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ABSTRACT

TARGET LOCALIZATION IN MIMO RADAR SYSTEMS

by
Hana Godrich

MIMO (Multiple-Input Multiple-Output) radar systems employ multiple antennas to

transmit multiple waveforms and engage in joint processing of the received echoes from

the target. MIMO radar has been receiving increasing attention in recent years from

researchers, practitioners, and funding agencies. Elements of MIMO radar have the ability

to transmit diverse waveforms ranging from independent to fully correlated. MIMO radar

offers a new paradigm for signal processing research. In this dissertation, target localization

accuracy performance, attainable by the use of MIMO radar systems, configured with

multiple transmit and receive sensors, widely distributed over an area, are studied. The

Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both

coherent and noncoherent processing. The CRLB is shown to be inversely proportional

to the signal effective bandwidth in the noncoherent case, but is approximately inversely

proportional to the carrier frequency in the coherent case. It is shown that optimization over

the sensors' positions lowers the CRLB by a factor equal to the product of the number of

transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived

for the MIMO target localization problem. The BLUE's utility is in providing a closed-form

localization estimate that facilitates the analysis of the relations between sensors locations,

target location, and localization accuracy. Geometric dilution of precision (GDOP)

contours are used to map the relative performance accuracy for a given layout of radars

over a given geographic area. Coherent processing advantage for target localization relies

on time and phase synchronization between transmitting and receiving radars. An analysis

of the sensitivity of the localization performance with respect to the variance of phase

synchronization error is provided by deriving the hybrid CRLB. The single target case

is extended to the evaluation of multiple target localization performance. Thus far, the



analysis assumes a stationary target. Study of moving target tracking capabilities is

offered through the use of the Bayesian CRLB for the estimation of both target location

and velocity. Centralized and decentralized tracking algorithms, inherit to distributed

MIMO radar architecture, are proposed and evaluated. It is shown that communication

requirements and processing load may be reduced at a relatively low performance cost.
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CHAPTER 1

INTRODUCTION

1.1 MIMO Radar Background

Research in MIMO radar has been growing as evidenced by an increasing body of literature

[1-25]. Generally speaking, MIMO radar systems employ multiple antennas to transmit

multiple waveforms and engage in joint processing of the received echoes from the target.

Two main MIMO radar architectures have evolved: with collocated antennas and with

distributed antennas. MIMO radar with collocated antennas makes use of waveform

diversity [4,5,13,15,19], while MIMO radar with distributed antenna takes advantage of the

spatial diversity supported by the system configuration [1, 2, 6,14]. MIMO radar systems

have been shown to offer considerable advantages over traditional radars in various aspects

of radar operation, such as the detection of slow moving targets by exploiting Doppler

estimates from multiple directions [17], the ability to identify and separate multiple

targets [11, 12], and in the estimation of target parameters, such as direction-of-arrival

(DOA) [9, 11], and range-based target localization [18]. In particular, [18] studies target

localization with MIMO radar systems utilizing sensors distributed over a wide area.

Conventional localization techniques include time-of-arrival (TOA), time-difference-

of-arrival (TDOA), and direction-of-arrival (DOA) based schemes. MIMO radar system

with collocated antennas can perform DOA estimation of targets in the far-field, in which

case, the received signal has a planar wavefront. Extensive research has focused on

waveform optimization. In [8, 15, 19] the signal vector transmitted by a MIMO radar

system is designed to minimize the cross-correlation of the signals bounced from various

targets to improve the parameter estimation accuracy in multiple target schemes. Some

of the waveform optimization techniques suggested in [16] are based on the Cramer-Rao

lower bound (CRLB) matrix. The CRLB is known to provide a tight bound on parameter

1
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estimation for high signal-to-noise ratio (SNR) [26-28]. Several design criteria are

considered, such as minimizing the trace, determinant, and the largest eigenvalue of the

CRLB matrix, concluding that minimizing the trace of the CRLB gives a good overall

performance in terms of lowering the CRLB. In [10], a CRLB evaluation of the achievable

angular accuracy is derived for linear arrays with orthogonal signals. The use of orthogonal

signals is shown to provide better accuracy than correlated signals. For low-SNR scenarios,

the Barankin bound is derived in [11], demonstrating that the use of orthogonal signals

results in a lower SNR threshold for transitioning into the region of higher estimation error.

In all, the CRLB is limited to the analysis of the angular accuracy and therefore the results

cannot be transformed into an equivalent error in a Cartesian coordinate system.

MIMO radar systems with widely spread antennas take advantage of the geographical

spread of the deployed sensors. The multiple propagation paths, created by the transmitted

waveforms and echoes from scatterers, support target localization through either direct

or indirect multilateration. With direct multilateration, the observations collected by

the sensors are jointly processed to produce the localization estimate. With indirect

multilateration, the TOAs are estimated first, and the localization is subsequently estimated

from the TOAs. The observations and processing of the time delays can be classified

as either non-coherent or coherent. Thus, a transmitted signal may have in-phase and

quadrature components, yet the localization processing is non-coherent if it utilizes

only information in the signal envelope. In the sequel, the performance of localization

utilizing both coherent and non-coherent processing is evaluated. The distinction between

the two modes, in terms of system requirements, relies on the need for mere time

synchronization between the transmitting and receiving radars in the non-coherent case,

versus the need for both time and phase synchronization in the coherent case. Note that our

coherent/non-coherent terminology is limited to the processing for localization.

MIMO radar systems belongs to the class of active localization systems, where

the signal usually travels a round trip, i.e., the signal transmitted by one sensor in a
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radar system is reflected by the target, and measured by the same or a different sensor.

Traditional single-antenna radar systems, performing active range-based measurements, are

well known in literature [29-33]. The target range is computed from the time it takes for the

transmitted signal to get to the target, plus the travelling time of the reflected signal back to

the sensor. The range estimation accuracy is directly proportional to the mean squared error

(MSE) of the time delay estimation and is shown to be inversely proportional to the signal

effective bandwidth [29]. A first study of the localization accuracy capability of widely

spread MIMO radar systems is provided in [18], where the Fisher information matrix

(FIM) is derived for the case of orthogonal signals with coherent processing and widely

separated antennas. The CRLB is analyzed numerically, pointing out the dependency of the

accuracy on the signal carrier frequency in the coherent case, and its reliance on the relative

locations of the target and sensors. In [18], it is observed that the CRLB is a function of

the number of transmitting and receiving sensors, however an analytical relation is not

developed. The high accuracy capability of coherent processing is illustrated by the use

of the ambiguity function (AF). Active range-based target localization techniques are also

used in multi-static radar systems, proposed in [34]. The TOA of a signal transmitted by

a single transmit radar, reflected by the target and received at multiple receive antennas

is used in the localization process. The CRLB is developed for non-coherent processing.

It is observed that increasing the number of sensors improves localization performance,

yet an exact relation is not specified. In [35] the Bayesian Cramer-Rao bound (BCRB) is

developed for the same scheme as in [34]. Simulation-based results show that accuracy

performance depends on the geometric setting of the system, nonetheless a notion of this

effect is not provided. The multi-static scheme evaluated in [34] and [35] does not deal with

the processing of multiple received signals since only one waveform is transmitted. This

dissertation addresses deficiencies in the literature by obtaining closed-form expressions of

the CRLB for both coherent and non-coherent cases with multiple widely spread transmit

and receive radars.
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Geolocation techniques have been the subject of extensive research. Geolocation

belongs to the class of passive localization systems, where the signal travels one-way. Since

these passive measurement systems employ multiple sensors [36-40], further evaluation of

existing results for geolocation systems may provide insight for the active case. In wireless

communication, passive measurements are used by multiple base stations for localization of

a radiating mobile phone. The localization accuracy performance is evaluated in [36, 38].

It is shown that the localization accuracy is inversely proportional to the signal effective

bandwidth, as it does in the active localization case. Moreover, the accuracy estimation

is shown to be dependent on the sensors/base stations locations. In navigation systems,

the target makes use of time-synchronized transmission from multiple Global Positioning

Systems (GPS) to establish its location. In [39] and [40], the relation between the

transmitting sensors location and the target localization performance is analyzed. GDOP

plots are used to demonstrate the dependency of the attainable accuracy on the location of

the GPS systems with respect to the target. In an optimal setting of the GPS systems relative

to the target position, the best achievable accuracy is shown to be inversely proportional to

the square root of the number of participating GPS sensors. In this research work, the

GDOP metric is utilized in the evaluation of localization performance of MIMO radar

systems.

1.2 Dissertation Main Contributions

The main contributions of this research work are as follows:

1.2.1 Lower Bound on Target Localization

I. The CRLB of the target localization estimation error is developed for the general

case of MIMO radar with multiple waveforms with non-coherent and coherent

observations. The analytical expressions of the CRLB are derived for the case of

orthogonal waveforms (in [3] and [42, 43]).
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2. It is shown that the CRLB expressions, for both the non-coherent and coherent cases,

can be factored into two terms: a term incorporating the effect of bandwidth, carrier

frequency and SNR, and another term accounting for the effect of sensor placement,

defined as spatial advantage.

3. The CRLB of the standard deviation of the localization estimate with non-coherent

observations is shown to be inversely proportional to the signals averaged effective

bandwidth. Dramatically higher accuracy can be obtained from processing coherent

observations. In this case, the CRLB is inversely proportional to the carrier

frequency. This gain is due to the exploitation of phase information, and is referred

to as coherency advantage.

1.2.2 Spatial Advantage Optimization and Analysis

1. Formulating a convex optimization problem, it is shown that symmetric deployment

of transmitting and receiving sensors around a target is optimal with respect to

minimizing the trace of the CRLB. The closed-form solution of the optimization

problem also reveals that optimally placed M transmitters and N receivers reduce

the CRLB on the variance of the estimate by a factor MN/2 (in [44] and [451).

2. A closed-form solution is developed for the best linear unbiased estimator (BLUE)

of target localization for coherent and non-coherent MIMO radars. It provides a

closed-form solution and a comprehensive evaluation of the performance of the

estimator's MSE. This estimator provides insight into the relation between sensor

locations, target location, and localization accuracy through the use of the GDOP

metric. This metric is shown to represent the spatial advantage of the system.

Contour maps of the GDOP, provide a clear understanding of the mutual relation

between a given deployment of sensors and the achievable accuracy at various target

locations.
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3. An evaluation of target localization performances for MIMO radar with coherent

processing and single-input multiple-output (SIMO) radar systems, based on the

BLUE, is provided. The best achievable accuracy for both configurations is derived.

MIMO radar systems with coherent processing are shown to benefit from higher

spatial advantage, compared with S1140 systems. The advantage of the MLMO

radar scheme over SLMO is evident when considering the achievable accuracy for

a radar system with M transmitters and N receivers, rather than 1 transmitter and

MN receivers. It is shown that MEMO radar, with a total of M N sensors, has

twice the performance (in terms of localization MSE) of a system with (MN ± 1)

sensors (in [46]).

1.2.3 CRLB for Multiple Target Localization

1. The localization performance study is extended to the case of multiple targets,

with coherent processing. The CRLB for the multiple targets localization problem

is derived and analyzed. The localization is shown to benefit from coherency

advantage. The trade-off between target localization accuracy and the number of

targets that can be localized is shown to be incorporated in the spatial advantage

term.

2. An increase in the number of targets to be localized exposes the system to increased

mutual interferences. This trade-off depends on the geometric footprint of both the

sensors and the targets, and the relative positions of the two. Numerical analysis

of some special cases offers an insight to the mutual relation between a given

deployment of radars and targets and the spatial advantage it presents (in [47]).
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1.2.4 Sensitivity Analysis of Coherent Processing to Phase Synchronization Errors

1. The hybrid Cramer-Rao bound (CRB) is developed for target localization, to

establish the sensitivity of the estimation mean-square error (MSE) to the level

of phase synchronization mismatch in coherent Multiple-Input Multiple-Output

(MIMO) radar systems with widely distributed antennas. The lower bound on

the MSE is derived for the joint estimation of the vector of unknown parameters,

consisting of the target location and the mismatch of the allegedly known system

parameters, i.e., phase offsets at the radars.

2. A closed-form expression for the hybrid CRB is derived for the case of orthogonal

waveforms. The bound on the target localization MSE is expressed as the sum of two

terms — the first represents the CRB with no phase mismatch, and the second captures

the mismatch effect. The latter is shown to depend on the phase error variance, the

number of mismatched transmitting and receiving sensors and the system geometry.

3. For a given phase synchronization error variance, this expression offers the means

to analyze the achievable localization accuracy. Alternatively, for a predetermined

localization MSE target value, the derived expression may be used to determine the

necessary phase synchronization level in the distributed system (in [48]).

1.2.5 Bayesian Cramer-Rao Bound (BCRB) for Target Tracking

1. The CRLB on target localization is developed in this study for a stationary target

whereas the CRLB on target velocity estimation was developed in [49]- [50].

Consequently, our model does not account for Doppler frequency. In practice, a

Doppler shift might be introduced and affect the estimation performance. Target

tracking involves the joint evaluation of both target parameters.
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2. Study of moving target tracking capabilities is offered through the use of the BCRB

for the estimation of both target location and velocity in non-coherent Ml-M0 radar

systems with widely distributed antennas. It is shown that increasing the number of

transmitting and receiving radars provides better tracking performances in terms of

higher accuracy gains for target location and velocity estimation. The performance

gain is proportional to the increase in the product of the number of transmitting and

receiving radars. Wider spread of the radars results in better accuracies.

3. MIMO radar architecture support both centralized and decentralized tracking

techniques, inherit to the system nature. Each receiver may contribute to central

processing by providing either raw data or partially/fully processed data. It is

demonstrated that communication requirements and processing load may be reduced

at a relatively low performance cost. Based on mission needs, the system may

use either modes of operation: centralized for high accuracy or decentralized

resource-aware tracking (in [51] and [52] ).

1.3 Dissertation Outline

The dissertation is organized as follows: The localization performance analysis for a single

target is developed in Chapter 2. The CRLB is derived for the general case of multiple

transmitted waveforms. Analytical expressions are obtained for the cases of non-coherent

and coherent observations with orthogonal signals. Optimization of the CRLB as a function

of sensor location is provided in the same chapter.

The BLUE is derived and evaluated in Chapter 3 for both coherent and non-coherent

processing. To establish a better understanding of the relations between the radar

geographical spread and the target location, the GDOP metric is introduced in this chapter

and GDOP based analysis is provided for MIMO and SIMO radar configurations.
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The CRLB for Multiple targets localization is developed in Chapter 4. Establishing

the feasibility of the coherent processing method, sensitivity analysis of coherent target

localization estimation error to phase synchronization errors is provided in Chapter 5.

Target tracking model for MIMO radar system with non-coherent processing is

introduced in Chapter 6. The theoretical performance bound is set through the use of the

BCRB and centralized and decentralized algorithms are proposed. While the first provides

high accuracy, the later incorporate resource saving at relatively low performance loss.

Finally, conclusions and discussion of future work is provided in Chapter 7.



CHAPTER 2

TARGET LOCALIZATION IN MIMO RADAR

2.1 Introduction

In radar systems, bandwidth plays an important role in determining range resolution,

i.e., it is inversely proportional to the signal bandwidth [29]. By exploiting the

spatial dimension, coherent MLMO radar with widely separated antennas may overcome

bandwidth limitations and support high resolution target localization. The distinction

between noncoherent and coherent applications relies on the need for merely time

synchronization between the transmitting and receiving radars vs. the need for phase

synchronization. The MIMO radar architecture with coherent processing exploits

knowledge of the phase differences measured at the receive antennas to produce a high

accuracy target location estimate.

