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ABSTRACT

DEVELOPMENT OF PHARMACOPHORE AND COMFA STUDY
OF RIGID AND FLEXIBLE SIGMA 2 RECEPTOR LIGANDS

by
Hemantbhai Patel

In the present study a pharmacophore and CoMFA model was derived for sigma 2 (62)

receptors by using Sybyl 7.2 Software Package. The CoMFA studies used 22 bioactive

molecules as a training set and 4 molecules as a test set for the o2 receptor ligands. The

geometries and electrostatic charges of all molecules were calculated using various levels

of calculations. The geometry optimization and electrostatic charges of all 26 molecules

were performed by using semiemprical AM1, ab initio HF/6-31G* and density functional

B3LYP/6-31G* in Gaussian 98. The pharmacophore model was derived by using

Distance Comparisions (DISCOtech) from 4 partially to highly active 62 receptor ligands.

The Comparative Molecular Field Analysis (CoMFA) was developed for 22 bioactive 62

receptor ligands to investigate a three dimensional quantitative structural activity

relationship (3D-QSAR) model for 62 receptor ligands. Three CoMFA maps were

developed to compare the electrostatic and steric properties of each calculation and

molecule. The best CoMFA results were obtained by using a training set of 22 molecules

(R2 = 0.999) from B3LYP/6-31G*. The "leave-one-out" cross validation method gave (q 2

= 0.602) using four optimal components with optimized geometries and atomic charges.

This analysis produced a standard error of estimate of 0.028. The CoMFA results derived

from the B3LYP/6-31G* method were better than those from AM1.
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CHAPTER 1

INTRODUCTION

Sigma (a) receptors were first postulated by William Martin in the mid 1970s [1]. The a

receptor was originally classified as an opioid receptor subtype; then it was identified

with the phencyclidine (PCP) site on the NMDA receptor channel [2]. The discovery of

agents eg. di-tolyl-guanidine (DTG; 25) and various non opioids eg. (haloperidol; 27) led

to the realization that a sites and PCP sites are distinct receptors [3]. Nowadays, a

receptors are well established as non-opioid, non-phencyclidine, and haloperidol sensitive

receptor family with its own binding profile and a characteristic distribution in the central

nervous system (CNS) as well as in endocrine, immune and some peripheral tissues, like

kidney, lung, liver and heart [4]. The a receptors are divided into three subtypes, termed

G1, 02 [5, 6] and 03 receptor [7]. The al receptor has been cloned from tissues of guinea

pig, rat, mouse, and man with the molecular weight of —25 kDa [8-10]. The 02 receptor

has not been cloned yet. The molecular weight was estimated to be about 1821.5 kDa

[11]. The 03 receptor has been shown to modulate tyrosine hydroxylase (TH) and

dopamine synthesis in striatum [12].

Sigma ligands (01 and 02) could be used in the treatment of cocaine abuse,

depression and epileptic disorders [13, 14]. They also have potential as neuroprotective,

antiamnesic, antineoplastic and tumor imaging agents [15, 16]. Both al and 02 sites are

found in high densities in a wide variety of human tumors, including those of the breast,

lung, colon, ovaries and prostate. While 02 sites have been also linked to cellular
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proliferation processes and expressed in highly proliferating cells. Several studies have

revealed that a2 receptor have been associated with apoptosis and produce both transient

and sustained increases in calcium ions [17].

There are several selective, high affinity a l ligands available. On the other hand,

very few a2 selective ligands are known; some of them are shown in Figure 1.1 and the

activities of all that compounds are shown in Table 1.1. Haloperidol (27) and di-o-tolyl

guanidine (25) bind with high affinity to al as well as to a2 receptors. Examples of series

of moderate to highly bioactive a2 ligands include: azaperol, related BMY-14802 (4-

amino-1 -arylbutanol s) [18] , vesamicol analogues [19], trishmocubane [20], (E)-8-

benzylidine-5-(3-hydroxyphenyl)-2-methyl morphan-7-ones derivatives (Table 1.2) [21],

N-alkylazacycloheptane derivatives [22], 1-cyclohexylpiperazine derivatives (Table 1.3)

[23], 1-aralkyl-4-benzylpiperidine (Table 1.4) and 1-aralkyl-4-benzylpiperazine

derivatives (Table 1.5) [24], and N-substituted 9-azabicylo [3.3.1] nonan-3α-yl carbamate

analogues [25].

