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ABSTRACT

ALGORITHMS IN COMPARATIVE GENOMICS

by
Satish Chikkagoudar

The field of comparative genomics is abundant with problems of interest to computer

scientists. In this thesis, the author presents solutions to three contemporary problems:

obtaining better alignments for phylogeny reconstruction, identifying related RNA

sequences in genomes, and ranking Single Nucleotide Polymorphisms (SNPs) in

genome-wide association studies (GWAS).

Sequence alignment is a basic and widely used task in bioinformatics. Its

applications include identifying protein structure, RNAs and transcription factor binding

sites in genomes, and phylogeny reconstruction. Phylogenetic descriptions depend not

only on the employed reconstruction technique, but also on the underlying sequence

alignment. The author has studied and established a simple prescription for obtaining a

better phylogeny by improving the underlying alignments used in phylogeny

reconstruction. This was achieved by improving upon Gotoh's iterative heuristic by

iterating with maximum parsimony guide-trees. This approach has shown an

improvement in accuracy over standard alignment programs.

A novel alignment algorithm named Probalign-RNAgenome that can identify

non-coding RNAs in genomic sequences was also developed. Non-coding RNAs play a

critical role in the cell such as gene regulation. It is thought that many such RNAs lie

undiscovered in the genome. To date, alignment based approaches have shown to be

more accurate than thermodynamic methods for identifying such non-coding RNAs.

Probalign-RNAgenome employs a probabilistic consistency based approach for aligning

a query RNA sequence to its homolog in a genomic sequence. Results show that this



approach is more accurate on real data than the widely used BLAST and Smith-

Waterman algorithms.

Within the realm of comparative genomics are also a large number of recently

conducted GWAS. GWAS aim to identify regions in the genome that are associated with

a given disease. The support vector machine (SVM) provides a discriminative alternative

to the widely used chi-square statistic in GWAS. A novel hybrid strategy that combines

the chi-square statistic with the SVM was developed and implemented. Its performance

was studied on simulated data and the Wellcome Trust Case Control Consortium

(WTCCC) studies. Results presented in this thesis show that the hybrid strategy ranks

causal SNPs in simulated data significantly higher than the chi-square test and SVM

alone. The results also show that the hybrid strategy ranks previously replicated SNPs

and associated regions (where applicable) of type 1 diabetes, rheumatoid arthritis, and

Crohn's disease higher than the chi-square, SVM, and SVM Recursive Feature

Elimination (SVM-RFE).
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CHAPTER 1

INTRODUCTION

Since the human genome was decoded in 2001, advanced sequencing techniques such as

high-throughput sequencing have resulted in the collection of large amounts of

biomolecular data. Bioinformatics methods are required to analyze and make sense of

such data. As a part of this dissertation, contemporary algorithms were developed for

sequence alignment and phylogeny reconstruction. Algorithms to detect disease-

associated/causal loci from single nucleotide polymorphism (SNP) genotype data were

also developed in this research effort. Chapter 2 discusses a method for improved

progressive alignment for phylogeny reconstruction using parsimonious guide-trees.

Chapter 3 discusses an alignment based RNA homology search algorithm that uses

partition function posterior probabilities. The web-servers developed to allow an Internet

based access to Probalign and Probalign-RNAgenome are described in Chapter 4.

Chapter 5 describes discriminative machine learning techniques that can be used to detect

disease-associated/causal loci from SNP genotype data.

Sequence alignment and phylogeny reconstruction are widely used techniques in

bioinformatics. Sequence alignments are used as inputs for phylogeny reconstruction

programs. The sections below will introduce basic concepts of sequence alignment,

phylogeny reconstruction and genome-wide association studies.

1.1 Sequence Alignment

Research suggests that evolutionarily conserved regions and patterns in sequences are

biologically significant. The motivation behind alignment of biological sequences is to

identify such regions or patterns in sequences [1].

1
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In layman's terms sequence alignment is nothing but "inexact" string matching.

Indels or gaps are inserted in those positions of the resulting alignment that cannot be

properly matched. According to Jones et al. [1], a multiple sequence alignment A of k

input sequences S1 ,S2 ,...,Sk is k strings S i . ,S2 ' ,...,Sk . such that each of the resulting

strings S1',S2',...,Sk'  are of equal length and are an extension of the corresponding/

respective sequence with the inclusion of spaces/gaps.

>sequencel
AACTUU

>sequence2
-ACT--

Figure 1.1 Example of an alignment.

Alignments between several sequences are called multiple sequence alignments

(MSA). Such alignments help identify conserved regions/patterns within a sequence.

Some conserved regions/patterns that cannot be easily discerned in pairwise alignments

can be easily identified using multiple sequence alignments. Multiple sequence

alignments can also be used for phylogeny reconstruction, protein functional site

detection, protein structure prediction, and RNA structure prediction [2].

Many alignment algorithms utilize an affine gap penalty scheme for aligning

sequences. Gaps are penalized using gap open and gap extension penalties in order to

discourage excessive gaps in alignments. The dynamic programming formulae for a

sequence alignment are [2, 3]:
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Where, given that one is aligning two sequences sequencel[1..n] and sequence2[1..m I at

positions i and j respectively [2,3]:

GA =matrix that handles/stores the best alignment that ends with a gap in sequence2

GB =matrix that handles/stores the best alignment that ends with a gap in sequencel

S =matrix that handles/stores the case in which sequencel and sequence2 are aligned

(with a match/mismatch)

3 =score of aligning the residues/bases at sequencel, and sequence2,

g =gap open penalty

ext =gap extension penalty

Multiple sequence alignments are usually scored using a Sum of Pairs (SP)

scoring scheme. Several scoring matrices are available for scoring substitutions in

alignments. PAM [1], BLOSUM [1], and VTML [4] are examples of commonly used

scoring matrices. The SP score of a multiple sequence alignment is the sum of the SP

scores of its constituent pairwise alignments [1, 2].
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Gap open penalty = -4
Gap extend penalty = -1

Scoring matrix: matches (AA,CC,GG,TT,UU) = 1

>seguencel
AACTUU

>sequence2
-ACT--

SP score of the above alignment = -4+1+1+1-4-1 = -6

Figure 1.2 Scoring an alignment.

Benchmark sequence databases and scoring programs such as QScore can be used

to compare and benchmark the performance of multiple sequence alignment programs.

BAliBASE [5] and SABmark [6] are examples of popular protein sequence benchmark

databases.

Probalign

Several multiple sequence alignment software packages are open-source and are readily

available over the Internet. ClustalW [7], MUSCLE [4], MAFFT [8], Probcons [9], and

Probalign [10] are examples of multiple sequence alignment programs. MAFFT [8],

Probcons [9], and Probalign [10] are recent alignment strategies that are among recent

programs with the highest accuracies on BAliBASE [5] and other common benchmarks

(i.e., HOMSTRAD [32] and OXBENCH [33]).

Both Probcons and Probalign compute maximal expected accuracy alignments

using posterior probabilities. In Probcons, posterior probabilities are derived using a

Hidden Markov Model (HMM) whose parameters have been estimated via supervised

learning on BAliBASE unaligned sequences. Probalign, which is largely based on the

Probcons scheme, derives the posterior probabilities from input data by implicitly

examining suboptimal sum-of-pair alignments using the partition function methodology
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for alignments [10]. Probalign alignments have been shown to have a statistically

significant improvement over Probcons, MAFFT and MUSCLE on all three alignment

benchmarks introduced above [10].

Probalign uses partition function matrices to generate posterior probabilities. The

dynamic programming formulae that are used to generate partition function matrices in

Probalign are [10]:

Here, s(xi,yi) represents the score of aligning residue xi, with yi , g is the gap open

penalty, and ext is the gap extension penalty. T is the thermodynamic temperature and it

is used to define the extent to which suboptimal alignments are considered. The matrix

Zm represents the partition function of all alignments ending in xi paired with yi,

Similarly, 4E, represents the partition function of all alignments in which y1 is aligned to

a gap and Z; F, all alignments in which x, is aligned to a gap.

Posterior probability is then calculated using the above-mentioned partition

function matrices and the following formula [ 1 0] :
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The posterior probability matrix P(x,~ y i ) is used to compute a maximal

expected accuracy alignment A using the following recursive formula [10]:

Web interfaces are available for the multiple sequence alignment programs

discussed above. eProbalign is the web server version of Probalign and provides a

convenient platform to visualize alignments, generate images, and manipulate the output

by average column posterior probabilities. The average column posterior probability that

is computed by eProbalign can be considered as a measure of column reliability where

columns with higher scores are more likely to be correctly aligned and biologically

informative.

1.2 Phylogeny Reconstruction

Phylogenies are a fundamental tool for understanding the evolutionary history of species

[l]. As mentioned earlier, multiple sequence alignments can show evolutionarily

conserved regions in sequences. This feature of multiple sequence alignments can be

exploited to reconstruct the evolutionary history of species. Therefore, the most important

input to a phylogeny reconstruction method is a multiple sequence alignment.

Phylogenies are represented as trees. Nodes of a phylogenetic tree represent

species, while the edges represent genetic/evolutionary distance between species.

Phylogenetic trees can be either rooted or unrooted.
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The two main approaches for phylogeny reconstruction are Maximum Parsimony

(MP) and Maximum Likelihood (ML). Both approaches are known to be NP-hard.

However, in practice, heuristic ML implementations are orders of magnitude slower than

heuristic MP implementations [14].

The objective of the MP approach is to reconstruct a tree by minimizing

mutations [1]. Standard heuristics for solving MP are hill-climbing strategies that use the

Tree Bisection and Reconnection (TBR) technique for performing local moves [14].

The absence of "true" phylogenetic or evolutionary relationship data makes it

difficult to evaluate the quality of a reconstructed phylogenetic tree. Hence, phylogenetic

reconstruction methods are evaluated using simulation. Given the true tree (which is

known since the data is simulated) and an estimated tree, the Robinson-Foulds distance

[23] can be used to measure accuracy. This is a standard measure of evaluating tree

accuracy in phylogenetics and measures the number of false positive and false negative

Glades in the estimated tree. The error rate is presented as percentages (between 0 and

100).

Benchmark databases of phylogenies are used to test phylogeny reconstruction

programs and strategies. The quality of a reconstructed phylogeny is measured by

comparing it to a "true" phylogeny that has been reconstructed by experts and is a part of

a benchmark database.

1.3 Genome-wide Association Studies

Genome-wide association studies conducted to date have identified SNPs associated with

several diseases as well as various phenotypes and drug responses [71]. Such SNPs can

be found in growing online databases such as SNPedia (http://www.SNPedia.com ). The

study on seven common diseases conducted by the Wellcome Trust Consortium is one of
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the largest to date [74]. It reported several significant SNPs from 2,000 case subjects per

disease and 3,000 shared controls.

The standard method of detecting disease associated SNPs from a genome wide

association study is to perform a X 2 (chi-square) test on each SNP and select the k top

ranked ones (or those below a p-value threshold) for further study [64, 68, 73, 74, 75].

Once the significant SNPs are identified, one can use them to predict the disease risk of

healthy individuals as well as to identify genes and their regions of interest.

x2 (Chi-square) Test

The independence of variables or populations can be tested using a X 2 test. The x 2 test

statistic can be written as the following formula:

Where, n = number of observations or outcomes

0, = observed frequency of the 	 observation or outcome

E, = expected frequency of the	 observation or outcome

The null hypothesis used in the x2 test is that the variables are independent. The

p-value for a given x 2 statistic value can be obtained by referring to a x 2 distribution

table.



CHAPTER 2

IMPROVING PROGRESSIVE ALIGNMENT FOR PHYLOGENY

RECONSTRUCTION USING PARSIMONIOUS GUIDE-TREES

2.1 Introduction

Phylogenies are a fundamental tool for understanding the evolutionary history of species

[l]. The most important input to a phylogeny reconstruction method is a multiple

sequence alignment. The progressive alignment strategy of Feng and Dolittle [12] is a

fast and widely used heuristic for aligning multiple sequences to a guide-tree (i.e.,

phylogenetic tree sequence alignment). For example, the popular ClustalW program [13]

uses a progressive alignment combined with improvements built around it. Guide trees

for progressive alignment are usually obtained by simple distance-based approaches such

as neighbor joining or UPGMA [14], where distance matrices are constructed using

pairwise alignments.

Most previous phylogenetic reconstruction studies have focused on constructing

optimal trees with the alignment fixed. However, the input alignment is known to affect

the reconstructed phylogeny [15, 16, 17]. Consequently, improving the alignment input

could lead to better phylogenies. A simple MP iterative refinement method that is based

on Gotoh's [18] doubly nested randomized iterative technique can result in significantly

improved sequence alignments for phylogeny reconstruction. This research effort

compares this approach to the standard ClustalW, and different stages of MUSCLE on

simulated data.

9
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2.2 Methods

2.2.1 Phylogeny Reconstruction and Alignment

Maximum parsimony (MP) and maximum likelihood (ML) are two widely used

optimization criteria for phylogeny reconstruction [14]. Both are known to be NP-hard;

however, in practice, heuristic ML implementations are orders of magnitude slower than

MP [14]. Consequently, this dissertation only examines MP for constructing phylogenies

in this preliminary investigation; investigation of ML is left to a later study. Standard

heuristics for solving MP are hill-climbing strategies which use the Tree Bisection and

Reconnection (TBR) technique for performing local moves [14]. These can be found in

software packages like PAUP* [19].

Like MP and ML phylogenetic reconstruction, standard optimization criteria for

multiple sequence alignment, i.e., sum-of-pairs and phylogenetic tree alignment [l] are

also NP-hard. Sum-of-pairs (SP) aims to maximize the sum of pairwise similarity

between the input sequences. Phylogenetic tree alignment, on the other hand, aims to

minimize dissimilarity along the edges of a given tree. The progressive alignment

strategy [12] has been adapted into most software packages for alignment, the most

popular being ClustalW [13] because of its speed and accuracy.

Various programs have implemented improvements around the basic progressive

alignment. ClustalW implements ideas such as sequence weighting and automatic gap

penalties that are designed to improve the alignment based on biologically sound

assumptions [13]. ClustalW uses neighbor joining for a guide-tree. MUSCLE [4] is a

three-stage program each of which are studied separately for this report. Stage I is the

basic progressive alignment on a UPGMA guide-tree. Stage II is Gotoh's iterative

heuristic [18] but without SP optimization, i.e., compute alignment on a UPGMA tree,

compute UPGMA tree on alignment, recompute alignment on UPGMA tree, and iterate
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until the UPGMA tree does not change. Stage III is a SP optimization on the alignment

from stage II.