In this Chapter, localization performances of coherent and noncoherent processing

are evaluated. The distinction between the two modes, in terms of system requirements,

relies on the need for mere time synchronization between the transmitting and receiving

radars in the noncoherent case, versus the need for both time and phase synchronization in

the coherent case.

2.2 System Model

Widely distributed MIMO radar systems with M transmitting radars and N receiving

radars are considered. The receiving radars may be collocated with the transmitting ones

or individually positioned. The transmitting and receiving radars are located in a two

dimensional plane (x, y). The M transmitters are arbitrarily located at coordinates Tk

(Xtk, Ytk) k =1, . ,M, and the N receivers are similarly arbitrarily located at coordinates

= (xr.e, yre) , E	 1,... N. The set of transmitted waveforms in lowpass equivalent

10
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form is sk (t) , k -= 1, . .. , Al,  where fr 1sk (t)12 dt 1, and T is the common duration

of all transmitted waveforms. The power of the transmitted waveforms is normalized such

that the aggregate power transmitted by the sensors is constant, irrespective of the number

of transmit sensors. To simplify the notation, the signal power term is embedded in the

noise variance term, such that the SNR at the transmitter, denoted SNRt and defined as

the transmitted power by a sensor divided by the noise power at a receiving sensor, is set

at a desired level. Let all transmitted waveforms be narrowband signals with individual

effective bandwidth i3k defined as 1312, = i2ISk(f)12 di) I (fwk 1Sk (f) 1 2 
di)1,

where the integration is over the range of frequencies with non-zero signal content Wk

[29]. Further define the signals' averaged effective bandwidth or rms bandwidth as

fi2 rid Ekm /372, and the normalized bandwidth terms as OR, = /3k/0. The signals are

narrowband in the sense that for a carrier frequency of L, the narrowband signal assumption

implies /3/ f < 1 and ,82/ /1,2 < 1.

The target model developed here generalizes the model in [29] to a near-field scenario

and distributed sensors. In Skolnik's model [29], the returns of individual point scatterers

have fixed amplitude and phase, and are independent of angle. For a moving target,

the composite return fluctuates in amplitude and phase due to the relative motion of the

scatterers. When the motion is slow, and the composite target return is assumed to be

constant over the observation time, the target conforms to the classical Swerling case I

model. This model is generalize to a target observed by a MTMO radar with distributed

sensors. Assume an extended target, composed of a collection of Q individual point

scatterers located at coordinates Xq (xq, yq) , q = 1, . . . , Q, concentrated in a circle

centered at X/ (xl , V), with an area smaller than the signal wavelength. The amplitudes

C of the point scatterers are assumed to be mutually independent. The pathloss and phase of

a signal reflected by a scatterer, when measured with respect to a transmitted signal sk (t) ,

are functions of the path transmitter-scatterer-receiver. Let Tek (Xq) denote the propagation
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time from transmitter k, to scatterer q, to receiver f,

(2.1)

where c is the speed of light. Our signal model assumes that the sensors are located

such that variations in the signal strength due to different target to sensor distances can

be neglected, i.e., the model accounts for the effect of the sensors/target localizations

only through time delays (or phase shifts) of the signals. The common path loss term

ig Pmherlded in r_ The hasehand renresentation for the signal received at sensor f is:

(2.2)

where the term 27rfcrtk (Xq) is the phase of a signal transmitted by sensor k, reflected

by scatterer q located at Xq, and received by sensor F. Phases are measured relative to a

common phase reference assumed to be available at the transmitters and receivers. The

term we (t) is circularly symmetric, zero-mean, complex Gaussian noise, spatially and

temporally white with autocorrelation function a! (7). The noise term is set cy! =

1/SNRt, where SNRt is measured at the transmitter. SNItt is normalized such that the

aggregate transmitted power is independent of the number of transmitting sensors. The

SNR at the receiver, due to a scatterer with amplitude (q, is SNR, = Kg1 2SNRt. Signals

reflected from the target combine at each of the receive antennas. For example, the resultant

signal at receive antenna is given by

(2.3)

In obtaining (2.3), the narrowband assumption is invoked sk (t — Tek (X0)

Sk (t — 'trek (XI)), for all scatterers, namely that the change in the lowpass equivalent signals

across the target is negligible. In [29] it is shown that a complex target defined by (2.3) may

be written as:

(2.4)
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where (' is the amplitude given by

(2.5)

(2.6)

The targets are concentrated in a small area, such that the viewing angles on path fk

for all Q targets are approximately the same, i.e. cos (27 ferek (Xq)) 	 cos (27 fcrek (X'))

and sin (27 fcrek (Xq)) 	 sin (27r fcTek (X')) for all q = 1, ...Q. It follows from this

discussion that the extended target is represented by a point scatterer of amplitude C' =

EqQ_i Co, and time delays Tek (X') , where all the quantities are unknown.

While this target model is completely adequate for our needs, it is possible to extend

it slightly, at little cost. Assume a constant time offset error AT at the receivers. Further,

assume that the error is small such that it does not impact the signal envelope, but it does

impact the phase. Then the time delays can be written as Tek (Xi) = Tek (X) ± AT for some

location X = (x, y) . The target model (2.3) can now be expressed

(2.7)

where ( = Ce-327' fc AT and the narrowband assumption was invoked once more. The

composite target of (2.3) is then equivalent to a point scatterer of complex amplitude (

and time delays rek (X) . For simplicity, the following notation is used: Tek = Tek (X). The

signal model (2.2) becomes

(2.8)

The vector of received signals is defined as r = 	 , for later use. The radar

system's goal is to estimate the target location X = (x, y) . The target location can be
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estimated directly, for example by formulating the maximum likelihood estimate (MLE)

associated with (2.8). Alternatively, an indirect method is to estimate first the time delays

Tik. Subsequently, the target location can be computed from the solution to a set of

equations of the form (2.1), (see Figure 2.1) viz.,

(2.9)

The unknown complex amplitude is treated as a nuisance parameter in the estimation

problem.

Figure 2.1 System Layout.

Let the unknown target location X = (x,y) , unknown time delays delays TEk, and

unknown target complex amplitude = (R + j(', where the notation specifies the real and

imaginary components of (.

Target location estimation process may be referred as noncoherent or coherent. The

received signal introduced in (2.8) is adequate for the coherent case, where the transmitting

and receiving radars are assumed to be both time and phase-synchronized. As such, the time

delays information, Tek, embedded in the phase terms may be exploited in the estimation
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process by matching both amplitude and phase at the receiver end. In contrast, noncoherent

processing estimates the time delays To, from variations in the envelope of the transmitted

signals sk (t) . A common time reference is required for all the sensors in the system. In this

case, the transmitting radars are not phase-synchronized and therefore the received signal

model is of the form:

(2.10)

where the complex amplitude terms atk integrate the effect of the phase offsets between

the transmitting and receiving sources and the target impact on the phase and amplitude of

the transmitted signals. These elements are treated as unknown complex amplitudes, where

atk = atRk + fiat' k. The following vector notations are defined:

(2.11)

where Re() and /rn, (-) denote the real and imaginary parts of a complex-valued

vector/matrix.

2.3 Localization CRLB

The CRLB provides a lower bound for the MSE of any unbiased estimator for an unknown

parameter(s). Given a vector parameter 0, constituted of elements O, the unbiased estimate

O satisfies the following inequality [26]:

(2.12)
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where [J.-1- (0)} 	 the diagonal elements of the Fisher Information matrix (FIM) J (0).

The FIM is given by:

(2.13)

where p (r10) is the joint probability density function (pdf) of r conditioned on 0 and

Erio {.} is the conditional expectation of r given 6 .

The CRLB is then defined:

(2.14)

Sometime, it is easier to compute the FIM with respect to another vector 0, and apply the

chain rule to derive the original J (0) . In our case, since the received signals in both (2.8)

and (2.10) are functions of the time delays, Tek and the complex amplitudes, by the chain

rule, J (0) can be expressed in the alternative form [26]:

(2.15)

where lp is a vector of unknown parameters, and it incorporates the time delays. Matrix

J (0) is the FEM with respect to 0, and matrix P is the Jacobian:

(2.16)

From this point onward, the CRLB is developed for the case of noncoherent and

coherent processing, separately.
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2.3.1 Noncoherent Processing CRLB

For noncoherent processing, there is no common phase reference among the sensors.

Consequently, the complex-valued terms aik incorporate phase offsets among sensors and

the effect of the target on the phase and complex amplitude, following the definitions in

(2.11). The vectors of unknown parameters is defined:

(2.17)

The process of localization by noncoherent processing depends on time delay estimation of

the signals observed at the receive sensors and also on the location of the sensors. To gain

insight into how each of the factors affects the performance of localization, the form of the

FIIVI given in (2.15) is utilized. The vector of unknown parameters is defined by:

(2.18)

where a is given in (2.11) and T = [T11, r12, ••., Tik, •.., TAIN] i . Only estimates of x and y

are of interest, while aR, al act as nuisance parameters in the estimation problem.

Given a set of known transmitted waveforms sk (t — Tek) parameterized by the

unknown time delays Trek, which in turn are a function of the unknown target location

X =--- (x, y), the conditional, joint pdf of the observations at the receive sensors, given

by (2.10), is then:

(2.19)
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The matrix Pne for (2.17) and (2.18), to be used in (2.15), is defined as:

(2.20)

where IT is standard notation for taking the derivative with respect to x of each element
Orof T, and — denotes the Jacobian of the vector T with respect to the vector a R. TheaaR

subscript denotes the matrix dimensions.

It is not too difficult to show that using (2.9), the matrix P 	 be expressed in the

form:

(2.21)

where 0 is the all zero matrix, I is the identity matrix, and H E R2 x MN incorporates

the derivatives of the time delays in (2.9) with respect to the x and y parameters. These

derivatives result in cosine and sine functions of the angles the transmitting and receiving

radars create with respect to the target, incorporating information on the sensors and target

locations as follows:

(2.22)

1■.

The elements of H are given by:
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(2.23)

where the phase Ok is the bearing angle of the transmitting sensor k to the target measured

with respect to the x axis; the phase yok is the bearing angle of the receiving radar to

the target measured with respect to the x axis. See illustration in Figure 2.2. For later

use, the following notations are defined: 	 = [01, 02, ..., 0/141T, 	 = 	 CO2, • • •, VNiT,

	T 	 T
atx -= [atx1, atx • • • , atam

i 	
arx = [arxi 7 arX2 7 • • • ) arXN

]T 
7 "ta: 	 [biX1 btX2 7 • • • 7 btxmi

i

br, 	 tbrxi brx2 , • • • , brxmiT •

Figure 2.2 Transmiter - receiver path.

An expression for the FIM J (072,) , is derived in Appendix A, yielding:

(2.24)
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with the block matrices Sac, Aa, and V,,, terms defined in the Appendix A in (A.2), (A.3)-

(A.4) and (A.5)-(A.6) respectively.

In order to determine the value of J (O,), (2.15) and (2.21) are used in (2.24), to

obtain the following CRLB matrix:

(2.25)

The CRLB matrix is related to the sensor and target locations through the matrix H,

and to the received waveforms correlation functions and its derivatives through the Sn, and

V,„ matrices.

Orthogonal Waveforms When the waveforms are orthogonal, the block matrices Snc,

Aa, and V, simplify to (A.7) in Appendix A. This simplification enables to compute the

CRLB (2.25) in closed-form. This calculation is performed next.

While the CRLB expresses the lower bound on the variance of the estimate of Onc =

[x, y, ozR, al 7', only the estimation of x and y is of interest. The amplitude terms aR

and a' serve as nuisance parameters. For the variances of the estimates of x and y, it is

sufficient to derive the 2 x 2 upper left submatrix [CcRLB„e12x2 = [(J (Onc))-11 •2x2

The CRLB submatrix [CcRLBnel 2x2 for target localization in the noncoherent case

with orthogonal signals is:



Proof: From (A.7) in Appendix A, terms (2.25) is:
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(2.27)

(2.28)

(2.29)

This concludes the proof of the proposition. 	 •

It follows that the lower bound on the variance for estimating the x coordinate of the

target is given by

(2.30)

Similarly, for the y coordinate,

(2.31)
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The terms gx gv„c, and itn, are summations of atxk , arx„ btx, and brx, terms

that represent sine and cosine expressions of the angles çb and yo, and therefore relate

to the radars and target geometric layout. It is apparent that for the noncoherent case,

the lower bounds on the variances (2.30) and (2.31) are inversely proportional to the

averaged effective bandwidth 02, and SNR = 1/o (see expression for rm, in (2.29)).

It is interesting to note that i is actually the CRLB for range estimation in a single

antenna radar, based on the one-way time delay between the radar and the target (see for

example [26]). The other terms in (2.30) and (2.31) incorporate the effect of the sensor

locations.

2.3.2 Coherent Processing CRLB

Recall that in the signal model Section, the complex amplitude ail, i s associated with the

path transmitter k —÷ target —> receiver t. In the noncoherent case, the complex amplitude

is a nuisance parameter in estimating the target location x, y. In the coherent case, the

transmitting and receiving radars are assumed to be phase-synchronized. By eliminating

the phase offsets, the signal model in (2.8) applies, and the nuisance parameter role is left

to the complex target amplitude = CR + j(i. The coherent approach to localization seeks

to exploit the target location information embedded in the phase terms exp (-27rfc-rek) that

depend on the delays Tek, which in turn are function of the target coordinates x, y.

Define the vector of unknown parameters:

(2.32)

(2.33)
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to be used in (2.15) to derive the CRLB. In comparing the coherent case in (2.33) with

the noncoherent counterpart in (2.18), note that 'on, incorporates the vectors aR and a1,

while 0, is a function of the scalars (R and (1- . The reduction in the number of unknown

parameters is made possible through the measurement of the phase terms of aR and a1.

For coherent observations, the conditional, joint pdf of the observations at the receive

sensors, given by (2.8), is of the form:

(2.34)

Following a process similar to the one in Section 2.3.1, the CRLB is derived for the

coherent case, based on the relation in (2.15). The matrix Pc takes the form:

(2.35)

where matrix H has the same form as in (2.22), since it is independent of the nuisance

parameters in both cases.

An expression for the FIN4 matrix, J (), is derived in Appendix B, yielding:

(2.36)

where the elements of the submatrices are found in Appendix B as follows: S, in (B.4).

in (B.5)-(A.5), and V, in (B.7)-(B.9).
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The CRLB matrix for the coherent case is then found substituting (2.35) and (2.36)

in (2.15) and (2.14), obtaining:

-1

(2.37)

As in Section 2.3.1, the closed-form solution to the CRLB matrix in (2.37) is reduced

to the case of orthogonal waveforms. Since only the lower bound on the variances of the

estimates of x and y, is of interest, the submatrix [CcRLBc]2x2 RJ, (0)Y 2 x 2 is derived

and evaluated next.

Orthogonal Waveform The CRLB 2 x 2 submatrix for the coherent case and orthogonal

waveforms is:

(2.38)

Proof: From (B.11) in Appendix B the values of the matrices 5,, 	 and V, are

obtained for orthogonal waveforms. Using this and H defined in (2.22) in (2.37), the CRLB

matrix CCRLB,, is obtained. Consequently, the submatrix [CcRLB,12x2 is computed,

resulting in the form given in (2.38).

