Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT

GENERALIZED DISCRETE FOURIER TRANSFORM WITH NON-LINEAR
PHASE: THEORY AND DESIGN

Handan Agli)l)‘,man-Tosun
Constant modulus transforms like discrete Fourier transform (DFT), Walsh transform,
and Gold codes have been successfully used over several decades in various engineering
applications, including discrete multi-tone (DMT), orthogonal frequency division
multiplexing (OFDM) and code division multiple access (CDMA) communications
systems. Among these popular transforms, DFT is a linear phase transform and widely
used in multicarrier communications due to its performance and fast algorithms. In this
thesis, a theoretical framework for Generalized DFT (GDFT) with nonlinear phase
exploiting the phase space is developed. It is shown that GDFT offers sizable correlation
improvements over DFT, Walsh, and Gold codes. Brute force search algorithm is
employed to obtain orthogonal GDFT code sets with improved correlations. Design
examples and simulation results on several channel types presented in the thesis show
that the proposed GDFT codes, with better auto and cross-correlation properties than
DFT, lead to better bit-error-rate performance in all multi-carrier and multi-user
communications scenarios investigated. It is also highlighted how known constant
modulus code families such as Walsh, Walsh-like and other codes are special solutions of
the GDFT framework. In addition to theoretical framework, practical design methods
with computationally efficient implementations of GDFT as enhancements to DFT are

presented in the thesis. The main advantage of the proposed method is its ability to



design a wide selection of constant modulus orthogonal code sets based on the desired
performance metrics mimicking the engineering specs of interest.

Orthogonal Frequency Division Multiplexing (OFDM) is a leading candidate to
be adopted for high speed 4G wireless communications standards due to its high spectral
efficiency, strong resistance to multipath fading and ease of implementation with Fast
Fourier Transform (FFT) algorithms. However, the main disadvantage of an OFDM
based communications teéhnique is of its high PAPR at the RF stage of a transmitter.
PAPR dominates the power (battery) efficiency of the radio transceiver. Among the
PAPR reduction methods proposed in the literature, Selected Mapping (SLM) method has
been successfully used in OFDM communications. In this thesis, an SLM method
employing GDFT with closed form phase functions rather than fixed DFT for PAPR
reduction is introduced. The performance improvements of GDFT based SLM PAPR
reduction for various OFDM communications scenarios including the WiMAX standard
based system are evaluated by simulations. Moreover, an efficient implementation of
GDFT based SLM method reducing computational cost of multiple transform operations
is forwarded. Performance simulation results show that power efficiency of non-linear

RF amplifier in an OFDM system employing proposed method significantly improved.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A Block Transform is used to decompose a correlated input signal into decorrelated
transform coefficients. Some examples of block transform families are Discrete Cosine
Transform (DCT), Discrete Sine Transform (DST), Karhunen and Loeve Transforms
(KLT). Among these transforms, KLT does not only decorrelate the input signal but also
pack the signal energy into less transform domain coefficients compared to the others.
However, KLT is signal-dependent: it requires the knowledge of statistical properties of
the input signal. On the other hand, DCT, DST and DFT are fixed transforms meaning
that they are signal independent. Among these fixed transforms, DFT finds several
applications in digital signal processing and communications due to its perfect spectral
resolution and easy implementation.

All block transforms mentioned above are orthogonal: the basis functions are
orthogonal to each other. In communications, special examples of applications using
orthogonal ﬁmction sets afe Time Division Multiple Access (TDMA), Frequency
Division Multiple Access (FDMA), Code Division Multiple Access (CDMA) and
Orthogonal Frequency Division Multiplexing (OFDM). Among them, TDMA employs
time-localized orthogonal function sets where the basis functions are all-pass like in
frequency-domain.  Conversely, in FDMA, functions are frequency localized in
frequency-domain and widely spread in time-domain. In CDMA, function sets are not
only spread in the time-domain, but also in the frequency-domain. In these multiple

access schemes, function sets are designed to be orthogonal either in frequency-, time- or



code-domain. Orthogonality in time is required to reduce interference (Intersymbol
Interference, ISI) in between different subsymbols transmitted on the same carrier as in
TDMA communications. On the other hand, orthogonality in frequency ensures no
interference (Intercarrier Interference, ICI) between different carriers or subchannels as in
OFDM and FDMA systems. In CDMA applications, orthogonality is in code domain to
mitigate multi-user interference (MUI). For the synchronous communications case,
orthogonality is enough to ensure no interference in all these applications. With any
imperfection in synchronization, or in general, in asynchronous cases, orthogonality is
not enough to mitigate iqterference: correlation properties of function sets play a crucial
role.

Design of orthogonal function sets with desirable properties has been under study
for several decades. DCT, DST, DFT, Oppermann, Frank-Zadoff and Chu sequences are
some examples of function set families with closed form expressions, for all available
sizes. However, designs in the literature show that several function sets are obtained
through optimization tools since there exist no closed form expressions for these sets. In
these designs, optimized function sets are presented in look-up tables for limited sizes
and the system employing any of these is expected to save the look-up table in memory.
Moreover, for systems with multi-size function sets, complexity increases with number of
the sets used.

OFDM is proposed for 4G communications systems due to its spectral efficiency,
strong resistance to multipath fading, and ease of implementation with the Fast Fourier
Transform (FFT) algorithm. However, the main drawback of an OFDM system is its

high peak-to-average ratio (PAPR). The signals with high peak values cause in-band and



out-of-band interferences when passed through non-linear power amplifiers. Of several
methods proposed in the literature, Selective Mapping (SLM) is shown to be powerful for
PAPR reduction. In this method, several OFDM frames corresponding to the same
information are generated using multiple phase vectors, and the one with minimum
PAPR is sent through the channel along with the side information. One drawback of this
method is the absence of a closed form expression for phase generation; it assumes
availability of look-up tables of phase vectors at the transmitter and receiver ends.
Moreover, in this method, multiple inverse transforms are performed in the transmitter,
which results in very complex design for the transmitters.

Discrete Fourier Transform (DFT) has become the most popular orthogonal
transform since the introduction of its efficient implementation, namely FFT. DFT bases
are orthogonal, show linear-phase dependence, and are localized in frequency, making
them a perfect match for frequency-localized applications such as OFDM. Beyond
orthogonality, DFT bases provide very low cross-correlations for all sizes. Orthogonality
and low cross-correlation properties of DFT bases are the underlying inspiration of this
dissertation. The linear phase property of this set 1s waived to form the proposed
frémework, which is named the Generalized Discrete Fourier Transform with Non-linear
Phase. Theoretical analysis of the proposed framework and efficient design methods for
its implementation are treated in this dissertation. The proposed framework is employed
in the generation of orthogonal functions sets with desirable correlation properties. These
orthogonal codes are later employed in a DS/CDMA system in AWGN and Rayleigh
channel. Moreover, the proposed framework with its closed form phase generating

function is employed in SLLM to reduce peak power fluctuations without additional
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transmitter complexity. Throughout this thesis, unless otherwise stated, the abbreviation

“GDFT refers to “Generalized Discrete Fourier Transform with Non-linear Phase”.

1.2 State of The Art

The orthogonal function sets widely used in the Digital Signal Processing area include
the bases of DFT, DCT, DST, Discrete Walsh-Hadamard Transform (WHT) and KLT.
DFT has been employed for spectral analysis whereas DCT, DST, KLT and WHT are
traditionally used for signal compaction applications. WHT is also used as spreading
codes for CDMA communications, especially for Direct Sequence CDMA (DS/CDMA)
communications. The basics of these orthogonal transforms including their comparisons
in terms of fast computation algorithms and Eigen analyses are well discussed in [1-12].

There has been a flurry of research activities on spreading sequences with
desirable correlation properties in the literature. Binary spreading codes like Walsh [11]
and Gold sequences [13] were introduced first and successfully used in early CDMA
technologies. Ideally speaking, all spreading codes used in a DS/CDMA
communications system should have pseudo-noise properties. One of the binary
spreading code families satisfying this criterion is binary maximal length shift-register or
m-sequences.  Later, different code families produced from m-sequences were
introduced, e.g. Gold, Gold-like, Kasami and others [13-15].

Among various binary spreading families, Gold codes have been successfully
used for asynchronous communications in DS/CDMA systems due to their low cross-
correlation features. Most popular binary spreading sequences however, including Gold

codes, are limited with respect to their code lengths and dimensions. As an example,



Walsh sequences are defined for the lengths of power of two [11]. Similarly, Gold codes
offer sequence lengths of 2™-1 for certain m values [13, 16].

All of the above-mentioned spreading codes are binary-valued and have limited
correlation improvements due to the limitation on amplitudes and phases of samples in
the code sequence. One possible improvement in cross-correlation properties is achieved
by designing spreading codes with non-binary real chip values as proposed in the
literature [17-20]. However, these codes when employed in systems with non-linear high
power amplifiers, cause performance degradation decreasing the efficiency of the
amplifier.  Therefore, multi-valued spreading codes are not preferred in CDMA
communications.

More recently, research has focused on constant amplitude function sets due to
efficiency limitations of non-linear power amplifiers employed in transceivers. Hence,
complex roots of unity are widely proposed as function sets by many authors. All
elements of such a set are placed on the unit circle of the complex plane. Some examples
are Frank-Zadoff, Chu and Oppermann complex codes [21-24]. Oppermann has shown
that Frank-Zadoff and Chu Sequences are the special cases of his family of sequences
[23, 25]. Although Oppermann codes have a wide-range of coqelations properties, they
are limited in size. For the case where the length of code set, &, is a prime number, the
size of the Oppermann code set is maximum and equal to N-1. For other values of N, the
set size is always smaller than N-1.

In the literature, various techniques have been proposed to reduce PAPR in
OFDM based systems. These include partial transmit sequences (PTS) [26, 27], SLM

[28, 29], Coding [30], Active Constellation Extension (ACE)[31], clipping and filtering



[32, 33], Tone Injection (TI) or Tone Reservation (TR) [34] and Interleaving [35]. All of
these techniques have their advantages and disadvantages in terms of performance
distortion, average power increase or date rate reduction. Clipping does not require
power increase, however causes signal distortion introducing out-of-band interference.
Although it is distortionless, Coding technique requires choosing low PAPR codes but
they still have the largest Hamming distances in their signaling space. ACE, TI and TR
methods are distortionless but require higher average power and thus are not power-
efficient methods. SLM, PTS and Interleaving techniques are distortionless, do not
require average power increase to reduce PAPR, which makes them favorable for OFDM
systems. Among these methods, Interleaving and SLM techniques are very similar in
their working principles; both require sending side information to the receiver. In SLM,
the side information is the index of the corresponding phase vector used in transmitter for
PAPR reduction and it is the permutation index in Interleaving. In [36], Baxley and Zhou
concluded that although PTS requires much less inverse transform operations in the
transmitter, SLM technique has better quantified PAPR reduction per unit of complexity

metric.

1.3 Dissertation Overview
Excluding KLT, most of the block transforms are fixed: independent of the input signal.
Real block transforms are widely used in signal analysis applications and the complex
block transform DFT, is very popular in signal processing and communications.
However, all popular fixed transforms are either real or linear phase with even or odd
symmetry between their basis functions. In this thesis, the phase is relaxed to form non-

linear phase real or complex orthogonal basis sets. Examples of these basis sets and their



performance comparisons along with the competing basis sets are given for several
applications including CDMA and OFDM systems .