2.2.2 Simulation

Simulations are commonly used to evaluate phylogenetic accuracy since there is no way

of knowing "true" evolutionary trees [20]. The ROSE software package [21] implements

the HKY85 [22] model of DNA sequence evolution, but also allows for insertions and

deletions. Given the true tree (which is known since the data is simulated) and an

estimated tree, the Robinson-Foulds distance [23] can be used to measure accuracy. This

is a standard measure of evaluating tree accuracy in phylogenetics and measures the

number of false positive and false negative clades in the estimated tree. The error rate is

presented as percentages (between 0 and 100).

2.3 Improved Progressive Alignment

Gotoh [18] introduced a doubly nested randomized iterative method that iterated between

progressive alignments and distance-based UPGMA phylogenies. In this work, Gotoh's

approach is modified by alternating between MP trees and progressive alignments. The

output is the pair of alignment and tree with the best MP score. This heuristic is

implemented using the MUSCLE program (for computing the progressive alignment) and

PAUP* (for computing MP trees) and is called MUSCLE-PARS (see Figure 2.l).

MUSCLE-PARS is specifically designed to find alignments and phylogenies that

optimize the MP score, and thus is likely to be more appropriate for phylogeny-centric

applications, i.e., predicting functional sites with phylogenetic motifs [24]. MUSCLE-

PARS strictly follows the order of the tree in aligning sequences. PAUP* implements

various hill-climbing heuristics for solving MP. The MP heuristic that is used by
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MUSCLE-PARS builds a starting tree by adding sequences in the order of their closeness

(see [14] for more details). Once the tree is constructed, a TBR-based standard hill-

climbing search is applied to it. The initial starting tree for the search can also be built by

adding sequences in a random order instead of their closeness; this produces a

randomized search heuristic since each time the search starts from a different tree. The

former deterministic search for MP is used so that MUSCLE-PARS is also deterministic.

A thorough study of the randomized version of MUSCLE-PARS is left to a later study.

Input: unaligned sequences, initial guide-tree T , number of iterations n

Output: alignment A * and guide-tree T *

Algorithm:

(1) Set best score bs to infinity.

(2) Compute MUSCLE progressive alignment A on guide-tree T

(3) Compute MP score MP(T ,A) of tree T on alignment A .

(4) If MP(T ,A) < bs then

set bs = MP(T ,A), A * = A , and T * =T

(5) Compute MP tree T on A using PAUP*.

(6) If number of iterations not done then

go to 2

else

return A * and T * .

Figure 2.1 Description of MUSCLE-PARS.
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MUSCLE-PARS differs from Gotoh's original implementation in several key

ways. First, the original method of Gotoh [18] used UPGMA trees instead of MP.

Second, Gotoh's method performed SP optimization on the progressive alignment before

recomputing a phylogeny on it. MUSCLE-PARS does not perform this additional

optimization step because it does not necessarily improve accuracy and extends running

time (data not shown here). Third, the stopping criterion for Gotoh's method is when the

UPGMA tree does not change; Gotoh's method usually reaches convergence in a few

iterations. MUSCLE-PARS uses parsimony trees (that may be deterministic or

randomized), which provides no guarantee of convergence; alignments and trees could

get worse or improve with iterations. If the same alignment is obtained in two

consecutive iterations, the MP trees (which are used for constructing the alignment of the

following iteration) may not be the same if randomized heuristics are used. And fourth,

the alignment outputted from Gotoh [18] is the one from the most recent iteration.

MUSCLE-PARS outputs the alignment and tree with the best MP score over all the

iterations.

2.4 Experimental Design

This dissertation work compares ClustalW, and MUSCLE in its three different stages to

two variants of MUSCLE-PARS using default scoring matrices and gap penalties. The

scoring matrices and gap penalties of the MUSCLE variants and MUSCLE-PARS are

exactly the same; the only difference is in the guide-tree iterations. The abbreviation

MUSCLE-PROG refers to stage I of MUSCLE, MUSCLE-UPGMA refers to stage II,

and MUSCLE refers to the final stage III alignment. Additionally, this work presents two

variants of MUSCLE-PARS. In the first, which is called MUSCLE-PARS, the initial

guide-tree is the UPGMA one constructed on pairwise alignment distances. In the second
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one, which is called MUSCLE-PARS2, the initial guide-tree is the one used in the last

iteration of MUSCLE-UPGMA. MP phylogenies are constructed on all the alignments

(on each simulated dataset) using a more thorough TBR search heuristic than the basic

one used in MUSCLE-PARS (available upon request). Since PAUP* was used in

MUSCLE-PARS, it is used for constructing MP phylogenies on all alignments.

Simulation parameters are selected such that the MP tree on the true alignment has, at

most, 15% error. Birth-death model trees produced using the r8s software package [25]

are used. Birth-death trees produced by r8s are scaled to be ultrametric by default, which

means that the evolutionary distance from the root to each leaf is the same. Biological

trees on real data are not necessarily ultrametric; therefore, to deviate the tree from

ultrametricity each edge length is randomly multiplied by a deviation factor as described

in [26]. A deviation of 1 means no deviation, 2 means small, and 4 is moderate deviation.

The edge lengths of each tree are multiplied by scaling factors of 16, 32, and 64 to

produce different levels of evolutionary rates. For each setting of deviation and scale, this

effort generated 20 model trees of sizes 100, 200, and 400 taxa. Thus, producing a total of

360 different model trees.

For each model tree, DNA sequences are generated using ROSE under the

HKY85 [22] model with transition/transversion ratio set to 2. This research effort studies

two sequence lengths used at the root, 500 and 1000, and examines two different indel

probabilities of 0.00005 and 0.0005 (see [21] for more details). On each of the 360 model

trees, DNA sequences were evolved for each setting of sequence length and indel

probability; thus, producing a total of l,440 simulated datasets.
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2.5 Experimental Results

For each set of simulated unaligned sequences, ClustalW, MUSCLE (all three stages),

and MUSCLE-PARS (both variants) alignments are computed. Subsequently, MP trees

are constructed using a thorough TBR search heuristic. The accuracy of each phylogeny,

computed using the RF distance, is compared against the true tree. The average error rate

for each parametric setting is reported in tables A.1 and A.2. The improvement, in terms

of percentage differences, is also provided for the best scoring alignment. The

improvement in MUSCLE-PARS 1 and MUSCLE-PARS2 error rates over the best error

rate of the other methods are also reported. While the average gain is modest, the overall

results clearly indicate that improvement when using the two MUSCLE-PARS methods

is a robust result. The results follow some of the general trends one would expect to see

in simulation studies. For example, the error rates decrease as the sequence length

increases. Conversely, error rates tend to increase as the evolutionary rates, number of

taxa, deviations, or indel probabilities increases, all of which are known to make the

phylogeny estimation problem harder. However, trees at evolutionary rates of 32 fare

better than 16. Overall MUSCLE-PARSl and MUSCLE-PARS2 have the lowest error

rates. At sequence lengths of 1000 and low indel probability of 0.00005 the improvement

using MUSCLE-PARS is the smallest (especially at 100 taxa), if any at all. A closer look

is taken at the part of the parameter space where the improvement is over l% in

topological accuracy.

There are nine parametric settings at which MUSCLE-PARS has an error rate

lower than l% than the other methods. Out of those seven are for sequence lengths of

500. Thus, MUSCLE-PARS can be most effective when sequence lengths are short

relative to the number of sequences. On six of these settings the indel probability is

0.0005 (the higher value) thus showing that MUSCLE-PARS can be useful for data that
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has undergone a modest number of insertions and deletions. The largest improvement is

of 2.2% for 200 sequences, 500 sequence length, 64 scaling, 4 deviation, and 0.0005

indel probability, which can be considered a hard setting. A curious observation is that

MUSCLE has high error rates, especially when considering high evolutionary rates and

indel probabilities. In fact, the error rates sometimes go above 25%, which is much

higher than that of the other methods. Recall that MUSCLE computes a SP optimization

in stage III after the progressive alignments are done. It is conjectured that this

significantly decreases the quality of the alignment for phylogeny reconstruction.

However, for other tasks, such as aligning structurally conserved regions, it may be more

appropriate as seen from performance on BAliBASE [5] structural alignment

benchmarks. When considering protein data, this anti-correlation between phylogeny

reliability (using bootstraps) and BAliBASE accuracy was also noticed. These

observations underscore the reality that no single assessment strategy can be considered

perfect when evaluating alignments and phylogenies.

2.6 Conclusions

The above-mentioned experiments on data show that MUSCLE-PARS I and MUSCLE-

PARS2 produce phylogenies of better accuracy than those on ClustalW, MUSCLE-

PROG, MUSCLE-UPGMA, and MUSCLE. Furthermore, MUSCLE-PARS is efficient in

the running time required to produce an alignment and phylogeny (data not shown here),

which means it can be used to analyze datasets containing even hundreds to thousands of

sequences. MUSCLE-PARS can be expected to quickly produce very good starting trees

for expensive simultaneous alignment and phylogeny reconstruction local search

strategies, such as those conducted in Poy [27] and statistical alignment packages [28].
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MUSCLE-PARS can easily be implemented using existing available software packages

with a simple Perl script.



CHAPTER 3

RNA HOMOLOGY SEARCH USING PARTITION FUNCTION

POSTERIOR PROBABILITIES

3.1 Introduction

The importance of RNA within cellular machinery and regulation is well established [35,

36]. Consequently, a proper understanding of RNA structure and function is vital to a

more complete understanding of cellular processes. It is conjectured that the human

genome contains several thousand yet undiscovered ncRNAs that play critical roles

throughout the cell. Profile-sequence and structure-sequence methods, such as HMMER

[37] and INFERNAL [38], are commonly used to identify RNA homologs within much

larger genomic segments. However, the requirement of a reliable family alignment and/or

structure diminishes the utility of these approaches. This can happen especially when

searching for evolutionary distant homologs or the query RNA sequence is surrounded by

unalignable flanking nucleotides. In fact, homologous sequences below 60% pairwise

identity are generally too difficult for current methods [39]. Simple pairwise alignment

approaches are commonly used when sufficient familial data is not available. The

SSEARCH program [40], a popular implementation of the Smith-Waterman algorithm, is

frequently used for finding RNA homologs in genomic sequences. Moreover, it is a

commonly used benchmark that new homology search methods are compared against

[41-44]. The NCBI BLAST program [45], which is also a local alignment algorithm, is

faster than SSEARCH but much less sensitive.

SSEARCH and BLAST both search for optimal local alignments, with BLAST

sacrificing sensitivity for speed. Conversely, the maximal expected accuracy approach is

based on suboptimal alignments. Here, sequences are aligned using posterior/match

18
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probabilities within pairwise alignments. These probabilities can be computed using

partition function dynamic programming matrices, introduced by Miyazawa [46] and

later studied by others [47, 10], or pairwise HMMs as done in ProbconsRNA [9].

Partition function posterior probabilities are analogous to nucleotide-nucleotide

frequency counts estimated from an ensemble of suboptimal alignments (see ref. [14] for

more details). The recently implemented partition function approach within the program

Probalign [10] outperforms other leading multiple aligners (Probcons [9], MAFFT [8],

and MUSCLE [4, 34]) on three different protein alignment benchmarks (BAliBASE [31],

HOMSTRAD [32], and OXBENCH [33]).

While Probalign was designed for global alignment, its performance on datasets

of heterogeneous length [10] suggests an affinity for local alignment. In this work, a

slightly modified Probalign version attuned to local alignment search is implemented. Its

performance is studied on the pairwise RNA-genome homology search problem for

divergent sequences and when the query is flanked by genomic nucleotides. The above-

mentioned implementation of Probalign is compared to SSEARCH, BLAST, ClustalW

[13], and HMMER (with single sequence profiles). ClustalW (with zero end gaps) is

included in this study due its wide usage in solving different alignment problems. In

addition, ClustalW serves as an analogous example of a global multiple alignment

method applied to this problem. In this work, a benchmark of divergent RNA-genomic

alignments using real DNA and RNA sequences was constructed from the EMBL [48]

and RFAM [49] databases, respectively. In order to maintain a reasonable level of

difficulty and tractability for the experiments, each genomic sequence in this benchmark

is at least 5K and at most 16K nucleotides in length. For added difficulty and to simulate

practical conditions where exact 5' and 3' ends of ncRNA are unknown, real genomic

flanks of size 50, 100, and 150 nucleotides are added to the query RNA of each dataset.
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INFERNAL was specifically omitted from this investigation for several reasons.

First, and most importantly, (as discussed above) the utility of profile-sequence and

structure-sequence alignment methods is limited by experimental data. At large

evolutionary distances and with unalignable genomic flanks surrounding the query,

which is the particular focus of this study, obtaining reliable RNA family alignments is

considerably difficult. Second, the cmsearch program of the INFERNAL suite is, in part,

used for constructing RFAM families from which the benchmark is constructed.

Additional sequences found using INFERNAL were added to the RFAM seed alignments

[50]. Finally, cmsearch is used in intermediary steps of producing the benchmark

(explained in the Methods Section below). In light of all these facts, it would be

inappropriate to include INFERNAL in the experiments. HMMER is included in the

experiments using both global-local and local-local alignment models (i.e., -g and -f, -s

options); however, the HMMER model is constructed using single sequence queries

(without flanks) from the benchmark. In this way, there is a reasonable comparison to the

other sequence-based programs in the test set. In the remainder of the report this setting

of the program is referred to as just HMMER.

In this study, Probalign is found to have overall highest accuracies on the full

benchmark. It leads by 10% accuracy over SSEARCH (the next best method) on 5 out of

22 families. On datasets restricted to maximum of 30% sequence identity, Probalign's

overall median error is 71.2% vs. 83.4% for SSEARCH (the next best method). This

difference has Friedman rank test P-value less than 0.05. Furthermore, on these datasets,

Probalign leads SSEARCH by at least 10% on five families whereas SSEARCH leads

Probalign by the same margin on two families out of a total of fourteen. This report also

demonstrates that the Probalign mean posterior probability, compared to the normalized

SSEARCH Z-score, is a better discriminator of alignment quality. The Probalign mean
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posterior probability has Receiver Operator Characteristic (ROC) area under curve of

0.834 compared to 0.806 of the normalized SSEARCH Z-score.

Note that the performance of RNA homology search programs was examined

previously by Freyhult et al. [41]. Their benchmark and goals, however, were

considerably different than those of this study. They studied RNA homology searches

within RFAM RNA sequence databases without genomic flanks, and considered only a

single genomic search example. This endeavor is specifically interested in the

performance of programs for finding low sequence similarity RNA homology (with

flanks) in long genomic sequences.

3.2 Results

First, the mean error was computed for each method within each RNA family by

averaging over all pairwise alignment scores belonging to that family. Then, the overall

error of each method was computed as the average score across all families.