This completes the proof of the proposition. 	 •

From (2.38) and (B.11), it can be shown that [C CRLI3J2 x 2 can be expressed as:

(2.39)
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where the various quantities are as follows:

(2.40)

The lower bound on the error variance is provided by the diagonal elements of the

[CeRLBcor] 2 x2 submatrix and are of the form:

(2.41)

The terms gxc, gw, and h, are summations of atx,, arx„ btxk and brxe that represent

sine and cosine expressions of the angles and cp, and therefore relate to the radars and

target geometric layout, multiplied by the ratio terms fR, = (1 + '374) . Invoking the

narrowband signals assumption i3W,2 < 1, it follows that fR, 1. These terms have

some additional elements when compared with the noncoherent case. It is apparent that

for the coherent case, the variances of the target location estimates in (2.41) are inversely

proportional to the carrier frequency p.
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2.3.3 Discussion

The following observations are made:

• The lower bound on the variance in the noncoherent case is inversely proportional

to the averaged effective bandwidth 	 For the coherent case, with narrowband

signals, where NI < 1, the localization accuracy is inversely proportional to the

carrier frequency .1', and independent of the signal individual effective bandwidth,

due to the use of the phase information across the different paths. It is apparent that

coherent processing offers a target localization precision gain (i.e., reduction of the

localization root mean-square error) of the order of fc/i3, refer to as coherency gain.

Designing the ratio f/ i3 to be in the range 100-1000, leads to dramatic gains.

• The term Tic in (2.40) is the range estimate based on one-way time delay with coherent

observations for a radar with a single antenna [53].

• The CRLB terms are strongly reliant on the relative geographical spread of the radar

systems vs. the target location. This dependency is incorporated in the terms a Xc 7

gynciye and lincie. It is apparent from (2.41), (2.30) and (2.31) that there is a trade-off

between the variances of the target location computed horizontally and vertically.

A set of sensor locations that minimizes the horizontal error, may result in a high

vertical error. For example, spreading the transmitting and receiving radars in an

angular range of — (ir /10) to -I- (7/10) radians with respect to the target, will result

in high horizontal error while providing low vertical error, as intuitively expected.

This is caused by the fact that the terms gx„,c/gxe are summations of sine functions

and gy„c /gye are summation of cosine functions of the same set of angles. In order to

truly determine the minimum achievable localization accuracy in both x and y axis,

the over-all accuracy, defined as the total variance a! = (\crx2ecRB ay2eCRB) needs

to be minimized.
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• The message of dramatic improvement in localization accuracy needs to be

moderated with the observation that the CRLB is a bound of small errors. As such,

it ignores effects that could lead to large errors. For example, MINIO radar with

distributed sensors and coherent observations is subject to high sidelobes [1]. These

topics are outside the scope of this paper, but they should be kept in perspective.

• Phase synchronization: The coherent scheme promises of higher accuracy

performances involve the challenge of distributed carrier phase synchronization.

The synchronization complexity in distributed and autonomous sensors/platforms

is common to widely spread MIMO radar systems, wireless sensor networks and

cooperative wireless communication. In the latter two, some of the proposed

solutions make use of a reference signal [54-57] provided by one of the sensors.

These schemes mainly focus on master/slave strategies where one sensor is chosen

to be the master and broadcasts a sinusoidal reference signal to all slaves. Carrier

phase synchronization is also established using an external beacon in the form of a

GPS or a ground communication broadcasting station [58-61]. These highly stable

broadcasting sources continuously transmit a reference signal to be used at each

sensor node, where more than one beacon may be used for higher accuracy. In

all of these synchronization methods, a periodic re-synchronization is necessary to

avoid unacceptable levels of phase drift. The increasing interest in distributed phase

synchronization and vibrant research activity set the ground for promising progress.

• Doppler shift: The CRLB on target localization is developed for a stationary target

whereas the CRLB on target velocity estimation is developed in [50]. Consequently,

the model in (2.8) does not account for Doppler frequency. In practice, a Doppler

shift might be introduced and affect the estimation performance with coherent

processing. To evaluate the affect of such a Doppler shift on the CRLB the following
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signal model adaptation is applied [31]:

where fda is the Doppler frequency and it- < 1 is assumed. Without loss of

generality, the transmitted waveforms are time-delayed such that they add coherently

in the center of a given search cell [o 1J . For a slow moving target, i.e.

< 1, the Doppler term exp (j21rfd,kt) P.:: 1 and therefore the Doppler shift

does not affect the localization performance as shown in this section. If the latter

does not apply, the off-diagonal elements of matrix S, are non-zero and therefore

introduce an estimation error. A current research effort is focused on the extension

of the current model to a Bayesian CRLB that accounts for both target location and

velocity estimation.

• Orthogonality: The CRLB is developed for a general set of waveforms {sk (t)}. The

general solution in (2.25) and (2.37) is later given in closed-form for the special case

of orthogonal signals. Albeit the design of such signal sets is beyond the framework

of this paper, elaboration as for some possible schemes is provided. Attaining a set of

orthogonal waveforms that follow the requirement of f sk (v) s, (ii — ATek,w)

0 over all cross-elements, k 	 k', and any Ara,,ek, = 	 Tew , is a challenging

task. Accomplishing full orthogonality under these conditions is very demanding.

A practical way to address this problem is by relaxing the design criteria to low

cross-correlation, i.e., If sk (v) s, 	 — ATtkrek,) dv I < 6, where € is chosen such

that the estimation MSE performance penalty, with respect to fully orthogonal sets,

in minimized. This offers a reasonable way to generate approximate-orthogonal

waveforms for some range of delays or what is defined in [62] as quasi-orthogonal

waveforms. Such an alternative is presented in [50]. Some other design possibilities

are provided in [21-23,62]. The extension of the radar AF to the MlMO radar case

in [24,25] offers design tools for such quasi-orthogonal waveforms. The CRLB



29

analytical expressions provided in Appendix A and Appendix B could than be used

for a comparative evaluation of the CRLB performance for a given quasi-orthogonal

set vs. a fully orthogonal set of waveforms.

• The lower bound as expressed by the CRLB, provides a tight bound at high SNR,

while at low SNR, the CRLB is not tight [28]. As the ambiguity problems are usually

addressed through the signal waveform design, a more rigid bound needs to be found

for the localization variance in the low-SNR case.

The coherency gain obtained with coherent processing makes it advantageous over

noncoherent processing. All the same, the contribution of the product terms gxe, gm and

h, needs further evaluation. The following sections focus on elucidating the role of these

terms for coherent processing.

2.4 Effect of Sensor Locations

The CRLB for target localization with coherent MIMO radar shows a gain, i.e., reduction

in the standard deviation of the localization estimate, of MO compared to noncoherent

localization. Yet, the CRLB is strongly dependent on the locations of the transmitting and

receiving sensors relative to the target location, through the terms gxlx„ gynelue and kick.

To gain a better understanding of these relations, and set a lower bound on the CRLB over

all possible sensor placements, further analysis is developed in this section.

The following general notation are introduced: for any given set of vectors e =

(2.43)
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2.4.1 Optimization Problem

The terms gxe and gye in (2.29) can be expressed using the conventions defined in (2.43)

and terms defined in Section 2.3.2, viz.:

(2.44)

(2.45)

where the narrowband signals assumption is applied. Similarly, the term he in (2.40) can

be expressed:

(2.46)

(2.47)
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Seeking to find sets of angles 0* and (p*, that yield sets of cosine and sine expressions

a'tKx, ars`x, bt*x,13,*x for which the values of the Cramer-Rao bounds for localization along the

x and y axes (crLCRB and Cry2cCRB7 respectively) are jointly minimized,

(2.48)

This is equivalent to minimizing the trace of the CRLB submatrix [CcRLBe] 2x2• The

explicit minimization problem is formulated introducing the objective function fo:

(2.49)

This representation of the problem is not a convex optimization problem.' The next

steps are undertaken in order to formulate a convex optimization problem equivalent to

(2.49), i.e., a convex optimization problem that can be solved through routine techniques

and from whose solution it is readily possible to find the solution to (2.49).

In [39], it is shown that for a given positive definite matrix, in our case [CcRLse]2x2,

and its inverse matrix F, in this case:

(2.50)

the following relation exists between the diagonal elements of these matrices:

(2.51)

"A convex optimization problem in standard form is [63]

minimize
subject to

for some constants az, i, j, i 1, ..., m, j 1, ...,p, and where fo, 	 fm are convex functions.
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Equality conditions apply for all i if F is a diagonal matrix, i.e., lic = 0. Enforcing this

condition later on guarantees that min ( E
[Fh
- =min E [CcRLBJ,ii  • 

Now, observe

that the inverse of the elements on the diagonal of F lower bound the elements on the

diagonal of the matrix CCRLBc for any atx, arx, btx , brx. The following objective function

is defined fo (atm, a,, btx,brx) , and the optimization problem,

(2.52)

The new objective function and the original objective function are related as

fo (at, arx ,b-tx,brx)	 fo (at., arx,btx,brx), with equality for h = 0. Substitute the

values of gxc and gye from (2.44) and (2.45) in the objective function of (2.52) to obtain

(2.53)

It is apparent that the denominator of the first summand is bounded by:

(2.54)

and the denominator of the second summand is bounded by:

(2.55)
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Denote T (bL) T (13,2x) = p, and let T (atm) = T (arx) = T (btx) = T (brx) = 0. Then,

from (2.53)-(2.55) and (2.52), the following problem is obtained:

(2.56)

The objective function A (m) = p(22 	  is convex since g(t) = ,u,(2 — p,) is a concave

function and A (it) = h (g(p)) = *)9 is a convex and nondecreasing function [63]. The

inequality constraint functions are convex as well. Therefore, the problem described in

(2.56) is a convex optimization problem. The epigraph form is a way to introduce a

linear (and convex) objective t, while the original objective fo is incorporated into a new

constraint fo — t < 0 [63]. The key point here is that the inequality constraint function

A — t < 0 can be transformed to a linear convex form [64].

An equivalent epigraph form of the convex optimization problem given in (2.56)

may be expressed by using two variables, t1 and t2, after rewriting the objective function as
1 1

fo (A) = foi Cu) + fo2 (it), where foi (it) = 2 —	 and fo2 (p) = —. Two new inequality
 p,

constraint functions are introduced: 	
1 	

ti < 0 and —
1 — t2 < 0. After some simple

2 — p,
algebraic manipulations, the epigraph form turns into the following convex optimization

problem:

(2.57)
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A convenient way to solve this convex optimization problem is to employ the

concept of Lagrange duality and exploit the sufficiency of the Karush-Kuhn-Tucker (KKT)

conditions [63]. The Lagrangian of the problem in (2.57) is given by:

The KKT conditions state that the optimal solution for the primal problem

(minimization of t 1 + t2 in (2.57)) is given by the solution to the set of equations:

(2.59)

Applied to (2.57) and (2.58), these equations specialize to
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It is not difficult to show that the solution to this system is given by

(2.60)

Recalling that ft= T (bL) + T (b2,x) , the optimal solution can be rewritten as:

(2.61)

In addition to (2.61), ast's , a;:x, bikx, lc•;:x have to satisfy the relations (2.47), and the equality

conditions for (2.51), (2.54) and (2.55), viz.,

(2.62)

Substituting these results in (2.44) and (2.45), computes the optimum gx*e and gy%,

It follows that the minimum value of the trace of the Cramer-Rao matrix [CcRLBcor]
2x2

fo in (2.49), is given by:

(2.63)

The final step in determining the effect of sensor locations on the localization

CRLB is to recall that the multivariable argument of fo in (2.63) is actually a function
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of the transmitting sensors angles ok, k = 1, . . . , M, and receiving sensors angles (pe,

t -= 1, . .. , N (see definitions in the previous section). What are then the optimal sets 0*

and (p* that minimize the variance of the localization error? The optimal angles can be

found from the relations (2.62). For example, for the cosine of the transmitters bearings

T (aL) = 0,

(2.64)

A symmetrical set of angles of the form 0*

{0'1195; = sçbo + 214mi-1) ; i = 1, M; M > 21, is a solution to (2.64) for any arbitrary

O.. The same solution is obtained for the sines, T (blx) = 0. The relations T (a;s) = 0,

T (14x) = 0 lead to a solution constituted by a symmetrical set of angles (p* of the same

form as 0*. The relation T (aLlYtkx) + T (abr* x) --= 0 expressed in terms of angles is

(2.65)

It can be shown that (2.65) is met by angles 0;`, and (p; symmetrically distributed around

the unit circle, but the number of sensors has to meet M > 3, N > 3. The condition

T (bg) + T (bg) = 1 in (2.62), expressed in its explicit form, is

(2.66)

The symmetrical set of angles that meet (2.64) and (2.65) provide -ml EkM COS2 q5

cos2 c,07, = and therefore meet the requirement of (2.66). The same applies to

T (ag) + T (ag) = 1 , where b- EkM sin2 = -k- EtN sin2 (p; =

It can be concluded that M > 3 transmitting, and N > 3 receiving sensors,

symmetrically placed on a circle around the target at angular spacings of 27/M and 27/N,

respectively, lead to the lowest value of the localization CRLB.
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This result can be extended by noticing that relations (2.62) also hold for any

superposition of symmetrical sets containing no less than 3 transmitting and/or receiving

sensors. Therefore, the complete set of optimal points is given by:

(2.67)

where the total number of transmitting (M) and receiving (N) radars may be divided

into V and U sets of symmetrically placed radars, each set consists of Z, and 4, radars,

respectively. The angles 0,, and (p„ are an initial arbitrary rotation of the symmetric sets Zu

and Zu, correspondingly.

As a special case, it is interesting to evaluate the CRLB in (2.39) with 1 transmitter

and MN receivers, i.e., a Single-Input Multiple-Output (SIMO) system. This scheme

makes use of (MN + 1) radars instead of (M N) radars used in a MIMO system with

M transmitters and N receivers. From (2.67) it is apparent the this case does not provide

optimality since the number of transmitters is smaller than 3. To evaluate cqeCRB ± CY y2 ,CRB

for this setting assume 1 transmitter is located at an arbitrary angle 0, with respect to the

target, and a set of MN receivers are located symmetrically around the target, at angles (p*

that follow the condition in (2.67). The expressions in (2.44), (2.45), and (2.46) reduce to

the form:

(2.68)



38

and the trace of the CRLB submatrix [CcRLBJ2x2, defined by fo (atm, arx btx, brx) =

(2.69)

This result expresses an increase in the estimation error by a factor of 2 when compared

with M transmitters and N receivers given in (2.63).

2.4.2 Discussion

The following comments are intended to provide further insight into the results obtained in

this section.

• From (2.63), the lowest CRLB for target localization utilizing phase information is

given by 277,1 (MN). The reduction in the CRLB by the factor MN/2 compared to a

single antenna range estimation given by, tic ia referred as a M/MO radar gain. This

gain reflects two effects: (1) the gain due to the system footprint; (2) the advantage

of using M transmitters and N receivers, rather than, for example, 1 transmitter and

MN receivers. The latter gain is apparent when M N >> (M + N).