Several molecular modelling studies have been performed to define the binding

pharmacophore model for different classes of a ligands. Manallack used various classes

of molecules to determine the first a l pharmacophore [26]. Glennon and Gund have also

proposed selective al pharmacophore models [27, 28]. Laggner et al. discovered

pharmacophore models built with catalyst software which based upon a series of 23

structurally diverse chemical compounds [29].

A pharmacophore model for the a2 receptor was derived by using GRIND (Grid

Independent Descriptors), however the program does not require ligand alignment.
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PLS models for the 0 2 affinity had r2=0.83 and q2=0.63 were derived using a series of α-

tropanyl derivatives. This model provides internal geometrical relationships within two

hydrophobic areas (hydrophobic-1 and 2) and H-bond donor receptor region with which

ligands establish non covalent bonds [30]. The goal of these computational studies was

the development of a binding model which could accommodate the array of compounds

that have affinity for the (32 receptor,

Figure 1.1 Rigid and Flexible o2 Receptor Ligands.

Haloperidol (27)
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Table 1.1 Binding and Functional Data of Rigid and Flexible 62 Receptor Ligands [21,
23, 24]

Compounds Configuration σ 1 K i(nM) σ 2 Kt (nM) σ1/σ2
4* (+)-1R,5R 7436 13.4 554.93
6* - 13,6 0.34 40,00

25* - 69 21 3.29
26* - 41,43 0.7 59,19
27 - 2.2 16 0.14

Note: * Indicates included in Pharmacophore Derivation, t Indicates included in CoMFA test set

Table 1.2 Binding and Functional Data of (E)-8-benzylidene-5-(3-hydroxyphenyI)-2-
methylmorphan-7-ones [21]

Compounds Configuration σ1 Ki(nM) σ2 Ki (nM) σ1/σ2
1 (-)-1R,5R 10.5 154 0.07

2f (+)-1R,5R 3063 16.5 185
3 (-)-1R,5R 27.3 35.5 0.77

4* (+)-1R,5R 7436 13.4 554

Note: * Indicates included in Pharmacophore Derivation, t Indicates included in CoMFA test set.



Table 1.3 Binding and Functional Data of 1-cyclohexylpiperazine Derivatives [23]

5

Note: * Indicates included in Pharmacophore Derivation. t Indicates included in CoMFA test set.



Table 1.4 Binding and Functional Data of 1-aralkyl-4-benzylpiperidine Derivatives [24]

6

Note: * Indicates included in Pharmacophore Derivation. i Indicates included in CoMFA test set.



Table 1.5 Binding and Functional Data of 1-aralkyl-4-benzylpiperazine Derivatives [24]

7



Note: * Indicates included in Pharmacophore Derivation, t Indicates included in CoMFA test set.
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CHAPTER 2

PHARMACOPHORE DERIVATION

2.1 Materials and Methods

The calculation in this study was carried out using SYBYL 7.2 [31] molecular modeling

program. All ligands used in this study were built using SYBYL 7.2, and then energy

minimized using the Tripos force field. The geometry optimization and atomic charges

calculation of all molecules used in this study was performed by AM1, HF/6-31G* and

B3LYP/6-31G* methods by using Gaussian 98 program [32]. The pharmacophore was

derived from a set of active compounds by DISCOtech using SYBYL 7.2. DISCOtech

considers all possible mappings of features starting from a set of representative

conformers for each molecule to create a set of alignments. The CoMFA models were

derived using SYBYL 7.2. The CoMFA methodology is a 3D quantitative Structure-

activity relationship (QSAR) technique which ultimately allows designing and predicting

activities of molecules.

2.2 Selection of Ligands

Ligands can interact either covalently or noncovalently with their biological target. The

noncovalent, reversible association of receptor (R) and ligand (L) to form a receptor-

ligand complex (R'L') generally occurs in an aqueous, electrolyte-containing solution

(Equation 2.1).