Full Benchmark with Query Flanks

The full benchmark containing query RNAs with flanks constitute 13,716 datasets.

HMMER is excluded when unalignable flanks are present since these will only confound

the model. Table 3.1 lists the overall mean and median error of all methods on the full

benchmark. Probalign's improvement is statistically significant lowest on datasets

restricted to max 30% sequence identity. On these datasets it leads SSEARCH (the next

best method) by 6.5% in mean error and 11.2% in median error.
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Table 3.1 Mean and Median Percent Error for All Methods on the Full Benchmark
(13,716 Datasets) Including Query RNAs with Flanks of Size 50, 100, and 150

Mean and median error Probalign SSEARCH BLAST ClustalW
Complete benchmark 35.3130.7 38.7 1 33.2 41.0 134.0 47.6 1503

Datasets with pairwise sequence identity
at most 30% 66.51 71.2* 73.0I 83.4 75.9 1 85.3 82.9 1 85.0

Note: BLAST does not return an alignment in 425 datasets and hence they are omitted from the
calculations. HMMER is not shown since queries with unalignable flanks cannot be used to produce a
reliable model. There are 14 families that contain datasets with at most 30% sequence identity. Probalign
has overall lowest mean and median error. Bold indicates the best performance; the difference is larger on
datasets with low sequence identity and significant with P-value < 0.05 (indicated by *).

Table 3.2 lists the error rates of Probalign and the next best method, SSEARCH,

on each RFAM family. Probalign leads by 10% on a total of five families, namely T-box,

Intron group I, signal recognition particle (eukaryotic), transfer RNA, and elenocysteine

insertion sequence. The maximum improvement by SSEARCH over Probalign is on the

U4 spliceosomal RNA family by 3.l%. Column two of the table lists the Probalign and

SSEARCH error on datasets restricted to maximum 30% sequence identity. There are

fourteen families containing datasets that satisfy this criterion. Out of the total fourteen,

Probalign leads by at least 10% on five families whereas SSEARCH leads Probalign by

at least same margin on two families.

Table 3.3 looks at the effect of increasing query flank size on the accuracy of all

methods. As expected, all methods yield higher error as the query RNA flank size

increases. However, Probalign still has the statistically significantly lowest error (P-value

< 0.05).
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Table 3.2 Mean Probalign and SSEARCH Percent Error Shown for Each RFAM Family
in the Full Benchmark and for Datasets with Maximum Pairwise Sequence Identity of
30%

I' FAM Family Complete benchmark dataset Subset with pairwise identity

SSEARCH

up to 30%

DifferenceProbalign SSEARCH Difference Probalign

5S_rRNA 22.7 20.7 -2.0 Zero datasets

UI (4) 15.0 15.6 0.6 87.3 100.0 12.7

RNA (256) 62.0 74.4 12.3 69.8 84.8 15.0

RNaseP_bact_a 34.0 33.0 -1,0 Zero datasets

RNaseP_bact_b 29.0 29.1 -0.1

U3 41.3 38.8 -2.5

U4 (8) 25.3 22.2 -3.1 52.8 11 -41.8

SRP_euk_arch (132) 43.8 56.4 12.6 62.1 78.0 15.9

mRNA (180) 32.0 36.3 4.3 50.5 59,8 9.4

Intron_gpl (4) 67.4 80.1 12.7 100.0 100.0 0.0

SECIS (208) 82.3 93.9 11.5 87.9 100.0 12.1

I RE (216) 44.4 48.7 4.2 88.7 96.5 7.7

HI 29.5 30.1 0.6 Zero datasets

Hammerhead_l 43.7 46.0 2.3

Purine (4) 16.2 16,4 0.2 17.4 1.8 -15.6

Lysine (16) 48.0 57.3 9.3 73.1 100.0 26.9

SRP_bact (80) 28.5 25.7 -2.8 62.6 65.0 2.3

SSU_rRNA 5 (4) 30.5 32.4 1.9 39 61 22

T-box 27.4 46.0 18.6 Zero datasets

.g1mS	 4 23.4 21.0 -2.4 73.8 78.4 4.6

RNaseP_arch (8) 32.4 34.0 1.6 87 100,0 13

IRES_Cripavirus 5.7 3.9 -1.8 Zero datasets

Note: Unlike Table 3.1 above, where some datasets are omitted due to BLAST, all datasets of the
benchmark are considered here. Difference is always calculated as the SSEARCH error minus Probalign
error, meaning positive numbers indicates Probalign outperforms SSEARCH. Shown in parenthesis is the
number of datasets in each family with maximum pairwise sequence identity of 30% (the same query RNA
but with different flank sizes is considered a separate dataset).
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Table 3.3 Mean Percent Error as a Function of Query RNA Flank Size

Query RNA flank size Probalign SSEARCH BLAST ClustalW

50 35.4* 39.3 41,9 48.5

100 36.8* 40.8 44.5 51.4

150 38.5* 43.3 45.9 53.2

Note: For each flank size there are 3,429 datasets (see Methods Section for description of benchmark). As
in Table 3.1 about 105 datasets per flank size are omitted on which BLAST does not return any output.
Bold indicates the best performance and * indicates Friedman rank test P-value < 0.05.

Benchmark Without Query Flanks

In order to compare the programs against HMMER, those datasets with no query RNA

flanks (a total of 3,429) are separated from the benchmark. Each of these query RNAs

can be used to specify a model in HMMER since misleading flanks are now absent. From

Table 3.4 it can be seen that HMMER does not perform very well with single sequence

profiles, which is not surprising as using it in this way (single sequence vs. multiple

sequence profiles) clearly goes against its intended usage. Probalign has the lowest mean

and median error on datasets restricted to maximum pairwise identity of 30%, leading by

at least 18% over SSEARCH, the next best method.

Table 3.4 Mean and Median Percent Error for All Methods on the Benchmark without
Query RNA Flanks (3,429 Datasets)

Mean and median error Probalign SSEARCH BLAST ClustalW HMMER

Complete benchmark 30.8 130.4 31,4122.1 32.0 120.9 37.9 1 38.5 44.9 1 44.7

Datasets with pairwise sequence

identity atmost 30% (14) 62.4 I 59.5 70.8 194.5 78.4 1 100.0 74.5 1 97.5 96.7 1 100.0

Note: Probalign has lowest mean and median error on low sequence identity datasets.
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Discriminating True from False Alignments

In order for the evaluated methods to be of practical utility in ncRNA searches,

alignments found when there is no target-query match (a common real-world scenario),

should be of poorer quality than the alignments above where target-query matches were

always present. A false dataset of query-target pairs where the query and target were

randomly selected from distinct RFAM families (see the Alignment Quality Measures

Sub-Section under the Methods Section) was generated in order to assess the

discriminative ability of Probalign and SSEARCH (the two best scoring methods above).

The size of the false dataset is 13,716, exactly the same as the real dataset used above.

Concatenating the real and false datasets results in 27,432 target-query pairs that were

subsequently aligned using both methods. An alignment on a false positive dataset or an

alignment with 100% error on the benchmark is classified as a false positive. An

alignment on the benchmark with less than 100% error is classified as a true positive. A

good discriminator would have a high value on alignments with high accuracy and low

value on alignments with 100% error on benchmark datasets or on the false positive

dataset. In this case, this research endeavor is interested in the quality of the Probalign

mean column posterior probability and the SSEARCH normalized Z-score as alignment

discriminators.

In order to evaluate a discriminator, an adhoc threshold needs to set. For example,

one may choose to classify all alignments above 0.5 Probalign mean column posterior

probability to be correct hits and incorrect otherwise. In order to eliminate the

arbitrariness of such a definition, Receiver Operating Characteristic (ROC) analysis is

employed. Along the ROC curve, true and false positive prediction values are plotted for

a series of less stringent thresholds. The further the ROC curve is to the left, the better the

method is; the diagonal indicates a method based on random guesses. As can be clearly
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seen in Figure 3.l, both methods perform significantly better than random. However, the

analysis also clearly indicates that Probalign is better able to discriminate true from false

target-query pairs. Probalign has an area under curve of 0.834 whereas SSEARCH has

one of 0.806. The improved performance of Probalign is most striking at false positive

rates between 2 and 40%.

Computational Running Time and Memory Requirements

The current Probalign implementation is not as sophisticated as its SSEARCH

counterpart, and therefore is much slower in comparison to the SSEARCH time.

However, in practice it never takes more than a few seconds on any of the datasets. The

average Probalign running time on the benchmark is 5.4 seconds compared to 0.04

seconds of SSEARCH, 0.5 seconds of ClustalW, 0.003 seconds of BLAST, and 0.14

seconds of HMMER (hmmsearch). These running times were computed on 2.4 GHz

AMD Opteron 64 bit machines.

3.3 Discussion

A standard technique for discovering new RNAs, in the absence of queries, is to align

genomic fragments and search the alignment for significant structural conservation.

QRNA [51] RNAz [52] and MSARI [53] are some well-known programs frequently used

for this purpose. Their performance, of course depends upon the underlying sequence

alignments. This work suggests that Probalign genomic alignments may align hidden (but

related) RNA better than standard methods when given two genomic sequences. As a

result it could produce more informative alignments for RNA detection programs such as

the ones listed above.
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Several improvements to Probalign are currently underway. A full Probalign-local

implementation would include a Smith-Waterman implementation of posterior

probability local alignment, as done in the Proda [54] program. It is expected that such an

implementation will produce better mean posterior probabilities estimates of the

alignment quality since it would exclude unrelated genomic flanks.

In big-0 notation, Probalign's worst-case running time and memory requirements

for pairwise alignment is O(mn) where m and n are the lengths of the input sequences.

Probalign's memory requirements can be improved to O(mn1/2) with a l.5 factor

slowdown using memory reduction techniques used for HMM-based alignment programs

[55]. This is part of planned future work.

Finally, it remains to be seen if Probalign partition function posterior probabilities

demonstrate the same level of improvement seen here for the profile-sequence alignment

and profile-profile alignment problems. The utility of profiles, however, is limited when

unknown and unalignable genomic flanks are present or the family alignment is not rich

or accurate enough. In that case, the current Probalign implementation offers a viable

solution as demonstrated.

3.4 Conclusion

This report represents the first examination of the Probalign alignment algorithm to

search for RNA homologs within much larger genomic segments using partition function

posterior probabilities. It shows that the method does much better than the widely used

SSEARCH and BLAST programs. Furthermore, the Probalign mean posterior probability

(which has previously been discussed as a possible metric to assess alignment quality, but
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never studied carefully) has been shown to be a better indicator of alignment quality than

the standard SSEARCH Z-score.

3.5 Methods

Benchmark

This work began by extracting all 26 RFAM [49] seed alignments with known published

RNA secondary structures and average pairwise sequence identity of at most 60%.

During the benchmark construction process four families fail to meet length and

uniqueness criteria (see below); this subsequently leaves us with 22 families in the end.

At the time of the writing of this report, RFAM version 7.0 was the most recent release.

Sequence identity is measured only in regions of known secondary structure, which are

generally more reliably aligned than the rest. The 60% threshold has previously been

identified as a cutoff for hard RNA alignment cases [39] and so this endeavor focuses

specifically on this region. The following three main steps are used to construct the

benchmark from the initial 26 families:

1. Pairwise RNA-RNA alignments: For each of the initial 26 RFAM seed multiple
alignments, a maximum of 350 pairwise alignments are randomly selected. In
families where there are less than 350 total pairs, all are considered.

2. Construction of genomic flanks: Every RNA sequence in RFAM seed is cross-linked
to a genomic sequence in EMBL [32]. For each pairwise alignment produced above,
one of the RNA sequences is randomly selected and real genomic flanks from EMBL
(version r88) are attached to each end of the RNA. Each genomic flank is truncated to
7500 base pairs on either end. Since the largest RNA sequence is at most 1000
nucleotides long, the maximum size of each genomic sequence is 16,000. This gives
RNA genome alignments where the RNA sequence can be considered as a query and
the aligned homologous RNA is the target "hidden" in the genome. In order to make
the dataset challenging enough, datasets where the genomic sequence is shorter than
5000 nucleotides are excluded.

3. Alignment uniqueness: The attached genomic flanks may contain additional related
RNAs of the same family as the query and the target (to which the flanks were
attached). This means that two different correct alignments are possible. To keep
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things simple, such datasets are excluded and it is ensured that each query-target
alignment is unique. For each dataset, a profile was built from the RFAM family
alignment annotated with consensus secondary structure using the cmbuild program
of the INFERNAL suite. The cmsearch program of the INFERNAL suite was then
run on the genomic sequence of the dataset and it was excluded entirely from the
benchmark if more than one hit above a bit score of 30 was reported.

4. The pruning process yielded a total of 3,429 pairwise alignments distributed
(unequally) among 22 RNA families. As mentioned earlier, all the datasets in four
families failed to meet the length and uniqueness criteria just described.
Subsequently, in the end, 22 families are left. The 22 families and their characteristics
can be found in Appendix B.

Adding Genomic Flanks to Query RNA

To simulate practical conditions where the exact 5' and 3' ends of ncRNAs are unknown,

each dataset in the benchmark was taken and three similar versions were produced.

However, in each of the three versions, real 5' and 3' genomic flanks of size 50, 100, and

150 nucleotides were added to the query RNA of each dataset. By cross-referencing each

RNA sequence to the original genomic version in EMBL it was possible to obtain proper

real genomic flanks and hence simulating artificial ones was not needed. Subsequently,

the size of the benchmark increased four-fold from 3,429 to 13,716. Gaps were removed

from each alignment. The flanked query and target genomic sequences were used as input

to each program.

The full benchmark is available online [56]. Also available at the website are the

RFAM family alignments from which the benchmark was created, training datasets (see

below), and false positive datasets used for discrimination tests (described below).
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3.6 Alignment Programs and Parameters

Training Data

This report used a subset of the benchmark with query RNA flanks of size 100

nucleotides for training the program parameters. For each of the 22 divergent families, 25

random datasets were selected. If the family contained a total of less than 25 pairwise

alignments, all were included in the training set. The final training set contained 498

pairwise alignments and can be found on the website for this report [56].

Probalign

A modified version of the Probalign beta 1.0 program more attuned to local alignment

was used. Two modifications were made to the partition function matrices. They follow

from analogous standard dynamic programming recursions for local alignment and can

also be found in Muckstein et. al. [47]. First, 1 is added in the calculation of the match

partition function matrix: ZM i,j  = (l + ZM i-1, j-1 + ZE i-1, j-1 + ZF i-1, j-1)e s(xi, yi)/T . Second, the total

partition function value is set to Z = 1+Σi,j ZMi,j.   The initial values of the Z-matrices also

need to be set appropriately in line with the two changes. However, since zero end-gaps

are used, this is automatically set. A more detailed description of the partition function

matrices and notation is given in Appendix D. Probalign returns one alignment of the

complete query against the genomic sequence. However, a Perl script [56] is provided to

produce multiple alignments of significant mean posterior probability. This script

produces multiple alignments of the query against the genomic sequence by removing the

aligned portion of the genome to the query and realigning the remainder to the query until

the mean posterior probability is zero. In other words, all hits above zero probability are

reported. This parameter can easily be modified in the script. Only the top hit in the
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experiments are evaluated. The S SEARCH +5/-4 scoring matrix is used for Probalign.

