dip associated with maximum operating speed to energy
consumption is investigated by varying the dip of the convex alignment, It was
found (Figure 6.35) that energy consumption is very sensitive to the vertical dip
as well as the applied maximum operating speed ( V M ). In addition, the resulting
energy consumption at various dips can be employed to search for the most
energy efficient vertical dip and maximum operating speeds (Figure 6.37),

• The impact of passenger load on energy consumption for Cases III and IV was
investigated by assuming that the average passenger weight is 190 pounds (FAA,
2005) and the occupancy rate varies from 0.4 to 1.6 considering standees, It was
found that the energy consumption increases slightly as the occupancy rate
increases (See Table 6.8) since the train mass is the major contributor to the
weight of a train,

• The results of the sensitivity analyses (See Figures 6.21 through 6.40 and Tables
6,7 and 6.8) that produce the relationship between energy consumption and travel
time versus various operation conditions can be utilized to generate guidelines for
energy-efficient train control

• The optimal results can be a reference to design a new train schedule when the
value of customer's tolerance and energy saving are known.
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7.2 	 Future Research

Future research areas related to the energy minimization problem are listed below:

• The modified Davis equation used in the TPS was developed based on a surface
railroad system, which may not perfectly fit an underground system (i.e., subway)
because the wind effects on train movement are different. Thus, the train
resistance equation needs to be enhanced to handle the wind effect while the train
is running in a tunnel,

• The developed SA algorithm can be enhanced by incorporating the Genetic
Algorithm to reduce the gap between the final and optimal solution, With
population-based state transition, the efficiency in the algorithm can achieve a gap
between the final and optimal solution of less than 3 % and reduce the
computation time. (Lin et al., 1993).

• An immediate extension of this study is to enhance the developed mOdel by
considering various station spacings (e.g., 2 miles) and maximum operating
speed (i,e. speed limit). To achieve optimal train control for longer station
spacing, there may be a need to trigger multiple coasting regimes.

• Some factors that may affect energy-saving operations (e.g., including coasting,
train weight, scheduled travel time, etc,) were identified. Other factors, such as
customers' needs and tolerance, the value of saved energy, etc. may be of concern
when balancing the impact of travel time/schedules and energy savings.

• The impact of the length of a car to the variation of track slope as well as the
effect of the number of cars per train on optimal control can be investigated in a
future study. The number of cars per train may be limited subject to the track
alignment, tractive effort, maximum operating speeds, and service frequency
needed to accommodate passenger demand.

• The coasting used in this research allows the train speed to deviate from the
maximum speed when triggered. However, a different type of coasting, whereby a
train traction system locks the train into a narrow speed range (i.e. constant speed
command) may be considered while optimizing train control in a future study. In
addition, the conditions (e,g., station spacing, service frequency, operational
constraint, and rolling stock characteristics, etc,) for two different coasting can be
compared.

• While the model described helps to find the right balance of power consumption
and travel time, its usefulness may be limited. Operator driven rail vehicles will
hardly adhere to the given acceleration and speed scheme unless a sophisticated
train control system (ATC, ATO, PTC, etc.) is in place. This also would require a
short distance block layout and frequent for speed.
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• The optimal train speed profile derived in this study can be considered for the
planning and operatiOn of signals for controlling train speed over a line,
According to the study by Dongen and Schuit (1989), energy efficient train
control can be implemented with educated train drivers. Although the actual train
speed operated by drivers may not be the same as suggested, energy may still be
saved.

• The impact of light braking on energy consumption will be estimated by
enhancing the train model to include a regenerative braking system (RBS) that
stores braking energy into a battery or condenser bank for later use,
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