Rag. + Laq <--> R'L'aq 	(2.1)

9
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Under thermodynamic equilibrium conditions, this reaction is determined by the standard

Gibb's free energy of binding AG ° . This quantity is related to the experimentally

determined association constant KA (or its reciprocal dissociation or inhibition constants,

KD or Ki, respectively) (Equation 2.2),

KA=	 =	 = [R'L']/[R] [L]	 (2.2)

AG° is composed of an enthalpic (AH °) and an entropic (TAS °) portion. T refers to the

absolute temperature. In place of AG ° , the term (binding) affinity is used to describe the

tendency of a molecule to form a complex with another one (Equation 2.3) [33].

ΔG0 = -RT lnKA = ΔH0 - TΔS 	 (2,3)

The compounds for σ 2 pharmacophore derivation were based on potency, selectivity, and

structural diversity. The pharmacophore for σ2 was defined by using four moderate to

highly active compounds. Among four compounds selected, there were two rigid ligands:

DTG (25) and CB-184 (4) and two flexible ligands: PB-28 (6) and spiro[(2)benzopyran-

1,4'-piperedine] derivative (26). These are listed in Table 1.1 with relative binding

affinity and selectivity values. The relative a2 binding value for all four ligands in Table

1.1 ranges from 0.34 to 13.4 nm. The σ1/σ2 ratio of four compounds in Table 1.1 ranges

from 3 to 555 indicating high selectivity for the σ2 receptor. Binding assays were

performed using [ 3H] di-tolyl-guanidine and [3H] (+) pentazocine [11]. The Ki values

were converted to pKi values by using below Equation 2.4.
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pKi = -log [Ki]	 (2.4)

2.3 Choice of Initial Conformations

All structures used in this study were generated by building with SYBYL 7.2 using

default bond distances and angles. The energy minimization of all ligands was carried out

by using the tools MAXIMIN2. The tripos force field with a distance-dependent

dielectric function was applied. The maximum number of iterations was set to 100 with

nonbonded (NB) cut off, 8.0 A ° and convergence criterion of 0.05 Kcal/mol of energy

difference between successive iterations.

2.4 Pharmacophore

A pharmacophore is commonly defined as an arrangement of molecular features or

fragments forming a necessary but not sufficient condition for biological activity. A

three-dimensional (3-D) pharmacophore is defined by a critical geometric arrangement of

such features or fragments. Pharmacophores have traditionally been applied singly as

inputs for 3-D database searching, molecular graphics, or automated 3-D design and 3D-

QSAR (Quantitative Structure-Activity Relationship) methods [34]. DISCO (DIStance

Comparison) [35] program; developed by Martin for the purpose of identifying and

systematically aligning common pharmacophoric elements among structurally diverse

ligands was used to derive a pharmacophore model for 02 ligands. DISCOtech identifies

all potential pharmacophoric site points in each molecule of the database. The most

common properties used to describe the potential pharmacophoric fetures of a structure

are:
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(i) Hydrogen bond donor, such as primary/secondary amide, aniline nitrogens and

hydroxyl.

(ii) Hydrogen bond acceptor, for example carbonyl, aliphatic ether and hydroxyl.

(iii) Basic (positively charged at physiological pH 7), for example sp a N aliphatic amines,

hydrazines, guanidines and 2/4 amino pyridines.

(iv) Acidic (negatively charged at physiological pH 7), such as carboxylic acid, acyl

sulfonamide, unsubstituted tetrazole and phenols.

(v) Aromatic, generally (but not always) in the form of ring centroids.

(vi) Hydrophobic, for example certain 5/6 membered aromatic rings, isopropyl, butyl and

cyclopentyl.

The conformer databases were generated for all compounds by DISCOtech. Only

unique conformers were included in databases, the rest were effectively excluded by

Discotech. A master database containing one low energy conformer of each molecule

was utilized as a starting point for the DISCO program [36]. By utilizing DISCO, binding

models were found with two hydrophobic regions and a nitrogen center. These all DISCO

models were then inspected visually in an effort to eliminate models that may not

represent an intuitively rational molecular alignment. The close inspection revealed that

the model shown in Figure 2.1 represents the most rational alignment when considering

the structural diversity of all 22 compounds in the training set. The pharmacophore

triangle includes a nitrogen center and two hydrophobic regions.
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Figure 2.1 DISCOtech Pharmacophore dimensions with hydrophobic (H1 and H2)
regions, nitrogen (N) (a); DISCOtech model with u2 receptOr ligands 6 (b) and 26 (c)
respectively, and also with all four ligands 4, 6, 25 and 26 (d).