In Chapter 2, time and frequency representations of function sets are introduced.
The orthogonality property, auto- and cross-correlations and also, the spreads of
functions in any set are defined in terms of time and frequency representations of the
functions. The Uncertainty Principle defining the limit of time and frequency spread of a
function is given for the continuous- and discrete- time case.

In Chapter 3, several real and complex orthogonal function sets employed in
signal processing and communications are explained. Real Bases of DCT, DST and
WHT are discussed in terms of time- and frequency-domain representations. Complex
bases of DFT and Oppermann function sets are explained in detail and basic limitations
of Oppermann sets are discussed.

In Chapter 4, the proposed framework, Generalized Discrete Fourier Transform
with Non-linear Phase is explained in detail. Theoretical analysis of the framework is
explained in the context of roots of unity analysis. Efficient design methods for
generating GDFT matrix out of DFT matrix are discussed in detail.

In Chapter 5, the GDFT framework is employed in the generation of complex
orthogonal function sets with various auto- and cross-correlation properties. In order to
compare GDFT function sets, several performance metrics are defined in terms of
Aperiodic Correlation Function (ACF). Optimum complex orthogonal function sets
based on the considered performance metrics are listed and compared with the common

function sets listed in the literature including DFT, WHT and Oppermann function sets.



Theoretical analysis of multi-user detection in DS/CDMA systems on an AWGN
and a multi-path Rayleigh channel is presented in Chapter 6. The proposed framework is
employed in the design of complex orthogonal spreading codes suitable for DS/CDMA
systems. These orthogonal code sets are obtained through optimization on several
correlation metrics. Then, the proposed GDFT sets are compared with the popular
spreading code sets in terms of bit-error-rate performance on an AWGN and a multi-path
channel for synchronous and asynchronous communications. Critical dependence of
detection performance on the correlation metrics of the sets is discussed.

Basics of OFDM communications are discussed in Chapter 7. The main
drawback of OFDM systems, peak power fluctuation, and its effect on system
performance are explained in detail. In order to reduce these peak power fluctuations,
two GDFT-based methods, Phase Optimized GDFT and Efficient GDFT based SLM
methods, are proposed. The proposed methods are employed in an OFDM system with
non-linear Rapp amplifier and the improvement in the efficiency of the amplifier is
quantified. Improvements in BER and in spectra of an OFDM system employing these
proposed PAPR reduction methods are also presented.

Conclusions and future research are presented in Chapter 8.



CHAPTER 2

TIME-FREQUENCY REPRESENTATION OF SIGNALS

2.1 Introduction
Discrete-time signals are traditionally represented in time and frequency domains. If

@¢(n)denotes the discrete-time signal in time, the frequency domain representation

®(e’”) is defined by Discrete-time Fourier Transform (DTFT) as [37, 38],

D)= Y. gl ™ @.1)

According to Parseval Theorem, the total energy of a function or signal in time is equal

to the total energy in frequency domain [37, 38],

+oo

E,= imn);»* )= lpm)|

A=~oc0

2.2
=L ,]’q)(ejw)q)*(ejw)dap_l_ ,f”d)(ef“’)'z do -
27 _z 2z -z

From Parseval Theorem, one can conclude that both time and frequency domain

representations show how the energy of the signal is distributed in time and frequency,
respectively. In other words, a signal or a function is simply the shape of the energy E 5

in time or frequency domain. As an example, in Figure 2.1, eight numbers of unit energy

and orthogonal discrete-time functions are shown in time and frequency domains.
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and time and frequency spreads of any function set will be discussed in terms of time and
frequency domain representations.

Consider a function or basis set similar to one given in Figure 2.1 as
{g,(m)}, k=0,1,..,N-1. Let ¢, (n) > D, (e’*) and ¢ (n) - ®,(e’*) denote the DTFT

pairs satisfying the equations

D, ()= g, (n)e ™

n=—co

l i jo~ _ jon
AQE e [@. (™)™ da
- (2.3)
@,(e/") = Z @ (n)e ™™

n=~oc0

1 i j@ jon
¢,(n)=g_£(1),(e’ e dw

The auto-correlation function of k™ function is given by time and frequency domain

representation as,

R, (m)=Y ¢,(ng;(n—m)

n=—oco0

1" 1" , (2.4)
=-2—7;:’[<I)k(e’ X, (e’)e’ ’"da)zg_;[’d)k(e’w)l e'"dw

From (2.4), one can conclude that R, , (m) is the inverse DTFT of the magnitude square

of @, (¢/*). Similarly, the cross-correlation function of K™ and I functions is given by

the time and the frequency domain representations as

N * 1 i O\ (IO, jom
Ry (m)= 3 ¢, () (”—m)zg j®k(€’ XD, (e)e’™"d . (2.5)

p=—00

Orthogonality of the functions ¢, (n) and @ (n) simply assures the following,
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S 1 7 O
2 .00 ) =— [ @)=k 26)

The ideal function set with respect to correlation properties, is characterized by the ideal
auto-correlation function,

m=0

, 1

} k=0,1,..,N -1 (2.7)

and the ideal cross-correlation function requires sinc functions and is given as
R (m)=0 fork #1,0<k,/<N-1 8)

Any imperfection in auto-correlation and cross-correlation functions results in
Inter-carrier Interference (ICI), Inter-symbol Interference (ISI) and Multiple-user
Interference (MUI) in multi-user and multi-carrier communications.  Therefore,
depending on the application, the correlation properties of the functions should be
considered in the design of the set.

In multiple-access communications and signal analysis applications, not only the
correlations between functions but also the time and frequency localizations of the
functions are crucial. For example in FDMA systems, the functions in the set are
required to be precisely frequency localized since each user is assigned a frequency band.
Thus, the functions in the set are required to be maximally narrow in frequency domain in
order to serve the maximum number of users in a limited frequency band. Similarly, in
CDMA communications, the basis functions or user spreading codes are required to be
maximally spread both in time and frequency. Oppositely, signal analysis applications
where the basic objective is to extract local features of a signal in both time- and

frequency-domains, require a function set whose spread is simultaneously narrow in both
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domains [39]. However, the Uncertainty Principle defines the limits of the spreads in

time and frequency domain as explained in the next section.

2.2 Uncertainty Principle
2.2.1 Uncertainty in Continuous-time
Let @(t) <> ®(Q)denotes the continuous-time Fourier transform pair satisfying the

relations

d(Q) = Tq)(t)e’jg’dt

1 +oo (2‘9)
o(0)=—— [@(Qe'"dQ
2T 2
Uncertainty Principle for the continuous time case, asserts that [39]
0,0, 2 E (2.10)

where o, and o, are, respectively, the RMS spreads of ¢(¢)and ®(Q) around the center

values. That is,

2

-0 lp)f

GT 2
. E @2.11)
j(Q — Q) |D(Q)| dr
o’ == ,
Q E
where E is the total energy in the signal and given as,
E= [|pw[dr= [lo@fdf (2.12)

and 7 and Q refer to the center of the time and frequency signals as
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oo

j tlo)| dr

—o0

|

E (2.13)

1 7% 2
5_5;’_£Q|¢(9)| dQ

E

2.2.2 Uncertainty in Discrete-time
The discrete-time version of the Uncertainty Principle is as follows; ¢(n) <> ®(e™)is the

DTFT pair satisfying the equations [37, 38],

D)= ) plme "

U (2.14)
- joy, jon
o(n) 2”Jrcp(e Ye' " da

Time and frequency centers of discrete-time signals are calculated as

oo

> nlgm|

(2.15)

where, E is the total energy of the signal,
< » 17 T
E= n;q[ﬂn)‘ :—275_{ |@™) dew (2.16)
The spreads of the function ¢(n)in time and frequency are

S (- |

n=—co

ol =
E 2.17)

51; I]'(a)—cT))z @) do

@ E






CHAPTER 3

ORTHOGONAL BLOCK TRANSFORMS

3.1 Introduction

A block transform in signal analysis applications, is widely used to decorrelate an input
signal. In these applications, the correlated input signal is represented as a linear
combination of the basis functions of the block transform. Each basis function
contributes to the composite signal as much the corresponding uncorrelated transform
coefficient. Among the various orthogonal transforms, KLT is optimum compared to all
other transforms; it perfectly decorrelates the input signal as well as packing the signal
energy into less possible transform domain coefficients. However, it is signal dependent.
On the other hand, DCT, DST, WHT and DFT are signal independent orthogonal
transforms and all the basis functions in the transform matrix or set are linear-phase.

In communications, orthogonal function sets are employed in multi-user
communications. Each user is assigned a different function from a set. The functions in
the set are orthogonal either in time, frequency or code domain. All the users’ signals are
summed and the composite signal is sent to the channel. This transmitted signal can be
represented as a linear combination of orthogonal functions of the set used in the

application.
Assume that a function set {¢,(n)}, k=0,1,..., N —1satisfies the orthonormality

condition of

0 otherwise

N-l . i k=1
> (g (n) =Sk —1) ={ } (3.1)
n=0

16
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If Equation (3.1) is satisfied, any nontrivial discrete-time signal x(n) can be represented

as a linear-combination of the functions in this set as

x(n):NZ_lﬁk(Dk(n) 0<n<N-1 (3.2)

k=0

and the transform domain coefficients are defined as

6, :fx(n)@*(n) 0<k<N-1 (3.3)

n=0
The functions in the set {@, (n)}, k=0,1,..., N—1 form an orthonormal basis set. Since

the transform is orthonormal, the total energy in the time domain is equal to the total
energy in the transform domain.

DCT, DST, WHT and DFT are the most popular examples of block transforms
used in digital signal processing. The orthogonal functions of DCT, DST and WHT are
real-valued whereas those of DFT are complex-valued. Other than these block
transforms, Oppermann proposed an orthogonal function set family with a wide range of
correlation properties [25]. In this chapter, all these function sets will be briefly
explained to form the basic theoretical background of the main interest of this thesis,

Generalized Discrete Fourier Transform with Non-linear Phase.

3.2 Real Orthogonal Transforms
3.2.1 Discrete Cosine Transform
DCT is widely used in image processing and signal compaction applications. For highly
correlated input signals, it closely approximates the optimum transform, KLT. This

orthogonal set is defined as [39]
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3.2.2 Discrete Sine Transform

DST is also used in signal analysis and this family is defined as [40]

_ ’ 2 . (n+D(k+DHrm 3
9. (n)= N+lsm N+ 0<k,n<N-1 (3.6)

Similar to DCT, there are eight different DST’s in the literature and the one in Equation

(3.6) is the most common one. DST corresponds to twice the length DFT of real signals
with odd symmetry. Similarly, bases of DST as defined by Equation (3.6) in time and

frequency domains are given in Figure 3.2.
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Figure 3.2 DST transform bases in time and frequency domains for N=8.