• The CRLB obtained through the use of a single transmit antenna and MN receive

antennas in (2.69) is 470 (MN). It follows that MIMO radar, with a total of M + N

sensors, has twice the performance (from the point of view of localization CRLB) of

a system with a single transmit antenna and MN receive antennas.

• The best accuracy is obtained when the transmitting and receiving radars are located

on a virtual circle, centered at the target position, with uniform angular spacings of

27-/M and 27r/N, respectively, or any superposition of such sets.

• The optimization analysis presented in this section is intended to provide insight

into the effect the sensor locations have on the CRLB. Naturally, in practice, it

is not possible to control in real time the location of the sensors relative to a
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target. However, the results here teach us that selecting among the sensors those

who are most symmetrical with respect to the target may lead to the most accurate

localization.

So far the focus was on the theoretical lower bound of the localization error. In the

next section, specific techniques for target localization and their performance as a function

of sensor locations are discussed. For this purpose, the GDOP metric and GDOP contour

mapping tools are introduced.



CHAPTER 3

METHODS FOR TARGET LOCALIZATION

The lower bound on the variance of target localization estimate was formulated in Chapter

2. The MLE [65], developed in [18], does not lend itself to a closed-form expression,

and numerical methods need to be used to solve it. A closed-form solution to the target

localization can be obtained by application of the BLUE. The later, allows the use of the

GDOP metric for a more comprehensive understanding of the relation between the target

and the sensor locations.

3.1 BLUE for Noncoherent and Coherent Target Localization

To formulate the BLUE, it is necessary to have an observation model in which observations

change linearly with the target location coordinates. That is because it is inherent to the

BLUE that the estimate is linear. To this end, a model is formulated in which the time

delays are "observable." In practice, the time delays are not directly observable. Rather,

they are estimated, for example by maximum likelihood, from the received signals. Then,

the term cm is the time delay estimation error. Our BLUE estimation problem of the target

location should not be confused with the estimation of the time delays. The estimation

of the time delays is just a preparatory step in setting up the "observations" of the BLUE

model. Once, the observation model has been set up, it is necessary to ensure that the

model between the time delays and target location is linear. Setting the origin of the

coordinate system at some nominal estimate of the target location X, ---= (xe, ye) and

preserving only linear terms of the Taylor expansion of expressions such as in (2.9), the

time delays introduced by a target may be introduced as linear functions of x and y,

40
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where the angles Cbk and çoi are the bearings that the transmitting sensor k and receiving

sensor .e, respectively, subtend with the reference axis (with the origin at the nominal

estimate of the target location). The vertex of the angles is an arbitrary point in the

neighborhood of the true target location.

The linear model may be simplified as,

(3.2)

Let the observed time delay associated with a transmitter-receiver pair be pa, then

(3.3)

where ea is the "observation noise." The following linear model is postulated between the

observable time delays fi = [P11) ii-t127 -.-1 ANM]T and the vector of unknown parameters 0:

(3.4)

where the matrix D defined the linear relation between F- and the vector of unknowns 0.

The vector € = [ca, En, • • • , EArmlT is the MN x 1 measurement noise vector. According to

(3.4), the BLUE's "observations" are in the form of time delays. So an intermediate step

of time delay estimation is implied.

For the linear and Gaussian model in (3.4), the BLUE is computed from the

Gauss-Markov theorem [26] that states the BLUE of the unknown vector 0 is given by

the expression:

(3.5)

where C, is the covariance matrix characterizing the "noise" terms Ea •
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The theorem also determines the error covariance matrix for the estimator "O' „„ to

be

(3.6)

From this point onward, the BLUE is developed for the case of noncoherent and

coherent processing, separately.

3.1.1 BLUE for Noncoherent Processing

Recall that in signal model Section, the complex amplitude aek associated with the path

transmitter k -4 target —> receiver .e in the received signal model given in (2.10) was

defined. In the noncoherent case, the complex amplitude is a nuisance parameter in

estimating the target location x, y. There is no common phase reference among the sensors

and phase information is not exploited in the estimation process. Consequently, the time

observation, evaluated using noncoherent processing, are not affected by phase/time bias.

In this case, the vector of unknown parameters is defined as On, = [x, yr and the the time

measurements are modeled as:

(3.7)

The relation in (3.7) can be written as:

(3.8)
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where the observable time delays Anc = [ji,, Anci2 	 itneNmi
T are derived incoherently

by the MLE as follows:

(3.9)

where v is a dummy variable for the time delay. Matrix Dne is defined as:

(3.10)

It is shown in Appendix C that the maximum likelihood time delay estimates ttnctk

are unbiased observations, where the measurement errors cnc = frL-nen Cnc12, • ••, EncArmiT

have Gaussian distribution with zero mean and an error covariance matrix of the form

(3.11)

021_12 	 d 	 lap

With /3Ak 	 ;Z:k112 ail snr 	 •a

The following estimate for the target localization with noncoherent processing is

obtained:

(3.12)

•■•

where tincek are the time observations, and matrix CBn, is the estimation error covariance

matrix of the form:

(3.13)
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and

(3.14)

Using these results in (3.13) provides the MSE for the BLUE as follows:

(3.15)

for the estimation of the x coordinate, and

(3.16)

for the estimation of the y coordinate.

3.1.2 BLUE for Coherent Processing

In the coherent case, the transmitting and receiving radars are assumed to be both time

and phase-synchronized. The target reflectivity parameter 	 rc exp (j2R-Oc), results in a

common unknown time delay nuisance parameter A, = 	 fc for the signal model given

in (2.8), where is replaced by rc exp (j2T-LAT). The time delay observations in coherent

MIMO radars are therefore of the form:

(3.17)

where the vector of unknowns is 0, = [x, y, 6,]T. The linear observation model is

represented through:

(3.18)
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where ,C 	 [µc11, PC121 ' • 7 PcmiviT 7 and cc 	 [(cu. cci2, • • • , €cmN1T is the AI N x 1

observation noise vector.

To reiterate, a key difference between the MLE and BLUE models is that the MLE

target localization is carried out utilizing signal observations (which are not linear in x, y),

while according to (3.18), the BLUE's "observations" are in the form of time delays. So an

intermediate step of time delay estimation is implied. In this case, the MLE computational

effort is focused on estimating the time delays. For the BLUE, the estimation is based on

a linearized time delay model and therefore its performance is asymptotically optimal, i.e.,

for a nominal position arbitrarily close to the target location. The time delays estimates

used as observations ti,„, can be derived for example by MLE as follows:

(3.19)

where v is a dummy variable for the time delay. Matrix D, is defined as:

(3.20)

Additional characterization of the "noise" terms c„,areneeded. It is shown in

Appendix C, that the maximum likelihood time delay estimates asymptotic error covariance

matrix is

(3.21)

R2
where previous definitions of the various quantities apply and fR, = (1 +

) •
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Using the time error covariance matrix C,c and the linear transformation matrix D in

(3.20), the following estimate for -613 is obtained:

(3.22)

The error covariance matrix for (x, -#) is derived using (3.20) and (3.21) in (3.22) and

calculating the 2 x 2 upper left submatrix, resulting with

(3.23)

The elements of matrix GB are:

(3.24)

arze) (btxk ± brxe))

Using these results in (3.23) provides the MSE for the BLUE as follows:

(3.25)

for the estimation of the x coordinate, and

(3.26)
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for the estimation of the y coordinate.

3.1.3 Discussion

The following points are worth noting:

• The BLUE estimator are provided in closed-form for coherent and noncoherent

processing. This allows for an analytical analysis of the MSE performance using the

GDOP metric that presents a performance study tool for a given layout of sensors.

Nonetheless, it does not eliminate the complex computational effort involved in the

intermediate step of time delays estimation.

• In general, the variances (3.15), (3.16), (3.25) and (3.26) have similar functional

dependencies on the carrier frequency and on the sensor deployment as the CRLB.

The terms atx, arxe, btxk and brxe embedded in (3.14) and (3.24) relate the sensors

layout to the variance of the BLUE.

• For a target located arbitrarily close to the nominal position, the linearization error

is negligible and the bearing angles of the transmit and receive radars, with respect

to the target and the nominal position, are approximately the same. In this case,

the BLUE performance is determined by the asymptotic characteristics of the time

delays estimates used as observations, and derived by the MLE in (3.11) and (3.21).

In [66, 67], MLE of the time delays is shown to approach the CRLB arbitrarily close

at high-SNR. In this region, the time delays estimation error asymptotic covariance

matrices, given by (3.11) and (3.21), are valid. Consequently, the BLUE estimator

coefficients, gsincic, gB2nc/c, and hs 	 in (3.14) and (3.24), approximate the CRLB

terms given in Chapter (2), Section (2.3), and the BLUE asymptotically reach the

CRLB.
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• The BLUE estimator variance in (3.25) and (3.26) are provided in closed-form. This

allows for an analytical analysis of the MSE performance using the GDOP metric

that presents a performance study tool for a given layout of sensors. Nonetheless,

it does not eliminate the complex computational effort involved in the intermediate

step of time delays estimation.

From the expressions of the variance of the BLUE, one can not readily visualize the

effect of the sensors layout. A mapping method, acting as a design and decision making

tool for MIMO radar systems, is proposed and evaluated later in this Chapter.

3.2 Generalization for MINI° and SIMO Coherent Localization

The BLUE was derived in the previous section for MIMO target localization using

noncoherent and coherent processing. Herein, the derivation for the coherent case

is generalized for MIMO and SIM° system, such that a comparision between the

performance of these two systems may be provided.

3.2.1 MIMO Radar

In the coherent case, the linear relation given in (3.17) are represented through matrix

Dminio, as defined in (3.20), resulting into

(3.27)
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and the matrix Ht, as:

(3.29)

Matrices Hrx and Htx are defined for later use,

(3.30)

Using the time error covariance matrix C,c in (3.21), and the linear transformation

matrix Dminw in (3.20), the BLUE covariance matrix for (x, y) is computed,

(3.31)

The diagonal elements of [Cθmimo]2 x2 are the target location (x, y) estimation MSE,
(ux2, ) Applying some algebraic manipulation to (3.31), it results in

(3.32)

(3.33)

The covariance matrix [Cθmimo]2 x 2 is a product of the coherency advantage nf (see

discussion in Chapter 2), and a matrix Hmirnol incorporating the effect of the geometric
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spread of the system through the elements atxk, btx,, arx, and brx,. Matrix 1.197,,,,„ is defined

as the spatial matrix and its trace is defined as the spatial advantage.

In Chapter 2, the CRLB (Cramer-Rao lower bound) on the localization accuracy is

derived for coherent MIMO radar systems, showing that the lowest MSE is obtained when

the transmitting and receiving radars are placed with uniform angular spacings of 27r/M

and 27/N, respectively, around the target position, or any superposition of such sets. The

optimization holds for MIMO systems with at least 3 transmitting and 3 receiving radars,

i.e. M > 3 and N > 3. Applying this scenario to the BLUE MSE given in (3.32), the

values of sub-matrices in (3.33) are computed,

(3.34)

Applying (3.34) to (3.33), the lowest MSEs o-LiTh and aLm are computed,

(3.35)

It follows that the spatial advantage is given by tr(1-1,,,,,o)	 Tj-N- (where tr(o) stands for

the trace of the matrix).

3.2.2 SIMO Radar

The SIMO radar case is equivalent to the a MIMO system with one transmitter, and

therefore the appropriate matrix D is defined as:
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where Hrx follows the definition in (3.30) with =1, .., MN. The matrix Iltx1 is:

(3.37)

Using the time delay estimation error covariance matrix in (3.21) and the linear

transformation matrix D in (3.36), the following covariance matrix is computed:

(3.38)

With some algebraic manipulation, the expression in (3.38) reduces to:

(3.39)

(3.40)

The spatial matrix in the &IMO case, lisimo, is independent of the transmitting sensor

location. It is apparent that the spatial advantage is solely reliant on the spread of the

receiving radars with respect to the target.

Using the same optimal sensor placement scheme as in the MIMO case for the

receiving radars, the sub-matrices in (3.40) are computed,

(3.41)

Applying (3.41) to (3.39), the minimal MSEs σ²ymin are defined by the diagonal

elements in,

(3.42)
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offering a spatial advantage of tr(lisin,„) =

3.2.3 Discussion

The covariance matrix for the target localization was derived, and the minimal MSEs were

calculated and given in (3.35) and (3.42). The following features of coherent MIMO and

SIMO localization are worth noting:

• The spatial advantage is determined by the footprint of the multiple sensor system

relative to the target location. A MlMO system with M > 3 transmitters and

N> 3 receivers, positioned optimally with respect to the target, has twice the spatial

advantage of a SIMO system with 1 transmitter and MN receivers.

• The MIMO system has a considerable advantage by employing K =-- M+N sensors,

whereas the SIMO system employs K = (MN -I- 1) sensors. This gain becomes

significant for a large number of sensors, where (M + N) < MN.

The effect of the sensors and the target positions on the expressions in (3.32) and

(3.39) for other than optimal setting cannot be intuitively identified. A more suitable

method to express these relations is employed in the next section. These evaluation tools

incorporate the mapping of spatial advantage over a given geographical area, using the

GDOP metric.

3.3 GDOP

In Chapter 2 Section 2.4, optimal sensor location that minimize the CRLB was discussed

. In practice, radars deployment is a given one. The question si - what is the localization

accuracy performance of an existing radars spread and a specific target location? GDOP

is a metric that addresses this question. The GDOP is commonly used in GPS systems for

mapping the attainable localization accuracy for a given layout of GPS satellites positions
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[39, 40]. The GDOP metric emphasizes the effect of sensor locations by normalizing the

localization error with the term contributed by the range estimate.

3.3.1 GDOP for MIMO

The GDOP metric is commonly defined as:

(3.43)

where a2 is the range (delay) measurements error, defined by standard deviation of the

time delays c2al. cov (X), where cov (0) stands for the covariance matrix. For the two

dimensional case, where X = (x, y), it is:

(3.44)

where ax2 and ay2 are the variances of localization on the x and y axis, respectively. A one

dimensional metric is defined: the horizontal x-axis DOP (HxDOP) and horizontal y-axis

DOP (HyDOP), as:

(3.45)

(3.46)

The BLUE MSEs given in (3.15), (3.16), (3.25) and (3.26), are used together with the

time delay variances in (3.11) and (3.21), to evaluate the GDOP metric for MIMO radar
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systems with noncoherent and coherent processing. The following GDOP expression is

obtained for noncoherent processing,

(3.47)

where it is assumed SNRek = SNRc = SNRo, β²R β²Rk 	 and therefore, cr,2 =

8π²β²SNRo = 	 • 
In this case, the GDOP metric isolates the effect of the sensors and

β² 	 c²

target locations on the MIMO gain performance.

For coherent processing case,

(3.48)

where o-f2c = 87r2f21SNRo = •

In the GDOP expressions in (3.47) and (3.48), the sensors' locations are embedded in

the terms at,k , arxt, btxk and brx,. The GDOP reduces the combined effect of the locations

to a single metric. In this case, the metric is a representation of the MIMO gain. Once

the values are mapped, the actual localization overall accuracy ax2y is easily derived by

multiplying the GDOP value by ca„ and for either the x or y coordinates accuracy, by

multiplying the HxDOP and HyDOP by cut.