The gap open and gap extension penalties as well as the thermodynamic temperature are

optimized on the training benchmark. The modified Probalign program is available as

standalone code [56].

BLAST

The bl2seq program (current version 2.2.16) of the NCBI BLAST suite is used in the

experiments. In the terminology of this dissertation work, BLAST represents the bl2seq

program of the suite. BLAST returns local alignments that may not include the entire

query. In order to measure the error correctly, the entire query is required to be aligned to

the genomic sequence (see Prediction Error Sub-section below). This is accomplished by

extending the local alignment in either direction until the full query is aligned to the

genomic sequence. Only the highest E-value BLAST hit is evaluated. The performance of

the second hit outputted on each dataset was tested and it was found to have a much

worse error than the first. This is expected since each pairwise alignment in the

benchmark is unique. BLAST gap parameters were optimized using both its default

scoring matrix (+3/-1) and +5/-4 (the same one as used in SSEARCH). In order to avoid

excessive scenarios where BLAST does not return an alignment, the minimum word size

is set to 4. The +5/-4 matrix is used for BLAST since it performs better than the default

(both with optimized parameters) on the training benchmark.

SSEARCH

SSEARCH release version 3.4t26 is used in the experiments, SSEARCH is a local

alignment program and may not contain the entire query aligned to the genome

(necessary for correct error computation). This problem can be fixed using the same

BLAST treatment described above. With the -a option, however, S SEARCH returns



32

alignments of both query and genome sequence in their entirety. In this case the

accuracies are found to match those calculated otherwise, which is by fixing the

alignments if necessary. Thus, without loss of any accuracy SSEARCH is run with -a

enabled. The SSEARCH gap open and gap extension penalty parameters are optimized

on the training benchmark. Like BLAST, the second SSEARCH hit was found to be

significantly much worse off than the first one.

ClustalW

ClustalW version l.83 is used for the experiments. ClustalW, like Probalign, returns one

global alignment of the complete query against the genomic sequence. The terminal gap

(end-gap) penalties are set to zero. ClustalW gap parameters are optimized on the default

ClustalW scoring matrix of +10/-9 and the SSEARCH +5/-4 scoring matrix. However,

the ClustalW default matrix optimal gap parameters perform better than the optimized

+5/-4 matrix.

HMMER

HMMER version 2.3.2 is used in the experiments. This was the current version at the

time of writing this report. HMMER is designed for profile-based search that requires

family alignments. Since the goal of this report is to study query RNA genomic search,

particularly for divergent and hard cases where family alignments are not reliable, the

single sequence RNA query is used for constructing the HMMER model. The hmmbuild

program of the HMMER suite is used to build local alignment models (with the -f and -s

options) and global alignment models (with the -g option). The hmmsearch program is

then used on the training benchmark and on each of the three models to search the

genomic sequence for homologs of the query RNA. The local alignment -f and -s models

are found to be equally best performing. -f is used in the experiments. Like BLAST and
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SSEARCH, HMMER local alignments may not contain the full query aligned to the

genome. Therefore, it is fixed in the same manner described above in the BLAST option.

Table 3.5 provides all parameters used in the four non-model based methods. The

HMMER parameters are estimated from the single sequence profile specific to each

dataset and therefore are not included in Table 3.5. The exact command line options used

for running the programs are listed in Appendix C.

Table 3.5 Description of Optimized Parameters Derived for Each Method used Herein

Method Scoring matrix Gap opening penalty Gap extension penalty

Probalign +5/-4 (T = 7) 32 2

SSEARCH +5/-4 10 4

ClustalW +10/-9 13 6

BLAST +5/-4 8 6

3.7 Alignment Quality Measures

Probalign Mean Posterior Probability

The Probalign mean posterior probability is defined by Equation 3.l. P(x, ~ yj ) is the

posterior probability of the	 nucleotide of sequence x aligning to the jth nucleotide of

sequence y . More details about how this is computed and the Probalign method in

general can be found in Appendices B, C, and D.
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SSEARCH Normalized Z-score

The SSEARCH Z-score and E-value are standard statistical measures of alignment

reliability [57, 58]. The Z-score can be compared across different sequence pairs [59].

The normalized Z-score is used as a predictor of alignment quality. The normalized Z-

score is the standard Z-score divided by the number of aligned nucleotides in the local

alignment. This is found to produce a much better ROC analysis than the raw Z-score and

the normalized and raw E-value.

Figure 3.1 ROC curves for Probalign mean posterior probability and SSEARCH
normalized Z-score. To construct this curve, a set of false hits were added to the dataset
by replacing each genomic sequence in each dataset of the benchmark with a randomly
selected one from a benchmark dataset of a different RNA family. The ROC analysis
clearly demonstrates that Probalign is better able to discriminate true from false
alignments.

False Positive Datasets

A set of false positives were created in order to measure the prediction accuracy of the

above two measures. For each dataset in the benchmark, a false positive one is created by

replacing the genomic sequence with one selected from a different random dataset. Now,

each false positive dataset contains a query RNA and a genomic sequence containing a
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target RNA from a different family. It is expected that any alignment reliability measure

will have a low value on these datasets. These datasets are available online [56].

3.8 Measure of Accuracy and Statistical Significance

Prediction Error

The goal of this work is to find out how much of the target RNA (which lies in the

genomic sequence) is aligned to the query, excluding the query flanks. As described

above, for BLAST, SSEARCH, and HMMER, all of which return local alignments, the

query-genome alignment is extended in both directions until the entire query, but not its

flanks, is matched to the genomic sequence. This improves sequence coverage, reduces

the false negative rate, and also allows a fair comparison to Probalign and ClustalW, both

of which return global alignments of the entire sequences. For each method, the part of

the genomic sequence aligned to the query in its alignment is taken; the false positives

are measured as the number of nucleotides in this region that are not in the target RNA.

Similarly, the false negatives are measured as the number of nucleotides in the target

RNA that are not in the genomic region aligned to the query (in the method estimated

alignment). See Figure 3.2 for a visual description of the false positives and false

negatives. The false positive and false negatives are normalized by the size of the

genomic region aligned to the query in the computed alignment and the size of the target

RNA respectively. The normalized false positive and false negatives can now be

expressed as a percentage between 0 and 100. The error, also expressed as a percentage,

is measured as the average of the normalized false positive and false negative.



Figure 3.2 A cartoon of false positive and false negative situations for a query-target
alignment.

Statistical Significance

Statistically significant performance differences between the various alignment methods

are calculated using the Friedman rank test [60]. This is a standard measure used for

discriminating alignments in benchmarking studies [5, 34]. Roughly speaking, lower P-

values coincide with reduced likelihoods that the ranking differences are due to chance.

This report considers P-values below 0.05 (a standard cutoff in statistics) to be

statistically significant.

Correlation With True Hits and True Accuracy

A ROC analysis [61] is conducted to study how well the Probalign mean posterior

probability and the S SEARCH Z-score can predict the quality of the alignment. An ROC

curve plots the true positive rate (y-axis) against the false positive rate (x-axis). The area

under the curve is an indicator of overall accuracy of the classifier. All ROC area under

curve values are normalized to 1 with higher areas indicating higher accuracy. The

Probalign mean posterior probability and the SSEARCH normalized Z-scores are treated

as classifiers for a true or false hit.

36



CHAPTER 4

WEBSERVERS: EPROBALIGN AND PROBALIGN-LOCAL

As discussed earlier, Probalign computes maximal expected accuracy multiple sequence

alignments from partition function posterior probabilities. To date, Probalign is among

the very best scoring methods on the BAliBASE, HOMSTRAD and OXBENCH

benchmarks. eProbalign and Probalign-local, which are web/online implementations of

Probalign and Probalign-RNAgenome respectively, are described in the following

sections. The eProbalign web server doubles as an online platform for post-alignment

analysis. The core of the post-alignment functionality is the Probalign Alignment Viewer

applet, which provides users a convenient means to manipulate the alignments by

posterior probabilities. The Alignment Viewer can also be used to produce graphical and

text versions of the output. The eProbalign web server and underlying Probalign source

code is freely accessible at http://probalign.njit.edu . The Probalign-local web server is

available online at http://probalign.njitedu/local.

4.1 Introduction

Multiple sequence alignments are frequently employed for analyzing biomolecular

sequences. Their application spans a wide range of problems such as phylogeny

reconstruction, protein functional site detection, and protein and RNA structure

prediction [29]. The research literature is abundant with programs and benchmarks for

multiple sequence alignment, particularly for protein data. Traditionally, ClustalW [30] is

the most popular program used for multiple sequence alignment; while BAliBASE [31] is

likely the most commonly used benchmark of protein alignments. MAFFT, Probcons and

Probalign are recent alignment strategies that are among recent programs with the highest

37
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accuracies on BAliBASE and other common benchmarks (i.e., HOMSTRAD [32] and

OXBENCH [33]). Both Probcons [9] and Probalign [10] compute maximal expected

accuracy alignments using posterior probabilities.

In Probcons, posterior probabilities are derived using an HMM whose parameters

that have been estimated via supervised learning on BAliBASE unaligned sequences.

Probalign, which is largely based on the Probcons scheme, derives the posterior

probabilities from the input data by implicitly examining suboptimal (sum-of-pair)

alignments using the partition function methodology for alignments (see [10] for a full

description of the algorithm). Probalign alignments have been shown to have a

statistically significant improvement over Probcons, MAFFT [8] and MUSCLE [34] on

all three alignment benchmarks introduced above [10].

eProbalign is a web server that automatically computes Probalign alignments. It

also provides a convenient platform to visualize the alignment, generate images, and

manipulate the output by average column posterior probabilities. The average column

posterior probability (which is discussed further below) can be considered a measure of

column reliability where columns with higher scores are more likely to be correct and

perhaps biologically informative.

Probalign-local web-server is an online implementation of Probalign-

RNAgenome and has the same specifications as the Probalign-RNAgenome program

described in Chapter 3.

4.2 Input Parameters

eProbalign takes as input unaligned protein or nucleic acid sequences in FASTA format.

eProbalign checks the dataset to make sure that it conforms with IUPAC nucleotide and

amino acid one letter abbreviations. White space between residues/nucleotides in the
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sequences are stripped and the cleaned sequences are passed on to the queuing system.

The user can specify gap open, gap extension, and thermodynamic temperature

parameters on the eProbalign input page (Figure 4.l). The input page provides a brief

description of the parameters (help link) and links to the standalone Probalign code with

publication and datasets.

The three Probalign parameters on the input page are used for computing the

partition function dynamic programming matrices from which the posterior probabilities

are derived. This is the same as computing a set of (suboptimal) pairwise alignments (for

every pair of sequences in the input) and then estimating pairwise posterior probabilities

by simple counting. The thermo dynamic temperature controls the extent to which

suboptimal alignments are considered. For example, all possible suboptimal alignments

would be considered at infinite temperature, whereas only the single best would be used

at a temperature of zero. The affine gap parameters are used for the pairwise alignments.

Subsequently, Probalign computes the maximal expected accuracy alignment from the

posterior probabilities in the same way that Probcons does [9].

4.3 Output and Alignment Column Reliability

The eProbalign output provides three options for viewing and analyzing the alignment

(Figure 4.2). The alignment can be viewed in (i) FASTA text format, (ii) pdf graphical

format, and (iii) the Probalign Alignment Viewer (PAV) applet (Figure 4.4). Each

column of the alignment in the pdf file and in the applet is colored in a shade of red

according to the average column posterior probability. Bright red indicates probability

close to one whereas white indicates close to zero (see Figure 4.3 for an example on a

real BAliBASE dataset).
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The average column posterior probability is defined as the sum of posterior

probabilities of all pairwise residues in the column normalized by the number of

comparisons [9]. The top row of the alignment in the pdf and applet displays the average

column posterior probabilities multiplied by ten and floored to the lower integer (Figure

4.3). For example, a score of 1 indicates that the probability is between 0.l and 0.2.

The Probalign Alignment Viewer is a Java applet that provides basic

manipulation of the alignment. Basic Java and browser requirements to use the applet are

listed on the output page. With the applet the user can opt to view and save the alignment

with column posterior probabilities above any specified threshold. This has the benefit of

"cleaning up" the alignment by column posterior probabilities, which is unique to

eProbalign. The applet also displays posterior probabilities of all columns in a separate

window if desired (Figure 4.4) and provides options to switch between the gapped and

ungapped versions of the alignment.

Figure 4.1 eProbalign input page.
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Figure 4.2 eProbalign output page indicating results are done.

Figure 4.3 Probalign Alignment Viewer applet.
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Figure 4.4 Posterior probability of each column.

4.4 Server Implementation

eProbalign implements a first-in/first-out queuing system that receives requests for

Probalign alignments and processes them accordingly. At most, eProbalign will run two

Probalign jobs at once, and it will periodically check the queue for new requests.

Alignments that take longer than some defined time limit (10 hours at the time of writing

of this report) are stopped and the user is advised to download and run the standalone

version. This time limit will be increased as the server hardware is upgraded.

Probalign-local web server was implemented in CGI/Perl. Figures 4.5, 4.6 and 4.7

are snapshots of it.
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4.5 Scalability

Currently, at NJIT, eProbalign is installed on a dual processor 2.8GHz Intel Xeon

machine with 2GB RAM. With these settings, eProbalign can usually align datasets of up

to 20 sequences within one minute. Most BAliBASE 3.0 datasets from RV 11 and RVl2

also finish within one minute. eProbalign has also been tested on large datasets (in

number and length of sequences) from BAliBASE RV30 and RV40 classes. BB30029

and BB30008 from RV30 contain 98 and 36 sequences with lengths from 431 to 852 and

400 to 1155, respectively, and BB40002 from RV40 contains 55 sequences with lengths

ranging from 58 to 1502. When the server is idle, eProbalign finished in about 20 minutes

on BB30008, 55 minutes on BB30029, and 30 minutes on BB40002. Results may take

longer to finish when the server queue is full and multiple jobs are running

simultaneously. However, the effect of parallel jobs will diminish as the server moves to

a bigger machine in the near future.
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Figure 4.5 Probalign-local input page.
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Figure 4.6 Probalign-local intermediate page indicating that result is being computed.
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Figure 4.7 Probalign-local output page indicating that results are ready.