20

3.2.3 Discrete Walsh-Hadamard Transform

The discrete-time Walsh function set is generated from the analog Walsh functions. It is
a complete set of N orthogonal sequences defined on [0, N —1}. The samples of each
discrete sequence are +1 or -1 valued. The sequences of the set are defined as [39]

¢(n)=1, 0Sn<N-1

4n) 1 0<n<N/2-1 37
n)= .
' -1 N/2<n<N-1

k k
¢k (n) = ¢([E]9 2n)¢(k - 2[5]a n)9 k = 2, 3’ ey N '1
By simple shuffling of the rows of the discrete Walsh matrix, Hadamard matrices are

formed. These matrices of order N =2” are defined recursively as,

"=l -

H _ L[ Hy =H QH
2N \/E HN _HN { N

(3.8)

where ®represents the Kronecker product. Figure 3.3 displays the WHT bases
generated by Equation (3.7). Hadamard matrices are very popular in signal processing
and also in communications due to the simple generation of higher size codes by a

Kronecker product operation.
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Moreover, if the circulant matrix represents a covariance of a real signal, the
eigenvalues corresponds to variances of the signal at the corresponding frequency band.
As a conclusion, the unitary DFT matrix diagonalizes any circulant matrix and

completely decorrelates any signal whose covariance matrix has the circulant property.

3.3.2 Oppermann Function Set

Oppermann proposed a new family of constant modulus complex function sets and also
showed that the well-known Frank-Zadoff and Chu Sequences are the special cases of his
family [23].

The Oppermann function family is defined as [23]

Appp (ki) = (~)* exp [Mj
N (3.15)

i=12,...N
where k is an integer in the range[l, N ) and relatively prime to N. In order to generate the

maximum number of sequences in a set, N has to be chosen as a prime number [23, 25].
The number of sequences in this case is equal to N-I. In [25], it was proven that
Oppermann codes are orthogonal only for the case of p=1 and m is any positive nonzero
integer. Also, Oppermann proved that for the case of p=1, all the functions in a set have
the same auto-correlation magnitudes [23]. The auto-correlation functions of each
sequence differ only in phase. Figure 3.8 displays the Oppermann function set for N=7

and {m, p,n} ={1,1,2.98} in time and frequency domains.

As mentioned in Section 3.2.3, Walsh-Hadamard function set is linear phase in
frequency, with even or odd symmetry in time. A Walsh-like function set is generated,

waiving the requirement of the linear-phase property of Walsh-Hadamard basis functions.






CHAPTER 4
GENERALIZED DISCRETE FOURIER TRANSFORM

WITH NON-LINEAR PHASE

4.1 Introduction
Generalized Discrete Fourier Transform with Non-linear Phase provides a unified
framework, where the linear phase DFT is extended to non-linear phase DFT. The
theoretical analysis of GDFT framework will be given in this chapter starting from the
well-known roots of unity concept. In the following chapters, several applications where

GDFT framework is employed to improve system performance will be discussed.

4.2 Theory of DFT and GDFT
An N" root of unity is a complex number satisfying the equation
Z¥=1 N=012,.. (4.1)

If Z holds (4.1) butz" #1;0<m< N -1, then Z is defined as a primitive N" root of

2 3z
. = I el .
unity. As an example, z;, =e¢ * and z,=e ? are the two primitive N™ roots of unity for

J(Q2xIN)

N=4. The complex number z =e is the primitive N™ root of unity with the

smallest positive argument. There are N distinct N™ roots of unity for any primitive and

expressed as
7. =(z,)" k=123, ..,N Vp (4.2)

All primitive N™ roots of unity satisfy the unique summation property of a geometric

series expressed as follows [44, 45]

28
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N+l (V-1 (LN =1
e @) = {o N>1} v *3

Now, define a periodic, constant modulus, complex sequence {e, (n)} as the " power of the first

primitive N* root of unity z, raised to the n™ power as

e (M0 (z)" _JQrr/N)n

n=0,12,..,N -1 and r=0,L2,... ,N -1

(4.4)

This complex sequence over a finite discrete-time interval in a geometric series is

expressed according to Equation (4.3) as follows

1Z le (n)___lzNz—é(zl ]{IZN 1 ](27Zr/N)n

N“n n
1, r=mN 4.5)
=30, rzmN
m =integer

This mathematical property is utilized for the factorization of Equation (4.5) into two
orthogonal constant modulus functions where one defines the discrete Fourier transform

(DFT) set {e, (n)}satisfying the orthonormality condition

<e,(n),e (n)>=— N Zn o e (n)e] (n) = ¥ Zn—o /AN Y(k=Dn

1, k—=l=r=mN (4.6)
=:0, k=l=r#mN
m,n =integer

The notation (*) represents the complex conjugate of a function. One might rewrite the first

primitive N* root of unity as Z, = eja)o where @, =27/ N, and it is called the fundamental
frequency defined in radians.

Equation (4.5) can be generalized by introducing a product function in the phase
defined as ¢, (n)=¢,(n)- @ (n) =r and expressing a constant amplitude orthogonal set as

follows,
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N—=1 N-1
NZ oI @mIN)m _ NZ e/ CrIN)p(mn _ NZ Oek(n)e, (n)

L @)=~ (n)=r=mN

N-1 4.7)
N Z ](2”/N)[¢k(n) O (min _ — O, (D(n) — ¢k (n')_wl(n') =r=mN
m,n = integer
Hence, the basis functions of the new orthogonal set are defined as
i(27m/N
e, om0 e %D 01 N1 4.8)

This orthogonal function set is called as the Generalized Discrete Fourier
Transform with Non-Linear Phase. It is noted that infinitely many sets with constant

amplitude and nonlinear phase functions are available.
As an example, one might define the discrete time rational function @, (n) in

Equation (4.8) as the ratio of two polynomials,

@, (n) = kNPT = - N<M; k=0,1,....N-1. 4.9)
n N

Assume that the denominator polynomial D, (n)=1 in Equation (4.9), then the order N
numerator polynomial in 7 is defined as follows

N .
@, (n)=N(n) = Zj=lakjnbk’ =a,n % +a o7 b2 +a,n b3 4 ta,n P (4.10)
In general, the polynomial coefficients {4} and {c,} are complex, the powers {b,} and
{dy;} are real numbers. The following remarks link the proposed GDFT framework to the

other known transforms and show its potential impact on a multicarrier communications

system.
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Remark 1: DFT is a special solution of GDFT where @,(n)=aq,, =k,
a,=a,=...=a, =0 and b, =b,=..=b, =0 in Equation (4.9) and Equation (4.10)
for all k. Note that having constant valued {¢,(n)} functions for all £ makes DFT a

linear-phase transform.

Remark 2: In general, n and k parameters do not have to be integer numbers and might
be real as long as they satisfy the orthogonality conditions of Equation (4.7). Since there
are N orthogonal functions in the set, one needs to have N distinct and real £ values. In
that case, the real £ values are mapped into &k integer numbers from 0 to N-/ and used as
the indices of the basis functions in a set.

Remark 3: There are infinitely many possible GDFT sets available in the phase space
with constant power where one can design the optimal basis for the desired figure of
merit. If the application considered requires a function set with minimized auto- and
cross-correlation properties and does not mind about the non-linear phase, naturally, DFT
is not the optimal solution for this specs. Therefore, one can exploit this fact to design
various GDFT’s where CDMA and OFDM performances in a multicarrier
communications system might be improved over the existing solutions like Walsh
transform and DFT.

Remark 4: Since DFT is a special solution of GDFT, it offers only one set to be used in
a multicarrier communications system. Therefore, the carrier level (physical layer)
security is quite vulnerable against a potential intrusion to the system. In contrast, the
proposed GDFT provides many possible carrier sets of the same and various lengths with
comparable or better correlation performance than DFT. The availability of rich library

of orthogonal constant amplitude transforms with good performance allows us to design
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adaptive systems where basis assignments as well as code allocations are made
dynamically and intelligently to exploit the current channel conditions in order to deliver

better communications performance and improved physical layer security.

4.3 GDEFT Design

Consider the DFT matrix of size-N as

A, =[A,. (k,n)]=[e/PV"] kn=01,2,.,N-1 @11

DFT
GDFT can be defined as the generalization to DFT based on the performance metrics
related to the application under consideration. Hence, GDFT matrix is expressed as a

product of two orthogonal matrices as follows

AGDFT = ADFTG
-1
A =]
(—;IDFT AGDFzT . @.12)
AGprr = AGDFT GG~ =1

where the notation (*T) indicates that conjugate and transpose operations applied to the
matrix and I is the identity matrix.

Note that G is the complex orthogonal generalization matrix yielding A;,,, in
Equation (4.12) with the desired time and frequency domain features. Figure 4.1
summarizes several G matrix families that are useful to design Agpg out of Ay,

matrix.
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G MATRIX FAMILIES

v v

DIAGONAL G MATRIX FAMILY FULL G MATRIX FAMILY

v v '

Constant Valued Non-constant Valued " Tt"f’° Diaggn:l
Diagonal Elements Diagonal Elements atrices with Non-
constant valued

diagonal elements

Figure 4.1 G Matrix Families used for generating GDFT matrices out of DFT matrix.

4.3.1 Diagonal G Matrix Family

The diagonal elements of G matrix must be constant amplitude for orthonormality of
GDFT basis functions in Equation (4.12) and one might define it in the following three
forms.

Constant Valued Diagonal Elements: The elements of this diagonal matrix are the

same constant amplitude complex number as expressed in

eje, k=n
G(k,n)=3 0, k#n 4.13)
k,n=0,1,..N

This type of G matrix generates @ radians per cycle phase shifted version of A, matrix

as A, - Moreover, the linear phase property of A, is still preserved in this case.

Non-Constant Diagonal Elements: With non-zero, non-constant and constant modulus

diagonal elements, G matrix of this family is defined as



RZ

ejg"k, k=n
Gk,ny=4 0, k#n (4.14)
k,n=0,1,..N

The rows (basis functions) of A, in Equation (4.12) are obtained as the element by

element products of A, rows with the elements of diagonal G matrix in this scenario.

It is observed that each sample of a basis function in A, is phase shifted independently

of the other samples. Therefore, the resulting basis function set is entirely different than

DFT function set. On the other hand, elements of each column in A, matrix are phase

shifted in the same amount.

Non-Constant Two Diagonal Matrices G; and Gz: A, matrix is redefined in such a

way that phase shaping of its basis functions will be even more flexible as shown in the

following matrix equation

where

and

Acprr = GiAppr G,y
AGDI."TA(K.}{)FT = I (415)
GG =1adG,G, =1

e’ k=n
G, (k,n)=4 0 k#n (4.16)
k,n=0,1,. ,N-1

't n==k
G,(k,n)=3 0 nzk 4.17)
n,k=0,1,..,N-1

Note that the kernel generating A, matrix for this case is expressed as follows
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JIQr I NYkn+6, +7,,1

{e(m}Ue k,n=01,...,N-1 (4.18)

This design method allows uniquely modifying the phase of the (k,n)™ element of the

Appp matrix as the (k,n) " element of the A, matrix.

4.3.2 Full G Matrix Family
The elements of the orthogonal G matrix in Equation (4.12) might or might not be
constant amplitude in this case and defined as

Gy

G(k,n)=| 8kn® (4.19)
k,n=0,1,.N

where g, and ¢, are the amplitude and phase values, respectively, for the (k,n) th
element of the matrix.