Contour plots of the GDOP values are presented in Figures 3.1 and 3.2, for the case

of noncoherent and coherent processing, respectively, with M = N = 4 radars positioned

symmetrically on the M N vertices of a polygon centered at the origin. The radars are

all transmitting orthogonal signals and perform time delay estimations. The GDOP value

for a target located at the origin is the same in both plots. This value is consistent with the

results indicated in the previous section, i.e., the minimal achievable overall MSE is equal

to 	 2/MN 	 c²σ²eGDOP²B_c_opt and, therefore, GDOPB_c_opt =[σ²xy,c] c_opt_set = 8π²f²SNRo

6-712-17. In Figure 3.2, The GDOP value for a target located at the origin follows the
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analytical result with GDOPB_c_opt = = 0.35355. It is noticeable that while this

value is minimal for coherent processing, this is not the case for noncoherent processing,

where curves indicating GDOP values of 0.32 and 0.34 may be found in Figure 3.1. The

distribution of the GDOP values has different characteristics for each case. In the coherent

case, targets located inside the virtual (N + M)-sided polygon formed by the sensors

locations demonstrate lower GDOP values than targets located outside the footprint of

the polygon. In particular, the best localization is obtained for a target at the center of

the system. The increase in GDOP values from the center to the polygon perimeter is

slow. Outside the footprint, the GDOP values increase rather rapidly (as manifested by

the density of contours). In the noncoherent case, the lowest GDOP values are obtained at

the perimeter of the virtual (N + M)-sided polygon. The distribution of the GDOP value

inside the virtual polygon footprint is almost uniform. Outside the system footprint, a slow

increase in the GDOP values is observed.

Figure 3.1 Noncoherent GDOP contours with M=N=4.
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Contour maps of the HxDOP and HyDOP are presented in Figure 3.3 and Figure 3.4,

respectively. The radars are located in a similar manner to the one given in Figures 3.1 and

3.2. The trade-off between the accuracy gains achievable in either the x and y coordinates

is demonstrated. In Figure 3.3, the curves with the lowest HxDOP values, ranging from

0.24 — 0.25, are obtained in the upper and lower most part of the map. Similarly, in Figure

3.4, the lower HyDOP curves, within the same range, are obtained in the right and left most

part of the map. With both metric, a target located at the origin benefits from low HxDOP

and HyDOP values (of the order 0.25). In the case when better accuracy is required on a

single coordinate, the HxDOP and HyDOP maps may serve in the decision making.

Figure 3.2 Coherent GDOP contours with M=N=4.

In Figures 3.5 and 3.6 contours of NT = N = 4 of non-symmetrically positioned

radars are drawn for noncoherent and coherent processing. When the radars are not

spread around the target there is a marked degradation in areas with good measurement

accuracy with coherent processing, as demonstrated in Figure 3.6. These examples show

that a symmetrical deployment of sensors around the target yields better GDOP values



Figure 3.3 Coherent HxDOP contours with M=N=4.
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Figure 3.4 Coherent HyDOP contours with M=N=4.
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for coherent processing. Noncoherent processing (Figure 3.5) does not show significant

degradation with asymmetric placement, though the distribution of lower GDOP curves is

different compared with the one observed in Figure 3.1.

Figure 3.5 Noncoherent GDOP contours with M=N=4 - asymmetrical placement of
radars.

Plots of GDOP provide a clear view of high accuracy areas for a given set of radar

locations. These plots could also serve as a tool for choosing favorable radar locations to

cover a given target area.

3.3.2 GDOP for SIMO

The BLUE MSEs, a,,2 and o, given by the diagonal elements in (3.32) and (3.39), together

with the time delay variance in (3.21) may be used to evaluate the GDOP metric for the

MIMO and SIMO radar systems and passive systems. The expression for the GDOP is as

follows:
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Figure 3.6 Coherent GDOP contours with M=N=4 - asymmetrical placement of radars.

(3.49)

(3.50)

The GDOP reduces the combined effect of the locations to a single metric. In this

case, the metric is a representation of the square root of the spatial advantage, exemplified

through the trace of matrices 1-1,,,,,„ and I-Isi„,. Once the values are mapped, the actual

localization overall accuracy Vax2 ay2 is easily derived by multiplying the GDOP value

by Ca,.

In Figure 3.7 contour plots of the GDOP values are presented for a coherent MIMO

radar system with M = 3 and N = 5 transmit and receive radars, respectively, positioned

symmetrically on the K = M N = 8 vertices of a polygon centered at the origin. In

Figure 3.8, GDOP plots for a coherent SIMO radar system with one transmitter, M = 1,

and N = 15 receivers are drawn, where the radars are positioned symmetrically on the



60

Figure 3.7 GDOP contour maps for coherent MIMO radar with M = 3 transmitters and
N = 5 receivers - case I.

Figure 3.8 GDOP contour maps for coherent SIMO radar with M = 1 transmitter and
N = 15 receivers - case I.
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K = MN = 15 vertices of a polygon centered at the origin. These symmetrical placement

around the axis origins is referred as case I. Target 1 in both Figures 3.7 and 3.8 is located

optimally with respect to the sensors. Recalling the results in (3.32) and (3.39), the ratio
GDOPZ mimo (t1) = (0.3652)² 

= 0.5 is consistent with the results indicated in the previousGDOP²simo 	 = (0.5164)²

section. Targets located inside the virtual (N M) (in Figure 3.7) or MN (in Figure

3.8) -sided polygon formed by the sensors locations demonstrate lower GDOP values than

targets located outside the footprint of the polygon. In particular, the best localization is

obtained for a target at the center of the system. The increase in GDOP values from the

center to the polygon perimeter is slow. The ratio between the GDOPs for the MIMO and

the SIMO cases demonstrates an increase from 0.5 at the center (for target 1) to about

GDOP²mimo(t2) = (0.6)² =
(0.55)² 0.84 at target 2 location,GDOP²simo(t2) = 	 on, closer to the polygon perimeter.o

I-) Tx Radaro Rx Radars

Figure 3.9 GDOP contour maps for coherent MIMO radar with /14- = 3 transmitters and
N = 5 receivers - caseII.

In Figures 3.9 and 3.10 the sensors are deployed non-symmetrically with respect to

the axis origins, hereafter referred to as case II. Contour plots of the GDOP values for a

MIMO and SIMO with the same number of transmitters and receivers as in case I are given
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Figure 3.10 GDOP contour maps for coherent SIMO radar with M = 1 transmitter and
N = 15 receivers - case II.

in these figures. For both, the spatial advantage does not reach the optimal value obtained in

GDOP² 	 (t1) the symmetrical case. For target 1 in Figure 3.9 and 3.10, the ratio	 ) = 0.466 < GDOP²simo(t1)

0.5, i.e., the SIMO case experience a higher lose in performance compared with the MIMO

scheme. This is further emphasized by target 2, where in the SIMO case GDOP²simo(t2) >

1 while GDOP,72„,„„(t2) 0.5. Case II indicates that for non-symmetrically deployments

of sensors, a larger degradation in the coverage area benefiting from spatial advantage is

observed with SIMO systems vs. MIMO systems.

3.4 Conclusions

Analytical expressions were derived for the MSE of the BLUE estimator for the cases of

coherent MIMO and SIMO radar systems with widely distributed antenna. Both systems

benefit from a spatial advantage imparted by the wide footprint of the multiple sensors. It

turns out that when the sensors are placed optimally with respect to the target, the MIMO
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configuration with M transmitters and N receiers (i.e., M + N total sensors) has twice the

spatial advantage of SIMO systems with 1 transmitter and MN receivers (i.e., 1 + MN

total sensors). This advantage is inherent in the GDOP metric and is directly related to

the layout of the sensors with respect to the target and the number of transmitting and

receiving radars. The GDOP plots offer a clear insight into the relation between sensor

configuration and localization accuracy. These plots demonstrate the superiority of MIMO

systems over SIMO schemes in both spatial advantage and the resources required to achieve

these performances.



CHAPTER 4

MULTIPLE TARGETS LOCALIZATION

The study of the single target case is extended to the case of multiple targets localization

with coherent MIMO radar systems, dealing with the possible trade-offs that the increased

number of targets impose on the localization accuracy performance. The CRLB is derived

and evaluated for this case. Coherency and spatial advantages are identified and analyzed.

As the spatial advantage is strongly reliant on the geographical setting of the radars with

respect to the targets and on the geometric distribution of targets, an insight into the system

inherent trade-offs is provided using numerical analysis.

4.1 System Model

Assume M transmitting radars and N receiving radars, widely distributed and time and

phase synchronized. The receiving radars could be colocated with the transmitting ones or

widely separated. The transmitting and receiving radars are located in a two dimensional

plane (x, y). Consider Q point targets located at coordinates Xq 	 (xq, yq) , q = 1, Q

(see Figure 4.1). A set of orthogonal waveforms is transmitted, with the lowpass equivalent

sk (t) , k = 1, . . . , M. The power of the transmitted waveforms is normalized such that

the aggregate power transmitted by the sensors is constant, irrespective of the number of

transmit sensors. Let all transmitted waveforms be narrowband signals with individual

effective bandwidth Ok defined as N = (fwk f2ISk(1)12 df) / (fwk1Sk (1)12 df)],

where the integration is over the range of frequencies with non-zero signal content Wk [29].

The signals are narrowband in the sense that for a carrier frequency of fc, the narrowband

signal assumption implies OZ/ fi < 1. Assume the Q targets are located in a search cell

of ±W/2. The target model follows the one developed in [42], generalizing the complex

target model in [29] to a near-field scenario and distributed sensors. In [42] it is shown

64
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that a complex target located at Xq = (xq, yq) may be equivalently defined as a point

scatterer with complex amplitude q = jan and time delays Ta (Xu). To simplify

the notation, the signal power term is embedded in the noise variance term such that the

signal-to-noise ratio (SNR) at the transmitter, denoted SNR t, and defined as the transmitted

power by a sensors divided by the noise power at a receiving sensor, is set at a desired level.

The following notation are defined for later use: TA = Tek (X q), Tq = [41, ...,TckNi, and

q = [qre, rim]

Figure 4.1 Multiplr targets signal model.

In the model developed below, path loss effects are neglected, i.e., the model accounts

for the effect of the sensors/target localizations only through time delays (or phase shifts)

of the signals. For convenience, a 4Q dimensioned vector 0 is defined for of the unknown

parameters:

(4.1)

The propagation time estimate of a signal transmitted by the k-th transmitting radar

located at coordinates Tk	 (xtk, ytk),reflected by a target located at Xq = (xq, N) and
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(4.2)

received by a radar located at Re = (xr,e, yre) can be expressed as:

where 1, the propagation time, is the sum of the time delays from radar k to target q and

from the target to radar t:

(4.3)

and EL is the estimation error. The speed of light is denoted by c.

Consider the case of a baseband representation of the signal observed at sensor E due

to a transmission from sensor k and reflection from Q scatterers, given by:

(4.4)

where pqa accounts for the phase information and has the value of 4 = exp (—j27rfcrA).

Others terms are the carrier frequency fc and we (t) is circularly symmetric, zero-mean,

complex Gaussian noise, spatially and temporally white with autocorrelation function

oZS (T). Define the vectors r = [ri (t) , • • • , r N (t)]T and lp = [Ti- . .. , TQ , 0 , .. , (Q]7' for

later use. The received signal at each sensor is a mixture of the transmitted signals reflected

by the targets. The mixture of signals is separated at the receiver end by exploiting the

orthogonality between the transmitted waveforms.
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4.2 The CRLB on Targets Location Estimation

The CRLB provides a lower bound for the mean square error (MSE) of any unbiased

estimator for an unknown parameter(s). Given a vector parameter 0, its unbiased estimate

satisfies the following inequality [26]:

(4.5)

where J (0) is the Fisher Information matrix (FIM) given by:

(4.6)

where p (1.10) is the joint probability density function (pdf) of 0.

Let the CRLB matrix be defined as:

(4.7)

(4.8)

where J (0) is the FIM for the unknown vector defines as:

J() = Eip {-
a 

log p (op) (—
a 

log p (r0)) (4.9)
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The matrix D represents is of the form:

(4.10)

where the submatrix Dq is derived as:

(4.11)

By using the relation given in (4.3) in (4.11), the Dq matrix is calculated, resulting in:

(4.12)

(4.13)

where the phase oqk is the bearing angle of the transmitting sensor k to target q measured

with respect to the x axis; the phase çal is the bearing angle of the receiving radar i to target

q measured with respect to the x axis. See illustration in Figure 4.1. Matrix Dq includes

the geometric information of the radars location configuration relative to the position of the
qt h target.

In order to derive the FTM given in (4.9) the joint pdf p (rill)) is required. Given

a set of known waveforms sk (t — 1) parameterized by the unknown time delays 'a,

which in turn are a function of the unknown targets locations Xq = (xq, yq), for the signal
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model (4.4), the joint pdf of the observations (time samples at multiple receive antennas)

parameterized by the unknown parameters vector 0, is then:

(4.14)

An expression for the FIM J (0) , is derived in Appendix D, yielding:

(4.15)

with the block matrices Tx, Ec, and V defined in the Appendix D in (D.5), (D.9), and

(D.11), respectively.

In order to determine the value of J (0) , (4.15) and (4.10) are used in (4.8), to obtain

the following FINI matrix:

(4.16)

While the CRLB expresses the lower bound on the variance of the estimate of 0 =

xQ, YQ, 	 • ••, 	

1 T
, only the estimation of the targets locations Xq = (xq, yq) is

of interest. The terms q serve as nuisance parameters. For the variances of the estimates of

xq and yq, it is sufficient to derive the 2Q x 2Q upper left submatrix [CCRLBm ulti] 1 2Q x 2Q =

Antati (0)} 2—Q1 x 2Q which can be expressed as:

(4.17)
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e2 where n (fc) = 87r² SNR f²c• The diagonal elements of the submatrix [CCRLBmulti]ulti] 2Q x 2Q

provide the lower bound on the localization mean squared error (MSE), ax2, 	 aCRx, =

(4.18)

(4.19)

(4.20)

The CRLB matrix is related to the sensors and targets locations through matrices D,

Fx and V, while the latter two are also functions of the received waveforms correlation

functions and its derivatives. This dependency is captured in the terms 71S* (Xg ) and

nspt (yq), where further analysis is required.

4.3 Discussion

The expression for the CRLB as given in (2.38), provides insight into the performance of

multiple targets localization accuracy performance of MIMO radars systems with coherent

processing.

Coherency advantage As in the single target case, the lower bound on the targets

localization errors is inversely proportional to the carrier frequency L and independent of

the signal individual effective bandwidth, due to the use of the phase information across the

different paths. It is apparent that coherent processing offers a target localization precision

gain of the order of MO, referred to as coherency advantage.
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The improvement in localization accuracy needs to be moderated with the

observation that the CRLB is a bound of small errors. As such, it ignores effects that

could lead to large errors. For example, MIMO radar with distributed sensors and coherent

observations is subject to high sidelobes [1]. Additionally, a phase coherent system is

sensitive to phase errors. These topics are outside the scope of this paper, but they should

be kept in perspective.