CHAPTER 3

CoMFA STUDIES

3.1 Geometry Optimization and Electrostatic Studies

The GAUSSIAN 98 program was used to optimize the conformers derived by

DISCOtech. The calculation of electrostatic charges for these geometries were performed

using semi empirical AM1, density functional B3LYP/6-31G*, and ab initio HF/6-31G*

levels according to Mulliken populations.

3.2 Alignment

An alignment of the training and test set molecules is essential for a CoMFA Studies. The

three optimized calculations were aligned by a match function in SYBYL 7.2 using a

template molecule (25) in Table 1.1 and with the generated pharmacophore in Figure 2.1.

All 26 molecules were aligned with respect to their class and overall geometry by using

the ALIGN DATABASE and 'Field Fit' functions in SYBYL 7.2. The aligned 26

molecules of training and test set are represented in Figure 3.1 according to their

optimization method [37].

14
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Figure 3.1 Alignments Of all 26 molecules optimized using: AM1 (a), HF/6-31G* (b)
and B3LYP/6-31G* (c) methods.
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3.3 CoMFA Model

The CoMFA studies were carried out using the QSAR option of SYBYL 7.2. CoMFA

methodology is based on the assumption that drug-receptor interactions are non-covalent

and change in biological activity correlate with the changes in the steric and/or

electrostatic fields of the drug molecules. The three must-obey rules should be followed

in three dimentional quantitative structure —activity relationship (3D-QSAR) to achieve a

quality CoMFA model: (i) the training set must include a wide population (at least 16

items) of diverse compounds covering at least 4 orders of magnitude of activity; (ii) the

most active compound should be included in the training set; (iii) all biological data must

be obtained by homogeneous procedures [38, 39].

A comprehensive CoMFA analysis was initiated, once model Figure 2.1 was

chosen from the DISCO results as the most appropriate pharmacophore alignment. The

process of developing a suitable CoMFA model required the evaluation of various

training sets utilizing both cross validated and non-cross validated methods. The auto

CoMFA columns were generated using the Tripos Standard CoMFA field class. A sp a

hybridized carbon atom was probed with the default grid spacing, and a charge of +1.0

with a dielectric function of 1 /r; a dielectric constant c of 1 extends 4.0 A beyond every

molecule in all directions. The default of 30 kcal/mol energy cutoff for steric and

electrostatic fields was used [40].

As far as the steric field is concerned, this will increase as the probe atom gets

closer to the molecule. As far as the electrostatic field is concerned, there will be an

attraction between the positively charged probe and electron-rich regions of the molecule,

and repulsion between the probe and electron-deficient regions of the molecule.
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A particular value for the steric energy is then chosen which will define the shape of the

molecule, and the grid points having that value are then connected by contour lines to

define the steric field. This is done for each molecule. A similar process is carried out to

measure the electrostatic interactions between the positively charged probe atom and the

test molecule. Electron-rich and electron-deficient regions for each molecule are then

defined by suitable contour lines. After defining the size, shape and electronic

distribution of series of molecules, the next stage is to relate these properties to the

biological activity of the molecules.

The SAMPLS (SAMple-distance PLS) algorithm developed by Bush and Nachbar

[41] was used to determine q2 value by "leave-one-out" cross validation. Essentially, it is

an analytical computing process which is repeated over and over again (iterated) to try to

find the best formula relating biological property against the various variables. Once a

formula has been defined, the formula is tested against the structure which was left out.

This is called cross-validation and tests how well the formula predicts the biological

property for the molecule which was left out. The results of this are fed back into another

round of calculations, but now the structure which was left out is included in the

calculations and a different structure is left out. This leads to a new improved formula

which is once again tested against the compound that was left out, and so the process

continues until cross-validation has been carried out against all the structures. At the end

of the process, the final formula is obtained. For each molecule n, this QSAR is results in

the Equation 3.1.
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The indices 1, 2, ..., M reflect the respective grid points, and Sn,1,..., Sn,M and En,1, ..., En,M

describe steric and electrostatic energies at these points. The coefficients αl, ..., αm and [31,

..., βm are obtained from a system of linear equations by partial least-squares analysis

[42]. The predictability of this final equation is quantified by the cross-validated

correlation coefficient r2, which is usually referred to as q 2 PRESS (predictive residual

sum of squares).