The overall computational cost of AGDFT implementation is the combined
implementation cost of A,,, and G matrices. Since DFT has its efficient fast

algorithms, FFT, the complexity of G matrix dictates the required additional
computational resources to implement GDFT. Therefore, this point needs to be
considered in applications when one generalizes DFT into GDFT.

Remark S: It is shown that popular orthogonal Walsh transforms and recently proposed

Walsh-like transforms are special solutions of GDFT.

Ayarse = Bopir = AprrOwarse

—_ — 4.20
AWALSH—LIKE = AGDFT = ADFT GWALSH —LIKE (4.20)

As an example, G, matrix for N=4 and Gy, ¢y 1« for N=8 are shown to be as

follows,
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10 0 0 |
G _|0 0 071673 071¢70%
WALSH O 1 O 0
0 0 0.71e777025 (.71¢/70%

[ 0 0 0 0 0 0 0 |
0 0.656—1'0,637[ O 0'65ei0A87ﬂ' O 0.278—1‘0.13/: 0 0.27e—i0,63lr
0 0 0.71e0757 0 0 0 0.71e770%¢ 0
0 027e70%" 0 027¢7%%% (0 0.65¢70" 0 0.65¢5%

Gyprsu-vixe = 0 0 0 0 e 0 0 0
0 027¢°%" 0 02777 0 0.65¢°7" 0 0.65¢"'**
0 0 0.71ei()‘75/r 0 0 0 07 1ei0.25ﬂ 0
L 0  0.65¢°%" 0 0.65¢7°%7 ¢ 0.27¢0137 0 0.2706% ]

Similarly, DST, DCT and other known block transforms can also be expressed
within the GDFT framework with their unique G matrices.
Remark 6: It is shown below that the orthogonal Oppermann codes are also special

solutions to the proposed GDFT framework. The Oppermann codes are defined as [23]

Aorr (k1) = (1" exp (MJ
' (4.21)

i=12,....N
where k is an integer in the range[1, N ) and relatively prime to N. Note that if one defines

the parameters of Equation (4.10) for this case as

a,=0j=3,4,.,N, b,=0j=34,.,Nand

_ k™ +kN

ay
2
1 (4.22)
b,=0, a, :_2'; by, =n-1
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The maximum number of the functions in a set, N-1, is obtained when N is chosen

as a prime number. In order to generate the complete Oppermann set using Equation

(4.22), the sequence with the index k =0 is included in the set. In this case, G,pp for the

Oppermann set of N=7 with the parameters{N,m, p,n}={7,1,1,2.98} is shown to be as

follows,

) 0 0 0 0 0 o]

0 0 0 0 e’ 0 0

0 0 e 9 0 0 0

Gopp =| ™ 0 0 0 0 0 0

0 0 0 0 0 ™% 0

0 0 0 ™% 9 0 0
0 I () 0 0 0 0 |

Note that, the first row in the function set generated with G, ,,will be ignored if one
needs to generate the Oppermann codes usingG,,,. With some shuffling on this fnatrix,
one can easily show that this G,,, matrix is a member of diagonal G matrix family.

Remark 7: The term Generalized DFT was also used by other authors in the literature for
their methods reported in [46-49] where the time and frequency index n and k in Equation
(4.11) is simply replaced with n+a and k+b for some real a and b, respectively. Thus, the

function set in their design is simply the shifted version of the DFT set with linear-phase

property. Therefore, GDFT is the superset of their technique.



CHAPTER 5

CORRELATIONS OF GENERALIZED DFT

5.1 Introduction

Theoretically speaking, there are infinitely many orthonormal function sets due to the
sake of Gram-Schmidt algorithm. All these function sets differ in the time and frequency
spreads and also the correlation properties of the basis functions. In signal analysis
applications, mostly the time and frequency domain spreads are crucial and the function
sets are designed on these metrics. - If the application requires a function set optimum on
correlation properties such as CDMA systems, the set is optimized on several correlation-
based metrics.

There are several different types of correlation functions defined in the literature
to characterize function sets such as even correlation, periodic correlation etc. All the

metrics used in this study depend on aperiodic correlation functions (ACF) of code sets.

In Equation (5.1), the metric d,,(m) is defined as the ACF between two complex

sequences, namely e, (n) ande, (n) [50],

N-l-m .
% e,(n)e (n+m), O0<ms<N-1
n=0
B 1 N-l+m . < 5 1
d, (m)= N 2 e, (n—m)e, (n), 1-N<m<0 (5.1

0 , |m|2N

38
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5.2 Performance Metrics
The following correlation metrics are used for optimal GDFT design and performance

comparisons of various function sets. The considered function set is defined as

{ek(n)}; k=012,...,M-1, n=01,.. N-1 where N is the length of each function or basis and M

defines the set size.

Maximum Value of Out of Phase Auto-correlation (d

am

): d_,, is the maximum value

of M autocorrelation sequences for the entire set obtained from Equation (5.1) and given

as

d,, = max{ldk’k (m)l}
0<k<M (5.2)
I<m<N

Maximum Value of Cross-correlation (d

cnt

): d_, is the maximum value of all possible

cross-correlation sequences in a function set also calculated from Equation (5.1) and is

expressed as

=maxj ,

0<k,I<Mk#l (5.3)
0< N

Maximum Value of Auto- and Cross-Correlation Sequences (d__ ): The maximum

max

correlation value d_, of a set of sequences is calculated as
dnox =max{d,,.d,,} (5.4)
Mean Square Value of Auto-correlation Sequences, (R,.), and Cross-correlation

Sequences, ( R, ): The quantitative measures given above are important to highlight the

worst case scenarios in general. In contrast, the average performance counts more in

some applications. Therefore, the mean square values of cross-correlation sequences are
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taken into account as another performance metric. Furthermore, the average of mean
square auto-cotrelation sequences for each function in the set, R,., and the average of

mean square cross-correlation sequences for all function pairs in the set, R.., are

introduced as follows [50],

1 M~-1 N-1 2
R,c ="A7 Z Z ldk,k (m)‘ (5.5)
1 M-1M-1 N-1 2
Ree = MM -1) & Z |dk1(m)| (5.6)

The merit factor (F): The merit factor for the k™ code is the ratio of the energy in the
main lobe of the autocorrelation function over the total energy in its side lobes and

mathematically expressed as [51]

4,0
k= N-l 2
23 |d, . (m)

m=1

3.7

In the following sections, optimum GDFT sets based on the above metrics will be

discussed. The cost function,Cy, ,, , for the optimization of GDFT sets with N-length M-

sequences based on these metrics is defined as follows

M-1
CN,M = az Fk _ﬂdam - 5dcm —nRAC - }/RCC (58)
k=0
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5.3 Bounds for Correlation Metrics

In the literature, several bounds are proposed for the metrics defined in the previous

section. Sarwate showed the relationship between the peak auto-correlation d,, and the

4

peak cross-correlationd,,, for complex valued codes as follows [52],

2(N-1) d

(2N -1)d_ > T (5.9)

which leads to the Welch bound for constant modulus complex sets, expressed as [53],

M -1
MQN-1)-1

(5.10)

dmax = max {dum ’ dcm} = \/

In Table 5.1, the achievable Welch bounds for various length constant modulus complex

sets are given.

Table 5.1 Welch Bounds for Various Code Lengths

M=N dmax
8 0.243
16 0.172
32 0.123
64 0.088

Natarajan, Das and Stevens showed that for any complex code sequency, the R,
and the R.. metrics are bounded by ,
Ree(M -D+R,c2M -1 (5.11)

where M defines the size of the set.
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The maximum value of R,.for a constant modulus complete set (M =N) is

shown to be,
Rycmax = (V-DEN ) (5.12)
’ 3N
The proof of Equation (5.12) is given in Appendix A. Inserting R,. ., in
Equation (5.11) leads to R ... as,
R min = %1 (5.13)

Table 5.2 R, . and R.. . Values for Various Length Constant Modulus Basis Sets

N=M Ry max R min
8 4375 0.375
16 9.688 0.354
32 20.344 0.344
64 41.672 0.339

In the literature, for any constant modulus code, the bound ford,, is given as [22, 54-57]

1
d, 2—
an = a7 (5.14)

Moreover, any constant modulus complex sequence meeting the bound is called as
polyphase Barker Code. Barker Codes are widely used in radar applications, where the
detection performance directly relates to the auto-correlation property of the waveform

employed in the system.
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5.4 Phase Shaping Function and GDFT Design
In this section, the optimal design of function sets based on the performance metrics
defined in the previous sections will be considered. In order to simplify the analysis and

decrease the number of variables to optimize for each function set, the phase function

{(ok (n) n} of Equation (4.8) is decomposed into two functions in the time variable, n, as
follows

O (W) =@ (Wn=lkn+y(n) for k=0,1...,N-1 and n=1,..,N-1

W) = gy () —kn =[gy, (M) =k for k=0,1,..,N-1 and n=1,..,N-1

~ (5.15)
p0)eR ¢, (0)=w(0)
Hence, the basis functions in this case, are defined as,
Jo Gty ()
ek(n)D e k,n=0,1,. ,N-1 (5.16)

The cross-correlation sequence of a basis function pair (k1) from this set with

length-N becomes,

N—l 27 o oo — BBy, (ntm)
JCDHHm IR

R@k ) (m) = n.z__:()
_ NS D tme k=Dt (- (e m)] (5.1)
= X e N

n=0

where RAk@ (m)=0; Vm for the ideal case, and RAk@ (0) =0 implies the orthogonality

of the basis function pair. Similarly, the auto-correlation function of a basis function

from this set is defined as
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(—Wk (n) ( )¢k (n+m)

R@k@k (m) = nZO ¢

N=L Gk (n) -y (tm)] (5.18)
= > e N

n=0

h A = ideal .
where R¢k¢k (m) = 8(m) for the ideal case

Remark 2: It is found out that the magnitude of auto-correlation functions of the

individual codes in any GDFT set defined in the form of Equation (5.16) are the same.

PZ 2N 27
. . iEDgm P (m) .
Proof: The auto-correlation sequences of the basise” ¥ and e " are given as,

.2 n
N-1 j(%)@k(”) e-ﬂwﬁ)%(“m) Nt e ke )=y ()

(m)y= X e
(l’k(ok n=0 2o
i 1
R ()= NZI J(—)col(n) —j3E )(/’1(n+m) Nz—l ) ](_Nfi)[_lm ()= (nm)] (5.19)
a9 n=0 =0
Magnitudes of this autocorrelation sequences are therefore,
(m)l =le J( km)NZIeJ(—)['//(n) w(n+m)] Nzlej(—)[l//(n) w(n+m)]
n=0 n=0
(m)’ _ i zm>NZ1 I =y (m)] Nzl I D -y (wm) (5.20)
n=0 n=0
Therefore,
J( )[l//(n) w(n+m)]

The correlation sequences of a pair of basis functions are incorporated in the R,

and R metrics of Equation (5.5) and Equation (5.6), respectively in the following

design example. The numerical optimization software tools Mathematica and MATLAB

are used to obtain optimal phase shaping functions with respect to the metrics of Equation
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The resulting R,. and R.. values for these optimal GDFT designs are tabulated in Table

5.3 along with their DFT counterparts for comparison purposes.