Spatial advantage The CRLB submatrix terms are strongly reliant on the relative

geographical spread of the radar sensors versus the targets locations. In MIMO radar, the

targets play a similar role to the transmission channel in NLIMO communication. As such,

the elements in the CRLB, re and Vqq', q qt may be viewed as overlapping multipath

arrivals for a given tk propagation path. The trace of the CRLB provides an averaged

(4.21)

where *gig = EZ-1. The first two terms in (4.21) are the auto-correlation terms, while the

third term represents the cross-correlation between targets and therefore, serves as mutual

interference. The elements of these cross-correlation matrices are products of the phase and

amplitude elements, exp (-27LATZ') and f sk (t — ZNale) 4 (t) dt, where AT -=

—7-4, and its derivatives (see (D.5) and (D.11) in Appendix D). As the distance between

the targets impacts the time delay differences, ATIZ', the following might be gleaned by

inspection of (4.21):

• Targets separated by distances larger than a c/f3 resolution cell are resolvable with

negligible loss in performance relative to the single target case. This results from the

decorrelation achieved by this scenario, where the third term in (4.21) approaches
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zero. On the other end, distances smaller than the carrier wavelength A are non-

resolvable.

• The interference on paths a for target q add in-phase with c τqq'lk	u, u = 0,1,2, ...,

i.e. cos (-2r fc τqq'lk) 1. They add out-of-phase with etk 	 u, u = 1,2, ..., i.e.

cos (-27rfcATZ0 < 1. It is evident that the number of resolvable paths varies with

the position of the radars with respect to the targets and the targets layout, where

some may be more favorable than others. The number of resolvable propagation

paths per target q and the geometric merit of these paths (integrated in matrix Dq)

determines the ability to localize target q and the localization accuracy quality. A

minimum of 3 resolvable paths is required for the localization of a single target.

• Transmit and receive radar pairs, a, with large aperture with respect to the targets

layout are preferable due to the larger time delay differences they offer.

• Sensors placement needs to take into account the vertical and horizontal plane

sensitivity needed for a given targets layout. For example, a horizontal targets

layout requires better horizontal separation, achieved by broadside horizontal radar

geometry.

To get a more intuitive understanding of the reliance of the spatial advantage on the

geographical spread of the radars and targets, numerical analysis is employed in the next

section for some special cases.

4.4 Numerical Analysis

The spatial advantage in the case of a single target is derived in [42]. It is shown to be

equals 2/MN under optimal conditions, i.e. when the target is located at the center of a

virtual circle created by the radars, and the radars are spread with equal angular spacing

with respect to the center (2π/M  (2π/M and 2π/N) or any superposition of such symetrical placments.

The value of the spatial advantage for any possiable target location with a given radar layout
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was evaluated using a metric known as geometric dilution of precision (GDOP). In the case

of multiple targets, the spatial advantage relies on the the number of targets and their layout

in addition to the radar locations. For this reason, numerical analysis of the expresion in

(4.20) for some special cases is employed in this section.

The value of the spatial advantage TiSpatial is anaylazed for various radars/targets

placements senarios. System parameters are set as follows: = /3 = 200KHz, carrier

frequency fc = 2GHz and therefore, the wavelength is A = 1.5meter, SNR=20 and

all reflectivity index values are assumed equal 101 = = 1. In Figure (4.2) the

spatial advantage value is drawn for the case of M = 3 transmit antennas employed

with N = 3, 4, 5 receive antennas. Both transmit and receive antennas are located with

angular spacing of 1/1-1. and with respect the the axis origin. Targets are located in a linear

array with the first target located at (0,0) and the rest located at (xq = xq_i + 10, yq = 0).

At Q = 1, the resulting spatial advantage in Figure (4.2) follow the results for a single

target where the values of t , , and are obtained. It is observed that an increas in

the number of targets results in a decrease in the spatial advantage and therefore, in the

accuracy. This decreas may be moderated by increasing the number of transmit and receive

radars, MN. In the case of M = N = 3 three targets enjoy spatial advantage while with

M = 3 and N = 5 six targets still benefit from spatial advantage. For the later case,

up to four targets are located with high accuracy. In Figure (4.3) the spatial advantage of

the x and y axis is draw separtly for the same senario as in Figure (4.2). It conveys the

way in which each of the axis performs. It demonstrates that the axis accurecies might

vary significantly for the x and y axis. Moreover, the performance gap shrinks as the

number of transmit and reveice radar increases, due to the aditional, spatially spread, view

points. As mentioned previously, the spatial advantage for the case of a single target is

MN/ 2 under optimal conditions, i.e. when the target is located at the center of a virtual

circle created by uniformly spaced sensors. In the case of multiple targets, the spatial

advantage relies on the number of targets and their layout relative to the sensors locations.
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Number of targets Q

Figure 4.2 Spatial advantage values for the case of M=3 transmitter and N=3, 4, and 5
receivers, symmetrically positioned around the axis origin.

Figure 4.3 Spatial advantage values in x and y for the case of M=3 transmitter and N=3,
4, and 5 receivers, symmetrically positioned around the axis origin.
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Figure 4.4 System layout for cases 1 to 4.

To identify favorable radars locations with respect to the targets layout, four special cases,

demonstrated in Figure (4.4), are analyzed.

The averaged value of Tispt versus the number of targets is drawn in Figure (4.5).

Following the discussion in previous section, one needs to avoid Arl:' 0 and keep ATZ'

as large as possible. It is observed in the figure that a symmetrical placement, as shown in

Case 1, is not an optimal one. Rearranging the radars, in the more favorable setting (as in

Case 4) demonstrates a performance gain, in terms of the number of targets and the spatial

advantage, achieved without any change in the number of antennas. This is a result of the

larger transmit/receive aperture sets contributing to larger delays. Placing the radars in a

broadside horizontal spread (as in Case 3) provides better spatial advantage and moderate

performance loss rate when compared with Case 2, where a vertical radar setting is used.

This is a combined effect of the larger time delays and the impact of matrix D, which

provide better horizontal separation in Case 3 [68]. Increasing the number of radars, as can
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Figure 4.5 Spatial advantage values for cases 1 to 4.

be noticed from comparing Case 3 and Case 4, allows for localization of more targets with

higher spatial advantage and restrained performance loss rate.

4.5 Conclusions

The analytical expression for the CRLB for the case of multiple targets localization in

coherent MIMO radar systems with widely distributed antenna is derived, demonstrating

both coherency advantage and spatial advantage. Nonetheless, there is a tradeoff

between the ability to localize multiple targets and the accuracy with which it can be

done, introduced by the mutual interference between the targets' reflected paths. These

cross-correlation terms may be controlled by choosing propitious radars locations. The

relation between different sensor schemes and targets layouts on the performance was

examined using numerical analysis. It demonstrates the tradeoff between spatial advantage

and the number of targets. It is shown that performance loss may be compensated by

increasing the number of transmit and/or receive radars or by rearranging the sensors
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locations. As the CRLB provides a good bound at high SNR, a more rigid bound needs

to be found for the low SNR case, where the ambiguities predominate the estimation

capabilities.



CHAPTER 5

SENSITIVITY ANALYSIS TO PHASE SYNCHRONIZATION MISMATCH

Improvement in target parameter estimation capabilities is among the advantage of MIMO

radar systems [1, 42]. In particular, target localization with coherent MIMO radar

systems, utilizing widely distributed antennas, offers significant advantages [42]. Typically,

performance analysis of system parameter estimation problems is based on the derivation

of the Cramer-Rao bound (CRB), which sets a lower bound on the estimation MSE for

unbiased estimators. Such an evaluation is provided in Chapter 2 for coherent MIMO radar

systems, demonstrating a localization accuracy advantage, inversely proportional to the

signal carrier frequency. In addition, a spatial advantage of the order of the product of the

number of transmit and receive radars is also incorporated in the CRB.

This performance gain comes with the challenge of attaining phase synchronization

in a distributed system. Errors introduced to the system parameters by phase

synchronization mismatch, will result in parameter estimation mean-square error (MSE)

degradation and bias. In this work, the hybrid CRB (HCRB) is used to test the sensitivity

of the target localization MSE to phase errors. The HCRB takes into account deterministic

unknown parameters, such as the target location, as well as random parameters, phase

calibration errors, in this case. This method has been applied to passive source localization

[69], [70] for the problem of source bearing and range estimation with uncertainty in the

sensors' locations or phase synchronization errors.

In this chapter, the HCRB is derived for coherent Mitv10 radars, with phase

synchronization errors. A closed-form expression for the HCRB for the target's location

(x, y) is derived, providing the means to assess the effects of phase errors on the localization

accuracy. The effect of the number of radars, their geometric layout, and the phase

mismatch MSE is incorporated in the HCRB terms.

78
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In this study, the hybrid Cramer-Rao bound (CRB) is developed for target

localization, to establish the sensitivity of the estimation mean-square error (MSE) to

the level of phase synchronization mismatch in coherent Multiple-Input Multiple-Output

(MIMO) radar systems with widely distributed antennas. The lower bound on the MSE

is derived for the joint estimation of the vector of unknown parameters, consisting of the

target location and the mismatch of the allegedly known system parameters, i.e., phase

offsets at the radars. Synchronization errors are modeled as being random and Gaussian.

A closed-form expression for the hybrid CRB is derived for the case of orthogonal

waveforms. The bound on the target localization MSE is expressed as the sum of two

terms - the first represents the CRB with no phase mismatch, and the second captures

the mismatch effect. The latter is shown to depend on the phase error variance, the

number of mismatched transmitting and receiving sensors and the system's geometry. For

a given phase synchronization error variance, this expression offers the means to analyze

the achievable localization accuracy. Alternatively, for a predetermined localization

MSE target value, the derived expression may be used to determine the necessary phase

synchronization level in the distributed system.

5.1 Background

The hybrid CRB provides a low bound on the MSE of any unbiased estimator for an

unknown parameter(s), where the parameters are partially deterministic and partially

random [28]. Given a vector parameter 0 = [0„,, OriT , where On, stands for the nonrandom

parameter vector and Or for a random parameter vector, its unbiased estimate -6" satisfies the

following inequality [28]:

(5.1)

where JH (0) is the hybrid Fisher Information matrix (HFIM) expressed as

(5.2)
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The elements of the matrices JD and Jp given by

(5.3)

where p(r|θnr, θr) is the conditional, joint probability density function (pdf) of the

observations and p (θr |θ nr) the conditional joint pdf of θ. The matrix JD represents the

contribution of the data and the matrix Jp represents the contribution of prior information.

The HCRB matrix is defined as

(5.4)

In cases in which the observation statistic is expressed in terms of p (rlicnr, Kr), and

the relationship between the unknown parameters Onr, Or and krir, Kr is given by ni =

the chain rule, can be used to express J H (Onr, Or) in an alternative form [261:

(5.5)

where the elements of the matrix P are given by [Ph 4 =

5.2 HCRB with Phase Mismatch

In this section, the HCRB is developed for target localization. A point target is assumed

with complex reflectivity t9 = Re + ± jϑIm, located in a two dimensional plane at coordinates

X = (x, y). Consider a set of M transmitting stations and N receiving stations, widely

distributed over a given geographical area, and time and phase synchronized. A set of

orthogonal waveforms is transmitted, with the lowpass equivalents sk (t) , k = 1,... ,M,

and effective bandwidths )3 [29]. The signals are narrowband in the sense that for a carrier

frequency of fe, the narrowband signal assumption implies )3²c/ f²c << 1
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In [42], perfect phase synchronization was assumed. In practice, synchronization

errors exists, modeled here as zero mean Gaussian random variables with standard

deviation al and denoted by AO = 1 Jot A42, .•., AOtivn AOri) AOT2 " • , AOr/sT1T, where

A0t, and 6.0r, are phase errors at transmitting radar k and receiving radar t, respectively.

The phase errors introduced by the different stations are assumed to be statistically

independent. The vector of unknown parameters is defined by

(5.6)

where Onr 	 [x, y, Vize, Vim] denotes the deterministic unknowns and Or -= AOT denotes

the random unknowns.

The estimation process is based on the signals observed at the receiving sensors. The

signal received at sensor t is a superposition of the transmitted signals, reflected from the

target, and given by:

(5.7)

where nEk accounts for the phase information and has the value of nek =

exp (— j271 LrEk) exp (—j (AOt, + .6. The noise nE (t) is assumed to be circularly

symmetric, zero-mean, complex Gaussian, spatially and temporally white with

autocorrelation function cr,i26 (T). The propagation time, rtk, is a sum of the time delays

from station k to the target and from the target to station t, and may be expressed as

(5.8)

where c denotes the speed of light, (xtk, ytk) denotes the location of transmitting radar k

and (x,E,YrE) denotes the location of receiving radar f. The following vector notation is

introduced: T 	 [T11) T12) 	 Ttk) • --) TArM] T.
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The received signals are separated at the receiver by exploiting the orthogonality

between the transmitted waveforms. The signal in (5.7) is defined as a function of the

time of arrival, Tek, the reflectivity value 19, and the phase mismatch AO. The vector of

unknown parameters for the observations re (t) is expressed as a function of the time delays

'T rather than a function of the unknown location (x, y) (as seen in (5.8)); i.e., the vector

of unknown parameters is denoted by lc = krir, kr , with 	 = [IT Ike 'Olin] and kr =

AOT. The following notation is defined for later use: r = [ri (t) ,	 , r N (t)], Q = MN,

L = M + N.

In order to derive the HFIM given in (5.2) and (5.3), the conditional joint pdf p (r1k)

is required. For the signal model given in (5.7), the conditional joint pdf of the observations

(time samples at multiple receive antennas) parametrized by the unknown parameters

vector IC, is then

(5.9)

The observation is given as a function of k. Therefore, the matrix P, defined following

(5.5), needs to be derived. The relation given in (5.8) is used, resulting in

(5.10)

(5.11)

with
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where cxk is the bearing angle of the transmitting sensor k to the target, measured with

respect to the x axis, and 'ye is the bearing angle of the receiving radar t to the target,

measured with respect to the x axis.

Using the conditional pdf p (r 1 /0 in (5.9) and the Gaussian distribution of the phase

errors, the HFIN4 J H (10 , defined by (5.2) and (5.3), is derived in Appendix E, resulting in

(5.12)

(5.13)

(5.14)

and the other submatrices in (5.12), (5.13) and (5.14) are defined and derived in Appendix

E (see (E.1), (E.3), (E.4) and (E.5)). Applying (5.10) and (5.12) in (5.5) yields

(5.15)

The HCRB for the unknown parameters (x, y) may be derived from (5.15), applying the

relation given in (5.4) :

HCRB (x, y) = [DRAY — DGH-¹GTDT]-¹2×2 . 	 (5.16)
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To find the closed-form solution to HCRB (x, y), the matrix 11--¹ is expressed using the

formula for the inverse of a partitioned matrix [71]:

(5.17)

(5.18)

and

(5.19)

where Ap = (Ep + 1/σ2I). The term [ — F-¹ϑ -¹AA-¹FTϑ] -¹ in (5.17), is transformedσ²

based on the formula for the inverse of a matrix B of the form B = A + XRY, given

in [71]. Following some additional matrix manipulations, the HCRB for the location MSE

can be expressed as

(5.20)

where CRI3, (x, y) = JF-1- is the CRB with no phase mismatch, and

CRB = PFPA--¹JF — JF] represents the increment in the bound due to phase

synchronization errors. The matrices JF and Pp are defined by

(5.21)
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and the matrix Ra-1 can be calculated recursively using the formula for the inverse of the

sum of matrices [72], resulting in

(5.22)

where 1 = 	 „ 11T and the terms Ai and A²c are

(5.23)

Calculating the explicit value of ACRB, one gets

(5.24)

where the constants km, m = 1, 2, 3 are functions of the phase synchronization error

variance cri (through Ai and A²c, defined in (5.23)) and the number of transmitting and

receiving radars M and N, as follows:

(5.25)

The matrices Bni, m = 1, 2, 3 depend on the geographical layout of the radars with respect

to the target location:
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using the following Dm matrices:

(5.26)

and

The expression for the HCRB as given in (5.20), offers an interesting observation on the

effects of phase errors on the target localization MSE. First, it is apparent that the HCRB

may be expressed as the sum of the CRB with no phase error and a term dependent on the

statistics of the phase errors. This term is a function of the sensors location with respect

to the target, through the matrices Bm, and the system parameters (SNR, phase errors

variance cri and the number of mismatched transmitting and receiving radars) through

the coefficients pm. The manner in which the number of radars, their spread and the phase

synchronization error variance affect the performance is not readily understood from (5.24).