CHAPTER 5

A HYBRID SUPPORT VECTOR MACHINE STRATEGY FOR

RANKING SNPS IN GENOME-WIDE ASSOCIATION STUDIES

In genome wide association studies, the goal is to rank SNPs such that true associated

ones are placed at higher positions than false ones. The support vector machine (SVM)

provides a discriminative alternative to the widely used chi-square statistic. This chapter

describes a hybrid strategy that combines the chi-square statistic with the support vector

machine and studies its performance on simulated data and the Wellcome Trust Case

Control Consortium (WTCCC) studies. The following sections will show that this hybrid

strategy ranks causal SNPs in simulated data significantly higher than the chi-square test

and SVM alone. It will also be shown that this novel strategy ranks previously replicated

SNPs and associated regions (where applicable) of type 1 diabetes, rheumatoid arthritis,

and Crohn's disease higher than the chi-square, SVM, SVM-RFE, and the HMM SNP

rankings. In WTCCC studies with low signal strength such as type 2 diabetes there is no

advantage to this hybrid method. Finally, it will be shown that this hybrid strategy yields

an economical set of SNPs that predict disease risk more accurately than previously

replicated SNPs and top ranked SNPs in the chi-square and SVM ranking for type 1

diabetes and arthritis as measured by the area under curve of the widely used composite

odds ratio score.
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5.1 Introduction

Genome-wide association studies aim to identify genetic variants associated with disease,

drug response, and various phenotypes [97]. The standard method of ranking SNPs from

genome-wide association studies is the two or one degree of freedom chi-square test [74,

97]. This is referred to as the chi-square test from hereon (with two degrees of freedom).

Previous studies have examined the performance of the chi-square statistic in

ranking SNPs [81, 99], proposed techniques to improve the rankings under two-stage

designs [80] and to correct for overestimated significance values and apply the false

discovery rate control method thereafter [79, 102]. Other approaches instead of chi-

square have also been proposed for ranking SNPs. These include the trend test [81, 100],

Bayes factors [97], random forests [83, 85], a penalized maximum likelihood (ML)

approach [71], and a hidden Markov model (HMM) based method [96]. None of these

except for the HMM method have reported significant improvements over the chi-square

ranking of SNPs. In fact, Bayes factors rankings were been found very similar to chi-

square as reported by Wellcome Trust Case Control Consortium [97].

The support vector machine (SVM) provides a discriminative alternative to the

chi-square statistic for feature selection. Although originally designed for classification it

can also be used to rank features and has been studied extensively for the gene selection

problem [69]. The intuition behind ranking SNPs by an SVM lies in the SVM

discriminant vector w itself. The SVM classifies a given data point x by taking the dot

product of w with x plus a bias term. Since the larger entries of w have a greater

influence on the dot product than the smaller ones it is intuitive to rank the features by

their entries in w .

This does not mean that the entries of w are guaranteed to assign higher weights

to causal variables, as shown recently in simulation and theoretically [70, 93]. As a
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further validation of the results in Statnikov et al. [93], this work shows that the SVM if

applied to a genome-wide association study does not necessarily rank known replicate

SNPs or causal ones in simulated data at higher positions than the baseline chi-square.

Aside from the basic SVM discriminant there is the highly popular SVM

recursive feature elimination (RFE) algorithm [69] for feature selection. It computes the

SVM classifier, ranks features by their entries in the SVM discriminant, eliminates

features with the lowest entries, and reiterates this process until a desired number of

features remain. It has been studied extensively for ranking genes given their expression

data. For the problem of ranking SNPs, however, the subsequent sections will show that

it does not perform better than chi-square on real data.

In this study, a hybrid strategy that combines the support vector machine with the

chi-square statistic is proposed. The top r ranked SNPs in the chi-square ranking are

selected and re-ordered with the SVM discriminant with a specified value of C , the SVM

loss-complexity tradeoff parameter. The hybrid strategy automatically determines r and

C.

Before comparing the performance of the hybrid strategy on real data to other

methods, it is compared to the baseline chi-square and SVM separately on simulated data

where the causal allele is known. Genome-wide association studies are simulated with

same LD structure as the HapMap CEU genotypes, l,000 case and l,000 controls, and

.01 disease prevalence. Relative risks of 1.25, 1.5 and 2 with ten and 15 causal alleles and

several thousand non-causal SNPs are examined. For each setting of relative risk and

number of causal alleles, 50 studies are generated. This work finds that causal alleles are

placed significantly higher in the hybrid SNP rankings compared to the one given by chi-

square and SVM. Furthermore, the improvements are statistically significant on datasets

with 15 causal alleles and relative risk of 2 with ten causal alleles.
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This work then compares the rankings of previously replicated SNPs of type 1

diabetes, arthritis, Crohn's disease, and type 2 diabetes in the SNP orderings of Wellcome

Trust Case Control Consortium (WTCCC) studies given by the hybrid strategy, chi-

square, SVM, SVM-RFE, and the I-IMM. A recent publication [66] containing replicated

SNPs for the four diseases as well as a curated table of associated regions at the Type 1

Diabetes Consortium [63, 72] was referred to for obtaining type 1 diabetes associated

regions. The hybrid strategy ranks most replicated SNPs higher than all other methods on

all diseases except for type 2 diabetes, which has the weakest signal of all four. It also

ranks SNPs from known type 1 diabetes associated regions higher than the other methods

without the expense of additional false positives SNPs (i.e., those that do not belong to

any known associated region), thus making such regions detectable by examining only a

few top ranked SNPs.

Finally, this report compares the accuracy of the industry standard disease risk

estimator as a function of top ranked hybrid SNPs, previously replicated SNPs, and top

ranked chi-square and SVM SNPs on WTCCC studies of the four diseases. It finds an

improvement of 2% with top ranked hybrid SNPs in type 1 diabetes and arthritis, l% in

Crohn's disease, and none in type 2 diabetes (the last two diseases have relatively lower

signal strength). Furthermore, the improvement in type 1 diabetes and arthritis is given by

an economical set of at most 37 top ranked hybrid SNPs.

This report concludes that the hybrid strategy ranks causal and replicated SNPs

better than chi-square and SVM separately and that an economical set of top ranked ones

predict disease risk more accurately than top ranked chi-square and SVM ones as well as

previously replicated ones on studies with moderate to high signal strength. One can

expect this strategy to be more useful as larger studies with deeper sequencing and

relatively stronger signal strengths become available. Perl scripts and C programs are
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provided at http://www.cs.njit.edu/usman/SVMSNP  for reproducing the results and

running the SVM strategy on a given study. In the remainder of the report, the hybrid

approach is described, and detailed experimental results are provided.

5.2 Methods

Background on the 2 degree-of-freedom chi-square test, support vector machine, and the

composite odds ratio score is provided in Appendix E. The hybrid SNP ranking strategy

and details on the real and simulated data are presented in the subsequent sub-sections.

5.2.1 Ranking SNPs with a Hybrid SVM Strategy

The strategy is a simple one: select the top r SNPs in the chi-square ranking and re-order

them with the SVM discriminant with a specified value of C, the SVM loss-complexity

tradeoff parameter. However, the selection of r and C are critical to the performance of

this strategy. r and C are selected such that SNPs that best classify case and control are

placed at high positions.

• Input: n case and control samples each with m SNP genotypes, SNP identifiers
{s 1, ,s2,...,sm} , and the set of values ofrand C from which to select the optimal
one

. Output: Optimal values of r and C , the SVM discriminant vector
w = (w1 ,...wr ), vector p such that | wp1 |≥| wp2 |≥...≥| wpr | , and corresponding

ranking of input SNPs sp1 p sp2,...., spr

• Method:

a. Convert the input genotypes into an encoded matrix of 0, l, and 2's by a
standard encoding [89].

b. Produce ten random training-validation subsets where 90% of case and
controls are in training and remaining 10% in validation.

c. For each value of r to consider:

i. Compute the chi-square ranking of SNPs using the training set and
obtain the top r ranked ones.
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ii. For each value of C to consider:

1. Compute the SVM discriminant w with the loss-
complexity parameter set to C and reorder the SNPs. A
method to obtain a SNP ordering using w is described
below.

2. Select the top t SNPs in the SVM ordering, where
t = 5,10,15,25,30,35,40,45,50 and compute classification
error on the validation set with the non-parametric nearest
centroid classifier [62]. In other words, the goal is to find
suitable values of C and r that move discriminative SNPs
to high ranks.

3. Store the error with the given value of C, r, and t .

d. Return the value of C, r, and t with minimum average error across the
ten training-validation sets and compute the SVM ranking with these
values of C and r .

The SVM discriminant w is computed with the SVM- light software package [75].

An ordering of the SNPs can be obtained using the absolute value of the entries of w .

The entry of w represents the weight of the i lthSNP in the SVM classifier. Let

w = (w 1 ,...,wr ) and |w| = (|w 1|,..., |w r,|). Now consider the entries of 1 w I in sorted

descending order. This ordering is denoted by the vector p such that

|w p1|≥| wp2|≥...≥|wpr|. An ordering is obtained on the input SNP identifiers

Spi ,Sp2 ,...,Sp using p . This gives us the SNP ranking.

The SVM baseline discriminant can be replaced with a different one such as a

regularized risk minimizer [94] (motivated by SVMs [92]) or a discriminative

dimensionality reduction method, such as the weighted maximum margin discriminant

[101]. The SVM discriminant is selected because it is supported by powerful theoretical

and empirical performance.

In summary, this hybrid strategy searches for the ranking such that SNPs at high

positions minimize the nearest centroid classification error on the validation set. There is
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no guarantee they will contain causal or replicated ones. However, in the simulated and

real data experimental results presented below it is clear that this turns out to be the case

at least in studies with moderate to high signal strength.

The implementation of this strategy is a combination of Perl scripts and C

programs. It is available for download at http://www.cs.njitedu/usman/SVMSNP/. In

practice, the running time of the hybrid strategy is fast, thanks to efficient

implementations of baseline programs. The two degree of freedom chi-square test is

implemented with 2 x 3 contingency tables in C and the nearest centroid classifier in

Perl. The SVM-light software package is used and is very fast in practice. To give an idea

of the running time on an AMD Opteron 64bit machine, the hybrid strategy takes 20

minutes to finish on a simulated study with approximately 30,000 SNPs and 2,000

subjects for r = 100 and C optimally selected from the set .1 through 10 -7 in increments

of 10- ' (total of seven values of C). Note that this is the total running time and it

includes computing the chi-square ranking separately for ten training validation splits of

the input dataset. However, this implementation could be made more efficient by

combining it into one C program.

5.2.2 Datasets

WTCCC Studies [97]

The Wellcome Trust Case Control Consortium (WTCCC) provides two sets of controls

and one set of cases each for type 1 diabetes, rheumatoid arthritis, Crohn's disease, and

type 2 diabetes [97]. It also provides case subjects for bipolar disorder, hypertension, and

coronary artery disease. However, they are omitted from this study because their signal

strength is similar to type 2 diabetes and fewer replicated SNPs are catalogued for them

in comparison to the other four.
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All SNPs and samples are removed from cases and controls that are specified as

problematic by the WTCCC. This leaves 1,480 individuals from the l,958 British Birth

Cohort, 1,458 from the UK Blood Service Control Group, l,963 cases for type 1 diabetes,

1,860 for arthritis, 1,748 for Crohn's disease, and l,924 for type 2 diabetes. The two

control sets are combined with each case set and all SNPs with greater than l% missing

entries are removed. Using the plink software package [90, 91], all SNPs that deviate

from the Hardy-Weinberg equilibrium with p-values below 5 x 10 -7 are removed. This

left a total of 422,006 SNPs for type 1 diabetes, 403,301 for arthritis, 405,306 for Crohn's

disease, and 402,532 for type 2 diabetes. It was confirmed that the same significant SNPs

with the same p-values were reported by the hybrid strategy programs as published in the

original WTCCC study (Table 3 of Wellcome Trust Case Control Consortium [97]).

Simulated Data

The GWAsimulator program produces case and control genome-wide SNP genotypes

under a logistic regression disease model. It takes phased genotype data as input and

simulates SNP genotypes with the same linkage disequilibrium as the input [78]. It

outputs data in the encoded numerical format described earlier (i.e., the number of copies

of a selected allele). The HapMap CEU phased genotypes provided with the software

package were used as input. These genotypes were produced by the Illumina

HumanHap300 SNP chip. The program generates one causal SNP on a specified position

of a chromosome and then simulates remaining SNPs according to a moving window

algorithm [65].

Ten and 15 randomly selected SNPs are randomly specified as causal, one per

chromosomes 1 through 15 with relative risks of l.25, l.5 and 2. For each setting, 50

genome-wide association studies of disease prevalence .01 and 1,000 case and l,000
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control subjects were simulated. 1,000 SNPs were simulated on either side of each causal

one. This adds up to a total of approximately 30,000 SNPs for 15 causal alleles and

20,000 for ten causal alleles for each case and control sample.

All simulated studies, input control files and HapMap CEU phased genotypes to

the GWAsimulator program are provided at http://www.cs.njit.edu/usman/SVMSNP.

5.3 Results

First, a comparison of the hybrid strategy to the baseline chi-square and the SVM SNP

rankings on simulated data is presented. This is then compared to more methods on four

real datasets. Finally, the prediction accuracy of the industry standard disease risk

estimator with replicated•SNPs and as a function of top ranked SNPs in the hybrid, chi-

square, and SVM rankings on the same four real datasets is examined.

In the simulated datasets the SVM ranking of all SNPs in the study is computed

and the loss-complexity tradeoff parameter C is set to 1/Σi xTixi where x1 is the encoded

SNP genotype vector for the i th subject. This is the default of C computed by the SVM-

light software package used in this study. In the real datasets, the SVM was run on just

the top 25,000 chi-square ranked SNPs due to running time considerations.

5.3.1 Ranking of Causal SNPs in Simulated Data

The rank of causal SNPs in a given ordering is measured using the rank-sum, which is

just the sum of the ranks of causal SNPs. For example, a SNP ordering with all 15 causal

15

alleles ranked 1 through 15 would have a rank-sum of I I = 120 which is the lowest

attainable value for 15 alleles. For ten alleles this value is 55.
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The optimal value of r was selected from the set {25,50,100} and the optimal

value of C was selected from 1 to 10-6 in increments of 10 - ' . For a given dataset, the

rank-sum of the hybrid, chi-square, and SVM SNP rankings were computed within the

optimal r . Table 5.l lists the mean rank-sums of the three SNP orderings across the 50

simulated studies. Clearly the hybrid ranks causal alleles better than chi-square and SVM.