The bioactivities of CB-64L (1) and CB-182 (3) were poor as (52 ligands and the

exclusion of both of these compounds from CoMFA model showed a decreased cross-

validated r2 = 0.357 with two components and q 2 = 0,315 by "Leave-one-out" cross-

validation for set of molecules optimized by HF/6-31G* method. Addition of one more

compound (14); the most inactive 62 ligand to CoMFA training set of HF/6-31G*

optimized molecules showed an increased cross-validated r 2 = 0.446 with three

components and q2 = 0.496 at three components by the "Leave-one-out" cross-validation

method so this CoMFA study was done on 3 orders of Log difference between the most

active and most inactive ligand included in the training set. The best CoMFA results

obtained from these analyses are listed in Table 3.1. The threshold q 2 value of 0.5 is

considered to be minimal for a significantly internally predictive model [43]. The cross-

validation method was utilized to find out predictive power of CoMFA model and to

decide how many components to use for the best model. The 5% rule was considered to

determine this number of optimal components, if q 2 increases by at least 5% upon

increasing the number of components by one, then it is justified to add an additional

component [44]. The Experimental and Predicted bioactivity for all 22 compounds of

Training set are listed in Table 3.2 and for the test set compounds are listed in Table 3.3.
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A Graph of actual activities versus predicted activities of the all compounds are shown in

Figure 3.2.

Table 3.1 Optimal Component Number and q2 by "Leave-One-Out" by SAMPLS [38]
using the Training Set of 22 Molecules

Theory Terminology Comp. 1 Comp. 2 Comp. 3 Comp. 4
AM1 standard error 0.753 0.685 0.687 0.714

q2 (PRESS) 0,222 0.387 0.417 0.404

HF/6-31G* standard error 0.737 0.653 0.646 0.667
q2 (PRESS) 0.254 0.443 0.484 0.480

B3LYP/6-31G* standard error 0.678 0.600 0.517 0.584
q2 (PRESS) 0.368 0.529 0.597 0.602

Table 3.2 Experimental and Predicted Bioactivities (pKi) for the Training Set of 22
Molecules using Various Calculation Methods

Compounds Lit. pKi AM1 HF/6-31G* B3LYP/6-31G*
Predicted pKi

1 -2.188 -2.096 -2.084 -2.156
3 -1.550 -1.597 -1.594 -1.583
4 -1.127 -1.140 -1.148 -1.143
6 0.469 0.476 0,454 0.466
7 0.456 0.378 0.446 0.457
8 0.161 0.162 0.197 0.155
9 0,244 0.233 0.235 0.256
10 0.310 0.258 0.361 0,278
12 -0.666 -0.655 -0.709 -0.643
13 -0.898 -0.900 -0.940 -0.883
14 -2.455 -2.537 -2.454 -2.469
15 -0.230 -0.316 -0.259 -0.234
16 -0.170 -0.161 -0.176 -0.141
17 -0.201 -0.218 -0.113 -0.184
18 -0.480 -0.382 -0.430 -0.458
20 -0.677 -0.687 -0.617 -0.633
21 -0.728 -0.825 -0.700 -0.745
22 -0.146 -0.107 -0.140 -0.148
23 -1.516 -1.415 -1.490 -1.531
24 -1.149 -1.246 -1,222 -1.190
25 -1.322 -1.269 -1.368 -1.288
26 0.155 0.229 0.159 0.112
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Table 3.3 Experimental and Predicted Binding Affinities (pK1) for Test Set of Four
Molecules using Various Calculation Methods

Compounds Lit. pKi AM1 HF/6-31G* B3LYP/6-31G*
2 -1.217 -1.325 -1.262 -1.322
5 0.167 0.226 0.105 0.324
11 -0.401 -0.437 -0.463 -0.587
19 -1.408 -1.218 -1.358 -1.448

The final CoMFA analysis were carried out with CoMFA standard scaling, crossvalidated

q2 , conventional (non-cross validated) r 2, F statistic, Standard error of estimate, Steric and