Table 5.3 R,. and R.. Values for the First Two Functions of Optimal GDFT Sets with
N=8 Along with Their DFT Counterparts

Numerical Search Tool OPTIMIZATION METRIC (N=8)

and Optimal Phase R R

Shaping Function AC cC
GDFT (Mathematica, 0.0877 0.4219

FindMinimum)

(n) {-1.37,-2.53,-2.21,3.39,0.0, -4.21,- | {1.637,-0.79,-0.54,2.01, 1.59, -
4 3.19,-0.83 } 0.83, 1.73, 2.44}
GDFT (MATLAB, 0.086 0.4205
fminsearch) ) )
(n) {-1.38,-2.56,-2.24,342,0.07, -4.27, | {1.673,-0.87,-0.51,2.02, 1.51, -
v -3.27,-0.80 } 0.86,1.70,2.46 }

DFT 4.375 0.8536

fminsearch of MATLAB finds the minimum value of a function of several
variables. This function needs an initial value to start and is mostly preferred in
unconstrained non-linear optimization processes. It uses Nelder-Mead Simplex Method
[68] to find minimum values. FindMinimum of Mathematica is similar to fminsearch
with the difference of the methods it uses in the optimization process. Several
optimization methods are available with FindMinimum including Gauss-Newton,
Nonlinear Conjugate Gradient, Principal Axes Methods. These methods are well
discussed in [69, 70]. In the search process explained above, no method is specified in
the optimization with FindMinimum. In that case, FindMinimum automatically assigns

the method according to the specifications of the function to be minimized.
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5.5 Optimal GDFT Design with Brute Force Search
In the previous section, the optimal pairs (M=2) in a GDFT set with respect to the
performance metrics are discussed. In this section, the design will be extended to

complete sets where N =M . As a simple example, only two terms in Equation (4.10)

are used as
b b
P (n) = a,n k1 +tag,n k2
ak1=k
b,,=0 (5.22)

b
@ (n) = k+ ag,n k2

Therefore, the basis functions of the set are defined according to Equation (4.8) as

(27 /N
ek(n)=e]( ZIN) @y (n)n

e (n)zej(2”/N)(k+ak2nbk2 )n:ej(Zﬂ/N)[kn+ak2n(bk2+])]
(5.23)

(2”/N)knej(27t/N)[akzn(bkzﬂ)]

€ (n)=ej k,n=0,1,.. N-1

Note that the first exponential term of the last equation is the DFT kernel with linear

phase while the second exponential term defines the G matrix and {ek (n)} are the row

sequences of A, matrix that is defined in the following matrix form

Acprr = AprrG (5.24)

In this form, by changing the values of real a,, and b, coefficients, one might obtain

many different GDFT sets with desirable auto- and cross-correlation properties and

nonlinear phase functions.
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The entire phase space is searched with various search grid resolutions using ff
force search algorithm in order to find the optimum G matrices. In the previous section,

several metrics have been defined for the evaluation of various code sets. This section

displays the values of these metrics for optimal A, matrices obtained in the solutions

space utilizing a brute-force search where the search grid resolution is defined by the

binary valued a,, =a, and b,, =b, coefficients with the corresponding number of bits
per coefficient. Table 5.5 tabulates the optimal values of the metric d,,, along with
other performance metrics for various search grid resolutions defined as A, p, =N /2"
where b is the search grid resolution in bits per coefficient and 0<a,,b, <N -1 for the

code length of N =8 .

Table 5.5 Values of Various Metrics When Optimal Design is Based on the Performance
Metric d,,, for the Code Length of N=8

(bitbs /) dam dem (g;f;.) Rac Ree F
4 0.301 0.442 0.442 0.526 0.925 1.900
6 0.376 0.409 0.409 0.854 - | 0.878 1.171
8 0.341 0.387 0.387 0.576 0918 1.738
9 0.376 0.387 0.387 1.095 0.843 0.912
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after 8-bit of

X

As can be seen from the table, there is no more improvement in d,,

resolution in the design. This is due to the limited structure of ¢, (n) in Equation (5.22).
Similarly, Table 5.6 displays the correlation performance metrics for various

known codes along with the optimal Agpm set obtained through a brute force search

based on the design metric d,, for the length of N=8.

Table 5.6 Performance Metrics for Various Popular Code Families with the Length of

N=7or8
COde dam dcm dmax RAC RCC F
Walsh [8x8] 0.875 | 0.875 | 0.875 | 2.375 | 0.661 | 0.421
Walsh-like [8x8], [41] 0.625 | 0.625 | 0.625 | 0.875 | 0.875 | 1.143
DFT [8x8] 0.875 | 0.327 | 0.875 | 4.375 | 0.375 | 0.220
7/8 Gold 0.714 | 0.714 | 0.714 | 0.857 | 0.878 | 1.167

Oppermann Set,[25] (0ptduy ) | 155 | 0419 | 0.425 | 1278 | 0.787 | 0.783
(m=1, p=1, n=2.98, N=7)

AGDFT

[8x8] (optd 0.376 | 0.387 | 0.387 | 1.095 | 0.843 | 0.912

max )

Among all the codes compared, GDFT set gives the minimum d_, value.
Comparing the d_,, value of optimum size-8 GDFT set as given in Table 5.6 with the

Welch bound for N=M=8 as given in Table 5.1 ,one can see that the achievable

d_,. value with GDFT is equal to 1.6 times the Welch bound. Also, it is observed that
the DFT set yields the maximum value of R,. or the minimum value of R_.for this

length when compared its R,. and R, values with Table 5.2 for N=8.
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m number of bits, the phase resolution is given as Af = PTR m 1is chosen as five in the

-

search process. Later this brute force based optimal solutions are used to define a closed
form expression for the phase shaping function (PSFE),w (n), given in Equation (5.15)

via curve-fitting. A signal processing software tool, namely Table Curve 2D, is used for
curve-fitting operation. The fitted PSF to the phase of the optimal GDFT set obtained

based on the minimization of the design metric d,,, for N=8 is expressed as

n—b1 i n—b2 ’
w(n)=a, exp| — +a,exp| — n=0,1,...,N-1 (5.26)
1 q 2 c

This is a second degree Gaussian function defined with six defining parameters
{a,,b,,¢;,a,,b,,c,}. This PSF has shown to yield the minimum values of d,, as well as
R, obtained by the brute-force algorithm for all sizes. For d,, optimized GDFT, the
set of parameters is given as{a =1b =1.75,c =3.75,a,=1.75,b, =6,c, =0.5}.
Similarly, for R,.optimized GDFT set, these parameters are obtained as
{a,=-1.13,h, =5.03,c, = 0.18,a, = 6.35,b, =1.83,c, =1.3}. Note that all the sequences in
the minimum R,. set for N=8 satisfy the equality of Equation (5.14) and therefore they
all are polyphase Barker Codes. Table 5.7 displays the correlation performance metrics

for various known codes along with these optimal 4;prr sets for the length of N=7 or 8.
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Table 5.7 Performance Metrics for Various Popular Code Families Along with Optimum
GDFT Sets ond,,, and R, for N=7 or 8

COde dam dcm dmax RAC RCC F
Walsh [8x8] 0.875 | 0.875 | 0.875 | 2.375 | 0.661 | 0.421

Walsh-like [8x8], [41] 0.625 | 0.625 | 0.625 | 0.875 | 0.875 | 1.143

DFT [8x8] 0.875 | 0327 | 0.875 | 4375 | 0375 | 0.220
7/8 Gold 0.714 | 0.714 | 0.714 | 0.857 | 0.878 | 1.167
7/6 Oppermann [24]

(optd,,, ){m,n, p} ={1,1.025,7} | 0.857 | 0.381 | 0.857 | 3.714 | 0.381 | 0.269

Acprr [8x8]
(optd,,)
A6prr [8x8]
(optR,.)

0.682 | 0.288 | 0.682 | 3.111 | 0.550 | 0.321

0.125 | 0.679 | 0.679 | 0.089 | 0.987 | 11.23

Figure 5.9 and Figure 5.11 display the closed form phase shaping functions,

w (n) s, defined by identifying the parameter set of Equation (5.26) for low- d,, and
low-R,. GDFT design, respectively. Moreover, Figure 5.10 and 5.12 display the
nonlinear phase functions of low- d,,, and low- R, GDFT sets generated by using /(n)
of Equation (5.26) along with linear phase functions of DFT where i (n) = 0 for N=8, in

the time domain, respectively. It is shown that relaxing the linear phase property of DFT

offers nonlinear phase GDFT solutions with various correlation properties.
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5.8 Higher Size GDFT Sets with Closed Form PSF’s

In this section, the previous discussions will be extended to the higher size optimal GDFT
sets based on two metrics, namely d_, and R,.. The goal is to define the parameters of
the function defined in Equation (5.26) generating orthonormal GDFT basis yielding
minimum values of d_  and R, for several sizes. The importance of minimizing these
two metrics will be emphasized in the following chapters through system simulations.

The numerical optimization tool, fminsearch of MATLAB is employed for
obtaining higher size PSF’s of the optimum GDFT sets based on different design metrics.
The phase shaping function kernel of Equation (5.26) is used in the phase function of
(5.15) with diffefent values of the parameters {a,,b,,c,,a,,b,,¢,}. Since the phase is
already constraint to the interval [0,27], no additional constraint is put on the values.
The algorithm is run for four different transform sizes, N=16, 32, 64 and 128. The
performance metrics of the higher size optimum sets based on d,,, and R,. are tabulated
in Table 5.8 and Table 5.9, respectively.

Table 5.10 and Table 5.11 display the correlation performance metrics for various
known codes along with the optimal 4gper sets for the length of N=31/32 and

N=61/63/64, respectively.
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Table 5.8 Various Performance Metrics When Optimal Design is Based on the Metric

d,,, for Code Lengths of N =8, 16, 32, 64 and 128

Corresponding correlation metrics
optimized based on d_, along with DFT
Size (N)
dam dcm dmax RAC RCC

8 GDFT 0.703 0.288 0.703 3.261 0.534
8§ DFT 0.875 0.327 0.875 4.375 0.375
16 GDFT 0.764 0.267 0.764 6.918 0.539
16 DFT 0.938 0.321 0.938 9.688 0.354
32 GDFT 0.827 0.251 0.827 14.357 0.536
32 DFT 0.969 0.319 0.969 20.34 0.344
64 GDFT 0.894 0.243 0.894 25.61 0.593
64 DFT 0.984 0.318 0.984 41.67 0.339
128 GDFT 0.956 0.236 0.956 53.49 0.579
128 DFT 0.992 0.318 0.992 84.33 0.335

Table 5.9 Various Performance Metrics When Optimal Design is Based on the Metric

R, for Code Lengths of N = 8, 16, 32,64 and 128

Corresponding correlation metrics
. optimized based on R,. along with DFT
Size (N)

dam dcm dmax RAC RCC
8 GDFT 0.125 0.679 0.679 0.089 0.987
8§ DFT 0.875 0.327 0.875 4.375 0.375
16 GDFT 0.137 0.935 0.935 0.136 0.991
16 DFT 0.938 0.321 0.938 9.688 0.354
32 GDFT 0.083 0.966 0.966 0.105 0.997
32 DFT 0.969 0.319 0.969 20.34 0.344
64 GDFT 0.071 0.982 0.998 0.092 0.998
64 DFT 0.984 0.318 0.984 41.67 0.339
128 GDFT 0.044 0.992 0.992 0.056 0.999
128 DFT 0.992 0318 0.992 84.34 0.336
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Table 5.10 Performance Metrics for Various Popular Code Families Along with
Optimum GDFT Sets ond,,, and R,.for N=31 or 32

CO d [ dam dcm dmax RA C RC C
Walsh [32x32] 0.969 0.969 0.969 6.593 0.787
DFT [32x32] 0.969 0.319 0.969 20.34 0.344
31/32 Gold 0.387 0.387 0.387 0.968 0.961
31/30 Oppermann
{m,n, p}={,,1} 0.968 0.318 0.968 19.678 0.344
[25]
GDFT [32x32]
0.827 0.251 0.827 14.357 0.536
(optd,,)
GDFT [32x32]
0.083 0.966 0.966 0.105 0.997
(optR,.)