Column 5 shows that the hybrid and chi-square differences are significant at all

relative risks with 15 causal alleles but only relative risk of 2 with ten causal alleles.

Column 6 shows that the hybrid and SVM differences are significant mainly at relative

risk of 2 with ten and 15 causal alleles and relative risk of 1.25 with 15 causal alleles. The

table shows that the improvement given by the hybrid strategy over chi-square and SVM

decreases as one moves to lower relative risks with few causal alleles. The same

observations are made in real data below. There it can be seen that the hybrid ranks

replicated SNPs higher than chi-square and SVM in type 1 diabetes, arthritis, and Crohn's

disease studies and comparable in type 2 diabetes which has relatively much lower signal

strength than the first three.

The mean number of causal alleles within the optimal r across the 50 studies is

shown in parenthesis in Column 2. Since this is less than the total number of causal

alleles this shows that the optimal r is a conservative value.
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Table 5.1 Mean Rank-Sum of SNP Orderings Given by the Hybrid (Denoted as Hyb),
Chi-square, and the SVM. In Parenthesis in Column 2 is the Mean Number of Causal
SNPs Found Within the Optimal Value of r Given by the Hybrid Strategy

Data X 2 SVM Hyb x2

p-values

SVM
p-values

2(15) 222(13.6) 190 123 10-9 10
-7

1.5(15) 165(11.3) 124 116 10-6 0,33

1.25(15) 48(4.4) 61 33 10'1 10-4
2(10) 93(9.2) 97 50 10-R 10-8

1.5(10) 82(8.3) 74 67 .3 .3
1.25(10) 48(3.5) 47 34 .26 .2

5.3.2 Ranking of Replicated SNPs and Regions on Real Data

In the previous section it was shown that causal SNPs in simulated data are moved to

higher ranks by the hybrid. Can the same be said for real data? In real studies the causal

SNP may not necessarily be sequenced, but it can be expected that they will be present in

future studies as the genome coverage increases and cost of sequencing technology drops.

At this time though, the rank of replicated SNPs and known associated regions can be

measured as defined by linkage disequilibrium [97].

The ranks of replicated SNPs are examined in four real WTCCC studies of

decreasing signal strength: type 1 diabetes, rheumatoid arthritis, Crohn's disease, and type

2 diabetes. The p-values and odds ratios of the most significant SNPs in these studies are

10 -140 and 2.9, 10 -75 and 2.0, 10 - ' 4 and l.3, and 10 - ' 2 and l.26 respectively.

For type 1 diabetes, associated regions are available in a curated table at the Type

1 Diabetes Consortium [63]. For previously replicated SNPs, one can refer to a recent

paper [66] that lists such SNPs for the four diseases. Curated associated regions for these

diseases are not publicly available at this time.
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The hybrid SNP rankings are obtained with optimal values of r from the set

{25,50,100,250,500,1000} and optimal values of C from 1 through 10 -8 in increments

of 10

-1

. For Crohn's disease and type 2 diabetes this work also looks at values of C from

.5 through 5 -8 in increments of 10 -1 . This work also compute the SNP rankings given

by the SVM discriminant, SVM-RFE and the HMM. Due to running time considerations,

SVM-RFE is run starting from the top 25,000 chi-square ranked SNPs, removing bottom

1,000 SNPs after each iteration, and stopping when 1,000 SNPs remain. The same default

value of C is used as for the SVM (described above). This project tried to compute the

penalized ML ranking of SNPs, but the program ended after a long computation without

any result.

5.3.2.1 Type 1 Diabetes. A comparison of the ranking of previously replicated type 1

diabetes SNPs given by the different methods is given in Table 5.2. The hybrid ranking

for the optimal r (500) and twice that value are examined to gain more coverage of

associated SNPs. The ranking given by the hybrid strategy at the optimal r places all the

SNPs at higher positions than chi-square, SVM, SVM-RFE, and the HMM except for

two: rs9272346, which is ranked comparably to other methods, and rsl7696736, which is

ranked better than all methods but comparable to SVM-RFE.

At twice the optimal r the hybrid strategy ranks all SNPs better than chi-square

and HMM except for rs9272346 which is comparable. Compared to SVM it ranks seven

out of ten SNPs better, one at the same position, and two worse. SVM-RFE misses two

SNPs when it is stopped at 1,000 SNPs. Out of the remaining eight the hybrid ranks six

better and one the same.
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Table 5.2 Ranking of Different Methods of the WTCCC Type 1 Diabetes Previously
Replicated SNPs [66]. The Optimal r Given by the Hybrid is 500

SNP
X2

p-value
X 2 SVM SVM -

RFE
HMM Hyb

r=500
Hyb
r=1K

rs9272346 5.40E-134 1 2 2 3 2 2
rs6679677 3,80E-26 96 49 13 113 7 6
rs17696736 1,50E-14 190 77 12 313 15 60
rs2292239 1.80E-09 330 78 323 553 76 66
rs705702 4.80E-07 438 145 725 965 143 225
rs12708716 5.90E-07 449 155 390 790 78 310
rs17388568 2.80E-06 521 113 182 1115 NA 34
rs2542151 1.10E-05 568 326 70 239813 NA 14
rs12251307 1.30E-03 777 2032 NA 27886 NA 86
rs3087243 1.30E-03 783 1004 NA 11767 NA 379

Note that the HMM ranking of replicated SNPs is considerably worse than the

other ones. It is possible that the HMM (or any other method for that matter) ranks SNPs

in linkage disequilibrium with the replicated ones higher thus still making the detection

of a region possible. Fortunately for type 1 diabetes, one can refer to a curated table of

known associated regions to determine the ranks of these regions.

A comparison of the number of known associated regions (true positives) and

false ones detected by top ranked SNPs in different orderings is given in Table 5.3. This

project is interested in the number of known associated regions captured by SNPs and not

necessarily the number of SNPs from a given one. For example, a ranking where the top

five SNPs represent five different true associated regions is much more useful than one

where the top five SNPs are from the same one region. The start and stop positions for

these regions are specified by the Type 1 Diabetes Consortium [63].

A given ranking of SNPs is traversed from top to bottom and each known

associated region the SNP belongs to is considered as a true positive. During this

traversal if an encountered SNP is not from a known associated region then, as a

conservative heuristic, a region of 20 SNPs around it (ten on either side) is defined as a
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false positive region, the false positive counter is incremented, and the traversal proceeds.

The region is not considered again (regardless of true or false) if subsequent SNPs from it

are encountered during the traversal.

Table 5.3 Number of False and True Positive Regions Identified by Top Ranked SNPs
Given by Different Methods. k Denotes the Number of Top Ranked SNPs Examined in
Each Ranking, FP Denotes the Number of False Positives Regions, and TP Denotes the
Number of True Positives (Known Associated Regions). 1 400 is the Number of SNPs
Given by the Bonferroni Correction

k χ 2 SVM SVM-
RFE

HMM Hyb
r=500

Hyb
r=1K

	 25 FP -=0 FP=0 FP=2 FP=4 FP=0 FP=5
TP=1 TP=1 TP=3 TP=1 TP=3 TP=3

50 FP=0 FP=0 FP=23 FP=4 FP=0 FP=21
TP=1 TP=2 TP=3 TP=1 TP=4 TP=5

100 FP=0 FP=0 FP=56 FP=4 FP=0 FP-44
TP=2 TP=4 TP=5 TP=1 TP=6 TP=8

200 FP=0 FP=14 FP=131 FP=4 FP=0 FP=87

TP=3 TP=6 TP=9 TP-1 TP=6 TP=11
400 1 FP=0 FP=119 FP=294 FP=4 FP=1 FP=121

TP=6 TP-16 TP=13 TP=3 TP=6 TP=14

In Table 5.3 one can see that the HMM identifies associated regions in the top

ranked SNPs even though replicated ones are ranked low (as shown in Table 5.2). It was

also found that the top 100 SNPs in the SVM ordering with the optimal value of r = 500

detect all associated regions within this value of r . This is a significant advantage over

the chi-square and SVM rankings; the former detects only two regions within the top 100

ranked SNPs and the latter only four. This also highlights the main advantage of the

hybrid strategy over chi-square and SVM separately. It lifts certain SNPs from associated

regions to higher ranks thus making the region detectable by examining a fewer number

of top ranked SNPs compared to chi-square and SVM.
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The hybrid ranking with r = 1000 , in comparison to the optimal r , contains more

true positives and more false positives. However, compared to SVM-RFE it contains

fewer false positives throughout and gains a clear advantage at all values of k (see the

Table 5.3 caption for definition of k).

The improvement by the hybrid strategy over chi-square and SVM comes from

selecting the correct value of r . Since SVM and SVM-RFE use an arbitrarily large value

of r as the starting point the SVM ranking given at that initial value ranks many non-

associated SNPs higher than associated ones (as column 3 of Table 5.3 shows). In

subsequent iterations this error accumulates which leads to a poor ranking of associated

SNPs and regions at the stopping point.

5.3.2.2 Rheumatoid Arthritis, Crohn's disease, and Type 2 Diabetes.

Table 5.4 Chi-square and SVM Ranking of Rheumatoid Arthritis, Crohn's Disease, and
Type 2 Diabetes Previously Replicated SNPs [66]

Rheumatoid arthritis

SNP x2

p-value

x2 SVM SVM-
RFE

Hyb
r=100

Hyb
r=500

rs6457617 4.40E-75 1 1 7 18 3
rs6920220 1.70E-05 242 71 NA NA 83
rs3890745 4.00E-05 268 57 530 NA 61
rs1678542 1.30E-04 334 474 92 NA 72

Crohn's disease
SNP x2

p-value
X 2 SVM SVM-

RFE
Hyb
r=50

Hyb
r=100

rs3828309 3.90E-13 4 5 232 18 37
rs17234657 2.20E-12 5 13 12 0 0
rs9292777 1.20E-11 9 7 11 9 36
rs17221417 4.40E-11 17 6 281 17 26
rs9858542 3.00E-08 31 848 NA 4 33
rs10883365 5.70E-08 36 17 660 28 49
rs2542151 2.10E-07 51 93 99 NA 6

rs11747270 2.20E-07 54 1357 NA NA 30
rs6596075 3.30E-06 81 835 NA NA 57
rs6908425 1.30E-05 96 165 234 NA 5

rs12035082 1.30E-05 98 85 22 NA 15
rs4263839 1.40E-05 99 128 NA NA 4
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Table 5.4 Chi-square and SVM Ranking of Rheumatoid Arthritis, Crohn's Disease, and
Type 2 Diabetes Previously Replicated SNPs [66] (Continued)

Type 2 diabetes
SNP

Z
2

p-value
X

2 SVM SVM-
RFE

Hyb
r=50

Hyb
r=100

rs4132670 1.50E-11 2 2 9 24 34
rs8050136 5.40E-08 11 11 211 34 55
rs7961581 2.90E-05 45 30 299 10 8

In Table 5.4, the hybrid, chi-square, SVM, and SVM-RFE ranking of arthritis,

Crohn's disease, and type 2 diabetes replicated SNPs are compared in the respective

WTCCC studies. For arthritis a small drop in rank is found at the optimal r= 100 . Note

that the optimal r does not cover enough replicated SNPs. This is not surprising since the

results on simulated data show that the optimal value is conservative. At five times the

optimal r, which provides larger coverage of replicated SNPs, improved ranking of

downstream SNPs are found compared to the chi-square ordering. Compared to the SVM

ranking SNP rsl678542 is ranked much better by the hybrid. Although the remaining

three are lower than SVM the differences are very small. SVM-RFE misses SNP

rs6920220 when stopped at a 1000 SNPs and ranks SNP rs3890745 much lower than the

hybrid.

For Crohn's disease, the hybrid strategy at the optimal r= 50 was found to have

better ranks in three out of six SNPs compared to chi-square. Of the remaining three, two

are unchanged and one is worse. Compared to SVM the hybrid ranks SNP rs9858542

significantly better but the remaining are comparable. At twice the optimal r the hybrid

ranks seven of the twelve better than chi-square and places many other SNPs at

significantly higher positions than the SVM. The SVM-RFE ranking misses four SNPs

when stopped at 1000 and of the remaining most are ranked lower than the hybrid.
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For type 2 diabetes, an improvement was not found over chi-square and SVM

with the hybrid strategy. Of the three replicated SNPs covered at the optimal r= 50 (and

twice that value) the hybrid strategy improves the rank of just one. The performance of

the hybrid strategy on the type 2 diabetes study is not too surprising given the results on

simulated data. No significant improvement was seen in SNP rankings when the data has

few causal alleles of low relative risk.

5.3.3 Risk Prediction Accuracy of Discriminative SNPs

The previous two subsections establish that the hybrid can improve the rank of causal

SNPs in simulated data and replicated SNPs on real data with an automatically

determined value of C and r, provided that the signal strength is moderate to high.

Would the top ranked hybrid SNPs also serve as better predictors of disease risk than

previously replicated ones as well as top ranked chi-square and SVM ones? This question

is investigated here on the same four real studies examined above.

Accuracy of risk prediction is measured by the area under curve (AUC) of the

composite odds ratio score. This score is the industry standard disease risk estimator [82,

87] and has been studied in several previous papers [66, 67, 73, 98]. In these experiments,

the HMM and SVM-RFE rankings are excluded. This is because they are not really

designed for SNP selection that will optimize risk prediction accuracy and their

performance in ranking replicated SNPs in real data (shown above) is comparable to chi-

square and SVM.

For each of the four diseases, a random sample of 90% of case and controls was

extracted for training and the remainder was used as test. From the training, the hybrid,

chi-square and SVM rankings are computed and AUC of the composite odds ratio score

of the validation set as a function of top ranked SNPs given by the three methods is
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measured. This is repeated five times and the mean AUC across the five random training-

validation splits is plotted. Figures 5.1 and 5.2 show the mean AUC with previously

replicated SNPs and as a function of top ranked hybrid, chi-square, and SVM ranked

SNPs on the type 1 diabetes and arthritis studies. The same figures for Crohn's disease

and type 2 diabetes are shown in Appendix E.

Figure 5.1 AUC of composite odds ratio score on type 1 diabetes study.
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Figure 5.2 AUC of composite odds ratio score on arthritis study.

Figures 5.1 and 5.2 show that top ranked hybrid SNPs achieve a higher AUC than

replicated SNPs and top ranked chi-square and SVM SNPs. Across the five runs,

different optimal values of r are found. In type 1 diabetes the optimal r is 250 in three

of the five training-validation splits. With this r the mean AUC improvement over

replicated SNPs and top ranked chi-square and SVM SNPs is 12%, 2% and 2%

respectively with an economical set of 37 SNPs (see Table 5.5).