Electrostatic field co-efficient and fraction of contribution values were calculated and are

presented in Table 3,4. This analysis generated predictive models and CoMFA co-

efficient contour diagrams for the steric and electrostatic potential contributions are

displayed in Figure 3.3. The CoMFA contour maps of steric fields are shown in yellow

and green. The steric regions define the size and shape of the substituents around the

molecule. The green areas (80% contribution) are areas where more bulky substituents

are favoured, and yellow (20% contribution) are areas where less bulk is desired for

higher 62 activity. The contour maps of electrostatic fields are shown in red and blue

color. The red areas (80% contribution) are regions that favor more negative charge, and

blue areas (20% contribution) are areas that favor more positive charge for higher G2

activity.

Table 3.4 QSAR Reports by Non-Crossvalidation using SAMPLS [38] by the Training
Set of 22 Molecules

Theory S.E. R2 F Values Steric. Electro.
AM1 0.080 0.992 (n1=4, n2=21) 623.700 0.303 0.697

HF/3-21G* 0.052 0.996 (n1=4, n2=21) 1493.392 0.358 0.642
B3LYP/3-21G* 0.028 0.999 (n1=4, n2=21) 4610.975 0.301 0.699

Note: Standard error of estimation, R2 of non-crossvalidation using training set of 22 molecules in Table
1.2-1.5, Steric and Electrostatic contributions to this CoMFA field,
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Figure 3.2 Graph Of experimental (pK, = -log [K,]) versus predicted biOactivity by the
CoMFA mOdel using different calculation methOds AM1 (a) HF/6-31G* (b) and
B3LYP/6-31G* (c).

Note: *Blue indicates training set while red indicates test set.
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Figure 3.3 CoMFA contour maps derived by σ2  receptor ligands using variOus charge
and geometry Optimization; AM1 (a), HF/6-31G* (b) and B3LYP/6-31G* (c) methods
for Compound 26.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Pharmacophore

The pharmacophore designed by DISCOtech for σ2 receptor ligands is a three point

arrangement Figure 2.1 that includes a nitrogen atom and two hydrophobic centers. The

two active a2 ligands (6) and (26) are represented in Figure 2.1 (b) and 2.2 (c) with the

pharmacophore dimensions.

4.2 Comparative Molecular Field Analysis

The higher r2 and F-value indicate higher accuracy. The non-crossvalidated PLS analysis

produced the best r2 and standard errors of predicted pKi value. The obtained value of r2 ,

standard error of estimate and F value for all 22 compounds of training set using three

calculation methods is reported in Table 3.4. The relationship between calculated and

predicted pKi values of training set of 22 compounds and a test set of 4 compounds by all

three calculation methods using non-cross validated analysis is also reported in Table 3.2

and Table 3.3 respectively. The Graph of the predicted pKi versus the actual pKi values

are shown in Figure 3.2. The CoMFA model was also cross-validated to confirm the

predictive power of the model. The CoMFA model required three or four optimal

components in different calculations to explain the variance in binding affinity to a2

receptors for this study. A q2 value of more than 0.4 was obtained for all cross validated

analyses. A q2 = 0.602 at 4 component was obtained for B3LYP/6-31G* optimized

geometries and atomic charge calculations; which was higher than those obtained with

23
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AM1 and HF/6-31G* optimized geometries. The CoMFA models of AM1 optimized

geometries produced lower q2 of 0.417 than those of HF/6-31G* and B3LYP/6-31G*

optimized geometries. The numerical results of a cross validated PLS analysis by "Leave-

One-Out" method using the 22 compounds by all three calculation method are listed in

Table 3.1.

4.3 Validation of the CoMFA Model

The four test compounds were selected; those include: 2 (Table 1.2), 5 (Table 1.3), 11

(Table 1.4) and 19 (Table 1.5); one from each major class of compounds. The range of

binding affinities for the training set was -2.455 to 0.469 log units and the predicted range

of pKi for training set was -2.537 to 0.476 log units for AM1/6-31G* method, -2.454 to

0.454 log units for HF/6-31G* and -2.469 to 0.466 log units for B3LYP/6-31G* method

Table 3.2. The bio-activity of all 22 ligands in the training set was predicted satisfactorily

by all three calculation methods. The predictive utilities of CoMFA model for four

ligands in the test set were considered satisfactory for all three calculations Table 3.3.