For this reason, numerical examples are employed in the next section to gain some insight

into the relationships between system parameters and performance degradation.

5.3 Numerical Analysis

The HCRB expression given in (5.20) is numerically evaluated using the following

example: M = 11, N = 9 and cri = [0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.051, where

al is expressed in (rad²c). The HCRB (x,, yo) is drawn in Figure 5.11. As a2a increases

beyond a specific value, the additional CRB term ACRB dominates the performance and

the curve. For high phase error levels, the performance degradation starts at lower SNRs.
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Figure 5.1 HCRB for M=11 and N=9. The blue line represent the CRB value with no
phase errors.

For small phase errors, localization accuracy is not undermined by the phase mismatch,

and the HCRB (xo, ye) curve follows the CRI30 (xo, ye) closely.

For a given system, the tolerated [ail. may be determined by solving

ACRB ([σ²]max) CRBo (xo, ye). This value can serve as a design goal in the system

phase calibration. For a given phase synchronization error variance (72A, the expression

ACRB (o-i) gives the localization accuracy penalty.

5.4 Conclusions

MIMO radar with coherent processing exploits the signal phase measured at the receive

antennas to generate high resolution target location estimation. To take advantage of this

scheme, full phase synchronization is required among all participating radars. In practice,

inevitable phase synchronization errors reflect on the system localization performance.

In this paper, a closed-form expression of the HCRB of target localization has been
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derived, capturing the impact of the phase synchronization errors on the achievable target

localization accuracy. In particularly it has been shown that the HCRB can be expressed

as a sum of the CRB with no phase error and a term that represents the phase error

penalty. The latter has been shown to be a function of the sensors geometry, SNR, and

the number of transmitting and receiving radars in addition to the phase error MSE. As

phase synchronization over distributed platform is a complex operation and phase errors

are unavoidable, the HCRB offers valuable information at the system design level. For a

given phase error MSE, the HCRB may be used to derive the attainable target localization

accuracy. Otherwise, for a given system performance goal on localization accuracy, the

HCRB provides with an upper bound on the necessary phase error MSE values.



CHAPTER 6

TARGET TRACKING IN MIMO RADAR SYSTEMS

Target tracking as it is an essential requirement for surveillance systems [73-751 Herein,

target tracking performances of MIMO radar systems are evaluated. The joint Bayesian

Cramer-Rao bound (BCRB) [28] is formulated, and a recursive bound on the state

variables (target location and velocity) is derived based on the nonlinear filtering bound

developed in [76]. A BCRB based analysis for multi-static radar systems is provided

in [77]. The system model assumes one transmitter and multiple receivers. Target position

estimation performance is demonstrated for a given target path, yet limited insight is

provided as to the dependency of this bound on system parameters. In this study, the

effect of system parameters on target tracking performance is presented. Based on this

study, two tracking schemes are proposed. The first is a centralized architecture, based

on joint processing of either raw or partially processed (compressed) data at a fusion

center. This approach provides highly accurate target tracking and takes full advantage

of the MIMO configuration. The second is a decentralized scheme, based on a hybrid

combination of local processing at the receiving radars and joint tracking at a fusion center.

The latter approach supports resource aware system operation. Reduced communication

requirements and processing load may be achieved with relatively low performance cost

with the proposed decentralized method.

In this Chapter, the study of target localization in MIMO radar systems with

distributed antennas and noncoherent processing is extended to target tracking. The BCRB

on target location and velocity is derived, and insight is gained into the effect of the

radars geometric layout and the target location on tracking accuracy. The relation between

estimation error and the number of radars is examined and the contribution of target

reflectivity and path loss to tracking performance is evaluated. Adaptive tracking tactics are

89
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proposed, accounting for the target parameters estimation accuracy and the radar sensors

spread.

6.1 System Model

Assume M transmitting radars and N receiving radars, widely distributed, and time

and phase synchronized. The receiving radars could be collocated with the transmitting

elements or widely separated. The transmitting and receiving radars are located in a

two dimensional plane (x, y). Consider a single moving complex target with an initial

location (x0, yo) and velocity (i, , . At state n, defines as the time interval ndt, where

At is the observation interval, the target is located at coordinates (xn, yn) (see Figure

6.1). A set of orthogonal waveforms is transmitted, with the lowpass equivalent sk (t) ,

k = 1, . . . , M. The power of the transmitted waveforms is normalized such that the

aggregate power transmitted by the sensors is constant, irrespective of the number of

transmit sensors. Let all transmitted waveforms be narrowband signals with individual

effective bandwidth fik defined as 131! = [(fw, f²c isk (1)1²c df) / (fwkISI (1)1²c df)], and

an effective time duration Tbk defined as nk =[( t² |[(ʃTk -2 |Sk (t)1²c dt) (LI 1Sk (t)1²c dt)] ,

where the integration is over the range of frequencies with non-zero signal content Wk [29].

The signals are narrowband in the sense that for a carrier frequency fc, the narrowband

signal assumption implies ,q/ 1 and S²c/ fi < 1, where /3 = 1+, ESk.
k=-¹

The propagation time estimate of a signal transmitted by the k-th transmitting radar

located at coordinates Tk = (Xtk, Ytk), reflected by a target located at (Xn, yn), and received

by a radar located at R,e = (fcr.e, yrt) can be approximated as:

where Tekr, the propagation time, is the sum of the time delays from radar k to the target

and from the target to radar t in state n:
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(6.2)

and ETekr, is the time delay estimation error. The speed of light is denoted by C.

The Doppler shift estimate of a signal transmitted on the lk-th path can be

approximated as:

(6.3)

where wan, the Doppler shift on the lk-th path due to the target velocity in state n

and ec,) is the Doppler shift estimation error. The term ±, stands for the target velocity

in direction x and Yn, for the target velocity in direction y at the nth state. The phase Okn is

the bearing angle of the target to transmitting sensor k with respect to the x axis; the phase

yoir, is the bearing angle of the target receiving radar t measures with respect to the x axis.

See illustration in Figure 6.1.

Consider the case of a baseband representation of the signal observed at sensor t due

to a transmission from sensor k and reflection from the scatterer at coordinates (xn, yn),

given by:

(6.5)



where aekr, represent the combined effect of path loss, targets' reflectivity along the lk-th

path and the phase shift equivalent to the time delay along the path, the noise wf,,, (t) is

circularly symmetric, zero-mean, complex Gaussian noise, spatially and temporally white

with temporal autocorrelation function cr,²c6 (r), and k = 1, ..., M, = 1, , N. The

observation vector r at state n is:

(6.6)

The signal received at each sensor is a mixture of the transmitted signals reflected by

the target. The mixture of signals is separated at the receiver end by exploiting the

orthogonality between the transmitted waveforms.

The state vector xn, representing the target location and velocity at state n, is:

(6.7)

In the analysis, the state vector xn 	 treated as unknown random, while an is assumed

unknown deterministic.

Figure 6.1 Tracking system layout.
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The state model is a linear motion model, represented as ( [78], [73]):

(6.8)

where vn is modeled as white Gaussian process noise with covariance matrix Qv of the

form:

(6.9)

On:

(6.10)

where d stands for the observation, that in the MIMO radar case is the set of signals

observed at the receiving radars, expressed by 6.5 as a nonlinear function of a vector of

unknown narameters 7h_ defined as:

(6.11)
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where L = MN.

6.2 The Bayesian Cramer-Rao Bound (BCRB)

In [76], a recursive, multiple dimensional, generalized Bayesian Cramer-Rao Bound

(BCRB) is developed. In general, the BCRB for an unknown vector parameter 0 ERn×¹,

estimated using an observation vector r, is of the form:

(6.12)

where JB is the Bayesian information matrix (BIM), and CB is the BCRB matrix. The

BIM is calculated using the joint probability density function (pdf), as follows:

(6.13)

Based on the relation pr,o (r, 0) = No (r 10) - po (0), it is shown in [76] that the BIM

may be expressed as a linear combination of two matrices:

(6.14)

where JD is the Fisher information matrix (FIM) and represents the information coming

from the data and Jp represents the a priori information, named hereafter as PIM. The FIM

and PIM are derived using:

(6.15)

(6.16)
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The BCRB sets the lower bound on the estimation MSE for the unknown vector

(6.17)

where "0" denotes estimated quantities and J13 is the BIM of the system at state n I,

defined in (6.13). The recursive BCRB is of the form [76] :

(6.18)

where JE,,, is the FIM of the system at state n I, defined in (6.15), and Exn+,[.] is the

expectation with respect to the joint probability density function (pdf) of the state vector

Xn-Fl• The FIM JD„_,1 is derived using the conditional pdf:

(6.19)

and by applying the chain rule [26] for :

(6.20)

where matrices H are defined below and matrix Jr:In+1 (ψn+1) is the FIM for the unknown

vector zi)n-E.-¹, derived based on the same process developed in Appendix C, and may be

shown to be:

(6.21)
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where matrix J„ is

(6.22)

and matrix J,,_, follows,

(6.23)

Elements of matrices H are provided by the derivative of the expressions in (6.2) and (6.4)

with respect to the state vector in (6.7). It can be shown that:

(6.24)

Using (6.24) and (6.21) in (6.20), yields:

j(6.25)

The lower bound on the state vector estimation error in state n 1, is provided by

the expression in (6.18), integrating the FIM derived in (6.25). Next, numerical analysis

of the BCRB, integrating (6.25) in (6.18) is provided, establishing an understanding of the

tracking performance of MIMO radar systems.
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6.3 Numerical Analysis

It is apparent from (6.18) that the performance of the BCRB in (6.25) depends on the

geometric layout of the MIMO radar system and the track of the target. To get an

understanding of these relations, a few schemes are evaluated. First, the sensitivity of

the performance to radars spread with respect to the target location is analyzed through the

evaluation of four system layouts, illustrated in Figure 6.2. A wide angular spread of the

radars with respect to the target position (Cases 1 and 4 in Figures 6.2-Figure 6.4) supports

higher accuracies than when the radars are spread in a narrower angle (see Cases 2 and 3

in Figures 6.2-6.4). Furthermore, when the target motion direction is opposed to the radar

locations, the performances degrades.

Figure 6.2 Scenario I: 6x4 MIMO radar system with different angular spreads.

The effect of the number of transmitting and receiving radars on tracking

performance is examined through the use of MIMO radar configurations shown in Figure

6.5. The four test cases are: 3x4, 6x4, 12x4 and 18x4 MIMO radar systems. It is



Figure 6.3 BCRB on target location tracking for scenario I.

6x4 MIMO Case 1
6x4 MIMO Case 2
6x4 MIMO Case 3
6x4 MIMO Case 4
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Figure 6.4 BCRB on target velocity tracking for scenario I.
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observed that the product of the number of transmitting and receiving radars MN is 12,

24, 48 and 72, for Cases 1-4, respectively. Therefore, the ratio of the products MN is
MN(Case 2) = MN(Case 3) = 2 and 1.5. It is clear from Figures 6.6 and 6.7 thatMN(Case 4) 
M N(Case 1)	 M N (Case 2)	 MN(Case 3)

the tracking mean-square error (MSE) decreases for both position and velocity as iV/ and

N increase, i.e., as the product MN increases. The performance gain, defined as the ratio

between the MSE bound of two given MIMO radar systems, is proportional to the increase

in the product MN. The position accuracy performances shown in Figure 6.6 and velocity

accuracies provided in Figure 6.7, demonstrate that.

Figure 6.5 Scenario II: Various symmetrical MIMO radar configurations: (1) 3x4. (2)
6x4. (3) 12x4 (4) 18x4.

In practical situation, each propagation path between a set of transmitting and

receiving radar has different characteristic, depending on path loss, target reflectivity and

phase errors. To assess the effect of the propagation paths on tracking performance, MIMO

radar layouts given in Figure 6.2 are used. Different paths propagation coefficients are

modeled. It is shown in Figure 6.8 that receivers with increasing path loss show worse



— -3x4 MIMO Case 1
—--6x4 MIMO Case 2
— — — 12x4 MIMO Case 3

18x4 MIMO Case 4
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Figure 6.6 BCRB on target location tracking for scenario II.

- — • 3x4 MIMO Case 1
• —6x4 MIMO Case 2
— — — 12x4 MIMO Case 3

MIMO Case 4
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Figure 6.7 BCRB on target location tracking for scenario I.
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estimation capabilities when comapred with receivers with little path loss. The joint MIMO

radar tracking with path loss experience some performance degradation, when compared

with the case of no path loss, given in Figure 6.3. The advantage of MIMO radars system

over SIMO (single-input multiple-output) or MISO (multiple-input single-output) is also

demonstrated in Figure 6.8.

Figure 6.8 BCRB on target location tracking for scenario I, with receivers one and two
experiencing different levels of path loss.

6.4 Tracking Algorithms

As established in the previous section, MIMO radar systems provide tracking accuracy

advantages that grow proportionally with the number of transmitting and receiving

radars. Increasing the number of transmitting and receiving radars leads to increased

communication needs and computation load. These are reliant on the specific tracker

employed.
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Target position and velocity may be tracked based on a centralized or a decentralized

approach. In a centralized tracking approach, the observations are jointly measured in a

fusion center to produce target location and velocity estimates. The decentralized approach

takes advantage of observations obtained at a receiver from signals of M transmitting

radars, and generates a local estimate of the target location and velocity. These estimates

are then sent to a fusion center to be fused based on a local cost function. MIMO radar

systems with at least three transmitters support decentralized target position and velocity

estimation, as each receiver may act as a MISO radar system. Processing in a MIMO radar

system may be distributed among N MISO subsystems, each with an M x 1 structure. It is

expected that the individual subsystems will provided lower performances, when compared

with the MIMO system (as illustrated in the BCRB of Figure 6.8)). Choice of an adequate

fusion algorithm, for which the separate estimates are combined effectively, may overcome

the destructive contribution of weaker propagation paths.

6.4.1 Centralized Tracking

Centralized tracking may use direct or indirect estimation techniques. The multiple

propagation paths, created by multiple transmitted waveforms from multiple widely spread

antennas and echoes from scatterers received at multiple widely separated antennas,

support target parameters estimation, such as location and velocity, through either direct

or indirect estimation. With direct estimation, the observations collected by the sensors

are jointly processed to produce target location and/or velocity estimates. With indirect

estimation, the TOAs and Doppler shifts are estimated first, and target location and/or

velocity are subsequently estimated based on the relations given in (6.2) and (6.4). The

advantage of using direct estimation is in the estimation MSE, while the indirect estimation

technique offers data compression.