Table 5.11 Performance Metrics for Various Popular Code Families Along with
Optimum GDFT Sets ond,,, and R,.for N=61, 63 or 64

COde dam dcm dmax RAC RCC
Walsh [64x64] 0.984 0.984 0.984 | 10.391 0.835
DFT [64x64] 0.984 0318 0984 | 41.67 0.339
63/64 Gold 0.349 0.349 0349 | 0.995 0.984
61/60 Oppermann
(myn,py= {1,115} | 0.984 0.371 0.984 | 3924 0.346
[25]
GDET [64x64] 0.894 0.243 0894 | 25.61 0
opid.) . . . . 593
GDFT [64%64] 0.071 0.982 0998 | 0.092 0.998
0Pt Rac) ' ' ' ' '
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The phase shaping functions of the higher size GDFT sets discussed above are
given in Appendix B.
In Figure 5.21, 5.23, 5.25 and 5.27, the auto-correlation function of a code in

size-16, 32, 64 and 128 GDFT sets optimized based on R, is displayed along with the

auto-correlation function of a code in size-16, 32, 64 and 128 DFT set, respectively.

Similarly, cross-correlation functions of the first and second codes of low-d, based

GDFT design and the DFT set for N=16, 32, 64 and 128 are displayed in Figure 5.22,
5.24,5.26 and 5.28, respectively. Having zero correlation value at zero delay implies the
orthogonality of the basis functions considered. In the cross-correlation figures, only the
first pair is considered since this pair generates the highest cross-correlations for both
GDFT and DFT sets.

The main advantage of the proposed method is its ability to design a wide
selection of constant modulus orthogonal code sets based on the desired correlation
performance metrics mimicking the specs of real world application at hand. Moreover,
the proposed GDFT technique is an enhancement to the DFT based implementations with

potential performance improvements.















CHAPTER 6

SPREADING CODE DESIGN WITH GDFT FOR CDMA

6.1 Introduction
In this chapter, the performances of orthogonal GDFT codes in a DS/CDMA
communications system will be discussed. First the mathematical model of DS/CDMA
systems considered will be given. Later, the proposed GDFT codes will be employed in
synchronous and asynchronous DS/CDMA system in AWGN and Rayleigh multi-path

channels.

6.2 Mathematical Model for DS/CDMA Communications
Direct Sequence Code Division Multiple Access (DS/CDMA) is one of the most popular
applications among the various CDMA techniques. In DS/CDMA, each user is assigned
a spreading code as the carrier to transmit its data bits through the channel. In the
receiver, the received signal is despreaded by the locally generated code sequence and
then demodulated. In order to successfully despread the input sequence, the receiver
needs to know the code sequence of the intended user as well as to synchronize the
received signal with the locally generated code. After detection, the original data bits are

recovered.
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Assume that K™ user has its data sequence b,(f) and spreading code waveform

e,(¢) in continuous time mathematically expressed as [50]

b (t) = Z b, pr(t-IT)
[=—c0

(6.1)

o0

e ()= z e, (m)py (t—mT)

where b, e{+1,-1},p,(1)=1 for 0<t<7, otherwise p,(1)=0. T is the symbol
duration and 7, is the chip duration. The period of spreading code sequence e, (m) for K

user is N =T /T, which is called the spreading or processing gain. Note that, all the

analysis in this section is in base-band.

The received signal in a synchronous channel is expressed as
K-1
r(t)=n(t)+ Y 2Pe, ()b, (2) (6.2)
k=0

where K is the number of active users in the system, and n(f) is the channel noise and
assumed to be Gaussian with spectral density of N,/2. Maintaining synchronization

between users is possible in the case of the forward communication. However, it is not
possible to synchronize users in the case of the reverse communication. Therefore, for

the reverse communication, Equation (6.2) becomes
K-1
r(t)=n(ty+ > N2Pe,(t—7,)b,(t-7,) (6.3)
k=0

where 7,is the channel delay for £” user. If a filter matched to the reference user’s

transmitted signal, 5,(¢), is used in the receiver, the filter output is given by

Z, = |r(t)e,(t)dt (6.4)
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The correlator output at =7 simplifies to the following equation after some

mathematical manipulations [50]

K-1 R T
Z,=PI23b, T+ Y| by Ry (5,) +by Ry (3,) [+ [n0e 0yt (6.5)
k=1 0

k=l

whereb,, is I™ user’s transmitted data sent in the first symbol interval which is to be

detected in the receiver and the continuous-time partial correlation functions, R, ,(z) and

f(k,, (z) are defined as [50]

T

R, (1) = [e,(t-T)e,(t)at

0

. (6.6)
R, ()= [e,(t=7)e,(t)alt

for0<7<T. Pursey showed that for 0< ;T <7<(j+1)T, partial correlation

functions can be given as follows [50]

R, (©)=d,,(j-N)T, +[d,,(j+1-N)-d,,(j-N)l(z - jI.)

A 6.7)
R,, (r)= dk,I (DT, + [dk,l (J+D- dk,l DIz —-JT)

where d,,(m) is the ACF between two sequences, namely e,(n) and ¢,(n) as defined in

Equation (5.1). The second term in the parenthesis in Equation (6.5) is interference due
to K-1 users in the system and is called as multi-user interference (MUI). In order to
increase detection probability of the intended users bit, this term is to be minimized. In
other words, spreading codes with good cross-correlation properties must be used in the

system.
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In the case of fading channel, the above analysis is valid with the change in the
channel characteristic function. A frequency selective or multipath channel is modeled as.

an L-tap filter for the £ user active in the system and is formulized as [59]
Ly
h(®)= 2 Bem6=7,,) 6.8)
my =0

where Ly is the number of multipath components for user k, ﬂk’mk , is the amplitude of

each path, which is a Rayleigh distributed random variable. Therefore, the received
signal of this scenario becomes
K-1 Lt
r@)=n)+Y > N2PB,, e(t-7,, b,(t-7,,) (6.9)

k=0 my=1

The output of the correlator at the /™ receiver is obtained as

T K1 I
() =PI 2b,,f,,T+ [n(O)et-7,)dt+ ) Y o, (6.10)
0 k=0 my, =1

The third term in Equation (6.10) is the interference due to K-I active users and the
delayed (faded) versions of these user’s signals as well as the delayed versions of the
user’s own signal.

When the number of users is low in CDMA systems, the interested user signal
coming from farther distance will be masked if the other user signals are received at
higher power levels. This is called the near-far problem in CDMA systems. This
problem typically arises when the signal of interest is coming from cell boundaries and
can be combated in the base station providing power control. In this dissertation, it is
assumed that the base station provides perfect power control which ensures that signals

from all mobiles are received at the same power level P independent of their distances.



























CHAPTER 7

PEAK-TO-AVERAGE POWER RATIO REDUCTION IN OFDM WITH GDFT

7.1 Introduction

OFDM, with its spectral efficiency and robustness to multipath fading, has become the
most popular multiplexing method. However, the main disadvantage of an OFDM based
communications technique is its high PAPR at the transmitter. PAPR dominates the
power/battery efficiency of the radio transceiver. Non-linear devices in OFDM
transmitters clip the peaks of the transmitted RF signal resulting in in-band and out-of-
band interferences. In-band interference causes degradation in bit-error-rate (BER)
performance whereas out-of-band interference leads to spectral widening and energy
leakage to neighboring channels. Therefore, in the implementation of OFDM systems, a
high PAPR demands large back-off, higher efficiency RF power amplifiers (PA), highly
linear up-converters, large dynamic range Analog-to-Digital (A/D) converters, and low
phase ﬁoise level Local Oscillators (LO).

This work utilizes the design advantages of closed form phase shaping function in
the GDFT framework for generating multiple representations of the OFDM symbol/frame
in SLM method. This work also introduces an efficient selection method for SLM on the
autocorrelation properties of the input signal vector feeding the multiplexer. In the
proposed efficient method, only one inverse GDFT operation is used in the transmitter, in
contrast to the many in the conventional SLM. This efficient method can also be used in
DFT-based SLM. The chapter is organized as follows. First, the OFDM system is
described; the PAPR problem and the effects of RF nonlinearity on OFDM systems are

explained in detail. In the following sections, the proposed GDFT based SLM PAPR
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reduction methods along with their performance comparisons for various metrics are
presented. Then, the performance improvements of the GDFT based SLM PAPR
reduction in a general OFDM communications system compliant with the WiMAX

standard is quantified.

7.2  OFDM Communications
OFDM has been widely used in communications systems for the last several decades
including digital subscriber loop (DSL), digital audio broadcasting (DAB) technologies,
and WiMAX. An OFDM frame is formed through an inverse DFT with the transform
coefficient vector populated by the predefined signaling look up table and incoming data

bit stream, #={6,,k=0,1,..,N -1}, expressed in vector notation as

-1
x=Aper @ (7.1)
where A, is DFT matrix and x =[x(n)], n=0,1,..,N—1. In the literature, it is common

to use continuous time domain representation of OFDM symbol as follows,

1 N-1

x(t) = _\/—]_V-Z G, 0<t<T, (7.2)
k=0

Note that f, is the frequency of the subcarrier modulating data symbol 6, with f, = kAf
in the spectrum. Af is the frequency separation and defined as Af =1/T, where 7, is

the OFDM symbol duration. In DFT kernel, the carrier frequencies are chosen in such a
way that all subcarriers are orthogonal to each other. Before transmission, a cyclic prefix
is added to OFDM frame signal in order to avoid Inter-symbol Interference (ISI) in

frequency selective channels.
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In order to operate in the linear region, the average input power is reduced. The
difference between the input saturation power and the actual/average input power is
called IBO. Similarly, the difference between the corresponding output powers is defined

as the output back-off (OBO) and expressed as follows,

P
IBO,, =10log -2 (7.3)

in,avg

. .
0BO,, =10log 2% (7.4)

out ,avg

In this work, the high power amplifier is modeled as Rapp’s solid state amplifier

with AM/AM characteristic given as [60]

V.
Vou = — (7.5)

1+ =
VS

where v, and v,, are the output and input voltages, respectively, and v, is the output

voltage at the saturation point. p, defines the smoothness of the transition from linear
region to saturation region. Choosing p, =2 is a good approximation to the commonly

used power amplifiers. Figure 7.2 displays AM/AM responses of an ideal (linear) and the
Rapp modeled amplifier used in the performance simulations reported in this dissertation.