4.4 Design of New Ligands

The design of new ligands and prediction of activities is possible by using the spatial

distribution of steric and electrostatic properties of CoMFA contour maps and its

calculation (Figure 3.3). The Spiro [(2) benzopyran-1, 4'-piperidine] derivative (26) was

one of the most potent and highly selective 62 receptor ligands. Six new structures were

suggested in Table 4.1, and predicted pK i values were calculated using AM1, HF/6-31G*,

and B3LYP/6-31G* calculations.
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The AM1 model failed to predict Spiro derivative (26) in the proper ranges (Table 4.1).

The HF/6-31G* and B3LYP/6-31G* model had the higher q 2 values than the AM1 model

therefore the predicted bioactivities of the new ligands are more probable by these two

models. The CoMFA contour maps were investigated to find out locations where the

modifications of substituent groups are essential to determine the effect on a2 activity.

The CoMFA contour maps of steric fields are shown in yellow and green. The steric

regions define the size and shape of the substituents around the molecule. The green areas

where more bulky substituents are favoured, and yellow where less bulk is desired for

higher G2 activity. The contour maps of electrostatic fields are shown in red and blue

colors. The red regions favor more negative charge, and blue areas favor more positive

charge for higher a2 activity. By using the knowledge of spatial distribution of steric and

electrostatic regions, two locations on the CoMFA maps were investigated to determine

the activity of designed new compounds (Table 4.1). These two important modification

sites were represented by R1 and R2 on Spiro [(2) benzopyran-1, 4'-piperidine] derivative

(26). Six new structures were constructed by changing substituent groups on R1 and R2.

Among these new structures, compounds 27 and 28 had more bulky substituent groups at

R 1 while compounds 29 and 30 had less bulky substituent groups at R1 compared to the

original ligand (26). By increasing bulk at R1, a drop in the predicted pKi value for

compounds 27 (predicted pKi=0.216) and 28 (predicted pKi=0.211) was observed from

the original ligand 26, using the HF/6-31G* PLS analysis while an increase predicted pKi

value for these two compounds (Table 4.1) was observed using B3LYP/6-31G* PLS

analysis. Compounds 29 and 30 have less bulky substituents at R1, which shows higher

predicted a2 activity for HF/6-31G* and also for B3LYP/6-31G* PLS analysis.
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The predicted pKi value for compounds 29 and 30 are -0.498 and -0.519 for HF/6-31G*

analysis, while -0.651 and -0.022 for B3LYP/6-31G* analysis respectively. The R 1

position of substituent groups falls in the yellow areas where less steric bulk is favored

for higher a2 activity so the values of compounds 29 and 30 clearly suggest that less bulk

at R1 is favorable for higher σ2 activity.

The R2 position of substituent groups falls in the red areas where more negative

charge is favored for higher a2 activity. Compounds 31 and 32 contain negative charged

substituent groups at R2. By introducing a methoxy (-OCH3) group at R2 position in

compound 32 an increase in predicted a2 activity (0.043) for HF/6-31G* and (-0.292) for

B3LYP/6-31G* PLS analysis compared to the bioactivity of the original ligand 26 (Table

4.1). This study suggests that, there is a possibility for future development of a2 receptor

ligands by using small substituent groups at R1 and by using electronegative substituent

groups at R2 to increase selectivity and affinity of these ligands.



Table 4.1 Prediction of Bioactivity for New Ligands
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CHAPTER 5

CONCLUSIONS

This study derived a pharmacophore model that should aid in the design of additional

ligands which possess high affinity and selectivity for the .52 receptor. The predicting

power of the CoMFA models was tested and verified using PLS cross validation. Three

CoMFA contour map were obtained with an alignment of 26 compounds whose

geometries and atomic charge were optimized in AM1, HF/6-31G*, and B3LYP/6-31G*.

This study also suggested that B3LYP/6-31G* optimized geometries produced good

CoMFA models to predict bioactivity of a2 ligands. Two possible sites of modification

for most potent and highly selective (72 ligand (26) were represented by R1 and R2.

Addition of less bulky groups at R1 and more electronegative groups at R2 produced more

active a2 receptor ligands.
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