In direct estimation, raw data is transmitted to a fusion center for joint estimation of

target location and velocity. The observations collected by the radars are jointly processed
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using maximum likelihood estimator (MLE) at the central fusion center to produce the

localization estimate,

'6.26)

In this case, a search cell is defined and a maximum is obtained by evaluating the ML value

for each location on a given grid

Indirect techniques are involved with a preliminary stage where TOAs and Doppler

frequencies are first estimated at the receiving radars and transmitted to the fusion center

for joint estimation, where localization is subsequently estimated by multilateration.

This estimation approach incorporates an intermediate step of estimating the unknown

parameter vector as follows,

(6.27)

Indirect localization enables data compression and reduced complexity while potentially

dealing with higher sidelobes.

Following, a centralized tracker with indirect estimation is proposed. The extended

Kalman filter (EKF) is used for the model given in (6.8) and (6.10) in the fusion center. The

initial target position and velocity x0 = [xo,yo, Xo, 017' are chosen based on a preliminary

MLE obtained following target detection. The initial pdf P010 is determined based on the

CRLB. The centralized algorithm is described in Table 6.1.



Table 6.1 Centralized Tracking

Centralized Tracking Algorithm:

1. Initial conditions:

2. Project the state ahead:

3. Locally at the eth receiver:

Perform time delay and Doppler shift estimates at the N receivers:
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6.4.2 Decentralized Tracking

In decentralized tracking each receiving radars performs local estimates of the target

location and velocity using either direct MLE-based estimation of ict 	 or indirect

estimation, i.e., first estimate = ..., , rjti, , (',.).em„,fi] and then

estimate ii,en+, using linearizion techniques. The projected or last updated target location

and velocity are used as a reference point in the linearizion process. The local estimates

are sent to a central fusion center, where they are combined based on a predetermined cost

function. The estimates are chosen such that path with significant fading or low reflectivity

will be either discarded of introduce with very high cost coefficients. By doing so, the

overall estimation MSE is kept as close as possible to the centralized performance. The

centralized algorithm is described in Table 6.2.

The centralized and decentralized algorithms performance are provided in Figure 6.9.

The proposed decentralized algorithm achieves accuracies very close to the centralized one.

The cost-based decentralized tracking method is shown to perform better than when all

paths a combined without any weighing coefficients (see Figure 6.10).



106

— 	6x4, Centralized tracking
—.—.•MIMO 6x4, Decentralized (RX3+Rx4)
—BCRB, Centralized
---,BCRB, Decentralized

Figure 6.9 BCRB on target location tracking for centralized and decentralized tracking
and the EKF and hybrid KF performance.

Figure 6.10 BCRB on target location tracking for centralized and decentralized tracking
with different decentralized algorithms.



Table 6.2 Decentralized Tracking Algorithm

Decentralized Tracking:

1. Initial conditions:

2. Project the state ahead:

3. Locally at the fth receiver:

Perform target location

3.1 Perform time delay and Doppler shift MLEs.

3.3 Estimate target location and velocity based on local EKF.

3.4 To central fusion center:

At fusion center:

4. Perform target location :73-n+1 -re+1) and velocity In+i , -nd_1) estimates.:

4.1 Choose the best estimates by evaluating the covariance matrix

For a predetermined threshold, choose

4.2 Final estimation:

.ec{A.,}

where pe are the cost functions applied in combining the estimates,

and x is a threshold function, set to exclude the estimates with high MSEs.

5. Project the covariance Pn+iim and gain Gn+1 for the Kalman filter:
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Decentralized Tracking:
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6.5 Conclusions

Study of moving target tracking capabilities is offered through the use of the BCRB for

the estimation of both target location and velocity in non-coherent MEMO radar systems

with widely distributed antennas. It is shown that increasing the number of transmitting

and receiving radars provides better tracking performances in terms of higher accuracy

gains for target location and velocity estimation. The performance gain is proportional

to the increase in the product of the number of transmitting and receiving radars. Wider

spread of the radars results in better accuracies. The MIMO radar architecture support

both centralized and decentralized tracking techniques, inherit to the system nature. Each

receiver may contribute to central processing by providing either raw data or partially/fully

processed data. It is demonstrated that communication requirements and processing load

may be reduced at a relatively low performance cost. Based on mission needs, the system

may use either modes of operation: centralized for high accuracy or decentralized resource-

aware tracking.



CHAPTER 7

CONCLUSION AND FUTURE WORK

In the framework of this dissertation work, concepts of target localization in MIMO radar

systems with noncoherent and coherent processing were developed. Generally speaking,

MIMO radars with widely distributed transmit and receive antennas are addressed. The

main results discussed in the dissertation can be summarized as follows:

• The analytical expressions of the CRLB for noncoherent and coherent processing

were derived. For both noncoherent and coherent processing, an improvement in

target localization accuracy, proportional to the product of the number of transmitting

and receiving radars, MN, is obtained. This is referred to as spatial advantage.

• Location estimation based on noncoherent observations is shown to be inversely

proportional to the signals averaged effective bandwidth. Dramatically higher

accuracy can be obtained from processing coherent observations. In this case, the

estimation error is inversely proportional to the carrier frequency. This gain, in the

order of 	 is due to the exploitation of phase information, and is referred to as

coherency advantage.

• Formulating a convex optimization problem, it is shown that symmetric deployment

of transmitting and receiving sensors around a target is optimal with respect to

minimizing the location estimation error on both x and y axis.

• Closed-form solution for the best linear unbiased estimator (BLUE) of target

localization is obtained for noncoherent and coherent MIMO radars. It supports the

use of the GDOP metric as a tool for target localization accuracy analysis. This

metric is shown to represent the spatial advantage of the system. Contour maps of
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the GDOP, provide an insight of the mutual relation between a given deployment of

sensors and the achievable accuracy at various target locations.

• Comparative evaluation of target localization performances for MIMO and SIMO

radar systems, based on the BLUE is established. The advantage of the MIMO radar

scheme over SIMO is evident when considering that the achievable accuracy for

MIMO radar systems with M transmitters and N receivers is proportional to MN

and an equivalent SIMO radar systems with the same number of antennas, i.e. 1

transmitter and M + N — 1 receivers, is proportional to (M + N — 1), especially for

M N >> (M + N).

• Multiple targets localization, using coherent processing, is shown to benefit from

coherency advantage. The trade-off between target localization accuracy and the

number of targets that can be localized is incorporated in the spatial advantage term.

Increase in the number of targets exposes the system to elevated mutual interferences.

This trade-off depends on the geometric footprint of both the sensors and the targets,

and the relative positions of the two.

• Coherent processing advantage might be significant, for the ratio of the signal carrier

frequency to the signal effective bandwidth is commonly in the order of hundreds.

The reliance of coherent processing on phase synchronization initiated an analysis

that will evaluate the sensitivity of coherent localization to phase synchronization

errors. The bound on the target localization estimation error is shown to be a

sum of two terms — the first represents the CRB with no phase mismatch, and

the second captures the mismatch effect. The latter is shown to depend on the

phase error variance, the number of mismatched transmitting and receiving and

the system geometry. This expression provides the means to establish, for a

given phase synchronization error variance, if an advantage is still achievable for

coherent processing over noncoherent one. Alternatively, when system requirement
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determined a specific localization accuracies, the derived expression may be used to

determine the necessary phase synchronization level in the distributed system.

• Study of moving target tracking capabilities of noncoherent MIMO radar systems is

performed through the use of the BCRB for the estimation of both target location

and velocity. It is shown that increasing the number of transmitting and receiving

radars provides alleviates tracking performances in terms of accuracy gains for both

location and velocity estimates. Performance gain is proportional to the increase in

the product of the number of transmitting and receiving radars. Wider spread of the

radars results in better accuracies.

• MIN40 radar architecture support both centralized and decentralized tracking

techniques, inherit to the system nature. Each receiver may contribute to central

processing by providing either raw data or partially/fully processed data. It is

demonstrated that communication requirements and processing load may be reduced

at a relatively low performance cost. Based on mission needs, the system may

use either modes of operation: centralized for high accuracy or decentralized

resource-aware tracking.

To fully gain from these systems some research and engineering challenges need to

be addressed. Among theses:

• Synchronization of the transmitting and receiving radars is of significant importance

to mapping performance. For non-coherent processing, time synchronization is

necessary while for coherent processing phase synchronization is required as well.

• Centralized coordination of sensor transmissions and waveforms design.

• Synchronized communication among radars and with a central processing center.

• Analysis of target RCS phenomena.



112

Traditionally, radar stations are grid-powered elements, incorporating transmitters,

receivers and fusion center on site, based on a fixed communication infrastructure. Over the

years, radar applications that include mobile deployment of stations were introduced, such

as anti-missiles defense radars. These systems are powered off-grid by diesel generators.

Other military applications require similar deployment of mobile stations for surveillance

of a given area, such as radars mounted on vehicles that have limited energy resources.

This type of systems utilizes secured wireless communication. In this case, the notion of

power aware design is very important.



APPENDIX A

CRLB FOR NON-COHERENT PROCESSING

In this appendix, we develop the submatrices of the FIM for the unknown parameter vector

One, based on the conditional pdf in (2.19). The first derivative of p (r|ψnc) with respect to

the elements of T is:

(A.1)

Applying the second derivative to (A.1), defines a matrix Snc with the following elements:

(A.2)

where indexing used is

Elements of matrix Aa are defined as follows:

(A.3)
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and
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(A.4)

Elements of matrix V,, are defined as follows:

(A.5)

(A.6)

Orthogonal Waveforms

Orthogonality implies that all cross elements

e and k	 le,and after some algebra, the matrices defined by (A.2)-(A.6) take the

(A.7)

and



APPENDIX B

CRLB FOR COHERENT PROCESSING

In this appendix, we develop the submatrices of the FTM for the unknown parameter vector

, based on the conditional pdf in (2.34). The first derivative of p (0) with respect to

the elements of T is:

0 [log p (110c)]
artk

Applying the second derivative to (B.1) define a matrix Sn, with the following elements:

(B.4)

(B.1)

(B.2)

(B.3)

Elements of matrix Aa, are defined as follows:

(B.5)
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(B.6)

Elements of matrix V, are defined as follows:

(B.7)

(B.8)

(B.9)

(B.10)

and

Orthogonal Waveforms
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Orthogonality implies that all cross elements f sk (t — -roc) sZ, (t — re e) dt = o for

f' and k k'. Therefore, the matrices defined by (B.4)-(B.9) take the following form:

(B.11)

where fR, = (1 + (CO . When we invoke the narrowband assumption ,31g‹1 it

follows that fR, f_-_ 1.



APPENDIX C

DERIVATION OF ERROR COVARIANCE MATRIX FOR TIME OBSERVATIONS

C.1 Noncoherent Processing:

For a set of received waveforms re (t) , 1 < < N, in (2.10), the time delay estimates

/Inc ==	 µnc12, • lincmNiT are determined by maximizing the following statistic:

(C.1)

by redefining the time notation t t — TA, where Tik denotes the propagation time on the

tic' path for the nominal point (xe, ye). Equivalently,

(C.2)

The time delay estimates are expressed in (3.3). It is not difficult to show that the following

relation holds:

(C.3)

where

(C.4)

and

(C.5)

We wish to write (C.3) in the form of (3.3). With a few algebraic manipulations, including
(τlk

expanding gnc(v) in a Taylor series around τlk, and neglecting terms o [(τlk [(	— µnclk)³],nclk)³] , it

can be shown that

(C.6)
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Comparing this with (3.3), we have for the error term

(C.7)

To find the first and second order statistics of crice, , we need the statistical

characterization of ntk. As previously stated, we assume the receiver noise we (t) is a

Gaussian random process with zero mean and autocorrelation function o-2,6 (τ). Since na

is a linear transformation of the process wAt), since the mean wf(t) is zero, E [na] = 0.

Similarly, it can be shown that

(C.8)

(C.9)

concluding that the covariance matrix of the terms enclk is given by:

(C.10)



120

C.2 Coherent Processing

For a set of received waveforms re (t) , 1 < < N, in (2.8), the time delay estimates
T

µc = [µc11, µc12 " • 7 µcMN]T MN ] are determined by maximizing the following statistic:

(C.11)

by redefining the time notation t t — ilk, where rik denotes the propagation time on the

tkth path for the nominal point (x c, y e) . Equivalently,

(C.12)

The time delay estimates are expressed in (3.3). It is not difficult to show that the following

relation holds:

(C.111

where

(C.14)

and

(C.15)

With a few algebraic manipulations, including expanding g c(v) in a Taylor series around

F:ek, and neglecting terms o [(τlk — µclk, )³] , it can be shown that

(C.16)

Comparing this with (3.3), and invoking the narrowband assumption fiug 	 1, we have

for the error term

(C.17)
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To find the first and second order statistics of c„ we need the statistical

characterization of ntk. As previously stated, we assume the receiver noise we(t) is a

Gaussian random process with zero mean and autocorrelation function au,' SM. Since nek

is a linear transformation of the process wi(t), since the mean we(t) is zero, E [flea] = 0.

Similarly, it can be shown that

(C.18)

(C.19)

concluding that the covariance matrix of the terms ectk is given by:

(C.20)

where SNRc =-- •



(D.2)

(D.3)

APPENDIX D

DERIVATION OF FIM MATRIX FOR PHASE SENSATIVITY ANALYSIS

In this appendix, we develop the FIM for the unknown parameter vector qp,

logp(r|ψ)

based on the conditional pdf in (4.14). The submatrices that define J	 =

E {ψ log p (r|ψ) 	 log p (r|ψ))H} -E [a² logp(r|ψ)] are derived hereafter.(920

The submatrix rx, E, and V have the following general form:

(D.1)

The first derivative of p (1.11p) in (4.14) with respect to the elements of Tq is:

The following indexing notations are used throughout:

122



123

Applying the second derivative to (D.2) define the matrix rqqi with the following elements:

(D.4)

where 'go = 87²c SNR f²c .In matrix form,

(D.5)

where we define Aq = diag (0). The notation diag(-) is used to represent a

diagonal matrix with elements of vector (-) on its diagonal, eq is defined as eq =

[exp ( — fcqi) , exp ( — 27r fe4²c) , exp ( — 27r f crItIN)1T , and we abuse the notation and

let

(D.6)

The frequency ratio hi, is defined as A, = (1 + 110 . When we invoke the narrowband

assumption β²k/f²c << it follows that fR, 1.

The elements of matrix Its are defined as:

(D.7)

The second matrix E in (4.8) is defined by a set of matrices Eqq with the following

elements:

(D.8)
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In matrix form,

(D.9)

where we use the notation 19 = (eq)T Rri (OD* .

The third matrix V is defined by a set of matrices Vqq/ with the following elements:

(D.10)

(D.11)



(E.2)

(E.3)

APPENDIX E

DERIVATION OF FIM MATRIX FOR THE BCRB

In this appendix, we develop the elements of the matrix JD (n), i.e. [JD

—E,1,,„, {Erik [°21anni:))1 }, based on the conditional pdf in (5.9).The diagonal

submatrix RT is derived as follows:

(E.1)

and

where snr = 1'191²c I o- , and the following notation is used:

The elements of the matrix E0 are given by

and

and the elements of the matrix EA are given by

(E.4)



and (E.b)

The off-diagonal submatrices are as follows:
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