Increasing input voltage level drives the amplifier into saturation. This should be
avoided in order not to cause any nonlinearity in the system. Passing through this
amplifier (depending on its input saturation voltage), the peaks of OFDM signal will be
clipped causing in-band and out-band degradations. In-band degradation results in worse

BER performance while out-band degradation widens the spectrum of OFDM frame.
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Overall Efficiency is commonly used and defined as

P

out

P, +P,

n = (7.8)

The efficiency calculations are easy for constant amplitude signals. However, for
varying amplitude input signals, instantaneous and average efficiencies are preferred.
Instantaneous efficiency is defined as the efficiency at a specific output power and
maximum at the maximum output power. Signals with amplitude variations produce
varying efficiencies. Therefore, in this case, the average efficiency should be considered
in the system design. Also, the average efficiency defines the battery life of the given

device. It is defined as the average output power to average dc input power as follows

__ " out,ave
nave - P (7.9)

In efficiency calculations, a highly linear Class-A amplifier is considered as a
special case. For this type of amplifier, the dc input current (and power) is constant. The

maximum value of instantaneous efficiency is 50% (7,,, =0.5). The average efficiency
for non constant envelope signals and Class-A type amplifiers is defined as [61]

_ 77 peak

e =4 PR

(7.10)

where PAPR is commonly used to identify envelope fluctuations in the signal and

defined in dB’s as follows

maxlx(t)l2
- PAPRdB =1010g O—S;(T— (711)

% flx@f ae
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Note that the value of the signaling (constellation) vector @ in Equation (7.1)
dictates the level of PAPR for the given transform, i.e. DFT. In this paper, only NL
samples of the input signal x(¢) are considered where L >1 integer . If the input signal is

oversampled by L, then the oversampled signal samples are obtained as [62]

1 Mg ZﬂkAfn%

— )Y 6
N

x(n)=x(n—€—)= n={0,1,..,NL-1}

(7.12)

From Equation (7.12), x(n) may be interpreted as the inverse Fourier transform of the
input data symbols block, @, with N(L-1) zeros padded [62]. It is well known in the
literature that the continuous time PAPR is usually higher than the discrete time PAPR.
However, in [63] it was shown that L= is a sufficient approximation to obtain accurate

PAPR using L-oversampled time domain signal samples. Therefore, PAPR for this case

is expressed as

PAPR = Jnax [x(n)]
elbor (7.13)

where E[] denotes the expectation operation. The theoretical maximum of PAPR for N

subcarriers is equal to N although the maximum PAPR occurs infrequently in practice.
Therefore, statistical analysis of PAPR in OFDM is found to be useful. It is known that
real and imaginary parts of the OFDM signal, x(#), tend to be Gaussian distributed with
zero mean and variance of 0.5 for N > 64. Hence, the amplitude of OFDM symbol x in

Equation (7.1) has a Rayleigh distribution. In contrast, its power distribution becomes a
central Chi-square with two-degrees of freedom with the cumulative distribution as given

[62, 63]
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AR
_ 20
F(y)= 5[20'2 e “dy (7.14)

with o0=1/2. Assuming that the samples of an OFDM frame to be mutually
uncorrelated, the probability of peak value of the continuous time signal smaller than y is

defined as [34, 62]

P(max|x(t)]" < y) = (1-exp(-p))" (7.15)

Whenever the oversampling is introduced, the samples of the OFDM signal are

not uncorrelated any more. However, distribution of PAPR of the OFDM signal
oversampled by L is well approximated by PAPR distribution of OFDM signal with

aN subcarriers. Then, the new distribution becomes

1

P( max |x(n)| < y)=(1-exp(-»))™" (7.16)

0<n<NL-1
In [63], it was shown that choosing @ =2.8 is a good approximation in Equation
(7.16) for N 264, and L>4. In this work, L is assumed to be 4 to accurately estimate

PAPR of the transmitted signal.

7.4 Design and Performance of GDFT Based SLM Methods
The main advantage of using GDFT over DFT in SLM is the analytical representation of
its phase shaping function structuring the phase selection of SLM method in the phase
space. In this work, a GDFT based SLM PAPR reduction technique and an efficient
implementation of the phase selection process for SLM are presented. Then, various
performance metrics of interest in OFDM communications and the performance of the

proposed techniques are introduced. Furthermore, the performance of GDFT based SLM
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PAPR reduction in an OFDM communications system compliant with the popular

WiMAX standard is quantified

7.4.1 Phase Optimized GDFT based SLM
The conventional SLM method generates multiple representations of the OFDM symbol
obtained through multiple phase sets and picks the one with the lowest PAPR to transmit

[28]. The probability of PAPR exceeding a threshold y for OFDM symbols with the

oversampling factor of L is shown as [63]

P{PAPR >y} =1-[1-exp(-y)]*" (7.17)
Assume that M of OFDM symbols/frames corresponds to the same data sequence

with different PAPR values. In this case, the probability of Equation (7.17) becomes [28]
P{PAPR,, >y} =[P(PAPR > »)]* =[1-(1-exp(-))"" * (7.18)

The number of multiple signals is M =2" and PAPR decreases as m increases.
A simple way to generate multiple copies of the input data sequence by choosing M
different vectors with the elements of complex roots of unity for each OFDM frame is
also introduced in [28]. More specifically, the phase values for the elements of inverse
DFT coefficient vectors are chosen as the integer multiples of 7 /2 in their design. This
method is extended by relaxing phase values of inverse DFT coefficient vector elements
employing the GDFT framework. A special case for G matrix defined in Equation (4.12)

is expressed as
2z,
e.] N'/’i( ), k:n
Gi(k,n): 0, k#n i=0,...,.M-1 (7.19)
k,n=0,,.,N-1
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where a trivial parametric PSF may be expressed as
w'én) = ainb" a,b:Real n=0,1,..,N-1,i=0,1,.. ,M-1 (7.20)
As a special case, a, =1 for Vi is picked, and the GDFT kernel is expressed as

j27v7£(kn+nb" )]

Asprr, = Apir G =le k,n=0,1,.,N-1,i=0,1,...,M -1 (7.21)

In contrast to DFT based SLM, a set of GDFT’s are generated for various values
of phase parameter b, in Equation (7.20) and used in SLM for each data symbols block
(inverse DFT coefficient vector @) to reduce PAPR. The GDFT with minimum PAPR is
identified along with the corresponding value of phase shaping function parameter b, and
the resulting OFDM frame is sent through the communications channel as displayed in
Figure 7.3. The value of the parameter b, is also transmitted to the receiver as the side
information. It is assumed that the receiver receives b, error-free and proceeds

accordingly. The number of GDFT processors in Figure 7.3 depends on the number of
side information bits to be transmitted per OFDM frame. For the case of m=3 bits, the
number of inverse GDFT processors employed in the transmitter is M =8. Selection of

the phase parameters, b,, is straightforward since the range of phase space is limited to
the interval|[0,27],

w,(0)=0, forVi
w,()=1, forVi (7.22)
O<w,(m)=n"<N, n=23,.,N-1, for Vi
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y =60

I . (7.24)
YT =e™ 6; ke[O,N-1),ie[0,M-1]

The number of G’ phase shaping matrices depends on the number of side information bits
being transmitted. There are A =2" diagonal G' matrices in the set for the selection of
optimal GDFT minimizing PAPR. The autocorrelation functions of the resulting

y' =[y'(k)] sequences are calculated as

-1

Ry(my= 3, YUy (k+m)s iel0,M=1] ;5

k=(1-N)

and compared to the uniquely ideal autocorrelation R;‘ée"’ (m) with zero phase.

R (=6 & l1form=0 -
m = =
% " " |0 for all integers but m # 0 (7.26)

The mean square error is used as the metric to select the best estimate as follows

N-1

mse i idea 2 :
&= Y |Ry,(m)-Rig (m)|'s ie[0,M~1] (7.27)
m=(1-N)
bopr = b3 €opr = quggl_l{gim”} (7.28)

The value of b, is transmitted to the receiver as the side information. Assuming this

information is received error-free, G™’ is generated accordingly.

Note that there are infinitely many OFDM frames with constant amplitude
yielding 0dB PAPR as the optimum OFDM frames based on the PAPR metric. The
unique 0dB PAPR OFDM frame with zero phase function is assumed in this dissertation

in order to keep the implementation simple.
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7.5 PAPR Reduction of GDFT based SLM

PAPR reduction is evaluated in terms of cumulative complementary density function
(CCDF) defined as the probability of PAPR exceeding a given threshold value. The
calculated, according to Equation (7.16) and simulated CCDF’s for the conventional
OFDM frames employing QPSK and various numbers of carriers are displayed in Figure
7.5. It is observed from the figure that the CCDF performance gets worse as the number
of carriers increases. Moreover, the theoretical and simulated CCDF functions converge
as the number of the subcarriers increases.

Similarly, Figure 7.6 displays CCDF of PAPR for various numbers of side
information bits and QPSK modulation for N=256, employing the Phase Optimized
GDFT method. Calculated CCDF results are obtained using statistical model of Equation
(7.18) with @ =2.8. As the number of side information bits increases PAPR improves,
and also theoretical and simulation performance curves start to merge.

It is observed from that PAPR decreases significantly as the number of side

information bits increases. As an example for m=174, almost 4dB PAPR reduction is
achieved at CCDF(PAPR)=10" with the Phase Optimized GDFT method, and it is
more than 2.5dB with the efficient GDFT method. Even for m=2, more than /dB PAPR
reduction is possible at CCDF(PAPR)=107 for both methods. For an OFDM frame

generated from 256 subcarriers each employing QPSK without any guard interval, using
m=2 reduces the load of the system by 39% where the cost of side information bits is

negligible and the implementation is simple at the transmitter.









Table 7.1 PAPR(dB) for Various Side Information Bits, N=256 and P(PAPR>y)=10"

100

- APAPR [4B]
PAPR,.. | PAPREF | PAPRIT | PAPRy,
m SLM
(dB) (dB) (dB) (dB) EFF-GDFT | OPT-GDFT

(7.18)
2 10.4 8.6 8.1 8.3 1.8 2.3 2.1
4 10.4 8.3 7.6 7.7 2.1 2.8 2.7
6 10.4 8.1 72 7.3 23 32 3.1
8 10.4 7.9 7.0 7.0 25 3.4 3.4
10 10.4 7.7 6.7 6.8 2.6 3.7 3.6
12 10.4 7.6 6.5 6.6 2.8 3.9 3.8
14 10.4 75 6.4 6.4 2.9 4 4

7.6 Power Amplifier Efficiency with PAPR Reduction

Average efficiency of a Class-A amplifier was defined in Equation (7.10) and Figure 7.8

depicts its average efficiency curve as a function of PAPR. The GDFT based SLM was

shown to reduce PAPR successfully, and therefore, the required IBO and corresponding

OBO of the amplifier.

efficiency due to the proposed PAPR reduction methods are quantified.

In this section, the improvements of RF power amplifier

Figure 7.8 assumes that the input signal always has a constant PAPR. However,

in an OFDM system, each frame has a different PAPR value. Therefore, the overall

average efficiency should be considered. If the probability density function of PAPR is

available, the overall average efficiency for a Class-A type amplifier is defined by [64,

65]
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given in [66, 67]. Similarly, the specs of fixed and Mobile WiMAX applications can be
found in [67]. -

MATLAB was used to simulate the performance of a Mobile WiMAX system
based on IEEE 802.16e (2005) standard. Specifications of the considered system are

summarized in Table 7.3. In the performance simulations, guard interval is not employed

since multipath channel is not considered in this study.