In the arthritis study the optimal r is 250 in four of the five training-validation

splits. With this r the improvement over replicated and top ranked chi-square and SVM

SNPs is 3%, 2%, and 1% respectively but with much fewer SNPs than top ranked chi-
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square and SVM ones. In the chi-square and SVM rankings 331 and 881 SNPs are

required to achieve their highest accuracies whereas the hybrid strategy requires only 36

(see Table 5.5).

In the Crohn's disease study the optimal r is 100 across all five training-

validation splits. However, at this value there is no improvement over replicated SNPs or

top ranked chi-square and SVM ones. At a large value of r = 500 an improvement of l%

is found, but with many SNPs. In the type 2 diabetes the optimal r is 50 in two of the

five training-validation splits, 250 for other two, and 100 for one. No improvement in

AUC with SVM SNPs was seen for these settings. In fact previously replicated SNPs

have the highest AUC in this study.

Table 5.5 The Highest Accuracy (HA) and Number of SNPs Required to Achieve this in
Chi-square and SVM Rankings and with Replicated SNPs (Denoted as Rep. SNPs
Below)

Method T1D RA CD T2D
HA SNPs HA SNPs HA SNPs HA SNPs

Rep SNPs 7.50E-01 19 0.68 8 0.65 28 0.6 15

8.50E-01 22 0.69 331 0.65 321 0.59 65
SVM 8.50E-01 22 0.7 881 0.65 265 0.59 875
Hyb(r=500) 8.70E-01 66 0.7 111 0.66 337 0.57 489
Hyb(r=250) 8.70E-01 37 0.71 36 0.65 171 0.58 175
Hyb(r=100) 8.50E-01 23 0.7 21 0.64 83 0.59 99
Hyb(r=50) 8.60E-01 6 0.69 11 0.64 31 0.58 39

5.4 Discussion

The main contribution in this work is a hybrid strategy that combines the SVM and the

chi-square statistic to produce a ranking of SNPs such that causal and replicated ones are

highly placed. Without the hybrid it is shown that the SVM if applied directly to a

genome-wide study (or applied within the SVM-RFE framework) does not necessarily
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rank causal or known replicated SNPs at high positions. As mentioned earlier, the SVM

component of the hybrid can be replaced with a different regularized risk minimizer but

it's not clear if the results presented here would still hold.

The motivation for the hybrid strategy is best described by Table 5.3. There it can

be seen that the chi-square statistic ranks many SNPs from known associated regions at

high positions with hardly any false positives. The SVM, on the other hand, has SNPs

from more associated regions ranked high but also many SNPs from false positive

regions. The hybrid achieves a balance between them. In just the top 100 ranked SNPs it

detects all true positives in the optimal r with zero false positives.

The top ranked SNPs produced by the hybrid lead to better risk prediction

accuracy on studies with moderate to high signal even though the area under curve is

measured by the composite odds ratio score which is not part of the hybrid strategy. The

hybrid uses a very simple nearest centroid classifier to determine the discriminative

strength of a set of SNPs. It is interesting to observe that the hybrid strategy also ranks

replicated SNPs high even though it is geared towards finding discriminative SNPs.

The benefits of the hybrid strategy are currently limited to studies with moderate

to high signal strength. It may be hard for any other method to rank replicated SNPs in

low signal studies higher than the basic chi-square or SVM. It can be seen here that even

with replicated SNPs for type 2 diabetes and and Crohn's disease the mean AUC is .6 and

.65. Both are too low to be of much use in practice as discussed in recent work [67, 68,

77]. However, as more data is collected and deeper sequencing is performed (such as

whole genome coverage) one may find variants with moderate to high signals. On such

studies it is expected that the hybrid strategy will be more useful.

The hybrid strategy could in principle be applied to the gene selection problem

studied in the original SVM-RFE paper [69]. Since it is geared towards finding
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parameters that best discriminate the two classes it may obtain a small set of genes that

obtain high classification accuracy for that problem (as demonstrated for type 1 diabetes

and arthritis here). The hybrid strategy can also be applied to detect interacting SNPs as

follows: compute the chi-square ranking of SNPs, select a liberal number of top ranked

SNPs (say 500), compute all possible pairs of these SNPs [84], re-rank the pairs with chi-

square, and then apply the hybrid to the chi-square ranked paired dataset. Finally, a finer

resolution of values of t is likely to produce better rankings but will naturally increase

the running time.

5.5 Conclusion

The experimental results presented here lead one to conclude that the hybrid strategy

provides an ordering of SNPs where top ranked ones simultaneously contain more causal

and replicated SNPs and predict disease risk better than previously replicated ones and

top ranked chi-square and SVM ones except for studies with very low signal strength. In

type 1 diabetes, this report also finds a larger coverage of known associated regions

(without the expense of false positives) in top ranked hybrid SNPs compared to other

methods.



APPENDIX A

SUMMARY OF SIMULATION RESULTS

FOR PHYLOGENY RECONSTRUCTION

Table A.1 describes the results of the comparative study of phylogeny reconstruction

programs using simulation.

Table A.1 Summary of Simulation Results

Scale /
Deviation

CLUSTALW MUSCLE
MUSCLE

-PROG
MUSCLE
-UPGMA

MUSCLE
PARS1

MUSCLE
PARS2

Best
Diff2

Percent error rates for 100 taxa, 500 sequence length, indel probability 5x10 5

16 / 2 9.4 9.1 9.5 9.4 8.7	 (0.1) 8.8 0.4
32 / 2 8.7 8.7 8.6 8.7 8.2 (0.3) 8.5 0.4
64 / 2 10.2 10.1 10.9 10.3 11.0 9.9 (0.2) 0.2
16 / 4 13.8 13.8 13.9 13.7 13.5 (tie) 13.5 (tie) 0.2
32 / 4 13.3 13.0 (tie) 13.1 13.2 13.0 (tie) 13.0 (tie) ---
64 / 4 14.1 14.3 15.0 14.0 (0.1) 15.5 14.7 -0.7

Percent error rates for 100 taxa, 1000 sequence length, indel probability 5x10 -5

16 / 2 6.1 6.0 5.9 5.8 5.4 (tie) 5.4 (tie) 0.4
32 / 2 4.8 5.0 4.9 4.8 4.6 (0.1) 4.7 0.2
64 / 2 7.0 6.9 7.1 6.5 6.4 (0.1) 6.9 0.1
16 / 4 9.1 9.1 8.9 9.0 8.9 8.8 (0.1) 0.1
32 / 4 8.9 8.5 8.7 8.4 8.0 (0.1) 8.1 0.4
64 / 4 13.4 11.5 (0.7) 13.8 12.2 14.0 12.5 -1.0

Percent error rates for 100 taxa, 500 sequence length, indel probability 5x10 4

16 / 2 10.9 10.9 10.8 10.7 	 10.3 (tie) 10.3 (tie) 0.4
32 / 2 11.5 10.2 9.0(0.2) 9.2 9.3 9.2 -0.2
64 / 2 16.6 25.3 19.7 17.6 17.3 16.4(0.2) 0.2
16 / 4 13.9 13.9 13.7 13.5 12.7(0.3) 13.0 0.8
32 / 4 17.5 16.4 14.9 14.6 14.4 13.7(0.7) 0.9
64 / 4 24.4 30.6 24.2 23.3 22.9 22.6(0.3) 0.7

Percent error rates for 100 taxa, 1000 sequence length, indel probability 5x10 -4

16 / 2 5.7 5.6 5.6 5.8 5.2 (0.3) 5.5 0.4
32 / 2 6.9 6.7 6.1 6.4 6.0 5.9 (0.1) 0.2
64 / 2 13.9 (0.4) 18.3 18.5 15.9 15.9 14.3 -0.4
16 / 4 8.8 9.0 8.5 8.5 8.3 (tie) 8.3 (tie) 0.2
32 / 4 13.4 12.3 10.6 10.5 (tie) 11.0 10.5 (tie)  ---
64 / 4 23.4 26.7 23.7 21.7 23.1 20.6(1.1) 1.1

69
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Table A.1 Summary Of Simulation Results (Continued)

Scale /
Deviation

CLUSTALW MUSCLE
MUSCLE

-PROG
MUSCLE
-UPGMA

MUSCLEPARS1 MUSCLE
PARS2

BestDiff2

Percent error rates for 200 taxa, 500 sequence length, indel probability 5x10 -5

16 / 2 11,1 11.2 11.2 11.3 10.5(0.7) 10.5(0.7) 0.7

32 / 2 8.3 8.2 7.9(tie) 7.9 (tie) 7.9 (tie) 8.0 ---
64 / 2 10.2 11.2 11.4 9.6 (0.4) 11.3 10.0 -0.4

16 / 4 15.3 15.5 15.4 15.5 13.8(0.2) 14.0 1.5

32 / 4 11.5 11.3 11.4 11.4 11.3 11.2 (0.1) 0.1

64 / 4 17.0 16.5 17.3 15.4 (0.3) 17.0 15.7 -0.3
Percent error rates for 200 taxa, 1000 sequence length, indel probability 5x10 -5

16 / 2 6.2 6.3 6.3 6.3 5.7(tie) 5.7 (tie) 0.6

32 / 2 5.6 5.6 5.5 5.5 5.4(tie) 5.4 (tie) 0.1
64 / 2. 7.2 7.7 8.2 6.9 (tie) 8.2 6.9 (tie) ---

16 / 4 9.4 (tie) 9.5 9.4 (tie) 9.4 (tie) 9.5 9.5 -0.1

32 / 4 9.0 8.9 8.8 (tie) 8.8 (tie) 8.9 8.8 (tie) ---

64 / 4 14.4 13.6 14.4 12.8 14.2 12.7 (0.1) 0.1
Percent error rates for 200 taxa, 500 sequence length, indel probability 5x10 -4

16 / 2 11.9 11.7 11.2 11.2 10.2 9.7 (0.5) 	 1.5

32 /2 12.5 14.7 10.3 10.0 10.0 9.5 (0.5) 0.5

64 / 2 19.0 (0.4) 37.4 22.2 20.7 19.9 19.4 -0.4

16 / 4 16.1 16.4 15.3 15.3 14.4 14.2 (0.2) 1.1

32 / 4 17.0 19.6 15.6 15.4 14.6 14.5 (0.1)  0.9

64 / 4 26.6 44.0 26.6 26.1 25.6 23.9 (1.7) 2.2
Percent error rates for 200 taxa, 1000 sequence length, indel probability 5x10 -4

16 / 2 7.2 7.6 7.1 6.9 6.6 6.4 (0.2) 0.5

32 / 2 9.5 10.4 6.8 6.8 6.6 (tie) 6.6 (tie) 0.2

64 / 2 15.8 (0.9) 28.4 19.8 18.4 17.6 16.7 -0.9

16 / 4 11.1 11.4 10.1 10.1 9.5 (0.2) 9.7 0.6

32 / 4 14.4 16.0 11.9 11.8 11.2 (0.1) 11.3 0.6

64 / 4 23.7 36.0 24.6 22.9 22.6 21.5 (1.1) 1.4
Percent error rates for 400 taxa, 500 sequence length, indel probability 5x10 -5

16/2 12.6 12.6 12.6 12.6 11.5 (0.1) 11.6 1.1

32/2 8.7 8.6 8.6 8.6 8.3 8.1 (0.2) 	 0.5

64/2 9.0 10.1 9.6 8.6 9.0 8.3 (0.3) 0.3

16/4 17.8 17.9 17.9 17.9 16.2 (0.2) 16.4 1.6

32/4 13.3 13.3 13.2 13.2 12.8 (0.1) 12.9 _ 0.4

64/4 15.1 15.7 14.7 13.9 14.5 13.5 (0.4) 0.4
Percent error rates for 400 taxa, 1000 sequence length, indel probability 5x105

16 / 2 7.4 7.3 7.4  7.3 7.0 (tie) 7.0 (tie) 	 0.3

32 / 2 5.5 (tie) 5.6 5.5 (tie) 5.5 (tie) 5.5 (tie) 5.5 (tie) ---
64 / 2 6.5 7.1 6.8 6.0 (0.1) 6.4 6.1 -0.1

16 / 4 10.3 10.3 10.3 10.3 9.6 (tie) 9.6 (tie) 0.7

32 / 4 8.8 8.9 8.5 (tie) 8.7 8.5 (tie) 8.5 (tie) ---
64 / 4 12.2 11.9 11.5 10.9 (0.1) 11.9 11.0 -0.1
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Table A.1 Summary Of Simulation Results (Continued)

Scale /
Deviation

CLUSTALW MUSCLE MUSCLE
-PROG

MUSCLE
-UPGMA

MUSCLE
PARS1

MUSCLE
PARS2

Best
Diff2

Percent error rates for 400 taxa, 500 sequence length, indel probability 5x10 4
16 / 2 13.1 14.5 12.8 12.7 12.0 (tie) 12.0 (tie) 0.7
32 / 2 11.8 16.3 10.0 9.8 9.4 9.3 (0.1) 0.5
64 / 2 15.9 40.1 17.9 16.6 15.5 15.3 (0.2) 0.6
16 / 4 18.2 19.7 17.6 17.6 15.9 (tie) 15.9 (tie) 1.7
32 / 4 17.0 21.2 15.4 15.6 14.5 (0.1) 14.6 0.9
64 / 4 22.8 44.5 22.9 21.8 22.4 21.5 (0.3) 0.3

Percent error rates for 400 taxa, 1000 sequence length, indel probability 5x104
16 / 2 8.0 9.3 7.6 7.6 7.2 (tie) 7.2 (tie) 0.4
32 / 2 8.2 10.0 6.6 6.4 6.2 (0.1) 6.3 0.2
64 / 2 12.3 (0.6) 33.3 15.0 14.5 13.5 12.9 -0.6
16 / 4 11.6 13.4 11.0 11.0 10.3 (0.1) 10.4 0.7
32 / 4 12.9 15.1 10.6 10.6 10.2 (0.1) 10.3 0.4
64 / 4 20.4 39.5 19.8 19.0 18.6 18.2 (0.4) 0.8
Overall results: number of times each method was best (ties are counted in each occurrence)

20 ---Dev. = 2 5 0 3 5 16
Dev. = 4 1 2 3 6 16 21 ---

Total 6 2 6 11 32 41 ---

Note:
Best scoring alignments (across all six possibilities) also included the percent difference between it and the

next best scoring alignment (again, across all six possibilities) in parentheses.
2 In the final column, the difference between the best scoring MUSCLE-PARS alignment and the best of the
remaining four alignments is presented.



APPENDIX B

PROBALIGN RNA-GENOME BENCHMARK STATISTICS

Table B.1 below lists some characteristics of the 22 RNA families in the RNA-Genome

benchmark.

Table B.1 Statistics for All 22 RFAM RNA Families Used in the Study

RFAM RNA family Average pairwise
sequence identity

Sequence length
standard
deviation

Number of
sequences in
seed family
alignment

Number of
pairwise

alignments in
benchmark

5S rRNA 55 2.58 50 49
U1 56 6.67 50 141

Trna 39 4.9 50 342
RNaseP bact a 59 37.78 50 143
RNaseP bact b 59 37.84 50 23

U3 45 55.94 21 20
U4 56 11.04 26 69

SRP euk arch 45 10.45 50 331
tmRNA 40 31.51 50 342

Intron gpI 43 77.46 30 71
SECIS 41 3.16 50 347

1RE 54 1.43 39 231
THI 55 17.99 50 347

Hammerhead 1 56 31.95 50 49
Purine 50 0.85 12 59
Lysine 45 8.47 19 147

SRP bact 50 9.19 42 348
SSU rRNA 5 48 128.30 50 97

T-box 51 2.49 14 62
glmS 50 26.90 6 19

RNaseP arch 51 67.61 34 156
1RES Cripavirus 49 4.92 7 36

Note: First, subsets of each RFAM seed family alignment containing a maximum of 50 randomly selected
sequences. For each subset, directions listed in the main report were followed to construct the benchmark.
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APPENDIX C

COMMAND LINE PARAMETERS FOR PROGRAMS USED IN GENERATING

THE RNA-GENOME BENCHMARK

In the descriptions below <data> refers to unaligned query and genome sequence in

FASTA format and <query> and <genome> refer to the separate sequences also in

FASTA format.

Probalign:	 probalign —nuc —T 7 —go 32 —ge 2 <data>

SSEARCH: ssearch —H —q —d 1 —a —f 10 —e 4 -0 ssearch.out <query> <genome>

BLAST:	 bl2seq —p blastn —G 8 —E 6 —W 4 —S 1 —r 5 —q -4 —i <query> -j <genome>

ClustalW:	 clustalw —infile=<data> -outorder=input —output=fasta —outfile= cw.out

HMMER:	 (l) hmmbuild —nucleic —informat=PHYLIP —f —F model.hmm <query>

(2) hmmsearch model.hmm <genome>
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APPENDIX D

DESCRIPTION OF PROBALIGN

The sections below explain: the maximal expected accuracy alignment methodology,

how match or posterior probabilities are used, and how to compute these probabilities

using partition function matrices. As explained below, posterior probabilities can be tied

with expected accuracy alignment in the Probalign program.

Posterior probabilities and maximal expected accuracy alignment

Most alignment programs compute an optimal sum-of-pairs alignment or a maximum

probability alignment using the Viterbi algorithm (Durbin et al. [105]). An alternative

approach is to search for the maximum expected accuracy alignment [9, 105]. The

expected accuracy of an alignment is based upon the posterior probabilities of aligning

residues in two sequences.

Consider sequences x and y and let a* be their true alignment. Following the

description in Do et al. [9], the posterior probability of residue x, aligned to y3 in a* is

defined as

Where, A is the set of all alignments of x and y and 1(expr) is the indicator function

which returns 1 if the expression expr evaluates to true and 0 otherwise. P(a|x,y)

represents the probability that alignment a is the true alignment a*. From hereon, this

dissertation represents the posterior probability as P(xi~ yj) with the understanding that it

represents the probability of x, aligned to yj in the true alignment a*.
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Given the posterior probability matrix P(x, y1), one can compute the maximal

expected accuracy alignment using the following recursion described in Durbin et al.

[105].

According to equation (D.l) as long as there is an ensemble of alignments A with

their probabilities P(a|,x,y) one can compute the posterior probability P(x,~yj) by

summing up the probabilities of alignments where x, is paired with y3 . One way to

generate an ensemble of such alignments is to use the partition function methodology,

which is described below.

Posterior Probabilities by Partition Function

Amino acid scoring matrices, normally used for sequence alignment, are represented as

log-odds scoring matrices (as defined by Dayhoff et al. [106]). The commonly used sum-

of-pairs score of an alignment a [105] is defined as the sum of residue-residue pairs and

residue-gap pairs under an affine penalty scheme.
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Here T is a constant (depending upon the scoring matrix), My is the mutation

probability of residue i changing to j and f, and I; are background frequencies of residues i

and j. In fact, it can be shown that any scoring matrix corresponds to a log odds matrix

[107, 108].

Miyazawa [46] proposed that the probability of alignment a, P(a), of sequences x

and y can be defined as

where, S(a) is the score of the alignment under the given scoring matrix. In this setting

one can then treat the alignment score as negative energy and T as the thermodynamic

temperature, similar to what is done in statistical mechanics. Analogous to the statistical

mechanical framework, Miyazawa [46] defined the partition function of alignments as

where, A is the set of all alignments of x and y. With the partition function in hand, the

probability of an alignment a can now be defined as
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As T approaches infinity all alignments are equally probable, whereas at small values of

T, only the nearly optimal alignments have the highest probabilities. Thus, the

temperature parameter T can be interpreted as a measure of deviation from the optimal

alignment.

The alignment partition function can be computed using recursions similar to the

Needleman-Wunsch dynamic algorithm. Let Z mij represent the partition function of all

alignments of xi , and y, ,,, ending in x i paired with y, , and Sij(a) represent the score of

alignment a of x/ ,, ; and y / / . According to equation (D.5)

where, A u is the set of all alignments of x/ , and yi j, and s(xi,yj) is the score of aligning

residue x, with yj . The summation in the bracket on the right hand side of equation (D.7)

is precisely the partition function of all alignments of x1..i-1and y1..j-1.One can thus

compute the partition function matrices using standard dynamic programming.

Here s(x,y) represents the score of aligning residue x, with yj , g is the gap open

penalty, and ext is the gap extension penalty. The matrix ZMij represents the partition

function of all alignments ending in x, paired with yj. Similarly, ZEij represents the
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partition function of all alignments in which y3 is aligned to a gap and ZFij all alignments

in which x, is aligned to a gap. Boundary conditions and further details can be obtained

from Miyazawa [46].

Once the partition function is constructed, the posterior probability of x, aligned to

y, can be computed as

where, Z,Mij is the partition function of alignments of subsequences xi..m and yj..m

beginning with x, paired with y3 and m and n are lengths of x and y respectively. This can

be computed using standard backward recursion formulas as described in Durbin et al.

[105].

In equation (D.9) ZMi-1, j-1/Z and Z'Mi+1, j+1/Z  represent the probabilities of all

feasible suboptimal alignments (determined by the T parameter) of x1..i-1 and y1..j-1, and

xi+1.m and yj+1..n respectively, where m and n are lengths of x and y respectively. Thus,

equation (D.9) weighs alignments according to their partition function probabilities and

estimates P(xi~yj) as the sum of probabilities of all alignments where x, is paired with

Maximal Expected Accuracy Alignment

using Partition Function Posterior Probabilities

Recall the maximum expected accuracy alignment formulation described earlier. In order

to compute such an alignment one needs an estimate of the posterior probabilities. In this

report, the partition function posterior probability estimates are utilized for constructing

multiple alignments. For each pair of sequences (x, y) in the input, the posterior
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probability matrix P(xi~~ yj) is computed using equation (D.9). These probabilities are

subsequently used to compute a maximal expected multiple sequence alignment using the

Probcons methodology. First, the probabilistic consistency transformation (described in

detail in Do et al. [9]) is applied to improve the estimate of the probabilities. Briefly, the

probabilistic consistency transformation is to re-estimate the posterior probabilities based

upon three-sequence alignments instead of pairwise. Note that this does not mean

alignments are recomputed; this estimation (as done in Probcons) is still fundamentally

based upon pairwise alignments.

After the probabilistic consistency transformation, sequence profiles are next

aligned in a post-order walk along a UPGMA guide-tree. As is commonly done, UPGMA

guide trees are computed using pairwise expected accuracy alignment scores. Finally,

iterative refinement is performed to improve the alignment. This standard alignment

procedure is described in more detail in Do et al. [9] and is implemented in the Probcons

package (by the same authors).

The Probalign approach is implemented by modifying the underlying Probcons

program to read in arbitrary posterior probabilities for each pair of sequences in the input.

All use of HMMs in the modified Probcons code is disabled. The probA program of

Muckstein et al. [47] was modified for computing partition function posterior probability

estimates. The Probalign program is represented algorithmically in Figure D.l. The

current implementation is a beta version and mainly for proof of concept; however, the

open source code is fully functional and is available with full support from

http://www.cs.njit.edu/usman/probalign.
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Probalign algorithm:
l. For each pair of sequences (x,y) in the input set

a. Compute partition function matrices Z(7)
b. Estimate posterior probability matrix P(xi ~ yi) for (x,y) using equation D.9

2. Perform the probabilistic consistency transformation and compute a maximal
expected accuracy multiple alignment: align sequence profiles along a guide-tree
and follow by iterative refinement (Do et. al.).

Figure D.1 Probalign algorithmic description.



APPENDIX E

SUPPLEMENTARY MATERIAL FOR "A HYBRID STRATEGY FOR

RANKING SNPS IN GENOME-WIDE ASSOCIATION STUDIES"

The following sections provide background information regarding encoding of SNP

genotype data, chi-square statistic, support vector machine, and composite odds ratio for

estimating disease risk.

Numerical Encoding of SNP Genotypes

Before applying chi-square or SVM to SNP genotype data, they need to be converted it to

a numerical format by a standard encoding used in population structure identification

[89]. Suppose one is given m SNP genotypes g, = {gi1, gi2,...,gim} for each of i = l...n

individuals and m SNP identifiers	 Each genotype is of the form

E {AA,AB,BB} where A and B are nucleotides (alleles) and are assumed to be

alphabetically ordered ( A < B). In this work case and control are represented by

y, E {-1-l,-l} for i = l...n . If y, = l then x, is a case subject and otherwise it is a control.

Each genotype g„, is encoded into an integer, thus forming the data matrix M . If

gij = AA , M, is set to 0, else if	 = AB, M u is set to 1, and otherwise it is set to 2. The

encoding used in this research work is the number of copies of the allele with the larger

nucleotide. Each row of M represents the genotype of an individual and each column

represents a SNP.
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Chi-square Statistic

The chi-square statistic has also been referred to as genotypic 2 degree-of-freedom test

[97]. The following briefly explain its basics. Define six random variables each of which

is binomially distributed X, ~ B(n,p1) where n is the total number of subjects and p, is

the probability of success for X,. Each of these corresponds to the number of case or

control subjects with 0, l, or 2 copies of the allele of interest (see Table E.l). The

expected value of each X, is given by E(Xi) = np,. It can then be shown that the statistic

below follows the chi-square distribution with 2 degrees of freedom [74]. This is called

the chi-square statistic.

Table E.1 A 2 x 3 Contingency Table for a Given SNP. Each Entry Denotes Counts of
Genotype in Case and Controls. In Parenthesis are Random Variables

0 1 2

Case c1 (X1 ) c2 (X2 ) c3 (X3 )

Control c4 (X4 ) c5 (X5 ) c6 (X6 )

To apply this statistic for detecting SNPs from associated regions let the disease type be

given by the random variable D and genotype by G . If it is assumed that these are

independent, then P(D,G) = P(D)P(G) . These are easy to calculate from counts in the

contingency table. For example, P(G = 0) = 
+ c4) 

and P(D = case) = c 
+ c2 + c3

12

Similarly the expected values of each X, can be calculated under the null hypothesis and
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consequently the chi-square statistic. For example, for X1 its expected value is given by

E(X,) = P(X = case)P(Y = 0)n =	 under the null hypothesis.

The corresponding p-values can be obtained

(c 1 + c2 + c3 )(c 1

+

c

4)/n by referring to the chi-square

distribution with 2 degrees of freedom. SNPs with the least p-values deviate from the

independence assumption and therefore are of interest.

Support Vector Machine

The support vector machine (SVM) is a powerful discriminative classification algorithm.

It makes no assumptions about the underlying (unknown) probability distribution from

which the data is drawn. The basic support vector machine algorithm is outlined here and

readers can refer to Scholkopf et al. [92] for additional details.

Figure E.1 Toy example of an optimal hyperplane separating points on a plane

(illustrated by squares and circles). In (a) 2/||w|| denotes the margin of the classifier.

Points on the margin are at a distance of l/||w||. Maximization of the margin can be
II w II

thought of as minimizing the complexity of the classifier. The example in (b) shows one
square misclassified and one circle inside the margin. This is the case when no
hyperplane can separate the data points and therefore some points will be necessarily
misclassified.



84

Suppose one is given n vectors x, E Rd each with labels y, E {+l,-1} drawn

from a joint probability distribution P(x,y). Referring to Figure E.1(a) suppose the

circles represent vectors with labels +1 and the squares represent those with labels —1.

The optimally separating hyperplane between these two sets of points is the support

vector machine (see Figure E.l). It is defined by a vector w E R d and a number w0 . This

can be found by solving the following problem with Lagrange multipliers and KKT

conditions.

The term II w 11 2 captures the complexity of the classifier and 14, is the total error on

training data. The parameter C controls tradeoff between minimizing complexity and

error.

An attractive feature of the SVM classifier is that the probability of misclassifying

points drawn from any distribution P(x,y) can be bounded by the number of

misclassified points available in advance from P(x,y) (also known as training data) plus

a term that quantifies the complexity of the classifier [92, 95]. There may be several

hyperplanes that separate the two classes with zero misclassifications on the training data.

But the optimal one has been shown to minimize classifier complexity as well.
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Composite Odds Ratio for Estimating Disease Risk

A standard assumption in disease models is that the the probability of disease given i

copies of a risk allele is given by P(D|gi) = 1/
l+ e-

α
+i

β
 

for i = 0,l,2 [74, 98]. This

follows naturally by assuming that the log likelihood ratio is linear and is also known as

the logistic regression model [62]. Under this assumption one can estimate α  and β  by

maximum likelihood using a simple gradient descent procedure [62]. This usually

converges within a few iterations.

After estimating β  and β , eβ3 is used as the odds ratio for the given SNP. This

follows naturally by noting that P(D| gi) =1/
1+ e-

α
+i

β
 

can be rewritten as

ln(
P(D|

gi)/
1 — P(D|gi)

)= α+iβ. The odds ratio ( Pr(D|g
1)/ 1Pr(D|g1)
)/(Pr(D|g0)/

l-Pr(D|g0

) is then given by λ  = eβ . For

two copies of the risk allele one obtains e2β = (eβ)2  = λ2. The odds ratio calculated in this

manner (under the logistic regression model) does not suffer from bias and stratification

problems under simpler models [74].

In this report, it is assumed that each SNP is acting independently. Then the

composite odds ratio for several SNPs is defined as Πiλi where λi is the odds ratio of

SNP i .
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