Table 7.3 Specs of Wimax System Simulated [67]

FFT size 1024
Number of data subcarriers 720
Number of pilot subcarriers 120
Number of null-Guard subcarriers 184
Channel bandwidth 10MHz

7.9.1 PAPR Performance

CCDF of PAPR’s in the simulated WiMAX system employing the proposed PAPR
reduction methods are displayed in Figure 7.22 and Figure 7.23. The Phase Optimized
GDFT based SLM method achieves almost 3.5dB PAPR reduction while the Efficient

GDFT based SLM method achieves almost 2dB PAPR reduction with m=14.

7.9.2 BER Performance
BER performances of WiMAX systems employing the proposed PAPR reduction
methods are given in Figure 7.24 and Figure 7.25 for different values of IBO’s and 14

number of side information bits. It is observed that both methods improved the BER









CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, Generalized Discrete Fourier Transform with Non-linear Phase is
introduced, where the linear-phase DFT is extended to non-linear phase DFT. The
proposed framework made it possible to define infinitely many orthogonal functions sets.
Depending on the application, the GDFT basis with desirable properties can be formed
using the proposed framework. As a result of this study, the following conclusions have

come forth.

« Theoretical analysis of the proposed Non-linear GDFT framework was given in the
context of roots of unity.

» Efficient design methods of GDFT sets, derived from the DFT matrix, are
presented. Each GDFT matrix is written as a product of a unitary DFT matrix and a
generalization matrix G. Since DFT has its own efficient algorithm, FFT, the
complexity of the G matrix defines the complexity of the system.

» It was shown that various popular orthogonal function sets including Walsh, DFT,
and Walsh-like sets, can be written in the framework of GDFT, with their unique
generalization matrix.

o The proposed GDFT framework is employed in the generation of orthogonal GDFT
function sets with various correlation performances. It was shown that with the
proposed framework, an infinite number of function sets with various correlation
properties can be created. Optimum function sets with respect to the defined
correlation metrics have been investigated through generic search algorithms.
Optimized GDFT sets have been compared with industry-standard DFT, and other
code families, with respect to their correlation features. It was shown that GDFT
sets yield superior correlation properties over the known code families listed in the
literature. Moreover, the minimum value of the performance metric dpqx, defined as
the maximum of the peaks of the all possible auto- and cross-correlation sequences,
obtained by GDFT framework, has a value 1.6 times the best achievable lower
bound (Welch).

+ A closed form Phase Shaping Function (PSF), which generates orthogonal GDFT
sets, has been defined by curve-fitting the search results found by brute force. This
closed form PSF is a second degree Gaussian function with six defining parameters.
Changing these six parameters allows the generation of a wide variety of orthogonal
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sets, on one end, from very frequency-localized sets to widely spread sets, and on
the other end, from sets with very good cross-correlation properties to ones with
very good auto-correlation properties.

« The parameters of the proposed PSF for optimal GDFT sets based on peak cross-
correlation, d_, , and mean squared auto-correlation, R,., have been presented.

« It was also proved theoretically that all sequences of any GDFT set generated using
a PSF have the same auto-correlation magnitudes. Auto-correlation sequences
change only in phase.

« The proposed closed form PSF for length-8 has been shown to generate polyphase
Barker codes with lowest possible auto-correlation peaks.

+ The correlation improvements of GDFT codes inspired the idea of designing
complex spreading codes for DS/CDMA communications systems. BER
performances of the proposed GDFT codes have been compared with popular real-
valued spreading codes listed in the literature as well as with complex-valued DFT
codes in AWGN and Rayleigh channel conditions. In all channel conditions, GDFT
codes outperformed competing real-valued and complex-valued codes. It is
concluded that the BER performance on AWGN channel with two users in the
system is closely coupled with the metric d,,. In contrast, for two users, the BER

performance on multipath fading channel conditions is correlated to the metric R ..

« The traditional SLM method with its limited phase set has been expanded to Phase
Optimized GDFT based SLM and Efficient GDFT based SLM methods, with relaxed
phase space. The performance improvements of the proposed PAPR reduction
techniques in OFDM communications have been presented with respect to BER,
power amplifier metrics, and spectral efficiency metrics. It was shown that
significant BER, efficiency and spectral improvements have been achieved by the
use of both of the proposed PAPR reduction methods for all communications
scenarios considered.

+ Although PAPR reduction with Efficient GDFT based SLM is less than Phase
optimized GDFT based SLM method, the efficient method requires only one inverse
transform operation in the transmitter and moderately decreases the complexity of
system. Therefore, Efficient GDFT based SLM is a promising PAPR reduction
method for future OFDM based communications systems, with no additional
complexity in the transmitter.

Recently, MIMO radar concept has been introduced to increase the detection
capability of extended targets or multiple numbers of point targets. In this application,

each antenna transmits a waveform which is orthogonal to all the other waveforms
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transmitted. In addition to orthogonality, these waveforms are required to have good
autg- and cross-correlation properties for identifying extended targets or accurately
detecting multiple targets. The GDFT framework with its potential in correlation

improvements can be employed in MIMO radar in the future.



APPENDIX A
MINIMUM VALUE OF MEAN SQUARED CROSS-CORRELATION FOR

CONSTANT AMPLITUDE CODE SETS

Consider a constant amplitude function set defined as :ek(n)=em‘(") };

k=0,1,2,..,M-1,n=0,1,... N -1 where N is the length of each function or basis and M

defines the set size. The aperiodic correlation function for this set is given as

1 N-l-m

i Z e,(me,(n+m), O<m<N-1
n=0
1 N-=l+m .
d,,(m)= ¥ Y eln-me(n), 1-N<m<0 (A.1)
n=0
0 R |m|2N

The mean squared auto-correlation metric for this set is

1M—1N1

Re=2-> > |dexom)f A2)

k=0 m=1-N
m#0

Wl

In order to define a bound for the complete set, first a simple function from the set is

considered. Let the corresponding squared auto-correlation is given as

N-1
Fach = ;Nldk’k(m)lz (A.3)

m#0
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If the symmetry properties of the auto-correlation functions are used, Equation (A.3)

becomes,

N-1 R
Pac = Zgldk,k (m)l

N=1|N=l=m 2 N-1|N-iem 2
) e, (I’l)el (n+m)| =2 Z J (B (n)—¢y (n+m))
m=1} n=0 m=1] n=0 (A-4)
N-1
<23 (N —m)*
m=1
Generalizing (A.4) for the complete set, the bound for R ;- becomes,
1 M= N s Nl ,
R, =— Z Idk,k(m)l < 2Z(N—m) (A.5)
M = w5 m=1
m#()
The maximum value of R, is therefore,
N-1 )
RAC,max = 22 (N - m) (A6)
m=1
Using the mathematical formulas for the summation in (A.6), R, .., becomes
(N-D(2N-1)
RAC,max = (A7)
3N



Table B.1 Phase Shaping Functions, 27/ na, exp(-[

APPENDIX B

PHASE SHAPING FUNCTIONS OF HIGHER SIZE GDFT SETS

”'_bl} )+a, exp(-[n-bz] )1 s, for Higher
C. C

1 2

Size GDFT Sets
Size d, Ric
16 | {4214 4.263 6.258 4.327 4.348 4.362 4.368 {4.463 1.454 4.309 0.435 2.400 3.938 5.075

4.366 4.356 4.338 4.313 4.279 4.239 4.191 4.136
4.074}

5.833 6.225 6.250 5.895 5.138 3.9552.331
0.263 4.049;

32

{0.346 0.345 0.343 0.340 0.336 0.330 0.324
0.316 0.307 0.298 0.287 0.276 0.265 0.253 0.240
0.228 0.215 0.202 0.189 0.177 0.164 0.152 0.141
0.129 0.133 1.829 4.249 0.292 0.081 0.073 0.065
0.058}

{6.255 3.342 0.260 3.291 0.167 2.801 5.029
1.051 3.167 5.091 0.536 2.068 3.400 4.531
5.459 6.184 0.420 0.734 0.842 0.743 0.439
6.212 5.497 4.578 3.456 2.133 0.611 5.174
3.2601.1525.1392.655 }

64

{0.173 0.173 0.172 0.170 0.168 0.165 0.162
0.158 0.154 0.149 0.144 0.138 0.132 0.126 0.120
0.114 0.107 0.101 0.095 0.088 0.082 0.076 0.070
0.065 0.067 0.914 2.124 0.146 0.040 0.036 0.032
0.029 0.026 0.023 0.020 0.018 0.016 0.014 0.012
0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003
0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001
0.0010.001000000 0}

{5.8392.93 6.229 3.167 0.028 3.264 6.074
2.690 5.505 1.952 4.596 0.868 3.334 5.71 1.71
3.902 5.999 1.719 3.626 5.436 0.866 2.480
3.995 5.41 0.441 1.654 2.765 3.774 4.679
5.4816.18 0.49 0.98 1.365 1.644 1.819 1.889
1.853 1.712 1.466 1.115 0.659 0.099 5.717
4.949 4.077 3.101 2.023 0.843 5.844 4.462
2.979 1.396 5.998 4.219 2.343 0.371 4.587
2426 0.172 4109 1.671 5428 2.813 }

128

{0.046 0.046 0.046 0.046 0.046 0.046 0.046
0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046
0.046 0.047 0.050 0.060 0.089 0.165 0.336 0.677
1.269 2.155 3.281 4.461 5.407 5.838 5.614 4.808
3.669 2.499 1.524 0.838 0.424 0.206 0.106 0.066
0.052 0.047 0.046 0.046 0.046 0.046 0.046 0.046
0.046 0.046 0.046 0.046 0.046 0.046 0.045 0.045
0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
0.045 0.045 0.044 0.044 0.044 0.044 0.044 0.044
0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043
0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043
0.043}

{4.472 1.757 5277 2.464 5.886 2.975 0.016
3.290 0.233 3.41 0.254 3.333 0.079 3.059
5.991 2.59 5.423 1.924 4.658 1.061 3.697
0.001 2.540 5.029 1.185 3.576 5.917 1.926
4.169 0.079 2.223 4.318 0.081 2.078 4.025
5.923 1.488 3.287 5.037 0.455 2.106 3.708
5.261 0.481 1.935 3.339 4.695 6.001 0.974
2.1813.339 4.447 5.506 0.233 1.193 2.104
2.966 3.778 4.54 5.254 5.918 0.249 0.815
1.330 1.797 2.214 2.582 2.9 3.169 3.389 3.559
3.68 3.751 3.773 3.746 3.670 3.544 3.369
3.144 2.87 2.547 2.174 1.753 1.281 0.761
0.191 5.855 5.187 4.469 3.703 2.887 2.021
1.107 0.143 5.413 4.351 3.239 2.079 0.869
5.893 4.585 3.228 1.821 0.366 5.144 3.591
1.988 0.336 4.918 3.168 1.369 5.804 3.907
1.961 6.25 4.206 2.113 6.254 4.064 1.824
5.819 3.481 1.095 4.943 2.459 6.210 3.629

0.999 }
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